الجمهورية الجنبة المستعبية المستعبدة المستعبد

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التربية الوطنية MINISTERE DE L'EDUCATION NATIONALE

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT GENIE INDUSTRIEL

PROJET DE FIN D'ETUDES

SUJET

Etude technique et économique

de la maintenance au centre mécanique

du complexe des véhicules industriels (C V I - Rouiba)

proposé par : M^{er} Belkadi (C V I) Etudié par :

Melle Radia Sedaoui

Melle Samira Djoufelkit

Dirigé par :

Mer A - Ouabdesselam

Mer M - Bouziane

PROMOTION

1994 / 1995

E. N. P 10, Avenue Hassen Badi - EL- HARRACH - ALGER

ديمقر اطية الشعبية Ecole Nationale Polytechnique

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التربية الوطنية

MINISTERE DE L'EDUCATION NATIONALE

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT GENIE INDUSTRIEL

PROJET DE FIN D'ETUDES

SUJET

Etude technique et économique

de la maintenance au centre mécanique

du complexe des véhicules industriels (C V I - Rouiba)

proposé par :

Etudié par : Mer Belkadi (CVI)

Melle Radia Sedaoui

Melle Samira Dioufelkit

Dirigé par :

Mer A - Ouabdesselam

Mer M - Bouziane

PROMOTION

1994 / 1995

E. N. P 10, Avenue Hassen Badi - EL- HARRACH - ALGER

Ministère de l'enseignement supérieur Ecole nationale polytechnique Département Génie - industriel المدرسة الرطنية المتعددة التقنيسات المكتب ة — BIBLIOTNEQUE المكتب قب المكتب المكافقة المكافق

وزارة التعليم العالي المتعددة التقنيات المدرسة الوطنية المتعددة التقنيات

فرع الهندسة الصناعية

ملخص:

الغاية من هذه الدراسة هي إيجاد طريقة ملائمة لصيانة أجهزة المركز الميكانيكي لمجمع السيارات الصناعية (الرويبة) و هذا بتحقيق توافق بين المعيارين التقني و الإقتصادي.

لهذا الغرض، دراسة تقنية، كمية و كيفية للأجهزة أنجزت، و هذا بتطبيق المفاهيم الأساسية للصيانة : العول، الموصونية و الموفورية، كذا دراسة لنفقات صيانة الأجهزة.

مجمل هذه الدر اسات ستساهم في أخذ القرار الأخير: طريقة الصيانة أو تجديد الأجهزة

Résumé:

Le but de cette étude est d'élaborer une méthode de maintenance adéquate, un compromis technique et économique à optimiser, pour les équipements du centre mécanique du CVI (Rouiba). A cet effet, une analyse technique, quantitative des équipements a été faite en utilisant des concepts clés de la maintenance : Fiabilité, maintenabilité et disponibilité ; ainsi qu'une analyse des coûts de maintenance. L'ensemble de ces analyses va servir d'aide à la décision finale : méthode de maintenance, renouvellement d'équipements.

Abstract:

The aim of this study is to determinate an appropriate method of maintenance, realizing a technical and economical compromise of mechanical center's equipment (C.V.I - Rouiba).

In order to achieve this aim, technical analysis: quantitative and qualitative of equipment were

done, by applying the maintenance key concepts which are Reability, maintainability and availability; thus a maintenance costs analysis.

These analysis will be used to determining the choice between renovate equipment or maintain it.

REMERCIEMENT

المدرسة الوطنية المتعددة التقنيسات المكستبية - BIBLIOTHEQUE المكستبية - Ecele Nationale Polytechnique

Au seuil de ce travail, nos gracieux remerciements vont à nos promoteurs:

M. OUABDESSELAM et M. BOUZIANE pour avoir bien voulu diriger notre travail, pour leur suivi permanent ainsi que pour les précieux conseils qu'ils nous ont prodigué et surtout pour les critiques aussi constructives que fructueuses qu'ils nous ont émises, qu'ils trouvent ici les expressions de notre fidèle gratitude.

M. HADDAD et M. LAMRAOUI, nous les prions de bien vouloir accepter l'expression de notre profonde gratitude et nos plus vifs remerciements d'avoir accepter d'éxaminer ce travail. Nous tenons à remercier également, Melle ABOUN chef du département génie industriel, Mme BELMOKHTAR, enseignante à l'ENP ainsi que toux ceux qui ont contribué à notre formation de prés ou de loin.

que M. BELKADI. M. BENNAMMA du département maintenance du CVI ainsi que tout le personnel de l'entreprise, nous citerons particulièrement: M. BERWAGUI chef du département Comptabilité analytique, soient remerciés pour leurs conseils éclairés et leur amicales collaboration.

Soient digne de ces remerciants: M^{elle} SEDAOUI NABILA, M. DJOUFELKIT RACHID et OUNNAR KARIM et FOUZIA pour leur aide précieuse.

Je dédie ce travail à :

المدرسة الوطنية المتعددة التقنيبات المكستب — BIBLIOTHEQUE Loole Nationale Polytechnique

ma regrettable grand-mère;

mes chers parents;

tous mes chers frères et soeurs;

ma tante NACERA;

toute ma famille;

tous mes amis(es)

SEDAOUI RADIA

Je dédie ce travail à :

la mémoire de mon défunt père;

ma très chère mère;

mes soeurs et frères;

ma bien aimée DJDA;

tous ceux que j'aime.

DJOUFELKIT SAMIRA

المدرسة الوطنية المتعددة التقنيبات المكستب ة — BIOLIOTHEQUE المكستب في المكستب المساوة Ecolo Hationale Polytechnique

Sommaire

Introduction	2
I - Partie déscriptive	
I - 1 - Présentation du centre mécanique	
I - I - Présentation de la maintenance dans ce centre	
1 - Service maintenance	4
2 - La maintenance centrale	5
3 - Déroulement de l'opération de maintenance	6
I - 2 -Analyse de la situation actuelle et problématique	
II - Etude technique	
II - 1 - Aspect quantitatif.	
A - Approche mathématique	9
- Fiabilité	
- Maintenabilité	11
- Disponibilité	14
B - Choix de l'échantillon	
C - Application	
D - Résultats et commentaires	51
II - 2 - Aspect qualitatif.	
A - Principe de la méthode	56
B - Application	66
III - Analyse des coûts	
III - 1 - Approche théorique	
1 - Importance de l'analyse des coûts	72
2 - Les coûts de la maintenance	72
- Coûts directs	
- Coûts indirects	72
- Coût de maintenance	
- Coût global d'acquisition et d'utilisation	74
- Coût moyen annuel de la maintenance	
III - 2 - Application	78
III - 3 - Interprétation des résultats	8 6
IV - Propositions	92
Conclusion générale	93
Annexes	
Références bibliographiques	

المدرسة الوطنية المتعددة التقنيبات المكتبية — BIBLISTHEQUE المكتبية — Ecolo Rationalo Polytechnique

Introduction

La fonction maintenance ne cesse d'évoluer à la recherche d'un meilleur compromis entre des besoins et des exigences techniques, économiques ou humains. Afin que la production soit assurée de manière continue.

La maintenance est un ensemble d'actions permettant de maintenir ou de rétablir un équipement dans un état spécifié ou en mesure d'assurer un service déterminé, au coût optimal [AFNOR].

La maintenance peut être corrective ou bien préventive (systématique ou conditionnelle) ; dans les deux cas, elle fait appel à la fiabilité et la maintenabilité en vue d'assurer sa réalisation de la meilleure façon possible.

C'est ce que nous essayerons de mettre en évidence au cours de notre projet de fin d'études intitulé:

" Etude technique et économique de la maintenance au centre mécanique du CVI (Rouiba) ".

Notre travail est structuré comme suit:

- 1 Une présentation du centre mécanique du CVI.
- 2 Approche théorique des notions de fiabilité, maintenabilité et de disponibilité; application au cas des équipements du centre mécanique du CVI.
- 3 Aspect qualitatif de la maintenance.
- 4 Analyse des coûts de la maintenance des équipements en phase d'usure.
- 5 Propositions.
- 6 Conclusion générale.

المدرسة الوطنية المتعددة التقنيسات المكسسية — BIBLIOTHEQUE Ecolo Nationalo Polytechnique

PARTIE

DESCRIPTIVE

1 - 1 - présentation du centre mécanique :

Le centre mécanique dispose d'une surface de 4300 m² et d'un effectif de 1136 personnes. Il a pour vocation la fabrication et l'assemblage des principaux organes des véhicules suivants :

- = 9 types de ponts ;
- 5 types de Boites de vitesses ;
- 8 types d'essieux ;
- 4 types de directions ;
- diverses ferrures.

Ce centre regroupe 9 ateliers comportant une ou plusieurs sections homogènes. La section homogène correspond au découpage des ateliers de fabrication en groupe de machines ayant des caractéristiques homogènes.

Une répartition de ces sections au niveau des ateliers est présentée dans le tableau suivant:

Ateliers	Principales activités	Numéro de Section
3010	Tournage, taillage	103, 105
3020	Rectification, Traitement thermique	106,112,113,115,118
3030	Décolletage, débitage	101,102
3040	Usinage des boites de vitesses et de directions	110,131
3050	Usinage ponts essieux	120,121,122,123
3060	Usinage pièces	124,125,126
3070/3080	Montage organes	111,132,127,128
3090	Usinage montage ferrure	130

Tableau Nº I-1: Répartition des sections au niveau des ateliers de production

Ces activités sont assurées par un parc de 551 machines outils, telle que : perceuses, tours parallèles et horizontales, fraiseuses, machine à tailler les engrenages...

Chaque équipement est identifié par un - matricule ;

- Nº de famille.

STRUCTURATION:

Le bâtiment mécanique est placé sous la responsabilité d'un chef de centre au quel sont rattachés quatre services de prestations qui contribuent à l'atteinte des objectifs recherchés par la production.

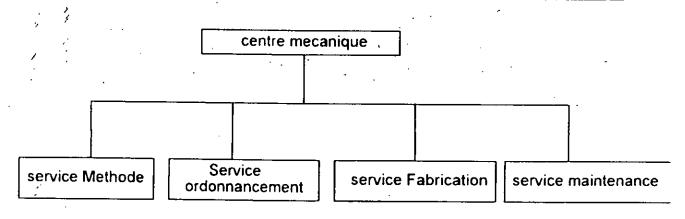


Figure Nº 1 - 1 -1: Structure du centre mécanique

1 - 1 - 2 - PRESENTATION DE LA MAINTENANCE DANS CE CENTRE:

Au centre mécanique, la maintenance est assurée par différents services et structures qui sont:

1. service maintenance:

Le service maintenance est chargé de la maintenance des machines outils et installations destinées à la fabrication du produit.

1-1- structure:

Pour accomplir sa mission, le service maintenance se compose du personnel suivant:

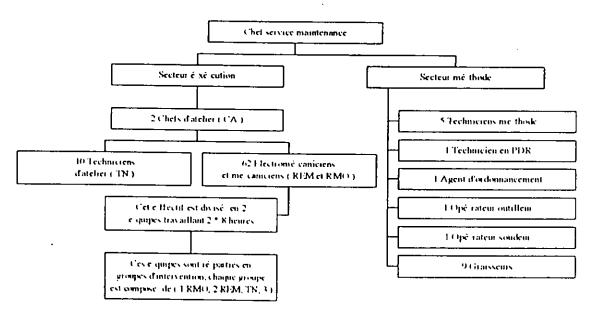


Figure Nº 1 - 1 -2: Structure du service maintenance

I - 2 - activités:

Le secteur exécution effectue des opérations de:

- diagnostic;
- entretien correctif;
- entretien préventif;
- contrôle des machines et transmission des informations qui concernent les machines à l'agent d'ordonnancement.

Le secteur méthode a pour mission :

- la mise à jour de l'historique et documentation des équipements;
- suivi et graissage des machines;
- programmation des révisions annuelles;
- établissement des demandes d'achat de pièce de rechange;
- préparation de plan des pièces réalisables sur site;
- enregistrement des immobilisations des machines;
- élaboration du tableau de bord mensuellement;
- établissement du budget prévisionnel.

La réparation des pièces défectueuses et la réalisation des pièces de rechange sont faites dans un atelier comportant:

- I tour parallèle;
- 1 Fraiscuse:
- 1 Perceuse;
- 1 Etau limeur;
- 1 Banc d'essai électrique pour des moteurs;
- 1 Poste soudage.

2- la maintenance centrale:

La maintenance centrale a pour mission de coordonner les activités de maintenance des centres, et participe également au développement de la maintenance au niveau du complexe. Elle se compose de 3 services:

- Un service technique;
- Un service gestion pièce de rechange et machines outils;
- Un service électronique.

Les documents de base utilisés en maintenance:

Pour assurer une bonne saisie de l'information dans ces différentes activités, la maintenance mécanique utilise un ensemble de documents dont les principaux:

- La demande de travail (DT);
- Le bon de sortie matière (BSM);
- La demande d'achat (DΛ) ;
- Le carton de pointage (C.P).

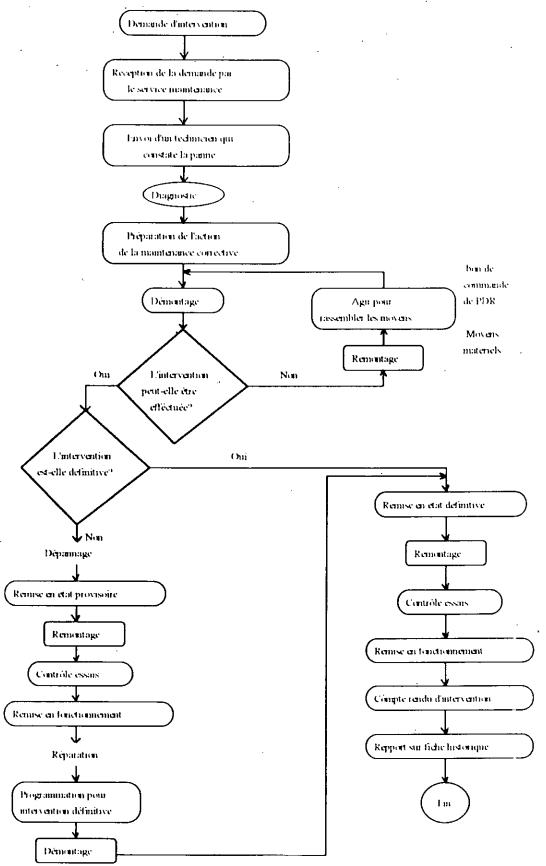


Figure Nº 1 - 1 - 3 : Déroulement de l'opération de maintenance corrective

1-3- ANALYSE DE LA SITUATION ACTUELLE ET PROBLEMATIQUE :

Le CVI est confronté, à des problèmes, freinant sa "mutation" de prise en charge du parc machine suivant les méthodes de la maintenance adoptées.

La maintenance appliquée au CVI est la maintenance curative, l'esprit de cette maintenance est de dépanner ou réparer un système défaillant sans le connaître. Donc, il est nécessaire d'adopter un plan de maintenance.

Analyse de la situation actuelle:

Suite au stage qu'on a effectué au CVI et plus particulièrement au centre mécanique, utilisant:

Source d'information

- l'interview:
- l'observation;
- la documentation.

Faisant appel aux différents services du CVI, à savoir:

- Le département maintenance centrale ;
- Service méthode;
- Service comptabilité analytique.

On a pu relever les observations énumérées ci-dessus:

- 1- Dans le parc machine : 64% des équipements datent de 1974 et 16% datent de 1975.
- 2- Un temps d'immobilisation de 296.160 heures(7.5 % du temps actif prévu) en 1993 Contre 303.079 heure (8.5 % du temps actif prévu) en 1994; soit une augmentation de 1 %. Les causes de ces immobilisations sont:
 - pannes répétitives;
 - attente de pièces de rechange (PDR) fabriquées sur site ou commandées : 198.084 h d'immobilisation soit 65% en 1994 contre 67% en 1993.
 - attente d'intervenants: 61.418 h, soit 20% en 1994 contre 12% en 1993.
 - temps d'intervention: 43.577 h, soit 14% en 1994 contre 21% en 1993.

Nous constatons que l'attente PDR représente le pourcentage le plus élevé d'immobilisation totale.

3- La réticence du service fabrication envers la maintenance préventive par crainte de la perte du temps de production.

De ces observations apparaissent les problèmes dont est confronté le centre mécanique. Pour y remédier, la direction du CVI étudie les possibilités de rénovation et de mise en place d'une stratégie de la maintenance qui a pour objectif:

- d'assurer la disponibilité maximale des équipements;
- d'optimiser les coûts de possession des équipements.

PROBLEMATIQUE:

Le département fabrication a proposé une liste de 118 équipements du centre mécanique à renouveler pour la période (1994, 1996). En prénant comme critère de décision:

- le temps d'immobilisation;
- les pannes répétitives;
- l'âge de l'équipement.

Une décision de renouvellement ne peut être prise, évidement sans une étude technique et économique préalable.

Il faudra adopter une méthode de maintenance, un compromis téchnico-économique à optimiser pour les équipements à étudier. C'est l'objet de notre projet de fin d'études qui essayera de répondre aux questions suivantes:

- 1- Faut-il garder un équipement ou le remplacer ?
- 2- S'il faut le garder; alors, faut-il le maintenir ou le rénover ?
- 3- S'il faut le remplacer; alors, faut-il le remplacer à l'identique ou, le remplacer par un équipement de "nouvelle génération" ?.

ETUDE TECHNIQUE

ASPECT QUANTITATIF
APPROCHE THEORIQUE

A.1 - Etude de fiabilité [1]

1 - Définition:

"La fiabilité mesure la confiance que l'on peut accorder au fonctionnement d'un dispositif. Elle est caractérisée par la probabilité qu'un élément ou système accomplisse sans défaillance une fonction requise dans des conditions données, pendant un temps spécifique "[1]

2- Caractéristiques: [1]

Nous considerons un élément qui commence a fonctionner a l'instant t^-0 et qui tombe en panne à l'instant t = T.

Nous pouvant admettre que T est une variable aléatoire dont:

la fonction de répartition F(t) = P(T < t) représente la fonction de défaillance.

Ensuite, nous définissons les fonctions suivantes:

fiabilité:

$$R(t) = 1 - F(t) = P(T \ge t)$$

Risque de panne :

$$\lambda(t) = -\frac{R'(t)}{R(t)}$$

L'évolution du risque de panne pour un dispositif en fonction du temps, présente une allure " en baignoire " se compose de trois périodes: jeunesse, vie utile, vieillesse.

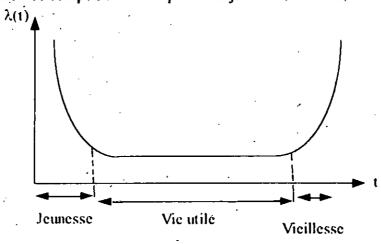


figure II - 1 : Courbe en baignoire

. Densité de probabilité de défaillance

$$\varphi$$
 (t) = F' (t) = - R' (t)

· a ces trois fonctions, il faut ajouter la durée de vie moyenne T ou MTBF;

$$T = \int_{0}^{+\infty} t \varphi(t) dt = \int_{0}^{+\infty} R(t) dt$$

on a

d'autre part, l'expression générale de la fonction de fiabilité s'écrit:

$$R(0 = \exp\left[-\int_{0}^{1} \lambda(x) dx\right]$$

3 - Etude de modèle de fiabilité: [2]

3 - 1 - Modèle de Weibull: [2]

Le modèle probabiliste de Weibull est très souple, car il permet d'ajuster correctement toutes les sortes de résultats expérimentaux et opérationnels.

Soit une variable aléatoire distribuée selon la loi de Weibull dont:

- la fonction de densité f (t) est

$$f(\mathfrak{D} = \frac{\beta}{\eta} \left(\frac{\mathsf{t} - \gamma}{\eta} \right)^{\beta - 1} exp \left[-\left(\frac{\mathsf{t} - \gamma}{\eta} \right) \right] \qquad \text{avec } \mathsf{t} \ge \gamma$$

$$\beta \text{ est un paramètre de forme} \qquad \beta > 0$$

$$\eta \text{ est un paramètre d'échelle} \qquad \eta > 0$$

$$\gamma \text{ est un paramètre de position} \qquad \gamma \in \mathsf{R}$$

- la fonction de répartition F (t)

οù

$$F(0 = 1 - \exp\left[\frac{t - \gamma}{\eta}\right]$$

- la fiabilité correspondante est donc R(t) = 1 - F(t)

$$R(\hat{v} = \exp\left[-\left(\frac{t - \gamma}{\eta}\right)\right]$$

- le taux instantané de défaillance

$$\lambda(\mathfrak{D} = \frac{\beta}{\eta} \left(\frac{\mathsf{t} - \gamma}{\eta}\right)^{\beta - 1} \qquad \text{avec } \mathsf{t} > 0 \text{ , } \beta > 0 \text{ , } \eta > 0$$

Exploitation: [2]

- si β est < 1 alors λ (t) décroît (période de jeunesse)
- si $\beta = 1$ alors λ (t) constante, indépendant du processus du temps.
- si β est > 1 alors λ (t) croit, phase d'obsolescence que l'on peut analyser plus finement pour orienter un diagnostic.

3 - 2- Modèle exponentiel:

C'est un cas particulier de la loi de Weibull, pour y = 0 et $\beta = 1$, on retrouve la distribution exponentielle.

A - 2 - Etude de maintenabilité : [2],[3],[4],[5]

1- Définition:

" Dans les conditions donnés d'utilisation, c'est l'aptitude d'un dispositif à être maintenu ou rétablit dans un état dans lequel il peut accomplir sa fonction requise, lorsque la maintenance est accomplie dans des conditions données avec des procédures et des moyens prescrits".[4]

2- Technique de réparation TTR : [3]

Le TTR d'une intervention se compose en général de la somme des temps suivants:

- temps de vérification de la réalité de défaillance.
- Temps de diagnostic.
- Temps d'accès à l'organe défaillant (dépôt et démontages).
- Temps de remplacement ou de réparation.
- Temps de rassemblage.
- Temps de contrôle et d'essais.

3- La fonction de maintenabilité : [2]

Il y a une análogie entre l'étude statistique de la fiabilité et de la maintenabilité :

- la variable aléatoire est "la durée d'intervention "
- la densité de probabilité est notée g (t)
- le taux de réparation noté : μ (t) et vaut

$$\mu(t) = \frac{g(t)}{1 - M(t)}$$

- la fonction de répartition notée M (t)

$$M(0 = 1 - exd \left[-\int_{0}^{t} \mu(x) dx \right]$$

4 - Etude des modèles de maintenabilité :[3]

Les résultats expérimentaux montrent que le plus souvent les durées des tâches suivent la loi Log- Normale, mais on observe aussi dans certains cas des distributions correspondants aux lois gamma.

4 - 1-Etude de modèle Log-Normale:[2]

La variable aléatoire T est distribuée selon une loi Log-Normale de paramètres μ et ∇ si et sculement si:

- elle est continue et positive;
- sa fonction de densité est:

$$\begin{cases} g(t) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left[-\frac{(\ln(t) - \mu)^2}{2\sigma^2}\right] & \text{pour } t > 0 \\ g(t) = 0 & \text{pour } t \le 0 \end{cases}$$

son espérance mathématique est:

$$\mathsf{E}(\mathfrak{V} = \mathsf{exp}\bigg[\mu + \frac{1}{2\sigma^2}\bigg]^t$$

dans ce cas le MTTR est égale à E (t).

4 - 2- Etude de modèle gamma: [3]

Soit T une variable aléatoire distribuée selon la loi gamma dont:

- la fonction de densité est:

$$\begin{cases} f(t) = \frac{\lambda^n e^{-\lambda t} t^{n-t}}{\Gamma(n)} & \text{pour } t > 0, \ \lambda > 0, \ k > 0 \\ f(t) = 0 & \text{pour } t \le 0 \end{cases}$$

- son espérance mathématique est
$$E(t) = \frac{1}{\lambda}$$

- sa variance :

$$\sigma^2 = \frac{n}{\lambda^2}$$

5 - Classement des données:[5]

Plusieurs règles empiriques proposent le nombre de classes à créer pour un échantillon donné.

Soit la formule de Sturges:

$$K = 1+3$$
, 3Log N

6 - Test d'adéquation: [2]

Les tests d'adéquation sont utilisés pour vérifier la validité des modèles mathématiques, issus des études expérimentales.

Pour notre étude on n'utilisera que le test de Kolmogorov Smirnov.

Test de Kolmogorov Smirnoy: [2]

Ce test est applicable pour toute valeur de n

Soit:

$$f(t) = \frac{i}{n+1}$$

F (t): fonction de répartition théorique

On définit

$$D_n = Max | f(t) - F(t) |$$

tel que Dn: statistique modifiée de Kolmogorov Smirnov

et Dn, α : Valeur critique au seuil α .

si $Dn \leq Dn, \alpha$ on accepte l'hypothèse du modèle théorique avec un risque de se tromper α .

A.3 - Etude de la disponibilité : [4] ; [2]

Un matériel "disponible "est un matériel dont on peut se servir. A partir de cette évidence, il apparaît que la disponibilité dépend à la fois;

- du nombre de défaillances (fiabilité)
 de la rapidité à laquelle elles sont réparées (maintenabilité)
 des précautions définies pour la maintenance (maintenance)
- de la qualité des moyens mis en oeuvre (logistique)

1- Définition: [4]

"La disponibilité est la probabilité de bon fonctionnement d'un dispositif à l'instant t ". C'est donc " l'aptitude d'un bien, sous les aspects combinés de sa fiabilité, maintenabilité, et de l'organisation de maintenance, à être en état d'accomplir une fonction requise dans les conditions de temps déterminées "

$$D(t) = P[X(t) = 1]$$
 [3]

X(t) = 1 signifie que le système est en état de fonctionnement.

Augmenter la disponibilité d'un matériel consiste à réduire le nombre de ses arrêts (fiabilité) et à réduire le temps mis pour les résoudre (maintenabilité).

Nous distinguons les disponibilités théoriques (instantanées et asymptotiques) modélisées par les lois probabilistes

$$D = \frac{MTBF}{MTBF + MTTR}$$

et les disponibilités opérationnelles utilisées en gestion de la maintenance, modélisées suivantles données saisies et l'objectif de gestion recherché

$$D = \frac{MTBF}{MTBF + MTTR + MTL}$$

tel que MTL: moyenne des temps logistique.

ETUDE TECHNIQUE

ASPECT QUANTITATIF

CHOIX DE L'ECHANTILLON

Choix de l'échantillon :

Vu l'impossibilité d'étudier les 118 équipements; le chôix d'un échantillon représentatif s'avère nécessaire. A cet effet, nous avons utilisé la méthode ABC comme outil d'aide à la décision.

Application:

Les éléments à classer sont des équipements mécaniques. Nous avons pris comme critères de choix:

- 1 Le temps d'immobilisation;
 - 2 La fréquence de pannes;
 - 3 La place stratégique de l'équipement dans l'atelier du point de vue de:
 - son coût d'investissement,
 - la nécessite de sa disponibilité dans le processus de production;
 - 4 Le plan de charge de l'équipement.

a La saisie des données:

Les données nécessaires pour l'étude s'étalent sur une période de neuf ans (1 janvier 1986 au 31 décembre 1994).

Tirées des :

- Dossiers historiques des machines;
- Rapports d'interventions;
- Interviews des responsables du service méthode et maintenance.

b - L'analyse des données:

La procédure de choix de l'échantillon s'est faite en deux phases:

- Un classement ABC des 118 équipements selon le critère du temps d'immobilisation, qui a permis de limiter la liste à 69 équipements représentant 80 % du temps d'immobilisation totale.
- un deuxième classement des 69 équipements selon trois critères qui sont:
- Le nombre de pannes (classement ABC).
- Le plan de charge (classement ABC);
- La place stratégique de l'équipement dans l'atelier;

Cette procédure a permis de retenir un échantillon de 30 équipements répondant à deux ou trois critères.

phase 1: Classification (ABC) selon le critère du nombre d'heures d'immobilisation

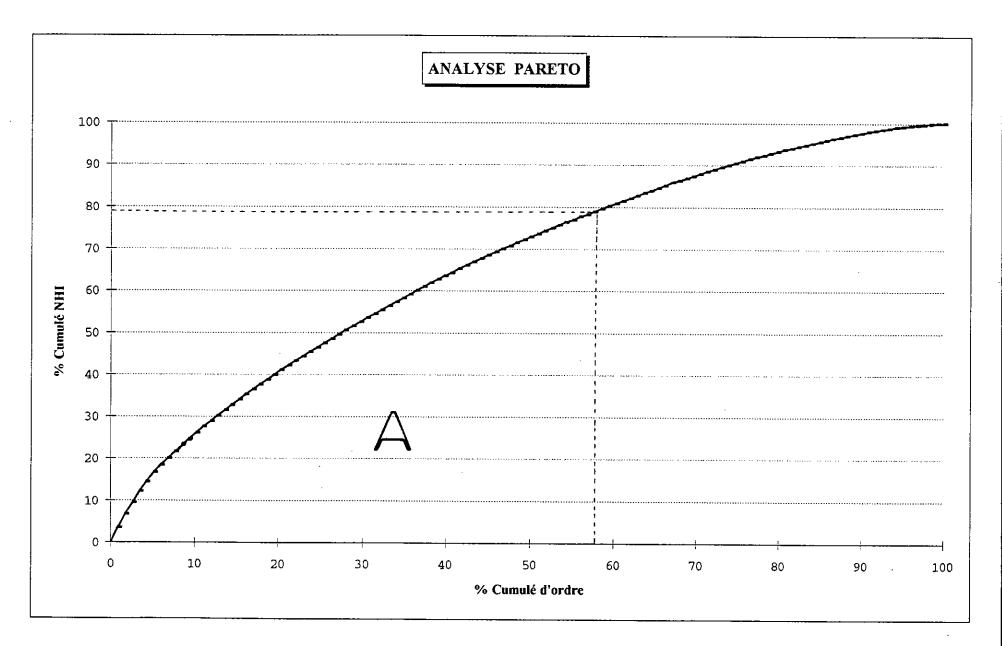

N°	Matricule	NIII	% cumulé	N°	Matricule	NIII	% cumulé
Ordre	Mauricule	NIII	du SHI	Ordre	Matricule	MILI	du NIII
1	C013021	20895	3,46	41	C003441	5642	58.18
2	C013011	19527	6,69	42	C010151	5606	59.11
3	1.002211	16758	9,46	43	C011151	5536	60.03
4	C008321	16107	12.12	44	C008261	5487	60.93
	1.002381	14014	14,44	45	C011091	5412.	61.81
6	1.002411	13282	16.64	46	C006541	5147	62.68
 7	C006351	10799	18.42	47	C006921	5117	63.53
8	C030741	9557	20.00	48	L003011	5097	64.37
9	C008931	9524	21.58	49	C007821	5081	65.21
10	C006401	9365	23.13	50	C009001	5064	66.07
11	C008121	9181	24.65	51	C009661	5015	66.88
12	C003531	8812	26.10	52	C007811	4937	67.69
13	C009141	8720	27.55	53	C008881	4769	68.48
14	C009631	7901	28.85	54	C008061	4590	69.24
15	C006031	7895	30.16	55	C009671	4485	69.98
16	C006321	7803	31.45	56	C006571	4359	70.70
17	C006721	7760	32,73	57	C009991	4344	71:42
18	C009921	7663	34.00	58	C005951	4320	72.14
19	C003151	7648	35.26	59	C014541	4314	72.85
20	C008251	7232	36.46	60	C008331	4286	73.56
21	C011161	7084	37.63	61	C003351	4223	74.26
22	C008741	6899	38.77	62	C008101	4207	74.95
23	C030751	6875	39.91	63	C010921	4161	75.64
24	C009981	6792	41.03	64	C008151	4066	76.31
2.5	C006411	6650	42.13	65	C006901	3976	76.97
26	C000901	6535	43.22	66	C008781	3897	77.62
27	1.002251	6410	44.28	67	C005941	3878	78.26
28	C009081	6384	45.33	68	C006711	3868	78,90
29	C006551	6379	46,38	69	C011131	3866	79.54
30	C008921	6282	47,42	70	C006431	3837	80,17
31	C006911	6209	48.15	71	C006171	3825	80.80
32	C007841	6174	49,47	72	C011101	3791	81.43
33	C006051	6[6]	50.49	73	C007761	3775	82.05
34	C008771	6072	51.50	74	C013561	3773	82.68
35	C003201	6035	52.49	75	C005931	3730	83.30
36	C006041	5888	53.47	76	C009651	3713	83.91
37	C009111	5774	54.42	77	C015981	3659	84.51
38	C008981	5751	55.37	78	C006851	3550	85,10
39	C009731	5685	56.31	79	C008841	3470	85.68
40	C030531	5856	57.25	80	C005991	3406	86,24

Tableau Nº II - B - 1

Nº ·	Matricule	NHI	% cumulé
Ordre	·	 	du NH1
81	C003431	3390	86,80
82	C015991	3327.	, 87,35
83	C008221	3310	87,90
84	C006941	3231	88.42
85	C009691	3210	88.96
86	C010161	- 3086	* 89,48
. 87	C013041°.	3022	89.98
88	C007651	2989	90.48
89	: C006021	2968	90.97
90	C005881	2949	91.46
. 91	C007741	2746	91.91
92	C007861	2696	92.36
93	C010911	2626	92.79
94	C011181	2551	93.21
95	C014391	2474	93.62
96`	C002181	2371	94.01
97	C009041	2355	94.40
98	C008181	2353	94.79
99	C008891	2342	.95,15
100	C011141	2261	95.51
101	C003461	2220	95.92
102	C005891	2170	96.28
103	C008211	2161	96.61
104	C006251	2143	96,99
105	C009641	1976	97.32.
106	C010971	1972	97.64
107	C006971	1966	97.97
108	C006621	1693	98.25
109	C008141	1692	98.35
110	C008701	1573	98.79
111	C003431	1548	99.05
112	C008821	1293	99.26
113	C007691	1225	99.46
114	C007731	1044	99,63
115	C010101	975	99,80
116.	C013191	965	99.96
117	C008201	190	99,99
118	C008421	82	100.0

Tableau Nº II-B-1 (suite)

NHI: Nombre d'heure d'immobilisation.

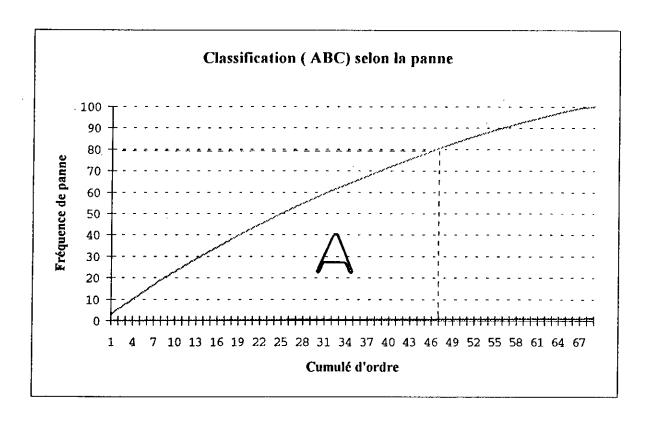
Phase 2 : Choix de l'échantillon selon trois critères

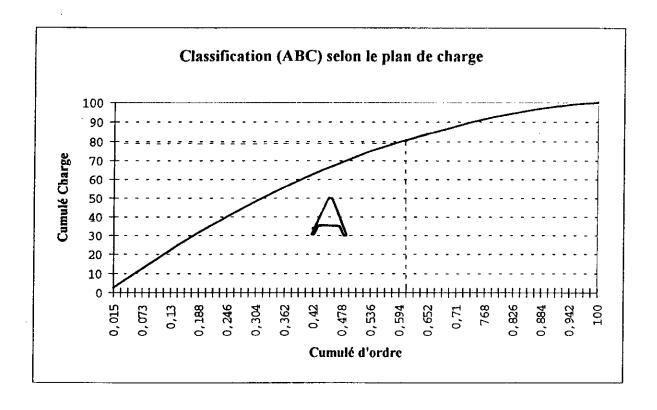
Le tableau : II - B - 2, donne un classement des équipements (de la classe A retenue aprés classification (ABC) selon le temps d'immobilisation) selon:

- 1 Le nombre de pannes.
- 2 Le plan de charge.
- 3 La place stratégique de l'équipement au centre mécanique.

NB: On notera 1: équipement stratégique,

0: équipement moins stratégique.


No	Matricule	Nombre de	%Cumulé	La	% Cumulé		
D'ordre		pannes	de pannes	Charge	de charge	Stratégie	Classement
1	C013021	114	74,16	82	35.92	1	
2	C013011	114	75.42	32	91.52	1	
3	L002211	75	96,31	17	98.37	0	
4	C008321	103	93,91	75	52.06	0	
5	L002381	82	91,95	95	12.55	1	29
6	L002411	25	99.65	95	14.99	0	30
7	C006351	90	88.12	37	88.86	1	
8	C030741	123	64.95	40	81.79	0	
9	C008931	116	71.63	62	66.12	0	28
10	C006401	124	62.20	95	17.43	1	18
11	C008121	118	70.34	68	59.39	i	22
12	C003531	165	36.21	77	48.22	0	8
13	C009141	134	59,39	99	2.54	0	16
14	C009631	96	86,09	17	98,80	1	
15	C006031	155	43.17	59	69.17	0	10
16	C006321	63	99.37	73	53.93	0	27
17	C007721	211	7.70	60	67.66	1	3
18	C009921	90	89,11	11	99.49	0	
19	C003151	94	87.13	73	55.80	1	26
20	C008251	169	30.71	53	75.01	0	7
21	C011161	123	66.32	80	42.17	1	20
22	C008741	203	14,48	22	96.97	1	
23	C030751	140	56.39	32	92,34	1	
24	C009981	149	51.60	68	61.13	1	13
25	C006411	203	12.23	30	93.10	1	
26	C000901	123	67.69	37	89.81	áÖ.	Section 1
27	L002251	152	48.27	95	19.87	1	11
28	C009081	178	26.89	44	78.57	1	
29	C006551	205	9.98	35	90.70	0	
30	C008921	124	63.58	99	5.08	0	19
31	C006911	144	54.84	91	27.05	1	
32	C007841	70	97.90	26	94.45	1	15
33	C006051	90	92.85	27	93.79		
34	C008771	157	41.45	26	95.11	1	


Tableau N° II - B - 2

1

N°	Matricule	Nombre de	% Cumulé	La	% Cumulé	Stratégie	Classement
Ordre		pannes	de pannes	Charge	de la charge		
35	C003201	100	85.02	72	57.65	0	
36	C006041	112	77.92	59	70.68	1	23
37	C009111	175	28.83	16	99.21	1	
38	C008981	158	39.71	99	7.62	ı	9
39	C009731	70	98.68	18	97.94	1	
40	C030531	129	60,82	65	64.53	1	17
41	C003441	115	72.90	79	46.25	0	
42	C010151	153	44.88	40	82,81	0	
43	C011151	22	100.0	40	83,83	0	
44	C008261	111	79.15	8	99,69	1	
45	C011091	78	95.48	20	97.48	1	
46	C006541	158	37.96	68	62.87	0	
47	C006921	111	80.38	90	29.36	1	24
48	C003011	85	91.03	95	22.31	1	
49	C007821	200	18.94	82	38.02	0	
50	C009001	121	69.03	80	44.22	0	21
51	C009661	89	90.09	40	84.85	0	
52	C007811	182	20.96	47	77.44	0	,
53	C008881	271	3.01	82	40.12	[1
54	C008061	148	53.24	59	72.19	0	14
55	C009671	151	49.95	75	50.14	0	12
56	C006571	80	93.73	44	79.70	0	
57	C009991	212	5.36	48	76,24	0	2
58	C005951	178	24.92	84	33.82	1	5
59	C014541	73	97.12	6	100.0	1	
60	C008331	165	34.38	57	73.65	0	
61	C003351	105	82.77	25	96.41	1	
62	C008101	114	76.67	40	85.87	1	
63	C010921	153	46.58	42	80.77	0	
64	C008151	136	57.90	40	86.89	ı	11
65	C006901	110	81.60	97	10.11	0	25
66	C008791	80	94.61	40	87.91	1	W
67	C005941	178	22.94	94	24.72	1	6
68	C006711	202	16.72	90	31.67	1	4
69	C011131	166	32.55	26	95.77	1	•

Tableau N° II - B - 2 (suite)

Nature et classification des équipements

N	Matricule	N°	18 tata	<u> </u>			
	Matheme		Designation	Date de	Coût	Fonction de -	Régime de
ordre		famille		mise en	d'aquisition	l'équipement	fonctionn-
				service	(DA)		ement
· <u> </u>	C008881	545	Aleseuse speciale GSP	3/06/1974	551635.54	Usinage ponts	2 × 8
	C000001	123	Filteuse cridan	13/08/1974	217453,40	Usinage ponts	2 x 8
	C007721	114	Tour automatique	10/04/1974	141739.10	Usmage ponts	2 × 8
4	C006711	113	Tour semi automatique		158758,04	Usinage boites dir	2 x 8
5	C005951	116	Tour automatique	22/01/1974	446827,56	Usinage engrenages	2 x 8
6	C005941	116	Tour automatique	22/01/1974	535925,12	Usinage engrenage	2 × 8
7	C008251	425	Rectifieuse d'éxtérieur	13/06/1974	444942,20	Usinage ponts	2 ×8
8	C003531	318	Fraiseuse horizontale	1/11/1974	228210,26	P- Ferrures	2 x 8
()	C008981	423	Rectifieuse universelle	5/06/1974	260566,08	P- Usinage ponts	2 x 8
10	C006031	426	Rectifieuse d'intérneur	9/04/1974	449387.93	P-Rectification	2×8
11	L002251	962	Four de trempe	3/06/1974	831805.74	P-traitement thermique	3 × 8
12	C009671	51,7	Machine à shaver	29/07/1974	178321.93	Usinage engrenage	2×8
13	C009981	138	Aleseuse horizontale	13/08/1974	479708.03	Usinage ponts	2 X 8
14	C008061	426	Rectifieuse d'interieur	3/06/1974	398068,80	Rectification	2 x 8
15	C006911	423	Rectifieuse universelle	22/01/1974	216627.51	Decolletage	2 × 8
16	C009141	513	Machine à tailler	3/06/1974	343212.32	Usinage engrenage	2 X 8
17	C030531	425	Rectieuse plonge oblique	9/04/1983	579509.72	Usinage ponts	2 x 8
18	C006401	111	Tour parallèle	8/02/1974	66360,31	Usinage boites dir	2 × 8
19	C008921	425	Rectificuse d'éxtérieur	3/06/1974	565235.84	Rectification	2 × 8
20	C011161	428	Rectifieuse sans centre	9/11/1975	151178.90	Decolletage	2 × 8
21	C009001	426	Rectifieuse d'intérieur	3/06/1974	252858.51	Rectification	2 × 8
22	C008121	314	Fraiseuse universelle	5/06/1974	98532.30	Usinage ferrures	2 × 8
23	C006041	426	Rectifieuse d'intérieur	9/04/1974	449387.93	Rectification	2 ¥ 8
24	C006921	426	Rectifieuse d'intérieur	9/04/1974	182508.25	Decolletage	2×8
2.5	C006901	116	Tour transpilote	22/01/1974	149728,66	Decolletage	2 × 8
- 26	C003151	318	Fraiseuse horizontale	1/11/1971	233768,22	Usinage ferrures	2 x/ 8
27	C006321	319	Fraiseuse verticale	8/02/1974	373247,96	Usinage ferrures	2 × 8
28	C008931	425	Rectifieuse d'éxtérieur	3/06/1974	565235.84	Rectification	2×8
29	L002381	967	Machine à défiler	22/01/1974	180511.39	Traitement thermique	3 X 8
30	L002411	963	Four à bain de sel	3/06/1974	115697,14	Traitement thermique	3×8
							NO 11 B

Tableau Nº 11-B-3

ETUDE TECHNIQUE

ASPECT QUANTITATIF

APPLICATION

(Les données sont traitées avec le logiciel « U N I F I T)

Aleseuse speciale?

Nombre d'observations N = 177Nombre de classes minimum = 9

1 - Fiabilité :

Nombre de classes considérées = 10

classes	Ni	F(i)
[0.70]	93	0.525
[70 .140]	26	-0.672
[140,210]	23	0.802
[210,280]	13	0.876
[280,350]	9	0.927
[350,420]	- 3	0.944
[420,490]	5	0.972
[490,560]	3	0.989
[560,630]	1	0.994
[630,700]	1	1.000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 105.49 \text{ h}$

 $\beta = 0.83$

y = 3.99 h:

MTBF = 7.60 j

 $\sigma = 144.94 \text{ h}$

R(MTBF) = 0.34

 λ (MTBF) = 0.056 def/j

Test: Dn = 0.88; $Dn_{\alpha} = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maintenabilité:

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0, 17]	140	0.791
[17,34]	22	0.915
[34,51]	8	. 0.960
[51,68]	2	0.972
[68,85]	2	0.983
[85,102]	0	0.983
[102,119]	2 .	0,994
[119.136]	0	0,994
[136,153]	0	0.994
[153,170]	I	1,000

Loi ajustée: Loi log-normale Paramètres:

m = 1.94 h

 $\sigma = 1.08 h$

 $MTT\hat{R} = 12.56 \text{ h}$

Test: Dn = 0.86; $Dn \alpha = 0.89$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

D = 0.91

Tour à fileter [C009991]

Nombre d'observations N = 174Nombre de classes minimum = 8

1 - Fiabilité:

Nombre de classes considérées =10

Classes	Ni	F(i)
[0,8]	124	0.713
[8,16]	23	0.845
[16,24]	. 14	0.925
[24,32]	3	0.943 /
[32,40]	5	0.971
[40,48]	- 2	0.983
[48,56]	0	0.983
[56,64]	3	1.000
[64,72]	0	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 113.13 h β = 0.85 γ = 0.99 hMTBF = 7.73 j σ = 145.94 hR(MTBF) = 0.34 λ(MTBF) = 0.058 def/j

1.000 Test: Dn=1.12; $Dn,\alpha=1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité :

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0, 9]	128	0,736
[9, 18[23	0.868
[18,27]	10	0.925
[27,36]	6	0:960
[36,45]	4	0.983
[45,54]	0	0.983
[54,63]	2	0.994
[63,72]	1	1,000
[72,81]	0	1,000
[81,90]	0	1.000

MTTR=8.93 h;

les données du tour à fileter [C009991] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

D = 0.93

Tour automatique Revolver [C007721]

Nombre d'observation N = 157Nombre de classe minimum = 8

1 - Fiabilité:

Nombre de classes considérées = 10

classes	Ni	- F(i)
[0 , 85]	90	0.573
[185], 170]	30	0.764
[170,255]	15	0,860
[255,340]	12	0.936
[340,425]	3	0.955
[425,510]	3	0.975
[510,595]	2	0.987
[595,680]	1	0.994
[680,765]	0	0.994
[765,850]	1	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 117.56 h β = 0.96 γ = 3.98 hMTBF = 7.73 j σ = 125.08 hR(MTBF) = 0.36 λ(MTBF) = 0.107 def/j

Test: Dn = 1.14; $Dn \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

Classes	Ni	F (i)
[0,70]	147	0.961
[70,140]	4	0.987
[140,210]	0	0.993
[210,280]	0	0.993
[280,350]	0	0.933
[350,420]	0	0.933
[420,490]	0	0.933
[490,560]	l l	0.933
[560,630]	0	1.00

MTTR = 18.18 h;

les données du tour automatique [C007721] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

D = 0.87

Tour Révolver semi-automatique [C006711]

Nombre d'observation N = 163Nombre de classe minimum = 9

1 - Fiabilité :

Nombre de classes considérées =10

classes	Ni	F(i)
[0.79]	79	0.485
[79,158]	35	0:699 .
[158,237]	17	0.804
[237,316]	14	0.890
[316,395]	8	0.939
395,474	4 -	0,963
[474,553]	0	0.963
[553,632]	0	0.963
[632,711]	4	0.988
[711,790]	2	. 1.000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 135.69 \text{ h}$

 $\beta = 0.95$

y = 0.99 h

MTBF = 8,74j

 $\sigma = 146,54 \text{ h}$

R(MTBF) = 0.359

 λ (MTBF) = 0.088 def/j

Test: Dn = 0.75; Dn = 1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0,11]	125	0.767
[11,22]	23	0.908
[22.33]	· 6	0.945
[33 , 44]	1	0.951
[44,55]	0	0.951
[55,66]	4	0.975
[66 , 77]	1	0.982
[77, 88]	2	0.994
[88]	0	0,994
[99,110]	. 1	000.1

Loi ajustée: Loi log-normale

Paramètres:

m ≈ 1.82

 $\sigma = 1.05$

MTTR = 10.71h

Test: Dn = 0.87; $Dn, \alpha = 0.89$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

D = 0.93.

Tour automatique syncromat [C005951]

Nombre d'observation N = 176Nombre de classe minimum = 9

1 - Fiabilité :

Nombre de classes considérées = 10

elasses	Ni	F(i)
0 / 170	108	0.614
[170,340]	36	0.818
[340,510]	12	0.886
[510,680]	7	0.926
[680,850[3	0,943
[1850,1020]	1	0.949
[1020,1190]	2	0.960
[1190,1360]	2	0.972
[1360,1530[. 1	0.977
[1530,1700]	4 .	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 190.8 h β = 0.76 γ = 1.99 h MTBF = 14.19 j σ = 300.32 R(MTBF) = 0.322 λ(MTBF) = 0.018 def/jTest: Dn = 0.75 f Dn, α = 1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité :

Nombre de classes considérées=9

Troning de classes considerces		
Classes	· · Ni	F (i)
[0,31[159	0.903
[31,62]	12	0.972
[62,93]	0	1 0.972
[93,124]	2	0.983
[124,155]	2 ·	0.994
[155,186]	0 '	0.994
. [186,217]	0	0.994
[217,248].	0	0]994
[248,279]	1	, 1.00

MTTR = 13.20 h;

les données de Tour automatique [C005951] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

B=0.95

Tour automatique syncromat [C005941]

Nombre d'observation N=116Nombre de classe minimum =8

1- Fiabilité:

Nombre de classes considérées = 9

. classes	Ni	F(i)
[0,172]	80	0,690
[172,344]	17	0,836
[344,516].	6	0,888
[516,688]	5	0.931
[688,860]	2	0.948
[860,1032]	. 0	0.948
[1032,1204]	1 .	0.957
[1204,1376]	2	0.974
[1376,1548]	3	··· 1.000

Loi ajustée: Loi de weibull Paramètres:

η = 150.3 h β = 0.70 γ = 1.99 hMTBF = 12.47 j σ = 197.54 hR(MTBF) = 0.308 λ(MTBF) = 0.014 def/j
Test: Dn=0.99 ;Dn,α=1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha \neq 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

Treatment at the second		
classes	Ni	F(i)
[0.8]	72	- 0.621
[8,16]	15	0.750
[16,24[10	0.836
[24,32]	. 3	0.862
[32,40]	8	0.931
[40,48]	3	0.957
[48,56]	2	0.974
[56,64]	1	0.993
[64,72]	. 2	1.000

MTTR =10.94 h

les données du tour automatique [C005941] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une movenne arithmétique des temps téchniques de réparation.

3 - Disponibilite:

D=0.95

Rectificuse d'exterieur [C008251]

Nombre d'observation N = 129Nombre de classe minimum = 8:

1 - Fiabilité :

Nombre de classes considérées = 10

classes	Ni /	, F(i)
[0 , 93 [67	0.519
[93 , [86]	28	- 0.736
[186,279]	.11 /	0.822
[279,372]	13	0.922
372,465	4	. 0.953
[465,558]	3	0.977
[558,651]	1 3	. 0.984
[651,744]	1 /	0.992
[744,837]	0 4	0.992
[837,930]	1 6	1.000

Loi ajustée: Loi exponentielle Paramètres:

 $\lambda = 0.118 \text{ def/j}$

MTBF = 8,40 j σ = 134,44 h R(MTBF) = 0.368

Test: Dn: = 0.81; Dn, α = 1.08

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

Classes	Ni	F (i)
[0,27[121	0.864
[27,54]	9	0.929
[54,81]	5.	0.964
[81,108]	2	0.979
[108,135]	0 -	0.979
[135,162]	_	0.986
[162,189]	0	0.986
[189,216]	0	0.986
[216,243]	2 '	1.000

MTTR = 16.81 h

les données de la Rectifieuse d'extérieur [C008251] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibililité:

Fraiscuse horizontale [C003531]

Nombre d'observation N = 140Nombre de classe minimum = 9

<u> 1 - Fiabilité</u> :

Nombre de classes considéréses = 9

classes	Ni	F(i)
[0,117]	89	0.636
[117,234]	31	0.857
[234,351]	9	0.921
[351,468]	. 6	0.964
[468,585]	2	0.979
[585,702]	0	. 0.979
[702,819]	1	0.986
[819,936]	0	0.986
[936,1053]	2	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 121.74 h β = 0.92 γ = 1.99 hMTBF = 8.04 j σ = 138.05 hR(MTBF) = 0.354 λ(MTBF) = 0.082 def/j

Test: Dn:=0.76; Dn,α=1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Classes	Ni .	F (i)
[0,24]	120	0.857
[24,48]	10	0.929
· [48,72[3	0.950
[72,96[3	0.971
[96,120]	1	0.979
[120,144]	0	0.979
[144,168]	1	0.986
[168,192]	0	0.986
[192,216]	0	0.986
[216,240]	2	1.000

MTTR =16.66 h

les données de la fraiseuse horizontale [C003531] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité :

D=0.89

Rectifieuse Universelle [C008981]

Nombre d'observations N = 122Nombre de classes minimum = 8

1 - Fiabilité:

Nombre de classes considérées ≡ 10

classes	Ni ·	F(i)
[0,190]	81	. 0.664
[190,380]	23	0.852
[380,570]	9	0.926
[570,760]	6 -	0.975
[760,950]	2	0.992
[1950;1140]	0	0.992
[1140,1330]	0	0.992
[1330,1520]	0	0.992
[1520,1710]	0	0.992
[1710,1900]		1.000

Loi ajustée: Loi de weibull Paramètres:

$$η = 174.39 h$$
 $β = 0.87$
 $γ = 1.99 h$
 $MTBF = 12.01 j$
 $σ = 216.59 h$
 $R(MTBF) = 0.345$
 $λ(MTBF) = 0.040 def/j$

Test: Dn = 0.97; $Dn, \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

		
Classes	Ni	F (i)
[0,13]	90	0.738-
[13,26]	21	0.910
[26,39]	6	0.959
[39,52]	2	0.975
[52,65]	1	0.984
[65,78]	1	0.992
[78,91]	. 0	0.992
[91,104]	0 .	0.992
[104,117]	0	0.992
[117,130]	ì	1.000
موريد المراجعة		

Loi ajustée: Loi log-normale Paramètres:

m = 1.83 $\sigma = 1.08$

MTTR=11.17 h

Test: Dn = 0.87; Dn = 0.89

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectificuse d'interieur [C006031]

Nombre d'observations N = 112 Nombre de classe minimum = 8 L-Fiabilité:

Nombre de classes considérées ≤10

, Ni	F(i)
73	0.652
-26	0.884
7	0.946
1	0.955
3 .	. 0.982
- 1	0.991
0	0.991
0	0.991
0	0,991
ı	1,000
	73 26 7 1 3 1 0

Loi ajustée: Loi exponentielle Paramètres:

> $\lambda = 0.093 \text{ def/j}$ MTBF = 10.83 j R(MTBF)=0.368

Test: Dn = 0.86; $Dn \alpha = 1.08$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0,13[79	0.705
[13,26]	19	0.875
[26,39]	5	0.920
[39,52]	5	0.964
[52,65]	. 0	0.964
[65,78]	. I	0.973
[78,91]	I	0.982
[91,104]	0	0.982
[104,117]	0	0.982
[117,130]	2	1,000

Loi ajustée: Gamma Paramétres:

 $\alpha = 15.014$

β=0.958

MTTR = 14.39 h

Test: Dn=1.421; Dn,α=1.465

Le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$.

3 - Disponibilité:

1)=0.92

Four de trempe [1.002251]

Nombre d'observations N = 106 Nombre de classe minimum = 7

1 - Fiabílité :

Nombre de classes considérées = 8

classes	Ni	F(i)
[0.454]	82	0.774
1[454,908]	18	0.943
[908,1362]	4	0.981
[1362,1816]	1	0.991
[1816,2270]	0	0.991
[2270,2724]	0	. 0.991
[2724,3178[0	0.991
[3178,3632]	<u> </u>	1.000

Loi ajustée: Loi de weibull Paramètres:

$$η = 281.35 \text{ h}^2$$

 $β = 0.89$
 $γ = 1.97 \text{ h}$
MTBF = 12.58 j
 $σ = 335.93 \text{ h}$
R(MTBF) = 0.347
 $λ$ (MTBF) = 0.047 def/j

Test: Dn=0.92; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité :

Nombre de classes considérées = 9

Classes -	Ni	F (i)
[0,20]	80	. 0.755
[20,40]	10	0.849
[40,60]	8	0.925
[60,80]	2	0.943
[80,100]	1	0.953
[100,120]	1	0.962
[120,140]	2	0.981
[140,160] -	0	0.981
[160,180];	2	1.000

MTTR = 20.57 h

les données du Four de trempe [L002251] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Machine à shaver [C009671]

Nombre d'observations N =116 Nombre de classe minimum =8

1 - Fiabilité:

Nombre de classes considérées =9/

Ni	F(i)
69	0.595
22	0.784,
8	0,853
, 6	0.905.
- 2	0.922
3	0.948
3	0,974
2	0.991
1	1:000
	69 22 8 6 2 3

Loi ajustée: Loi de weibull Paramètres:

η = 161,79 h β = 0.86 γ = 1.97 h MTBF = 11.05 j σ = 204.83 h R(MTBF) = 0.343 λ(MTBF) = 0.042 def/j

Test: Dn = 1.16; $Dn, \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

The state of the s		
Classes	Ni	F (i)
[0,8]	72	0.621
[8,16]	15	0.750
[16,24]	10	0.836
[24,32]	3 .	0.862
[32,40]	8	0.931
[40,48]	3	0.957
[48,56]	2	0.974
[56,64]	. 1	0.983
[64,72]	. 2	1.000

MTTR = 13 h

les données de la machine à shavér | C009671] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Aleseuse horizontale [C009981]

Nombre d'observations N = 117Nombre de classe minimum = 8

1 - Fiabilité:

Nombre de classes considérées = 8

classes	Ni	F(i)
[0,33]	98	0.838
33,66	- 11	0.932
[66,99]	3	.0.957
[99,132]	2	0.974
[132,195]	I	0.983
[165,198]	1	0.991
[198,231]	0	0.991
[231,264]	1	1.000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 15.16 \text{ h}$

 $\beta = 0.66$

y = 0.99 h

MTBF = 1.34 i

 $\sigma = 32.05 \text{ h}$

R(MTBF) = 0.296

 λ (MTBF)=0.246 def/j

Test: Dn=1.28; Dn, $\alpha=1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 8

Classes	Ni	F (i)
[0.30]	96	0.821
[30,60]	11	0.915
[60,90]	3	0.940
[90,120]	3	0.966
[120,150]	2	0.983
[150,180]	1	0.991
[180,210]	0	0.991
[210,240]	0	0.991
[240,270]	1	1.000

Loi ajustée: Loi log-normale Paramètres:

m = 2.26

 $\sigma = 1.25$

MTTR = 20.93 h

Test: Dn: = 0.86; Dn, α == 0.89

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectificuse d'intérieur [C008061]

Nombre d'observations N = 104Nombre de classe minimum -8

1 - Fiabilité.:

Nombre de classes considérées = 9

classes	Ni	F(i)
[0,251]	74	0.712
[251,502]	22	0.923
. [502,753]	5,	0.971
1753,1004	2	0,990
[1004,1255]	0 -	0,990
[1255,1506]	0	0.990
[1506,1757]	0	0.990
[1757,2008]	0	0.990
[2008,2259]	. 1	1.000
·	1	

Loi ajustée: Loi de weibull Paramètres:

η = 194.29 h β = 0.92 γ = 7.99 hMTBF = 13.14 j σ = 220.32 hR(MTBF) = 0.354 λ(MTBF)=0.049 def/j
Test: Dn = 0.99 ; Dn, α = 1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombré de classes considérées = 8

Ni	F (i)
90	0.865
5	0.913
. 5	0.962
2	0.981
1	0.990
0	0.990
0	0,990
1	1.000
	90 5 5

les données de la "Réctifieuse d'intérieur [C008061] " ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT «Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité

$$D = 0.93$$

Rectificuse universelle [C006911]°

Nombre d'observations N = 107Nombre de classe minimum ±8

<u> 1 - Fiabilité</u> :

Nombre de classes considérées = 10

classes	Ni	F(i)
[0,155]	67	0.626
[155,310]	22	0.832
[310,465]	4	0.969
[465,620]	.6	0.925
, [620,775[-	- 3 .	0.953
[775,930]	2 . ·	0.972
[930,1085]	. 0	0.972
[1085,1240]	1	; 0.981
[1240,1395]	. 0	0,981
[1395,1550]	2 .	1.000

Loi ajustée: Loi de weibull Paramètres:

> $\eta = 168.97 \text{ h}^{-1}$ $\beta = 0.78$ y = 6199 hMTBF = 12.65 j $\sigma = 253.79 \text{ h}$ R(MTBF) = 0.326 λ (MTBF)=0.022 def/j

Test: Dn = 1.23; $Dn \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées ≈10

Tromore de classes considerees - ro		
Classes	Ni	F (i)
[0,16]	82	0.766
[16,32]	15	0.907
[32,48]	2	0.925
[48,64]	- 1	0.935
[64,80]	. 2	0.953
[80,96]	ı	0.963
[96,112]	1	0.972
[112,128]	0	0,972
[128,144]	1	0.981
[144,160]	2	1,000

MTTR =16,29 h

les données de la "Réctifieuse universelle [C006911] " ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT .Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3'- Disponibilité:

Machine à tailler [C009141]

Nombre d'observations N = 86Nombre de classe minimum = 8

1 - Fiabilité:

Nombre de classes considérées = 10

classes	Ni	F(i)
[0,189]	64	0.744
[189,378]	10	. 0,860
[378,567]	6	0.930
[567,756]	2	0.953
[756,945]	0	0.953
[945,1134]	1	0.965
[1134,1323[1	0.977
[1323,1512]	1	0,988
[1512,1701]	0	0.988
[1701,1890]	l	1.000

Loi ajustée: Loi de weibull

Paramètres:

$$η = 158.87 h$$
 $β = 0.78$
 $γ = 1.99 h$
MTBF = 11.6 j
 $σ = 238.62 h$
R(MTBF) = 0.326

 λ (MTBF) = 0.026 def/jTest : Dn:=0.86 ; Dn, α = 1.34 %

1701,1890] 1 1.000 le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0,30]	75	0.872
[30,60]	5	0.930
[60,90]	· 2	0.953
[90,120]	0	0.953
[120,150]	0	0.953
[150,180]	2	0.977
[180,210]	. 0	0.977
[210,240]	0	0.977
[240,270]	1	0.988
[270,300]		1,000

Loi ajustée: Loi log-normale

Paramètres: m = 3.36

 $\sigma = 1.36$

MTTR = 26.7 h

Test: Dn: = 0.39; Dn, $\alpha = 0.89$.

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectificuse plonge oblique [C003053]

Nombre d'observations N = 98Nombre de classe minimum ± 8

1 - Fiabilité :

Nombre de classes considérées = 10

classes	Ni	F(i)
[0,10]	-75	0.765
[10,20]	9	0.857
[20,30]	3	0.888
[30,40]	2	0.908
[40,50]	3	0.939
[50,60]	. 1	0,949
[60,70]	2	0.969
[70,80]	. 0	0.969
[80,90]	0	0.969
[90,100]	3	1.000

Loi ajustée: Loi de weibuil Paramètres:

$$\eta = 197.7 \text{ h}$$
 $\beta = 0.86$
 $\gamma = 7.99 \text{ h}$
 $MTBF = 13.05 \text{ j}$
 $\sigma = 250.29 \text{ h}$
 $R(MTBF) = 0.343$
 $\lambda(MTBF) = 0.032 \text{ def/j}$
 $Dw = 1.17 Decce = 1.24$

Test: Dn = 1.17; $Dn \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur α=0.05

2 - Maitenabilité:

Nombre de classes considérées = 8

Classes	Ni	F (i)
[0,13]	80	0.816
[13,26]	7	0.888
[26,39]	2	0.908
[39,52]	3	0.939
[52,65]	1 .	0.949
[65,78[2	0.969
[78,91]	0	0,969
[91,104]	3	1.000

MTTR =11.72 h

les données de la Réctifieuse plonge oblique [C030531] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT de calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Tour parallèle [C006401]

Number d'observations N = 172Nombre de classé-minimum = 8

1 - Fiabilité :

Nombre de classes/considérées ±10.

classes	Ni	F(i)
[0,300]	129	0.750
[300,600]	27,	0.907
[600,900]	× 12	0.977
[900,1200]	3	0,994
[1200,1500]	0	0.994
[1500,1800]	0	0.994
[1800,2100]	∮ 0	0.994
[2100,2400]	<i>≥</i> *0-	0.994
[2400,2700[? 0	0.994
[2700,3000]	1	1.000

Loi ajustée: Loi de weibull Paramètres:

> $\eta = 148.50 \text{ h}$ $\beta = 0.76$ y = 5.99 hMTBF = 11.69 j $\sigma = 265.69 \text{ h}$ R(MTBF) = 0.313 λ (MTBF) = 0.024 def/j

Test: $Dn = 0.71 \text{ a} Dn, \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Classes	Ni	F (i)
[0,28]	138	0.802
[28,56]	17	0.901
[56,84]	8	0.948
[84,112]	. 5	0.977
[112,140]	´ 2 .	. 0.988
[140,168]	. 0	0.988
[168,196]	0	0.988
[196,224]	- 1	: 0,994
[224,252[· 0	0.994
[252,280]	1 -	1,000

Loi ajustée: Loi log-normale

Paramètres:

m = 2.07 $\sigma = 1.26$

MTTR=17.52 h

Test: Dn = 0.78; $Dn_{x}\alpha = 0.89$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectificuse d'extérieur [C008921]

Nombre d'observations N = 94Nombre de classe minimum = 8

1 - Fiabilité :

Nombre de classes considérées = 9

classes	Ni	F(i)
[0,144]	. 52	. 0,553
[144,288]	22	0.787
[288:432]	5	0,840
[432,576]	6	0.904
[576,720]	. 2	0.926
[720,864]	3	0.957
[864,1008]	2	0.979
[1008,1152]	1	0.989
[1152,1296]	l	1.000

Loi ajustée: Loi de weibull Paramètres:

 $\eta = 215.98 \text{ h}$ $\beta = 0.94$ $\gamma = 0.96 \text{ h}$ MTBF = 13.91 j $\sigma = 236.38 \text{ h}$ R(MTBF) = 0.358

 $\lambda (MTBF) = 0.051 \text{ def/j}$

Test: Dn: = 0.86; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Ni	F (i)
63	0.670
15	0.830
. 5	0.883
3	0.915
3	. 0.947
1	0.957
1	0.968
i	0.979
Ī	0.989
1	1.000
	63 15 5 3

Loi ajustée: Loi log-normale Paramètres:

m = 2.17 $\sigma = 1.09$

MTTR = 16.06 h

Test: Dn = 0.58; Dn = 0.88

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectificuse sans centré [C011161]

Nombre d'observations N = 76Nombre de classe minimum = 7

1 - Fiabilité :

Nombre de classes considérées = 9

classes	Ni	- I(i)
[0,204]	47.	0.627
- [204,408]	15 -	0.827
[408,612]	5	0.893
[612,81 6]	. 4	0.947
[816,1020]	ı	0,960
[1020,1224]	2	0.987
[1224,1428]	0	0.987
[1428,1632]	. 0	0.987
[1632,1836]	- 1	1,000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 221.44 h$

 $\beta = 0.86$

y = 7.99 h

MTBF = 15.49 j

 $\sigma = 280.34 \text{ h}$

R(MTBF) = 0.343

 λ (MTBF)=0.029 def/j

Test: Dn:=0.84 ; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 8

Classes	Ni	F (i)
[0,35]	61	0.803
[35,70]	5	0.868
[70,105]	3	0.908
[105,140]	1	0.921
[140,175]	2	0.947
[175,210]	1	0.961
[210,245]]	0.974
[245,280]	2	1.000

Loi ajustée: Loi log-normale

Paramètres:

m = 2.33

 $\sigma = 1.43$

MTTR = 28.55 h

Test: Dn=0.87; Dn, α =0.89

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Rectifieuse d'intérieur [C009001]

Nombre d'observation N=79 Nombre de classe minimum = 8

1 - Fiabilité :

Nombre de classes considérées ≈ 8

classes	Ni	F(i)
[0,172]	45	0.570
[172,344]	8	0.671
[344,516]	10	0.797
[516,688]	10	0.924
[688,860]	3	0.962
[860,1032]	•	(0.975
[1032,1204]	1	0.987
[1204,1376]	1	1,000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 247.8 h$

 $\beta = 0.89$

y = 7.99 h

MTBF = 16.91 j

 $\sigma = 297.87 \text{ h}$

R(MTBF) = 0.349

 λ (MTBF) = 0.030 def/j

 $Dn \approx 1.19$; Dn, α = 1.34.

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

classes	Ni	F (i')
[0,10[45	0.570
[10,20]	14	0.747
[20,30]	5	0.810
[30,40]	6	0.886
[40,50[3	0.924
[50,60]	2	0.949
[60,70]	1 -	0.962
[70,80]	0	0.962
[80,90]	1	0.975
[90,100]	2	1.000

MTTR = 16.94 h

les données de la "Réctifieuse d'intérieur [C009001] " ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Fraiscuse universelle **₫€008121**]

Nombre d'observations N = 91Nombre de classe minimum = 8

1 - Fiabilité :

Nombre de classes considérées = 9

classes	Ni	F(x)
[0,107]	47	0,516
[107,214]	16	0.692
[214,321]	11	0.813
[321,428]	. 7	0.890
[428,535]	2	0.912
[535,642]	3	0.945
[642,749]	2 .	0.967
[749,856]	2	0.989
[856,963]	1	1.000
		

Loi ajustée: Loi de weibull -Paramètres:

$$η = 161.25 \text{ h}$$
 $β = 0.83$
 $γ = 0.99 \text{ h}$
MTBF = 11.29 j
 $σ = 221.56 \text{ h}$
R(MTBF) = 0.335
 $λ$ (MTBF) = 0.034 def/j
Dn = 0.9 Dn $α = 1.34$

Test: Dn:= 0.9; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 10

Ni	F (i)
61	0.670
14	0.824
3	0.857
7	0.934
3	0.967
1	0.978
0	0.978
0	0.978
0	0.978
2 .	1,000
	61 14 3 7 3 1 0 0

MTTR=22.88 h

les données de "Fraiseuse universelle | C008121] " ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT . Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Rectificuse d'intérieur [C006041]

Nombre d'observations N = 82Nombre de classes minimum = 7

<u> I - Fiabilité</u>:

Nombre de classes considérées = 8

classes	Ni	F(i´)
[0,128]	31	0.378
[128,256]	24	- 0.671
[256,384]	12	0.817
[384,512]	4 .	0.866
[512,640]	0	0.866
[640,768]	4	0.915
[768,896]	5	0.976
[896,1024]	2	1.000

Loi ajustée: Loi de weibull Paramètres:

$$η = 262.72 \text{ h}$$
 $β = 1.07$
 $γ = 3.94 \text{ h}$
MTBF = 16.24 j
 $σ = 239.49 \text{ h}$
R(MTBF) = 0.378
 $λ$ (MTBF) = 0.096 def/j

Test/: Dn=0.57; Dna=1.34

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maintenabilité:

Nombre de classes considérées = 8

Classes	Ni	F(i)
[0,17]	66	0.805
[17,34]	9	0.915
[34,51]	3	0.951
[51,68]	. 1	0.963
[68,85]	0	0.963
[85,102]	I	0.976
[102,119]	0	0.976
[119,136]	2	1.000

MTTR = 13.59 h

les données de "Rectificuse d'intérieur " | C006041] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Rectificuse d'intérieur [C006921]

Nombre d'observations N = 82 Nombre de classe minimum = 8

1 - Fiabilité

Nombre dé classes considérées = 9

classes'	,	Ni	F(i)
[0,215]	۶	45	0.549
[215,430]		20	0.793
[430,645]		. 0	0.902
[645,860]	;	4	0.951
[860,1075]	,	2	0.976
[1075,1290]		0	0.976
[1290,1505]	•	0 -	0.976
[1505,1720]		1	0.988
[1720,1935]		1	1.000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 251.76 \text{ h}$

 $\beta = 0.87$

y = 7.99 h

MTBF = 17.39 j

 $\sigma = 239.49 \text{ h}$

R(MTBF) = 0.345

 λ (MTBF) = 0.027 def/j

Test: Dn= 0.84; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

Ni	F (i)
54	0.659
. 15	0.841
6 .	0.915
2	0.939
3	0.976
0	0.976
0	0.976
1	0.988
1	1,000
	54 15 6 2 3

Loi ajustée:loi Gamma

Paramétres: $\alpha = 9.62$

 $\beta = 1.13$

,

 $MTTR = -\alpha.\beta$

MTTR = 10.87 h

Test: $Dn = 1.29 \text{ ; } Dn, \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Tour transpilote [C006901]

Nombre d'observations N = 71Nombre de classes minimum = 7

1 - Fiabilité:

Nombre de classes considérées = 9

classes	Ni	F(i)
[0,310]	. 47	0.662
[310,620]	. 13	0.845
[620,930]	9	0.972
[930,1240]	1	0.986
[1240,1550]	0	0.986
[1550,1860]	. 0	0.986
[1860,2170]	. 0	0.986
[2170,2480]	0	0.986
[2480,2790]	ł	1.000

Loi ajustée: Loi de weibull Paramètres:

$$η = 66.55 \text{ h}$$
 $β = 0.61$
 $γ = 7.99 \text{ h}$
MTBF = 6.64 j
 $σ = 160.64 \text{ h}$
R(MTBF) = 0.024 def/j

Test: $Dn := 0.92$; $Dn, α = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maintenabilité:

Nombre de classes considérées = 8

Classes	Ni	F (i)
[0,34]	58	0.817
[34,68[. 7	0.915
[68,102]	1	0.930
[102,136]	3	0.972
[.136,170]	0	0.972 ,
[170,204]	0	0.972
[204,238]	1	0.986
[238,272]	1	1,000

MTTR = 24.25 h

les données du "tour transpilote " [C006901] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Fraiscuse horizontale [C003151]

Nombre d'observations N = 70Nombre de classe minimum = 7

1 - Fiabilité :

Nombre de classes considérées =10

classes	Ni	F(i)
[0,135]	34	0.486
. [135,270]	7	0.586
[270,405]	10	0.726
[405,540]	4	0.786
[540,675]	1	0.800
[675.810]	5	0.871
[810,945]	3	0.914
[945,1080]	4	0.971
[1080,1215]	0	· 0.971
[1215,1350]	2	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 283.15 h β = 0.83 γ = 6.99 hMTBF = 20.15 j σ = 331.96 hR(MTBF) = 0.335 λ(MTBF) = 0.018 def/j Dn = 0.99 : Dn σ = 1.34

Test: Dn := 0.99 $\int Dn \cdot \alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité:

Nombre de classes considérées = 9

Classes	Ni	F (i)
[0,8[42	0.600
[8,16]	12	0.771
[16,24]	2	0.800
[24.32]	4	0.857
[32,40]	3	0.900
[40,48]	2	0.929
[48,56]	3	0.971
[56,64]	0	0.971
[64,72]	2	1.000

Loi ajustée: Loi log-normale Paramètres:

m = 1.88 $\sigma = 1.27$

MTTR = 14.68 h Test: Dn = 0.85; Dn = 0.88

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

Fraiscuse veticale a banc fixe [C006321]

Nombre d'observation N=51Nombre de classe minimum =6

1 - Fiabilité:

Nombre de classes considérées = 7

Classes	Ni	F (i)
[0,469]	32	0.627
[469,938]	15	0.922
[1938,1407]	2	0.961
[1407,1876]	1.	0.980
[1876,2345]	0 :	0.980
[2345,2814]	0	0.980
[2814,3283]	. 1	1.000

Loi ajustée: Loi de weibull Paramètres:

$$η = 378.32 h$$
 $β = 0.78$
 $γ = 0.99 h$
MTBI = 27.4 j
 $σ = 568.24 h$

R(MTBF) $\approx 0.326 \text{ pk}(MTBF) \approx 0.008 \text{ de } f/j$

Test: Dn= 0.77; Dn $\alpha = 1.33$

The modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$ ∞

2 - Maitenabilité :

Nombre de classes considérées = 7

Classes	Ni	F(i)
[0,18]	37.	0.725
[18,36]	6	0.843
[36,54]	5 .	0.941
[54,72]	1	0.961
[72,90]	0	0.961
[90,108]	1	0.980
[108,126]	1	1:000

Loi ajustée: Loi log-normale Paramètres:

$$m = 2.11$$

 $\sigma = 1.27$

MTTR = 18.48 h
Test:
$$Dn = 0.51$$
; $Dn \alpha = 0.88$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité:

$$D = 0.96$$

Rectificuse d'exterieur [C008931]

Nombre d'observations N ≠ 82 Nombre de classes minimum = 7

1 - Fiabilité :

Nombre de classes considérées = 9

classes	Nif	F(i)
[0,172]	49	0,798
[172,344]	15.	0.780
[344,516]	7, .	0.866
[516,688]	2	0.890
[688,860]	2	0,915
[860,1032]	2	. 0.939
[1032,1204]	3.5	0.976
[1204,1376]	1	0.988
[1376,1548]	F)	1.000

Loi ajustée: Loi de weibull

Paramètres:

 $\eta = 229.37 \text{ h}$

 $\beta = 0.84$

y = 7.99 h

MTBF = 16.23 i

 $\sigma = 303.31 \, h$

R(MTBF) = 0.339

 λ (MTBF) = 0.024 def/j

Test: Dn: = 0.89; Dn, $\alpha = 1.34$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maintenabilité :

Nombre de classes considérées = 10

Classes	Ni	F(i)
[0,15[59	0.720
[15,30[12	0.866
[30,45]	2	0.890
[45,60]	2	0.915
[60,75]	ı	0.927
[75,90]	0.	0.927
[90,105]	l	0.939
[105,120[l T	0.950
[120,135]	0	0.950
[135,150]	4.	1.000

MTTR = 20,50 h

les données de la "rectifieuse d'extérieur" [C008931] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Machine à défiler horizontale [1,002381]

Nombre d'observations N=62 Nombre de classes minimum=7

1 - Fiabilité :

Nombre de classes considérées = 11

		1
.classes* .	Ni	F (i) .
[0,367]	38	0,613
[367,734]	15	0.855
[734,1101]	5	0.935
[1101,1468]	2	0.968
[1468,1835]	. 0	0.968
[1835,2202]	0	0.968
[2202,2569]	0	0.968
2569,2936[0	0.968
[2936;3303]	0.	0.968
[3303,3670]	·I	0.984
[3670,4037]	l	1.000

Loi ajustée: Loi de weibull Paramètres:

η = 403.15 h β = 0.84 γ = 7.98 hMTBF = 10.76 j σ = 531.35 hR(MTBF) = 0.339 λ(MTBF) = 0.019 def/j

Test: Dn = 0.78; Dn = 1.33

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maitenabilité :

Nombre de classes considérées = 9

Classes	Ni	F (i)
[0,18[54	0.871 .:
[18,36]	. 0	0.871
[36,54]	2 .	0.903
[54,72]	3	0.952
[72,90]	0	0.952
[90,108]	. 0	0.952
[108,126]	0	0.952
[126,144]	1	0.968
[144,162]	2	1,000

MTTR =17.05 h

les données de la machine à défiler [L/002381] ne corespondent à aucune loi de probabilité usuelle pouvant être ajustée par le logiciel UNIFIT. Le calcul de MTTR se fera à partir d'une moyenne arithmétique des temps téchniques de réparation.

3 - Disponibilité:

Four à bain de sel [L002411]

Nombre d'observation N=16 Nombre de classe minimum=5

1 - Fiabilité :

Nombre de classes considérées = 7

classes	/Ni.,	F(i)
[0,762]	5	0.313
[762,1524]	- 4 3	0.563
[1524,2286]	, 2· :	0,688
[2286,3048]	. L.,	0.750
[3048,3810]	0 :	0.750
[3810,4572]	. 2	0.875
[4572,5332]	32	1.000

Loi ajustée : Loi de weibull

Paramètres :

 $\eta = 2010.5 \text{ h}$ $\beta = 1.14$ $\gamma = 217.204 \text{ h}$

 $\gamma = 217.204 \text{ h}$ MTBI= 88.99 j

 $\sigma = 1688.08 h$

R(MTBF) =0.388 ; λ (MTBF)=0.041 def/j

Test: Dn = 0.69; $Dn \alpha = 1.31$

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

2 - Maintenabilité:

Nombre de classes considérées = 7

Classes	Ni	F(i)
[0,5]	4	0.250
[5,10]	3	0.438
[10,15]	2	0.563
[15,20]	3	0.750
[20,25]	2	0.875
[25,30]	0	0.875
[30,35]	2	1.000

Loi ajustée: Loi log-normale

Paramètres:

m = 2.28

 $\sigma = 1.04$

MTTR = 16.79 h

Test: Dn = 0.68; Dn = 0.85

le modèle théorique ajuste le modèle expérimental avec un risque d'erreur $\alpha = 0.05$

3 - Disponibilité :

Etude de fiabilité

Le tableau suivant récapitule les résultats de l'étude de fiabilité

Designation		Parametres	MTBF	MTBF	Lois ajustees
		(β)	(heures)	(jours)	·
Aleseuse spéciale [C008	881]	0.83	121,6	7,60	Weibull
Tour a fileter	[C000001]	0.85	124,16	7,76	Weibull
Tour automatique	[C007721]	0,96	123,68	7.73	Weibull
Tour semi-automatique	[C006711]	0.95	139.84	8.74	Weibull
Tour automatique	[C005951]	0.76	227.04	14.19	Weibull -
Tour automatique	[C005941]	0.70	199,52	12.47	Weibull >
Rectifieuse d'extérieur	[C008251]	1,00	134,3	8,40	Exponentielle
Fraiseuse horizontale	[C003531]	0,92	128,64	8,04	Weibull
Rectificuse universelle	[C008981],	0,87	192,16	12.01	Weibull
Rectificuse d'interieur	[C006031]	1,00	173.28	10,83	Exponentielle
Four à bain de sel	[L002251]	0.89	301.92	12,58	Weibull
Machine à shaver	[C009671]	0,86	176,8	11.05	Weibull
Aléseuse horizontale	[C009981]	0,66	21,44	1.34	Weibúll
Rectificuse d'interieur	[C008061]	0.92	210,24	13,14	Weibull
Rectifieuse universelle	[C006911]	0,78	202,4	12.65	Weibull
Machine a tailler	[C009141]	0.78	185.6	11.60	Weibijll
Rectificuse plonge oblique	e [C030531]	0,86	208,6	13.05	Weibúll
Tour parallèle	[C006401]	0.76	187.04	11.69	Weibull
Rectifieuse d'extérieur	[C008921]	0.94	222,56	13.91	Weibull
Rectificuse sans centre	[C011161]	0,86	247.84	15.49	Weibull
Rectificuse d'intérieur	[C009001]	0.89	270,56	16.91	Weibull
Fraiseuse universelle	[C008121]	0.83	180,64	11.29	Weibull
Rectificuse d'intérieur	[C006041]	1,07	259.84	16,24	Weibull
Rectifieuse d'intérieur	[C006921]	0.87	278.24	17.39	Weibull
Tour transpilote	[C006901]	0.61	106,24	6,64	Weibull
Fraiseuse horizontale	[C003151]	0.83	322,40	20.15	Weibull
Fraiseuse verticale	[C006321]	0.78	438.40	27,40	Weibull
Rectificuse d'intérieur	[C008931]	0,84	259,68	16.23	Weibull
Machine à défiler	[L002381]	0.84	258.24	10.76	Weibull
Four à bain de sel	[L002411]	1,14	2135.91	88.99	Weibull

Tableau Nº II - C - 1

On constate que sur les 30 équipements, 26 ont des durées de vie distribuées selon la loi de Weibull de paramètre $\beta < 1$; c'est-à-dire en phase de jeunesse, ceci peut être expliquer pour certains équipements par le fait qu'ils ont été rénovés; ainsi,

- La rectifieuse d'intérieure voumard [C008061].
- Le four de trempe Ugine [L002511].
- Le tour transpilote [C006901].
- La machine à shaver [C009671].
- La rectifieuse d'extérieure Cincinnati [C008931].

ont été rénovés respectivement en, 1984, 1985, 1991, 1993, 1994.

Les durées de vie de deux équipements suivent des lois exponentielles; c'est-à-dife avec un taux de panne constant, ils ont donc atteint la période de maturité.

Les responsables du service maintenance doivent doite adopter une maintenance corrective pour les équipements ayant un β≤1

Les deux autres équipements (Four de trempe Ugine [L002411] et la Rectifieuse Voumard [C006041]); ont un paramètre $\beta > 1$; c'est-à-dire avec un taux de panne croissant, ils ont donc atteint la période d'usure. Une maintenance préventive est par suite nécessaire.

Etude de maintenabilité:

Nous présenterons ci-dessus un tableau récapitulatif des résultats de l'étude de maintenabilité

Désignation		MTTR	Lois ajustées
Aléseuse spéciale	[C008881]	12 h 34 min.	Log-Normale
Tour à fileter	[C009991]	8 h 65 min.	Non ajustable
Tour automatique	[C007721]	18 h 11 min.	Non ajustable
Tour semi-automatique	[C006711]	10 h 43 min.	Log-Normale
Tour automatique	[C005951]	13 h 12 min.	Non ajustable
Tour automatique	[C005941]	.10 h 56 min.	Non ajustable
Rectifieuse d'extérieur	[C008251]	16 h 49 min.	Non ajustable
Fraiseuse horizontale	[C003531]	16 h 40 min.	Non ajustable
Rectifieuse universelle	[C008981]	11 h 10 min.	Log-Normale
Rectifieuse d'intérieur	[C006031]	14 h 23 min.	Gamma
Four à bain de sel	[L002251]	20h 34 min.	Non ajustable
Machine à shaver	[C009671]	13 h	Non ajustablé
Aléseuse horizontale	[C009981]	20 h 56 min.	Log-Normalé
Rectifieuse d'intérieur	[C008061]	15 h 45 min.	Non ajustable
Rectifieuse universelle	[C006911]	16 h 17 min.	Non ajustablé
Machine à tailler	[C009141]	26 h 42 min.	Log-Normale
Rectifieuse ponge oblique	[C030531]	11h 43 min.	Non ajustable
Tour parallèle	[C006401]	17 h 31 min.	Log-Normale
Rectifieuse d'extérieur	[C008921]	16 h 1 min.	Log-Normale
Rectifieuse sans centre	[C011161]	28 h 34 min.	Log-Normale
Rectifieuse d'intérieur	[C009001]	16 h 56 min.	Non ajustable
Fraiseuse universelle	[C008121]	22h 53 min.	Gamma
Rectifieuse d'intérieur	[C006041]	13 h 35 min.	Non ajustable
Rectifieuse d'intérieur	[C006921]	10 h 52 min.	Gamma -
Tour transpilote	[C006901]	24 h 15 min.	Non ajustable
Fraiseuse horizontale	[C003151]	14 h 41 min.	Log-Normale
Fraiseuse verticale	[C006321]	18 h 29 min.	Log-Normale
Rectifieuse d'intérieur	[C008931]	20 h 30 min.	Non ajustable
Machine à défiler	[L002381]	17 h 3 min.	Non ajustable
Four à bain de sel	[L002411]	16h 47 min.	Log-Normale

Tableau Nº II - C - 2

On remarque que la moyenne des temps techniques de réparation MTTR varie entre 8h et 29 h ce qui est éxcéssif.

Les rectifieuses notamment les équipements de traitement thermiques présentent des MTTR importants; Ceci est dû à leurs complexité et à la difficulté de préhension pour détecter les pièces défectueuses.

D'autres facteurs doivent être considérés pour expliquer ce temps de réparation élevé. Une étude qualitative de la maintenabilité de ces équipements permettra d'identifier ces facteurs et de présenter les mesures à prendre afin d'améliorer le niveau de maintenabilité des équipements.

Étude de disponibilité:

Les résultats de la fiabilité et de la maintenabilité permetent d'assurer la disponibilité nécéssaire de l'équipement.

La formule de base de la disponibilité théorique (intrinsèque) est exprimée par le ratio :

$$D = \frac{MTBF}{MTBF + MTTR}$$

Mais cette disponibilité ne représente pas la disponibilité réelle vu que le temps d'immobilisation est composé :

- du temps technique de réparation.
- du temps logistique composé :
 - du temps d'attente intervenant
 - du temps d'attente de pièces de rechange réalisées sur site ou commandées.

La formule de la disponibilité opérationnelle devient par l'introduction du temps logistique (MTL) comme suit:

Les résultats de la disponibilité théorique et de la disponibilité opérationnelle sont présentées dans le tableau suivant :

		<u>. </u>		
Designation		D %	MTL(Heure)	Dop %
Alescuse speciale	[C008881]	91	5,90	87
Tour à fileter	[C009991]	93	13.2	85
Tour automatique	[C007721]	87	17.39	78
Tour semi-automatique	[C006711]	93	7.00	89
Tour automatique	[C005951]	95	12,93	90
Tour automatique	[C005941]	95	11.43	- 90
Rectifieuse d'extérieur	[C008251]	89	33.48	73
Fraiseuse horizontale	[C003531]	89	33.08	72
Rectifieuse universelle	[C008981]	94	24.15	84
Rectifieuse d'intérieur	[C006031]	92	20.10	- 90
Four à bain de sel	[L002251]	94	22.14	88
Machine à shaver	[C009671]	93	16.42	. 86
Aléseuse horizontale	[C009981]	51	25.70	32
Rectifieuse d'intérieur	[C008061]	93	24.63	84
Rectifieuse universelle	[C006911]	93	26.52	83
Machine à tailler	[C009141]	89	29.10	77
Rectifieuse plonge oblique	[C030531]	95	40.95	-81
Tour parallèle	[C006401]	91	46.57	75
Rectifieuse d'extérieur	[C008921]	93	32.15	82
Rectifieuse sans centre	[C011161]	90	42.50	78
Rectifieuse d'intérieur	[C009001]	94	25.87	86
Fraiseuse universelle	[C008121]	89	50.81	71
Rectifieuse d'intérieur	[C006041]	95	35.39	84
Rectifieuse d'intérieur	[C006921]	96	31.08	87
Tour transpilote	[C006901]	81	16.94	72
Fraiseuse horizontale	[C003151]	96	21.74	89
Fraiseuse verticale	[C006321]	96	14.19	93
Rectifieuse d'intérieur	[C008931]	93	101.10	68
Machine à défiler	[L002381]	96	191.34	68
Four à bain de sel	[L002411]	99	644.7	76

Tableau Nº II - C - 3

La prise en compte du temps logistique a permis d'avoir la disponibilité opérationnelle qui représente une baisse considérable par rapport à la disponibilité intrinsèque.

Remarque:

Du point de vue des normes [AFNOR] qui fixent la disponibilité de l'équipement à 97 %, ces équipements sont jugés indisponibles.

ETUDE TECHNIQUE

ASPECT QUALITATIF

PRINCIPE DE LA METHODE

L'Aspect qualitatif de Fiabilité - Disponibilité - Maintenabilité: [6]

L'approche qu'on se propose d'aborder s'applique pour des systèmes ou dispositifs déjà en exploitation. En effet, l'expérience des agents de maintenance et de production va permettre d'apprécier les performances des équipements et de la maintenance qu'ils requièrent.

La démarche présentée ci-après n'est pas une approche fiabilité mathématique, mais une progression rigoureuse pas à pas qui regroupe plusieurs outils d'aide à la décision permettant de définir une politique de maintenance future, il suffirait alors, de vérifier au fur et à mesure la fiabilité des hypothèses retenues et de les modifier si nécessaire.

Principe de la méthode :

La méthode comporte huit phases présentées dans le synoptique ci-joint dont la description est détaillée ci-dessous.

Phase 1: " objectif opérationnel "

Il s'agit de définir la mission du système; en faisant un inventaire complet des contraintes imposées au système et des possibilités de l'utilisateur en matière d'entretien.

1- Inventaire des contraintes :

- spécifications opérationnelles;

- performances attendues;

- possibilités de fonctionnement dégradé.

2- Inventaire de l'existant :

- documentation.

- moyens techniques,

- service d'entretien

Phase 2: " Analyse du système "

Dans cette phase, on attribue un objectif de disponibilité opérationnelle (ODO) au système selon la fonction qu'il assure et sa réparabilité en cours de mission.

La grille ci-après détermine l'objectif de disponibilité opérationnelle (ODO).

<u> </u>	Fonction réparable en cours de mission	Fonction non réparable et cours de mission	
Fonction prioritaire	2	1	
Fonction non prioritaire	3	2	

Tableau Nº II - 2- A - 1

1 - Fonction très critique : 0.98 ≤ ODO ≤1
2 - Fonction critique : 0.90 ≤ ODO ≤ 0.98

3 - Fonction non critique: ODO < 0.90

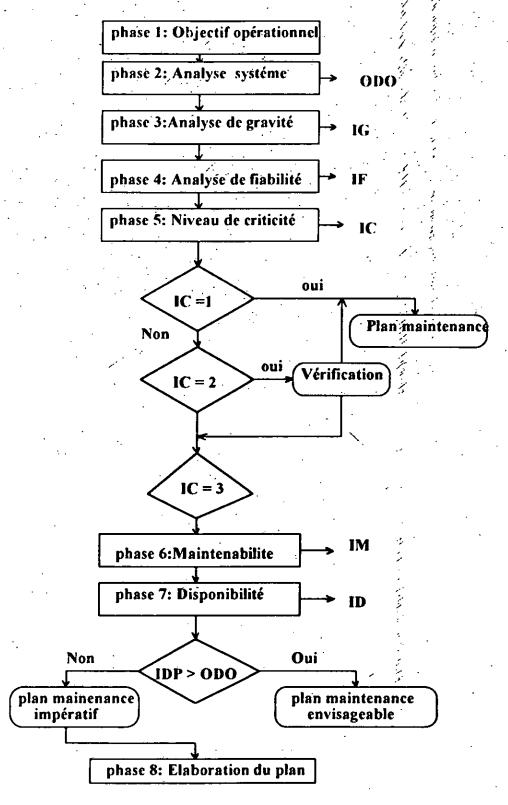


Figure II - 2: synoptique du plan de maintenance

Phase 3 : "Analyse de la gravité opérationnelle "

Etant donné que les pannes qui surviennent dans un système n'ont pas toutes les mêmes incidences sur la réalisation de la mission. L'analyse de la gravité opérationnelle permet de classer les défaillances en fonction de leurs conséquences et définir ainsi les niveaux de gravités.

Chaque niveau correspond à un indice de gravité (IG).

Le tableau ci-après regroupe quelques classifications qui sont proposées par l'auteur.

		Classification 1	Classification 2	Classification 3	Classification 4	Classification 5
	Niveaux	Conséquence	Conséquence	Conséquence	Conséquence	Conséquence
а	Panne mineure	Sous influence sur la mission	Influence sur le process	Arrêt de production < 30mn. Pas de perte de production	Sans influence.	Aucune influence sur l'accomplissement de la mission et aucune gène pour les opérateurs.
b	Panne majeure	Interruption de la mission	Fonctionnement dégradé	30mn≤arrêt≤ 1h. perte de production non récupérable sur la journée.	Mauvaise qualité produit non rattrapable.	Aucune influence direct sur l'accomplissement de la mission mais gêne les opérateurs.
С	Panne critique	Mise en jeu de sécurité	Influence sur la qualité du produit ou sur la sécurité	Ih≤arrêt< 4h Perte production non récupérable sur la journée.		Influence sur la durée d'accomplissement de la mission, dégradation ou gêne importante à plus au moins long terme.
d	Panne Catastro- phique	Mise en jeu de la survie ou accident corporel	Arrêt production ou accident	Arrêt ≥ 4 h ou risque d'accident	Arrêt production ou accident	Mission irréalisable

Tableau Nº II - 2- A - 2

Phase 4: " Analyse de la fiabilité "

Pour cette phase deux méthodes d'évaluation de la fiabilité du système sont envisageables.

1-Analyse fiabilité:

Consiste à évaluer la fiabilité à l'aide d'outils mathématiques. La valeur ainsi déterminée correspondera à un niveau de fiabilité défini par l'allocation de fiabilité, comme l'indique le tableau suivant:

Pannes	Niveau		Exemples	
Probable	Α	P >10 ⁻⁵	P ≈ 10 ⁻⁴	+ d'1 panne / an
Peu probable	В	10^{-5}	P≈ 10 ⁻⁴	I panne / an
Très probable	С	10^{-7}	$P \approx 6.10^{-4}$	1 panne / 2 ans
Hautement probable	D	P < 10 ⁻⁹	P≈ 2.10-4	1 panne / 5 ans

Tableau Nº II - 2- A - 3

2 - Attribution d'un indice de fiabilité :

Cette deuxième méthode ne nécessite aucune connaissance préalable des techniques de fiabilité. Elle s'appuie sur le fait que le niveau de fiabilité du système est conditionné par des facteurs de conceptions et d'exploitation; par exemple:

- La complexité technologique du matériel;
- La qualité de sa fabrication ;
- L'environnement;
- ect...

Nous avons introduit l'indice de l'âge pour voir son influence sur le niveau de fiabilité.

Un indice de satisfaction (IS) sera attribué à chacun de ces indices selon l'échelle définie dans le tableau suivant:

	Attribution	on <mark>D'un indice</mark> de Sat	isfaction (IS)	
Valeur Critères	0.4	0.6	0.8	1
Technicité (IST)	Matériel nouveau évolué	Materiel nouveau simple	Matériel connu complexe	Matériel connu simple
Production (ISP)	Production unitaire évoluée	Production unitaire qualifiée	Production petite série	Production grande série
Redondance (ISR)	Redondance impossible	Redondance possible mais pas prévue	Redondance passive	Redondance active
Qualification du fournisseur (Constructeur) (ISQ)	Niveau Q Fournisseur inconnu	Niveau Q Fournisseur < Niveau requis >	Niveau Q Fournisseur < Niveau requis >	Fournisseur Q ₁ certifié
Environnement (ISE)	Vibrations importantes conditions climatiques difficiles	Conditions climatiques difficiles T° > 60°C	Vibrations importantes conditions climatiques normales	Conditions climatiques normales
Facteur service (ISS)	Cycle aléatoire + 50 jours	l Cycle par 20 jours	1 Cycle par jour	Fonctionnement continu
Age (ISA)	> 10 ans	5 à 10 ans	3 à 5 ans	< 3 ans

Tableau Nº II - 2- A - 4

L'indice de fiabilité (IF) sera évalué par la formule suivante:

IF = $(IST \times ISP \times ISR \times ISQ \times ISE \times ISS \times ISA)^{1/7}$

Pour la suite de l'étude, un niveau de fiabilité sera attribué à la valeur de l'indice de fiabilité (IF) selon le tableau suivant:

Valeur	Niveau	Satisfaction
0.8 < IF < 1	Α	Excel le nt
0.6 < F < 0.8	В	Plutôt bon
0.4 < IF < 0.6	С	Plutôt mauvais
0 < IF < 0.4	D	Mauvais

Tableau N° II - 2- A - 5

Phase 5: " Evaluation de la criticité "

L'indice de gravité (IG) et l'indice de fiabilité (IF) permettent de déterminer l'indice de criticité (IC) à partir du tableau suivant:

		I		
\	ן ט	C	l R	A
IG 🔪				
a	2	1	- 1	1
b	3	2	1	1
С	3	3	2	1
d	3	3	3	2

Tableau Nº II - 2- A - 6

On obtient ainsi trois valeurs possibles pour IC:

- * IC = 1: matériel de fiabilité relativement bonne occasionnant des pannes relativement peu graves. Ce matériel peut donc être considéré comme satisfaisant: il n'apparaît donc pas nécessaire d'établir un plan de maintenance pour celui-ci.
- * IC = 2: il est nécessaire de vérifier si les valeurs d'indices retenus lors de l'analyse sont correctes afin de voir si l'on tend plutôt vers I ou vers 3. (zone d'incertitude).
- * IC = 3: matériel non satisfaisant à priori. Avant d'envisager un plan de maintenance on procédera à l'analyse de la maintenabilité (phase 6) pour voir si celle-ci compense ce mauvais résultat.

Phase 6: " Etude de la maintenabilité "

Chaque matériel est caractérisé par son aptitude à la maintenace. Cette aptitude peut être évaluée avec un indice de maintenabilité $IM (0 \le IM \le 1)$ estimé à partir de cinq indices partiels (Q1, Q2, Q3, Q4, Q5) caractérisant réspectivement:

- La technicité du matériel	: Q1
- Le niveau des interventions	: Q2
- Le ou les intervenants	: Q3
- Les pièces de rechange	: Q4
- Les consignes spéciales	: Q5

Chaque indice partiel Qi est défini à partir des indices de satisfaction Sij explicités ci-après:

L'indice de maintnabilité (IM) pourra être calculé par :

$$IM = A1 \times Q1 + A2 \times Q2 + A3 \times Q3 + A4 \times Q4 + A5 \times Q5$$

Avec:

$$A1 + A2 + A3 + A4 + A5 = 1$$

Les Ai étant les coefficients de pondération choisis arbitrairement selon le contexte de l'étude.

L'objectif des indices partiels (Qi) est de regrouper des indices de satisfaction Sij de même nature et de leur donner des poids identiques.

On pourra ainsi adopter comme définition des Qi :

$$Qi = (Si1 \times Si2 \times Si3 \times ... \times Sij)^{1/j}$$

1 - L'indice de technicité: (Q1)

L'indice de technicité (Q1) du matériel est évalué à partir des cinq indices de satisfaction suivants, eux mêmes définis dans le tableau N° II - 1 - A - 7 se sont:

S11: caractéristique du matériel;

S12: le nombre moyen de pièces à déposer pour les interventions les plus courantes;

\$13: l'accessibilité au sein du dispositif;

\$14: l'accessibilité autour du dispositif;

S15: la facilité de préhension (action de saisir).

Il découle que:

$$Q1 = (S11 \times S12 \times S13 \times S14 \times S15)1/5$$

S11 complexité	S12 nombre de pièces	\$13 accueil interne	S14 accueil externe	\$15 préhension	Sij			
Elémentaire	N < 10		sans problème		1			
très si	mple		très bonne		0.7 à 0.9			
simple	10 < N < 15		Bonne					
assez simple	15 < N < 20		Assez bonne					
	I	Limite de l'acceptab	ble		0.37			
complexe	N > 20		0.2 à 0.3					
Trop complexe	N		Très mauvaise	Table	0 à 0.2			

Tableau Nº II -2 -A - 7

2 - Indice d'intervention: (Q2)

Il sera fonction de:

S21: Fond documentaire sur le matériel

S22: Gamme d'interventions existantes

S23: l'outillage nécessaire

S24: Manutention.

D'où: $Q2=(S21\times S22\times S23\times S24)^{1/4}$

Les indices S2j seront donnés par le tableau suivant:

\$21 Documentation	S22 Gamme	S23 Outillage	S24 Manutention	S2j		
Comp	ofète	Standard courant	Manuelle	0.8 à 1		
Parti	elle _	Standard peu courant	Légère	0.5 à 0.8		
Tres pa	rtielle	Spécial fourni	Moyenne	0.37 à 0.5		
	Limite de l'acceptable					
Existante mais peu exploitable (mal faite)				0.2 à 0.37		
lnexist	ante	Spécial très coûteu:	Spéciale	0 à 0.2		

Tableau Nº 11 - 2 - A - 8

3 - L'indice intervenant (Q3):

Il résultera des indices:

S31: qualification du ou des intervenants.

S32: nombre d'intervenants nécessaire

S33: provenance des intervenants

S34: disponibilité des intervenants.

Soit:

 $Q3 = (S31 \times S32 \times S33 \times S34)^{1/4}$

Les Sij seront donnés par le tableau suivant:

S31 Qualification	- S32 Nombre	S33 Provenance	S34 Disponibilité	\$3j
agent d'exécution	1	sur place	< 1 heure	0.9 à 1
agent technique	2 .	du service	< 4 heures	0.7 à 0.9
technicien supérieur	2 à 5	outre service	< 1 journée	0.4 à 0.7
	Limite de l'ac	ceptable		0.37
spécialiste	> 5	Extérieur co-traitance	< 1 semaine	0.2 à 0.37
Spécialiste haut niveau		SAV	> I semaine	0 à 0.2

Tableau Nº II - 2 - A - 9

4 - L'indice de pièces de rechange: (Q4)

Il peut être caractérisé par:

S41: La disponibilité moyenne des pièces.

S42: Les coûts des pièces.

D'où:

 $Q4 = (S41 \times S42)^{1/2}$

Les S4j sont donnés: par le tableau suivant:

Coût S41 (DA)	Délais S42	S4j
C < 1000	Disponible	0.9 à 1
1000 < C < 10000	Sur 24 heures	0.7 à 0.9
1000 < C < 50000	2 à 3 jours	0.4 à 0.7
Limite de l'acce	ptable	0.37
50000 < C < 100000	< 1 semaine	0.2
C > 100000	> 1 semaine	0.1

Tableau Nº II - 2 - A - 10

5 - L'indice de consigne :(Q5)

Cet indice fait apparaître:

S51: mise en jeu de consignes de sécurité;

S52: contraintes des interventions (environnement hostile, contraintes de production, ... etc.).

D'où:

 $Q5 = (S51 \times S52)^{1/2}$

Vu que l'auteur n'a pas donné d'échelle pour les indices Si5, nous proposons un tableau d'évaluation comparable aux autres tableaux présentés par l'auteur.

Consigne de sécurité S51	Contraintes des interventions \$52	S5j
Pas de consignes	Aucune influence sur la production	0.9 à 1
consignes générales	Incidence légère sur le programme de production	0.7 à 0.9
Consignes particulières	Perturbation du programme de production	0.4 à 0.7
Limite d	e l'acceptable	0.37
Consignes particulières	Arrêt de production	< 0.37

Tableau Nº 11 - 2 - A -11

La qualité de la maintenabilité est évalué à partir de l'indice (IM) selon le barème suivant:

Maintenabilité	Commentaire
0.9 à 1	Excellente
0.7 à 0.9	Très bonne
0.5 à 0.7	Bonne
0.37 à 0.5	Assez bonne
0.37	Limite de l'acceptable
0.2 à 0.37	Mauvaise
0 à 0.2	Très mauvaise

Tableau Nº II - 2 - A - 12

Remarque:

La limite de satisfaction acceptable pour les différents critères déjà cités est 0.37, valeur caractéristique des lois exponentielles.

Phase 7:" Evaluation de la disponibilité "

L'évaluation des indices de fiabilité et de maintenabilité, va permettre d'établir un indice de disponibilité probable suivant la relation:

$$IDP = 1 - (1 - IF) \times (1 - IM)$$

A partir de L'indice de disponibilité IDP, nous pouvons évaluer le niveau de satisfaction du besoin de disponibilité suivant le tableau ci-dessous:

Indice de disponibilité (IDP)	Satisfaction du besoin
0.98 à 1	Excellent
0.90 à 0.98	Très bon
0.85-à 0.90	Bon
0.75 à 0.85	Assez bon
0.65 à 0.75	Mauvais
0< 0.65	Très mauvais

Tableau Nº II - 2 - A - 13

Phase 8: " Elaboration du plan maintenance "

A ce stade de l'étude, il est possible de comparer les indices d'objectif opérationnel (ODO) et ceux de disponibilité probable (IDP).

Deux cas sont possibles:

- A IDP > ODO; un plan de maintenance est envisageable.
- B IDP < ODO: le plan de maintenance devient impératif.

On doit agir selon les résultats obtenus. Trois actions sont à adopter:

- améliorer la technique (c-à-d: l'indice de fiabilité IF);
- agir sur la maintenance (c-à-d: l'indice de maintenabilité IM);
- agir sur les deux indices (IM et IF).

ETUDE TECHNIQUE

ASPECT QUALITATIF

APPLICATION

APPLICATION:

On se propose d'appliquer la méthode qu'on vient d'exposer à l'échantillon d'étude déjà sélectionné lors de l'étude quantitative.

Afin de pouvoir mener l'étude à bien, des enquêtes ont été effectuées auprès d'un groupe de travail composé de :

- Chef de service maintenance.
- Chef de service méthode.
- Chef de service ordonnancement.
- Chef du département comptabilité.
- Responsable du magasin pièces de rechange.

Lors de l'application de l'étude, nous avons pu constater que les équipements du même type ont les mêmes caractéristiques du point de vue qualitative de fiabilité, de maintenabilité, et de disponibilité.

Ce qui nous a mené à présenter l'étude pour un ensemble de systèmes. Chaque système comporte les équipements du même type. Ce qui nous donne comme échantillon l'ensemble de systèmes suivants :

- Tour à fileter;
- Tours automatiques;
- Aléseuses;
- Fraiseuses;
- Rectifieuses:
- Four à bain de sel;
- Machine à défiler;
- Machine à tailler:
- Machine à shaver.

Les indices qui suivront dans l'application (tel que l'indice de fiabilité, l'indice de maintenabilité..., ect.) ont été estimés après consultation et accord du groupe de travail, ce qui va minimiser la subjectivité de notre jugement concernant ces équipement.

Phase 1:

Nous avons procéder, en collaboration avec le groupe de travail à un inventaire des contraintes imposées au système et des possibilités en matière d'entretien tel que:

- Le mode de fonctionnement des équipements;
- La documentation:
- La gamme d'intervention;
- La possibilité de redondance.

Toutes ces caractéristiques vont apparaître lors de l'évaluation des indices de satisfaction au cours de notre étude.

Phase 2:

Nous attribuons dans cette phase une valeur pour l'objectif de disponibilité opérationnel (ODO) à chaque équipement en se basant sur le tableau n° II - 2 - A - 1.

Equipement	ODO
Tour à fileter	0.97
Tours automatiques	0.99
Aléseuses	0.98
Rectifieuses	0.98
Fraiseuses	0.98
Machine à défiler	0.98
Four a bain de sel	0.98
Machine à tailler	0.98
Machine à schaver	0.98

Tableau Nº II - 2 - B -1

Phase 3:

Dans cette phase; on affecte un indice de gravité (IG) pour chaque équipement selon le tableau suivant:

	· · · · · · · · · · · · · · · · · · ·
Equipement	lG IG
Tour à fileter	d
Tours automatiques	d
Aléseuses	d
Rectifieuses	d
Fraiseuses	d
Machine à défiler	d
Four a bain de sel	d
Machine à tailler	d
Machine à schaver	d

Tableau Nº II - 2 - B -2

Phase 4:

On se référant au tableau N° II-2-A-4, nous affectons des valeurs aux indices de satisfaction (IS) ce qui permet de déterminer un indice de fiabilité (IF).

Equipement	IsT	lsp	IsR	IsQ	IsE	IsS	IsA	IF	NS
Tour à fileter	1	i	0.40	0.80	0.80	0.80	0.40	0.70	В
Tours automatiques	1	1	0.40	0.80	0.80	0.80	0.40	0.70	В
Aléseuses		1	0.60	0.80	0.80	0.80	0.40	0.74	В
Rectifieuses	0.80	1	0.40	0.80	0.80	0.80	0.40	0.68	В
Fraiseuses	i	1	0.40	0.80	0.80	0.80	0.40	0.70	В
Machine à défiler	0.80	1	0.40	0.80	0.80	0.80	0.40	0.68	В
Four a bain de sel	0.80	1	0.40	0.80	0.80	0.80	0.40	0.68	В
Machine à tailler	ī	1	0.40	0.80	0.80	ì	0.40	0.72	В
Machine à schaver	1	1	0.40	0.80	0.80	1	0.40	0.72	В

Tableau Nº II - 2 - B - 3

Nb: NS est le niveau de satisfaction.

Du tableau N° II-2-A-5, nous déduisons que l'ensemble des indices (IF) se situent dans la classe B; ce niveau est jugé plutôt bon.

Phase 5:

A partir de l'indice de fiabilité (IF), et l'indice de gravité (IG) et se référant à la matrice de décision du tableau N° II-2-A-6, on peut déterminer l'indice de criticité (IC).

Equipement	IG	1F	1C
Tour à fileter	d	В	3
Aléseuses	d	В	3
Tours automatiques	d	В	3
Machine à tailler	d	В	3
Rectifieuses	đ	В	3
Machine à shaver	d	В	3
Fraiseuses	d	В	3
Four à bain de sel	đ	В	3
Machine à défiler	đ	В	3

Tableau Nº II - 2 - B -4

Selon la méthode qualitative, l'indice (IC) va juger de l'opportunité de la mise en place d'un plan de maintenance.

Dans notre cas, IC = 3 pour tous les équipements ce qui prouve qu'ils sont non satisfaisant a priori et qu'il faut faire une analyse de la maintenabilité avant d'envisager un plan de maintenance.

Phase 6:

Dans cette phase on détermine l'indice de maintenabilité (IM) à partir des indices partiels (Qi) eux mêmes évalués à partir des indices de satisfaction (Sij) on utilisant les barèmes des tableaux N° II-2-A-7, 8, 9, 10, 11.

Equipement	\$11	S12	S13	S14	S15	Q1	S21	S22	S23	S24	Q2
Tour à fileter	0.90	1	0.70	0.80	0.80	0.83	0.20	0.37	0.70	0.80	0.43
Aléseuses	0.80	1	0.70	1	0.60	0.80	0.20	0.30	0.60	0.90	042
Tours automatiques	0.70	1	0.70	0.80	0.80	0.79	0.20	0.37	0.70	0.90	0.47
Machine à tailler	0.80	1	0.70	0.90	0.60	0.79	0.30	0.30	0.80	0.80	0.49
Rectifieuses	0.37	1	0.70	1	0.60	0.69	0.20	0.30	0.60	0.90	0.42
Machine à shaver	0.80	ı	0.70	0.90	0.60	0.79	0.20	0.30	0.80	0.80	0.44
Fraiseuses	0.80	1	0.70	1	0.60	0.80	0.20	0.30	0.60	0.80	0.42
Four abain de sel	0.37	0.90	0.50	0.70	0.50	0.57	0.30	0.20	0.70	0.80	0.43
Machine à défiller	0.37	0.90	0.50	0.70	0.50	0.57	0.30	0.20	0.70	0.80	0.43

									Tables	u Nº II	I-2-B-5
Equipement	\$31	S32	S33	S34	Q3	S41	S42	Q4	S51	S52	Q5
Tour à fileter	0.90	0.80	0.90	0.90	0.87	0.70	0.30	0.46	0.90	0.60	0.74
Aléseuses	0.70	0.90	0.80	0.90	0.82	0.70	0.37	0.51	0.90	0.50	0.67
Tours automatiques	0.80	0.80	0.90	0.90	0.85	0.60	0.10	0.25	0.90	0.60	0.74
Machine à tailler	0.90	0.80	0.80	0.90	0.85	0.80	0.30	0.49	0.90	0.60	0.90
Rectifieuses	0.70	0.90	0.80	0.90	0.82	0.80	0.10	0.28	0.90	0.50	0.67
Machine à shaver	0,90	0.80	0.80	0.90	0.85	0.80	0.37	0.54	0.90	0.60	0.73
Fraiseuses	0.70	0,90	0.80	0.90	0.82	0.80	0.10	0.28	0.90	0.50	0.67
Four a bain de sel	0.80	0,50	0.70	0.90	0.71	0.50	0.10	0.22	0.70	0.40	0.53
Machine à déffiler	0.80	0.50	0.70	0.90	0.71	0.50	0,10	0.22	0.70	0.40	0.53

Tableau Nº II-2-B-5

Evaluation de la maintenabilité:

L'indice de maintenabilité (IM) est calculé directement par la formule suivante

$$IM = A1 Q1 + A2 Q2 + A3 Q3 + A4 Q4 + A5 Q5$$

Nous avons procédé à trois types de variations pour les coefficients de pondération (Ai) afin d'apprécier leurs incidences sur l'indice de maintenabilité (IM).

A1	A2	A3	A4	A5
0.20	0.20	0.20	0.20	0.20
0.15	0.30	0.15	0.30	0.10
0.20	0.20	0.20	0.30	0.10

Tableau Nº II-2-B-6

Les indices de maintenabilité (IMi) ainsi calculés sont présentés dans le tableau suivant:

Equipement	Indice	Satisfaction		
	IM1	IM2	IM3	
Tour à fileter	0.67	0.60	0.64	Bonne
Aléseuses	0.64	0.59	0.63	Bonne
Tours automatiques	0.62	0.50	0.57	Bonne
Machine à tailler	0.67	0.61	0.65	Bonne
Rectifieuses	0.58	0.50	0.54	Bonne
Machine à shaver	0.67	0.61	0.65	Bonne
Fraiseuses	0.60	0.52	0.56	Bonne
Four a bain de sel	* 0.49	0.46	0.54	Assez bonne
Machine à défiler	0.49	0.46	0,54	Assez bonne

Tableau Nº II-2-B-7

Les résultats de ce tableau nous permettent d'émettre les remarques suivantes:

- 1 Il n'y a pas de différence significative entre les indices de maintenabilité d'un même équipement.
- 2 Chaque équipement à des indices de maintenabilité IM1, IM2, IM3 inférieurs à l'indice de fiabilité (IF).

Phase 7:

Ayant obtenu les indices de fiabilité (IF) et les indices de maintenabilité (IMi), nous déterminerons alors les indices de disponibilité probable (IDP) par la relation:

$$IDP = 1 - (1 - IF)(1 - IM)$$

Equipement	Indice	Satisfaction		
	IDP1	IPD2	IDP3	İ
Tour à fileter	0.90	0.88	0.89	Bon
Aléseuses	0.89	0.88	0.89	Bon
Tours	0.90	0.88	0.88	Bon
Machine à tailler	0.90	0,88	0.89	Bon
Rectifieuses	0.87	0.84	0.84	Bon
Machine à shaver	0.90	0.88	0.89	Bon
Fraiseuses	0.88	0.86	0.87	Bon
Four a bain de sel	0.84	0.83	0.83	Assez bon
Machine à défiler	0,84	0.83	0.83	Assez bon

Tableau Nº II-2-B-8

Nous pouvons remarquer que:

- 1 Il n'y a pas de différence significative entre les indices de disponibilité probables (IDPi) d'un même équipement.
- 2 L'indice de disponibilité probable (IDP) relative à chaque équipement est inférieur à l'indice de disponibilité opérationnel (ODO) correspondant.

Compte tenu de ces remarques et on se référant au synoptique de la méthode on peut conclure qu'un plan de maintenance est impératif pour chaque équipement.

Commentaires et suggestions :

les équipements étudiés présentent un indice de fiabilité IF > IMi; ce qui nous permet de suggérer que le plan de maintenance à élaborer doit agir sur le niveau de maintenabilité pour augmenter la disponibilité de ces équipements. Ceci peut se faire en améliorant les indices partiels les plus bas.

D'après l'étude qualitative qu'on a mené on peut faire les observations suivantes :

- Délais d'approvisionnement de la pièce de rechange (PDR) relativement long, il dépasse souvent une semaine.
- Le coût excessif de la PDR lorsqu'elle existe.
- documentation et gamme d'intervention incomplète.

Pour palier à ces insuffisances il nous semble nécessaire d'adopter les mesures suivantes.

1 - Gestion de la PDR:

- Définir les pièces prioritaires en vertu de leur utilité et de leur fréquence de renouvellement, les identifier et les stocker en un endroit aussi accessible que possible.
- Procéder à des études prévisionnelles, afin de prévoir suffisamment à l'avance les PDR qui devant être acquises et faire ainsi face aux délais de livraison long.

2 - Gestion de la documentation:

- Rassembler une documentation technique adaptée, la plus complète possible. Elle doit contenir les plans, les schémas, elle doit être accessible rapidement et doit être remise à jour si nécessaire.
 - Etablir un échéancier d'interventions préventives. Ceci exige deux conditions :
 - 1 La coordination avec le service fabrication pour d'éventuel arrêt en court de production.
 - 2 La mise à jour et l'exploitation efficace des dossiers historiques des équipements.

ANALYSE DES COUTS

APPROCHE THEORIQUE

1 - Importance de l'analyse des coûts : [3],[7],[8]

L'analyse des coûts est un outil de gestion essentiel qui permet au responsable de la maintenance d'effectuer ces choix principaux, en l'occurrence :

- Etablir un budget prévisionnel annuel.
- Suivre les dépenses et respect des budgets.
- Vérifier l'efficacité des actions de maintenance.
- Décider du renouvellement du matériel (achat à l'identique, rénovation ...).

2 - Evaluation économique de la maintenance :

L'évaluation économique de la maintenance exige dans un premier temps de répertorier et d'estimer tous les coûts de maintenance en rassemblant tous les coûts chiffrés des prestations effectuées (entretien, réparation, sous-traitance,).

Ces coûts se divisent en deux catégories :

a - Coûts directs:

Les coûts directs représentent la somme des coûts engendrés par toute intervention sur équipement provoquant ou non une consommation de matière. On y trouve comme rubriques principales :

- Les dépenses de main-d'oeuvre d'intervention;
- Les frais généraux du service de maintenance;
- Le coût de consommation des rechanges ;
- Le coût de possession des stock des outillages de machines ;
- Le coût de consommation de matière et fourniture;
- Le coût des contrats de maintenance ;
- Le coût des travaux sous-traités.

b - Coûts indirects:

Les coûts indirects souvent appelés coûts de perte de production ou coûts d'indisponibilité. Ces coûts sont représentés par la somme des pertes et manques à gagner de production résultants de l'immobilisation des équipements suite à des pannes ou à des travaux de maintenance.

Ces coûts contiennent comme rubriques principales :

- Les coûts de perte des produits non fabriqués, des matières en court de transformation, perte de qualité, perte de produits déclassés (coût de déclassement);
- Coût de main-d'oeuvre de production inoccupée ;
- Coûts d'amortissement de matériel arrêté;
- Frais induits : délais non tenus (pénalités de retard, perte de clients, image de marque ternie, etc.) ;

NB: Quand nous nous intéressons de plus près de ces coûts, on constate qu'ils dépendent de nombreux paramètres dont certains ne sont même pas chiffrables.

c - Les coûts de maintenance : [9]

Ils représentent la somme des coûts directs et indirects attachés à une défaillance ou attachés à l'activité d'un service entretien.

On peut écrire que : $C_M = C_D + C_{\overline{P}}$ C_D et $C_{\overline{P}}$ évoluent de façon inverse

Optimisation des coûts de maintenance :

 C_D et $C_{\overline{p}}$ évoluent de façon inverse (voir figure III.1.1), on doit espérer que l'augmentation de dépenses de maintenance a pour effet la diminution des temps d'arrêts fortuits.

Il apparaît donc possible de détecter "un niveau d'entretien" minimisant les coûts de défaillance d'un équipement.

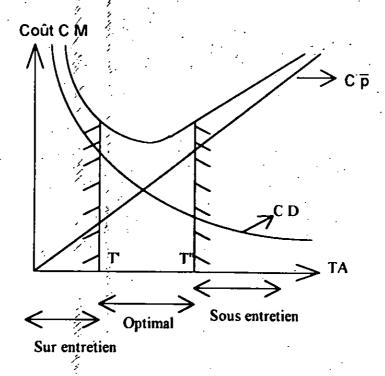


figure III. 1.1: évolution des coûts de maintenance

L'analyse des C_M montre que le type de maintenance à mettre en oeuvre doit "maîtriser" le temps d'arrêt de façon que

d - Coût de possession d'un matériel [11] [10]

Le LCC (life cycle cost) est un outil d'aide à la décision efficace pour etablir un plan de maintenance. Il représente la somme des coûts directs et indirects prenant en compte les différents stades d'évolution d'un produit qui sont :

- Les coûts d'investissement y compris les charges financières en cas d'emprunt.
- Les coûts des dépenses réelles entraînées par l'utilisation de l'équipement.

1 - Intérêt du LCC

Le LCC visualise le déroulement de tous les événements économiques survenants au long des heures cumulées de service d'un matériel.

2 - Utilisation du LCC

Interprétation générale de la courbe LCC

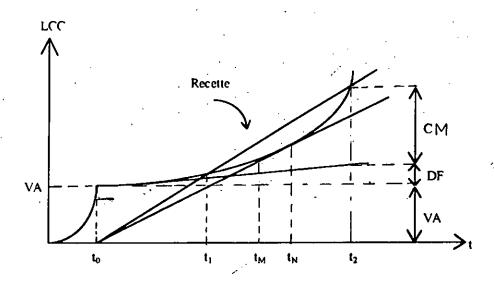


figure III.1.2: Courbe du LCC

tel que :

VA: valeur d'acquisition.

DF : dépenses de fonctionnement.

C_M: coût de maintenance.

t₀, t₁ : zone initiale d'exploitation déficitaire mais inévitable.

t₁, t₂ : zone d'exploitation rentable.

t₁: correspond à la date d'amortissement de l'investissement VA.

t_M: l'âge optimal de remplacement

T_N: l'âge de gain d'exploitation maximal

t₂ : date au delà de laquelle l'exploitation de la machine devient déficitaire, les coûts de

défaillance s'accroissent inexorablement.

e - Coûts moyens annuels de maintenance d'un matériel [10] [3]

A tout instant un équipement possède :

- une valeur d'investissement VA
- un cumul des coûts de défaillance $\sum\limits_{x} C_{d,x}$
- une éventuelle valeur de revente notée RV

Le Cma à la nieme année est donnée par :

$$C_{ma}(n) = \frac{VA + \sum_{X=1}^{n} C_{Dx} - RV}{n}$$

1 - Intérêt des Cma

Il permet de détecter de façon simple le moment de cessation des actions de maintenance préventive ou le moment de remplacement.

2 - Interprétation graphique des Cma:

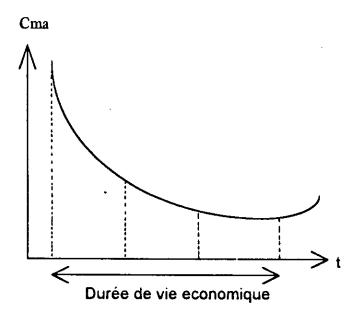


figure III.2.3 : Courbe de l'évolution du Cma

Remarque:

Si une rénovation a été faite sur le matériel, l'expression du Cma(n) devient :

$$VA + \sum_{X=1}^{n} C_{Dx} - RV + coût \ rénovation$$

$$C_{ma}(n) = \frac{1}{n}$$

3 - Utilisation du Cma:

Soit un équipement mis en service à t_0 (figure III.2.4), à la fin de la durée de vie économique, nous allons envisager trois hypothèses de choix :

- 1 nous prolongerons la vie de l'équipement;
- 2 nous le rénovons
- 3 nous le remplaçons à l'identique.

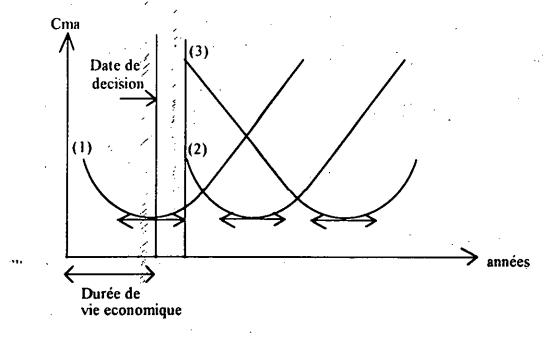


figure III.1.4: Courbe d'utilisation du Cma

- (1): courbe de survie
- (2) : courbe de rénovation
- (3) : courbe de remplacement à l'identique

Remarque:

Le LCC et Cma appartiennent à la même famille des coûts. La constitution du Cma est semblable à celle du LCC; ces deux outils différents par leur présentation, la date du minimum du Cma correspond à l'âge optimal de remplacement t_M du LCC.

ANALYSE DES COUTS

APPLICATION

Collecte des données:

On se propose de mener une analyse des coûts aussi complète que possible pour les deux équipements en phase d'usure, à savoir:

- Le Four à bain de sel " UGINE " [L002411].
- La Rectifieuse d'intérieur " Voumard "[C006041].

Le Four a bain de sel " UGINE" [L002411] a pour fonction le traitement thermique des différents types de piéces.

Cet équipement à été aquis en 1973, pour une valeur de 115697 10^{±3} DA et amortie sur une durée de 10 ans avec un taux d'amortisement de 10 %.

La Rectifieuse d'intérieur " Voumard " [C006041] a pour fonction la rectification des piéces. Elle a été acquise en 1973 pour une valeur 449388 10⁺³ DA, amortie sur une durée de 10 ans avec un taux d'amortissement de 10 %.

Pour se faire, notre étude s'étale sur une durée de quatre années (1991 à 1994). Faisant appel au:

- Service maintenance,
- Département comptabilité analytique,
- Service Ordonnancement,
- Service Contrôle qualité,
- Service Fabrication,
- Magazin de pièces de rechange.

Les coûts de la maintenance:

1 - Coûts directs:

On notera CD: Coût direct de maintenace relative à une année. Nous pouvons écrire:

CD = CMO + CPDR + CPS + Cst + CF

1- 1- coût de main d'oeuvre: (CMO)

Pour ce coût, on distingue:

a - Le coût des intervenants directs: (CMO1)

L'analyse de ce coût consiste à suivre les interventions, à considérer pour chacune d'elles :

- La durée d'intervention;
- Le nombre des intervenants;
- Le salaire horraire des intervenants;

L'exprésion du coût sera donc:

 $CMO1 = THII \times TTR$

Tel que

THII: Le taux horraire d'intervention qui est déterminé par la formule suivante:

∑ Charge salariale + ∑ Frais généraux du service maintenance

THI1 = Nombre d'heures d'intervention totales

TTR: Le temps téchnique de réparation.

b - Le coût des intervenants indirects:

C'est le coût de l'ensemble des employés du département maintenance centrale qui peut être déterminé par la formule suivante:

 $CMO2 = TH12 \times T$

T: Le temps de travail des employés de bureaux.

TH12: Le taux horraire d'intervention, déterminé de la même manière que TH11.

Ce qui nous permet décrire: CMO = CMO1 + CMO2.

Le coût de main d'oeuvre (CMO) est présenté dans le tableau suivant:

Années	1991	1992	1993	1994
	FOUR A BAIN DE	E SEL "UGINE "	[L0 0 2411]	
THII (DA/ H)	65.21	76.60	72.41	92.17
TTR(h)	433	43	0	20
CMO1 (DA)	28235.93	3293.80	0	1843.4
THI2 (DA /H)	149.63	202.89	213.76	245.28
T(h)	1840	1840	1808	1808
CMO2 (DA)	275,19,2	373317.6	386478.08	443466,24
CMO (DA)	303555.13	376611.40	386478.08	445309,64
TTR(h)	FIFIEUSE D'INTE	RIEUR "VOUMA	ARD" [C006041	1 154
CMO1 (DA)	51972.37	68480.4	4634.24	14194.18
CMO2 (DA)	275.19.2	373317.6	386478.08	443466.24
CMO (DA)	327291,57	441798.00	391112.32	457660.42

Tableau Nº III-2-1

1-2 - Coût pièces de rechange : (CPDR)

Ce coût est constitué du: - Prix d'achat de la pièce;

- Frais de transport;

- coût de passation des commandes.

On prenant en considération l'actualisation des prix des consommables en stock, le coût de pièces de rechange est déterminé par la formule suivante:

$$CPDR_{in} = S_{0}.(1+i_{0}).(1+i_{1})...(1+i_{n})$$

CPDR_{in}: Le coût de la pièce de rechange i dans l'année n.

S₀: Le coût d'achat de la pièce de rechange, il inclue les frais de transport et le coût de passation de commande.

ij: Le taux d'actualisation i de l'année j.

Etant donné que les PDR sont de deux types selon leurs désignations dans la fiche de mouvement de stock, on a: - Les PDR spécifiques.

- Les PDR standards.

Les données concernant les PDR spécifiques sont obtenues aprés consultation des fiches historiques de piéces relatives à chaque équipement; alors que pour les PDR standards on devait les identifier à partir du catalogue PDR ainsi que les bons de sortie matiéres pour chaque opération de maintenance.

Le tableau suivant présente le coût de consommation de la PDR, le détail du calcul est dans l'annexe (B).

Année	1991	1992	1993	1994
FO	OUR A BAIN DE S	SEL "UGINE " [L	002411]	
CPDR (DA)	92079.54	0	0	13375.08
RECTIF	EUSE D' INTER	IEUR "VOUMAR	.D" [C006041	1
CPDR (DA)	45685,18	544776.05	30478.84	27977.33

Tableau Nº II-2-2

1-3 - Coût de possession de stock : (CPS)

Il est caractérisé par:

- Les frais de magasinage;
- Une évaluation des pertes et dépréciation dûs au stockage.

Ce coût n'est pas comptabilisé au niveau de la SNVI, pour l'évaluer on l'a éstimé à 22 % de la valeur d'achat de la pièce tout on se référant à la norme qui varie entre 15 % et 25 %.

Le résultat est présenté dans le tableau suivant:

Année	1991	1992	1993	1994
FC	OUR A BAIN DE S	EL "UGINE " ĮL	002411]	
CPS (DA)	14533,99	14533.99	14533,99	14533,99
RECTII	TIEUSE D'INTERI	EUR "VOUMAR	D" [C006041]	
CPS (DA)	88801	80753.55	78910.04	80107.27

Tableau Nº III-2-3

1-4 - coût de la sous-traitance: (Cst)

Il n'y a eu aucun enregistrement d'opérations de sous-traitance, pour les équipements étudiés pendant ces quatre dernières années.

1-5 - Coût de consommation matière et fourniture : (CF)

Il est déterminé par:

$$CF = COC + CHS$$

COC: coût outillages consommés;

CHS: hygiène et sécurité.

Le coût d'outillages consommés et d'hygiène et sécurité ont été recueillis auprès du "Département comptabilité analytique ".

Le tableau suivant présente le résultat de calcul du CF.

Année	1991	1992	1993	1994
	FOUR A BAIN I	DE SEL "UGINE "	[L002411]	
CCO(DA)	9911.064	13.21	2585.29	10959.05
C.H.S (DA)	83.764	229.538	3.788	4.295
CF(DA)	9994.83	242.75	2589.08	24338.43
REC	TIFIEUSE D'INTI	ERIEUR " VOUMA	ARD " [C006041	10959.05
CH.S (DA)	1590,699	240.65	1916.56	1845.52
CF(DA)	15258,023	3858.38	4501.85	12804.57

Tableau N°III-2-3

D'ou le résultat du " coût direct ":

Année	1991	1992	1993	1994
	FOUR A BAIN	DE SEL "UGINE '	" [L002411]	
CMO(DA)	303555.13	376611.4	386478.08	445309.64
CPDR (DA)	92079.54	0	0	13375.08
CF (DA)	9994,83	242.75	2589.08	10963,35
CD(DA)	420163.49	391388.14	403601.15	484182.06
REO	327291.57	ΓERIEUR "VOUM. 441798	ARD" [C006041]	457660.42
CPDR (DA)	45685.18	544776.05	30478.84	27977.33
CF (DA)	11501.76	253.86	4501.85	12804.57
CD(DA)	473279.52	1067581.46	505003.05	578549.59

tableau N°III-2-5

2 - Coûts indirects:

C'est le coût de perte de production :Cp

$$Cp = CPPNF + CPPR + CMOI$$

2 -1 -Coût de perte de produits non fabriqués: (CPPNF)

Pour l'évaluation de ce coût, nous considérons la perte financière qui résulte de l'indisponibilité de l'outil de production.

On a done:

 $CPPNF = UTS \times TA \times Kexp$

Tel que

UTS [DA / min]: Unité de temps SNVI qui détermine le prix d'une minute pondulaire d'utilisation du poste de travail, soit la valeur d'une minute de temps d'utilisation de l'équipement.

TA[min] : Le temps d'arrêt de l'équipement.

Kexp: Coefficient d'exploitation de l'équipement.

Année	1991	1992	1993	1994
	FOUR A BAIN	I DE SEL "UGINE	" [L002411]	
UTS (DA/min)	3.655	4.753	10.35	11.433
TA (min)	61920	8940	325440	291960
Kexp	0.95	0.95	0.95	0.95
CPPNF (DA)	215001.7	40367,23	3199888.8	3171079.76
RE UTS (DA /min)	CTIFIEUSE D'IN	TERIEUR "VOU	MARD" [C006041	6.032
TA (min)	109860	104820	6000	199920
Kexp	0.93	0.78	0.94	0.59
CPPNF (DA)	386712.60	360641.59	26271.21	70892.89

Tableau Nº III-2-6

2 - 2-Coût de perte de produits rebutés: (CPPR)

Il est déterminé par:

$$CPPR = UT \times UTS \times N$$

Tel que

UT [min]: Temps allloué pour éffectuer une opération sur les pièces.

N: est le nombre de pièces rebutées.

Evaluation de N:

Le nombre de pièces rebutées pour chaque équipement, pendant sa période d'exploitation peut être calculé par la formule suivante:

$$N = H \times Kdisp \times Qexp \times Tr$$

Tel que:

H: La période d'exploitation.

Kdip: Coefficient de disponibilité, qui montre l'évolution relative de la capacité de production en fonction de la disponibilité de l'équipement.

Qexp: capacité réelle donnée par le programme d'exploitation

Tr: est le taux de rebut des pièces éstimé à 3 %.

Dans l'hypothèse simplificatrice, ou' l'on admet que la production est proportionnelle à la durée d'exploitation on doit avoir:

h: nombre d'heures d'arrêt de production résultant des pannes.

Calcul de N:

Année	1991	1992	1993	1994
	FOUR A BAIN	DE SEL "UGINE '	" [L002411]	
H(h)	5496	5520	5424	5424
h(h)	1032	149	5424	4858
Kdip	0.81	0.97	0	0.10
Qexp	0.97	0.95	0.95	0.95
N	127	153	0	15
RE	CTIFIEUSE D'INT	ERIEUR "VOUM	ARD" [C006041]	
H(h)	3664	3680	3616	
	3664 1831	3680 1747	3616	3610
H(h) h(h) Kdip			· • · · · · · · · · · · · · · · · · · ·	3610 332
h(h)	1831	1747	100	3616 332 0.91 0.59

Tableau Nº III-2-7

Calcul de CPPR:

A partir des valeur de N on peut donc évaluer le coût de perte de produits rebutés:

Année	1991	1992	1993	1994
	FOUR A BAIN	DE SEL "UGINE	" [L002411]	
UTS (DA / min)	3,655	4.753	10.35	11.433
UT (min)	10.23	10.23	10,23	10.23
N	127	153	0	15
CPPR (DA)	4748.61	7439.35	0	1754.39
REC	3,785	TERIEUR "VOUM	ARD" [C006041]	6.032
UT (min)	85.05	85.05	85.05	85.05
N	51	46	99	58
CPPR(DA)	16417.63	17257.16	39220.13	29755.25

Tableau Nº III-2-8

2 - 3 - Coût de main d'oeuvre inoccupée: (CMOI)

IL peut être déterminé par:

$$CMOI = UAS \times TA$$

Tel que

UAS [DA/min]: Unité allouée SNVI équivant à une minute pondulaire de l'agent productif qui détermine le prix d'une minute de main d'oeuvre de fabrication.

Le tableau ci-aprés donne le coût de main d'oeuvre inoccupée.

Année	1991	1992	1993	1994
	FOUR A BAIN	DE SEL "UGINE	" [L002411]	
TA (min)	61920	8940	325440	291960
UAS (DA/min)	1.097	1,226	1,556	1,921
CMOI (DA)	67926.24	10960.44	505082.88	560855.16
TA(h)	TIFIEUSE D'IN	TERIEUR "VOUM	1ARD" [C006041]	199920
UAS (DA /min)	1.097	1.226	1.552	1.921
CMOI (DA)	120516.42	128509.32	9312	38266.32

Tableau NºIII-2-9

NB:

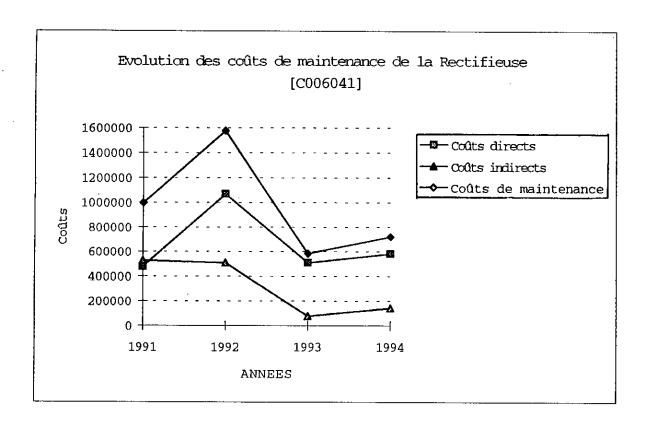
Les unités UAS et UTS ont été recueillis auprès du "département comptabilité analytique", alors que les temps d'arrêt TA ont été recueillis auprès du "service maintenance" et les coefficients Kexp et Qexp du service méthode.

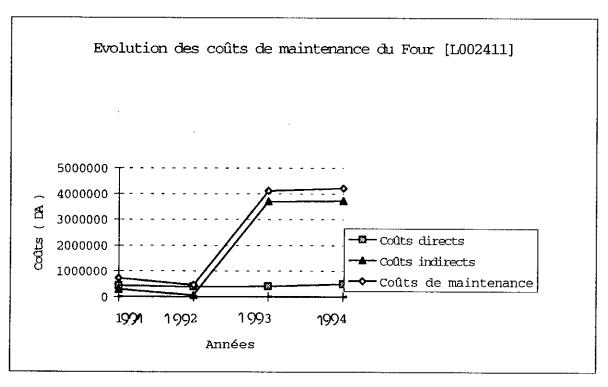
D'où le résultat du coût indirect:

Année	1991	1992	1993	1994
	FOUR A BAIN	DE SEL "UGINE	" [L002411]	
CPPNF (DA)	215001.7	40367.23	3199888.8	3171079.76
CPPR (DA)	4748.61	7439.35	0	1754.39
CMOI (DA)	67926.24	10960.44	505082,88	560855.16
CP(DA)	287676,55	58766.72	3704971,68	3733689,31
CPPNF (DA)	386712.6	TERIEUR "VOUN	74 ARD" [C006041]	70892,89
CPPR(DA)	16417.63	17257.16	39220.13	29755,25
CMOI (DA)	120516,42	128509,32	9312	38266.32
CP(DA)	523646.65	506408.07	74803.34	138914.46

Tableau N°III-2-10

Calcul du coût total de maintenance: (CM)


A partir des tableaux N° III-2-4, 10 on détermine CM.


Avec:

CM = CD + Cp

Année	1991	1992	1993	1994		
	FOUR A BAIN	DE SEL "UGINE	" [L002411]			
CD(DA)	420163,49	391388.14	403601.15	484182.06		
Cp DA)	287676.55	58766.72	3704971.68	3733689.31		
CM (DA)	707840.04	450154.86	4108572.83	4217871.37		
RECTIFIEUSE D'INTERIEUR "VOUMARD" [C006041] CD(DA) 473279.52 1067581.46 505003.05 578549.59						
Cp(DA)	523646,65	506408,07	74803.34	138914.46		
CM (DA)	996926.17	1573989.53	579806.39	717464.05		

Tableau Nº III-2-11

Interprétations et commentaires:

Les chiffres fournis par le calcul des coûts permettent de juger plus ou moins correctement l'efficacité de la maintenance, celle-ci est déterminée en comparant les résultats obtenus à des normes bien spécifiées.

I - FOUR A BAIN DE SEL " UGINE " [L002411]:

Analyse du coût direct :

Quelques résultats découlent des coûts de maintenance et sont regroupés dans le tableau suivant:

Année Ratios (%)	1991	1992	1993	1994
CD / CMT	59.36	86.95	9.82	11.49
CMO/CD	72.25	96,22	95.76	91.97
CPDR / CD	21.92	0	o	2.77
CPS / CD	3.46	3.71	3,60	3
CF / CD	2.37	0.06	0.64	2.26

Tableau Nº III - 3 - 1

Nous remarquons que le coût direct représente en moyenne 42 % du coût de maintenance total. Les résultats montrent aussi que le coût de main d'oeuvre constitue un pourcentage important du coût direct.

Analyse du coût de main d'oeuvre:

D'aprés les résultats obtenus, nous remarquons que le coût de main d'oeuvre représente en moyenne 78 % du coût direct.

Ceci peut être expliqué par le fait qu'il pourrait y avoir un sur éffectif du département maintenance ou une mauvaise utilisation de cet effectif.

Dans ce qui suit, nous essayerons d'éxpliquer la hausse de ce taux à l'aide de certaines normes AFNOR.

1- Effectif de maintenance:

Valeur légèrement supérieure à la norme qui varie de 7 % à 10 %. Ceci confirme qu'il y'a un surplus dans l'effectif de maintenance du centre mécanique.

Remarquons qu'avec un effectif de 113 agents, on aura un taux de 10 %. Ce qui est une bonne valeur. Donc sur l'effectif total, il y'a trois agents en plus.

2- La décomposition du personnel de maintenance:

Les normes AFNOR, donnent les ratios suivants pour:

Les Cadres de 5 % à 10 %, Maîtrise de 10 % à 16 %, Exécution de 70 % à 85 %, de l'effectif de maintenance.

La comparaison de ces ratios à la structure maintenance de centre mécanique donne les résultats suivants:

- <u>Cadres</u>: 4 / 116 = 3.45 %, valeur inférieure à la norme dont l'intervalle est de 5 à 10 %. Ceci montre que le nombre de cadres employés est inférieur de la limite inférieure.
- <u>Maîtrise</u>: 19 / 116 = 16.38 %, valeur légèrement supérieure à la borne supérieure donnée par la norme qui est de 16 %.
- Exécution: 93 / 116 = 80.17 %, valeur acceptable puisqu'elle appartient à l'intervalle de la norme.

On constate donc, un déséquilibre dans la répartition des agents de maintenance puisqu'on arrive à la conclusion qu' il y a un sur éffectif pour une catégorie, et un sous éffectif pour une autre.

En ce qui concerne les cadres, il devrait y avoir au moins 5 % \times 113 = 5.65 soit 6 cadres et au plus 10 % \times 113 = 11.3 soit 11 cadres. donc il y a un manque de 6 - 4 = 2 cadres au minimum.

Nous concluons donc qu'il y a un surplus dans l'effectif du département maintenance et un déséquilibre dans la répartition de son personnel, ce qui explique la hausse de la masse salariale.

Analyse des coûts indirects:

Année Ratio (%)	1991	1992	1993	1994
CID / CMT	40.64	13.05	90.18	88,51
CPPNF / CID	74.74	68.69	86.37	84.93
CPPR / CID	5.72	12.66	0	0.05
CMOI / CID	23.64	18.65	13,63	15.02

Tableau Nº III - 3 - 2

Nous remarquons que le coût indirect a enregistré un pourcentage élevé en 1993 et 1994 qui varie entre 88 et 90 %. Ceci est dû à un arrêt qui a débuté vers le début de l'année 93 et qui a duré 18 mois environ, ce qui explique la grande perte de production causée par cet arrêt.

L'analyse des coûts de maintenance qu'on vient de présenter pour le "Four a bain de sel UGINE [L002411] révèle des coûts d'entretien élevés. Ainsi la détermination des coûts moyens annuels est nécessaire pour décider, s'il faut prolonger la vie de l'équipement ou le renouveler.

Coûts moyens annuels du matériel : (Cma)

Il est intéressant de déterminer la durée de vie économique optimale d'un équipement afin de pouvoir procéder au remplacement, avant que les coûts de maintenance ne dépassent la valeur de l'investissement; ce qui donnerait un rôle négatif à la fonction maintenance.

En négligeant la valeur de revente, le Cma est donné par la formule suivante :

$$VA + \sum_{x=1}^{n} CD_{x}$$
Cma (n) =
$$\frac{n}{n}$$

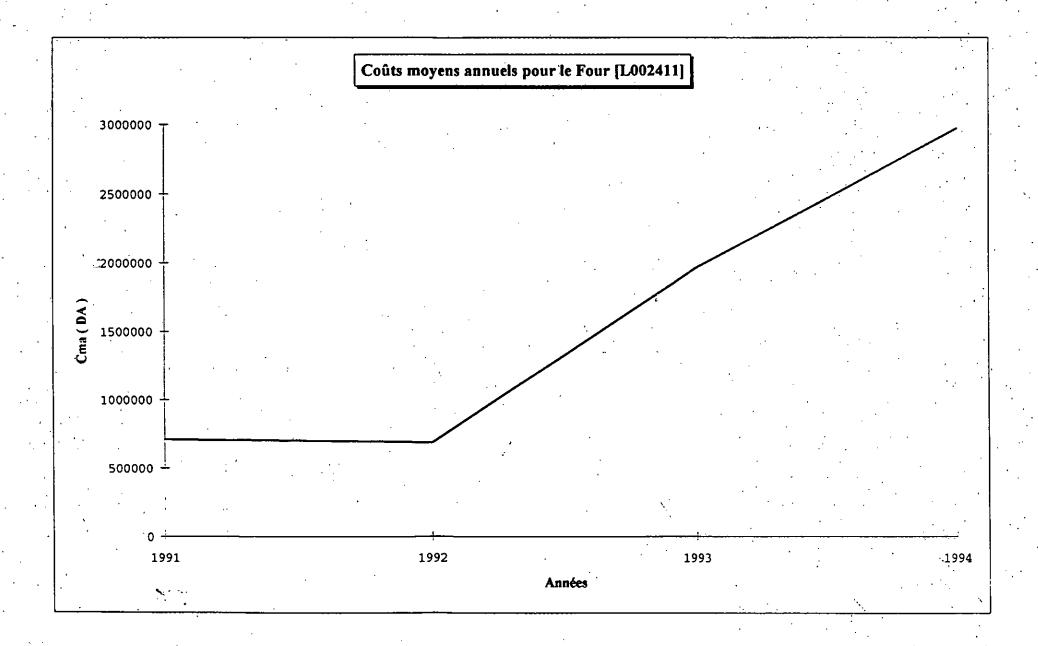
Ces calculs nécessitent l'addition d'unités monétaires d'années différentes et la comparaison des coûts à différentes périodes, d'où l'intérêt d'une actualisation, prenant en considération le taux d'inflation.

Le coût moyen actualisé sera:

$$VA.(1+i)^{n} + \sum_{x=1}^{n} CDx. (1+i)^{n-x}$$
Cma (n) =

VA: Valeur d'acquisition de l'équipement.

CDx : Coût de maintenance pour la xième année.


Application: Nous présentons ci-après le cma relatif à chaque année.

Année	1991	1992	1993	1994
Investissement (DA)	1777247	2310422	3003548	3904612
Coûts cumulés (DA)	707840	1370347	5890024	11874902
Coût moyen annuel (DA)	707840	685174	1963341	29688726

Tableau Nº III - 3 - 3

La durée de vie économique correspond au minimum du cma (n).

On conclue donc que le Four a bain de sel " UGINE " devrait être remplacé en 1992, toute dépense pour prolonger la vie de cet équipement peut coûter cher à l'entreprise.

II-Rectifieuse d'intérieur "Voumard "[C006041]

1 - Analyse du coût direct:

Le calcul de certains ratios regroupés dans le tableau suivant nous permettent d'émettre un certain nombre de remarques.

Année Ratio (%)	1991	1992	1993	1994
CÐ / CMT	47.47	67.83	87.10	80.64
CMO / CD	69.15	41.38	77.45	79.10
CPDR / CD	9.65	51.04	6.03	4.83
CPS / CD	18.76	7.56	15.63	13.85
CF / CD	2.43	0.02	0.89	2.22

Tableau Nº III - 3 - 4

Nous remarquons que le coût direct représente environ 71 % en moyenne du coût total de maintenance. Ceci est dû au coût de main d'oeuvre qui représente le pourcentage le plus élevé.

Deux facteurs expliquent ce résultat:

- 1- Le temps de réparation élevé.
- 2- Un sur éffectif du département maintenance. Ceci à déjà été confirmé lors de l'analyse du coût de main d'oeuvre pour le cas du "Four [L002411].

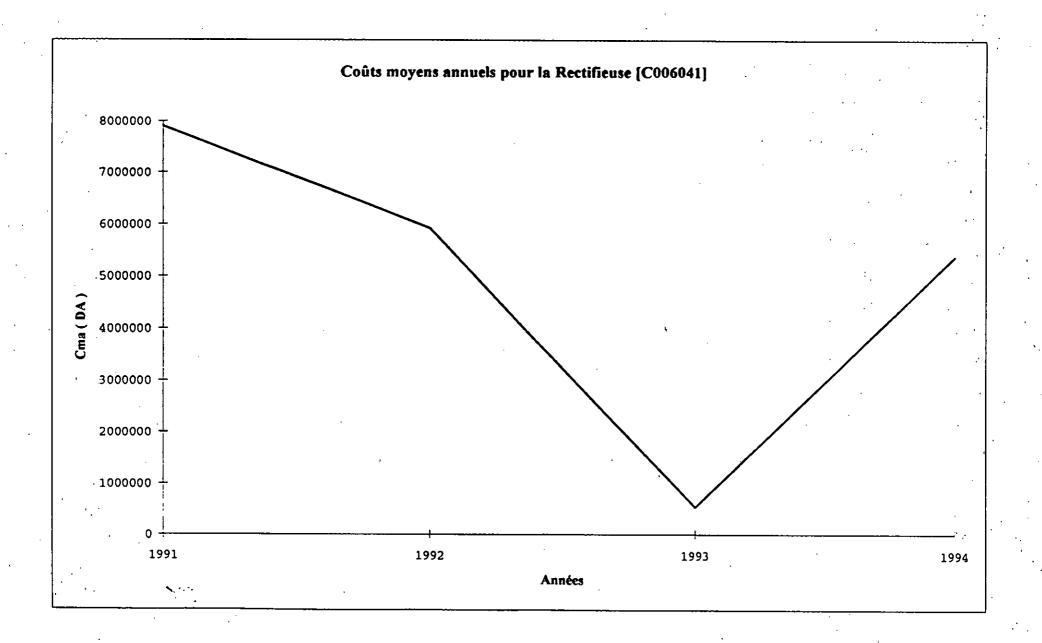
2 - Analyse du coût indirect:

Année Ratio (%)	1991	1992	1993	1994
CID / CMT	52.53	32.17	12.9	19,36
CPPNF / CID	73.85	71.22	35.12	51.03
CPPR / CID	13.13	3.40	52.43	21.42
CMOI / CID	23.02	25,38	12.45	27.55

Tableau Nº III - 3 - 5

A partir de ces ratios, nous constatons que le coût indirect représente en moyenne 29 % du coût de perte de production qui représente 58 % du coût indirect total.

3 - Coût moyen annuel


On adoptant la même démarche que celle suivie pour le calcul du cma pour le Four "UGINE" nous obtenons les résultats suivants pour la Recifieuse "Voumard"

Année	1991	1992	1993	1994
Investissement (DA)	69031391	8974081	11666306	15166197
Coûts cumulés (DA)	996926	2869994	4310798	6321501
Coût moyen annuel (DA)	7900066	5922037	532570	5371925

Tableau Nº III - 3 - 6

D'après le tableau ci-dessus, on remarque que le minimum du cma (n) est atteint en 1993.

Nous concluons donc que la période optimale de remplacement de la Rectifieuse d'intérieur "Voumard" [C006041] est atteinte en 1993. Toute dépense de maintenance pour cet équipement peut générer des pertes considérables.

PROPOSITIONS

PROPOSITIONS:

Actuellement, il n'est plus permis d'ignorer les enjeux économiques de la maintenance. Pour améliorer celle-ci au sein du CVI, nous tenons à exprimer certaines suggestions regroupées dans les points suivants:

- 1 Tenir les dossiers historiques complets ou figurera :
 - L'heure du début panne;
 - L'heure de remise en fonctionnement.
- 2 Exploiter les dossiers historiques des équipements en vue d'une meilleure évaluation.
- 3 Compléter la documentation concernant chaque équipement afin de mieux le connaître.
- 4 Elaborer des gammes d'interventions pour l'ensemble des équipements en se référant au fond documentaire.
- 5 Suivre l'évolution des coûts de maintenance pour chaque équipement, ce qui va permettre :
 - D'évaluer les performances de la fonction maintenance au CVI;
 - D'aider éventuellement à l'établissement d'un budget annuel de maintenance.

Ceci va servir aussi de décider :

- Soit de prolonger la vie de l'équipement par l'établissement d'un plan de maintenance adéquat.
- Soit de le remplacer à l'identique ou par un équipement nouvelle génération.
- 6 Elargir aux autres équipements de CVI les concepts décrit dans ce mémoire.

Pour ce faire, nous avons établi un programme informatique, présenté en annexe C, il va servir d'outil d'aide au service maintenance du CVI

L'utilisation de ce programme va permettre d'effectuer :

- Une étude technique : Fiabilité - maintenabilité - disponibilité des équipements .

On a rendu ceci possible par l'introduction d'une procédure qui fait appel au logiciel "UNIFIT " utilisé au cours de notre étude technique.

- Une analyse des coûts de maintenance :

Le programme ainsi établi permet de déterminer l'ensemble des coûts de la maintenance et le coût moyen annuel relatif à chaque équipement.

Conclusion:

Au cours de ce travail, nous avons essayé d'étudier l'aspect technique et économique de la maintenance des équipements mécaniques en vue d'un renouvellement.

Nous avons effectué en premier lieu une classification des équipements selon divers critères afin de sélectionner les plus critiques du point de vue du temps d'immobilisation, de la fréquence de panne, du plan de charge et de la place stratégique de l'équipement dans l'atelier mécanique.

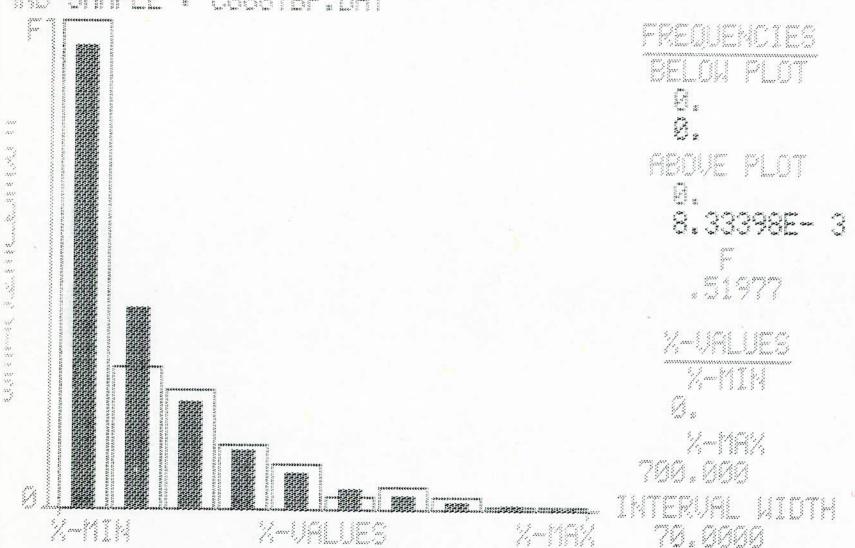
Une analyse précise des équipements ainsi choisis, en procédant à une étude de fiabilité suivie d'une étude de maintenabilité, nous a permis d'estimer les MTBF et les MTTR qui ont servi de base pour le calcul de la disponibilité. Nous avons ensuite tenté de quantifier la disponibilité réelle de chaque équipement en introduisant le temps logistique MTL.

A travers une étude qua Litative de la fiabilité, de la maintenabilité, et de la disponibilité, nous avons pu détecter un certain nombre de cas ou la maintenance au centre mécanique éprouve des difficultés.

Du point de vue économique, notre démarche a consisté à définir et à évaluer les coûts de maintenance des équipements en période d'usure et à faire une analyse de ces coûts. Suivie d'une évaluation du coût moyen annuel relative à ces équipements pour pouvoir déterminer leurs durées de vie d'exploitation optimales.

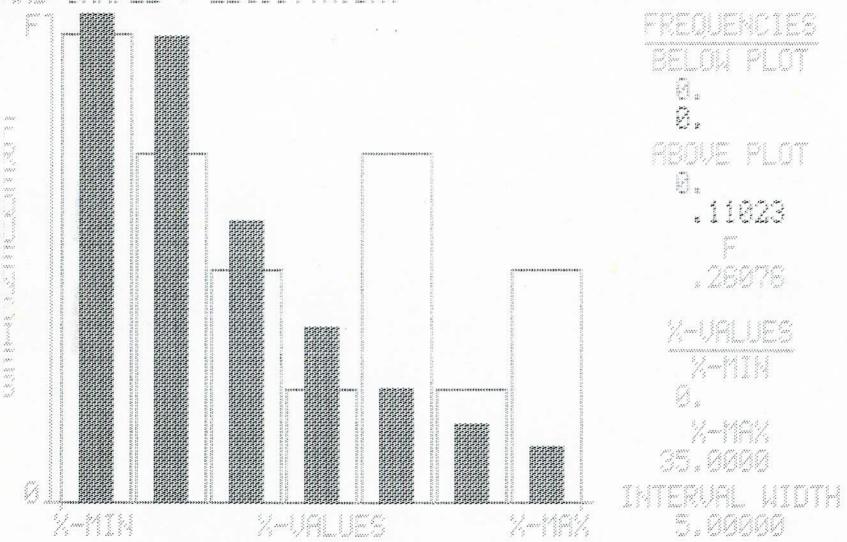
Nous pensons que cette étude pourrait être utilement complétée en abordant les aspects suivants :

- Etude de fiabilité des organes des équipements pour détecter les pannes les plus fréquentes pour déterminer leurs causes et ainsi dégager un plan de maintenance préventive pour diminuer les interventions curatives durant les périodes de fonctionnement.
- Analyse des modes de défaillances, de leurs effets et de leurs criticité pour minimiser les temps d'interventions alloué pour chaque équipement.

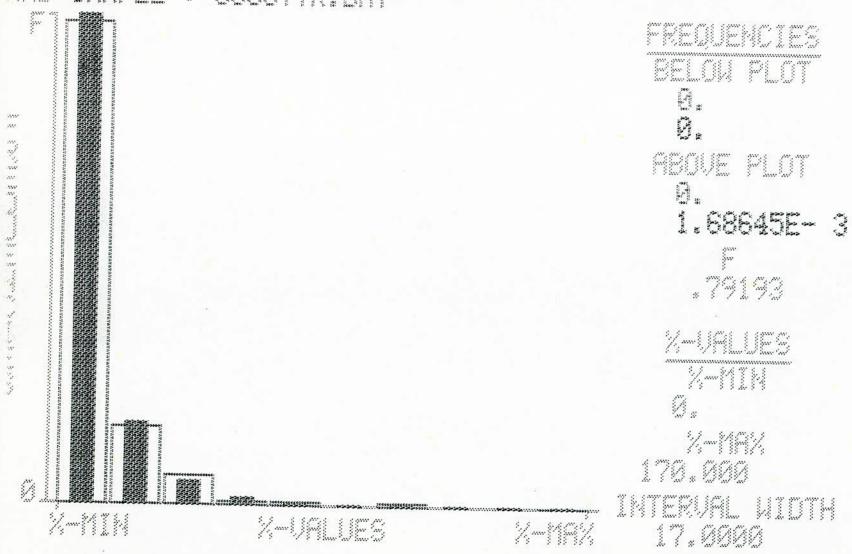

ANNEXES

Annexe A

Nous présentons ci-après les adjustements des données relatives à chaque équipement, aux modèles théoriques.


Le traitement des données a été fait avec le logiciel « U N I F I T ».

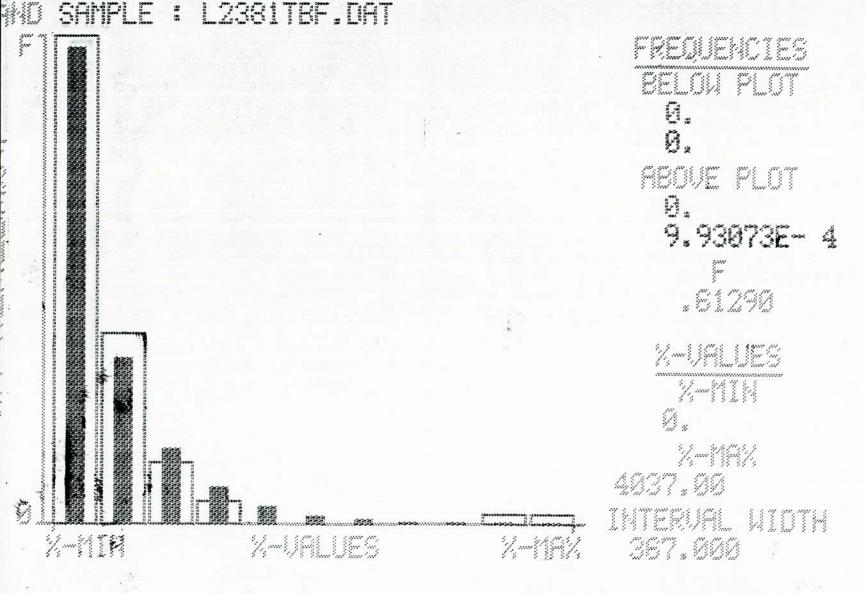
FREQUENCY COMPARISON OF MODEL 1:WEIBULL FRE SAMPLE : CRESTEF.DAT


11-JUM-1995 2:26 PM

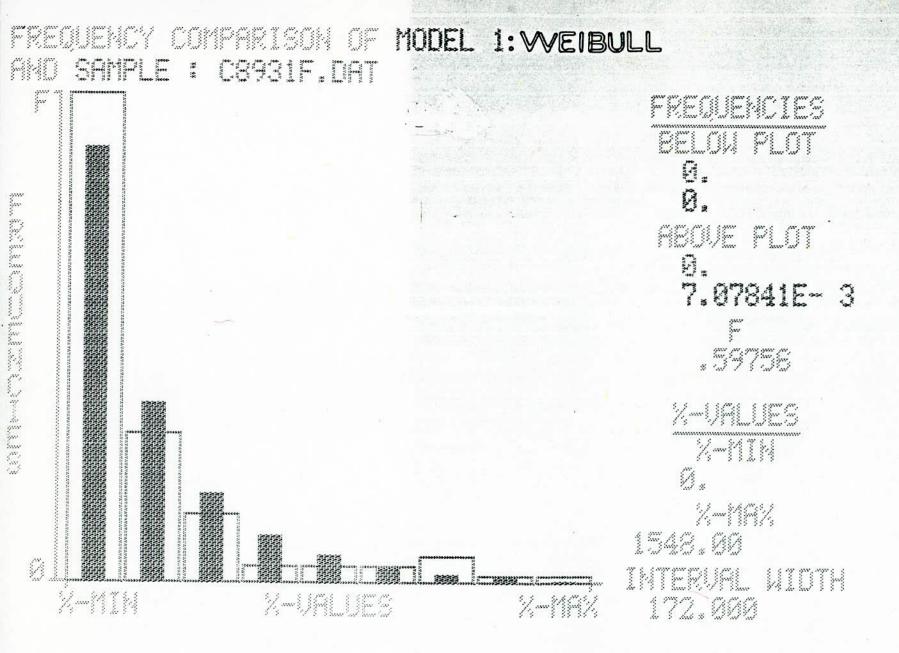
FREDERIC COMPRESSION OF MODEL 2:LOGNORMALE BAT SAMPLE : L2411TTR.DAT

11-JUN-1995 1:41 PM

FREQUENCY COMPRISON OF MODEL 1:LOG NORMALE AND SAMPLE : CASSITE DAT

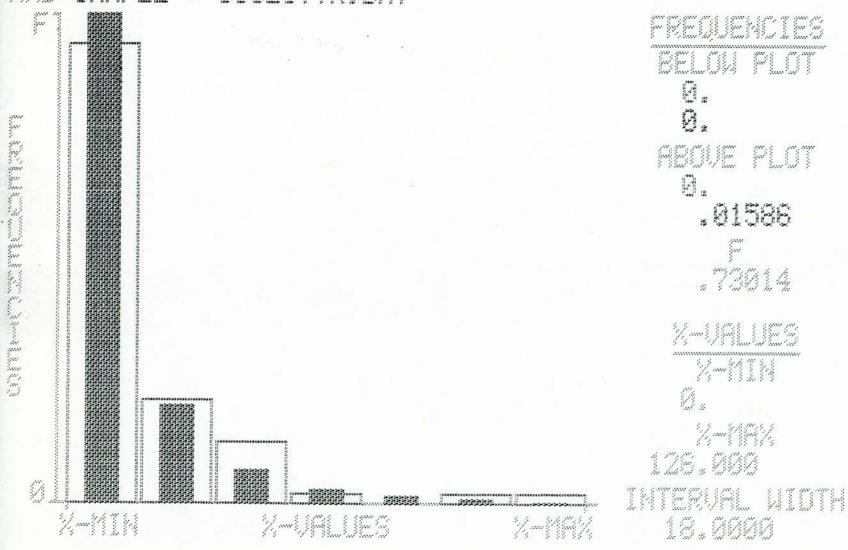


11-30%-1995 2:24 FM


FREQUENCY COMPARISON OF MODEL 1:WEIBULL FMENUEWIES BELOW PLOT *** Ø. aparangan arangan arang Arangan aranga ABOUE PLOT *** .05498 . 31250 %-VALUES Ø. %--MAX 5334.00 INTERVAL VIOTA 7.--1114 %-VALUES %-M6% 782.000

11-JUN-1995 1:46 PM

REQUENCY COMPARISON OF MODEL 1:WEIBULL



11-JUN-1995 12:44 PM

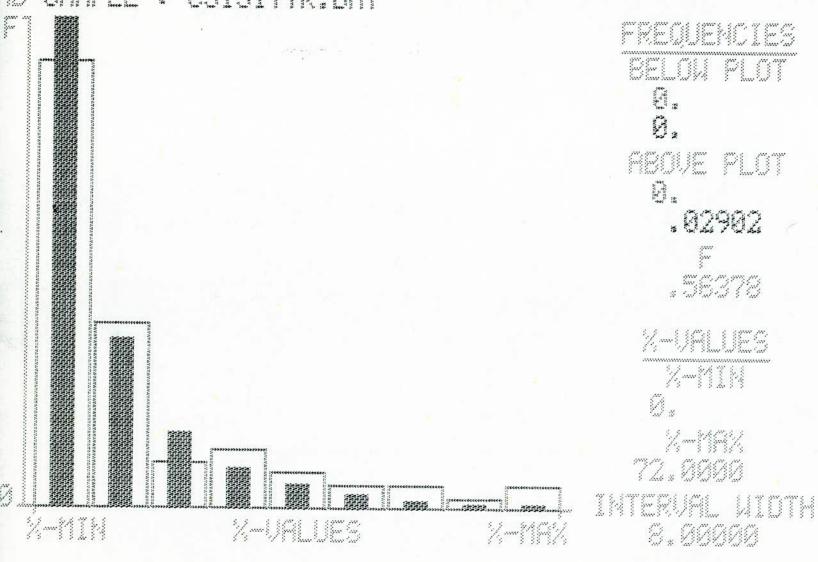
11-JUN-1995 2:13 PM

FREQUENCY COMPANISON OF MODEL 1:LOG NORMALE AND SAMPLE : CEGZITTR.DAT

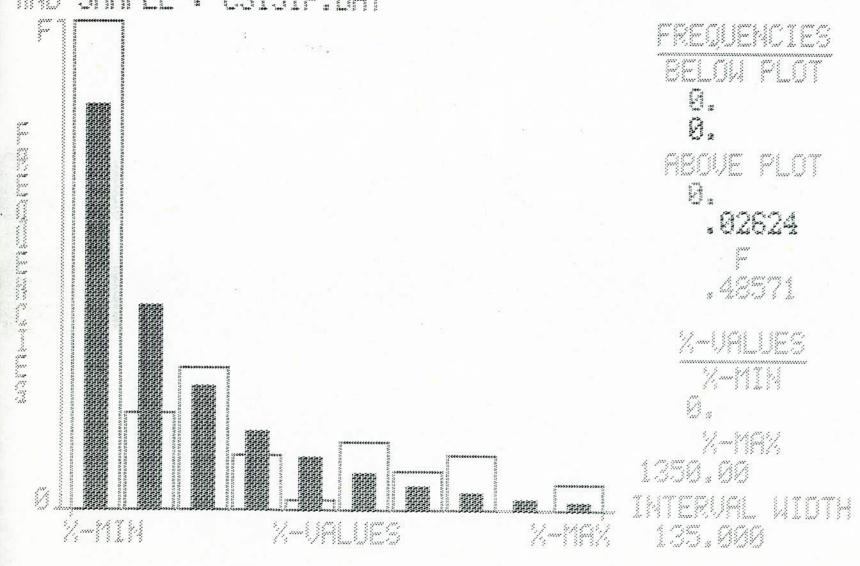
11-JUN-1998 1:52 PM

FREQUENCY COMPARISON OF MODEL 1:WEIBULL FREQUENCIES BELOW PLOT 0. ABOVE PLOT *** 4.54670E- 3 , 64257 %--VALUES 7-HIH Ø. %--MAX 3283.80

7-VALUES


X-MIN

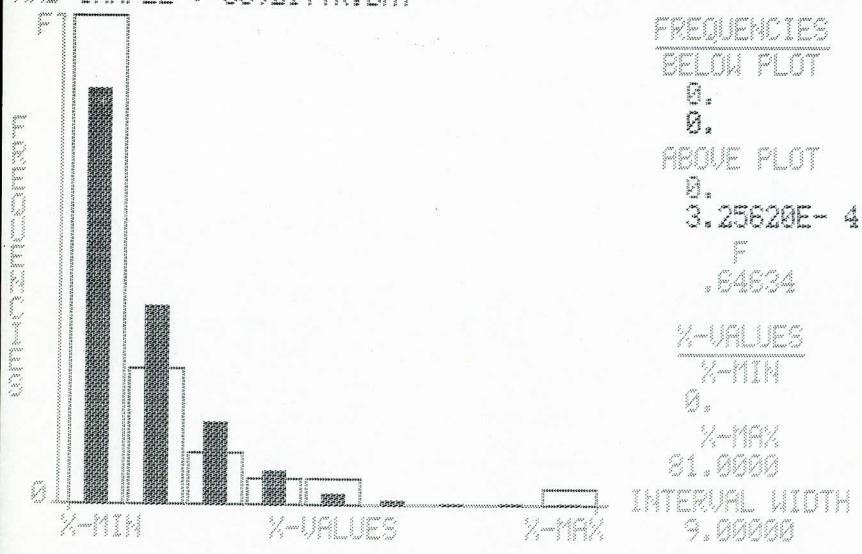
469.000


%--MAX

INTERVAL WIDTH

VEGUENCY COMPANIOUS OF MODEL 1: LOG NORMALE NO SAMPLE : C3151TTR.DAT

FREQUENCY COMPARISON OF MODEL 1:WEIBULL MID SAMPLE: C3151F.DAT



MODEL 1:WEIBULL

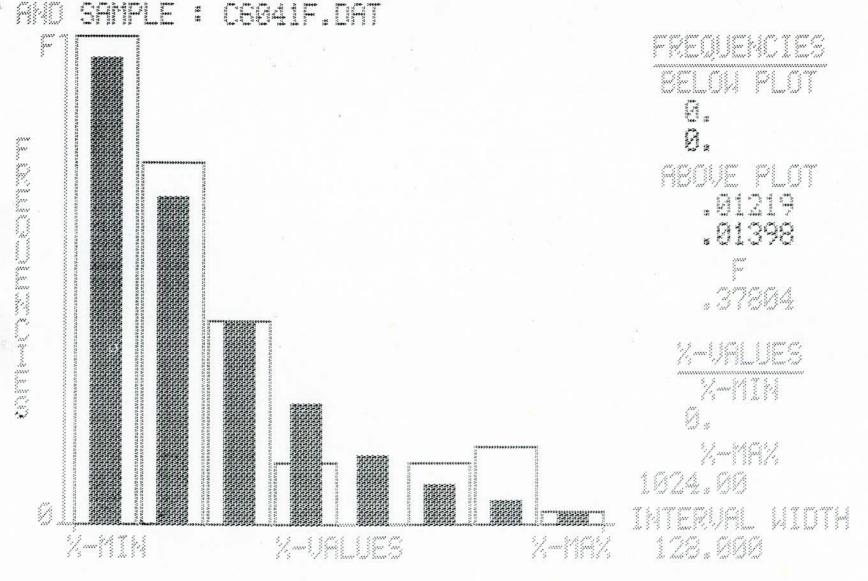
FREQUENCY COMPARISON OF

FREQUENCY COMPANISON OF MODEL 1: GAMMA AND SHIPLE: CERZITTR.DAT

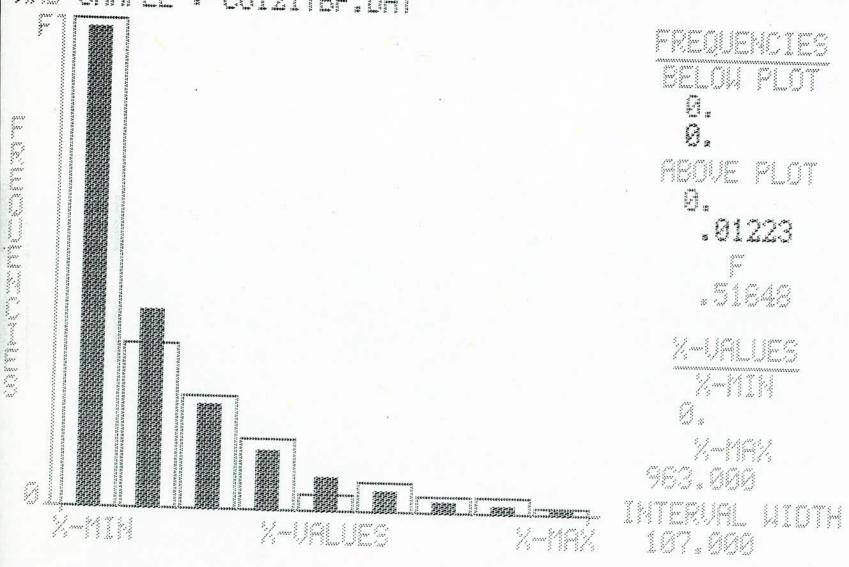
11-JUM-1995 Z:41 PM

FREQUENCY COMPARISON OF MODEL 1:WEIBULL ** FREQUENCIES BELOW PLOT YAYAY YAYAY YAYAY Ø. ABOVE PLOT *** 2.80946E- 3 **%-UALUES** 7-1114 %---11F1% 1935.00 INTERVAL VIOTH

X-UALUES


%-MIN

11-JUN-1995 2:44 PM


215.000

7-1167

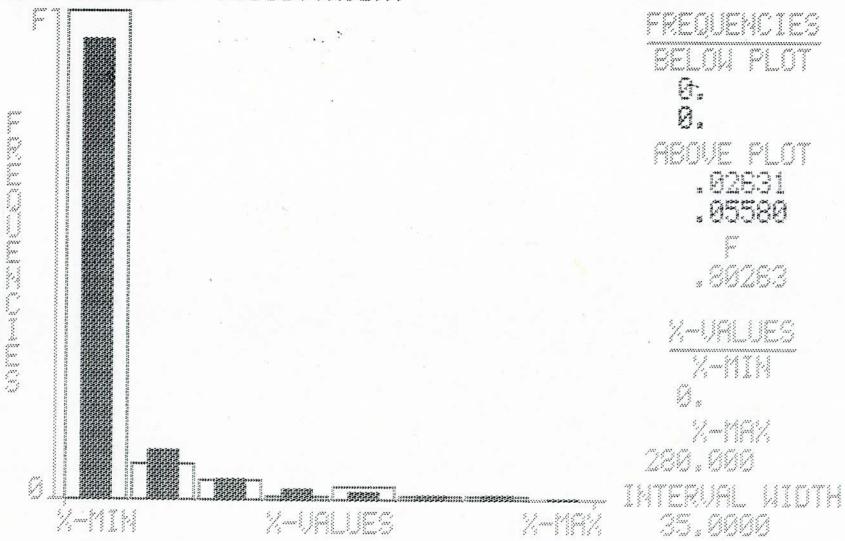
FREQUENCY COMPARISON OF MODEL 1:WEIBULL

FREQUENCY COMPRISON OF MODEL 1:WEIBULL AND SHIPLE : CRIZITHE. THE

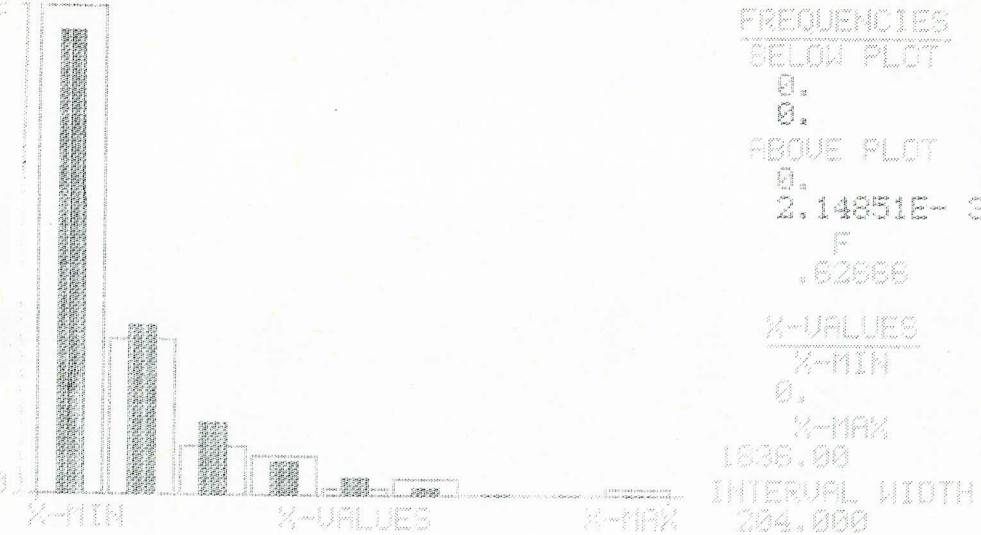
11-35M-1935 2:47 FM

OF MODEL 1: WEIBULL FREQUENCIES BELOW FLOT ABOUE PLIOT ,01030 .56962 X-UMLUES 7-4114 X--MAX 1378.00 INTERVAL VIOT

X-VALUES


2-1111

26-JUM-1995 1:30


X-MAX

172.000

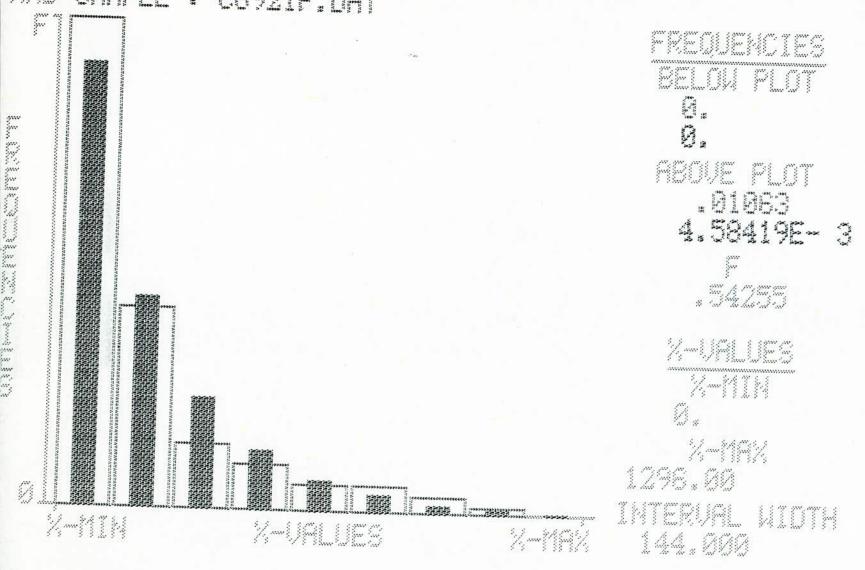
FREQUENCY COMPARISON OF MODEL 1:LOGNORMAL AND SAMPLE : CILIETTR.DAT

FAMELE: CILIETEF. DAT

26-3UN-1995 2:05 PI

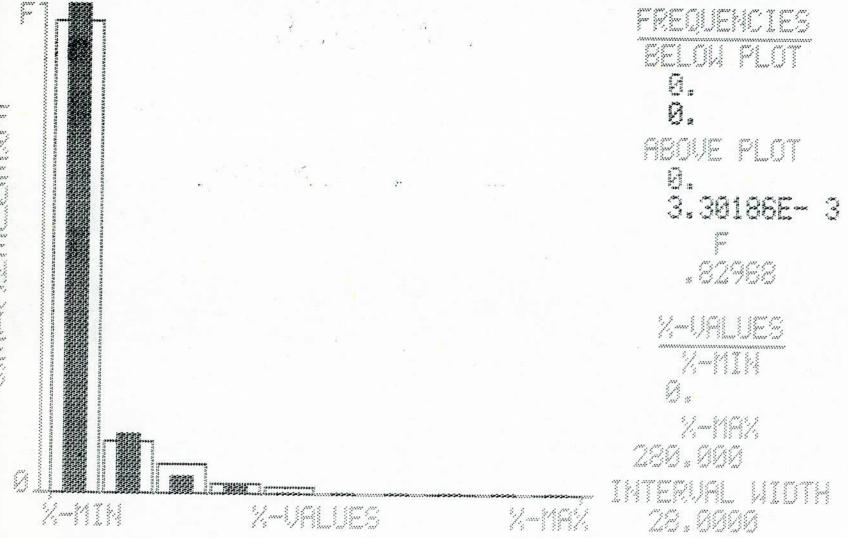
FREQUENCY COMPARISON OF MODEL 1:LOGNORMALE :# :# :# FREQUENCIES BELOW FLOT 0. ABOUE FLOT 8.66228E- 3 . S1259 %-VALUES 7,-7114 Ø. 7.--11F17. 120.000

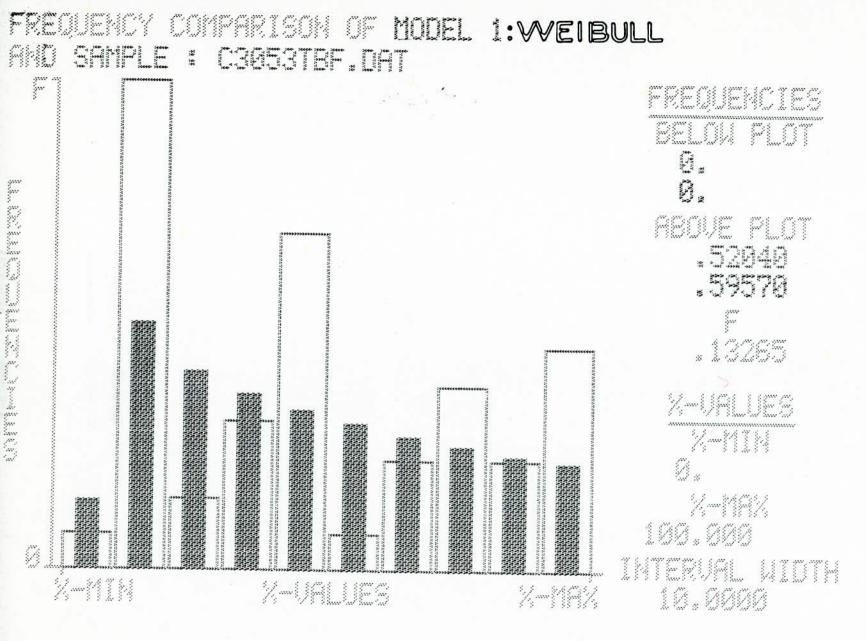
%-UALUES


%-MIM

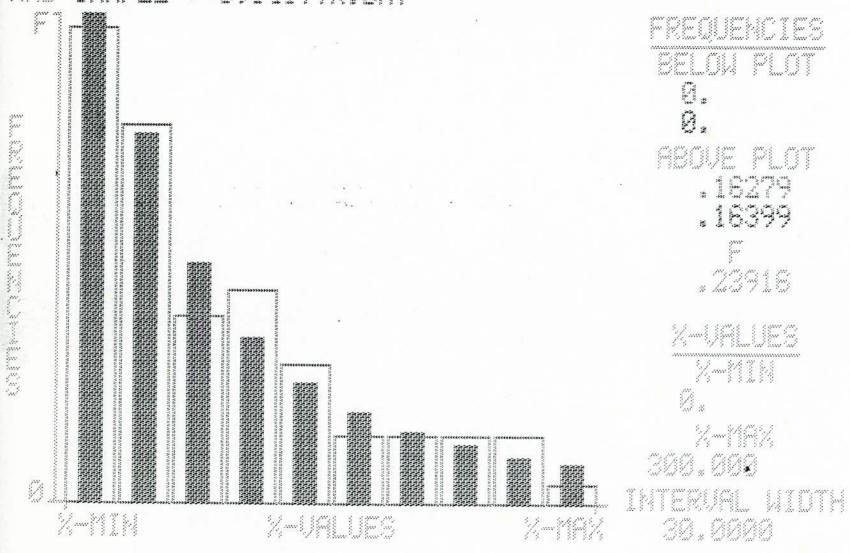
11-JUN-1995 2:18 PM

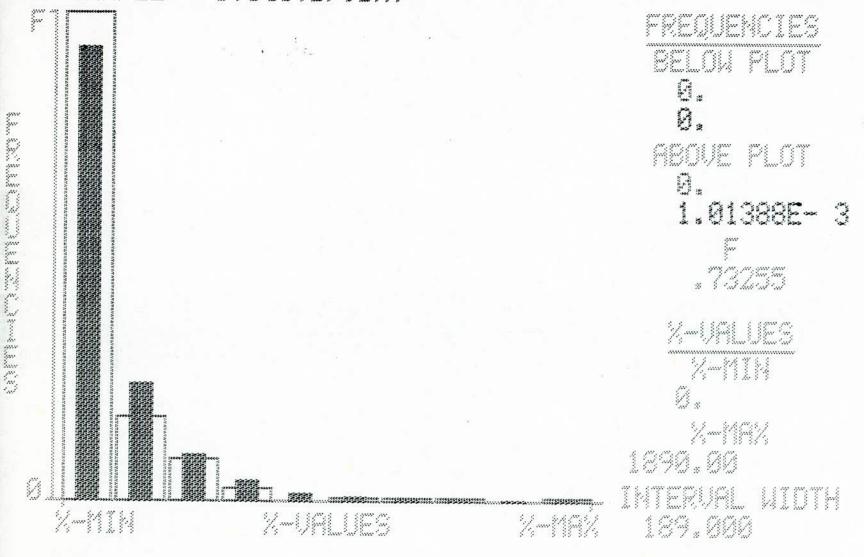
12.0000


7-467

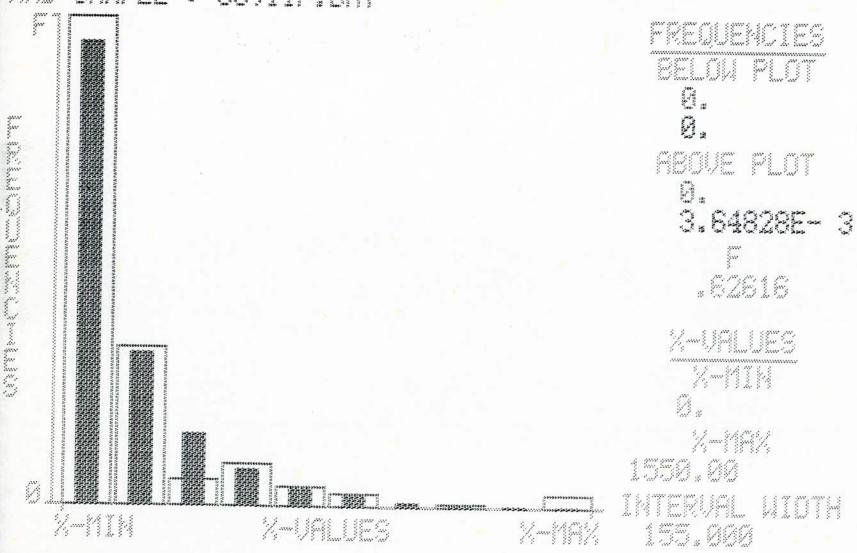

FREDERIC COMPANION OF MODEL 1: WEIBULL FOR SHIPLE : CRAZIF, THE

11-3134-1995 Z:19 PM


FREQUENCY COMPARISON OF MODEL 1:LOG NORMALE AND SAMPLE : CE401TTR.DAT


11-JUN-1995 2:57 PM

FREQUENCY COMPANISON OF MODEL 2:LOG NORMALE AND SAMPLE : CHIAITTE.DAT


11-JUM-1995 2:07 PM

FREQUENCY COMPARISON OF MODEL 1:WEIBULL AND SAMPLE : C9141TBF.DAT

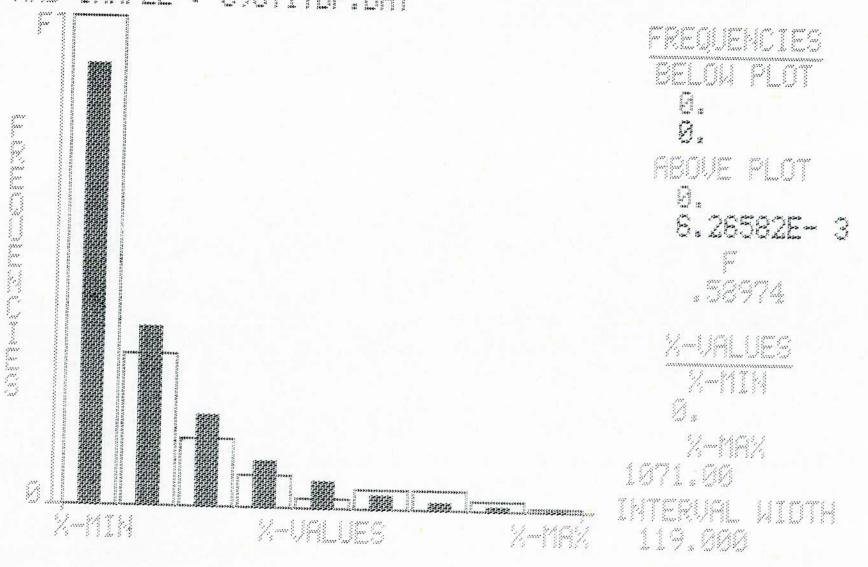
11-JUN-1995 2:02 PM

FREQUENCY COMPARISON OF MODEL 1:WEIBULL AND SAMPLE : CS911F.DAT

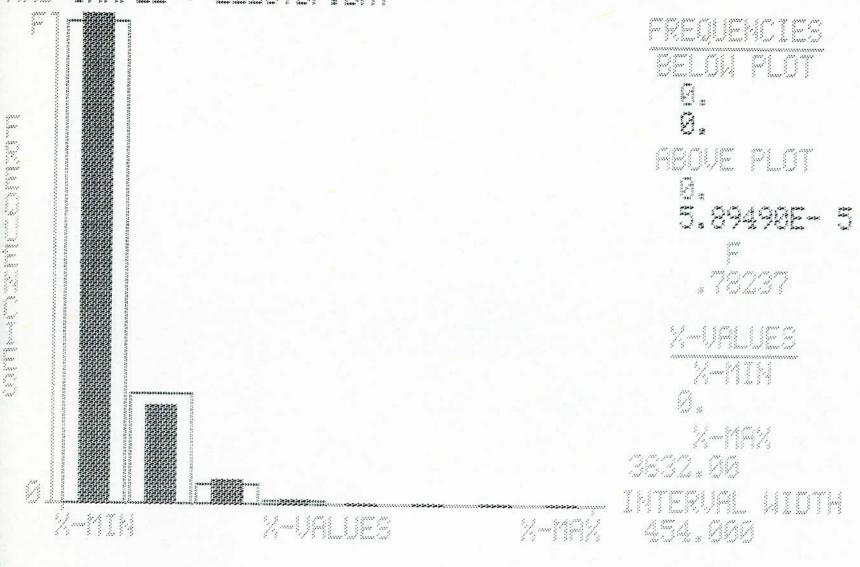
REQUENCY COMPARISON OF MODEL 1:WEIBULL ** FREQUENCIES BELOW PLOT ABOVE PLOT 8. 7.30753E- 5 .71153 %-VALUES 7-4114 Ø. 7.--11997. 2259.00 INTERVAL WIDTH %-MIH %-UALUES 7,---11F17, 251.000

11-JUM-1995 12:50 PM

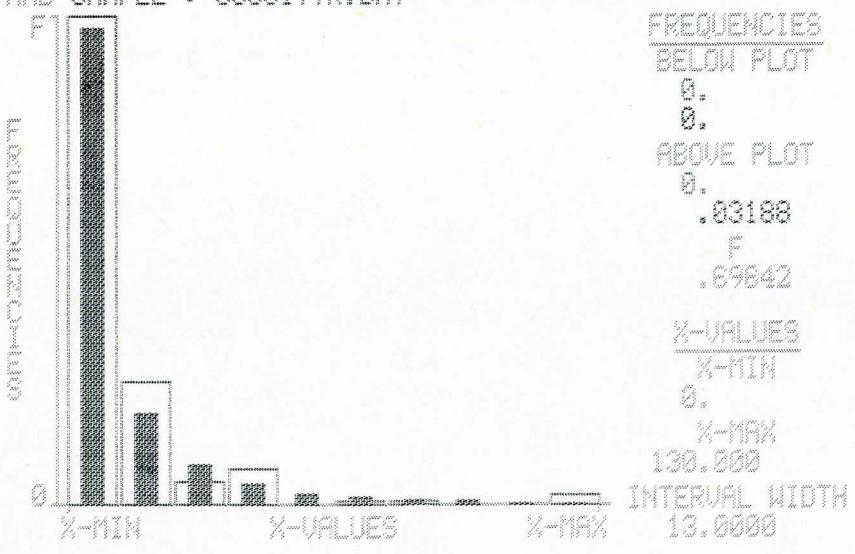
FREDUCTION OF MODEL L:LOG-NORMALE



26-JUH-1995 1:23


PROPERTY DEL 1:WEIBULL

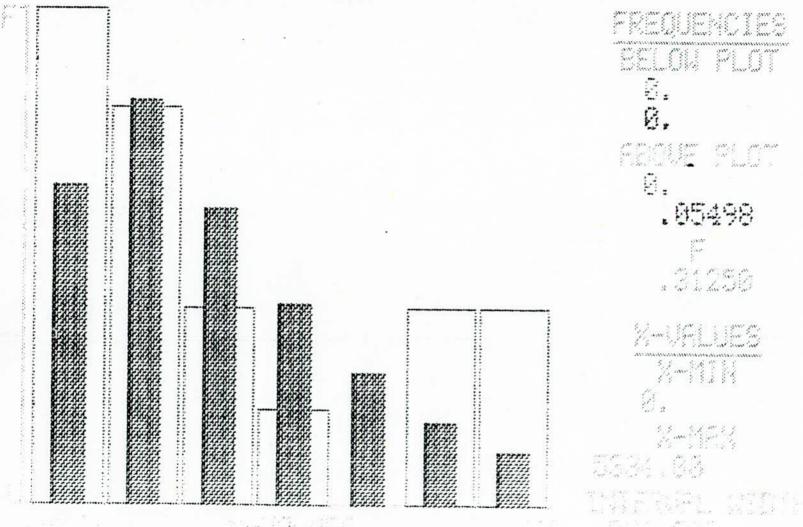
FREDER COMPARED F MODEL 1:WEIBULL
FOR SHIPLE : CAGAITEF.DAT



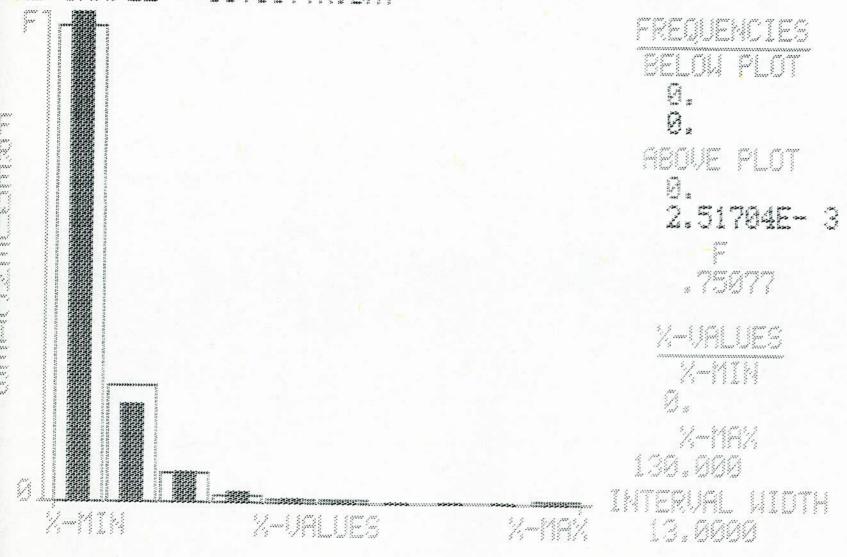
FREQUENCY COMPARISON OF MODEL 1:WEIBULL AND SHMPLE: LZZ5TEF.DAT

11-JUM-1995 2:29 PM

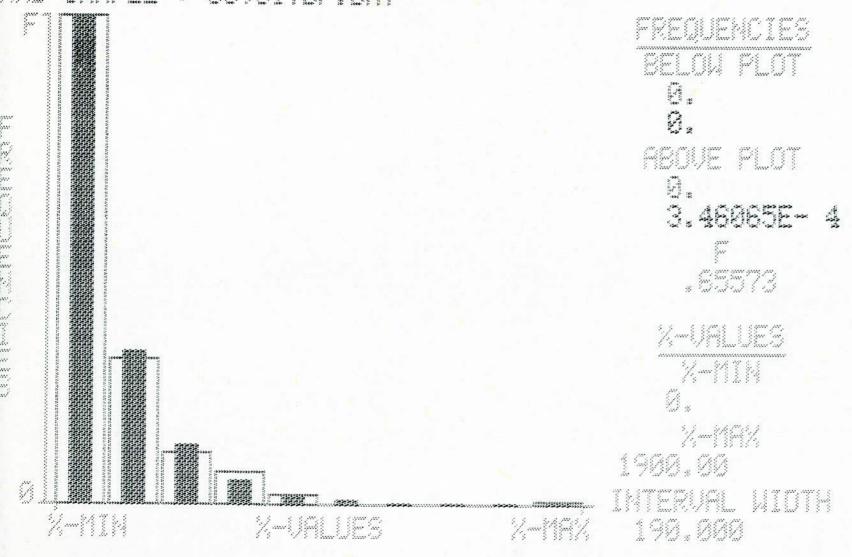
FREQUENCY COMPARISON OF MODEL 1: CAMMA HAD SAMPLE : CEGGITTR.DAT

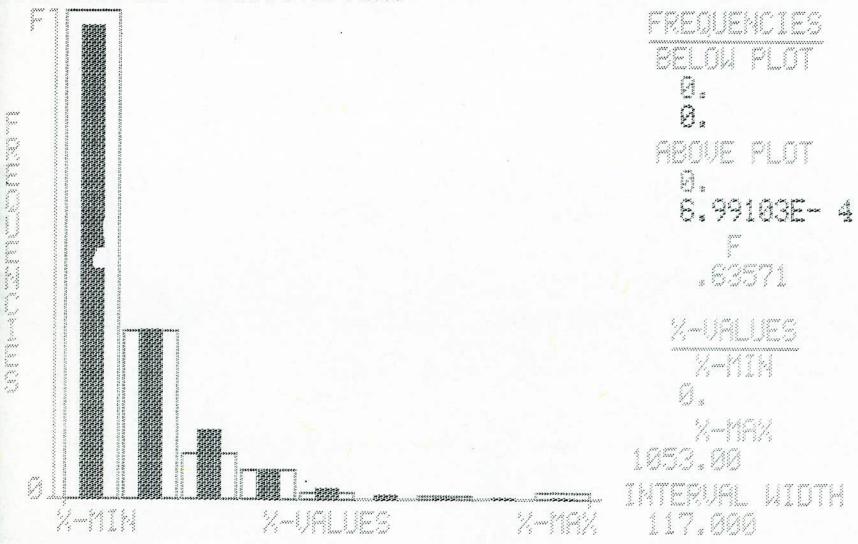


MODEL ::EXPONENTIEL

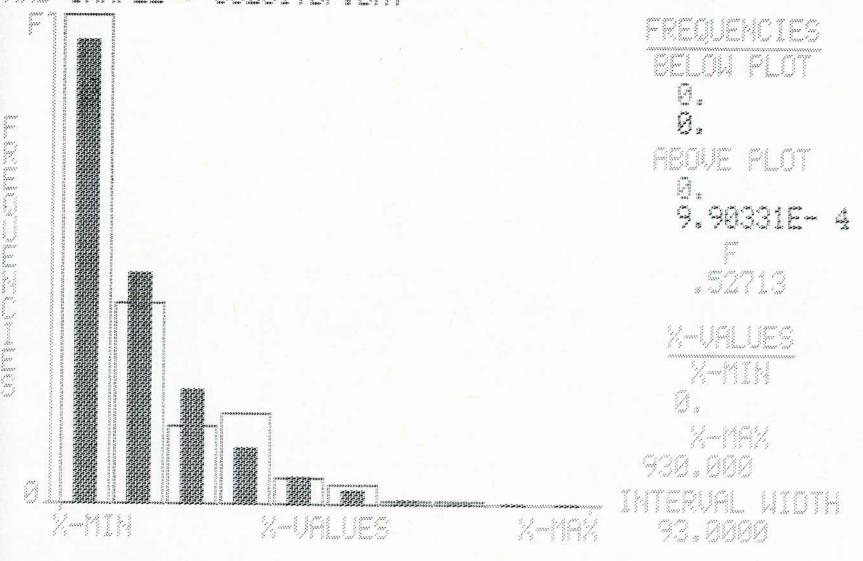


FREQUENCY COMPARISON OF MODEL 1:WEIBULL

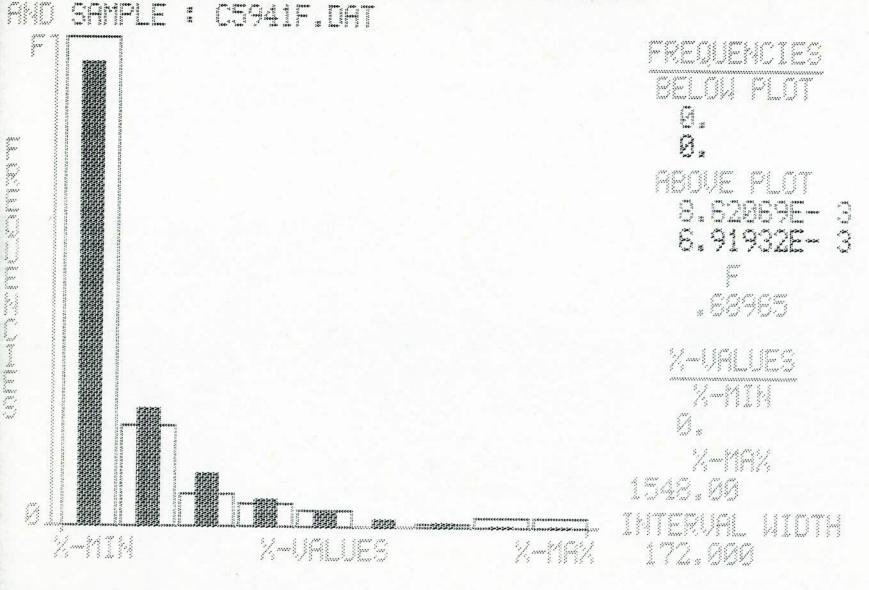

AND SHMPLE: L24117BF.DAT


FREQUENCY COMPARISON OF MODEL 1:LOG NORMALE. AND SAMPLE : CBASITTE DAT

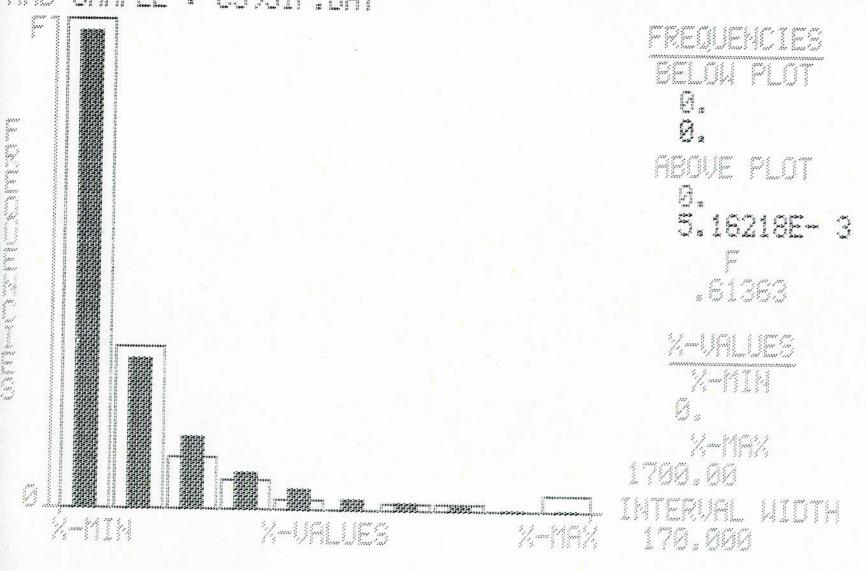
FREQUENCY COMPARISON OF MODEL 1: WEIBULL AND SAMPLE : CRASITEF.DAT



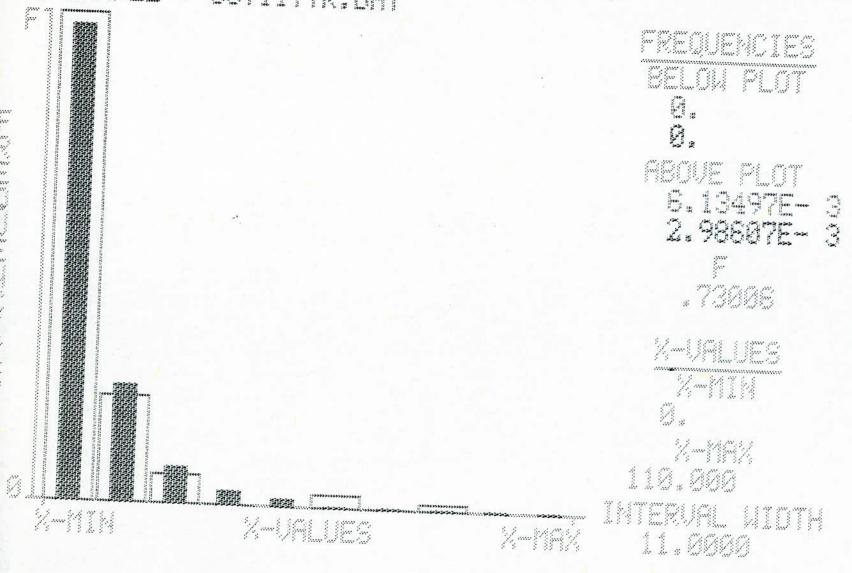
FREQUENCY COMPARISON OF MODEL 1:VVEIBULL AND SAMPLE : C3531TEF.DAT


11-JUN-1995 1:15 PM

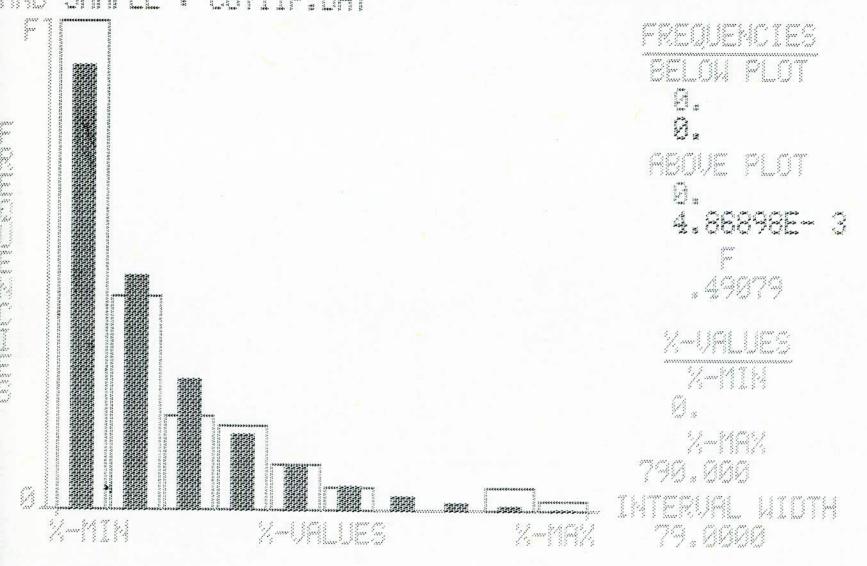
FREQUENCY COMPANISON OF MODEL 1: EXPONENTIEL AND SAMPLE : CB251TBF.DAT


11-JUN-1995 2:10 PM

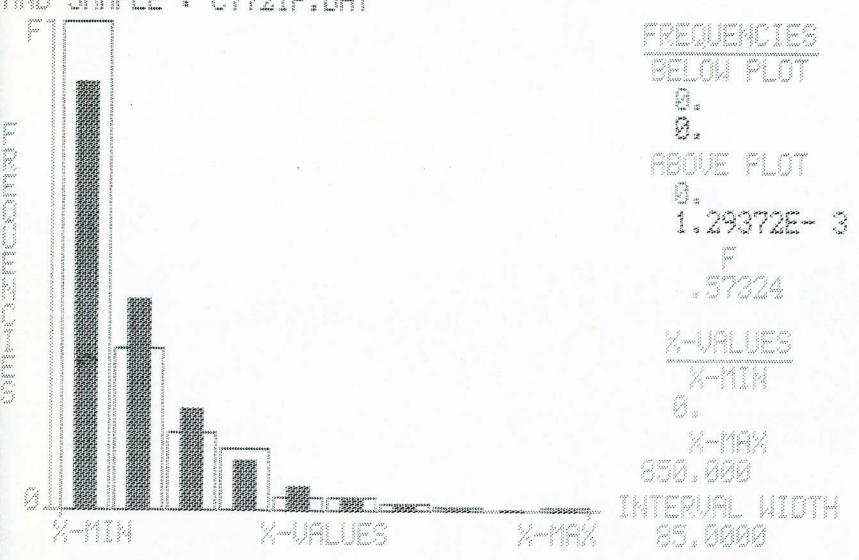
FREQUENCY COMPARISON OF MODEL 1:WEIBULL

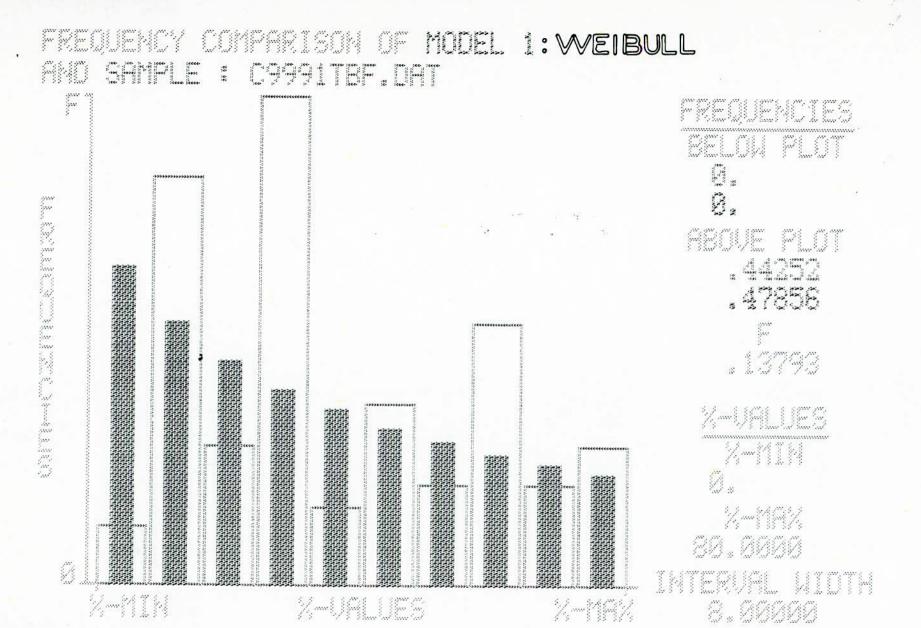

11-JUN-1995 2:32 PM

FREQUENCY COMPARISON OF MODEL 1: WEIBULL AND SAMPLE : C5951F.DAT

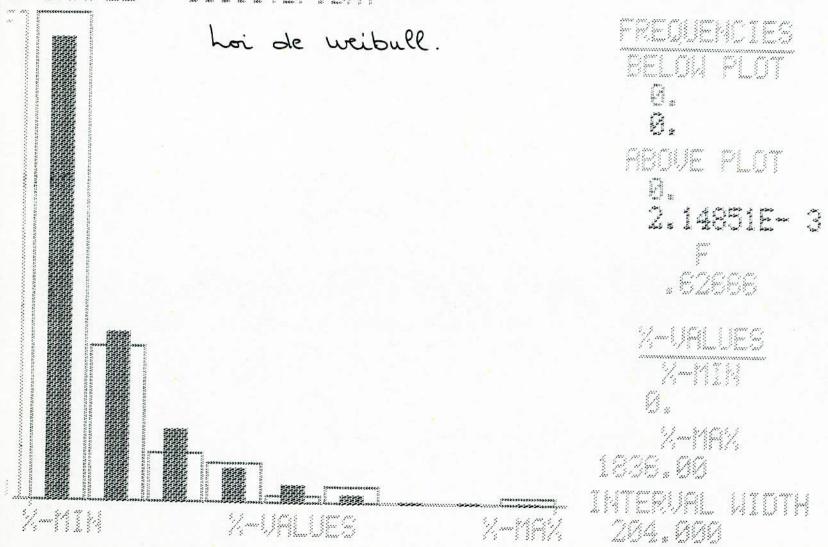

11-JUN-1995 3:00 PM

FREQUENCY COMPRESSION OF MODEL 1:LOG NORMALE RED SHIFLE: CS711TTR.THT


11-39%-1995 Z:53 PM


FREQUENCY COMPARISON OF MODEL 1:VVEIBULL FRO SAMPLE : CE711F.DAT

11-JUN-1995 2:50 PM


FREQUENCY COMPARISON OF MODEL 1:WEIBULL AND SAMPLE : C7721F.DAT

11-JUM-1995 3:03 PM

EQUENCY COMPARISON OF MODEL 1 D SAMPLE : ClilSTEF.DAT

11-JUH-1995 1:11 PM

Annexe B

Nous présetons dans cet annexe :

- Le taux d'actualisation.
- Le détail du calcul des coûts de pièces de rechanges consommées durant ces quatre dernières années.

Tableau du taux de change du dinars:

Années	IFF=(DA)	IFS (DA)	Taux d'actualisation
1978	0.8990	2,6100	0.10
1979	0.9100	2,3600	0.10
1980	0.9150	2,3300	0.10
1981	0.7900	2.1100	0.10
1982	0.7300	2,3350	0.10
1983	0.6436	2.2970	0.10
1984	0.5687	2.1425	0.20
1985	0,5651	2.0738	0.20
1986	0.6834	2,6258	0.20
1987	0.7994	3.2105	0.20
1988	1.0008	4.0316	0.30
1989	1.1906	4.6503	0.30
1990	1.6436	6.5032	0.30
1991	3.8950	15,5000	0.30
1992	5.1500	20,5000	0.30
1993	5.0843	19.8310	0.30
1994	9.7789	40.2367	0.30

Une unité monétaire (U.M) à l'origine, sa valeur va évoluer les années à venir.

Aujourd'hui U. M

Dans Ian U. M

 $U . M (1 + i_1)$

Dans 2ans $U \cdot M (1 + i_1) (1 + i_2)$

Dans n ans $U \cdot M(1+i_1)(1+i_2)$ $(1+i_1)$

ij est l'ordre du taux d'inflation en l'années j.

Soit So: une somme disponible aujourd'hui

Dans n années, elle vaudra:

 $Sn = So(1+i_1)(1+i_2)....(1+i_n).$

Tableau de calcul de coût pièce de rechange spécifiques :

$$Cpdr_n = So(1+i_1)(1+i_2)...(1+i_n)$$

1- pour le four:

code pdr	Date d'achat	PU(devise)	PU(DA)	Date de sortie	PU (DA) actualisé	Quantités	Prix total
01963401z10	1987	5940 ff	4748.436	1991	16274.41	3	48823,23
01963401z13	1986	15390 ff	10517.526	1991	43256.31	1	43256,31
						Total >	02070 54

1- pour la fraiseuse voumard: Date de sortie des pieces : 1991

Code pdr	Date d'achat	PU(devise)	PU(DA)	PU (DA) actualisé	Quantités	Prix total
05426501Z09	1982	45 ff	32.85	235.41	2	470.81
05426501Z11	1980	38 ff	34.77	301,49	2	602.98
05426501Z13	1983	39,36 fs	90.41	588.99	2	1177.98
05426501Z17	1980	77 ff	70.455	610.92	1	610.92
05426501Z21	1983	8.44 fs	19,387		1	126.30
05426501Z23	1983	816 fs	1874.352		1	12210.75
06426501Z02	1980	460 ff	420.9	3649.62	1	3649.62
06426501Z08	1980	275 ff	251.265	2181.84	1	2181.84
06426501Z16	1980	2.80 ff	2562		1	22,22
07426501Z01	1983	624 ff	401.606	2616.32	2	5232.65
07426501Z13	1983	34.33 DA	34.33	223,65	2	447.29
04426501Z24	1980	11 ff	10.065	87.27	12	1047.28
05426501Z07	1980	24 ff	21.96	190.42	2	380.83
05426501Z08	1983	124.8 fs	286.667	286.667	1	1867,53
01426501Z10	1983	207.36 fs	476.306	476.306	1	3102.97
01426501Z13	1980	68.10ff	62.321	540,30	3	1620,92
02426501Z02	1979	267.9 DA	267.9	267.9	1	2555,26
02426501Z03	1980	370.95DA	370.95	370,95	1	3216.51
02426501Z09	1980	59 ff	53,983	468.09	3	1404.26
					Total>	41928,92

Date de sortie des pieces : 1992

Code pdr	Date d'achat	PU(devise)	PU(DA)	PU (DA) actualisé	Quantités	Prix total
01426501Z18	1983	1010 ff	650.036	650,036	1	5505.23
05426501Z17	1980	77 ff	70.455	70.455	1	794,19
05426501Z01	1983	109.44 ff	251.384	251.384	1	2128.99
05426501Z23	1983	816 fs	1874.352	1874,352	1	15874.07
05426501Z24	1987	355,20 fs	1140,37	5081.03	2	10162.07
05426501Z04	1980	82 ff	75.03	75.03	1	845.76
07426501Z01	1983	624 ff	401.606	3401.24	2	6802,48
07426501 Z 13	1983	34.33 DA	34.33	290.74	2	581.49
04426501Z03	1983	169.62 fs	390.306	390,306	1	3305.54
01426501Z10	1992	1218.24 DA	1218.24	1218.24	2	2436,48
01426501Z12	1985	4.9 fs	10,162	65,199	4	260,80
01426501Z13	1980	68.1 ff	62.312	702.400	2	1404.80
01426501Z04	1979	5468.4 fs	12905,424	12905,424	1	160022.10
01426501Z05	1980	116 ff	106.14	1196,44	2	2392.88
01426501Z08	1980	31864.43 fs	29155.953	328654,65	1	328654.65
					Total>	541171.53

Date de sortie des pieces : 1993

code pdr	Date	PU(devise)	PU(DA)	PU (DA)	Quantité	Prix total
	d'achat			actualisé	s	
01426501Z18	1983	1010 ff	560.036	7156.77	1	7156,77
01426501Z13	1983	39.36 fs	90.41	995,40	1	995.40
01426501Z01	1983	408 fsff	937.176	10318,12	l I	10318.12
04426501Z04	1983	249.6fs	363.845	4005.86	2	8011.72
04426501Z20	1980	12 fs	10.98	160.9	1	160.9
01426501Z12	1992	1728.23 DA	1728.23	3456.40	2	3456.40
03426501Z01	1989	121.18 DA	121.18	363.54	3	363,54
03426501Z07	1979	15.93 DA	15.93	15.93	1	15.93

Date de sortie des pieces : 1994

code pdr	Date d'achat	PU(devise)	PU(DA)	PU (DA)	Quantités	Prix
				actualisé		total
05426501Z17	1980	77 ff	70.455	4173.126	1	4173.12
						6
05426501Z17	1987	364.8 fs	1171.191	881.83	2	1763.66
04426501Z10	1980	11 ff	10.065	179.036	1	179.036
04426501 Z 16	1980	87 ff	79.605	319.928	1	319.928
04426501Z17	1980	390 ff	356.85	329.343	1	329,343
01426501Z12	1992	1728,23 DA	1728.23	1728.23	3	5184.69
01426501Z19	1985	48 fs	99.542	138.543	1	138,543

Tableau de calcul de coût pièces de rechanges standards :

$$Cpdr_{11} = So(1+i_1)(1+i_2)...(1+i_n)$$

1- pour le four:

code pdr	Date d'achat	PU(devise)	PU(DA)	Date de sortie	PU (DA) actualisé	Quantités	Prix total
05WD17	1986	1083 ff	740.12	1994	6687.54	2	13375.08

Date de sortie des pieces : 1991

Code pdr	Date d'achat	PU(devise)	PU(DA)	PU (DA) actualisé	Quantités	Prix total
06XS20	1985	11.52 FS	23,89	117,91	ſ	117.91
03XS13	1985	4.51 FS	9,353	46.16	ı	46.16
09XS13	1982	13.07 FF	9.541	68.37	2 .	136.74
06XT06	1990	19.20 FS	124,861	162.329	2	324.64
03YF35	1990	139.75 DA	139.75	181.675	3	545.03
2426301Z17	1983	86.40 FS	198.461	1292.89	2	2585.78

Date de sortie des pieces : 1992

Code pdr	Date d'achat	PU(devise)	PU(DA)	PU (DA) actualisé	Quantités	Prix total
07XT20	1981	103 DA	103	103	4	412
06XS06	1990	19.20FS	124.861	6.83	4	27.32
09XS13	1981	729.55 DA	729.55	729.55	4	2918.2

Programme principal

```
program couts maintenance;
{$M 8192,8192,655360}
\{S-X+\}
Uses crt, Divers, Graph, machin, couts, renouvellement, dos;
procedure exex;
begin
swapvectors;
exec(getenv('comspec'),' /c a:\UNIFIT\UNIFIT');
swapvectors;end;
PROCEDURE MENU,
begin
clrscr:textbackground(0);wini(2,2,80,24,15,0);
window(40,4,60,28);textbackground(0);clrscr;
                 Logiciel De Maintenance
window(15,4,75,20);textcolor(14);textbackground(0);
textcolor(red+128);write(t; '); textcolor(2);writeln('etude technique des équipements');writeln;
textcolor(red+128); write('s: '); textcolor(2); writeln('saisie fichier équipement'); writeln;
textcolor(red+128);write('c: '); textcolor(2);writeln('coûts de la maintenance');writeln;
textcolor(red+128);write('n: '); textcolor(2);writeIn('consultation fichier équipement');writeIn;
textcolor(red+128); write('e.'); textcolor(2); writeln('supprime fichier équipement'); writeln;
textcolor(red+128); write('m: '); textcolor(2); writeIn('modification fichier équipement'); writeIn;
textcolor(red+128);write('r: '); textcolor(2);writeIn('renouvellement des équipements');writeIn;
textcolor(red+128); write('q: '); textcolor(2); writeln('quitter'); writeln; end;
PROCEDURE ecran:
begin
clrscr;textbackground(0);wini(7,7,75,22,15,0);
window(40,8,60,28);textbackground(0);clrscr;
window(10,10,74,20);textcolor(14);textbackground(0);
textcolor(red+128); write('d: '); textcolor(2); writeln('saisie fichier Coûts'); writeln;
textcolor(red+128);write('a: '); textcolor(2);writeln('Ajout Coût');writeln;
textcolor(red+128);write('p: '); textcolor(2);writeIn('Renouvellement des équipements');writeIn;
textcolor(red+128); write('w: '); textcolor(2); writeln('quitter'); writeln; end;
{------programme principal------}
BEGIN clrscr;
repeat menu;
repeat ch:= readkey; until ch in ['t','r','s','c','e','m','n','g'];
case ch of
 't':exex:
 's':saisie E;
 'n':consult E;
 'e':supprime E:
 'c':CTMaintenance;
 'm':modif E;
 'r' ecran,
end:
if ch='r' then repeat ecran;
repeat ch:= readkey; until ch in ['d','a','p','w'];
    case ch of
      'd':saisie c;
      'a':ajout;
      'p':remplacement;
      'w';menu;
     end;until ch='w';
until ch='g';
END.
```

REFERENCES

BIBLIOGRAPHIQUES

Références bibliographique

- [1] A OUABDESSELAM " La fiabilité au service de la maintenance ". Edition : I N M A (1991).
- [2] PATRICK LYONNET " La maintenance mathématiques et méthode ". Edition : Technique et documentation (1988).
- [3] MONCHY "La fonction maintenance" Edition: Masson (1987).
- [4] AFNOR " Fiabilité Maintenabilité Disponibilité ". Recuill des normes (1990).
- [5] A- OUABDESSELAM " Cours de statistique et fiabilité ". 3^{éme} année génie industiel E N P (1992 / 1993).
- [6] A MONNIER " Le plan maintenance ". ES-SYANA N° 10 (1991).
- [7] YVES LAVINA " Audit de la maintenace ". Edition : Organisation (1992).
- [8] INMA " Guide de la maintenance " (1990).
- [9] M CHAFAI " La maintenance technique ". EDITION: ENAP (1994).
- [10] DANIEL BOIHEL et CLAUDE HAZARD " Guide de la maintenance ". Edition : NATHAN Paris (1987).

Revu: " Achat et entretien " N° 410 (1988) N° 415 (1989).