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pour l’obtention du diplôme d’ingénieur d’état en Automatique

Synchronisation du chaos à base
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ABSTRACT

The subject of this thesis is the synchronization of chaotic systems using non-linear

observers, with applications to cryptography. I present in my thesis a general method

to improve the performance of some observers with unknown inputs. I also develop a

method to improve the frequency characteristics of chaotic systems such as the Rossler

system and the Lorenz system. I also build modifications of a twisting observer for

systems with time delay. Among these modifications, there is a method that allows

us to consider any unknown input of a system in triangular form as being a fictitious

state, which allows us to use state observers for the estimation of an unknown input. I

construct also the notion of higher-adaptive-order sliding mode observers. I also present

a countermeasure using ANFIS observers and an improved Lorenz system facing an

acoustic cryptanalysis attack against RSA, then I combine the chaos theory with the

lattice theory to generate new problems in post-quantum cryptography.

Key words: Chaos theory, Cryptography, Nonlinear observers, Chaos synchronization,

Lattices.
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1
INTRODUCTION

1.1 Context and motivations

The subject of this thesis is the synchronization of chaotic systems based on non-linear

observers for applications in cryptography.

Cryptography is the science of secure data transmissions. It is part, along with crypt-

analysis -which is the science that aims to test the security of cryptographic systems

(cryptosystems)- of the broad field of cryptology.

We essentially find two categories of techniques for the design of cryptosystems: math-

ematical techniques and physical techniques. The vast majority of mathematical tech-

niques are related to number theory, elliptical curves, abstract algebra, and more recently

the theory of lattices. The physical techniques are focused on the use of notions of quan-

tum mechanics such as the Heisenberg principle and the polarization of photons.

Over the years, we have seen the emergence of a new mathematical technique for

the design of cryptosystems, namely chaos theory. This emergence gave birth to what

is today called chaotic cryptography, which is still at the experimental stage and which

could in the coming years be a significant support to already existing encryption systems.

A chaotic system can be implemented in two different ways. In the form of a computer
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CHAPTER 1. INTRODUCTION

program (C code for example) or in physical form (an electrical circuit). The problem with

the computer implementation is that there is what is called the phenomenon of dynamic

degradation. Because finite precision is used in a computer implementation, the program

may behave differently from the actual chaotic system. For this reason, it is preferable

to use a physical realization of the chaotic system based on electronic components.

In cryptography, there is an emitter that transmits the encrypted message and a receiver

that decrypts it. In chaotic cryptography, to perform these encryption and decryption

operations, we need to reproduce the same chaotic signal at the emitter and the receiver.

A first idea would be to design the same electrical circuit with the same parameters. The

problem with this idea is that it is impossible to reproduce with infinite precision the

same circuits, there will always be uncertainty and noise which will cause differences

between the parameters of the two chaotic circuits. And because of the strong dependence

on the initial conditions of chaotic systems, the slightest difference, however small it

may be, between the parameters of the two chaotic circuits will cause a large difference

between the chaotic signals created at the level of the emitter and the level of the receiver.

To overcome this, we use chaos synchronization.

Chaos synchronization consists of ensuring that a dynamical system called the slave

system reproduces with a certain precision the signals emitted by a chaotic circuit called

the master system. There are several chaos synchronization techniques. In my thesis, I

work on techniques based on the theory of non-linear observers.

An observer is a dynamical system whose role is to reproduce certain signals based

on partial information on the system which initially emitted these signals. The idea of

synchronization based on non-linear observers is to take as the slave system an observer

whose objective is to reproduce the signals emitted by a chaotic circuit.

1.2 Objectives of the thesis

The objectives of this thesis are as follows:

a. Provide techniques for improving chaotic synchronization methods based on the

theory of non-linear observers.

15



CHAPTER 1. INTRODUCTION

b. Design a method of improving chaotic systems to obtain chaotic signals more suited to

cryptography.

c. Provide a countermeasure based on chaos and non-linear observers against an attack

called acoustic cryptanalysis.

d. Present ideas of chaotic cryptographic systems.

e. Design modifications, based on chaos theory, of optimization problems on lattices

for uses in post-quantum cryptography.

1.3 Organisation of the thesis and contributions

Chapter 2 of this thesis is a state of the art. I start by presenting cryptography in general,

then chaos theory, its application in cryptography and the theory of non-linear observers

while highlighting the problem of chaos synchronization based on non-linear observers.

In chapter 3, I present two robust observers constructed in [12]. The first is an adaptive

unknown inputs observer and the second is an adaptive sliding mode unknown inputs

observer. I improve these observers by introducing techniques based on calculating the

integral of the estimates of the unknown inputs. These techniques make it possible to

reduce the estimation error of the unknown inputs. The problem is that they cause a de-

lay. This delay is imposed by the mathematical structure of the improvement presented.

These improvements can be generalized to all observers with unknown inputs as long as

the inputs are binary or piecewise continuous. I also build two encryption systems using

chaotic synchronized systems based on the improved versions of the observers, and I

show through these examples that the delay is not necessarily a problem. I also build

in this chapter a method allowing to improve the frequency characteristics of chaotic

systems. Indeed, classical chaotic systems such as the Lorenz system or the Rossler

system exhibit low-frequency characteristics, which generally makes it possible to break

encryption systems based on these chaotic systems using filters. I show in this chapter

that it is enough to noise in a controlled way the derivative of the state vector of a chaotic

system to improve its frequency characteristics. I use this technique to build a range of

modified Lorenz attractors whose frequency characteristics are better than those of the

original Lorenz system.

16



CHAPTER 1. INTRODUCTION

In chapter 4, I present a predictor based super twisting second-order sliding mode

observer built-in [18] for systems with a fixed and known delay in the output. I replace

the sign functions of this observer with fuzzy inference systems to eliminate the chatter-

ing effect caused by the discontinuities of the sign function. This technique has already

been used in articles such that [27, 28]. Then, I modify the problem by considering

systems with unknown input. I show that for a system in triangular form, the addition

of an unknown input can be considered as the addition of a fictitious state. It means that

the state estimate allows, among other things, an unknown input estimation. I end this

chapter by introducing the notion of higher-adaptive-order sliding mode observers by

considering the case of the super twisting observer where the power is no longer 1/2 but

a function that varies according to an optimization criterion.

In chapter 5, I construct a countermeasure against a cryptanalysis technique called

acoustic cryptanalysis [16]. This cryptanalysis technique exploits the sound emitted by

RSA decryption operation to reconstitute the secret key. My countermeasure consists of

masking the sound emitted by RSA decryption by using a chaotic signal. The chaotic sys-

tem that I use is one of the Lorenz attractors that I obtained with the method presented

in chapter 3. To prevent a spy from deleting the chaotic signal used for masking using

chaos synchronization techniques, I cascade the chaotic system with an ANFIS (Adaptive

Neuro-Fuzzy Inference System) which is trained to reproduce white noise given a chaotic

input.

In chapter 6, I propose two modifications of the SVP (Shortest vector problem) on lattices.

SVP is a problem on lattices deemed difficult and resistant to quantum technology. My

objective is to propose two new versions of the SVP whose security is unconditional, in

the sense that it does not depend on the mathematical difficulty of solving this problem

as is the case of the classical SVP. The first modification is to add a constraint that

depends on the trajectories of a given chaotic system. The second modification consists of

reducing the space of solutions of the SVP by making an intersection with the lattice

and a given chaotic attractor. In either case, the initial parameters and conditions of

the chaotic system used are kept secret, making the resolution of these problems by

an attacker impossible as long as the initial parameters and conditions of the chaotic

system are kept secret.
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2
STATE OF THE ART

2.1 Introduction

The goal of this chapter is to present an overview of research in chaotic cryptography. I

start with an overview of cryptography. Then, I recall the basics of chaos theory and how

to use chaotic systems for cryptography, with an introduction to the problem of chaos

synchronization. Then, I present the theory of non-linear observers, which is used in

this thesis for the synchronization of chaotic systems. I start with an explanation of the

observability problem. Then, I introduce some of the classical observers: Kalman filter,

Luenberger observer, Extended Kalman filter, Thau’s observer, and High gain observer. I

finish by introducing the more advanced observers: Adaptive observers, Unknown inputs

observers, Sliding mode observers, Super twisting observers, and ANFIS (Adaptive

Neuro-Fuzzy Inference Systems) observers.

2.2 Cryptography.

Cryptography is the science behind the design of secure communication systems. We find

it for example in the military, political, industrial, and medical fields where there is a

transmission of private data. The main goal of cryptography is to transform the data

into a code that is not understandable by an eventual attacker. For example, in World

War 2, the Nazis used a machine called ENIGMA for secure military communications.

The problem with ENIGMA is that it had some weaknesses (for example, a letter

19



CHAPTER 2. STATE OF THE ART

Figure 2.1: The structure of a cryptosystem

can be anything in the encrypted version except itself), which allowed the allies to

break it. According to specialists, breaking ENIGMA shortened the war by at least 2

years. Cryptography is, therefore, an area of capital importance that it is essential to

continuously develop.

2.2.1 Cryptosystems

The fundamental element in cryptography is the cryptosystem whose structure is shown

in figure 2.1. Alice wants to send a message (the plaintext) to Bob but does not want

this message to be read by a spy who will be called Oscar. To send her message, Alice

uses an emitter which transforms the plaintext into a code (a ciphertext) and Bob uses

a receiver to decode the ciphertext and read the message. To operate the emitter and

receiver, Alice and Bob must use a key. The receiver’s key is kept secret, in the sense

that only Bob knows it. The emitter’s key can be secret, and in this case, it is generally

the same as Bob’s and we talk about symmetric cryptography, or public, and in this case,

we talk about asymmetric cryptography or public-key cryptography.

I will describe now a historical cryptosystem: The Shift Cipher, whose principle is

shown in figure 2.2. The Shift Cipher is the cryptosystem that was used in ancient

Rome by Caesar when he wanted to communicate with his generals. First, each letter is

20
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Figure 2.2: The Shift Cipher

associated with a number, and the plaintext is thus translated into a series of numbers.

Then, we choose a key between 0 and 25, which must only be known by the two sides of

the communication system. After that, each number of the plaintext is added modulo 26

to the key. The sequence obtained is translated into letters, which give us the ciphertext

that can be sent. To decrypt the code, we transform the ciphertext into a series of num-

bers, and we subtract modulo 26 from each number the key, then we translate the result

into a series of letters. The result is the plaintext. In the Shift Cipher, the emitter and

receiver have the same key and it must be kept secret otherwise anyone will be able to

easily understand the ciphertext.

I will introduce now cryptanalysis, the science that studies the security of cryptosystems.

The fundamental idea when we design a cryptosystem is The Kerckhoffs principle. Ac-

cording to this principle, to have a secure communication system, it is necessary when we

design it to assume that the attacker will know the encryption and decryption algorithm,

except the secret key, and that he will have access to the emitter and the receiver. In

other words, we should minimize the number of secret components in a cryptosystem,

and we must not suppose that the architecture of the cryptosystem is secret1.

To talk about the security of a cryptosystem, we must study the key space, plaintext

space and ciphertext space. These terms are explained in the following definition:

1In general it is easy to find it using techniques like reverse engineering.
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Definition 1 [25]: Cryptosystem
A cryptosystem is a five-tuple of sets (P ,C ,K ,E ,D) such that :
1- P is a finite set of possible plaintexts.
2- C is a finite set of possible ciphertexts.
3- K , the keyspace, is a finite set of possible keys.
4- For each K ∈K , there is an encryption rule eK ∈ E and a corresponding decryption
rule dK ∈D. Each ek : P →C and dK : C →P are functions such that dK (eK (x))= x for
every plaintext element x ∈P .

Let us now analyze the security of the shift cipher. The first method to break the

shift cipher is the Brute force attack. We test several keys until we find the right one. In

practice, in secure cryptosystems the keyspace is so large that it is almost impossible to

find the right key in this way. However, in the case of the shift cipher, there are only 26

keys to test, which makes the brute force attack relatively effective.

The second method of cryptanalysis is frequency analysis. A frequency diagram of the

appearance of letters in English is shown in figure 2.3. It can be used, with a diagram of

the appearance of terms in English, to compare the frequency of appearance of letters

and terms in the ciphertext with the frequency of appearance of letters and terms in

English (or in general in the language used for communication). For example, the letter

most used in English is E, we can then assume that the letter that is most used in

the ciphertext corresponds to the encrypted version of E (as long as the ciphertext is

sufficiently large).

Another useful method for basic cryptosystems such as the shift cipher is to choose a

plaintext, get the associated ciphertext, change a single letter of the plaintext, and see

how the ciphertext varies. For the shift cipher, by changing a single letter of the plaintext

it will change a single letter of the ciphertext, we can therefore deduce that this letter

is the encrypted version of the letter that we changed in the plaintext. This method,

just as the frequency analysis attack, uses the weaknesses of the internal structure of

the algorithm. It is classified as a mathematical analysis attack. There are many other

attacks for different cryptosystems. We can use for example implementation attacks,

which are techniques using the weaknesses of the hardware and software that are used.

Another category of attacks is social engineering where we use the vulnerabilities of the

human mind.
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Figure 2.3: The frequency of appearance of letters in English

2.2.2 Symmetric cryptography

There are two types of symmetric cryptosystems. First, we have the Stream ciphers. The

structure of a stream cipher is shown in figure 2.4. Stream ciphers are cryptosystems

where we encrypt one bit each time and send it to the receiver for decryption. This

operation is realized using XOR gates and bitstream generators. We XOR each bit of

the plaintext with the bit generated by the bitstream generator, and then we do the

same thing at the receiver side to recover the plaintext bit. The secret key is the input of

the bitstream generator, and because we must have the same bitstream added at the

receiver and the emitter side, we need the same key on the two sides, it is the reason

why this cryptosystem is symmetric.

The bitstream generator needs to be random (TRNG: True Random Number Generator),

or at least pseudo-random (PRNG: Pseudo-Random Number Generator). It also must

have a fundamental property that ensures the security of this algorithm: unpredictability,

which means that even if we know of any number of bits generated by the bitstream

generator, it is computationally infeasible to compute the next (or preceding) bits from

this information. These properties are here to make it impossible to guess the bits and

decrypt the message without the key. An unpredictable PRNG is also called a CSPRNG
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Figure 2.4: The structure of a stream cipher

(Cryptographically Secure Pseudo-Random Number Generator) [25]. The security of

a stream cipher will depend mostly on the statistical properties of the CSPRNG used.

We should ensure that the bitstream generator has good randomness properties and

that it is unpredictable. There are mathematical tests of randomness like the Diehard

tests and the chi-square test. There are also software like TestU01 that are dedicated to

randomness tests. For unpredictability, we must ensure that the relationship between

the bits generated by the bitstream generator is sufficiently complex.

The PRNG can be implemented into a CPU or it can be realized uniquely with hardware

components. An example of a PRNG that is implemented in hardware is the Linear

Feedback Shift Register (LFSR), whose structure is shown in figure 2.5.

In a LFSR, there are flip-flops, XOR gates, and multiplication symbols. The multi-

plication symbols are here to act as switches. If pi = 0 then the switch is open, and if

pi = 1 the switch is closed. The bitstream is the sequence of outputs of the last flip-flop
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Figure 2.5: The structure of a LFSR

(s0). The mathematical description of the input of the leftmost flip-flop is given by 2.1.

sm+1 ≡ sm pm + ...+ s1 p1 + s0 p0 mod 2 (2.1)

The maximum sequence length generated by this type of PRNG is 2m+1 −1, where m+1

is the number of flip-flops. The maximum length is however generated only by some

combinations of pis. For example, for m+1= 4, p3 = p2 = 0 and p1 = p0 = 1, the PRNG

has a sequence of maximum length, namely 24 −1= 15.

The vector (p0, p1, ..., pm−1, pm) is the secret key. It is common to represent it as a

polynomial with coefficients in {0,1} as in 2.2.

P(x)= xm+1 + pmxm + pm−1xm−1 + ...+ p1x+ p0 (2.2)

We can show that maximum-length PRNGs have primitive polynomials which can easily

be computed. Thus, it is easy to find the maximum-length PRNGs.

It is clear that if we have m+ 1 different equations of the form 2.1, it will be easy

to compute the secret key (because it will become a system of m+1 linear equations

with m+1 unknowns). It is one of the weaknesses of LFSR-based stream ciphers. The

bitstream generator is not unpredictable. One way of overcoming this is to make the pis

random (generating continuously random keys).
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The other symmetric cryptosystems used in practice are Block ciphers. Block ciphers are

the most secure and popular symmetric ciphers in cryptography. Unlike a stream cipher

where we proceed one bit at a time, with block ciphers we encrypt a group of bits at once.

The most popular block ciphers are AES (Advanced Encryption Standard), DES (Data

Encryption Standard) and their modifications (3DES, ...). For more details about block

ciphers, you can refer to [25]. I will not use block ciphers in this thesis. I have mentioned

them in this chapter only to introduce the concepts of confusion and diffusion which are

fundamental in cryptography [30]:

- Confusion : It is an encryption operation where the relation between the key and

the ciphertext is obscured.

- Diffusion : It is also known as the avalanche effect. If we change one bit of plaintext,

it must affect many ciphertext bits. It is done to mask the statistical properties of the

plaintext.

2.2.3 Public key cryptography

Public key cryptography is a branch of cryptography where the emitter’s key is public

and the receiver’s key is private. We call such cryptosystems asymmetric cryptosystems

or public-key cryptosystems. Their main interest is that anyone can send a message,

but only one person can decrypt it. It is for example used during banking transactions

where anyone can send information to a bank but only the bank is able to read this

information. I will not detail how public-key encryption algorithms work because they

are not the ones that will be useful to us in this thesis. For details about the public key

cryptosystems, you can refer to [25]. However, I will explain what the security of the

most popular public-key algorithms is based on.

The most popular and possibly the most secure public-key cryptosystem is RSA (Rivest-

Shamir-Adleman). The security of RSA is essentially based on the problem of factorization

of integers which is stated as follows: Given an integer n, find the two primes p and q
such that n = pq. It is considered to be a difficult problem, in the sense that no current

computer could solve this problem in a suitable time. For current computers, the best

published algorithm for integer factorization is GNFS (general number field sieve) that

runs on a b-bit number n in time: exp(((64/9)1/3 + o(1))(ln n)1/3(ln ln n)2/3).

Another public-key algorithm is the Diffie-Hellman key exchange. It is a public key
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algorithm that allows Alice and Bob to create the same secret key that they can use in

a symmetric encryption algorithm. The security of the Diffie-Hellman key exchange is

based on the discrete logarithm problem which is stated as follows: Given an integer

t and a generator g of Z/mZ, compute l = loggt. The discrete logarithm problem is

considered, like the factorization of integers, to be a difficult problem.

With the advent of quantum computers, public-key cryptosystems are in danger. As

an example, Shor [31] showed that using a quantum computer, it is possible to solve the

factorization problem and the discrete logarithm problem in a reasonable time. This gave

rise to quantum cryptography, which is based on quantum mechanics, and post-quantum

cryptography, which is based on mathematical methods resistant to quantum technology,

such as certain optimization problems on lattices. In addition to the problems associated

with public-key encryption algorithms, there are cryptanalysis methods that exploit

weaknesses in the Hardware. For example, for RSA, we find in [16] an acoustic cryptanal-

ysis technique that exploits the sound emitted by RSA decryption in order to reconstruct

the secret key. One of the objectives of this thesis is to provide a countermeasure to

acoustic cryptanalysis. There are also cryptanalysis techniques that exploit the energy

consumed by certain operations of RSA algorithm, such as the rapid exponentiation

algorithm, to break the code. These techniques are called Power Analysis techniques, or

Side Channel attacks.

2.3 Chaotic cryptography

In this section, I present basic notions on chaos theory and its use in cryptography while

highlighting the problem of chaos synchronization. I start by qualitatively defining what

a chaotic system is and what it means to synchronize chaos, then I explain how chaos is

used in cryptography in current research.

2.3.1 Chaotic Systems.

Chaos theory is the science that studies deterministic dynamical systems having a high

sensitivity to initial conditions. A dynamical system ẋ = f (x) has high sensitivity to initial

conditions if a tiny change in the initial conditions causes a large change in the trajectory

of the solution. The sensitivity to initial conditions of chaotic systems is known to the

public as the butterfly effect, in reference to the famous conference by meteorologist
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(a) The Lorenz strange attractor (b) The sensitivity to initial conditions

Figure 2.6: The Lorenz system

Edward Lorenz titled: "Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set

off a Tornado in Texas?" [24]. The objective of this title is to support the fact that in order

to know the state of a chaotic system such as the atmosphere, all the details on the initial

conditions, however small they may be, are essential. Obviously, a butterfly wing flap

generally cannot cause a tornado. The fact remains that its effect is immense, as is the

effect of any initial condition on a chaotic system. The only reason why a butterfly wing

flap generally cannot cause a tornado is that there is an infinity of other effects which

help to "regulate" the atmosphere. Lorenz’s simplified model of the atmosphere is given

by 2.3. 
ẋ1 =σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 −βx3

(2.3)

Lorenz used : σ= 10, β= 8/3 and ρ = 28. But for nearby values of these constants, the

system will still remain chaotic. For close initial conditions, the trajectories of the system

remain close at the beginning and then become different as it is shown in figure 2.6b.

During the simulation, we can see that a certain shape appears (figure 2.6a). This shape

is called the Lorenz strange attractor, it is the set of values that can take the vector

[x1, x2, x3]T . The idea behind this strange attractor is that even if the trajectories are

very different for different initial conditions, they still remain in a certain bounded set

which is the attractor.

The trajectory of a chaotic system for a given initial condition is called an orbit. For

continuous time chaotic systems like the Lorenz system, the orbit is a continuous curve.

But there are also discrete-time chaotic systems of the form xn+1 = f (xn) for which the

orbit is a set of discrete points. As an example of such systems: The logistic map. It is an
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(a) The Bifurcation diagram of the logistic map (b) The fractal structure of 2.7a

Figure 2.7: The bifurcation diagram

idealized model of population growth given by 2.4.

xn+1 = rxn(1− xn) (2.4)

The parameter that tells us if the system is chaotic or not is the value r. For example, if

we take r = 2, the system will converge to the value 0.5 for any initial condition, so the

system is not chaotic. For r = 3.1, the system oscillates between two values: 0.76 and 0.56,

it is called a periodic orbit. For r = 3.57, we have no longer oscillations of finite periods

(because we have oscillations between an infinite number of values). It is the beginning

of Chaos. We can do a graph of the different values that can take the system for a large

time with respect to r. This graph is called a bifurcation diagram and is shown in figure

2.7a. A bifurcation is a change in the period length of the orbits. We can still see some

places beyond r = 3.57 where there is no chaos, if we zoom in as in figure 2.7b, we can

remark a fractal structure.

For the purpose of my work, I will need sometimes to add an external input m without

losing the chaotic behavior of the chaotic system. A system with external input is a

system of the form: ẋ = f (x,m) where m is the external input. One of them is the modified

Rossler’s chaotic system which is presented in [12] and is given by 2.5.
ẋ1 =−(x2 + x3)

ẋ2 = x1 +ax2

ẋ3 = b+ x3(x1 − c)+mx3

(2.5)

For a = 0.398, b = 2 and c = 4, this system is chaotic. The attractor of this system has the

form shown in figure 2.8.
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Figure 2.8: The Rossler attractor

2.3.2 The concept of chaos synchronization

Chaotic systems can be implemented in hardware (analog form) or in software (digital

form). For the digital case, there is a phenomenon called dynamical degradation, which

means that the chaotic behavior of the system will become non-ideal. In this work, I

focus exclusively on the analog form of chaotic systems. These systems are designed

as electrical circuits. There is however a very important problem: the synchronization

of chaotic systems. In chaotic cryptography, we need two versions of the same chaotic

signal, one at the emitter and the other at the receiver. We can try to design the same

chaotic circuit at the emitter and at the receiver but the parameters will of course never

be exactly the same in the two sides of the communication system because of noise and

uncertainties. The problem is that chaotic systems are very sensitive to initial conditions,

so it is practically impossible to generate the same chaotic signal by this technique.

Chaos synchronization is the science that studies how to generate the same chaotic

signal as a given chaotic circuit. It really started in 1990 with the works of Pecora and

Caroll [26]. The idea is that there is a master chaotic system that will send a signal to

another dynamical system (called the slave system) for synchronization so that the slave

system generates the chaotic trajectory of the master chaotic system as it is shown in

figure 2.9. There are a lot of chaos synchronization techniques. We have for example

the chaos synchronization based on state-feedback control, the chaos synchronization

based on Backstepping, and the chaos synchronization based on non-linear observers,

which is the subject of this thesis. The idea behind the chaos synchronization based on

non-linear observers is that at the slave system is an observer that will try to reconstruct

the master system’s signals.
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Figure 2.9: The principle of chaos synchronization

Figure 2.10: Chaotic masking

2.3.3 The design of chaotic cryptosystems

I will present now two designs that are widely used in the literature [8, 17, 21, 36], and

which will also be used in this thesis. These designs are chaotic masking and chaotic

modulation.

- Chaotic masking: The structure of chaotic masking is shown in figure 2.10. The

idea is to add to the plaintext the chaotic signal, and then subtract it at the receiver side.

It can be done in analog form by adding the chaotic signal to the binary signal, or in

the digital form by first converting the chaotic signal into a sequence of bits and then

XORing the result with the digital plaintext.

- Chaotic modulation: The structure of chaotic modulation is shown in figure 2.11. The

idea is to use the plaintext as an external input to the emitter’s chaotic system. Then, at

the receiver we reconstruct this external input.
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Figure 2.11: Chaotic modulation

2.4 Nonlinear Observers.

As we have seen before, we need to synchronize chaos. In this thesis, this synchronization

is achieved using non-linear observers.

The goal of an observer is in general to find the state x (or part of it) of a dynami-

cal system using some knowledge about the output and the input of the system. A

dynamical system is described by the general state equation 2.6.ẋ = f (x,m)

y= h(x)
(2.6)

where x ∈Rn, y ∈Rp and m ∈Rq. The problem of a state observer is to determine x (or

part of it) knowing m and y. Sometimes m is not known and the goal of the observer is

to estimate x and m using y. Before we can design a state observer, we need to know if it

is possible to observe the state vector x. This gives rise to the notion of observability of

dynamical systems. The question is the following: Given a dynamical system represented

by the functions f and h, and knowing y and u, can we reconstruct x ?.

2.4.1 The observability problem

The notion of observability depends on the output vector y, the input vector m and

the structure of the dynamical system (the functions f and h). Let us first analyze the

observability with respect to y.

For a given input signal m, let us consider the function 2.7.

Φm : I →Γ (2.7)

x0 7→Φm(x0)= h({xm(t, x0)})
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where I ⊂ Rn is the set of all initial conditions of the dynamical system, Γ is the set of

all the curves on Rp and {xm(t, x0)} is a solution for the input m and given the initial

condition x0
2. This function allows us to define the observability given a certain input

signal m. All the following definitions concerning observability are reformulations I did

of the definitions of [5] using the function Φm.

Definition 2: Observability
The system 2.6, under the application of an input signal m, is said to be observable if Φm

is injective. In other words, there is no ambiguity in the state trajectory given a certain
output and a certain input.

Definition 3: Weak observability
The system 2.6, under the application of an input signal m, is said to be weakly observable
if for every x0 ∈ I there is a neighborhood V of x0 such that the restriction of Φm to V is
injective.

Sometimes, observability will appear only after a certain period of time. It is the case for

example of two state curves that have the same output during an interval of time [t0, t f ]

and whose corresponding outputs are not necessarily equal after t f . This gives rise to

the notion of local weak observability:

Definition 4: Local weak observability
The system 2.6, under the application of an input signal m, is said to be locally weakly
observable if for every x0 ∈ I there is a neighborhood V of x0 such that for any neighbor-
hood W of x0 contained in V , the restriction of Φm to W is injective when considering time
intervals for which trajectories remain in V .

In practice, we have a formula to check if the system is observable or not. This for-

mula is known as the observability rank condition.

Definition 5 [5]: The observability rank condition
The system 2.6, under the application of an input signal m, is said to satisfy the observ-

2The function Φm is well defined iff the Cauchy-Lipschitz theorem holds.
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ability rank condition if 2.8 holds.

rank{[
∂h(x)
∂x

∂L f h(x)
∂x

∂L2
f h(x)

∂x
...

∂Ln−1
f h(x)

∂x
]T }= n (2.8)

where 2.9,
Li

f h(x)= L f (Li−1
f h(x)) (2.9)

and L f h(x) is the Lie derivative of h along f defined by 2.10.

L f h(x)= ∂h(x)
∂x

f (x,m) (2.10)

For linear time invariant (LTI) systems ( f (x,m)= Ax+Bm and h(x)= Cx), we have 2.11.

h(x)= Cx ⇒ ∂h(x)
∂x

= C ⇒ ∂L f h(x)
∂x

= CA ⇒ ...⇒
∂Ln−1

f h(x)

∂x
= CAn−1 (2.11)

which gives us the observability rank condition for LTI systems 2.12.

rank{[C CA CA2 ... CAn−1]T }= n (2.12)

The relation between observability and the observability rank condition is given by the

following theorem:

Theorem [5]:
If the system 2.6, under the application of an input signal m, satisfies the observability
rank condition, then it is locally weakly observable. Conversely, if the system 2.6 is locally
weakly observable, then it satisfies the observability rank condition in an open dense
subset of Rn.

We will now focus our attention on the observability with respect to the input vec-

tor m. For a certain input signal m, we can study the observability of the system with

respect to the output. This observability can of course be affected by the input, which

gives rise to the following definition:

Definition 6 [5]: Uniformly observable systems
A system is uniformly observable (UO) if it is observable for any input signal m. If the sys-
tem is (UO) only in an interval of time [0, t], we say that it is locally uniformly observable.

For a system that is (UO), the observability does not depend on the input.
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2.4.2 Classical observers

Once we know if the dynamical system is observable, we can design observers. I will

start with classical observers which are of two types: Linear observers and non-linear

observers. Then, I will describe the more advanced observers.

2.4.2.1 Linear Observers

• Kalman filter for stochastic LTI systems :

Let us consider the stochastic LTI system given by 2.13.ẋ = Ax+Bm+w

y= Cx+v
(2.13)

where w is the process noise and v is the measurement noise (these noises are assumed

to be Gaussian). If 2.13 is observable, then there exists an observer of the form 2.14.

˙̂x = Ax̂+Bm−L(Cx̂− y) (2.14)

where L = PMTR−1, such that P satisfies the Algebraic Riccati equation (ARE) given by

2.15.

AP +P AT +Q−PMTR−1MP = 0 (2.15)

where R and Q are the covariance matrices of v and w respectively.

• Luenberger observer for deterministic LTI systems:

Let us consider the deterministic LTI system given by 2.16.ẋ = Ax+Bm

y= Cx
(2.16)

If 2.16 is observable, then there exists an observer of the form 2.17.

˙̂x = Ax̂+Bm−L(Cx̂− y) (2.17)

where L is such that (A−LC) is stable.
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2.4.2.2 Non-linear Observers

• Extended Kalman filter:

In this method we linearize 2.6 in the neighborhood of our operating point, and then we

apply the Kalman filter by considering the non-linearities as noises.

• Thau’s observer:

Let us consider the system given by 2.18.ẋ = Ax+ g(t,m, y)+ f (x)

y= Cx
(2.18)

The Thau’s observer for 2.18 is given by 2.19.

˙̂x = Ax̂+ g(t,m, y)+ f (x̂)−L(Cx̂− y) (2.19)

This observer converges if 2.18 is observable, f is globally Lipschitz with a Lipschitz

constant γ and if L satisfies an equation of the form 2.20.

(A−LC)TP +P(A−LC)=−Q (2.20)

where P and Q are positive definite matrices that satisfy the inequality 2.21.

γ< λmin(Q)
2λmax(P)

(2.21)

• High gain observer (Ragahvan’s method):

The High gain observer is for systems of the form 2.18. Let us assume that the sys-

tem is observable and that f is globally Lipschitz with a Lipschitz constant γ. The high

gain observer has the same form as Thau’s observer except that the determination of L
is different. To determine L, we use the Ragahvan’s method:

1- Set ε> 0.

2- Solve the Riccati equation for P given by 2.22.

AP +P AT +P(γ2I − CTC
ε

)P + I(ε+1)= 0 (2.22)

3- Check if P is symmetric and positive definite

(i) If yes, set L = PCT

2ε .

(ii) If no, set ε= ε
2 and repeat.
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2.4.3 Sliding mode observers

Sliding mode observers are very efficient for linear systems with unknown uncertainties.

These systems are given by 2.23.ẋ = Ax+Bm+D f (x,m, t)

y= Cx
(2.23)

where D is a matrix of the appropriate dimension and f is the unknown uncertainty.

Let us assume that f is bounded by some scalar ρ, i.e || f (x,m, t)|| ≤ ρ, ∀x ∈ Rn,∀m ∈
Rq,∀t ≥ 0. There are three types of sliding mode observers which are widely used in

practice: The Walcott-Zak sliding mode observer, the Edwards-Spurgeon sliding mode

observer and the Higher order sliding mode observers. I will present now each one of

them.

2.4.3.1 The Walcott-Zak sliding mode observer

For the Walcott-Zak sliding mode observer [34], we add a structural condition on the

unknown uncertainty. Namely, we assume that there are two positive definite matrices

P and Q and two matrices of appropriate dimensions L and F such that 2.24.(A−LC)TP +P(A−LC)=−Q

PD = CTFT
(2.24)

We also assume that the pair (A,C) is observable. The Walcott-Zak observer is given by

2.25.
˙̂x = Ax̂+Bm−L(Cx̂− y)+µ (2.25)

where µ is a discontinuous function defined by 2.26.

µ=

−ρP−1CTFTFCe
||FCe|| , i f FCe 6= 0

0, i f FCe = 0
(2.26)

For details about the convergence of this observer, you can refer to [33]. The principal

disadvantage of this technique is that the discontinuity of µ gives rise to high-frequency

oscillations. The apparition of these high-frequency oscillations is called the chattering

effect.
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2.4.3.2 The Edwards-Spurgeon sliding mode observer

For Edwards-Spurgeon sliding mode observer [13], we define the sliding surface S :=
{e ∈Rn : Ce = 0} where e = x− x̂. Let us assume that rank(CD) = rank(D) and that the

invariant zeroes of (A,D,C) are in C−. It was proved in [13] that under these assumptions

there exist a non-singular change of coordinates x 7→ Tx that transforms 2.23 into 2.27.
ẋ1 = A11x1 + A12x2 +B1m

ẋ2 = A21x1 + A22x2 +B2m+D2 f (x,m, t)

y= x2

(2.27)

where x1 ∈Rn−p, x2 ∈Rp and A11 is Hurwitz.

The Edwards-Spurgeon sliding mode observer is given by 2.28.

˙̂x1 = A11 x̂1 + A12 x̂2 +B1m

˙̂x2 = A21 x̂1 + A22 x̂2 +B2m− (A22 − As
22)e y +ν

ŷ= x̂2

(2.28)

where A22 is Hurwitz, e y = y− ŷ and ν is a discontinuous function given by 2.29.

ν=


−ρ||D2||

P2e y

||P2e y||
, i f e y 6= 0

0, i f e y = 0
(2.29)

where P2 is a Lyapunov matrix for As
22. The state estimate is given by 2.30.

x̂ = T−1[x̂1, x̂2]T (2.30)

One problem with Edwards-Spurgeon sliding mode observer is that the hypotheses are

not always verified.

2.4.3.3 Higher-order sliding mode observers

Higher-order sliding mode observers [3, 15, 22, 23] are for dynamical system in the

triangular form 2.31. ẋ = Anx+HnVn(x,w)

y= Cnx
(2.31)
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where w ∈R is an unknown input and

An =


0 1 ... 0

0 0 1 ...

... ... ... 1

0 ... ... 0

 , Hn =
[
0 ... 1

]T
, Cn =

[
1 0 ... 0

]

Let us assume that the state is uniformly bounded, i.e ∃(d1, ...,dn) ∈Rn, s.t ∀t > 0,∀i ∈
{1,2, ...,n} : |xi(t)| < di. Let us also assume that w and its derivative are bounded.

There are several types of Higher-order sliding mode observers. For example, the Higher-

order sliding mode observer presented in [3], which has the form 2.32 is a second order

sliding mode observer.

˙̂x1 = z1 +λ1
√
|x1 − x̂1| sign(x1 − x̂1)

ż1 =α1sign(x1 − x̂1)

˙̂x2 = z2 +λ2
√
|z1 − x̂2| sign(z1 − x̂2)

ż2 =α2sign(z1 − x̂2)

...

˙̂xn−1 = zn−1 +λn−1
√

|zn−2 − x̂n−1| sign(zn−2 − x̂n−1)

żn−1 =αn−1sign(zn−2 − x̂n−1)

˙̂xn = zn +λn
√
|zn−1 − x̂n| sign(zn−1 − x̂n)

żn =αnsign(zn−1 − x̂n)

(2.32)

where λi and αi are the observer gains. They are positive scalars that we need to

define. There are other higher order sliding mode observers like third order sliding

mode observers [11] and fourth order sliding mode observers [29]. The main advantage

of Higher order sliding mode observers over classical sliding mode observers is that

the chattering effect is reduced. It does not mean that there is no chattering effect in

Higher order sliding mode observers, it is just reduced. If we want to eliminate it almost

completely we can replace the discontinuous functions as the sign function with fuzzy

inference systems [27, 28].

2.4.4 Unknown inputs observers

The goal of an unknown inputs observer is to estimate the state of a dynamical system

without having knowledge about part of (or all) the input. There are a lot of techniques of
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design of unknown inputs observers. One of them is to separate the state vector into two

parts: one part which is influenced by the unknown inputs and the other which is not.

It is possible to design with this method a reduced order observer [35]. Other methods

are called algebraic methods of design and they are based on the resolution of matrix

linear equations [10]. In the algebraic methods of design, we consider linear systems of

the form 2.33. ẋ = Ax+Bu+Fw

y= Cx
(2.33)

where u is the known input vector and w the unknown input vector. Let us assume

that F is full rank and that (A,C) is observable. The full order unknown input observer

presented in [6, 10] is given by 2.34.

ż = Nz+Gu+Ly

x̂ = z−Ey
(2.34)

where N, G, L and E are matrices that we need to determine such that the observer

converges. The dynamics of the observer error e = x− x̂ is given by 2.35.

ė = Ne+ (PB−G)u+ (P A−NP −LC)x (2.35)

where P = I +EC. The error e converges asymptotically to zero if and only if N is stable,

P = I +EC, LC = P A−NP, G = PB and PF = 0. It is a set of matrix linear equations.

The sufficient and necessary conditions for the existence of a solutions to these equations

are given by 2.36.

(i) rank(CF)= rank(F)

(ii) rank

[
sP −P A

C

]
= n, ∀s ∈C, Re(s)≥ 0

(2.36)

In [9], this result is extended to the case where the unknown inputs affect the state and

affect also the output as in 2.37. ẋ = Ax+Bu+F1w

y= Cx+F2w
(2.37)

Let us assume that 2.37 satisfies a structural constraint of the form 2.38.

rank

[
CF1 F2

F2 0

]
= rank(G)+ rank

[
F1

F2

]

rank

[
sI − A −F1

C F2

]
= n+ rank

[
F1

F2

]
, ∀s ∈C, Re(s)≥ 0

(2.38)
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The unknown inputs observer presented in [9] for this system is given by 2.39.

ż = Nz+Hu+ J y

x̂ = z−Ey
(2.39)

The observer error converges asymptotically to zero if and only if N is stable, P = I +EC,

P A−NP − JC = 0, PF1 −NEC− JC = 0, EF2 = 0 and H = PB.

The last category of unknown inputs systems that we consider are the singular sys-

tems with unknown inputs given by 2.40.Eẋ = Ax+Bu+Fw

y= Cx
(2.40)

The idea is to consider an augmented state vector x̄ =
[

x
w

]
and the corresponding

augmented system 2.41. Ē ˙̄x = Āx̄+ B̄u

y= C̄x̄
(2.41)

where

Ē =
[

E 0

0 I

]
, Ā =

[
A N
0 0

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
An unknown inputs observer for 2.41 is given in [20, 32] by 2.42.

ż = Rz+Hu+Ly

x̂ = Mz−N y
(2.42)

If 2.41 satisfies the structural conditions 2.43.

rank

[
sĒ− Ā

C̄

]
= n, ∀s ∈C

rank

[
sI −R

M

]
= n, ∀s ∈C

(2.43)

then there exists a matrix K of appropriate dimension such that K x− x̂ −→ 0 as t −→+∞,

∀x0, z0 if and only if there exists a matrix P such that R is stable, P Ā−RPĒ−LC̄ = 0,

K = MPĒ+NC̄ and H = PB̄.
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2.4.5 Adaptive observers

The goal of adaptive observers is to estimate the state vector and parameters of the

system. Let us consider the class of systems with unknown parameters given by 2.44.ẋ = f (x,u, t)+ g(x,u, t)θ

y= h(x)
(2.44)

where θ ∈ Rq is the unknown parameters vector. An adaptive observer for 2.44 which

had been proposed in [4]. It is given by 2.45.

˙̂x = f (y, ẑu, t)+ g(y, ẑ,u, t)θ̂+k(h(x̂− y, t)

x̂ = [ ŷ, ẑ]T
(2.45)

where θ̂ is updated using the adaptation law 2.46.

˙̂θ =−ΛφT( ŷ− y, y, ẑ,u, t) (2.46)

where Λ = ΛT > 0. To ensure the convergence of θ̂, the function g must satisfy the

persistent excitation condition [4]: ∃T,k1,k2 > 0 s.t ∀t ≥ 0 we have 2.47.

k1Iq ≥
∫ t+T

t
g(y(τ), ẑ(τ),u(τ),τ)gT(y(τ), ẑ(τ),u(τ),τ)dτ≥ k2Iq (2.47)

The adaptive observer 2.45 for the system 2.44, with θ̇ = 0, converges asymptotically if

there exists a decreasing positive definite function V (t, e), with e = x̂− x = [ ŷ− y, ẑ− z]T =
[e y, ez]T , of class C 1, with |(∂V

∂e )(t, e)| a decreasing function, and a continuous function

k(e y, t) bounded with respect to t with k(0, t)= 0, such that ∀u, ∀e, ∀y, ∀σ, ∀α> 0, ∀t ≥ 0,

we have 2.48.
(i) V̇ + ∂V

∂e
[ f (y,σ,u, t)− f (y,σ− ez,u, t)+

(g(y,σ,u, t)− g(y,σ− ez,u, t))θ+k(e y, t)]≤−α|e|2

(ii)
∂V
∂e

g(y,σ,u, t)=φ(e y, y,σ,u, t)

(2.48)

and g is globally bounded and f , g are globally Lipschitz with respect to z, uniformly

with respect to (u, y, t).
If in addition to this, the function g satisfies the persistant excitation condition and ġ is

bounded, then ||θ̂−θ|| −→ 0 as t −→+∞.

A special case of 2.44 is given by 2.49 [7].ẋ = Ax+ψ1(u, x)+Bψ2(u, x)θ

y= Cx
(2.49)
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where ψ1 and ψ2 are assumed to be globally Lipshitz with Lipshitz constants k1 and k2

respectively. We also assume that 2.49 is of minimum phase and that there exists two

positive definite matrices P, Q and a matrix L such that 2.50.

P(A−LC)+ (A−LC)TP =−Q

PB = CT

k1 +k2max(θ)|B| < λmin(Q)
2λmax(P)

(2.50)

It is possible to construct under these conditions an adaptive observer [7].

We can find generalization of adaptive observers for linear MIMO systems in [39].

Other generalizations have been done for non-linear uniformly observable SO (single

output) systems [37] and non-linear uniformly observable MIMO systems with non-linear

parametrization [14].

2.4.6 ANFIS (Adaptive Neuro-Fuzzy Inference Systems)
observers

An ANFIS observer is a neural network whose training optimizes a fuzzy system. For

state estimation using ANFIS, one idea would be to train an ANFIS to predict the states

given certain information as the output and the input of the dynamical system. We can

also use ANFIS to predict the unknown input of a dynamical system given its state vector

(or its output vector or both). In all these cases the principle is the same: we train a

neural network to predict some signal given a set of other signals. ANFIS can be used in

multiple ways. In this thesis, I will use ANFIS for the cryptanalysis of chaos modulation

cryptosystems, by estimating the unknown input using the information of the output,

and I will also use it to generate white noise given some chaotic signal as an input.

2.5 Conclusion

In this chapter, I started with a brief overview of classical cryptography. Then, I recalled

the basics of chaotic systems and how they could be used in cryptography. I also exposed

the problem of synchronization of chaotic systems which is of fundamental importance in

chaotic cryptography. The approach used in this thesis for chaos synchronization is the

use of non-linear observers. I have therefore recalled the theory of non-linear observers.

First, I introduced the notion of observability for a dynamical system, then I presented
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how to design observers. The observers that have been presented are first of all the

classical observers, whether linear or non-linear, then the more advanced observers:

Sliding mode observers, Unknown inputs observers, Adaptive observers, and ANFIS

observers.
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3
CHAOS SYNCHRONIZATION USING ADAPTIVE UNKNOWN

INPUTS OBSERVERS AND ADAPTIVE SLIDING MODE

UNKNOWN INPUTS OBSERVERS

3.1 Introduction

The objective of this chapter is to present two non-linear observers for the synchronization

of chaotic systems: an adaptive unknown inputs observer, constructed in [12] and an

adaptive sliding mode unknown inputs observer also constructed in [12]. I will try to

improve the performance of these observers and a comparison will be made between the

original observers and the improved versions of these. I will also build a chaotic stream

cipher and a chaotic cryptosystem for the transmission of audio signals within which the

chaotic synchronization is done using the observers presented in this chapter. I will also

present a technique to improve the frequency characteristics of chaotic systems so that

the chaotic cryptosystems become more robust to frequency attacks.

3.2 Adaptive unknown inputs observer

I present in this section an adaptive unknown inputs observer which has been constructed

in [12]. Its main interest is the robust estimation of unknown inputs of chaotic systems.

The inputs that I want to estimate in this chapter are binary signals. As we will see in

the following paragraphs, the estimation presents a convergence time at each change
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of bit, which can be problematic if the reconstructed binary signal is not an estimate of

a plaintext, but an estimate of a secret sequence used for the encryption of a plaintext.

I will try to remedy this by adding certain equations to the observer1. I will end this

section with the design of a stream cipher and I will present a technique to improve the

frequency characteristics of chaotic systems.

3.2.1 The original observer

The unknown inputs observer constructed in [12] is for systems of the form 3.1.ẋ = Ax+Bf (x)+Bg(x)m(t)+Fd(t)

y= Cx+Gd(t)
(3.1)

where f and g are C 1 functions, A,B,C,F and G are constant matrices of appropriate

dimensions, m(t) is the vector of unknown inputs and d(t) is a perturbation.

Let us assume that m(t) is a piecewise continuous function whose supremum is bounded

by some constant Km > 0 and whose derivative is almost always zero, and that d is

Lebesgue measurable. Let us also assume that the solutions x(t) of 3.1 are globally,

uniformly bounded, which is the case if 3.1 is a chaotic system.

The Adaptive unknown inputs observer for 3.1 is given by 3.2.ż = Nz+ J y+H f (x̂)+H g(x̂)m̂+ 1
2
β̂HM(T y−C1 x̂)

x̂ = z−Ey
(3.2)

with the adaptation laws 3.3.  ˙̂m = δg(x̂)T M(T y−C1 x̂)
˙̂β= γ|M(T y−C1 x̂)|2

(3.3)

1The change I made can be used for all estimators of binary unknown inputs. It is a secondary
estimation layer that makes it possible to pass from a continuous estimate, solution of differential
equations, to a truly binary signal without a convergence time at each bit change.
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where δ,γ ∈R+, and N,E, J,H,T, M,C1 are constant matrices of appropriate dimensions

that satisfy 3.4.
EG = 0

P A−NP − JC = 0

PF −NEG− JG = 0

H = PB

P = I +EC

TG = 0

TC = C1

(3.4)

and (N,H,C1) satisfies conditions of the form 3.5.

NTQ+QN < 0

HTQ = MC1
(3.5)

Under these assumptions, the estimated state x̂ converges asymptotically to the real

state x [12]. To ensure the parametric convergence of m̂ and β̂, the function g has to be

persistently exciting, i.e. ∃µ,T0 > 0 such that 3.6 holds.∫ t+T0

t
g(x(s))T HT H g(x(s)) ds ≥µ, ∀t ≥ 0 (3.6)

The design of the observer is as follows:

Step 1 : compute C1 using the formula 3.7.

C1 = (I −GG+)C (3.7)

Step 2 : compute T using the formulas 3.8 and 3.9.

X = R2R+
1 −Z(I −R1R+

1 ) (3.8)

X = T, R1 = [C G], R2 = [C1 0] (3.9)

Step 3 : if p = n, choose E = T. Else, if p < n, choose E = [T 0]T .

Step 4 : compute H and P using the formulas 3.10 and 3.11.

H = PB (3.10)

P = I +EC (3.11)
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Step 5 : compute A1 using the formula 3.12.

A1 = P A−PFG+C (3.12)

Step 6 : find the matrices M,L and Q by solving the convex optimization problem 3.13,

3.13, 3.14, 3.15.

Min ρ,

Q > 0 (3.13)

QA1 + AT
1 Q+WC1 +CT

1 WT < 0 (3.14)[
ρI HTQ−MC1

QH−CT
1 MT ρI

]
≤ 0 (3.15)

L =−Q−1W (3.16)

Step 7 : compute K and N using the formulas 3.17 and 3.18.

K =−PFG+−L(I −GG+) (3.17)

N = A1 −LC1 (3.18)

Step 8 : compute J using the formula 3.19.

J =−NE−K (3.19)

3.2.2 Example : The perturbed Rossler system with external
input

One example of a system of the form 3.1 is the perturbed Rossler chaotic system with

external input 3.20 [12]. 

ẋ1 =−(x2 + x3)+d

ẋ2 = x1 +ax2 +d

ẋ3 = b+ x3(x1 − c)+mx3 +d

y1 = x1 +2d

y2 = x3 +d

(3.20)

or in the matrix form 3.21.

ẋ =


0 −1 −1

1 a 0

0 0 −c

x+


0

0

1

 (b+ x1x3)+


0

0

1

x3m(t)+


1

1

1

d(t)

y=
[

1 0 0

0 0 1

]
x+

[
2

1

]
d(t)

(3.21)
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The matrices of the observer are given by [12]:

T =
[

0.2 −0.4

−0.4 0.8

]
, E =


0.2 −0.4

−0.4 0.8

0 0

 , H =


−0.4

0.8

1

 , P =


1.2 0 −0.4

−0.4 1 0.8

0 0 1

 ,

A1 =


−0.32 −1.2 0.24

0.44 0.798 −3.08

−0.4 0 −4.2

 , C1 =
[

0.2 0 −0.4

−0.4 0 0.8

]
, Q =


5.1283 4.9395 −2.6505

4.9395 6.5315 −3.2496

−2.6505 −3.2496 3.0395

 ,

L =


19.9972 −39.9943

−40.0010 80.0020

−50.0030 100.0059

 , MT =
[
−0.75

1.5

]
, K =


−20.3172 39.8343

39.441 −80.282

49.603 −100.2059

 ,

N =


−20.3172 −1.2 40.2343

40.4410 0.798 −83.082

49.603 0 −104.2059

 , J =


23.9006 −47.0012

−47.21 95.82

−59.5235 120.0471


I did simulations on MATLAB/SIMULINK (with "auto" time step) for this observer, for

given inputs and adaptation gains. In all the simulations I fix γ= 5000 and I change δ.

The results are shown in figure 3.1.

(a) δ= 20000 without noise (b) δ= 20000 with noise

(c) δ= 80000 without noise (d) δ= 80000 with noise

Figure 3.1: The simulations of the original observer
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Figure 3.2: The noise d

(a) The noisy first output y1 +2d (b) The noisy second output y2 +d

Figure 3.3: The noisy outputs

When we compare figure 3.1a to figure 3.1c, we remark that when δ grows up, the

oscillations grow up too. It is due to the fact that the slope of m̂ is proportional to δ. For

figure 3.1b and figure 3.1d, the noise that I added is shown in figure 3.2. We can see in

figure 3.3a and figure 3.3b the noisy versions of the outputs. As we can see, the observer

is robust to noise.

We can use a low pass filter 3.22 to avoid the high frequency oscillations. The result of

such filtering on the estimate in figure 3.1d is shown in figure 3.4, where f = 4.9Hz and
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Figure 3.4: A filtered version of 3.1d

the initial condition of the filter is set to 0.

H(s)= 2π f
s+2π f

(3.22)

3.2.3 The modified adaptive unknown inputs observer

The goal is to improve the adaptive unknown inputs observer of [12] so that we recover

the signal m(t) with better precision. A first idea would be to compare m̂(t) to 0.5 (1 if

m̂(t)> 0.5 and 0 else). The problem with such a procedure is that it leads to a lot of errors.

It is due to the convergence time at each bit change. Let us say for example that between

6s and 7s the bit is 0 and between 7s and 8s the bit is 1. Because of the convergence time,

there will be a period at which even if the signal goes to 1, the value of m̂(t) is less than

0.5 (figure 3.5). To avoid this problem, I constructed a modified version of the adaptive

unknown inputs observer of [12]. The modified equations are given by 3.23.ż = Nz+ J y+H f (x̂)+H g(x̂)m̂1 + 1
2
β̂HM(T y−C1 x̂)

x̂ = z−Ey
(3.23)
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Figure 3.5: comparison of m̂ to 0.5

with the adaptation laws 3.242



˙̂m1 = δg(x̂)T M(T y−C1 x̂)
˙̂β= γ|M(T y−C1 x̂)|2

m̂2[n]=
sign( 1

θ1

∫ n
n−θ1

m̂1(t)dt−θ2)+1

2
, n = θ1,2θ1, ...

m̂3(t)=F (û2, t)

m̂(t)= û3(t+θ1)

(3.24)

where θ1,θ2 ∈R+, and F is a function defined by 3.25.

F (m̂2, t)=
0, t ∈ [0,θ1)

m̂2[i], t ∈ [i, i+θ1)
(3.25)

The signal m̂1 is the unknown input estimate of the original observer. Let us say for

example that each second a bit is generated at the input and let us compute
∫ 5

5−4 m̂1(t)dt.
If the result is 1, it means that the bit between 4s and 5s is 1. If it is 0 then the bit is

0. Because of the convergence time, and the errors in m̂1, the integral can be different
2One thing that can happen but is unlikely is that m̂2[n] = 1/2, when the integral divided by θ1 is

exactly equal to θ2. To prevent this from happening, we can add a condition of the form: If m̂2[n] = 1/2,
then m̂2[n]= 1.
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(a) The unknown input m(t) and the shifted estimate m̂3(t) (b) The old error and the new error

Figure 3.6: The simulations of the modified observer

from 1 or 0. For this reason, I compare the result to θ2. In our example, we can take

θ2 = 0.5. If the integral is greater than 0.5 then it is 1, else it is 0. To achieve this if

condition, I use the function sign to which I add 1 and then I divide the result by 2 to

obtain a binary sequence. I convert the binary sequence m̂2 into a binary signal using

the function F , and the result is the input of the system, but shifted to the right by θ1.

The reason for this delay is that if I want to compute m̂2[θ1] for example, I can not do it

at t = 0, I need to have the signal m̂1 between 0 and θ1s, which causes a delay of θ1s. The

reason why I divide the integral by θ1 is that if the integral is done on a period of time

different from 1s, then the result will not coincide with the value of the bit, because the

integral gives us the surface, so we need to divide the result by the period of integration

to find the amplitude of the signal. The results of the simulations are shown in figure 3.6.

There are two important questions to answer. First of all, are the errors of the orig-

inal observer really problematic? To answer this question, I masked a plaintext by

XORing it with m(t), then I XORed the result with the estimate m̂(t) of the original

observer compared to the value 0.5. The result is shown in figure 3.7. As we can see, the

plaintext retrieval is noisy because of the errors due to the convergence times. The second

question is: can we do without integration? One of the improvements to the original

observer that I thought of is to add a sample and hold circuit and compare its output to

the value 0.5 as I did for the estimate of the original observer. The reason why I preferred

to use the integration is that in the presence of large oscillations in the original estimate,

the sample-and-hold-comparator system will lead to errors because if for example at the

time of sampling the oscillation goes down below 0.5, even if these oscillations are around

1, the output value of the sample-and-hold-comparator system will be 0. In the integrator

system, it is possible to compensate for these oscillations by taking the average of these,
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Figure 3.7: The plaintext and the recovered plaintext

which makes it much more robust than the sample-and-hold-comparator system. We can

of course try to add a filter before the sample-and-hold-comparator system, but this filter

has to be adapted depending on the unknown input frequency and the higher frequency

oscillations in the estimate, which is not practical compared to an integrator circuit that

works independently of the frequencies of the different signals.

3.2.4 The Tent map based stream cipher

Stream ciphers are cryptosystems used for the rapid encryption and decryption of

information of non-predetermined size. The stream cipher I designed is shown in figure

3.8. The Tent map is a chaotic system given by 3.26.

xn+1 = 1− r|xn −0.5| (3.26)

where r is a positive real constant that determines if the system is chaotic or not.

At the emitter level, there are 34 tent maps whose outputs are compared to 0.5. The

signal emitted by the first tent map is sent directly to the rest of the emitter. The signal

sent by the second tent map is delayed by 1/2s and sent to the rest of the emitter. The

signal sent by the third tent map is delayed by 1/(22)s then sent to the rest of the emitter,
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Figure 3.8: The Tent map based stream cipher
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and so on until the 34th tent map whose signal is delayed by 1/(233)s before being sent to

the rest of the emitter. These 34 signals are XORed and the result is delayed by 1s and

then XORed with the plaintext. When we start using the cryptosystem, we need to wait

1s before sending the real plaintext bits for encryption, during this 1s, we can send 0’s

through the cryptosystem. The result after XORing the tent maps with the plaintext is

a sequence si. The 34 tent map signals are each sent as an external input to a chaotic

system. These 34 chaotic systems can be different. For example, I chose to use a Rossler

system for each of the 34 chaotic systems, the difference between these systems being the

parameters of these and the initial conditions. The outputs of these Rossler systems are

sent via a multiplexer to the receiver. The second part of the emitter consists of encryption

using a variable key LFSR. The key of this LFSR is modified according to an algorithm

based on the De Bruijin sequence and on the outputs of the different tent maps of the

emitter. The sequence obtained after XORing si with the LSFR is denoted by wi. Finally,

the emitter receives from the receiver 34 chaotic signals each corresponding to a chaotic

system with an external input located at the receiver. Each one of these signals is then

entered into a modified adaptive unknown inputs observer and the 34 reconstructed un-

known inputs are XORed with each other then XORed with wi to obtain the ciphertext r i.

At the receiver level, we first recover the 34 unknown inputs sent by the emitter through

Rossler systems using the modified adaptive unknown inputs observers. These 34 un-

known inputs retrieved and shifted by 1s (due to the structure of the observer) are

XORed between them and then the result is XORed with the ciphertext r i to obtain a

sequence denoted by l i. They are also used with the De Bruijin sequence to update the

LFSR key of the receiver which is the same as that of the emitter. The result of this

LFSR is then XORed with l i to obtain a sequence denoted by vi. Finally, there are 34 tent

maps at the receiver level, each shifted as at the emitter level, and they are all XORed to

each other and the result is delayed by 1s and XORed with vi to obtain the recovered

plaintext. These 34 signals coming from the tent maps are sent as external inputs to 34

Rossler systems at the receiver, and the result will be sent to the emitter via a multiplexer.

I will now explain in more details three parts of this cryptosystem: the system of 34 tent

maps; the algorithm to update the key of the LFSR and finally the key used for this

symmetric cipher.
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3.2.4.1 The system of 34 tent maps

Because of the convergence time of the observer at each bit change, a very high-frequency

bit change in the unknown input of the Rossler system will not be detected, even if we

increase the observer gains. This is problematic because we need to encrypt a large

number of bits per second, and if we can only generate one bit each second for the

encryption then the cryptosystem has no practical use. For this reason, I thought of

using multiple tent maps each one delayed by 1/2n so that when we XOR them, the

result will look like a bitstream generator that generates a large number of bits each

second. This sequence can then be reconstructed at the receiver because each observer

will reconstruct the output of one delayed tent map, we just need to XOR them to find

the sequence used for encryption at the emitter. Of course, the observer will create a

delay of 1s in the unknown inputs, it is one of the reasons why we have delays when we

XOR the plaintext with the tent maps. It is clear that with 1 tent map, we encrypt 1 bit/s.

With 2 tent maps we encrypt 2 bits/s. With 3 tent maps, we encrypt 22 = 4 bits/s, and

with 34 tent maps we encrypt 233 bits/s = 1073 MByte/s.

3.2.4.2 How to update the key of the LFSR ?

As we have seen in the state of the art, one way of breaking a LSFR is to use a sufficient

number of pairs of (input, output) so that we can recover the p′
is by solving a linear

system. My idea here is to continuously update the p′
is so that Oscar can not compute

them by solving linear systems. The way I update the p′
is is by using an algorithm based

on the De Bruijin sequence.

Let us denote each one of the 34 tent maps by the symbol Ti where i is the number of

the tent map. We thus created an alphabet composed of 34 symbols 3.27.

A = {T1,T2, ...,T34} (3.27)

A De Bruijin sequence of order n on A is a cyclic sequence in which every possible

length-n string on A occurs exactly once as a sub-string. The total number of distinct De

Bruijin sequences of order n on an alphabet of k symbols is given by 3.28.

B(k,n)= (k!)kn−1

kn (3.28)

For example, on the alphabet {0,1} there are exactly 2 De Bruijin sequences of order 3 :

00010111 and 11101000.
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My goal is to update the p′
is each 1/233s. To achieve this, I will use De Bruijin se-

quences of order 233 on A. The number of distinct De Bruijin sequences of order 233 on A
is given by 3.29.

B(34,233)= (34!)34233−1

34233 (3.29)

The LSFR is designed such that the number of p′
is, let us denote it by m, is less than

B(34,233). We select then m distinct De Bruijin sequences from the existing B(34,233).

For each pi we have a sequence of 233 bits updated each second. The value of each pi is

updated each 1/233 second using the corresponding De Bruijin sequence, as it is shown in

figure 3.9. For example, if the sequence corresponding to p1 is {T1,T4, ...,T3,T2}, then p1

is equal to T2 for the first 1/233s, then it is equal to T4 for the next 1/233s and so on. This

process of updating the p′
is begins after 1s of starting the tent maps. The value of the

p′
is before that is not important because the real encryption begins also 1s after starting

the tent maps.

Figure 3.9: The way to update the key of the LFSR
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3.2.4.3 The key of the tent map based stream cipher

The tent map stream cipher is a symmetric cryptosystem. The key3 is given by 3.30.

key= (a1; ...;a34;b1; ...;b34; c1; ...; c34; r1; ...; r34;R1,1; ...;R34,3;TM1; ...;TM34) (3.30)

where ai, bi, ci are the parameters of the ith Rossler system, r i is the parameter of

the ith tent map, Ri, j is the jth initial condition of the ith Rossler system and TMi

is the initial condition of the ith tent map. As we can see, they have the same initial

conditions at the emitter and at the Receiver. If the chaotic systems were programs in C

for example, this would have had no sense because the emitter and the receiver would

cancel themselves and the cryptosystem would become a simple LFSR, but because

the chaotic systems are chaotic electronic circuits, we can choose the same parameters,

because we are sure that noise will affect the initial conditions and modify completely

the behavior of the chaotic systems. Of course, the beginning of the chaotic systems of the

emitter and the ones of the receiver will be the same for a short period of time. During

this period, the encryption will be done using the LFSR with a variable key. After this

period of time, the chaotic signals will become different and they will affect directly the

plaintext with the XOR gates4.

3.2.5 The security of the tent map stream cipher

I have generally described the tent map-based stream cipher. Without more details, this

cryptosystem cannot be really analyzed, and cannot be considered for real practical use.

This is why in future work it will be interesting to present the tent map stream cipher

in more detail. However, I found it interesting to present a security flaw of this stream

cipher which is also present in several chaotic cryptosystems presented in the literature

[1, 38]. There are a lot of attacks based on the low-frequency characteristics of certain

chaotic systems, including the Rossler system in particular. In general, using chaotic

masking or chaotic modulation (like in my stream cipher) can be dangerous if done with

bad chaotic systems like the Lorenz system or the Rossler system. The reason for this is

that it is usually enough to use a simple filter to find the unknown input because the
3I did not add the matrices of the observers as part of the key. The reason for this is that in a lot of

observers, changes in certain values of the matrices will not affect completely the convergence, which can
lead to security flaws if the matrices are part of the key. Instead, there is at the emitter and the receiver
algorithms that compute the matrices gains given the chaotic system’s parameters.

4We can also wait until the chaotic signals become different before we start the encryption. Another
possibility is to assume that we use use different values for the chaotic systems at the emitter and the
chaotic systems at the receiver.
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frequency of this one is easily distinguished from the frequency of the Rossler, Lorenz,

and the other "bad" chaotic systems. There are two things we can do to remedy this

problem. Either we use chaotic systems with good frequency characteristics, which risks

greatly reducing the number of chaotic systems we can use. Either we find a way to make

systems like Rossler and Lorenz more "frequency acceptable". I took the second approach.

So, in this part I will show through simulations why the classic Rossler system is a bad

choice of chaotic system for cryptography, then I will present a modification that will

improve the frequency characteristics of the Rossler system. Finally, we will see that this

modification can easily be generalized to other chaotic systems such as the Lorenz system.

The main security problem of the Rossler-based encryption schemes is that it is possible

to recover the unknown input using the Rossler system outputs. To achieve this, we can

use a filter for example. This approach is used in many cryptanalysis articles [1, 38].

Here, I will train an ANFIS observer5 to reconstruct the external input of the Rossler

system using the signals x1, x3 and ẋ3. To obtain ẋ3, we can use a differentiator circuit.

The reason why I use ẋ3 is that the external input of the Rossler system affects it directly,

in the sense that we can see some features of the external input inside the signal ẋ3 as

shown in figure 3.10.

To train the ANFIS observer, I used as an output to the ANFIS a pseudo-random

binary sequence. This sequence is generated using the "random numbers" SIMULINK

block whose output is entered in the "compare to 0" SIMULINK block. I used as an input

the signals x1, x3 and ẋ3. I used the SIMULINK block "to workspace" with a sampling

time of 0.005s to collect the data during 20s of simulation. I trained the ANFIS using the

"anfisedit" command in MATLAB. I used the default settings of "anfisedit" and I used

for all the signals Gaussian membership functions "gaussmf" and I did 20 epochs. The

results of the simulations are shown in figure 3.11.

The reason why this attack worked is because of the bad frequency properties of

the Rossler system, especially of the signal ẋ3. One way of overcoming this problem is to

use a chaotic system with a spectrum that is infinitely broad, flat, and of much higher
5Both cryptanalysis techniques have their advantages and disadvantages. With ANFIS for example,

Oscar will need to have the chaotic system at his disposal for a certain time. For filters, it will be necessary
to compute the frequency characteristics of the chaotic system and see if there is a frequency that stands
out from the others. The reason why I chose ANFIS is just to introduce this cryptanalysis technique as a
possible replacement for classic filtering techniques. More in-depth work must be done to find out whether
cryptanalysis by ANFIS really offers advantages over filtering techniques.
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Figure 3.10: The signal ẋ3 and the unknown input m(t)

Figure 3.11: Cryptanalysis of the classical Rossler system using ANFIS
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power density than the signal to be concealed [2]. I designed a modification of the Rossler

system which has better frequency properties than the classical Rossler system. This

modified system is given by 3.31.

ẋ1 =−(x2 + x3)+d(t)

ẋ2 = x1 +ax2 +d(t)

ẋ3 = b+ x3(x1 − c)+u(t)x3s2(t)+ks1(t)+d(t)

y1 = x1 +2d(t)

y2 = x3 +d(t)

(3.31)

where s1(t) and s2(t) are pseudo-random binary sequences, and k ∈R. This system can

be rewritten in matrix form 3.32.

ẋ =


0 −1 −1

1 a 0

0 0 −c

x+


0

0

1

 (b+ x1x3 +ks1(t))+


0

0

1

x3s2(t)m(t)+


1

1

1

d(t)

y=
[

1 0 0

0 0 1

]
x+

[
2

1

]
d(t)

(3.32)

As we can see, the only difference with 3.20 is the functions f and g which are now equal

respectively to (b+x1x3+ks1(t)) and x3s2(t). For this reason, the matrices of the adaptive

unknown inputs observer are the same as before.

I set k = 10, and s1(t) = s2(t) a pseudo binary sequence constructed in the same way

that the one used for the training of ANFIS. The unknown input m(t) is a binary signal

starting with 1 and shifting the bit each 0.5s. The attractor of the modified Rossler

system is shown in figure 3.12.

As we can see in figure 3.13, the frequency properties of ẋ3 are better. We can im-

prove them more by changing k, s1(t) and s2(t).

We can try the ANFIS-based attack. I trained an ANFIS using the same pseudo random

binary sequence as before, the same number of data points, the same settings and the

same number of epochs. The result of the simulation is shown in figure 3.14. As we

can see, the Rossler system hides now the unknown input better. My idea is to add a

controlled noise to the derivative of the state vector, so that we make the variation of

the state vector more random. We can test this technique of adding a controlled noise to
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Figure 3.12: The attractor of the modified Rossler system

(a) The frequency spectrum of ẋ3 (b) The power spectral density of ẋ3

(c) The frequency spectrum of the original ẋ3 (d) The power spectral density of the original ẋ3

Figure 3.13: The frequency characteristics of ẋ3
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Figure 3.14: Cryptanalysis of the modified Rossler system using ANFIS

the derivatives of the states on a Lorenz system. The modified Lorenz attractors that I

obtained are shown in figure 3.15.

I obtained these attractors using variants of 3.33.
ẋ1 = 5σ(x2 − x1s)s

ẋ2 = x1(ρ− x3)− x2s

ẋ3 = x1x2 −10βx3s

(3.33)

where ρ = 28, σ= 10, β= 8/3 and s is a random sequence of numbers generated using the

"random numbers" SIMULINK block. For example, we can see in figures 3.16 and 3.17

the sensitivity to initial conditions of the attractor shown in figure 3.15b.

3.3 Adaptive sliding mode unknown inputs observer

I present in this section an adaptive sliding mode unknown inputs observer which was

built-in [12]. The main advantage of this observer compared to the previous one is that

it allows us to predict much better the unknown inputs with derivatives almost always

zero and which vary at high frequency, as well as the signals whose derivative is not

necessarily almost always zero. I will use the observer in this section mainly to estimate
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: The improved Lorenz attractors
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Figure 3.16: The sensitivity to initial conditions of the modified attractor

the first type of signal. We will see that the observer presents a certain number of errors

in the estimation, these being mainly due to the convergence time at each value change,

as for the first observer and to the noise in the output of the system. I would therefore

present a technique inspired by the one used in the first observer to cancel these errors.

I will end this part by introducing a chaotic cryptosystem for the transmission of audio

signals.

3.3.1 The original observer

The adaptive sliding mode unknown inputs observer constructed in [12] is for systems of

the form 3.34. ẋ? = A0x?+Bf0(x?)+Fη1(t)

y= C0x?+G0η2(t)
(3.34)

where x? ∈Rn is the state vector, η1 ∈Rq1 is the vector of unknown inputs, y ∈Rp is the

output, η2(t) ∈Rq2 is an additive noise and f0 is a C 1 function.

The system has to satisfy the following conditions:

(a) q1 + q2 ≤ p.

(b) F and G0 are full rank and rank(C0F)= rank(F).

(c) η1(t) and η2(t) are bounded and their first derivatives are bounded.
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Figure 3.17: Zoom in 3.16
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(d) The solutions x?(t) are globally uniformly bounded.

We define now the augmented state x = [xT
? ,ηT

2 ]T ∈Rn+q2 , and the matrices :

A = [A0 0], C = [C0 G0], T = [In 0]

and the function f that satisfies : f (x)= f0(x?).

Under these assumptions, we can rewrite 3.34 under the singular form 3.35.Tẋ = Ax+Bf (x)+Fη1(t)

y= Cx
(3.35)

The adaptive sliding mode unknown inputs observer for 3.35 is given by 3.36.ż = K z+ J y+H1 f (x̂)+ 1
2
β̂H1M(y−Cx̂)+H2u

x̂ = z−Ey
(3.36)

with the adaptation laws 3.37.
˙̂β= γ1|M(y−Cx̂)|2 −σ2β̂

˙̂ρ = γ2|S|−σρ̂
(3.37)

and with u and S given by 3.38.
u = (GH2)−1[δS+ ρ̂ S

ε+|S| −GP Ax̂−GH1 f (x̂)− 1
2

GH1β̂M(y−Cx̂)], ε> 0

S = NCe(t)+
∫ t

0
GLCe(τ)dτ= N(y(t)−Cx̂(t))+

∫ t

0
GL(y(τ)−Cx̂(τ))dτ

(3.38)

where γ1,γ2,σ,σ2,δ,ε ∈ R+, e = x− x̂ and the matrices K , J,H1,H2, M,E,P,G,L and N
are obtained by carrying out the following steps:

Step 1: compute P and E using 3.39.

X = R2R+
1 −Za(I −R1R+

1 ) (3.39)

where Za is any matrix of the appropriate dimension (for example, Za = 0), X = [P E],

R1 = [TT −CT]T and R2 = In+q2 .

Step 2 : compute H1 and H2 using 3.40 and 3.41.

H1 = PB (3.40)
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H2 = PF (3.41)

Step 3 : choose N and G such that GH2 = NCH2 is invertible.

Step 4 : compute the matrices AG and BG using 3.42 and 3.43.

AG = [I −H2(GH2)−1G]P A (3.42)

BG = [I −H2(GH2)−1G]H1 (3.43)

Step 5 : solve the convex optimization problem 3.44, 3.44, 3.45, 3.46 and 3.47.

Min ρ?,

PG > 0 (3.44)

PG AG + AT
GPG +RC+CTRT < 0 (3.45)[

ρ?I BT
GPG −MC

PGBG −CT MT ρ?I

]
≥ 0 (3.46)

L =−P−1
G R (3.47)

Step 6 : compute K and J using 3.48 and 3.49.

K = P A−LC, is Hurwitz (3.48)

J = L−KE (3.49)

The idea behind this observer is that the function u will converge to the unknown input

η1(t). It is stated in the following theorem: [12]

For all εη > 0, there exists δ,γ1,γ2,σ2 and 0< Tη <∞ such that 3.50 holds.

|u(t)−η1(t)| ≤ εη, ∀t ≥ t0 +Tη (3.50)

3.3.2 Example : The Dimassi’s auxilliary dynamical system

In [12], the author used a dynamical system in his cryptosystem called the auxiliary

dynamical system. It is given by 3.51.ẋt =−xt +FtE(t)

yt = xt +G0d(t)
(3.51)
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which is a special case of 3.34 where x = xt = [xt1, xt2, xt3]T ∈R3, y= yt = [yt1, yt2, yt3]T ∈
R3, η1(t)= E(t) ∈R2, η2(t)= d(t) ∈R, A =−I3, B = 0, C0 = I3, f (x)= 0 and

F =


0 0

1 0

0 1

 , G0 =


1

1

1


The observer matrices for this system are given by :

E =


−0.3333 0.1667 0.1667

0.1667 −0.3333 0.1667

0.1667 0.1667 −0.3333

−0.3333 −0.3333 −0.3333

 , H1 = 0, H2 =


0.1667 0.1667

0.6667 0.1667

0.1667 0.6667

−0.3333 −0.3333

 , G =
[

0 1 0 1

0 0 1 1

]
,

K =


−0.4172 −0.2796 −0.2796 0.0237

0.6924 −1.2927 −0.2365 0.1632

0.6924 −0.2365 −1.2927 0.1632

−0.4048 0.3502 0.3502 −0.7043

 , J =


−0.2874 0.1438 0.1438

−0.3190 0.1736 0.1455

−0.3190 0.1455 0.1736

0.2517 −0.1258 −0.1258

 , M = 0

P =


0.6667 0.1667 0.1667

0.1667 0.6667 0.1667

0.1667 0.1667 0.6667

−0.3333 −0.3333 −0.3333

 , N =
[

0 1 0

0 0 1

]
, L =


−0.2494 0.1130 0.1130

−0.8591 0.6261 0.0699

−0.8591 0.0699 0.6261

0.7381 −0.0169 −0.0169


I did simulations on MATLAB/SIMULINK for this observer, for given inputs and adap-

tation gains. In all the simulations I fix δ= 1000, ε= 0.0001, γ2 = 10000 and σ= 1000.

The initial conditions are set to x0 = [−0.11,−0.14,0.2], ẑ0 = [−0.11,−0.14,0.2,−0.38] and

ρ̂0 = 0. The results of the simulations are shown in figure 3.18. The noise6 I added is

shown in figure 3.19.

3.3.3 The modified adaptive sliding mode unknown inputs
observer

I will try now to improve the adaptive sliding mode unknown inputs observer of [12] for

the estimation of signals whose derivative is almost always zero (like the signal E1 in

the previous part). There are two problems that I will try to solve. The first one is due to

the convergence times at each value change in the input. As for the adaptive unknown

inputs observer presented in the first section, these convergence times cause errors. The
6A smaller noise will have a similar effect on a smaller input.
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(a) E1 estimation without noise (b) E1 estimation with noise

(c) E2 estimation without noise (d) E2 estimation with noise

Figure 3.18: The simulations of the original observer

Figure 3.19: The noise η2(t)
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Figure 3.20: The error in the estimation of E1

second problem is due to the noise η2 which causes many pics of values in the estimate.

To avoid these problems, I propose to add the equations7 3.52.
û11[n]= 1

θ1 −2θ2

∫ n−θ2

n−θ1+θ2

u(τ)1dτ, n = θ1,2θ1, ...

û21(t)=F (û21, t)

Ê1(t)= û21(t+θ1)

(3.52)

where θ1,θ2 ∈ R+. To explain this modified observer, let us assume that E1 has a new

value each 0.05s, and let us take θ1 = 0.05s. Let us also assume that η2 = 0, so that

u1 is like in figure 3.18a, i.e without high pics between each 0.05s. I want to estimate

the value of E1 between 0 and 0.05s. I chose θ2 greater than the convergence time (in

our example, I can take θ2 = 0.01s). I integrate the signal u1 from 0.01s to 0.04s, and

then I divide the result by θ1−2θ2 to find the amplitude of the signal. The result of the

simulation is shown in figure 3.20.
7As for the first observer of this chapter, this technique can be used for other observers. It is a second

layer of estimation that decreases the error before using the recovered signal
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Figure 3.21: The Skew tent maps audio cipher

3.3.4 The Skew tent map audio cryptosystem

The cryptosystem for the secure transmission of audio messages that I have designed

is shown in figure 3.21. At the emitter level, we have two skew tent maps, STM1 and

STM2. The skew tent map used are the ones presented in [19] whose general form is

given by 3.53.

xn+1 =


2

α+1
xn + 1−α

α+1
, −1< xn <α

2
α−1

xn − α+1
α−1

, α≤ xn < 1
(3.53)

where α is a parameter such that {α, x0}⊂ (−1,1).

The skew tent maps are used according to a decision algorithm D1 for masking the

plaintext, the result of this masking being a signal w. The two skew tent maps are also

used as unknown inputs of Dimassi’s dynamical system, the output of which is sent to

the receiver. The emitter also receives from the receiver a signal which, once entered

in the modified adaptive sliding mode unknown inputs observer, makes it possible to

recover two skew tent maps located at the level of the receiver. These skew tent maps are

then used according to a decision algorithm D2 for masking the signal w. At the level of

the receiver, we first use an observer to recover the skew tent maps from the emitter and

use them according to D1 to subtract them from the ciphertext. The receiver’s skew tent

maps are also used according to D2 to subtract them from the ciphertext and thus recover

the plaintext. As with the previous stream cipher, we impose the necessary delays to

compensate for the delays caused by the observers.
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The decision algorithms D1 and D2 are functions given by 3.54.

D1 = s1STM1 + s2STM2

D2 = s1STM3 + s2STM4
(3.54)

where s1 and s2 are bit streams generated by LFSRs. It is a symmetric cryptosystem.

The encryption key is given by 3.55.

key= (pi1, p j2,STM10,STM20,α1,α2) (3.55)

where pi1 is the key of the LFSR generating s1, p j2 is the key of the LFSR generating

s2, STMi0 is the initial condition of the skew tent map STMi and αi is the parameter

of the skew tent map STMi. As for the previous stream cipher, the skew tent maps of

the emitter and the skew tent maps of the receiver are the same (same parameters and

same initial conditions), so STM1 is STM3 and STM2 is STM4, the only difference is

that because of the noise, the chaotic signals will be different.

3.4 Conclusion

I have analyzed in this chapter two observers for the synchronization of chaotic systems.

An adaptive unknown inputs observer and an adaptive sliding mode unknown inputs

observer, both constructed in [12]. Each of these observers is used in this work to

estimate a certain category of signals. I also made some changes to the observers to

improve their performance. These modifications can be considered as general techniques

for improving observers for the estimation of unknown signals whose value generation

frequency is known. I briefly presented two symmetric chaos-based cryptosystems. One

of them is a stream cipher and the other is a system for transmitting audio signals.

I also presented a technique for improving the frequency characteristics of chaotic

systems, which are for the most part bad for cryptography because of their poor frequency

properties. The technique that I have presented consists of noising in a controlled way

the derivatives of the states of the chaotic system, so as to obtain a system with good

frequency characteristics. I applied this technique on the Rossler system and on the

Lorenz system, for which I was able to construct a set of new attractors according to

the way in which I added noise to the derivatives of the states. The logical continuation

of this work is to detail the two cryptosystems, to propose a material realization, and

to make cryptanalysis of them. I am working actually on the design of circuits for the
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modified Lorenz attractors. I am also calculating the entropy, Lyapunov exponents and

auto-correlation of the modified attractors. Then, I will work on the modification of

strange attractors in order to obtain better attractors for systems other than the Rossler

system or the Lorenz system.
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4
CHAOS SYNCHRONIZATION USING HIGHER ORDER

SLIDING MODE OBSERVERS FOR SYSTEMS WITH TIME

DELAY

4.1 Introduction

The objective of this chapter is to analyze Higher-order sliding mode observers which

are observers often used for the synchronization of chaos in the presence of delay in the

transmission channel. I will start with the predictor-based super twisting second-order

sliding mode observer constructed in [18]. I will try to improve this observer by adding

an estimation of unknown input. I will also use a technique present in some articles such

as [27, 28] which consists of replacing the sign function of sliding mode observers with a

fuzzy inference system in order to eliminate the chattering effect due to the discontinuity

of the sign function. I will then try to introduce the idea of an adaptive order for the

Higher-order sliding mode observers, through the example of the super-twisting observer.

This order will vary according to an adaptation law in order to minimize an optimization

criterion.
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4.2 Predictor-based super-twisting second-order
sliding mode observer

I present in this section a predictor-based super twisting higher-order sliding mode

observer constructed in [18]. It is an observer for systems with delayed output. I will

introduce two modifications of this observer. First, I will try to obtain the estimate of an

unknown input, then I will replace the sign functions with fuzzy inference systems in

order to eliminate the chattering effect due to the discontinuity of the sign function.

4.2.1 The original observer

The predictor-based super twisting second order sliding mode observer is an observer for

systems of the form 4.1. ẋ(t)= f (x(t),d(t))

yτ(t)= h(x(t−τ))
(4.1)

where τ> 0 is a constant and known time delay and yτ(t) := y(t−τ).

If 4.1 is uniformly locally observable, then there exists a local state coordinate transfor-

mation z(t)=Γ(x(t)) which transforms 4.1 into the triangular observable form 4.2.ż(t)= Az(t)+ Φ̃(z(t))+Bη(t)(t)

yτ = Czτ(t)
(4.2)

where

A =



0 1 0 0 ... 0

0 0 1 0 ... 0

. . . .

. . . . ... 0

0 0 0 0 ... 1

0 0 0 0 ... 0


, B =

[
0 0 0 ... 1

]T
, C =

[
1 0 0 ... 0

]

and

Φ̃(z)=



Φ1(z1)

Φ2(z1, z2)

.

.

0
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and η(t)=Φn(z1, z2, ..., zn)+d(t) is the total disturbance, where d(t) is an unknown exter-

nal disturbance and Φn(z1, z2, ..., zn) represents the unknown system uncertainties.

We can rewrite 4.2 in the more explicit form 4.3.

ż1(t)= z2(t)+Φ1(z1)

ż2(t)= z3(t)+Φ2(z1, z2)

...

żn−1(t)= zn(t)+Φn−1(z1, z2, ..., zn−1)

żn(t)= η(t)

yτ(t)= z1(t−τ)

The super-twisting sliding mode observer for 4.3 is given by 4.3 [18].

˙̂zτ1 = z̃τ2 +λ1

√
|ετ1| sign(ετ1)+Φ1(zτ1)

˙̃zτ2 =α1sign(ετ1)

˙̂zτ2 = E1[z̃τ3 +λ2

√
|ετ2| sign(ετ2)+Φ2(zτ1, z̃τ2)]

˙̃zτ3 = E1[α2sign(ετ2)]

˙̂zτ3 = E2[z̃τ4 +λ3

√
|ετ3| sign(ετ3)+Φ3(zτ1, z̃τ2, z̃τ3)]

...

˙̃zτn−1 = En−3[αn−2sign(ετn−2)]

˙̂zτn−1 = En−2[z̃τn +λn−1

√
|ετn−1| sign(ετn−1)+Φn−1(zτ1, z̃τ2, ..., z̃τn−1)]

˙̃zτn = En−2[αn−1sign(ετn−1)]

˙̂zτn = En−1[θ̃τ+λn
√

|ετn| sign(ετn)]
˙̃θτ = En−1[αnsign(ετn)]

(4.3)

where :
ετi = z̃τi − ẑτi
z̃τ1 = zτ1 = yτ =⇒ ετ1 = eτ1 = zτ1 − ẑτi

and ẑτi and z̃τi are the delayed estimated state and the delayed internal state of the

observer, respectively. The function E i is given by 4.4.

E i =
1 i f |ετj | ≤ ε, ∀ j ≤ i

0 else
(4.4)
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where ε is a small positive constant.

The parameters αi are the observer gains and the parameters λi > 0 are the correc-

tion factors that are here to ensure the convergence of the observer.

We have the following result about the convergence of 4.3 [18]: If the delayed states of

4.3 are uniformly bounded in a compact domain D ⊂Rn, i.e. |zτi | ≤σi, i = 1,2, ...,n), and

|Φi(zτj , j = 1,2, ..., i)| ≤ L i, i = 1,2, ...,n−1

and

|dη
dt

| ≤ Ln

then, for any initial conditions z̃i, ẑi, i = 1, ...,n and θ̃τ there exist positive constants λ j

and α j for j = 1,2...n, satisfying the conditions 4.5.

α j > (L j+1 +α j+2)

λ j >
√

4(L j+1 +σ j+2)
α j + (L j+1 +σ j+2)
α j − (L j+1 +σ j+2)

, j = 1, , ...,n−1

αn > Ln

λn >
√

4Ln
αn +Ln

αn −Ln

(4.5)

such that the estimated delayed states ẑτj converge to the delayed states zτj in finite time.

In addition θ̃τ converges to the delayed disturbance ητ. More explicitly, eτn(t) and ėτn(t)
converges to zero in a finite time Tn satisfying 4.6.

Tn ≤Σ |ėτni|
|αn −Ln|

(4.6)

It follows that a delayed estimate of the delayed total disturbance can be obtained in

finite time Tn : η̂τ(t)= θ̃τ(t). In other words, there exists a finite time Tn such that 4.7

holds.
||zτ(t)− ẑτ(t)|| = 0, t ≥ Tn +τ
|ητ(t)− η̂τ(t)| = 0, t ≥ Tn +τ

(4.7)

The super-twisting sliding mode observer 4.3 estimates the delayed states. We use the

predictor 4.8 in cascade with 4.3 to estimate the actual states.γ̇= Aγ+ Φ̃(zp)+Bη̂τ

zp = eAτ ẑτ+γ− eAτγτ
(4.8)
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where γ ∈Rn is the internal state of the predictor.

If Φ̃ is globally Lipshitz with respect to z with a Lipshitz constant αz, and η satis-

fies the slowly time varying condition, i.e |η−ητ| ≤ εη, ∀t, ∀τ ∈ [0,τ∗] where τ∗ is an

upper bound of the delay and εη a positive small real constant, then the prediction error

ep = z− zp converges to a ball of radius Kεη, for all t ≥ Tn +τ, where K = ||eAτ||τeaτ and

a =αz||eAτ||.

4.2.2 Example : the classical Rossler system

The classical Rossler system in its triangular form is given by 4.9.

ż1(t)= z2(t)

ż2(t)= z3(t)

ż3(t)=Φ3(z1, z2, z3)+d(t)

yτ(t)= z1(t−τ)

(4.9)

where d(t)= 0.1sin(t) and

Φ3(z1, z2, z3)=−z2(t)+az3(t)− (z1(t)+ z3(t)−az2(t))(c− z2(t)+az1(t))−b

where a = 0.2, b = 0.2 and c = 5.7. It is a system of the form 4.2 where η(t)=Φ3(z1, z2, z3)+
d(t) and

A =


0 1 0

0 0 1

0 0 0

 , C = [1 0 0],B = [0 0 1]T , Φ̃(z)=


0

0

0


The attractor of this system is shown in figure 4.1. The super-twisting sliding mode

observer for 4.9 is given by 4.10.

˙̂zτ1 = z̃τ2 +λ1

√
|ετ1| sign(ετ1)

˙̃zτ2 =α1sign(ετ1)

˙̂zτ2 = E1[z̃τ3 +λ2

√
|ετ2| sign(ετ2)]

˙̃zτ3 = E1[α2sign(ετ2)]

˙̂zτ3 = E2[θ̃τ+λ3

√
|ετ3| sign(ετ3)]

˙̃θτ = E2[α3sign(ετ3)]

(4.10)
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Figure 4.1: The attractor of the Rossler triangular system

where we take the gains 4.11.

α1 = 30; α2 = 30; α3 = 30;

λ1 = 15; λ2 = 15; λ2 = 15.
(4.11)

The predictor is given by 4.12.

γ̇(t)= Aγ(t)+Bη̂τ(t)

zp(t)= eAτ ẑτ(t)+γ(t)− eAτγτ(t)
(4.12)

The initial conditions are taken as z1(0) = 0.2, z2(0) = 0.2, z3(0) = 0.2, ẑτ1(τ) = ẑτ3(τ) =
z̃τ3(τ)= 0.05, ẑτ2(τ)= z̃τ2(τ)= 0, γ̂1(0)= γ̂3(0)= 0.05 and γ̂2(0)= 0. The value of ε is fixed to

0.0025. I used a time step of 10−5s1. The results of the simulations for τ= 0 and τ= 0.5s
are shown in figures 4.2 and 4.3 respectively.

1When I used the "auto" time step of SIMULINK, I found bad results. The reason is that with greater
time step, there are more numerical errors. So one needs to find the good computation frequency when
implementing an observer.
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(a) The estimation of z1 (b) The estimation of z2

(c) The estimation of z3 (d) The estimation of η

Figure 4.2: The simulations for τ= 0

(a) The estimation of z1 (b) The estimation of z2

(c) The estimation of z3 (d) The estimation of η

Figure 4.3: The simulations for τ= 0.5s
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4.2.3 The modified predictor-based super-twisting second order
sliding mode observer

My first modification is to replace the sign functions with fuzzy inference systems.

This technique is used in some articles such as [27, 28]. My objective behind this is to

attenuate the chattering effect due to the use of the discontinuous sign function. The

fuzzy super-twisting observer is given by 4.13. The predictor does not change.

˙̂zτ1 = z̃τ2 +λ1

√
|ετ1|ψ1(ετ1)+Φ1(zτ1)

˙̃zτ2 =α1ψ1(ετ1)

˙̂zτ2 = E1[z̃τ3 +λ2

√
|ετ2|ψ2(ετ2)+Φ2(zτ1, z̃τ2)]

˙̃zτ3 = E1[α2ψ2(ετ2)]

˙̂zτ3 = E2[z̃τ4 +λ3

√
|ετ3|ψ3(ετ3)+Φ3(zτ1, z̃τ2, z̃τ3)]

...

˙̃zτn−1 = En−3[αn−2ψn−2(ετn−2)]

˙̂zτn−1 = En−2[z̃τn +λn−1

√
|ετn−1|ψn−1(ετn−1)+Φn−1(zτ1, z̃τ2, ..., z̃τn−1)]

˙̃zτn = En−2[αn−1ψn−1(ετn−1)]

˙̂zτn = En−1[θ̃τ+λn
√
|ετn|ψn(ετn)]

˙̃θτ = En−1[αnψn(ετn)]

(4.13)

where ψ1, ψ2, ..., ψn are fuzzy inference systems. To design the fuzzy inference systems,

we study the errors εi to see their bounds (for example : big negative error if the error

is between a1 and a2, etc ...), and then we create corresponding zones for the output ψ

(for example : ψ = 1 if the error is positive big, etc ...). I designed one fuzzy inference

system for each sign function. The three fuzzy inference systems for the Rossler system

are shown in figure 4.4 where the ith row corresponds to ψi. I used If ... Then rules :

- If ετi is NBB then ψi is NBB.

- If ετi is NB then ψi is NB.

- If ετi is NS then ψi is NS.

- If ετi is ZR then ψi is ZR.

- If ετi is PS then ψi is PS.

- If ετi is PB then ψi is PB.

- If ετi is PBB then ψi is PBB.
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for i = 2,3. For i = 1, the rules are :

- If ετ1 is NB then ψ1 is NB.

- If ετ1 is NS then ψ1 is NS.

- If ετ1 is ZR then ψ1 is ZR.

- If ετ1 is PS then ψ1 is PS.

- If ετ1 is PB then ψ1 is PB.

j where :

- NBB : Negative Big Big.

- NB : Negative Big.

- NS : Negative Small.

- ZR : Zero.

- PS : Positive Small.

- PBB : Positive Big Big.

The results of the simulations are shown in figures 4.5 and 4.6. As we can see, with

fuzzy inference systems there is no chattering effect. In figure 4.5, if we continue the

simulations over 20s, the fuzzy based observer for τ= 0 does not converge, we need to

change the value of ε to 0.025 for example to remedy this. I think that the reason of

this is that the error ετ3 becomes greater than the bounds used for the design of the

fuzzy inference system (I saw that in the simulations). Even later, when I will design

the second modification, the Rossler system will not always react well (after 20s, the

unknown input estimation will become very bad). I used for the second modification

another system which is simpler and the equations worked well on it. It is yet not clear

why the Rossler system reacts badly.

The second modification is for the estimation of unknown input. I will consider now d
not as an external disturbance but as an external unknown input that I want to estimate,

and Φn as a known function (which is the case for example for the classical Rossler

system). This technique consists of treating the unknown input as a system state. It can

be generalized to all systems that are written in a triangular form. A new "fictitious"

state is therefore created. It is fictitious in the sense that its derivative is known and

does not depend on any state, given that it is we ourselves who generated the "fictitious"
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Figure 4.4: The fuzzy inference systems
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(a) The estimation of z1 (b) The estimation of z2

(c) The estimation of z3 (d) The estimation of η

Figure 4.5: The simulations for τ= 0 using fuzzy inference systems

(a) The estimation of z1 (b) The estimation of z2

(c) The estimation of z3 (d) The estimation of η

Figure 4.6: The simulations for τ= 0.5s using fuzzy inference systems
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state. The new triangular representation of the dynamical system is given by 4.14.

ż1(t)= z2(t)+Φ1(z1)

ż2(t)= z3(t)+Φ2(z1, z2)

...

żn−1(t)= zn(t)+Φn−1(z1, z2, ..., zn−1)

żn(t)= d+Φn(z1, z2, ..., zn)

ḋ(t)= m

yτ(t)= z1(t−τ)

(4.14)

where m is the derivative of the state that we generate.

The structure of the new observer is given by 4.15.

˙̂zτ1 = z̃τ2 +λ1

√
|ετ1|ψ1(ετ1)+Φ1(zτ1)

˙̃zτ2 =α1ψ1(ετ1)

˙̂zτ2 = E1[z̃τ3 +λ2

√
|ετ2|ψ2(ετ2)+Φ2(zτ1, z̃τ2)]

˙̃zτ3 = E1[α2ψ2(ετ2)]

˙̂zτ3 = E2[z̃τ4 +λ3

√
|ετ3|ψ3(ετ3)+Φ3(zτ1, z̃τ2, z̃τ3)]

...

˙̃zτn−1 = En−3[αn−2ψn−2(ετn−2)]

˙̂zτn−1 = En−2[z̃τn +λn−1

√
|ετn−1|ψn−1(ετn−1)+Φn−1(zτ1, z̃τ2, ..., z̃τn−1)]

˙̃znτ= En−2[αn−1ψn−1(ετn−1)]

˙̂zτn = En−1[d̃τ+λn
√
|ετn|ψn(ετn)+Φn(zτ1, z̃τ2, ..., z̃τn−1, z̃τn)]

˙̃dτ= En−1[αnψn(ετn)]

˙̂dτ = En[θ̃τ+λn+1

√
|ετn+1|ψn+1(ετn+1)]

˙̃θτ = En[αn+1ψn+1(ετn+1)]

(4.15)

where εn+1 = d̃− d̂ and En is defined as before. For the predictor, we just need to add an

additional state and use the corresponding matrices.
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I applied this modified observer on the system 4.16.
z1 = z2

z2 = z3

z3 =−z3 +d

(4.16)

The results of the simulations2 are shown in figure 4.73.

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: The simulations for τ= 0 (left) and τ= 0.5s (right) of unknown input estimation

2More simulations have to be done to see if the observer is robust to different noises (noise at each
state, noise in the output, etc ...).

3The predictor does not work well for the square input. The reason is that the second derivative of the
square input is very high.
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I did the simulations with the "auto" time step of SIMULINK to show that we do

not need a high computation frequency to achieve good estimations when we use fuzzy

inference systems with the super twisting observer For the fourth sign function, I used

ψ3. I used the value ε= 0.025 and I took λi = 15 and αi = 30 for i = 1,2,3,4. I did also

the simulations using sign functions with "auto" time stem (left) and a time step of

10−5s (right). The results are shown in figures 4.8 and 4.9. As we can see the estimation

becomes much noisier and needs a higher frequency computation when we use sign

functions instead of fuzzy inference systems.

Figure 4.8: Unknown input estimation for τ= 0 with "auto" time step

Figure 4.9: Unknown input estimation for τ= 0 with 10−5s time step
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4.3 Adaptive-order fuzzy sliding mode observer

In this section I present an improvement of the super-twisting fuzzy sliding mode

observer. The new structure of the observer is given by 4.17.

˙̂zτ1 = z̃τ2 +λ1|ετ1|γψ1(ετ1)+Φ1(zτ1)

˙̃zτ2 =α1ψ1(ετ1)

˙̂zτ2 = E1[z̃τ3 +λ2|ετ2|γψ2(ετ2)+Φ2(zτ1, z̃τ2)]

˙̃zτ3 = E1[α2ψ2(ετ2)]

˙̂zτ3 = E2[z̃τ4 +λ3|ετ3|γψ3(ετ3)+Φ3(zτ1, z̃τ2, z̃τ3)]

...

˙̃zτn−1 = En−3[αn−2ψn−2(ετn−2)]

˙̂zτn−1 = En−2[z̃τn +λn−1|ετn−1|γψn−1(ετn−1)+Φn−1(zτ1, z̃τ2, ..., z̃τn−1)]

˙̃znτ= En−2[αn−1ψn−1(ετn−1)]

˙̂zτn = En−1[d̃τ+λn|ετn|γψn(ετn)+Φn(zτ1, z̃τ2, ..., z̃τn−1, z̃τn)]
˙̃dτ= En−1[αnψn(ετn)]
˙̂dτ = En[θ̃τ+λn+1|ετn+1|γψn+1(ετn+1)]
˙̃θτ = En[αn+1ψn+1(ετn+1)]

(4.17)

By changing the value of γ, we change the convergence precision of the observer. If our

goal is for example to minimize the errors ε j, then we can use the adaptation law 4.18.

γ̇=−Γ∇γL (4.18)

where Γ is the learning rate and L is a loss function, in our case 4.19.

L = |ετ1|2 +|ετ2|2 + ...+|ετn|2 (4.19)

The results of the simulations for Γ= 0.004 and γ(0)= 0.5 are shown in figures 4.10 and

4.11.

4.4 Conclusion

In this chapter, I presented the predictor-based super twisting second-order sliding mode

observer built-in [18] for the estimation in the presence of time delay. I did the observer

simulations on the Rossler system. I made two changes to the watcher. First, I replaced
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(a) (b)

(c) (d)

Figure 4.10: The difference between the original errors ετi and the errors with adaptive order ετiad

Figure 4.11: The function γ

91



CHAPTER 4. CHAOS SYNCHRONIZATION USING HIGHER ORDER SLIDING MODE
OBSERVERS FOR SYSTEMS WITH TIME DELAY

the sign functions with fuzzy inference systems and simulations have shown that this

eliminates the chattering effect. However, some drawbacks have been noted and further

study needs to be done. I then introduced a method to consider an external input as a

state of the dynamic system. I used this method on a simple dynamic system to make

an unknown input estimate using the super twisting observer. The simulations showed

that this technique worked. There remains, however, a problem with the Rossler system

for which the estimation does not work from 20s. I ended the chapter by introducing the

concept of variable order for higher-order sliding mode observers. This order is now a

function that evolves according to an optimization constraint. I applied this technique to

the super twisting observer. More simulations need to be done to analyze the robustness

of the proposed techniques.
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5
ACOUSTIC CRYPTANALYSIS COUNTERMEASURE USING

IMPROVED LORENZ SYSTEM AND ANFIS

5.1 Introduction

The objective of this chapter is to present a countermeasure against an acoustic crypt-

analysis method presented in [16] allowing to break RSA. This cryptanalysis method

uses the high-frequency sound emitted by the processor during the decryption operation

of RSA in order to find the secret key. The countermeasure I propose is to use a chaotic

system in cascade with an ANFIS in order to emit a sound that will mask the sound

emitted by RSA decryption. The chaotic system that I am going to use is one of the

Lorenz attractors that I obtained with the method of adding noise to the derivative of

the state vector. The reason I want to cascade to this chaotic system an ANFIS is that if

there is not an ANFIS and Oscar wants to remove the chaotic signal generated, he could

use a chaotic synchronization technique and remove the noise I added. In order to pre-

vent Oscar from using chaotic synchronization, I will use an ANFIS as an intermediary

between the chaotic circuit and the sound emitted. The objective of ANFIS is to use the

output of the chaotic system to generate noise. This noise generation technique is closely

dependent on the initial conditions of the chaotic system, which makes it difficult for

Oscar to recreate the noise.
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Figure 5.1: The acoustic cryptanalysis technique

5.2 The improved Lorenz system

The acoustic cryptanalysis method presented in [16] is shown in figure 5.1. Oscar uses

the sound emitted by RSA decryption to find the secret key. The countermeasure I choose

in this chapter is to use an improved Lorenz system in cascade with an ANFIS to mask

the sound emitted by RSA.

The modified Lorenz system I use in this chapter is obtained using the method of

adding noise to the state vector. Its state equation is given by 5.1.
ẋ1 = 5σ(x2 − x1

s
10

)
s

10
ẋ2 = x1(ρ− x3)− x2

s
10

ẋ3 = x1x2 −10βx3
s

10

(5.1)
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(a) The improved Lorenz attractor (b) The sensitivity to initial conditions

Figure 5.2: The improved Lorenz system

(a) The frequency spectrum of x2 (b) The power spectral density of x2

Figure 5.3: The characteristics of x2

where s is obtained using the "random number" block of SIMULINK with standard

parameters. I used the "auto" time step. The attractor of 5.1 is shown in figure 5.2a. As

we can see in figure 5.2b, there is some sensitivity to initial conditions.

The signal that I want to use in this chapter is x2 because it has good frequency charac-

teristics, as it is shown in figures 5.3a and 5.3b.

5.3 The ANFIS training

The ANFIS that I use in this chapter has been trained to create a noise ψ(x2) given as

an input the signal x2. To train this ANFIS, I used as an input the signal x2, and as an

output, a white noise created using the SIMULINK block "band-limited white noise"

with its standard characteristics. To obtain the data, I ran the simulation for 50s and

I used the SIMULINK blocks "to workspace" with a sampling time of 0.005s. I used

the MATLAB command "anfisedit" to train the ANFIS. I used 3 triangular membership
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(a) The frequency spectrum of ψ(x2) (b) The power spectral density of ψ(x2)

Figure 5.4: The characteristics of ψ(x2)

Figure 5.5: The ANFIS-Lorenz system

functions and I did 21 epochs. The results are shown in figure 5.4.

5.4 The ANFIS-Lorenz system and how to use it
effectively

The way I combine the improved Lorenz system with ANFIS is shown in figure 5.5. The

chaotic circuit generates the signal x2 which is used as an input to the ANFIS. Then, the

ANFIS constructs using x2 a noise which is transformed into sound to mask the sound

emitted by RSA.

One interesting question to ask is how to attack someone using the ANFIS-Lorenz

system? If we construct the circuitry and the ANFIS, we will have the parameters of the

ANFIS. So what we can do is to use x2 as an input to a second ANFIS with the same

parameters as the first one and then invert the signal to cancel it with the signal emitted
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by the ANFIS which is inside the computer. The problem is that we need to have access

to x2. To achieve that, I thought of designing a port which emits an encrypted version of

the electrical signal x2. And then, we will use the right key to reconstruct the signal x2.

One way of encrypting x2 is to use RSA, and because inside the computer there is the

noise I created, this second RSA can not in theory be broken using acoustic cryptanalysis.

5.5 Conclusion

We have seen in this chapter a countermeasure against the acoustic cryptanalysis

technique used against RSA and presented in [16]. I used an improved Lorenz system

that I obtained using the method of adding noise to the state vector. I also used an

ANFIS to make a chaotic synchronization attack difficult. I also presented a technique

that allows the designer of the countermeasure to attack a user of the countermeasure.

The next step consists of giving a practical realization of the circuits and programs and

testing them in real conditions.
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6
CHAOTIC POST-QUANTUM LATTICE-BASED

CRYPTOGRAPHY

6.1 Introduction

The objective of this chapter is to present two new potentially difficult problems on

lattices. The first one is a variant of SVP (Shortest vector problem) to which I added

an additional constraint that depends on the trajectory of a given chaotic system. The

second problem is the SVP but on a chaotic attractor located inside a lattice. In either

case, the parameters and initial conditions of the chaotic system used are kept secret,

making the problem more difficult for Oscar as he will be missing an essential part of

it. In other words, to solve these problems Oscar will have for the first case to solve an

optimization problem without knowing one of the constraints, and for the second case, to

solve an optimization problem on a space that he does not know.

6.2 The chaotic SVP (Shortest vector problem)

Given the Euclidean space Rn, n ∈N. A lattice of Rn is any discrete finite subgroup of

Rn of rank n. For a given lattice Λ of Rn, we know that there exists a set of linearly

independent vectors bi ∈ Rn such that any point of Λ is a linear integer combination

of the bi ’s. This set is called a basis of the lattice. Conversely, a set of linear integer

combinations of n linearly independent vectors of Rn is a lattice of Rn. In other words, a
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Figure 6.1: Lattices in art

lattice Λ of Rn is any set of vectors of Rn generated by the linear integer combinations of

n linearly independent vectors bi ∈Rn. More formally, it is defined by 6.1.

Λ= {
n∑

i=1
λibi :λi ∈Z} (6.1)

The lattice structure is used in many areas such as art (figure 6.1) and crystallography

(figure 6.2). We can see in figure 6.3 some crystals which are chemical elements having

lattice structures.

In cryptography, lattices are used to generate problems considered to be mathemat-

ically difficult to solve. In asymmetric cryptography, the security of algorithms is based

on the difficulty of solving integer factorization and discrete logarithm problems. With

the advent of quantum computers, quantum algorithms for solving these problems have

emerged such as Shor’s algorithms [31]. The practical implementation of Shor’s algo-

rithms requires the use of thousands of qbits, which makes these algorithms unusable

to date. But there is no guarantee that in a few years quantum technology will not

have evolved to the point that we will be able to implement Shor’s algorithms. It is why

we need new cryptography methods that are robust to quantum attacks. Among these

methods, we have the SVP (Shortest vector problem) which consists in finding, giving a

basis (bi) of a lattice Λ, the shortest non-zero vector in the sense of the Euclidean norm1,
1It is also possible to use other norms.
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Figure 6.2: Lattices in crystallography

i.e. the vector v satisfying 6.2.

L(v)= min ||w||2 (6.2)

where L(v) denotes the length of v and the min is taken over all the vectors w ∈Λ∗.

The SVP is known to be NP-hard. In my modification, I add a constraint that is de-

pendent on the trajectory of a given chaotic system. This modification is shown in figure

6.4. The modified SVP is to find the shortest non-zero vector in the lattice that minimizes

the difference between the chaotic trajectories if we take it as an initial condition to the

chaotic system and we compare the result to the same chaotic system with an initial

condition x0. In other words, the problem is to find the shortest non-zero vector v in the

lattice such that it minimizes ||χx0 −χv|| where χx0 denotes the chaotic trajectory given

the initial condition x0.

6.3 The SVP on chaotic attractors inside lattices

The second problem I designed consists in the reduction of the space of the SVP opti-

mization problem to a curve which is unknown to Oscar. This curve is a chaotic attractor.

Obviously, the attractor is generally not a lattice. To prove it, it suffices to consider the
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Figure 6.3: Some crystals
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Figure 6.4: The chaotic SVP

first condition 6.3 to have an additive subgroup G.

a1,a2 ∈G =⇒ a1 +a2 ∈G (6.3)

This condition is generally not satisfied for vectors taken on an attractor (and on any

other non-trivial curve of the space). The objective is therefore not to build a "chaotic"

Lattice within an initial lattice. My goal is just to build a chaotic path within an initial

lattice that one could take to resolve the SVP. More formally, the optimization problem

now consists in finding the shortest non-zero vector of the lattice which lies on the chaotic

attractor.

6.4 Conclusion

In this chapter, I have presented two new problems on lattices for uses in post-quantum

cryptography. The first problem consists of the SVP with an additional constraint that

takes into account the initial conditions and the trajectories of a given chaotic system. The

second problem consists in reducing the space of the solutions of the SVP by considering

only the solutions located on a given chaotic attractor located inside a lattice. If the

parameters and the initial conditions of the chaotic system used are kept secret, then

these two problems become theoretically unsolvable by Oscar since he does not know the

essential part of them. The security of a cryptosystem using these problems would then in

theory become unconditional, provided that the parameters of the chaotic system are kept
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secret. Obviously, the problems presented in this chapter remain at the stage of ideas

and thorough work must be done before being able to decide on the real effectiveness of

the proposed problems.
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7
CONCLUSION

In this thesis, several points have been addressed. In chapter 3, I improved two observers

built-in [12]. The first is an adaptive unknown inputs observer and the second is an

adaptive sliding mode unknown inputs observer. The improvements I made induce a

delay in the system. I built two cryptosystems that show that this delay is not necessarily

problematic. I also developed a method to improve the frequency characteristics of chaotic

systems.

In chapter 4, I improved a predictor-based super twisting second-order sliding mode

observer presented in [18]. My improvement is to replace the discontinuous sign function

with fuzzy inference systems. This approach has been used in a few articles such as

[27, 28]. It eliminates the chattering effect which is due to the discontinuities of the

sign function. I also introduced a technique that allowed the unknown input of a trian-

gular system to be considered as a fictitious state, which allows an unknown input to

be estimated using a state observer. This technique was illustrated by the use of the

super twisting observer to estimate an unknown input. I also presented a modification

of the higher-order sliding mode observers in which the order is now a function that

varies according to an optimization criterion. I applied this adaptive order technique on

the super twisting observer and I have shown through the simulations that the effect

of the adaptive order was more and more present as we were advancing in the state vector.

In chapter 5, I presented a countermeasure to the acoustic cryptanalysis method against
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RSA built-in [16]. My countermeasure is to mask the sound emitted by RSA decryption

using a chaotic system with an ANFIS which is trained to emit white noise given a

chaotic input. The role of ANFIS is to prevent Oscar from using chaotic synchronization

techniques to eliminate masking.

In Chapter 6, I presented two modifications of the SVP on lattices. These changes

consist of hiding an important part of the optimization problem from Oscar so that it is

impossible for him to solve it. The first modification is to add a constraint to the SVP

which depends on the trajectories of a chaotic system. The second modification consists

of reducing the space of solutions of the SVP by making an intersection between the

lattice and a given chaotic attractor. The initial parameters and conditions of the chaotic

system are kept secret so that Oscar cannot solve these problems. The goal is to have

unconditional security.

Here is now how I see the rest of this work. First of all, for the method of generat-

ing better chaotic systems, more simulations must be done to obtain attractors with

good frequency properties, and possibly to detect a general structure on the optimal way

of adding noise to the state vector. In addition, a more detailed mathematical analysis

must be done. For example, it is necessary to calculate the Lyapunov exponents and the

entropy of modified chaotic systems and compare the results obtained with the state of

the art.

Secondly, a detailed construction of the cryptosystems presented in this thesis must

be done and followed by a complete cryptanalysis to determine if the cryptosystems

presented have a good level of security. Practical issues must also be taken into accounts,

such as the circuit design of chaotic systems and the programming of observers.

We saw in chapter 4 that there were certain problems when using the Rossler sys-

tem. We have to understand where they come from and how to solve them. A detailed

mathematical study of the higher adaptive order sliding mode observers should also be

made before they are used in practice. One idea would be to then use the higher adaptive

order sliding mode observers for the synchronization of chaotic systems used in possible

improvements of block ciphers such as AES.

Signal processing should be done on the signal obtained at the ANFIS output before
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using it for chaotic masking. The amplitude is very variable and even if the frequency

characteristics are good, it will be dangerous to directly add the sound emitted by RSA

to the noise emitted by the ANFIS. The noise emitted by ANFIS must therefore be

processed correctly before being used, and this processing must not deteriorate the

frequency characteristics of the signal.

Finally, a mathematical analysis of the variations of the SVP proposed must be made. It

is also necessary to seek which chaotic systems would be best suited to these problems.
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