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Résumé: Dans ce travail, nous utilisons le modèle de trafic microscopique Bando-FTL
avec le mécanisme Treiber et al. de changement de voie pour décrire les mouvements
des véhicules dans une rocade à plusieurs voies, et le modèle P∆P pour quantifier la
consommation des véhicules en carburant. Nous nous intéressons à contribuer à une
meilleure compréhension des systèmes de circulation routière à plusieurs voies. Dans
une première partie du travail, nous prouvons que les systèmes de trafic multi-voies sont
très sensibles aux paramètres de changement de voie; et qu’il est possible de dissiper les
ondes stop-and-go, dans un trafic multi-voies de voitures agressives, en introduisant un
seul véhicule autonome qui suit une loi d’accélération prescrite en forte congestion, et
obtenir une réduction de la consommation d’énergie des véhicules pouvant aller jusqu’à
75 %. Dans une deuxième partie, nous montrons que, dans des flux de traffic multi-voies
de voitures collaboratives et d’autres agressives, contrairement aux systèmes à une seule
voie, une proportion de voitures collaboratives aussi faible que 22% peut être efficace
pour dissiper les vagues stop-and-go. Enfin, dans une troisième partie, nous étudions un
système de circulation multi-voies où coexistent des camions (véhicules longs et lourds)
avec des voitures agressives, et nous montrons qu’une proportion de 29% de camions peut
être efficace pour dissiper les vagues stop-and-go.
Mots clés: stop-and-go, voitures autonomes, trafics mixtes, Bando-FTL, Treiber, P∆P .

Abstract: In this work, we use the Bando-FTL microscopic traffic model with the Treiber
et al. lane changing mechanism to describe the movements of vehicles in a multi-lane ring
road, and the P∆P model to quantify vehicular fuel consumption. We are interested
in contributing to giving a better understanding of multi-lane road traffic systems. In a
first part of the work, we prove that multi-lane traffic systems are very sensitive to lane
changing parameters; and that it is possible to dissipate stop-and-go waves, in multi-lane
traffic flows of aggressive cars, by introducing a single autonomous vehicle following a
prescribed acceleration law in high congestion, and obtain a reduction in vehicular energy
consumption of up to 75%. In a second part, we show that, in multi-lane traffic flows
of collaborative and aggressive cars, in contrast with single-lane systems, a proportion of
collaborative cars as low as 22% can be effective to smooth stop-and-go waves. Finally, in
a third part, we study a multi-lane traffic system where coexist trucks (long heavy weight
vehicles) with aggressive cars, and we show that a proportion of 29% of trucks can be
efficient to dissipate stop-and-go waves.
Key words: stop-and-go, autonomous cars, mixed-traffic, Bando-FTL, Treiber, P∆P .
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Introduction

The average person spends 6 days a year in traffic jams [50]. How do traffic jams
arise? We all have experienced those long hours of being stuck on the highway, wonder-
ing if an accident happened, or if there are works on the road; and suddenly, the traffic
becomes fluid again, no car wrecks and no worksite gear to be seen, as if it all happened
for no reason. This is called a phantom jam, a phenomenon that is caused by, apparently
nothing. The existence of phantom jams has been demonstrated in 2008 by Sugiyama
et al. [47], with a real life field experiment in which vehicles where asked to drive in a
circle at a constant pace, the objective being to reproduce a road a bit dense in traffic
but not too much. At the beginning, all the vehicles were driving at same speed and were
equally spaced, the traffic was fluid, until a vehicle decides (by itself) to decelerate for no
reason and produces a chain reaction, each vehicle brakes to not crash into the vehicle
in its front. In seconds, a traffic jam is created and starts propagating back like a shock
wave that was called a stop-and-go wave (see Figure 1). The real cause is the human time
reaction, a driver always brakes stronger than does the vehicle in its front and always
accelerates more slowly than does the vehicle in its front; if all the vehicles accelerated
the same way at the same time, the traffic jam would disappear. An additional problem
is our cognitive biases which can push us to act in irrational ways.

Figure 1 – Stop and go waves

14



INTRODUCTION 15

Stop-and-go waves have been shown to increase fuel consumption in experiments con-
ducted in [46], and shown to increase greenhouse emissions and degrade ambient air
quality [8]. Speed variations, as drivers have to constantly brake and accelerate, strongly
increase vehicular gas emissions and energy consumption compared to a state of constant
speed (the equilibrium flow). Moreover, being frequently exposed to traffic jams leads to
negative emotional health effects; mostly stress, nervousness, and aggressiveness; whereas
long driving hours impact physical health; it mostly causes back pain, pain in the legs,
headaches, and dizziness [1]. The economic impact of traffic congestion is also not neg-
ligible. Recent research conducted by the transport data company INRIX [22], on the
state of congestion in 200 cities in 38 countries, showed the impact of traffic jams on the
economy by looking at how much time and money it wastes. In the US, the total cost
of lost productivity caused by traffic congestion, in 2020, was found to be $87 billion. In
Algeria, there are reported cases of businesses closing or being relocated only because of
road traffic congestion [44].

One could think that building new roads or widening existing roads would solve the
problem. The roads would be less crowded and there would be less traffic jams. In real-
ity, this could make things worse due to Braess’s paradox [9]. In 1968, the city of Seoul in
South-Korea built a 6 lane highway above the Cheonggycheon river, in an effort to improve
traffic flow. After this road was made operational, the city became much more congested
than it was. In 2005, the mayor of Seoul initiated a project to tear down the highway and
revitalize the river. This was met with much controversy, as if this major road was already
jammed up with cars, removing it would surely make traffic worse around the city. But to
everyone’s surprise, after closing the road, the traffic flow improved drastically in the city
and travel times for the citizens of Seoul actually decreased. This is because almost all the
drivers in the city where taking this new road, instead of splitting up into different roads,
thinking that it would logically be the best choice since it is the largest one. Therefore,
traffic (transportation) engineers work on developing more efficient solutions to control
(regulate, improve) road traffic flow.

Traffic engineering is a branch of civil engineering that uses engineering techniques to
achieve the safe and efficient movement of people and goods on roadways. It focuses
mainly on research for safe and efficient traffic flow, such as road geometry, sidewalks and
crosswalks, cycling infrastructure, traffic signs, road surface markings and traffic lights.
Traffic engineering deals with the functional part of transportation systems, except the in-
frastructures provided. Traditional traffic control techniques include: traffic lights’ control
and coordination, traffic signals, ramp metering, and speed limit systems. The principal
limitation of these infrastructure based traffic control solutions is their limited spatial
resolution, as well as the need for driver compliance in the case of speed advisory based
systems. New more efficient control paradigms are emerging thanks to the improvement of
our understanding of road traffic at a rigorous mathematical level, in parallel with the ad-
vancements in vehicular technology. The latter are classified into levels of automation [43]
which range from level one autonomous vehicles (AVs) available today, that provide the
driver with minor technological assistance (stability control or lane correction assistance),
to level five (AVs) which operate autonomously in all scenarios and in which humans can-
not intervene. The ability of adaptive cruise controlled vehicles (level one automation) to
smooth the traffic flow (to dissipate stop-and-go waves), i.e. increase the flow rate, was
explored in [29, 48]. The use of vehicles as traffic controllers can also be combined with
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more classical traffic control infrastructure techniques, such as ramp meters and variable
speed limit systems [17, 37].

Traffic flow can be modeled at different scales, mainly at a microscopic level (by con-
sidering each vehicle individually), at a mesoscopic level (by considering the traffic in
aggregate terms, while being interested in microscopic properties such as the distribution
of the velocities and the accelerations), or at a macroscopic level (by only looking at the
macroscopic properties, such as the density of the vehicles, the mean speed, or the flow
rate). The vehicles can either circulate on a single-lane road, or be allowed to change lanes
in a multi-lane road following a certain lane changing model/mechanism. This traffic flow
can either be homogeneous, i.e. only contain one type of vehicles (all identical), and we
refer to it as 1-phase traffic flow; or heterogeneous, i.e. contain n distinct populations of
vehicles with n ≥ 2, and we refer to it as mixed-traffic or n-phase traffic flow. In the liter-
ature, the problem of dissipating stop-and-go waves that are caused by irrational human
driving behaviors has been very studied in a single-lane road context. The authors in [13],
demonstrated from theoretical analysis and experiments, the efficiency of introducing a
single autonomous vehicle following an appropriate acceleration law for dissipating stop-
and-go waves, in a single-lane ring-road (i.e. a closed circular road as the one in Figure 1)
where we have a 1-phase traffic flow only containing aggressive cars (aggressive drivers),
with a reduction of fuel consumption of up to 40%. In [20], the authors proved that
introducing a specific (critical) proportion (penetration rate) of collaborative cars (good
drivers) into a 1-phase traffic flow of aggressive cars can dissipate stop-and-go waves and
drastically improve the traffic flow. Moreover, they gave similar results for n-phase traffic
flows with n being arbitrary large, still only for single-lane roads. However, they also
showed that this critical penetration rate is a very large value (it is usually superior to
80%); therefore, this does not represent a realistic strategy to dissipate stop-and-go waves
(introducing 80% of good drivers in a real traffic flow is almost impossible). The dissipa-
tion/smoothing of stop-and-go waves in a multi-lane road context has, to the best of our
knowledge, not been studied theoretically yet. The authors in [19], studied the dissipation
of stop-and-go waves with autonomous vehicles in a multi-lane system by performing a
small number of numerical simulations (not enough random initial conditions to be able
to draw conclusions).

In this work, we use the Bando-FTL microscopic traffic model [24] with the Treiber et al.
lane changing mechanism [52] to describe the movements of vehicles in a multi-lane ring
road, and the P∆P model [45] to quantify vehicular fuel consumption. We are interested
in contributing to giving a better understanding of multi-lane road traffic systems. In
particular, in a first part of the work, we prove that multi-lane traffic systems are very
sensitive to lane changing parameters, and that it is possible to dissipate stop-and-go
waves, in multi-lane 1-phase traffic flows of aggressive cars, by introducing a single au-
tonomous vehicle following a prescribed acceleration law in high congestion, and obtain a
reduction in vehicular energy consumption of up to 75%. In a second part, we show that,
in 2-phase multi-lane traffic flows of collaborative and aggressive cars, in contrast with
single-lane systems, a proportion of collaborative cars as low as 22% can be effective to
smooth stop-and-go waves. Finally, in a third part, we study a multi-lane 2-phase traffic
system where coexist trucks (long heavy weight vehicles) with aggressive cars, and we
show that a proportion of 29% of trucks can be efficient to dissipate stop-and-go waves.
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We published the results obtained in the first part of this work in The European Physical
Journal Special Topics - Springer.

[24] Nicolas Kardous, Amaury Hayat, Sean T. McQuade, Xiaoqian Gong, Sydney
Truong, Tinhinane Mezair, Paige Arnold, Ryan Delorenzo, Alexandre Bayen,
and Benedetto Piccoli. A rigorous multi-population multi-lane hybrid traffic model
for dissipation of waves via autonomous vehicles. Eur. Phys. J. Spec. Top., 2022.

The outline of this thesis is as follows.

Chapter 1: In this chapter, we introduce the lexic used to study road traffic, by giving
the definitions related to describing the geometry of a road, and the composition of the
traffic flow in terms of vehicles. We also expose the most common modeling approaches
to describe the movements of the vehicles and to quantify their fuel consumption.

Chapter 2: In this chapter, we lay the mathematical foundations necessary to under-
stand the rest of the thesis. We explain some fundamental concepts about dynamical
systems, we give an introduction to stability theory and control theory, and we expose
some of the applications of these concepts in road traffic that will be needed in the rest
of this work.

Chapter 3: In this chapter, we introduce the main context of our study. We posi-
tion ourselves in the specific traffic flow settings of our work: the geometry of the road,
the composition of the traffic flow in terms of vehicles, and the parameters and models
we choose to describe each vehicle’s dynamics.

Chapter 4: In this chapter, we expose existing results and gaps in the literature of
dissipating stop-and-go waves in road traffic, we detail the three problematics we con-
tribute to address, and we expose our scientific approach and our findings.

Conclusions: Here, we summarize our results and talk about possible future research
and perspectives.
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Definitions and Preliminaries about
Road Traffic



Chapter 1 – Definitions and Preliminaries about Road Traffic 19

In this chapter, we introduce the lexic used to study road traffic, by giving the defini-
tions related to describing the geometry of a road, and the composition of the traffic flow
in terms of vehicles. We also expose the most common modeling approaches to describe
the movements of the vehicles and to quantify their fuel consumption.

1.1 Road geometries

While moving on the road, from time t = 0: beginning of the observation of the traffic
flow, to time t = tf : end of the observation of the traffic flow, the vehicles composing the
observed traffic flow: all the vehicles that are on the observed road during t ∈ [0, tf ], can
either follow a single-lane or multi-lane closed or open road.

1.1.1 Single-lane and multi-lane roads

What we refer to as multi-lane roads and single-lane (single-track) roads, during t ∈ [0, tf ],
is given by the following definitions.

Single-lane roads:

We mean by a single-lane (single-track) road a simple road with one lane, in which all the
vehicles are going in the same direction, and their order in the unique lane never changes
during t ∈ [0, tf ].

Figure 1.1 – Single-lane roads

Multi-lane roads:

In this work, we mean by a multi-lane road a road with at least two lanes but with the
traffic moving in the same direction in all its lanes. In a multi-lane road, we have two
possibilities: the vehicles can change lanes, or cannot.

Figure 1.2 – Multi-lane roads
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1.1.2 Closed and open roads

What we refer to as closed and open roads is given by the following definitions.

Closed roads:

We say that the observed vehicles follow a closed path, if there exists at least one vehicle
on the observed road that rides on a place on the road that it was at at a time ti ∈ [0, tf ]
at least once again at a time tj ∈ [0, tf ], with tj > ti.

Figure 1.3 – Closed roads

Remark 1.1.2.1. A closed road can be a single-lane or a multi-lane road.

Open roads:

We say that the observed vehicles follow an open path, if no vehicle on the observed
road rides on a place on the road that it was at at a time ti ∈ [0, tf ] again at any time
tj ∈ [0, tf ], such that tj > ti.

Figure 1.4 – Open roads

Remark 1.1.2.2. An open road can be a single-lane or a multi-lane road.

1.2 Composition of traffic flows

Depending on the composition of the traffic flow in terms of vehicles, we either have a
uni-population or a mixed-population traffic flow.

1.2.1 Uni-population and mixed-population traffic flows

Two vehicles are considered to be from two distinct types/categories if they differ in at
least one of these points:
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– Their lengths.

– Their masses.

– The parameters of the equations governing their longitudinal dynamics.

– Their physical limits in terms of velocity and/or acceleration and/or deceleration.

– Their lane changing threshold parameters.

And based on this, we have the following definitions.

Uni-population (1-phase) traffic flows:

We refer to a traffic in which all the vehicles are of the same type as a uni-population or
1-phase traffic flow.

Figure 1.5 – Uni-population traffic flow on a single-lane open stretch of road

Remark 1.2.1.1. We can have a uni-population traffic flow both in single and multi-lane
roads, and both in open and closed roads.

Mixed-population (n-phase) traffic flows:

We refer to a traffic in which the vehicles belong to n (n ∈ N and n ≥ 2) distinct categories
as a mixed-population or multi-population or n-phase traffic flow.

Figure 1.6 – Multi-population traffic flow on a single-lane open stretch of road

Remark 1.2.1.2. We can have a mixed-population traffic flow both in single and multi-
lane roads, and both in open and closed roads.
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1.3 Traffic modeling scales

A traffic flow can be studied and modeled at different scales. Consequently, road traffic
models are grouped into categories depending on the scale at which they describe the
traffic, including microscopic, macroscopic, and mesoscopic model categories. We
give brief definitions of these modeling scales, and a summary of the important ideas in
Table 1.1. We refer to [7, 15, 21, 38] for a detailed review of traffic modeling scales.

1.3.1 Microscopic models

A Microscopic model describes the behavior of a single vehicle-driver unit and its
interaction with the rest of the vehicles-drivers, giving the relationship between the mi-
croscopic characteristics of the traffic stream (i.e. of a single vehicle-driver unit), such
as: position, velocity, acceleration, lane changes, etc. The dynamics are represented by
ordinary differential equations [15].

Because these models model each single vehicle-driver unit, when the number of vehi-
cles on the road is very high, they become computationally expensive. We, however, use
microscopic modeling in our study (see our motivations for this choice in Section 3.4).

Microscopic traffic models can be classified into two categories: cell automata models,
which are discrete in time and space; and continuous models which are continuous in
time. This last category is used for detailed studies of traffic instabilities and car-following
behaviours [40].

1.3.2 Mesoscopic models

A mesoscopic traffic model bridges the gap between a microscopic and a macroscopic
model, by describing the traffic flow in aggregate terms such as in probability distri-
butions, but defining the behavioural rules for individual vehicles. In other terms, the
dynamical variables are the distributions of microscopic properties such as: velocity,
position, acceleration, etc. (see [27]).

Mesoscopic models apply gas-kinetic equations to describe the traffic flow. Recent re-
search developments are making these models more realistic, and some theoretical results
made them a starting point for many new macroscopic models [27].

1.3.3 Macroscopic models

A macroscopic model considers the general behavior of the group of vehicles-drivers
on the road, instead of the individual behaviors. It gives the relationship between the
macroscopic characteristics of the traffic stream, such as: density, flow, mean speed, etc.
This model assumes a significantly large number of vehicles on the road. The dynamics
are distributed and represented by partial differential equations [15].

Research works have proven the possibility of deriving a macroscopic model from a mi-
croscopic one by going to the large particle limit of the considered model [14].
The idea of macroscopic traffic models originated from the similarity between “traffic flow
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on long crowded roads” and “flood movements in long rivers” that was highlighted by
Lighthill and Whitham in 1955 [34] and complemented by the introduction of “shock-
waves on the highway” by Richards in 1956 [42], which completed the LWR model [15].

Macroscopic models are generally classified according to the order of the mathematical
model they obey.

1.3.4 Summary of modeling scales

One can summaries the fundamental ideas of each one of the three traffic modeling scales
in a simple Table.

Modeling scale Underlying principle Dynamical variables
Microscopic Car-following Microscopic variables: position,

velocity, acceleration, lane changes, etc.
Mesoscopic Gas-kinetics Distributions of microscopic variables:

velocity, position, acceleration, etc.
Macroscopic Fluid-dynamics Macroscopic variables: density,

flow, mean speed, etc.

Table 1.1 – Summary of traffic modeling scales

1.4 Longitudinal dynamics

In this section, we define the longitudinal dynamics of a vehicle, and give the commonly
used models for these dynamics.

1.4.1 Definition of longitudinal dynamics

The simplest movement of vehicles to model is the car-following behavior, i.e. when
the vehicles do not change lanes on the road. In this case, we say that they have one
directional dynamics, longitudinal dynamics. See Figure 1.7.

Figure 1.7 – Longitudinal dynamics
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Remark 1.4.1.1. This definition is valid for uni-population and mixed-population traffic
flows.

The general form of the system of equations governing the longitudinal dynamics of each
vehicle on the road, when modeling traffic at a microscopic scale, is given, ∀t ∈]0, tf [,
by:

{
ẋ(t) = v(t),

v̇(t) = f(h(t), ḣ(t), v(t)),
(1.1)

Where:

• x(t) : Is the position of the considered vehicle at a time t.

• v(t) : Is the velocity of the considered vehicle at a time t.

• v̇(t) : Is the acceleration of the considered vehicle at a time t.

• h(t) : Is the distance between the front of the considered vehicle and the rear of
the vehicle directly in front of it in the same lane at time t. The state h(t) = 0
represents a collision case.

• ḣ(t) : Is the derivative of h(t) with respect to time at time t. It is also the difference
between the velocity of the vehicle directly in front of the considered vehicle and its
own velocity.

• f : R3 ∋ (x, y, z) 7→ f(x, y, z) ∈ R is a smooth real function satisfying the following
conditions ∀t ∈ [0, tf ] [20]:

∂f

∂x

∣∣∣∣
(h(t),0,v(t))

> 0, (1.2)

∂f

∂y

∣∣∣∣
(h(t),0,v(t))

> 0, (1.3)

∂f

∂z

∣∣∣∣
(h(t),0,v(t))

< 0. (1.4)

The condition (1.2) means that:
For any given speed v(t), when the difference in speed ḣ(t) = 0, the acceleration of the
considered vehicle increases as the distance h(t) increases.

The condition (1.3) means that:
For any given speed v(t) and distance h(t), the derivative of f(·) with respect to ḣ(t) has
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a strictly positive value when the difference of velocities ḣ(t) = 0.
The condition (1.4) means that:
For any given distance h(t), when the difference in speed ḣ(t) = 0, the acceleration of the
considered vehicle decreases as its velocity v(t) increases.

Since we use microscopic modeling in our study (see our motivations for this choice in
Section 3.4), we present the main longitudinal dynamics microscopic models [24], the
Intelligent Driver Model, the Optimal velocity or Bando model, the Follow the
Leader model, and the Bando-Follow the Leader model.

1.4.2 Intelligent Driver Model (IDM)

The Intelligent Driver Model (IDM) gives the general form of the longitudinal dynamics
for a vehicle on the road, ∀t ∈]0, tf [, as [51]:


ẋ(t) = v(t),

v̇(t) = a

(
1−

(
v(t)
v0

)δ
−
(

s∗(v(t),ḣ(t))
h(t)

)2
)
,

s∗
(
v(t), ḣ(t)

)
= s0 + Tv(t) + v(t)ḣ(t)

2
√
ab

.

(1.5)

Where:

• v0 : Is the desired speed when driving on a free road.

• T : Is the adaptation time of the driver when following other vehicles.

• a : Is the acceleration in everyday traffic.

• b : Is the comfortable braking deceleration in everyday traffic.

• s0 : Is the minimum bumper-to-bumper distance to the front vehicle.

• δ : Is the exponent of the comparison between the actual speed of the vehicle v(t)
and its desired speed v0.

• s∗(·) : Is the desired dynamical distance.

1.4.3 Optimal Velocity or Bando (OV/Bando) model

The Optimal Velocity or Bando (OV/Bando) model gives the general form of the longi-
tudinal dynamics for a vehicle on the road, ∀t ∈]0, tf [, as [24]:

{
ẋ(t) = v(t),
v̇(t) = V (h(t))− v(t).

(1.6)

With the optimal velocity V (·) being a monotonically increasing bounded function. In
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the literature, one can find several formulas for the optimal velocity function V (·), the
common one is:

V (h(t)) = Vmax

tanh
(

h(t)
d0

− 2
)
+ tanh(2)

1 + tanh(2)

 . (1.7)

Where:

• Vmax : Is the maximal preferred speed of the considered vehicle.

• d0 : Is the minimal allowed distance between the considered vehicle and the vehicle
directly in front of it in the same lane.

1.4.4 Follow the Leader (FTL) model

The Follow the Leader (FTL) model gives the general form of the longitudinal dynamics
for a vehicle on the road, ∀t ∈]0, tf [, as [24]:

{
ẋ(t) = v(t),

v̇(t) = ḣ(t)
h(t)2

.
(1.8)

1.4.5 Bando-Follow the Leader (Bando-FTL) model

The Bando-Follow the Leader (Bando-FTL) model gives the general form of the longi-
tudinal dynamics for a vehicle on the road as the combination of the Bando and FTL
models, i.e. ∀t ∈]0, tf [ [24]:

{
ẋ(t) = v(t),

v̇(t) = α (V (h(t))− v(t)) + β
(

ḣ(t)
h(t)2

)
.

(1.9)

• α : Is a constant independent of time representing the weight of the optimal velocity
term.

• β : Is a constant independent of time representing the weight of the follow the leader
term.

• V (·) : Is given by (1.7).
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1.5 Traffic flow compositions and Bando-FTL

While adopting the Bando-FTL model, which is our case (see our motivations for this
choice in Section 3.6), we have that the general form of the equations governing the dy-
namics of a vehicle k in the road is given, ∀t ∈ [0, tf ] and ∀k ∈ [1,M ] ∩ N with M being
the total number of vehicles on the road, by [20]:

{
ak(t) = fk(hk(t), ḣk(t), vk(t)) = αk · (Vk(hk(t))− vk(t)) + βk · ḣk(t)

(hk(t))2
, (1.10)

Where

Vk(ξ) = gk(Vmaxk , ξ, d0k), (1.11)

the functions fk : R3 ∋ (x, y, z) 7→ fk(x, y, z) ∈ R are smooth real functions satisfying the
conditions (1.2)(1.3)(1.4), i.e. ∀t ∈ [0, tf ]:

∂fk
∂x

∣∣∣∣
(hk(t),0,vk(t))

> 0,
∂fk
∂y

∣∣∣∣
(hk(t),0,vk(t))

> 0,
∂fk
∂z

∣∣∣∣
(hk(t),0,vk(t))

< 0 (1.12)

and

• ak(t) : Is the acceleration of the vehicle k at time t.

• vk(t) : Is the speed of the vehicle k at time t.

• hk(t) : Is the distance between the front of the vehicle k and the rear of the vehicle
directly in front of it in the same lane at time t.

• ḣk(t) : Is the derivative of h(t) with respect to time at time t.

• αk : Is the weight of the OV/Bando model for the vehicle k.

• βk : Is the weight of the FTL model for the vehicle k.

• gk(·, ·, ·) : Is the optimal velocity preference function of the vehicle k.

• Vmaxk : Is the maximal preferred speed of the vehicle k.

• d0k : Is the minimal allowed distance between the vehicle k and the vehicle directly
in front of it in the same lane.

In [20], three typical cases are summarized:
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1.5.1 Unified model

In this case, fk(·, ·, ·) does not depend on k, i.e:

αk = α and βk = β and Vk(hk(t)) = V (hk(t)), ∀k ∈ {1, 2, · · · ,M}. (1.13)

That means that all the vehicles behave similarly. It is the case of 1-phase traffic flow.

1.5.2 Mixed traffic model

In this case, there are n different types of vehicles/drivers on the road, i.e.:

fk ∈ {Fm : m = 1, 2, · · · , n} , ∀k ∈ {1, 2, · · · , n} with n ≪ M, (1.14)

i.e.:

(αk, βk, Vk) ∈ {(Am, Bm,Vm) : m = 1, 2, . . . , n} , ∀k ∈ {1, 2, · · · , n} with n ≪ M.
(1.15)

It is the case of n-phase traffic flow.

1.5.3 Mixed traffic with common velocity preference model

In this case, only Vk(·) is independent of k, while ak and bk have different values for the
different types of vehicles, i.e.:

Vk(hk(t)) = V (hk(t)), ∀k ∈ {1, 2, · · · ,M}, (1.16)

but:

(αk, βk) ∈ {(Am, Bm) : m = 1, 2, . . . , n} , ∀k ∈ {1, 2, · · · , n} with n ≪ M. (1.17)

1.6 Bidirectional dynamics

In this section, we define the bidirectional dynamics of a vehicle, and give the commonly
used models for the direction of movement that we have not discussed yet.
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1.6.1 Definition of lateral dynamics

In multi-lane traffic systems when vehicles can change lanes, which are the systems that
we study, we can say that the vehicles have Bidirectional dynamics. They still move
forward on a lane following the vehicles in front of them in the same lane (longitudinal
dynamics), and they can also change lane and go left or right to a neighboring lane; the
later are the lateral dynamics. See Figure 1.8.

Figure 1.8 – Lateral dynamics

Remark 1.6.1.1. This definition is valid for uni-population and mixed-population traffic
flows.

1.6.2 Modeling lane-changes/lateral-dynamics

Many lane changing models (also called lane changing mechanisms) have been proposed
by researchers, and were subjects of review in [5, 35, 55]. A lane change, depending on the
driver’s motivation to change lane, can be classified as mandatory (MLC) or discretionary
(DLC). A (MLC) is performed when the driver must leave its current lane for some reason
(forced lane change), while a (DLC) is performed when the driver expects and wants to
improve its acceleration/velocity in the new lane (free lane change).

Lane changing models either represent these two types of lane change by separate models,
or combine them in one model, or only represent one of them.

Without distinction regarding how the lane changing mechanisms model the two types
of lane change LC, these models are classified into [55]: Gipps-type LC models, Utility-
theory based LC models, Cellular automata based LC models, Hazard-based (survival)
LC models, Fuzzy logic based LC models, and Markov process based LC models.

In the following subsections, we give brief definitions of these types, extracted from [55].
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1.6.3 Gipps-type LC models

These models consider the necessity, desirability and safety of lane changes. The driver is
assumed to maintain a desired speed and be in the correct lane for an intended turning
maneuver. When the turn is far away, the driver only concentrates on maintaining a
desired speed. And when the turn is close, the driver only considers staying in the correct
lane for the turning maneuver. If the turn is at a middle distance between these two
scenarios, the driver only considers lane changes to the turning lanes or lanes that are
adjacent to them. The above distance thresholds and the other parameters of the model
are defined deterministically with no consideration for the variations in the driver’s driving
behaviours over time, or the difference in driving styles between drivers. A priority system
is also defined deterministically to resolve conflicts when more than one lane is acceptable,
considering the presence of heavy vehicles, speed gain, and the locations of obstructions.
To the best of our knowledge, there has been no proposed method yet for making rigorous
estimations of the model’s parameters.

1.6.4 Utility-theory based LC models

In these models, the proposed LC structure consists of four latent (i.e., unobservable)
levels of decision hierarchy. Taking into account the drivers heterogeneity and state de-
pendence (the current choice’s dependence on previous driving experiences and LC).

Tentatives have been made to estimate the parameters of the model for special cases,
using for example vehicle trajectories: merging to the left lane from a freeway on-ramp,
which only requires two decision levels, i.e., gap acceptance and LC execution.

1.6.5 Cellular automata based LC models

Like other approaches used to model LC, Cellular automata based LC models face several
challenges. First of all, they are artifact-prone. One artifact induced by these models
is that the LC duration is implicitly fixed as the length of one time step (typically not
longer than 1s), which is unrealistically short and inconsistent with observations. Another
reported artifact is the infamous ping-pong traffic that vehicles laterally bounce back and
forth between lanes without forward moving [36].

Although most of these reported artifacts can be avoided, e.g., the ping pong phenomenon
can be eliminated by randomizing decisions of LC [36], vehicle movements need to be
scrutinized before any conclusions should be drawn whenever cellular automata based LC
models are used.

1.6.6 Hazard-based (survival) LC models

These models have seen the light as a response to the fact that the previously cited LC
models neither sufficiently nor explicitly consider the stochasticity and possibly the unsafe
character of the cognitive processes (e.g. perception, judgment and execution) followed
by drivers. Thus, a hazard-based duration model was proposed.

Unlike rule-based LC models, the hazard-based duration model treats driver behaviors as
a multiple duration process: free flow, car following, or lane change.
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1.6.7 Fuzzy logic based LC models

The overall structure of fuzzy logic based LC models is similar to the LC models discussed
previously (e.g. LC often categorized as either mandatory or discretionary. Two essen-
tial decisions are often considered: desirability (or necessity) of LC and gap acceptance),
except that the LC rules are fuzzified as IF–THEN rules and presented in a natural lan-
guage. The following is a typical IF–THEN LC rule: IF: (vehicle i is eligible for using
the left lane) and (the gap between vehicle i and the leader in the left lane is large) and
(the gap between vehicle i and the follower in the left lane is large) and (the speed in the
current lane is low) and (the speed in the left lane is high). THEN: (vehicle i changes to
the left lane).

Technically speaking, all the models that we discussed can be fuzzified.

1.6.8 Markov process based LC models

LC has also been modeled as a Markov process. These models aimed to reproduce LC
frequency but cannot explain the decision process: why or why not LC occurs. Thus,
they are not suitable for microscopic simulations. This limitation is overcome in [49]
by integrating a hidden Markov model (HMM) with the utility theory based modeling
framework.

1.6.9 The Treiber et al. lane changing mechanism

The Treiber et al. [52] lane changing mechanism, which is a variant of the Gipps-type
models, reads as follows for a considered vehicle on the road at ∀t ∈ [0, tf ]:


ā(t) > a(t) + ∆I (incentive),
ā(t) > −∆s, āfol (t) > −∆s (safety),
t > tc + τ (cooldown time).

(1.18)

Where:

• ∆I : Is the acceleration incentive threshold.

• ∆s : Is the acceleration safety threshold.

• a(t) : Is the acceleration of the vehicle changing lane in the original lane at time t.

• ā(t) : Is the expected acceleration of the vehicle changing lane in the new lane at
time t.

• āfol(t) : Is the expected acceleration of the follower of the vehicle changing lane in
the new lane at time t.

• tc : Is the last time that the considered vehicle changed lane, tc ∈ [0, tf ].

• τ : Is the cooldown time (the lane change time threshold), τ ∈ R∗
+.

• t : Is the time at which the considered vehicle is deciding a lane change.
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Meaning that a vehicle changes lane if and only if:

(i) Doing so is safe: no huge braking is implied for the follower (in the new lane) of the
vehicle changing lane.

(ii) It has an acceleration incentive: it will have a higher acceleration in the new lane
compared to if it does not change lane.

(iii) A certain amount of time has passed since it last changed lane. This amount of
time τ

(
τ ∈ R∗

+

)
after which it can change lane again is called the cooldown time.

1.7 Modeling fuel consumption

Quantifying vehicular fuel consumption and gas emissions with precise models is very im-
portant to be able to study the effect of vehicular traffic on the environment. The authors
in [41], give a brief review of the state-of-the-art and state-of-practice fuel consumption
models and compare them. These models are divided into macroscopic and microscopic
models:

– Macroscopic models use average aggregate network parameters to estimate network-
wide emission rates.

– Microscopic models estimate instantaneous vehicle fuel consumption and emission
rates, which are aggregated to estimate network-wide measures of effectiveness.

In all what follows in this document, we put the units of physical quantities either be-
tween [.] (e.g. the velocity is given in [m/s], meaning that the velocity is given in meter
per second), or we write them directly next to the numerical value of the physical quantity
(e.g. 1000s, meaning 1000 seconds).

The P∆P model [45] is a power based microscopic model, which gives the power consumed
by a considered vehicle at any given time t ∈ [0, tf ] (in seconds) with the following formula:

power(t) =
(
p+ q · (v(t))2 +mass ·max (0, a(t))

)
· v(t)

1000
, ∀t ∈ [0, tf ]. (1.19)

Where:

• power(t) : Is the power consumed by the considered vehicle at time t, in [kW ].

• p : Is the absorption coefficient for power, of the considered vehicle, in [N ].

• q : Is the absorption coefficient for velocity, of the considered vehicle, in [N · s2/m2].

• mass : Is the mass of the considered vehicle, in [kg].

• v(t) : Is the velocity of the considered vehicle at time t, in [m/s].

• a(t) : Is the acceleration of the considered vehicle at time t, in [m/s2].

We only detail the P∆P model in this section and not the other existing models, since it
is the model we use in our study (see our motivations for this choice in Section 3.11).
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Mathematical Background
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In this chapter, we lay the mathematical foundations necessary to understand the
rest of the thesis. We explain some fundamental concepts about dynamical systems, we
give an introduction to stability theory and control theory, and we expose some of the
applications of these concepts in road traffic that will be needed in the rest of this work.

2.1 Dynamical systems

In mathematics, a dynamical system is a system in which a function describes the time
dependence of a point in an ambient space. Examples include the mathematical models
that describe the swinging of a clock pendulum, the flow of water in a pipe, and the num-
ber of fish each springtime in a lake. The most general definition unifies several concepts
in mathematics such as ordinary differential equations and ergodic theory by allowing dif-
ferent choices of the space and how time is measured. Time can be measured by integers,
by real or complex numbers or can be a more general algebraic object, losing the memory
of its physical origin, and the space may be a manifold or simply a set, without the need
of a smooth space-time structure defined on it. Often the function is deterministic, that
is, for a given time interval only one future state follows from the current state. However,
some systems are stochastic, in that random events also affect the evolution of the state
variables [25].

The figures below show some examples of dynamical system.

Figure 2.1 – Inverted pendulum
on a cart (credit: [6])

Figure 2.2 – Fluid flow (credit: [4])

In what follows, we are only talking about deterministic, continuous time, and autonomous
systems. Where an autonomous system is a system for which the function describing the
evolution over time does not “explicitly” depend on time, e.g. we consider a function
f(X(t), Y (t)) but not a function f(t,X(t)).

Depending on if the function describing the evolution of the system over time is a linear or
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nonlinear function, the dynamics of the system are said to be linear or nonlinear, and the
system is said to be: a linear dynamical system, or a nonlinear dynamical system.

2.1.1 Linear dynamical systems

These systems can be solved exactly and have rich mathematical properties thanks to the
fact that they satisfy the superposition principle.

The general form of the equations governing the dynamics of a linear system is given
by:


Ẋ(t) = AX(t) = AX,
X(t0) = X0,
X : [t0, t1] ∋ t 7−→ Rn,
n ∈ N,
A ∈ Mn,n(R).

(2.1)

With:

X(t) =


x1(t)
x2(t)

...
xn(t)

 , ∀t ∈ [t0, t1]. (2.2)

Mn,n(R) is the set of matrices with n rows and n columns with coefficients in R, X = X(t)
is the state vector of the system at time t ∈ [tinitial = t0, tfinal = t1], Ẋ = Ẋ(t) is the
derivative of X = X(t) at the given time t, and X(t0) = X0 is the state of the system
at the initial time. The system of equations (2.1) is called the dynamics of the system.
The exact solution of a linear system is well-known and has the form:

X(t) = eAtX0, ∀t ∈ [t0, t1]. (2.3)

The Figure 2.3 and the Figure 2.4 show examples of linear dynamical systems. For
instance, the state vector of the system in Figure 2.3 can be chosen as ∀t ∈ [t0, t1]:

X(t) =

[
θ(t)

θ̇(t)

]
, (2.4)

where θ(t) is the angle that the needle makes at time t with its vertical position, and θ̇(t)
is its angular velocity at time t.
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Figure 2.3 – Metronome (credit:
pianoreviewer.com)

Figure 2.4 – Linear harmonic os-
cillator (credit: askiitians.com)

2.1.2 Nonlinear dynamical systems

In mathematics and applied sciences, a nonlinear system is a system in which the change
of the output is not proportional to the change of the input. Most systems are inherently
nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over
time, may appear to be chaotic [26], unpredictable, or counter-intuitive. Contrasting with
linear systems, for most nonlinear systems we do not have an exact solution or we do not
have a solution at all, the study of many of their properties is also relatively complicated
[54].

A nonlinear system is given by:


Ẋ(t) = f(X(t)) = f(X),
X(t0) = X0,
X : [t0, t1] ∋ t 7−→ Rn,
n ∈ N,
f : Rn 7−→ Rn.

(2.5)

With:

X(t) = X =


x1(t)
x2(t)

...
xn(t)

 and f(X) =


f1 (x1, x2, · · · , xn)
f2 (x1, x2, · · · , xn)

...
fn (x1, x2, · · · , xn)

 , ∀t ∈ [t0, t1]. (2.6)

Such that at least one of the elements fi(·) of f(·), for i ∈ {1, 2, · · · , n}, is a nonlin-
ear function; X = X(t) is the state vector of the system at time t ∈ [t0, t1]; Ẋ = Ẋ(t) is
the derivative of X = X(t) at the given time t; and X(t0) is the state of the system at
time t0. The system of equations (2.5) is called the dynamics of the system.

pianoreviewer.com
askiitians.com
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Remark 2.1.1. In the case where f(X) = AX, the system of equations 2.5 prescribes the
dynamics of a linear dynamical system. If we do not impose a constraint on the expression
of f(·), the general form of the dynamics of dynamical systems (either linear or nonlinear
systems) can be given by the system of equations 2.5.

The figures below show examples of nonlinear systems.

Figure 2.5 – Double pendulum
(credit: [23])

Figure 2.6 – Earth’s climate (credit: Rowan Grif-
fiths)

2.2 Equilibrium points

An equilibrium of a dynamical system is a value of the state variables when the state
variables do not change. In other words, an equilibrium is a solution that does not change
with time. This means if the system starts at an equilibrium, the state will remain at the
equilibrium forever [53].

For both linear and nonlinear systems, at an equilibrium X̄, if there are no external
perturbations, we have:

0 = f(X̄) the 0 of Rn, ∀t ∈ [t0, t1]. (2.7)

For continuous time dynamical systems, to find the equilibrium point one can solve the
following equation:

dX

dt
= Ẋ(t) = 0, i.e. f(X(t)) = 0, such that 0 is the 0 of Rn, ∀t ∈ [t0, t1]. (2.8)

This is why equilibrium points are also called stationary or steady-states.
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2.3 Existence and uniqueness of the solution of the
dynamics equation

If f(·) is locally Lipschitz at the neighborhood X0, we know that the dynamics:


Ẋ = f(X(t)) = f(X),
X(t0) = X0,
X : t ∈ [t0, t1] 7−→ Rn,
n ∈ N,
f : Rn 7−→ Rn,

(2.9)

make sense mathematically and physically, i.e. for an initial condition X0 ∈ D (D ⊂ Rn),
the ssystem “have up to some time” a solution which is “unique” [53].

Theorem 2.3.1. (Sufficient conditions for existence and uniqueness)
For t ∈ [t0, t1], if:

(i) f(·) satisfies the local Lipschitz condition:

∀r ∈ R+, ∃Lr > 0 such that ∀X, Y ∈ B = {X ∈ Rn | ||X −X0|| ≤ r}:
||f (X)− f (Y ) || ≤ Lr||X − Y ||, ∀t ∈ [t0, t1], ||.|| is any norm in Rn.

Then there exists a unique solution X(t) for the initial value problem (2.9), defined on
t ∈ [t0, t0 + δ] for some δ ∈ R∗

+ (local existence and uniqueness result). And we say
that f(·) is locally Lipschitz in the neighborhood of X0.

Theorem 2.3.2. If:

(i) f(·) is continuous on D ⊂ Rn for ∀t ∈ [t0, t1].

(ii) Given the formula of the Jacobian of f(·) (when it exists):

Df

DX
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn...

... · · · ...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 , (2.10)

if the Jacobian exists and all its elements are continuous and bounded on D for
∀t ∈ [t0, t1].

Then f(·) is locally Lipschitz on D.
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We have the following definitions about f(·):
- Locally Lipschitz on D : if locally Lipschitz in the neighborhood of all points X0 in
D and the Lipschitz constant Lr depends on r.

- Lipschitz on D : if locally Lipschitz on D and ∀r > 0 we have Lr = L with L > 0.

- Globally Lipschitz : if Lipschitz on Rn.

2.4 Stability theory

What follows is mainly inspired from [10]. All the following definitions and results concern
a particular equilibrium point (it is an equilibrium point of the system that has these
properties or not, not the system). We only define notions that are relevant to our work,
and we consider, to simplify the notations with no loss of generality, the equilibrium point
of interest to be X̄ = 0 (the 0 of Rn). Knowing that this can be any equilibrium point
with the appropriate change in reference. We denote by X(t,X0) the response of the
dynamical system at time t to the initial condition X0.

2.4.1 Stability

X = 0 is stable if and only if:

∀ε > 0 ∃δ(ε) > 0 such that ||X0|| < δ =⇒ ||X(t,X0)|| < ε, ∀t > t0. (2.11)

Which means that if the equilibrium point X = 0 is stable, for any open ball around
the origin (X = 0) with radius ε, it should always be possible to find an open ball around
the origin with radius δ, such that if the system starts inside this last ball, it will stay
inside the ball of radius ε for all future time. In other words, if the system starts close to
a stable equilibrium point it should stay close.
The figure below is a visual interpretation for the 2D case (n=2).

Figure 2.7 – Visual interpretation of stability for the 2D case
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2.4.2 Local asymptotic stability

If the equilibrium point X = 0 is locally asymptotically stable, the system will not
only stay close to this equilibrium if it starts close, but it will also converge to this equi-
librium point when t → +∞.

In other terms, the equilibrium point X = 0 is locally asymptotically stable iff (if and
only if):

(i) It is stable.

(ii) ∃r > 0 such that ||X0|| < r =⇒ limt→+∞ X(t) = 0 (convergence property).

The region of attraction Br(0) of the equilibrium X = 0 is the centered ball of radius
r defined as:

Br(0) = {X0 ∈ Rn | ||X0|| < r} ∩ D. (2.12)

With r here being the largest positive real number satisfying the convergence property
stated just above.

2.4.3 Global asymptotic stability

The equilibrium point X = 0 is globally asymptotically stable if and only if:

(i) It is locally asymptotically stable.

(ii) Br(0) = Rn.

Remark 2.4.3.1. This implies that X = 0 is the only equilibrium point of the system.
Because if there was another equilibrium point (EP), if the system starts at the other (EP)
it will stay at it and will not be attracted to X = 0 which will mean that Br(0) ̸= Rn.

2.4.4 Local exponential stability

This is a stronger property than asymptotic stability. The equilibrium point X = 0 is
locally exponentially stable if and only if:

∃r, k, λ > 0 such that ||X0|| < r =⇒ ||X(t)|| ≤ k||X0||e−λt, ∀t ≥ t0. (2.13)

This means that the distance between X(t) and the origin X = 0 is exponentially decay-
ing from its initial value X0 to X = 0.
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The region of attraction Er(0) of the equilibrium X = 0 is the centered ball of ra-
dius r defined as:

Er(0) = {X0 ∈ Rn | ||X0|| < r} ∩ D. (2.14)

With r here being the largest positive real number satisfying (2.13).

2.4.5 Global exponential stability

The equilibrium point X = 0 is globally exponentially stable if and only if:

∃k, λ > 0 such that ∀X0 ∈ Rn : ||X(t)|| ≤ k||X0||e−λt, ∀t ≥ t0. (2.15)

Remark 2.4.5.1. This implies that X = 0 is the only equilibrium point of the system.

2.4.6 Routh Hurwitz criterion

In this subsection, we state the Routh Hurwitz criterion for linear systems for which the
matrix A is diagonalizable, since we need it to understand the article [20] which gives
fundamental results that we cite and use in Chapter 4.

For a linear system (2.1) with solution:

X(t) = eAtX0, t ∈ [t0, t1], (2.16)

to be able to imagine the exponential of a matrix, take the Taylor series of exp(x) around
the equilibrium point X = 0 and replace x by At:

eAt =
+∞∑
m≥0

(At)m

m!
. (2.17)

We have:

AT = TD. (2.18)

With T being a matrix containing the eigenvectors of A as columns corresponding to the
appropriate eigenvalues in D, with D being a diagonal matrix containing the eigenvalues
of A, i.e.:



Chapter 2 – Mathematical Background 42

D =


φ1 0 . . . 0

0 φ2
. . . ...

... . . . . . . 0
0 . . . 0 φn

 , T = [ω1, ω2, . . . , ωn] . (2.19)

With ωi being the eigenvector of the matrix A corresponding to the eigenvalue φi of
matrix A, with i ∈ {1, 2, · · · , n}. So:

T−1AT = D. (2.20)

If we choose to make the following change of variable:

X = TZ, ∀t ∈ [t0, t1]. (2.21)

We have from (2.1), that ∀t ∈ [t0, t1]:

Ẋ = TŻ = AX =⇒ TŻ = ATZ =⇒ Ż = T−1ATZ =⇒ Ż = DZ. (2.22)

This is a simpler system because D is diagonal, and its solution is given by:

Z(t) = eDtZ(t0) =


eφ1t 0 . . . 0

0 eφ2t . . . ...
... . . . . . . 0
0 . . . 0 eφnt

Z(t0), ∀t ∈ [t0, t1]. (2.23)

Using A = TDT−1 to simplify (2.17), we get ∀t ∈ [t0, t1]:

eAt = eTDT−1t = T
+∞∑
m≥0

(AD)m

m!
T−1 =⇒ eAt = TeDtT−1. (2.24)

So ∀t ∈ [t0, t1]:

X(t) = TeDtT−1X0. (2.25)
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And given that:

eDt =


eφ1t 0 . . . 0

0 eφ2t . . . ...
... . . . . . . 0
0 . . . 0 eφnt

 , ∀t ∈ [t0, t1]. (2.26)

And writing the eigenvalues in the form :

φi = ai + jbi, ai, bi ∈ R, ∀i ∈ {1, 2, · · · , n}, j is the complex number j =
√
−1. (2.27)

Implies ∀t ∈ [t0, t1]:

eφit = eait(cos(bit) + j sin(bit)), ∀i ∈ {1, 2, · · · , n}. (2.28)

And by writing:

X(t) =


x1(t)
x2(t)

...
xn(t)

 , ∀t ∈ [t0, t1]. (2.29)

We can deduce the following results:

(i) If ∃i ∈ {1, 2, · · · , n} such that ai, the real part of the eigenvalue φi, is strictly larger
than 0, there ∃xi(t) that exponentially blows to infinity when t is big enough. In
other terms, X diverges from X = 0, and therefore, the equilibrium point X = 0 is
unstable. The xi(t) follows a similar behavior as in Figure 2.8.

Figure 2.8 – Exponential divergence of xi(t)
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(ii) If ∀i ∈ {1, 2, · · · , n} we have ai < 0, all xi(t) converge exponentially to the origin
when t goes to infinity. Therefore, the equilibrium point X = 0 is exponentially
stable. All the elements xi(t) of X follow a similar behavior as in Figure 2.9.

Figure 2.9 – Exponential convergence of xi(t) to 0

Summary 2.4.6.1. If all the eigenvalues of matrix A have negative real parts, the equi-
librium point of the linear system Ẋ = AX is exponentially stable. And if there exists
at least one eigenvalue of A with a positive real part, the equilibrium point of the linear
system Ẋ = AX is unstable.

2.4.7 Some good facts to know

In this section, we state some important remarks and we leave the proofs for the interested
readers to look for:

(i) Linear systems have at most one equilibrium point. While nonlinear systems can
have one or many equilibrium points.

(ii) For linear systems, if the equilibrium point is stable it is always exponentially stable.

(iii) For linear systems, the convergence to the equilibrium point property defined in
Section 2.4.2, implies the stability of the equilibrium point. But, for nonlinear
systems, convergence does not always imply stability.

(iv) For both linear and nonlinear systems, exponential stability (local or global) always
implies stability.

(v) For both linear and nonlinear systems, exponential stability always implies asymp-
totic stability.
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2.5 Linearizing around an equilibrium point

Given the complexity of nonlinear systems, to study them, we generally linearize the orig-
inal system around an equilibrium point then study the linear version and deduce local
results around the considered equilibrium point X̄ from linear theories.
If we write:

X(t) =


x1(t)
x2(t)

...
xn(t)

 , ∀t ∈ [t0, t1]. (2.30)

For the nonlinear system Ẋ = f(X) we have ∀t ∈ [t0, t1]:


ẋ1 = f1 (x1, x2, · · · , xn) ,
ẋ2 = f2 (x1, x2, · · · , xn) ,
...
ẋn = fn (x1, x2, · · · , xn) .

(2.31)

The Jacobian of the system at the equilibrium point X = X̄ is then given by:

Df

DX

∣∣∣∣
X=X̄

=



∂f1
∂x1

∣∣∣
X=X̄

∂f1
∂x2

∣∣∣
X=X̄

· · · ∂f1
∂xn

∣∣∣
X=X̄

∂f2
∂x1

∣∣∣
X=X̄

∂f2
∂x2

∣∣∣
X=X̄

· · · ∂f2
∂xn

∣∣∣
X=X̄...

... · · · ...
∂fn
∂x1

∣∣∣
X=X̄

∂fn
∂x2

∣∣∣
X=X̄

· · · ∂fn
∂xn

∣∣∣
X=X̄

 . (2.32)

The linearized system around the considered equilibrium point X̄ = 0 is given by:

Ẋ =
Df

DX

∣∣∣∣
X=X̄=0

X, ∀t ∈ [t0, t1]. (2.33)
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To give an intuition of where does this come from, assume X̄ = 0, then around X̄ = 0 we
have for m ∈ N:

(Ẋ − ˙̄X) = f(X − X̄)

≈ f(X̄) +
Df

DX

∣∣∣∣
X=X̄

(X − X̄).
(2.34)

When X → X̄ and X̄ = 0 we have f(X̄) = 0 (recall (2.7)) and (X− X̄) = X, which gives
(2.33).

Theorem 2.5.1. (Hartman Grobman)
If all the eigenvalues of Df

DX

∣∣
X=X̄

have a non-zero real part, the linear system:

Ẋ = f(X̄) +
Df

DX

∣∣∣∣
X=X̄

(X − X̄), (2.35)

describes well the behavior of the original nonlinear system Ẋ = f(X) around X̄.

In other terms, this theorem states that the behavior of a dynamical system in a do-
main near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its
linearisation near this equilibrium point, where hyperbolicity means that no eigenvalue of
the linearisation has real part equal to zero. Therefore, when dealing with such dynami-
cal systems one can use the simpler linearisation of the system to analyse its behaviour
around equilibria.

2.6 Some control theory

In this section, we introduce some basic concepts of control theory [53] that are needed
in this work. For further reading on control theory we recommend [31, 53].

Control theory deals with driving a dynamical system to a desired state, while some-
times minimizing some criteria (such as time, energy, or something else).

When being able to measure the response of the system to a given control, and then
re-adapt the control to the received feedback, we say that we have a closed-loop system
and that we are performing feedback control. This process is explained visually in Figure
2.10.

A typical feedback control system is written as:

Ẋ(t) = f(X(t)) + u(t,X(t)), ∀t ∈ [t0, t1]. (2.36)

Where u(t,X(t)) is the control term, also called a control law or a controller. There ex-
ists many controllers in the literature, such as: proportional controllers (P), proportional
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integral controllers (PI), and proportional integral derivative controllers (PID).

The simplest controller is the (P) controller, it is the one we use in our work, and it
is given by:

u(t,X(t)) = −kX(t), k ∈ Mn,n(R), for t ∈ [t0, t1]. (2.37)

It is shown in Figure 2.10.

Figure 2.10 – Proportional feedback control

The Figure 2.10 illustrates how the control law u acts on the system to make it produce a
response X, that we observe and take into account to improve the control law u (feedback
control) after multiplying it by −k (proportional controller).

The goal of control can be to stabilize an equilibrium point. We give an intuition of
how this is performed using a linear system, and it is the same idea for nonlinear systems.
Take the typical linear system with equilibrium point X̄ = 0:


Ẋ = AX(t) = AX,
X(t0) = X0,
X : t ∈]t0, t1] 7−→ Rn,
n ∈ N,
A ∈ Mn,n(R).

(2.38)

The controlled version with the (P) controller (2.37) is given by:

Ẋ = AX − kX = (A− k)X, ∀t ∈ [t0, t1]. (2.39)

It becomes a new dynamical system with matrix (A−k) instead of A and with equilibrium
point X̄ = 0. By appropriately choosing k, this new system’s equilibrium point can be
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stable (by having a matrix (A− k) with all eigenvalues of strictly negative real parts).

For a general system for which the equilibrium point X̄ is not the origin, we can choose
u(t,X(t)) = −k(X − X̄) instead of u(t,X(t)) = −kX, and the previous idea still applies
by seeing that we can write Z = X−X̄ at any time t ∈ [t0, t1] and go back to an equivalent
linear system with equilibrium point Z̄ = 0.

Controlling a system and stabilizing its equilibrium point is not always possible. Now, we
define controllability and stabilizability:

– Controllability: Controllability is defined as the ability of a control system to reach
a desired state from a fixed (initial) state. And there are ways for studying the
controllability of a system, which we do not cover here. We just note that if we
could steer a system towards a certain state/direction with control, it means that
this direction is a controllable direction of the system (a reachable direction with
control).

– Stabilizability: A system is stabilizable if all of its unstable directions (the xi ele-
ments of X which blow to infinity, as explained in Subsection 2.4.6) are controllable.

For nonlinear systems, if they could be linearized, and if the linear version is controllable,
a very used approach to control them is to design controllers for the linearized version
first and then test if it gives the suitable results on the nonlinear original system.

2.7 Applications to road traffic

In this section, we introduce applications in road traffic that we need in this work for the
notions we have seen in this chapter. Other application are discussed in Chapter 4.

2.7.1 Definition of equilibrium flow

We say that the road traffic is at an equilibrium flow starting from a time t∗, such that
t∗ ∈ [0, tf ], if ∀i ∈ [1, Nj]∩N and ∀j ∈ [1, J ]∩N, where Nj is the total number of vehicles
on lane j and J is the total number of lanes on the observed road, if we have [30]:

(i) The velocity V j
i (t), of each vehicle i in the lane j of the observed road, equals the

same constant velocity v̄j when t ∈ [t∗, tf ], ∀j ∈ [1, J ] ∩ N.

(ii) The distance hj
i (t), between the front of the vehicle i in the lane j and the rear of the

vehicle directly in front of it in the same lane, equals a constant h̄j
i when t ∈ [t∗, tf ],

∀j ∈ [1, J ] ∩ N.

(iii) There are no lane changes when t ∈ [t∗, tf ].
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Mathematically, at the equilibrium flow, ∀i ∈ [1, Nj]∩N and ∀j ∈ [1, J ]∩N and ∀t ∈ [t∗, tf ],
we have:

{
V j
i (t) = v̄j,

hj
i (t) = h̄j

i .
(2.40)

Meaning that at an equilibrium flow, all the vehicles that are in the same lane j (∀j ∈
[1, J ]∩N) have the same velocity v̄j, but different distances between each other h̄j

i which
stay constant over time (∀j ∈ [1, J ] ∩ N and ∀i ∈ [1, Nj] ∩ N).

The couple
(
v̄j, h̄j

i

)
, ∀i ∈ [1, Nj] ∩ N and ∀j ∈ [1, J ] ∩ N, is referred to as the equi-

librium flow in this work. In the case of a single-lane road (J = 1), we denote it just by(
v̄, h̄i

)
, ∀i ∈ [1, N ]∩N, such that N is the total number of vehicles in the single-lane road.

Remark 2.7.1.1. An equilibrium flow does not always exist for the road traffic system.

Theorem 2.7.1.1. The equilibrium flows of the road traffic system are equilibrium
points of the system, which means that if the system starts at such a state or reaches
it at a certain time t∗ ∈ [0, tf ], it stays at it forever, this justifies the name of equilibrium
flow [30].

2.7.2 Uniqueness of equilibrium flow and its value

In the mixed traffic model with common velocity preference with no lane changes, the
equilibrium flows are the same as the equilibrium flows in the unified model if they exist.
This is because, at an equilibrium flow, we have (after recalling the system of equations
(1.10) in Section 1.5):

{
ak(t) = fk

(
hk(t), ḣk(t), vk(t)

)
= 0,

ḣk(t) = 0,
∀t ∈ [t∗, tf ] and ∀k ∈ [1,M ] ∩ N (2.41)

Which implies that when t ∈ [t∗, tf ]:

Vk(hk(t))− vk(t) = 0 and Vk(hk(t)) = vk(t) = v̄, ∀k ∈ {1, 2, · · · , n} with n ≪ M.
(2.42)

Which means that v̄ is independent of ak and bk, and the equations (2.41)(1.12) im-
ply that when an equilibrium flow exists, it is unique (i.e. h̄k = V −1

k (v̄), ∀k ∈ [1,M ]∩M ,
in other terms, an equilibrium flow velocity v̄ is associated to only one possible equilibrium
flow inter-vehicular distance h̄ for each vehicle on the road), and this is true in the three
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models of traffic flow seen in Section 1.5 when there are no lane changes. Thus, since in
the mixed traffic with common velocity preference model, we have Vk(hk(t)) = V (hk(t))
for ∀k ∈ [1,M ]∩N, the equilibrium flow is the same as the equilibrium flow in the unified
model.

Theorem 2.7.2.1. When an equilibrium flow exists, in case there are no lane changes,
it is unique, and this is true in the three traffic flow cases [20].

Theorem 2.7.2.2. When an equilibrium flow exists for the mixed traffic with common
velocity model where there are no lane changes, it also exists for the unified model with
no lane changes and vice versa. Moreover, the equilibrium flow is the same in the two
cases [20].

2.7.3 Linearizing around an equilibrium flow

The general traffic model given by (1.10) (1.11) (1.12), can be nonlinear. As seen in
Section 2.5, the study of the linearized system around the equilibrium point can give us
local stability results about the real nonlinear system.

After calculating the Jacobian of the system of equations (1.10) (1.11) (1.12), for a con-
sidered vehicle k with k ∈ [1,M ]∩N, in a single-track road, [11] gave the following results
for the considered vehicle ∀t ∈ [0, tf ]:

a
(1)
k =

∂fk
∂x

∣∣∣∣
(h̄k,0,v̄)

, a
(2)
k =

∂fk
∂y

− ∂fk
∂z

∣∣∣∣
(h̄k,0,v̄)

, a
(3)
k =

∂fk
∂y

∣∣∣∣
(h̄k,0,v̄)

. (2.43)

The perturbations in velocity and distance from the considered equilibrium point
(
v̄, h̄k

)
,

∀k ∈ [1,M ] ∩ N, for a considered vehicle k on the road, ∀t ∈ [0, tf ] and ∀k ∈ [1,M ] ∩ N,
are denoted by:

{
Yk(t) = hk(t)− h̄k,
Uk(t) = vk(t)− v̄.

(2.44)

And the equation (1.10) becomes equivalent to:

U̇k(t) = fk

(
h̄k + Yk(t), Ẏk(t), v̄ + Uk(t)

)
, ∀t ∈ [0, tf ] and ∀k ∈ [1,M ] ∩ N. (2.45)

Where Ẏk(t) is the derivative of Yk(t) at time t ∈ [0, tf ], and U̇k(t) is the derivative
of Uk(t) at time t ∈ [0, tf ]. In the case of a closed single-track road, YM+1(t) = Y1(t) and
UM+1(t) = U1(t), ∀t ∈ [0, tf ], the following condition is satisfied:
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M∑
k=1

Yk(t) =
M∑
k=1

hk(t)−
M∑
k=1

h̄k = 0, ∀k ∈ [1,M ] ∩ N and ∀t ∈ [0, tf ]. (2.46)

The linearization around the equilibrium point, given in [11], gives us the linearized ver-
sion of the equation (2.45):

U̇k(t) = a
(1)
k · Yk(t)− a

(2)
k ·Uk(t) + a

(3)
k ·Uk+1(t), ∀t ∈ [0, tf ] and ∀k ∈ [1,M ]∩N. (2.47)

With the vehicle k + 1 being the vehicle directly in front of the considered vehicle k,
and Uk+1(t) = vk+1(t)− v̄. In the case of a closed single-lane road, the equation (2.46) is
satisfied.

Note that a
(1)
k , a(2)k , and a

(3)
k are independent of time.

2.7.4 Stability of equilibrium flow

The authors in [11], studied the stability of the unified model (i.e. the case where
∀k ∈ [1,M ] ∩ N we have: fk(·) = f(·) and a

(1)
k = a(1) and a

(2)
k = a(2) and a

(3)
k = a(3)) in a

closed single-lane road setting and gave the following results:

Theorem 2.7.4.1. The equilibrium flow
(
h̄k, v̄

)
∀k∈[1,M ]∩N =

(
h̄, v̄
)
, of the system (1.10)

(1.11) (1.12) in the case of a unified model, is:

• Locally stable, if:
(a(2))2 − (a(3))2 − 2 · (a(1)) ≥ 0. (2.48)

• Unstable, provided M sufficiently large, if:

(a(2))2 − (a(3))2 − 2 · (a(1)) < 0. (2.49)
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In this chapter, we introduce the main context of our study. We position ourselves in
the specific traffic flow settings of our work: the geometry of the road, the composition of
the traffic flow in terms of vehicles, and the parameters and models we choose to describe
each vehicle’s dynamics.

3.1 Description of the road

We propose to study a traffic flow on a multi-lane ring-road. In other words, the observed
road has a closed circular shape, and is composed of a finite number of lanes J (J ∈ N∗),
with each lane having the same width of 3m. The reference length L (L ∈ R∗

+) is the
length of the line situated in the inner extremity of lane J . The length Lj of the line
situated in the inner extremity of lane j (∀j ∈ [1, J ]∩N), which we call the length of the
lane j, is computed by:

Lj =

(
L

2π
+ 3J − 3j

)
2π, ∀j ∈ [1, J ] ∩ N. (3.1)

We refer to L as the length of the road. The outer lane of the road (lane 1) is the
longest lane, and the length of each lane is smaller the closer it is to the center of the
road. See Figure 3.1 for clarification.

The reasons for considering a ring road are explained in [11], and we cite them:

(i) No boundary conditions are needed, and one has a perfect control on the average
vehicle density.

(ii) The circular road corresponds to an infinite straight road with periodic traffic dy-
namics.

(iii) Experimental evidence of instabilities in such settings exists [46] [47], and the ex-
perimental results can be used to calibrate our model parameters.

3.2 Composition of the traffic

At time t = 0: beginning of the observation of the traffic flow, we have the same finite
number N (N ∈ N∗) of vehicles in each lane of the ring-road described in Section 3.1, i.e.
we have a total number of N × J vehicles on the road.

At any time t ∈ [0, tf ], tf : end of the observation of the traffic flow, the vehicles in each
lane j ∈ [1, J ] ∩N are numbered from 1 to N , such that with ∀i, i+ 1, i− 1 ∈ [1, N ] ∩N
the vehicle numbered i + 1 (vehicle i + 1) is the vehicle directly in front of the vehicle
numbered i (vehicle i). The vehicle i + 1 is called the leader of the vehicle i. And the
vehicle numbered i− 1 (vehicle i− 1) is the vehicle for which the leader is the vehicle i.
The vehicle i− 1 is called the follower of the vehicle i.
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Since the vehicles follow a closed road (closed path), we set the following convention,
∀t ∈ [0, tf ]:

vehicle j
N+1 = vehicle j

1, ∀j ∈ [1, J ] ∩ N. (3.2)

With ∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N, the vehicle j
i is the vehicle numbered i in the lane j.

We start the numbering of the vehicles from 1 and not zero to avoid confusion when
implementing our model in MATLAB, since the first elements of vectors in MATLAB
have the index 1 and not 0.

We interest ourselves in the study of the following traffic scenarios (in terms of traffic
populations):

(i) A 1-phase traffic flow, with only aggressive cars, which we define later in Remark
3.5.1.

(ii) A 2-phase traffic flow, with collaborative cars, which we define later in Remark 3.5.1,
and aggressive cars.

(iii) A 2-phase traffic flow, with cars and trucks.

3.3 Measurements and parameters of the path and
the vehicles

In this section, we define the parameters describing the traffic on the ring-road, by intro-
ducing the means of characterizing the dynamical properties of each vehicle.

3.3.1 Position

We choose the origin of the position of each vehicle i in each lane j to be whatever the
position on the road that the vehicle 1 in that lane j was at at time t = 0. The position at
time t (∀t ∈ [0, tf ]) of the point situated in the geometric center of the vehicle i in lane j,
∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N, is parameterized by Xj

i (t). We call Xj
i (t) the position

of the vehicle i in the lane j at time t. We recall the origin of the positions mathematically:

Xj
i (0) = 0 ⇔ i = 1, ∀j ∈ [1, J ] ∩ N. (3.3)

The position Xj
i (t) is a curvilinear distance at time t from Xj

1(0), which follows the cir-
cular line situated in the middle of the width of lane j, ∀j ∈ [1, J ]∩N and ∀i ∈ [1, N ]∩N
and ∀t ∈ [0, tf ].
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3.3.2 Headway

The headway Hj
i (t) is the distance between the geometric centers of the vehicles i+1 and

i at time t (∀t ∈ [0, tf ]), it is given by:

Hj
i (t) = Xj

i+1(t)−Xj
i (t), ∀i ∈ [1, N − 1] ∩ N and ∀j ∈ [1, J ] ∩ N. (3.4)

For the case of i = N , we refer to the Subsection 3.3.5. The relationship between Hj
i (t)

and hj
i (t), ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N, is:

hj
i (t) = Hj

i (t)−
lji+1(t) + lji

2
. (3.5)

Where:

• lji : Is the length of the vehicle i in lane j.

• lji+1(t) : Is the length of the vehicle directly in front of the vehicle i in lane j at time
t in the same lane j.

We can easily see that in our closed road we have ∀t ∈ [0, tf ]:

N∑
i=1

Hj
i (t) = Lj, ∀j ∈ [1, J ] ∩ N. (3.6)

3.3.3 Velocity

The velocity at time t (∀t ∈ [0, tf ]) of the vehicle i in lane j, where i ∈ [1, N ] ∩ N and
j ∈ [1, J ]∩N, is parameterized by V j

i (t), such that V j
i (t) is the derivative of Xj

i (t) at time
t (∀t ∈ [0, tf ]).

3.3.4 Acceleration

The acceleration at time t (∀t ∈ [0, tf ]) of the vehicle i in lane j, where i ∈ [1, N ]∩N and
j ∈ [1, J ]∩N, is parameterized by Aj

i (t), such that Aj
i (t) is the derivative of V j

i (t) at time
t (∀t ∈ [0, tf ]).

We refer to the relation between V j
i (t) and its derivative Aj

i (t) as the dynamics of our
system.
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3.3.5 Conventions

The first convention (3.2) allows us to define the following conventions for our closed road
setting ∀t ∈ [0, tf ] and ∀j ∈ [1, J ] ∩ N:

Xj
N+1(t) = Xj

1(t), (3.7)

Hj
N(t) = Xj

N+1(t)−Xj
N(t) = Xj

1(t)−Xj
N(t), (3.8)

V j
N+1(t) = V j

1 (t), (3.9)

Aj
N+1(t) = Aj

1(t). (3.10)

The Figure 3.1 shows the configuration of the road at time t = 0 for clarification.

Figure 3.1 – Configuration of the traffic flow at t = 0
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3.4 The scaling problem: why use a microscopic model

The following explanations are inspired from our article [24].

For a precise measure of fuel consumption, a detailed description of the dynamics and
behaviours of each individual vehicle-driver unit is necessary. Therefore, we prefer to
adopt a microscopic traffic model for our study. However, our choice is also motivated
by other reasons. On one hand, when dealing with heterogeneous traffic flows, which is
our case, modeling the different categories of vehicles-drivers with distinct macroscopic
models raises the issue of modeling the interactions between these different macroscopic
models, and modeling some of the vehicles with macroscopic models and the rest with
microscopic models and then coupling the macroscopic and microscopic models, is also a
delicate task (but a task that was successfully done in the literature [12, 18, 32, 33]), while
the interactions between the different categories of vehicles-drivers is very easily repre-
sented in microscopic modeling. On the other hand, mesoscopic models are still limited
to laboratory tests and have not been used enough in practical applications. Mesoscopic
modeling also tends to be complicated due to the differential approach used and the gas
momentum assumption made, and this may pose a challenge in applying them to real life
situations [2]. In addition, an approach consisting of starting from a microscopic model
and using a mean-field limit to obtain a partial differential equation (PDE) that repre-
sents the well-designed behavior of the microscopic system at a larger scale (large number
of vehicles) was proposed in [24].

Summary 3.4.1. Given that:

(i) We wish to study heterogeneous traffic flows, and it is very simple to model the
interactions between the different vehicles-drivers using microscopic modeling.

(ii) Coupling macroscopic models, or macroscopic models with microscopic ones, is a
delicate task.

(iii) The mesoscopic models lack realism and real word proven applications.

(iv) We wish to have a high level of precision on our measures of fuel consumption and
speed variance.

(v) The possibility of going to the mean field limit of a microscopic model to generalize
the obtained results for a large (or infinite) number of vehicles on the road.

We restrain ourselves to a manageable number of vehicles and work at a microscopic scale
only.
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3.5 The Bando-FTL dynamical model

The model we use to prescribe the dynamics of the vehicles in the traffic flow is the Bando-
FTL model, with a constraint on the acceleration (it is bounded), i.e. ∀i ∈ [1, N ]∩N and
∀j ∈ [1, J ] ∩ N and ∀t ∈ [0, tf ]:



Ẋj
i (t) = V j

i (t),

f j
i (H

j
i (t), l

j
i+1(t), V

j
i (t), V

j
i+1(t)) = αj

i

(
V i,j
opt

(
Hj

i (t)−
lji+1(t) + lji

2

)
− V j

i (t)

)

+ βj
i

 V j
i+1(t)− V j

i (t)(
Hj

i (t)−
lji+1(t)+lji

2

)2

 ,

Aj
i (t) = V̇ j

i (t) = min(max(f j
i (t),−maxi,jdec),maxi,jacc).

(3.11)

With:

V i,j
opt(x) = V i,j

max

tanh
(

x

di,j0

− 2
)
+ tanh(2)

1 + tanh(2)

 , x ∈ R+. (3.12)

And:

N∑
i=1

Hj
i (t) = Lj. (3.13)

Where:

• αj
i : Is the weight of the OV/Bando model.

• βj
i : Is the weight of the FTL model.

• V i,j
opt(x) : Is the optimal velocity preference function of the vehicle i in lane j.

• V i,j
max : Is the maximal preferred speed of the vehicle i in lane j.

• lji : Is the length of the vehicle i in lane j.

• lji+1(t) : Is the length of the vehicle directly in front of the vehicle i in lane j at time
t.

• di,j0 : Is the minimal allowed distance between the vehicle i in lane j and the vehicle
directly in front of it in the same lane.
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• maxi,jacc : Is the maximal acceleration the vehicle i in lane j is capable of.

• maxi,jdec : Is the maximal deceleration the vehicle i in lane j is capable of.

Remark 3.5.1. For the case where in lane j ∈ [1, J ] ∩ N: αj
i = αj and βj

i = βj and
V i,j
opt(x) = V j

opt(x) and lji = lj, for ∀i ∈ [1, N ] ∩ N, when there are no lane changes, it
has been shown (based on the results stated in Subsection 2.7.4) that this model produces
stop-and-go waves in lane j if [47]:

αj

2
+

L2βj

(N)2
< V̇ j

opt

(
L

N
− lj

)
. (3.14)

Where V̇ j
opt

(
L
N
− lj

)
is the derivative of the function V j

opt(x) at L
N
− lj.

We refer to the vehicles satisfying the inequality (3.14) as aggressive vehicles, and to
the vehicles satisfying the opposite of the inequality (3.14) as collaborative vehicles.

3.6 Why use the Bando-FTL model

The Bando-FTL model has several advantages regarding the subject of our study:

(i) Not all microscopic models can produce stop-and-go waves (some of them are more
realistic than the other ones regarding this point). IDM and Bando-FTL have been
shown to do so [24].

(ii) Bando-FTL is generally more robust than IDM. The well-posedness of Bando-FTL
and a time delayed version of it have been proven in [16], and the ill-posedness of
IDM has been proven in [3]. The Bando part of Bando-FTL enables the uniqueness
of the equilibrium flow in single-lane roads, which is what we observe in real life
situations.

(iii) Given reasonable initial conditions, Bando-FTL does not require additional safety
conditions, since the FTL part already provides a safety criterion by applying a
large braking value when a vehicle is too close to the vehicle directly in front of it
on the same lane.

For the above reasons, we choose to adopt the Bando-FTL model for our study.
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3.7 The lane changing mechanism

All the vehicles in our ring-road can change lane. We base our model on the lane chang-
ing mechanism proposed by Treiber et al. in [52]. Mathematically, ∀i ∈ [1, N ] ∩ N and
∀j ∈ [1, J ] ∩ N and ∀t ∈ [0, tf ], the adopted lane changing mechanism is given by:


Āj

i (t) > Aj
i (t) + ∆i,j

I (incentive),
Āj

i (t) > −∆i,j
s , Āi,j

fol (t) > −∆i,j
s (safety),

t > tc + τ ji (cooldown time).
(3.15)

Where:

• ∆i,j
I : Is the acceleration incentive threshold of the vehicle considering a lane change.

• ∆i,j
s : Is the acceleration safety threshold of the vehicle considering a lane change.

• Aj
i (t) : Is the acceleration of the vehicle considering a lane change in the original

lane at time t.

• Āj
i (t) : Is the expected acceleration of the vehicle considering a lane change in the

new lane at time t.

• Āi,j
fol (t) : Is the expected acceleration of the follower of the vehicle considering a lane

change in the new lane at time t.

• tc : Is the last time that the considered vehicle i in lane j changed lane, tc ∈ [0, tf ].

• τ ji : Is the cooldown time (the lane change time threshold) of the vehicle considering
a lane change.

• t : Is the time t ∈ [0, tf ] at which the vehicle i in lane j is considering a lane change.

Meaning that a vehicle changes lane if its expected acceleration in the new lane is superior
to its acceleration in the original lane by ∆I , or if it is expected to be decelerating in the
new lane with a negative acceleration value that is superior to −∆s and its follower in
the new lane is also expected to be decelerating with a negative acceleration value that is
superior to −∆s. The number of lane changes on the road decreases as the value of the
incentive threshold increases. The number of lane changes on the road increases as the
value of the safety threshold increases (an increase in the value of the safety threshold
means we require less safety measures).

3.8 Why use the Treiber et al. lane changing mecha-
nism

Lane changing models are still poorly understood and compared. Almost all of them
have drawbacks. Many models which correct the original ones are emerging, however, not
enough reviewed. We did not perform an exhaustive study of the existing lane changing
models, and we choose the Treiber et al. model because it is “good enough” for our study.
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It has the following advantages [28]:

(i) Both the utility of the original lane and the risk associated with the lane change
are determined in terms of longitudinal accelerations calculated with a microscopic
traffic model.

(ii) Although the safety criterion prevents critical lane changes and collisions, the incen-
tive criterion takes into account the advantages and disadvantages of other drivers
associated with a lane change via a “politeness factor” which is incorporated in its
value. It allows one to vary the motivation for lane changing from a purely egoistic
to a more cooperative driving behaviour by preventing lane changes for marginal
gains if it obstructs other drivers.

(iii) The LC decision-making process is very simple.

(iv) It allows the consideration of drivers with different driving styles on the road (het-
erogeneous traffic), in a microscopic traffic modeling setting.

And the following principle disadvantages:

(i) It does not account for mandatory lane changes.

(ii) The model parameters are fixed and do not account for the variations in the driver’s
behaviour over time.

(iii) It assumes that lane changes only occur when they are safe, which in some cases
might not be realistic in dense congested traffic scenarios.

3.9 The linearized system around an equilibrium flow

The linearized version of the system of longitudinal dynamics given in Section 3.5 around
a considered equilibrium flow (v̄j, h̄j

i ) (there are no lane changes) is given, ∀t ∈ [0, tf ],∀i ∈
[1, N ] ∩ N, and ∀j ∈ [1, J ] ∩ N, by:

hj
i (t) = Hj

i (t)−
lji+1(t) + lji

2
, (3.16)

yji (t) = hj
i (t)− h̄j

i , (3.17)

uj
i (t) = V j

i (t)− v̄j, (3.18)

f j
i (h

j
i (t), ḣ

j
i (t), V

j
i (t)) = αj

i

(
V i,j
opt(h

j
i (t))− V j

i (t)
)
+ βj

i

(
ḣj
i (t)

(hj
i (t))

2

)
. (3.19)
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With ẏji (t) being the derivative of yji (t) at time t and ḣj
i (t) being the derivative of hj

i (t)
at time t, and:

N∑
i=1

yji (t) =
N∑
i=1

hj
i (t)−

N∑
i=1

h̄j
i = 0. (3.20)

Which finally gives:

{
ẏji (t) = uj

i+1(t)− uj
i (t),

u̇j
i (t) = a

j(1)
i yji (t)− a

j(2)
i uj

i (t) + a
j(3)
i uj

i+1(t).
(3.21)

Where at each given time t ∈ [0, tf ]:

a
j(1)
i =

∂f j
i

∂x

∣∣∣∣∣
(h̄j

i ,0,v̄
j)

, a
j(2)
i =

∂f j
i

∂y
− ∂f j

i

∂z

∣∣∣∣∣
(h̄j

i ,0,v̄
j)

, a
j(3)
i =

∂f j
i

∂y

∣∣∣∣∣
(h̄j

i ,0,v̄
j)

. (3.22)

It is clear that the constants a
j(1)
i , aj(2)i , and a

j(3)
i , are independent of time.

Notation 3.9.1. We choose to have the below notation, ∀i ∈ [1, N ]∩N and j ∈ [1, J ]∩N:

Λj
i =

(
a
j(1)
i , a

j(2)
i , a

j(3)
i

)
,

∆j
i = (a

j(2)
i )2 − (a

j(3)
i )2 − 2(a

j(1)
i ).

(3.23)

3.10 The energy consumption model

We define the power consumed by each vehicle i in each lane j at a time t (in [s]),
∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N, based on the P∆P model [45]:

powerji (t) =
(
pji + qji ·

(
V j
i (t)

)2
+massji ·max

(
0, Aj

i (t)
))

· V
j
i (t)

1000
, ∀t ∈ [0, tf ]. (3.24)

Where:

• powerji (t) : Is the power consumed by the vehicle i in lane j at time t, in [kW ].

• pji : Is the absorption coefficient for power, of the vehicle i in lane j, in [N ].
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• qji : Is the absorption coefficient for velocity, of the vehicle i in lane j, in [N · s2/m2].

• massji : Is the mass of the vehicle i in lane j, in [kg].

The energy consumption Ej(t) in [kW · s/m], in lane j, at time t in [s], is then given by:

Ej(t) =
N∑
i=1

powerji (t)

V j
i (t)

, ∀j ∈ [1, J ] ∩ N and ∀t ∈ [0, tf ]. (3.25)

3.11 Why use the P∆P fuel consumption model

The authors in [45], test the P∆P model on large high resolution Australian data sets
and prove its high performance compared to more complex models. The P∆P model
needs very few inputs (information) to be available and still performs very well.

For this reason, and also because we prefer to use microscopic models in this work, we
choose the P∆P fuel consumption model.

3.12 The elements of a simulation

For the simulations we refer to in Chapter 4, the time step for a considered simulation
is denoted by δt (such that tf is dividable by δt, and each time instant tk is given as
tk = tk′−1 + δt, with k′ ∈

[
1,

tf
δt
+ 1
]

and t0 = −δt, which means k ∈
[
1,

tf
δt

]
). For a con-

sidered simulation, we choose to have the following definitions, such that S is a natural
number dividable by δt.

(i) The instantaneous speed variance is:

speedvar(tk) =
∑j=J

j=1

∑i=N
i=1

(
V j
i (tk)−

∑i=N
i=1 V

j
i
(tk)

N

)2

N−1

J
, ∀k ∈

[
1,

tf
δt

]
. (3.26)

(ii) The speed variance averaged over the last S seconds is:

speedvaravrg(S) =
∑j=J

j=1
1
S

∫ tf
S

∑i=N
i=1

(
V j
i (t)−

∑i=N
i=1 V

j
i
(t)

N

)2

N−1
dt

J
. (3.27)

speedvaravrg(S) ≈

∑j=J
j=1

δt
S

∑k=
tf
δt

k= S
δt

∑i=N
i=1

(
V j
i (tk)−

∑i=N
i=1 V

j
i
(tk)

N

)2

N−1

J
. (3.28)
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It is the approximation (3.28) that we use and refer to as the speed variance over the
last S seconds. It quantifies how much is the system far from a state of same velocity
for all the vehicles in each lane. Which means that it is an indicator of the presence of
stop-and-go waves if its value is not close to 0, and it indicate that we have reached an
equilibrium flow if it is equal to 0, or that we are close to an equilibrium flow if its value
is close to 0. It is by no means a statistical variance to evaluate the velocity parameter.

(iii) The speed average averaged over the last S seconds is:

speedavrg(S) =

∑j=J
j=1

δt
S

∑k=
tf
δt

k= S
δt

∑i=N
i=1 V j

i (tk)

N

J
. (3.29)

(iv) The energy consumption averaged over the last S seconds is:

energyavrg(S) =

∑j=J
j=1

δt
S

∑k=
tf
δt

k= S
δt

Ej(tk)

J
. (3.30)

(v) The number of lane changes over the last S seconds is:

Number of lane changes on the whole road during the interval of time [tf − S, tf ].
(3.31)

If we have Z many simulations with the same parameters but with different (random)
initial conditions, for each simulation z ∈ [1, Z]∩N, we have an associated speed variance
averaged over the last S second speedvaravrgz(S), an associated speed average averaged
over the last S second speedavrgz(S), an associated energy consumption averaged over
the last S second energyavrgz(S), an associated number of lane changes over the last
S seconds, and an associated instantaneous speed variance. It is the averages of these
quantities over the Z many simulations that we plot.

Remark 3.12.1. The trajectories of the vehicles depend on the parameters of the Bando-
FTL and the Treiber et al. models. Thus, the quantities (i), (ii), (iii), (iv), and (v), that
we have just defined, do too.

Remark 3.12.2. The velocity V j
i (t), ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N, depends on

the time, on the incentive threshold, and on the safety threshold. Rigorously speaking, it
should be written as V j

i (t,∆
i,j
I ,∆i,j

s ), ∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N. However, to not
complicate the notation we write it as V j

i (t), ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N.

The following is a simplified summary of the way that a simulation is executed.
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Figure 3.2 – Simplified diagram of the execution of a simulation

Since we perform much more than 20000 simulations on MATLAB, we use computing
resources offered by the Office of Advanced Research Computing (OARC) at Rutgers.

N.B. The Matlab code of the simulations that are performed in this study is very
long (more than 20 files). Some parts of the code exist already. I: Tinhinane
MEZAIR, contributed to each file by making the necessary modifications allowing
the integration of multiple types of vehicles (instead of having just one type) and
computing the interactions between these different types of vehicles. I: Tinhinane
MEZAIR, do not have the full rights on the code, therefore, it cannot be included
in this thesis. I: Tinhinane MEZAIR, provide here the necessary explanations that
would allow the readers to understand everything that is happening in the simu-
lations, and allow them to obtain the same results if they were to reproduce the
study with their own code.
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In this chapter, we expose existing results and gaps in the literature of dissipating stop-
and-go waves in road traffic, we detail the three problematics we contribute to address,
and we expose our scientific approach and our findings.

4.1 The problematic of dissipating stop-and-go waves

For a road traffic, to not be at an equilibrium flow is often synonymous to undergoing
stop-and-go waves. A direct consequence is the presence of speed variance. The closer is
the system to an equilibrium flow, the closer to zero is the speed variance and the smoother
are the stop-and-go waves. Smoothing (or dissipating) stop-and-go waves means to bring
the system close to an equilibrium flow.

4.2 Existing results and literature gaps

In the literature, the question of dissipating/smoothing (eliminating/reducing) traffic
stop-and-go waves has been divided into several sub-questions: (i) dissipating stop-and-go
waves in 1-phase traffic flows (homogeneous traffic flows) where only cars are present on
the road, (ii) dissipating stop-and-go waves in heterogeneous 2-phase and n-phase traffic
flows (with n > 2). Below, is the best of our knowledge about the state-of-art.

4.2.1 Dissipating stop-and-go waves in 1-phase traffic flows

Most efforts in this area of research have been centered around using autonomous vehi-
cles. To the best of our knowledge, the state-of-the-art in both theory and experiments
is about smoothing stop-and-go waves with a single autonomous vehicle in a single
lane road [13]. The technique is to use two very simple controllers, one proportional and
one slightly proportional integral controller. The authors in [13], demonstrated from the-
oretical analysis and experiments, the efficiency of such simple controllers for dissipating
stop-and-go waves in a single-lane ring-road, with a reduction of fuel consumption of up
to 40%.

The dissipation/smoothing of stop-and-go waves in a multi-lane road context has, to the
best of our knowledge, not been studied theoretically yet. The authors in [19], studied
the dissipation of stop-and-go waves with autonomous vehicles in a multi-lane system by
performing a small number of numerical simulations (not enough random initial condi-
tions to be able to draw conclusions). A multi-lane system is more complex than a single
lane one because:

(i) When lane changes are allowed, the dynamics in the different lanes are coupled,
therefore, the stability of the equilibrium flow may be impacted, and this may lead
to waves which are harder to smooth.

(ii) Choosing different parameters for the lane changing mechanism (incentive threshold,
safety threshold, cooldown time), may result in very different systems, and we cannot
guarantee that the parameters upon which the study is based are the ground truth
ones.

(iii) An autonomous vehicle initially placed on a lane, may impact the dynamics in the
other lanes by changing lane, and it may be a positive or a negative impact.
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4.2.2 Dissipating stop-and-go waves in multi-phase traffic flows

For these systems, the efforts evolved around the stability analysis of the mixed popula-
tions traffic equilibrium point in a single-lane road, by varying the proportions of the
different categories of vehicles present on the road. The study in [24], showed that for a 2-
phase traffic on a single lane where collaborative vehicles (vehicles with parameters αj

i and
βj
i , with j = J = 1 and i ∈ [1, N ]∩N, which satisfy the opposite of the inequality (3.14))

coexist with aggressive vehicles (vehicles with parameters αj
i and βj

i , with j = J = 1
and i ∈ [1, N ] ∩ N, which satisfy the inequality (3.14)), the higher is the proportion of
collaborative vehicles on a single-lane road (where all the vehicles are cars) the closer
is the system to the equilibrium point (where the speed variance is equal to zero). As
shown in Figure 4.1, where the authors ran simulations on a single lane ring-road of 258m
with 25 cars during 1000s and starting close to the equilibrium flow with random initial
conditions. These cars start around half their maximal velocity preference, and the max-
imal velocity preference of each car follows a normal distribution of mean 9.25m/s and
standard deviation of 1m/s, with all the cars being initially located within 1m from their
steady-state location (which corresponds to a uniform spacing). The penetration rate of
cars with a collaborative behavior is given by

(
p = number of collaborative cars

total number of cars

)
. Among the 25

cars, the number of cars with a collaborative behavior was 25(p = 1), 12(p = 0.48), then
8(p = 0.32), 6(p = 0.24), 5(p = 0.20), 4(p = 0.16), 3(p = 0.12), 2(p = 0.08), 1(p = 0.04),
0(p = 0). For each of these proportions, the authors ran 40 simulations for which was
computed the instantaneous speed variance between cars averaged over the last 100s of
each simulation, and then averaged over the 40 simulations.

Figure 4.1 – Speed variance with respect to the proportion of cars with a collaborative
behavior p (credit: [24])
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To the best of our knowledge, the state-of-the-art in this area of research is the results
obtained in article [20] about the stability analysis of multi-population traffic flows for a
single lane road (no lane changes). In the following paragraph, we state their results
for a 2-phase traffic flow (whatever are the differences between the two populations of
vehicles, the results still hold). They also gave similar results for any number of phases
of traffic (still only for single-lane roads) that we will not cover here.

In a 2-phase traffic, Λj
i either equals a certain value Λ1 = (a

(1)
1 , a

(2)
1 , a

(3)
1 ) or a certain

value Λ2 = (a
(1)
2 , a

(2)
2 , a

(3)
2 ), and the same goes for ∆j

i , which either equals a certain
value ∆1 = (a

(2)
1 )2 − (a

(3)
1 )2 − 2(a

(1)
1 ) or a certain value ∆2 = (a

(2)
2 )2 − (a

(3)
2 )2 − 2(a

(1)
2 ),

∀i ∈ [1, N ] ∩ N and j = J = 1. The number of vehicles characterized by ∆1 and Λ1,
i.e. the number of the vehicles of population 1, is denoted by n1. While the number of
vehicles characterized by ∆2 and Λ2, i.e. the number of the vehicles of population 2, is
denoted by n2, with N = n1 + n2. From [20], we have :

Theorem 4.2.2.1. If ∆1 ≥ 0 and ∆2 ≥ 0, then for any couple (n1, n2) ∈ N2 and for
any order of the vehicles on the road (any way that the vehicles of the two populations are
distributed on the road, either clustered or distributed in any other way), the equilibrium
flow (v̄j, h̄j

i ) , ∀i ∈ [1, N ] ∩ N and j = J = 1, is locally exponentially stable.

Theorem 4.2.2.2. If ∆1 ≥ 0 and ∆2 < 0, then:
(i) If ∆1 > 0, then there exits a critical penetration rate τ0 ∈ [0, 1] given by:

τ0 = 1−
(
1 + max

{
−H2(y)

H1(y)
; y ∈

]
0,Γ2

]})−1

, (4.1)
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)2 ∈
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[
. (4.3)

Such that if:

τ =
n1

n1 + n2

> τ0. (4.4)

For any order of the vehicles on the road, the equilibrium flow is locally exponentially
stable.
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And if:

τ =
n1

n1 + n2

< τ0. (4.5)

Then ∃M > 0 such that for any (n1, n2) ∈ N satisfying n1+n2 = M , the equilibrium flow
is unstable.

(ii) If ∆1 = 0, then for any penetration rate:

τ =
n1

n1 + n2

, (4.6)

∃M > 0, efficiently computable, such that if n1+n2 > M , the equilibrium flow is unstable.

We can deduce from these theorems that in a one lane system, it is possible to calculate a
critical penetration rate τ0 of a certain “good” population of vehicles, introduce it to the
traffic and dissipate stop-and-go waves. However, the authors showed that this critical
penetration rate is a very large value (it is usually superior to 80%), therefore, this does
not represent a realistic strategy to dissipate stop-and-go waves (introducing 80% of good
vehicles in a real traffic flow is almost impossible).
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Regarding multi-lane systems, there are no such theoretical results available in the liter-
ature. The stability analysis of the latter is more complex for the following reasons:

(i) When no lane changes are possible, the equilibrium flow is unique, as seen in Section
2.7.2, and this is partly because the number and order of the vehicles in each lane
is invariant over time. However, there may be multiple equilibrium flows in a multi-
lane system, and since the stability analysis is usually done on a linearized version
of the original nonlinear traffic flow model around an equilibrium flow as in [20], we
can only extract local stability results. So even if we find some critical penetration
rate of a given population which stabilizes a certain equilibrium flow, it may not
work as well if the system starts at a state close to another equilibrium flow, it may
even destabilize that other equilibrium flow.

(ii) It is difficult to understand how the dynamics in the different lanes are coupled.

(iii) We have seen from the results of [20], in a one lane setting, that the stability of an
equilibrium flow can depend on the total number of vehicles present on the road.
Simulations with not “enough” vehicles can give the illusion that the mixed-traffic
solution for smoothing stop-and-go waves worked well, but in reality it only worked
for that specific number of vehicles. This may also be true for multi-lane systems,
which means that results that are obtained from real life field experiments where
the number of vehicles is limited may not be generalizable if no mathematical result
proves their generalizability. However, numerical simulations, with super calcula-
tors, where the number of vehicles is very large, can yield interesting conclusions.

(iv) The results can be sensitive to the lane changing parameters (incentive threshold,
safety threshold, cooldown time).

4.3 Addressing the gaps

In the next sections, we address some of the literature gaps we mentioned. We give new
results about multi-lane systems, while limiting ourselves to multi-lane 1-phase traffic
flows of cars (aggressive cars), multi-lane 2-phase traffic flows of collaborative
cars and aggressive cars, and multi-lane 2-phase traffic flows of cars (aggressive
cars) and trucks, since we are limited in time. The difference between collaborative
and aggressive cars is in the coefficients αj

i and βj
i , while the difference between cars and

trucks appears in the coefficients αj
i and βj

i and also in the lengths of the vehicles lji , the
cooldown times τ ji , the masses of the vehicles massji , and the maximal preferred speeds
V i,j
max.
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4.4 Multi-lane 1-phase traffic flow of cars

In this section, we study a multi-lane traffic flow composed of one population of aggres-
sive cars. We show that this system presents high speed variance (is far from a desired
equilibrium flow of zero speed variance and produces stop-and-go waves), and that it is
possible to bring it very close to a desired state of zero speed variance (which means to
dissipate stop-and-go waves) just by adding to the multi-lane traffic a single autonomous
vehicle (AV) whose acceleration follows an appropriate control law. We also show that
this system is very sensitive to lane changing parameters.

The results of this work have been published in The European Physical Journal Spe-
cial Topics - Springer.

[24] Nicolas Kardous, Amaury Hayat, Sean T. McQuade, Xiaoqian Gong, Sydney
Truong, Tinhinane Mezair, Paige Arnold, Ryan Delorenzo, Alexandre Bayen,
and Benedetto Piccoli. A rigorous multi-population multi-lane hybrid traffic model
for dissipation of waves via autonomous vehicles. Eur. Phys. J. Spec. Top., 2022.

4.4.1 Demonstrating the strong influence of the lane changing
parameters on the system

To study the effect of the safety threshold and incentive threshold parameters on the
traffic behavior, we run traffic simulations over 1000s with different safety and incentive
thresholds in a ring road of three lanes. The maximal acceleration allowed for the cars is
2m/s2, and the maximal deceleration allowed is 4m/s2. In each simulation, all the cars
present on the road (all being ordinary cars) have the same safety and incentive thresholds
and the same other parameters, and the two lane changing thresholds are varied over the
different simulations. The safety threshold ranges from 1m/s2 to 4.5m/s2, and takes the
following consecutive values 1m/s2, 1.5m/s2, 2m/s2, 2.5m/s2, 3m/s2, 3.5m/s2, 4m/s2,
4.5m/s2. The incentive threshold ranges from 0.5m/s2 to 3m/s2, and takes the following
consecutive values 0.5m/s2, 1m/s2, 1.5m/s2, 2m/s2, 2.5m/s2, 3m/s2.

The explanation for the range on the incentive threshold, is that requiring a maximal
value of incentive of 3m/s2, that is bigger than the possible maximal acceleration of a car,
means that a car can only change lane if its original lane is decelerating and it can accel-
erate strongly on a neighboring lane, and by varying from 0.5m/s2 to 3m/s2 we cover all
the possible values of the incentive threshold. The explanation for the range on the safety
threshold, is that requiring a maximal value of safety of 4.5m/s2, that is bigger than the
possible maximal deceleration of a car, means that we do not require any safety since the
vehicles cannot brake more strongly anyway, and by varying from 1m/s2 to 4.5m/s2 we
cover all the possible values of the safety threshold.
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We summarise the parameters of the system that do not vary over the simulations in the
Table 4.1. For ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N, we have:

Parameter Value What it represents
L 2π41.4 Length of the road [m]
N 24 Number of vehicles per lane
J 3 Number of lanes on the road
lji 4.5 Length of a car [m]

di,j0 2.5 Minimal distance between a car and its leader [m]

βj
i 20 Weight of the FTL model for a car

αj
i 0.5 Weight of the Bando model for a car

maxi,jdec 4 Maximal possible deceleration of a car [m/s2]
maxi,jacc 2.5 Maximal possible acceleration of a car [m/s2]

τ ji 5 Cooldown time of lane change for a car [s]
δt 0.02 Time size of one iteration a simulation [s]
tf 1000 Time duration of the simulation [s]

iter_lc 1/δt = 50 Number of iterations before considering a new lane change
pji 7.1 Absorption coefficient of a car for power [N ]

qji 0.6234 Absorption coefficient of a car for power [N · s2/m2]

massji 2000 Mass of a car [kg]

Table 4.1 – Summary of the parameters of the simulations

The chosen values for αj
i , β

j
i , the length, the mass, the cooldown time, the maximal pos-

sible acceleration/deceleration and di,j0 of a car, are typical values which were proven to
generate stop-and-go waves in real life experiments [39]. Whereas the values for pji and
qji were suggested by the developers of the P∆P model in [45].

For each couple of incentive and safety thresholds, we run 100 simulations with ran-
dom initial states of the cars. Which means that we run a total of 4800 simulations (the
set of safety thresholds contains 8 values, the set of incentive thresholds contains 6 val-
ues, which gives 8 × 6 = 48 couples of incentive and safety thresholds, and we run 100
simulations for each couple to be able to take the average of the results of the 100 sim-
ulations with random initial conditions for each couple and account for the randomness
of the results, which finally gives a total of 4800 simulations). These cars start around
half their maximal velocity preference, and the maximal velocity preference of each car
follows a normal distribution of mean 9.25m/s and standard deviation of 1m/s. All the
cars were initially located within 1m from their steady-state location (which corresponds
to a uniform spacing). For each one of the 100 simulations, the speed, the lane, and the
power consumed, at each time step, for each car, were saved and then averaged over the
100 simulations, to calculate the speed variance, speed average, number of lane changes,
and the energy consumed, for each car, which were then averaged over all the cars in
the three lanes and then only the averages over the last 300s were kept (except for the
number of lane changes: we keep the total number of lane changes on the road over the
last 300s, it is not an average).
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The following are the obtained plots for the speed variance (averaged), consumed energy
(averaged), speed average (averaged), and number of lane changes, over the last 300s;
given by (3.28), (3.29), (3.30), and (3.31), respectively; with respect to the different lane
changing parameters.

Figure 4.2 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters

Figure 4.3 – The energy consumption averaged over the last 300s with respect to the
different lane changing parameters
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Figure 4.4 – The speed average averaged over the last 300s with respect to the different
lane changing parameters

Figure 4.5 – The number of lane changes over the last 300s with respect to the different
lane changing parameters
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Discussions:

We can see that the traffic flow is very sensitive to the lane changing param-
eters, the behavior of the traffic changes radically for different values of these
parameters.

We expect that the higher the request on the incentive is, the lower the number of lane
changes. Similarly, the higher the safety threshold (hence the lower security required),
the higher the number of lane changes. These expectations were confirmed in Figure 4.5.

For some combinations of incentive and safety thresholds, the speed variance is very close
to 0, which suggests that the system is very close to an equilibrium flow. While for other
combinations, the speed variance reaches high values, suggesting that the system under-
goes stop-and-go waves. Comparing this to Figure 4.5, one can note that in the area with
a very small incentive threshold and a very large safety threshold, there are (logically) a
large number of lane changes but no apparent traffic instability, a speed variance close to
0 and a high average velocity. This is something that can seem counter-intuitive. In fact,
in this situation lane-changes happen each time there is a slight difference of speed in
the lane, and nearly no matter how unsafe it is. Of course, this could contradict real-life
experience because in this extreme case the lane-changes are very non-human (they are
in particular extremely dangerous).

As expected, the system reaches better (higher) speed averages and better (lower) energy
consumption levels for the combinations of parameters leading to low speed variances.

4.4.2 Smoothing the multi-lane system’s stop-and-go waves with
a single autonomous vehicle

To investigate the possibility of dissipating stop-and-go waves in a multi-lane 1-phase
traffic system of cars with a single autonomous car, we run simulations where we place
such a car in the position of the first car in the second lane of a three lane ring road. It
first acts like the other cars, and after a certain time ton ∈ [0, tf ], its acceleration starts
following a prescribed control.

Designing the acceleration control law of the autonomous car:

If we consider the autonomous car to be the car initially placed in the position of the first
car of the second lane of a ring road, its dynamics, for t ∈ [ton, tf ], are given by:

{
Ẋ0(t) = V0(t),

V̇0(t) = u(t, V0(t)).
∀t ∈ [ton, tf ] (4.7)

Where u(t, V0(t)) is a chosen control law. Recall that V0(t) is the velocity of the vehicle
that is the vehicle 1 in lane 2 at time t = 0.
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We could choose u(t, V0(t)) to be the following simple proportional controller:

{
u(t, V0(t)) = −k (V0(t)− vtarget(Lj(t))) ,

vtarget(Lj(t)) = v∗
(

Lj(t)

N
− l0

)
.

, ∀t ∈ [ton, tf ] (4.8)

With k being a design parameter which can be chosen, such that it represents the in-
verse of the time necessary for V0(t) to reach vtarget at any given time t ∈ [ton, tf ] for
u(t, V0(t)) to be an acceleration, and v∗

(
Lj(t)

N
− l0

)
is the steady-state speed of the sys-

tem corresponding to the steady-state headway Lj(t)

N
− l0. Such that Lj(t) is the length

of the lane in which the autonomous car is at the time t, and l0 is the length of the
autonomous car (the vehicle that is the vehicle 1 in lane 2 at time t = 0).

However, this ideal very simple control law does not prevent the autonomous car (AV)
from crashing into another car. To solve this problem, one could add a safety mechanism
where the (AV) would brake if it is too close to its leader. But with such a mechanism,
the (AV) would maintain a stop-and-go wave. This is because vtarget would be too high
compared to the current velocity of the cars in front of the (AV). The (AV) would then
try to increase its speed until it is too close to the vehicle in front, then it would brake,
and then increase its speed again, thus maintaining a stop-and-go wave. Due to this, our
control law is instead given by:

u(t, V0(t), v̄d(t, Lj(t))) = −k (V0(t)− v̄d(t, Lj(t))) , ∀t ∈ [ton, tf ]. (4.9)

Where:

 v̄d(t, Lj(t)) = vmin +
(
v∗
(

Lj(t)

N
− l0

)
− vmin

)
t
ttr
, ∀t ∈ [ton, ttr]

v̄d(t, Lj(t)) = v∗
(

Lj(t)

N
− l0

)
, ∀t ≥ ttr

(4.10)

ttr is the time of transition, and vmin is the average velocity at t = ton of the vehi-
cles in the lane where the (AV) is at time t = ton. This is only possible because adding
the (AV) allows the number of possible steady-states to go from a single steady-state to a
continuous range. In control literature, this is referred to as following a continuous path
of a steady-state.

In addition to this mechanism, when the (AV) starts to get close to its leading vehi-
cle (the distance between its front and the rear of its leading vehicle is less than 3m) we
change the target speed to the speed of the leading vehicle for safety.

Implementation in MATLAB: The above describes the longitudinal dynamics of the
(AV) for t ≥ ton. We implement this longitudinal control law in MATLAB when intro-
ducing the (AV) in the simulations. The inputs of this bloc of code are: the time of
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activation of the (AV) ton, the design constants k and vmin, the time of transition ttr, the
length l0 of the vehicle that is the vehicle 1 in lane 2 at time t = 0s, and the lengths of
all the lanes of the road. At each time instant t ∈ [ton, tf ], the velocity of the (AV)
V0, its distance to its leading vehicle, and the length of the lane that it is in are measured
and injected into the implementation of the equations (4.9)(4.10), while considering the
safety mechanism (when the distance between the (AV) and its leading vehicle is smaller
than 3m, change the target speed to the speed of the leading vehicle). The output is the
acceleration of the (AV) in the lane it is in at this time t ∈ [ton, tf ].

Designing the lane changing mechanism of the autonomous car:

The (AV) is also capable of changing lane. We allow it to do so following a different lane
changing mechanism than the other cars.

The (AV) changes lane when:

(i) The same safety conditions as in (3.15) are satisfied.

(ii) The speed variance on a neighboring lane, over the last d1 seconds, is higher than
the speed variance in the original (AV)’s lane, also averaged over the last d1 seconds.
This difference has to be higher than a threshold c1.

(iii) The (AV) has not been changing lanes in the last d2 seconds.

We denote the (AV)’s lane at a time t by j0, the number of vehicles in the lane j ∈
{1, · · · , 3} at this time t by Nj, and the last time the (AV) changed lane as t0 (t0 = 0 if
the (AV) never changed lane). From this, we have:
- t > d1 and there exists j ∈ {1, · · · , 3}, with j ̸= j0, such that:

∫ t

t−d1

1

Nj

Nj∑
i=1

(
V j
i

)2
(s)− 1

N2
j

 Nj∑
i=1

V j
i (s)

2

ds > c1 +

∫ t

t=d1

1

Nj0

Nj0∑
i=1

(
V j0
i

)2
(s)

− 1

N2
j0

Nj0∑
i=1

V j0
i (s)

2

ds.

(4.11)

- t > d2.
- the safety condition (3.15) is satisfied with i = 1 and j = j0.

Implementation in MATLAB: The above describes the lateral dynamics of the (AV)
for t ≥ ton. We implement this lateral control law in MATLAB when introducing the
(AV) in the simulations. The inputs of this bloc of code are: the lane changing safety
parameters of the vehicle that is the vehicle 1 in lane 2 for the Treiber et al. model
(its safety threshold and cooldown time), the constants d1, d2, and c1. At each time
instant t ∈ [ton, tf ], the speed variance over the last d1 seconds in the lane that the (AV)
is in at this time t and in its left and right neighboring lanes (if there is a left or right
neighboring lane) are measured, and if there is no vehicle directly next to the (AV) in the
neighboring lane(s), we check the conditions (i)(ii)(iii) stated just above to decide on if
the (AV) changes lane or not. The output is the decision “the (AV) does not just lane”,
or the new lane of the (AV) if it should be changing lane.
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Validating the solution with simulations:

We perform the same simulations as in the Subsection 4.4.1, with the same parameters
as in Table 4.1. The only difference, is that starting from a time ton, the car which was
initially in the position of the first car of the second lane of the ring road becomes an
autonomous car which follows the behavior we just described and has the parameters
given in Table 4.2.

Parameter Value What it represents
ton 100 Time of activation of the (AV) [s]
k 1 Design parameter in the (AV)’s control law [s−1]
c1 0.5 Speed variance threshold for the (AV)’s lane change [m2/s2]
d1 10 Time to average speed variance for the (AV)’s lane change [s]
d2 10 (AV)’s cooldown time after a lane change [s]
ttr 0.4tf Time of transition for the (AV)’s control law [s]

Table 4.2 – Summary of the parameters of the (AV)

The values of d2 and d1 are chosen a bit high, to avoid that the (AV) changes lane
constantly and study its performance with a minimum of lane changes. For the parameters
k, c1, and ton, we choose to have a rapid (AV) (k = 1s−1), which is very sensitive to speed
variance (c1 = 0.5m2/s2), activate it early enough to be able to observe its impact on the
traffic (ton = 100s), and have a time of transition equal to 0.4tf (not too large and not
too small).
The following are the obtained plots for the speed variance (averaged), consumed energy
(averaged), speed average (averaged), and number of lane changes, over the last 300s,
with respect to the different lane changing parameters, in the presence of the (AV) in the
traffic.
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Figure 4.6 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters in the presence of (AV)

Figure 4.7 – The energy consumption averaged over the last 300s with respect to the
different lane changing parameters in the presence of (AV)
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Figure 4.8 – The speed average averaged over the last 300s with respect to the different
lane changing parameters in the presence of (AV)

Figure 4.9 – The number of lane changes over the last 300s with respect to the different
lane changing parameters in the presence of (AV)
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Discussions:

We can see that the plots obtained in the presence of the (AV) follow roughly the same
trends as the plots obtained in the absence of the (AV) (Section 4.4.1), but the speed
variance is cut to 10% of its value in the absence of the (AV) (reduction of 90%), and
the energy consumption is reduced by 75% in the presence of the (AV). We also observe
some gain in the speed average and a small reduction of the number of lane changes, in
the presence of the (AV). The dissipation of stop-and-go waves is effective over
all the range of the incentive and safety threshold parameters. This control is
robust to the change in lane changing parameters. The speed variance never
surpasses 0.4m2/s2 for all the range of incentive and safety thresholds in the
presence of the (AV), while it reaches 4m2/s2 in the absence of the (AV). In
particular, for a safety threshold of 3m/s2 and an incentive threshold of 3m/s2 we can
clearly see, from Figure 4.10 and Figure 4.11, how the instantaneous speed variance (given
by (3.26)) rapidly converges to 0 in the three lanes after the activation of the (AV), while
staying high in the three lanes in the absence of the (AV).

Figure 4.10 – The variation of speed variance with respect to time in the three lanes
in the absence of the (AV) for an incentive threshold of 3m/s2 and a safety threshold of
3m/s2
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Figure 4.11 – The variation of speed variance with respect to time in the three lanes in
the presence of the (AV) for an incentive threshold of 3m/s2 and a safety threshold of
3m/s2

Recall that ton = 100s, which explains that the speed variance quickly drops just after
t = 100s in the presence of the (AV). As expected, we see that the (AV) is stabilizing
mostly one lane that reaches an equilibrium flow very rapidly, but despite the very weak
coupling of the lanes (due to the very small number of lane changes for this couple of
incentive and safety thresholds, see Figure 4.5), it is still enough to roughly dissipate the
waves that form in the other lanes. On the other hand, when there is no (AV), the speed
variance remains high.
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4.5 Multi-lane 2-phase traffic flow of collaborative cars
and aggressive cars

In this section, we investigate, numerically, if there are similarities between single-lane
and multi-lane 2-phase traffic systems where coexist collaborative cars and aggressive
cars, which would suggest a possibly easy generalization of the single-lane results of [20]
to multi-lane systems.

In a 2-phase traffic, Λj
i either equals a certain value Λ1 = (a

(1)
1 , a

(2)
1 , a

(3)
1 ) or a certain

value Λ2 = (a
(1)
2 , a

(2)
2 , a

(3)
2 ), and the same goes for ∆j

i , which either equals a certain
value ∆1 = (a

(2)
1 )2 − (a

(3)
1 )2 − 2(a

(1)
1 ) or a certain value ∆2 = (a

(2)
2 )2 − (a

(3)
2 )2 − 2(a

(1)
2 ),

∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N. The number of vehicles characterized by ∆1 and Λ1 is
denoted by n1, while the number of vehicles characterized by ∆2 and Λ2 is denoted by n2.
In the following, we consider the collaborative cars to be the cars characterized by Λ1 and
∆1, and the aggressive cars to be the ones characterized by Λ2 and ∆2. The penetration
rate of the collaborative cars is considered to be p = n1

n1+n2
, and the total number of cars

per lane is N = n1 + n2.

4.5.1 A stabilizing proportion of collaborative cars for the multi-
lane system

A natural question that may cross our minds is: if there exists a critical penetration rate
for multi-lane systems, can it be the same critical penetration rate as for the single-lane
versions of these systems?

To answer this question, we perform the same simulations as in the previous section
but with different values for the length of the road and the vehicles’ parameters. In par-
ticular, the aggressive cars all have the exact same parameters as in Table 4.1. The total
number of cars (aggressive+collaborative) in each lane is still N = 24 = n1+n2, the num-
ber of lanes, time length of the simulations, and the time step δt of the simulations, are
also the same as in table 4.1. But the collaborative cars differ in the weight of the Bando
model, and we have that: αj

i = 4,∀i ∈ [1, n1] ∩ N,∀j ∈ {1, 2, 3}. Thus, the instability of
the aggressive cars only comes from a higher sensitivity to the velocity preference rather
than the follow-the-leader behavior. Note that both of the two populations of cars are
present since t = 0s of all our simulations.

The critical penetration rate for these exact same parameters in the case of J = 1,
was found, in [20], to be τ0 = 0.881. To see if this same penetration rate can also be
the “critical” penetration rate in the multi-lane version of the system, we perform two
identical batches of simulations (as described above) that just differ in the penetration
rate of the collaborative cars. The configuration of each lane is the same as in the one
lane of the simulations of [20], except that the vehicles can change lanes. In the Batch 1
of simulations, we have a penetration rate p that is bigger than 0.881, and in the Batch 2
of simulations, we have a penetration rate p that is smaller than 0.881. The length of the
road, the number of cars of each population, the total number of cars per lane, and the
penetration rate in the two batches of simulations are summarized in the two following
tables.
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Parameter Value What it represents
L 2π39.7 Length of the road [m]
N 24 Total number of cars per lane
n1 22 Number of collaborative cars per lane
n2 2 Number of aggressive cars per lane
p 0.917 Penetration rate of the collaborative cars

Table 4.3 – Summary of the Batch 1 of simulations

Parameter Value What it represents
L 2π39.7 Length of the road [m]
N 24 Total number of cars per lane
n1 20 Number of collaborative cars per lane
n2 4 Number of aggressive cars per lane
p 0.833 Penetration rate of the collaborative cars

Table 4.4 – Summary of the Batch 2 of simulations

Let’s first recall the simulation results of [20], for a penetration rate of p = 0.802 and a
penetration rate of p = 0.882, in the case of a single-lane road of length 5200m with a
total number of 500 cars

(
5200
500

= 10.4m
)
:

Figure 4.12 – The variation of speed variance with respect to time in the case of a
single-lane road with penetration rate p=0.802 (credit: [20])
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Figure 4.13 – The variation of speed variance with respect to time in the case of a
single-lane road with penetration rate p=0.882 (credit: [20])

Note that for the multi-lane simulations, we did not consider such a large number of cars
(500 cars) as the computation time would be huge for such a number of cars when there
are lane changes. But notice that we keep L

N
= 2π39.7

24
= 10.4m in the two batches of our

simulations, which means that we have the same ∆1 and ∆2 as in [20], i.e. ∆1 = 7.28
and ∆2 = −0.84, with |∆2| < |∆1|, which finally gives us the same (supposed) critical
penetration rate. Now, let’s see the results obtained in our three lanes simulations:

Figure 4.14 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.917



Chapter 4 – Dissipating Stop-and-go Waves: State-of-the-art and New Results87

Figure 4.15 – The variation of speed variance with respect to time for p = 0.917, an
incentive threshold of 2.5m/s2, and a safety threshold of 4m/s2

Figure 4.16 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.833
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Figure 4.17 – The variation of speed variance with respect to time for p = 0.833, an
incentive threshold of 2.5m/s2, and a safety threshold of 4m/s2

Discussions:

We can observe that both p = 0.917 (bigger than 0.881) and p = 0.833 (smaller than 0.881)
seem to stabilize the multi-lane system’s steady-state and make the system converge to
a state of zero speed variance. Indeed, p = 0.917 gives a slightly better performance
than p = 0.833 over a certain range of lane changing parameters, but this only suggests
that the same tendency shown in Figure 4.1 for single-lane systems “may” still hold for
multi-lane systems. Therefore, the “critical” penetration rate, which is the penetration
rate just before which the system diverges and just after which it converges to the zero
speed variance state, seems to not be the same as the one for the single-lane version
of the system. These observations suggest that the critical penetration rate
of collaborative cars in multi-lane systems, if it exists; which means: if it is
unique and that indeed the same tendency of Figure 4.1 still holds in multi-
lane systems (because we know from Section 4.4 that p = 0 leads to stop-and-go
waves); is smaller than the critical penetration rate for the single-lane version
of the system.
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4.5.2 A minimal stabilizing proportion of collaborative cars for the
multi-lane system

A single autonomous vehicle following a prescribed acceleration law was shown to be suf-
ficient to dissipate stop-and-go waves in a 1-phase single-lane system with N aggressive
cars (penetration rate equal to 1

N
). Similarly, we have shown, in Section 4.4, that a sin-

gle autonomous vehicle following an appropriate acceleration law can be effective for the
dissipation of stop-and-go waves in a 1-phase system with J many lanes and N number
of aggressive cars per lane (penetration rate equal to 1

J×N
). We could ask the following

question: if the critical penetration rate of collaborative cars for the dissipation of stop-
and-go waves in a given 2-phase single-lane system of collaborative and aggressive cars is
τ0, and we have a multi-lane road with J many lanes each containing this same 2-phase
system which requires a critical penetration rate τ0 to dissipate stop-and-go waves, is it
possible in this multi-lane system to dissipate stop-and-go waves with a penetration rate
of collaborative cars that equals τ0

J
instead of τ0?

To answer this question, we perform two other batches of the same simulations as in
Subsection 4.5.1, but with a different number of cars for each of the two populations in
each lane, and a different road length. The changed parameters are summarized in the
two tables below.

Parameter Value What it represents
L 2π44.69 Length of the road [m]
N 27 Total number of cars per lane
n1 8 Number of collaborative cars per lane
n2 19 Number of aggressive cars per lane
p 0.296 Penetration rate of the collaborative cars

Table 4.5 – Summary of the Batch 3 of simulations

Parameter Value What it represents
L 2π44.69 Length of the road [m]
N 27 Total number of cars per lane
n1 6 Number of collaborative cars per lane
n2 21 Number of aggressive cars per lane
p 0.222 Penetration rate of the collaborative cars

Table 4.6 – Summary of the Batch 4 of simulations
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Explanation: For a single-lane system with N = 27 and p = 0.882, we have that
n1 = 23.814, we take n1 = 24 and n2 = 3. If we distribute the 24 collaborative cars
on three lanes, such that N = 27 per lane, we would have that n1 = 8 and n2 = 19 per
lane, which gives p = 0.296. In the Batch 3 of the simulation, we have p=0.296, and
in the Batch 4 we have a lower penetration rate. The total number of cars per lane is
changed from 24 to 27 in these simulations, just to have a necessary total number of 24
collaborative cars on the road, which is a number that is dividable by 3 (the three lanes).
Notice that we still keep L

N
= 2π44.69

27
= 10.4m in Batch 3 and Batch 4.

The following are the obtained plots.

Figure 4.18 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.296
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Figure 4.19 – The variation of speed variance with respect to time for p = 0.296, an
incentive threshold of 2.5m/s2, and a safety threshold of 4m/s2

Figure 4.20 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.222
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Figure 4.21 – The variation of speed variance with respect to time for p = 0.222, an
incentive threshold of 2.5m/s2, and a safety threshold of 4m/s2

Discussions:

We can see that for both p = 0.296 and p = 0.222, the multi-lane system’s speed variance
averaged over the last 300s is very close to zero for all the range of incentive and safety
thresholds, and the present proportion of collaborative cars seems to be able to dissipate
stop-and-go waves and make the system converge to a state of zero speed variance. The
answer to the question asked in the beginning of this subsection is: Yes it is
possible, and it is even possible with a lower penetration rate than that (we
do not know if it is always the case, but we now know that there exists traffic
scenarios and lane-changing parameters where it is possible).

We explain these results by the fact that in a multi-lane system, the dynamics in the
different lanes are coupled, and a single vehicle can have a global effect on the multi-lane
road traffic by changing lane.
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4.6 Multi-lane 2-phase traffic flow of cars and trucks

In this section, we investigate, numerically, the effect that can have trucks on multi-lane
traffic flows when coexisting with aggressive cars, while also studying the effect of lane
changing parameters on such systems (incentive and cooldown time thresholds). We
recall that the results of [20] are still valid when studying trucks (heavy weight vehicles,
longer than cars) in a single-lane system.

In a 2-phase traffic, Λj
i either equals a certain value Λ1 = (a

(1)
1 , a

(2)
1 , a

(3)
1 ) or a certain

value Λ2 = (a
(1)
2 , a

(2)
2 , a

(3)
2 ), and the same goes for ∆j

i , which either equals a certain
value ∆1 = (a

(2)
1 )2 − (a

(3)
1 )2 − 2(a

(1)
1 ) or a certain value ∆2 = (a

(2)
2 )2 − (a

(3)
2 )2 − 2(a

(1)
2 ),

∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N. The number of vehicles characterized by ∆1 and Λ1 is
denoted by n1, while the number of vehicles characterized by ∆2 and Λ2 is denoted by n2.
In the following, we consider the trucks to be the vehicles characterized by Λ1 and ∆1, and
the aggressive cars to be the ones characterized by Λ2 and ∆2. The penetration rate of the
trucks is considered to be p = n1

n1+n2
, and the total number of cars per lane is N = n1+n2.

Before being able to start the simulations, we determine the critical penetration rate
of the trucks for a single-lane version of the system, using the results of [20], and we know
from the previous section that it can give some indications about the minimum number
of the vehicles of population 1 (the trucks) in the multi-lane system.

4.6.1 The critical penetration rate of trucks for the single-lane
version of the system

We recall that we have ∀t ∈ [0, tf ] and ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N with J = 1:

f j
i (h

j
i (t), ḣ

j
i (t), V

j
i (t)) = αj

i

V i,j
max

tanh
(

hj
i (t)

di,j0

− 2
)
+ tanh(2)

1 + tanh(2)

− V j
i (t)

+βj
i

(
ḣj
i (t)

(hj
i (t))

2

)
.

(4.12)

We consider a 1-phase single-lane (of length L) traffic such that di,j0 = d0 = 2.5m,
V i,j
max = Vmax, lji = lv, αj

i = α, and βj
i = β, ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N,

with J = 1. We then have ∀t ∈ [0, tf ] and ∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N with J = 1:

∂f j
i

∂x

∣∣∣∣∣
(hj
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j
i (t),V

j
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1− tanh2

(
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(hj
i (t))

3
, (4.13)

∂f j
i

∂y

∣∣∣∣∣
(hj

i (t),ḣ
j
i (t),V

j
i (t))

=
β

(hj
i (t))

2
, (4.14)
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∂f j
i

∂z

∣∣∣∣∣
(hj

i (t),ḣ
j
i (t),V

j
i (t))

= −α. (4.15)

And because it is a 1-phase traffic, at the equilibrium flow we have:

h̄j
i = h̄, ∀i ∈ [1, N ] ∩ N,∀j ∈ [1, J ] ∩ N, J = 1. (4.16)

And:

lvN +Nh̄ = L, (4.17)

h̄ =
L− lvN

N
. (4.18)

Just to demonstrate how ∆2 was calculated in [20], we take L = 2π39.7 and N = 24,
which gives L

N
= 10.4m.

For the case where the 1-phase single-lane traffic is composed of only aggressive cars,
we take lv = 4.5m, which gives h̄ = 5.893m. And we take α = 0.5, β = 20, and
Vmax = 9.25m/s, which gives ∀t ∈ [0, tf ] and ∀i ∈ [1, N ] ∩ N and ∀j ∈ [1, J ] ∩ N with
J = 1:

∂f j
i

∂x

∣∣∣∣∣
(h̄,0,v̄)

= 0.832,

∂f j
i

∂y

∣∣∣∣∣
(h̄,0,v̄)

= 0.576,

∂f j
i

∂z

∣∣∣∣∣
(h̄,0,v̄)

= −0.5.

(4.19)

a
(1)
2 = 0.832,

a
(2)
2 = 1.076,

a
(3)
2 = 0.576,

∆2 = −0.838.

(4.20)

For the case where the 1-phase single-lane traffic is composed of only trucks, we take
lv = 5.5m, which gives h̄ = 4.893m. And we take α = 4, β = 20, and Vmax = 8.33m/s
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(10% less than Vmax of cars), which gives ∀t ∈ [0, tf ] and ∀i ∈ [1, N ]∩N and ∀j ∈ [1, J ]∩N
with J = 1:

∂f j
i

∂x

∣∣∣∣∣
(h̄,0,v̄)

= 6.772,

∂f j
i

∂y

∣∣∣∣∣
(h̄,0,v̄)

= 0.835,

∂f j
i

∂z

∣∣∣∣∣
(h̄,0,v̄)

= −4.

(4.21)

a
(1)
1 = 6.772,

a
(2)
1 = 4.835,

a
(3)
1 = 0.835,

∆1 = 9.136.

(4.22)

Which then gives:

H1(y) = log

(
45.860 + 0.697y

45.860 + 9.833y + y2

)
,

H2(y) = log

(
0.692 + 0.332y

0.692− 0.506y + y2

)
,

Γ2 = 0.384 ∈
]
0,−∆2[.

(4.23)

And we have:

τ0 = 1−
(
1 + max

{
−H2(y)

H1(y)
; y ∈

]
0,Γ2

]})−1

. (4.24)

To compute max
{
−H2(y)

H1(y)
; y ∈

]
0,Γ2

]}
we use a simple MATLAB script:

1 syms y
2 m = −log10((0.692+0.332*y)/(0.692−0.506*y+y^2))/log10((45.86+0.697*y)/
3 (45.86+9.833*y+y^2));
4 z = 0.001:0.001:0.384;
5 m_values = subs(m, y, z);
6 [maxX, maxidx] = max(m_values);
7 ymax = z(maxidx)
8 max_m = maxX %the maximum
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We get:

τ0 = 1− 1

1 + 6.072
,

τ0 = 0.859.
(4.25)

Discussions:

We notice that the critical penetration rate for trucks in the 2-phase single-lane traffic
flow of trucks and aggressive cars is slightly smaller than the critical penetration rate of
collaborative cars in the 2-phase single-lane traffic flow of collaborative and aggressive cars
(which was 0.881, for L

N
= 10.4m). But as expected, it is still a large value, which

means that this is not an efficient strategy to dissipate stop-and-go waves.

4.6.2 The effect of different incentive thresholds and different
trucks’ cooldown times

In this subsection, to study the effect of the incentive and cooldown time thresholds
on the multi-lane 2-phase traffic flow of trucks and cars, we perform simulations where
we consider that all the vehicles on the road have the same value of the safety threshold
2m/s2, and we vary the value of the incentive threshold with all the vehicles on the road
having the same incentive threshold value each time. We also consider that the trucks
and the cars do not have the same cooldown times. We can observe in real life that trucks
wait longer before changing lane again.

All the vehicles on the road have the same parameters as in Table 4.1, except for the trucks,
which differ in the parameters summarized in the table below. Such that ∀i ∈ [1, n1] ∩N
and ∀j ∈ [1, J ] ∩ N we have:

Parameter Value What it represents
αj
i 4 Weight of the Bando model for a truck

βj
i 20 Weight of the FTL model for a truck
lji 5.5 Length of a truck [m]

V maxi,j 8.33 Maximal preferred speed for a truck [m/s]

massji 2400 Mass of a truck [kg]

τ ji Varies Cooldown time of lane change for a truck [s]

Table 4.7 – Summary of the trucks’ parameters
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We continue to take tf = 1000s, δt = 0.02s, and J = 3, and we consider the traffic
configuration summarized in the table below:

Parameter Value What it represents
L 2π39.7 Length of the road [m]
N 24 Total number of cars per lane
n1 21 Number of trucks per lane
n2 3 Number of aggressive cars per lane
p 0.875 Penetration rate of the trucks

Table 4.8 – Summary of the traffic configuration for p = 0.875

We take the set of values for the incentive threshold to be {0.5, 1, 1.5, 2, 2.5, 3}[m/s2]
(as in the previous sections), and we take the set of truck cooldown time values to be
{7, 8, 9, 10, 11, 12, 13, 14}[s]. For each couple of these incentive and trucks’ cooldown time
thresholds, and a fixed safety threshold of value 2m/s2, we run 100 simulations with ran-
dom initial states of the vehicles. These vehicles start around half their maximal velocity
preference, and the maximal velocity preference of each vehicle follows a normal distri-
bution of mean 8.33m/s for the trucks, and mean 9.25m/s for the cars, and a standard
deviation of 1m/s for both of trucks and cars. All the vehicles were initially located within
1m from their steady-state location (which corresponds to a uniform spacing). For each
one of the 100 simulations, the speed, the lane, and the power consumed, at each time
step for each vehicle, were saved and then averaged over the 100 simulations, to calculate
the speed variance, speed average, number of lane changes, and the energy consumed, for
each vehicle. Which were then averaged over all the vehicles in the three lanes and then
only the averages over the last 300s were kept (except for the number of lane changes: we
keep the total number of lane changes on the road over the last 300s, it is not an average).

The following are the obtained plots for the speed variance (averaged), consumed en-
ergy (averaged), speed average (averaged), and number of lane changes, over the last
300s, with respect to the different lane changing parameters.
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Figure 4.22 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.875

Figure 4.23 – The energy consumption averaged over the last 300s with respect to the
different lane changing parameters for p = 0.875
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Figure 4.24 – The speed average averaged over the last 300s with respect to the different
lane changing parameters for p = 0.875

Figure 4.25 – The number of lane changes over the last 300s with respect to the different
lane changing parameters for p = 0.875
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Discussions:

We can observe that for p = 0.875, in the 2-phase traffic flow of trucks and cars (a higher
penetration rate of trucks than the calculated τ0 = 0.859 in the previous subsection), the
speed variance over the last 300s is lower than 8.66 × 10−8m2/s2 for all the values of
incentive and cooldown time thresholds, which is very much lower than the highest speed
variance observed over the last 300s for p = 0.917, in the 2-phase traffic flow of collabora-
tive and aggressive cars. This suggests that trucks (heavy long vehicles) with the
same weights for the Bando and FTL models than the collaborative cars can
have a better stabilizing effect on an equilibrium flow than the collaborative
cars, in a multi-lane system. The highest energy consumption value observed for the
different incentive and cooldown time thresholds of the 2-phase traffic flow of cars and
trucks is cut by 94% of its value in the 1-phase traffic flow of aggressive cars for the value
2m/s2 of the safety threshold. However, we can see that the speed average over the last
300s for the 2-phase traffic flow of cars and trucks does not exceed 5.4m2/s2, while it
reaches 9m2/s2, and exceeds 8m2/s2 for all the range of the incentive threshold when
the safety threshold equals 2m/s2, when having a single autonomous vehicle in a 1-phase
traffic flow of cars. Regarding the number of lane changes over the last 300s, it equals 0
for all the values of incentive and cooldown time thresholds in the 2-phase traffic flow of
cars and trucks. This system is clearly very sensitive to the value of the cooldown time
for the trucks, and the value of the incentive threshold for all the vehicles. For this
reason, choosing values that are different than the ground truth for these parameters, can
lead to results that are far from the ground truth.

Checking the validity of the results of Subsection 4.5.2 for these systems:

To see if the conclusions we drew in Subsection 4.5.2 still hold for this system, we perform
the same simulations as explained in the beginning of this subsection, but with a different
traffic configuration to have p = 0.292, as summarized in the table below:

Parameter Value What it represents
L 2π39.7 Length of the road [m]
N 24 Total number of cars per lane
n1 7 Number of trucks per lane
n2 17 Number of aggressive cars per lane
p 0.292 Penetration rate of the trucks

Table 4.9 – Summary of the traffic configuration for p = 0.292

We obtain the following plots.
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Figure 4.26 – The speed variance averaged over the last 300s with respect to the different
lane changing parameters for p = 0.292

Figure 4.27 – The variation of speed variance with respect to time for p = 0.292, an
incentive threshold of 2.5m/s2, and a cooldown time of trucks of 7s
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Discussions:

Despite having a smaller critical penetration rate for the single-lane version of the 2-phase
traffic flow of trucks and aggressive cars than for the 2-phase traffic flow of collaborative
and aggressive cars, the speed variance averaged over the last 300s for the 2-phase traffic
flow of collaborative and aggressive cars does not exceed 0.1m2/s2 for a penetration rate
of collaborative cars equal to p = 0.222 when the safety threshold equals 2m/s2, while
it reaches 2m2/s2 when the safety threshold equals 2m/s2 and the penetration rate of
trucks equals p = 0.292, in the 2-phase traffic flow of trucks and aggressive cars. However,
p = 0.292 still seems to make the speed variance of this system converge to a
value that is very close to zero (or to zero). For the large values of the incentive
threshold, the system acts like three single-lane roads which are independent (not coupled,
not enough lane changes), which explains the speed variance that reaches 2m2/s2.



Conclusions

In this work, we used the Bando-FTL microscopic traffic model with the Treiber et
al. lane changing mechanism to describe the dynamics of the vehicles in a multi-lane ring
road, and the P∆P model to quantify vehicular fuel consumption. We were interested in
the problem of dissipating stop-and-go waves in multi-lane road traffic flows and contribut-
ing to giving a better understanding of these systems. We showed that multi-lane traffic
systems are very sensitive to lane changing parameters, and that it is possible to dissipate
stop-and-go waves, in multi-lane 1-phase traffic flows of aggressive cars, by introducing
a single autonomous vehicle following a prescribed acceleration law in high congestion,
and obtain a reduction in vehicular energy consumption of up to 75%. Moreover, our
investigations suggest that, in 2-phase multi-lane traffic flows of collaborative and aggres-
sive cars, in contrast with single-lane systems, a proportion of collaborative cars as low
as 22% can be effective to smooth stop-and-go waves. Finally, we studied a multi-lane
2-phase traffic system where coexist trucks (long heavy weight vehicles) with aggressive
cars, and we showed that these systems are very sensitive to the trucks’ cooldown time
lane changing threshold, and that a proportion of 29% of trucks can be efficient to dissi-
pate stop-and-go waves. We explain these low penetration rates of autonomous vehicles,
collaborative cars, and trucks, that are effective for dissipating stop-and-go waves and
bringing the system to an equilibrium flow, by the fact that in a multi-lane system, the
dynamics of the vehicles in the different lanes are coupled, and a single vehicle can have
an impact on the whole road by changing lanes.

In future research, one could improve the lane changing mechanism and reproduce our
study (as we have seen that the Treiber et al. model was not perfect). We also did not
derive rigorous theoretical results about multi-lane road traffic systems. This represents
a logical next step.
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