REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Département de Génie Mécanique Japaneese Gas Corporation Algeria Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Mécanique

Étude technico-économique de la récupération des vapeurs d'éthylène générées par Boil-Off au complexe gazier de Skikda.

Ilyes Zakaria TOUMI

Présenté et soutenu publiquement le 06 Juin 2019

Composition du Jury :

Président	Bouzid BENKOUSSAS	Professeur	ENP
Promoteur	Salah LARBI	Professeur	ENP
Co- Promoteur	Lounis KHIAE	Ingénieur	JGC
Examinateurs	Mohamed BENBRAIKA	Maître Assistant- A	ENP
	El- Hadi BENYOUSSEF	Professeur	ENP
Invité	Iskander ZOUAGHI	Maître Assistant- B	ENP

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Département de Génie Mécanique

Japaneese Gas Corporation Algeria

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Mécanique

Etude technico-économique de la récupération des vapeurs d'éthylène générées par Boil-Off au complexe gazier de Skikda.

Ilyes Zakaria TOUMI

Présenté et soutenu publiquement le 06 Juin 2019

Composition du Jury :

Président	Bouzid BENKOUSSAS	Professeur	ENP
Promoteur	Salah LARBI	Professeur	ENP
Co- Promoteur	Lounis KHIAR	Ingénieur	JGC
Examinateurs	Mohamed BENBRAIKA	Maître Assitant- A	ENP
	El- Hadi BENYOUSSEF	Professeur	ENP
Invité	Iskander ZOUAGHI	Maître Assitant- B	ENP

ENP-2019

<u>ملخص:</u>

الهدف المحدد في هذا المشروع النهائي للدراسات يتعلق بتقييم الإمكانات التقنية والاقتصادية لعملية تسبيل غاز الإيثيلين الناتج عن ظاهرة الغليان. تم تقديم نموذج رياضي لتقييم كميات الإيثيلين الناتجة عن الغليان. تم التحقق من صحة النتائج التي تم الحصول عليها عن طريق القياسات التجريبية التي أجريت في الموقع. يتم تغيير حجم مصنع تسييل الإيثيلين المستعاد باستخدام برنامج Hysis. تم إجراء تفاصيل مختلفة ، تقنية وهندسية ، المعدات التي تشكل هذا التثبيت. من أجل اختبار ربحية محطة التميع المقترحة ، الإيثيلين المتبخر ، تم إجراء تحليل تقني واقتصادي. تم تقييم الإمكانات الاقتصادية للعملية الاسترداد فيما يتعلق بكمية الإيثيلين المسترجع. أظهرت النتائج أن الجدوى الفنية والفرص الاقتصادية عن عملية الاسترداد فيما يتعلق بكمية الإيثيلين المسترجع.

الكلمات المفتاحية:

الغليان ، الايثيلين المسال ، النموذج الرياضي ، عملية تسييل ، التقييم المالي.

Abstract:

This engineering project is dedicated to the evaluation of the techno-economic potential of a process of liquefaction of ethylene gas resulting from the boil-off phenomenon. A mathematical model has been presented to evaluate the quantities of ethylene produced by boil-off. The obtained results were validated by experimental measurements carried out on site. The sizing of the recovered ethylene liquefaction plant is performed using the Hysis software. Different aspects, technical and geometrical, related to the equipments that make up this installation have been analyzed. In order to test the profitability of the proposed liquefaction plant, the evaporated ethylene, technical and economical analysis was done. The economic potential of the process has been evaluated for the recovery process with respect to the amount of ethylene recovered. It is demonstrated that the technical feasibility and economic opportunity of the proposed process are promising solutions.

Keywords: Boil-off, liquefied ethylene, mathematical model, liquefaction process, financial evaluation.

Résumé:

L'objectif fixé à travers ce projet de fin d'études est relatif à l'évaluation du potentiel technicoéconomique d'un procédé de liquéfaction de gaz éthylène issue du phénomène de boil- off. Un modèle mathématique a été présenté pour évaluer les quantités d'éthylène produites par boil- off. Les résultats obtenus ont été validés par des mesures expérimentales effectuées sur site. Le dimensionnement de l'installation de liquéfaction d'éthylène récupéré est effectué par utilisation du logiciel Hysis. Différents aspects, techniques et géométriques, des équipements qui composent cette installation ont été analysés. Afin de tester la rentabilité de l'installation de liquéfaction proposée, de l'éthylène évaporé, une analyse technico- économique a été faite. Le potentiel économique du process a été évalué, pour le procédé de récupération vis à vis de la quantité d'éthylène récupéré. Les résultats obtenus ont démontré que la faisabilité technique et l'opportunité économique sont prometteuses.

Mots- clés: Boil- off, Ethylène liquéfié, Modèle mathématique, Procédé de liquéfaction, Evaluation financière.

Dédicaces

Ce travail est dédié à :

Mes parents qui m'ont élevé et guidé à travers ce long chemin de droite,

Mes grands-parents qui m'ont inculqué les valeurs morales et m'ont fait aimer les études d'ingénieur,

Mon frère et ma sœur,

Tous mes amis qui m'ont soutenu dans les moments difficiles de ce projet d'ingénierie.

Remerciements

Je souhaite avant tout remercier tout ce qui ont trouvé ce document et ont eu la bonne volonté de le lire, je suis aussi reconnaissant à toutes les personnes qui ont compris que ce document est une traduction de la dernière référence bibliographique, et par la suite ont contacté l'auteur pour avoir la version originale.

Aussi, je suis extrêmement reconnaissant à mes conseillers, les professeurs Salah LARBI et Ing. KHIAR Lounis, pour ses conseils précieux et son soutien continu tout au long de mon projet d'ingénierie, pour sa patience, sa motivation et ses vastes connaissances. Leurs conseils m'ont aidé tout le temps durant mon projet et la rédaction du manuscrit. Je n'ai jamais imaginé avoir de meilleurs conseillers et mentors pour mon projet d'ingénierie, tels que les professeurs S. LARBI et Ing. K. Lounis.

Outre mes conseillers, je voudrais remercier tous les membres du jury : les professeurs Bouzid Benkoussas, Mohamed Benbraika et Elhadi Benyoussef d'avoir accepté de devenir membre du jury et d'avoir examiné ce rapport technique.

Je tiens à remercier l'ensemble du personnel du service des processus de Japanese Gas Corporation (JGC), qui m'a accueilli comme membre de son équipe et m'a permis d'accéder à ses installations de travail. Sans leur aide, ce projet ne pourrait être possible.

Enfin, j'aimerais remercier toutes les personnes qui m'ont apporté toute forme d'aide pour surmonter toutes les difficultés rencontrées au cours de mes cinq années d'études en génie mécanique.

Table des matières

Liste des figures	
Liste des tables	
Liste des sigles	
Introduction	17 -
1.2. Japanese Gas Corporation Algeria	
1.2.1. Introduction	
1.3. Issue du projet	
1.4. Structure du document	
État de l'art sur le boil-off d'éthylène	
2.1. Introduction	
2.2. Cas du boil-off du GNL	
2.3. Cas du Boil- off d'éthylène	
2.4. Conclusion	
Modélisation Mathématique Du Boil-Off D'éthylène	28 -
3.1. Introduction	
3. 2. Description du réservoir de stockage	
3.2. Model physique	
3.3. Model Mathématique	
3.3.1. Vapeurs d'éthylène	
3.3.2. Liner (Surface-1)	
3.3.3. Toit (surface 3)	
3.5. Résolution analytique	
3.8. Résolution numérique	43 -
3.9. Hypothèses	- 43 -
3.10. Results	- 44 -
Procédé de re-liquéfaction et dimensionnement	
4.1. Introduction	
4.2.1. Refrigerants	
4.2.2. Le procédé	47 -
4.2.2.1. Procédé 1 (cas-A)	
4.2.2.2. Procédé 2 (Cas-B)	
4.2.2.3. Procédé 3 (Case-C)	
4.3. Modélisation, hypothèses et paramètres d'entrée pour la simulation	
4.3. 1. Equations d'états	
4.3. 2. Description du site et hypothèses	
4.3.3. Coefficient de performance	
4.3.4. Résultat numérique	

4.3.5. Process final	54 -
4.3.6. Performances	54 -
4.4. Dimensionnement	54 -
4.4.1. Principaux équipements	54 -
4.4.2. Compresseur	54 -
4.4.3. Echangeurs de chaleur	54 -
4.4.2. Equipements secondaire	57 -
4.4.2. Liste des équipements et paramètres clés	58 -
Analyse technico-économique	60 -
5.1. Introduction	60 -
5.2. Methodologie	60 -
5.3. Évaluation du « Capital cost »	60 -
5.4. Index	61 -
5.5. Évaluation du coût des matériaux	62 -
5.5.1. Échangeurs de chaleur	62 -
5.5.2. Compressor	62 -
5.5.3. Récipient a pression	- 63 -
5.6.3. Coût de l'approvisionnement en eau	65 -
5.6.4. Coût total d'exploitation	66 -
5.7. Bénéfice brut	66 -
5.8. Évaluation financière	67 -
5.8.1. Hypothèses	67 -
5.8.2. Definitions	67 -
5.8.3. Methodes d'évaluations	- 68 -
5.9. Résultats	69 -
5.9.1. Encaissement annuel net	69 -
5.9.2. Période de récupération	69 -
5.9.3. Période de récupération réduite	69 -
5.9.4. Entrée de trésorerie actualisée	70 -
5.9.4. Valeur actuelle nette (NPV)	72 -
5.10. Analyse des résultats	76 -
Conclusions	78 -
References	- 81 -
Annexe 1	- 86 -
Annexe 2	- 87 -
Annexe 3	90 -
Annexe 4	- 95 -

Liste des figures

Figure 1.1. Prix spot de l'éthylène	- 1	8 -
-------------------------------------	-----	-----

Figure 3.1. Plan de conception du réservoir de stockage externe	- 29 -
Figure 3. 2. Schéma d'une vue en coupe des réservoirs de stockage extérieur et intérieur.	- 29 -
Figure 3. 3. Détails liés au modèle physique utilisé	- 30 -
Figure 3.4. Bilan thermique de la couche de vapeur d'éthylène infinitésimale	- 31 -
Figure 3. 5. Bilan thermique de la couche annulaire infinitésimale du liner	- 33 -
Figure 3. 6. Bilan thermique du cylindre annulaire infinitésimal du toit.	- 36 -
Figure 3. 7. Bilan thermique avec l'éthylène liquide	- 40 -
Figure 3. 8. Algorithme de calcul du taux d'ébullition.	- 43 -

Figure 4. 1. Schéma du procédé de re-liquéfaction de l'éthylène cas-A	48 -
Figure 4. 2. Schémas du procédé de reliquéfaction de l'éthylène Cas-B	49 -
Figure 4. 3. Diagramme du processus de re-liquéfaction d'éthylène-C	50 -

Figure	5. 1.	Entrée de fonds actualisée pendant 25 ans pour 50% de l'utilisation	- 72 -
Figure	5. 2.	Valeur actuelle nette pour 50% et 100% d'utilisation.	- 74 -
Figure	5.3.	Taux de rendement interne au fil des ans pour 50% et 100% d'utilisation	- 76 -

Liste des tables

Table 3. 1. Paramètres de l'éthylène et de l'azote dans le réservoir de stockage	29 -
Table 3. 2. Propriété géométrique et thermique utilisé pour l'application numérique.	86 -
Table 4. 1. Propriétés thermophysiques, sécuritaires et environnementales de certain	s fluides
frigorigènes.	47 -
Table 4. 2. Exergie et bilan énergétique pour chaque composante du processus de lie	quéfaction
51 -	-
Table 4. 3. Composition et paramètres thermodynamiques de l'éthylène BOG	53 -
Table 4. 4. COP de l'étude préliminaire avec la référence.	53 -
Table 4. 5. COP des cas A, B et C utilisant les réfrigérants R1270, R600a et R290	53 -
Table 4. 6. Caractéristiques géométriques et énergétiques essentielles de l'échangeur	de chaleur
55 -	
Table 4.7. Caractéristiques du séparateur de phase.	56 -
Table 4. 8. Caractéristiques du séparateur de phase.	57 -
Table 4. 9. Liste des équipements principaux avec leur paramètres pertinents	58 -
Table 4. 10 A-Cool-Ethylene-1	90 -
Table 4. 11 A-Precooler-2	91 -
Table 4. 12 A-Precooler-1	92 -
Table 4. 13 A-Cond-Evap heat exchangers	93 -
Table 4. 14 A-Cond-Evap	94 -
*	

Table 5. 1. Liste des principaux types d'équipement avec leur taille de base	· 61 -
Table 5. 2. Coûts des échangeurs de chaleur	· 62 -
Table 5. 3. Coûts des compresseurs	· 63 -
Table 5. 4. Coût des récipients a pression	· 63 -
Table 5. 5. Les coûts d'équipement finaux.	· 63 -
Table 5. 6. Coût de l'énergie électrique pour chaque compresseur	64 -
Table 5. 7. Coût total de l'énergie électrique par pourcentage de la durée de fonctionnement	- 65 -
Table 5. 8. Coût de maintenance annuelle pour 50% et 100% de la durée de fonctionnement	- 65 -
Table 5. 9. Les coûts annuels de refroidissement par eau représentent 50% et 100% de la duré	e de
fonctionnement	· 66 -
Table 5. 10. Total des coûts d'exploitation de l'installation pour 50% et 100% du temps	
d'exploitation	· 66 -
Table 5. 11. Bénéfice économique total pour un prix minimal d'éthylène par période donnée;	
heure, jour, mois, 6 mois, année	· 67 -
Table 5. 12. Bénéfice économique annuel total pour chaque scénario pour 50% et 100% du te	mps
de fonctionnement	· 67 -
Table 5. 13. Méthodes d'évaluation des critères applicables pour accepter un projet	· 68 -
Table 5. 14. Formule de calcul des critères applicables.	· 69 -
Table 5. 15. Encaissement annuel net	· 69 -
Table 5. 16. Période de récupération	· 69 -
Table 5. 17. Période de période de récupération réduite.	· 70 -
Table 5. 18. Entrée nette de fonds pour 50% d'utilisation et 100% d'utilisation	· 71 -
Table 5. 19. Valeur actuelle nette pour 50% et 100% d'utilisation	· 73 -
Table 5. 20. Tarifs internes pour 50% et 100% d'utilisation	· 75 -

Liste des sigles

п	: Épaisseur d'isolation à l'azote, m
р	: Épaisseur d'isolation en perlite, m
е	: Epaisseur du toit, m
h	: Hauteur du réservoir de stockage, m
Z _L	: Haute de la surface libre d'éthylène, m
r_i	: Rayon interne du réservoir de stockage, m
ľ _e	: Rayon externe du réservoir de stockage, m
r _m	: Rayon moyen du réservoir de stockage, m
dz	: Élément de hauteur, m
W	: Épaisseur du fond du réservoir de stockage, m
Surface-1	: Surface de la paroi interne en contact avec la vapeur d'éthylène, m
Surface-2	: Surface de la paroi interne en contact avec l'éthylène liquide, m
Surface-3	: Surface interne du toit, m
Surface-4	: Surface interne du fond, m
$L_{Perlite}$: Épaisseur de l'isolant de perlite, m
L _{Steel}	: Épaisseur de l'acier environnant, m
$L_{glass\ wool}$: Épaisseur de l'isolant en laine de verre, m
$S_{L, inside}$: Élément de surface transversale interne de la doublure, m2
$S_{\scriptscriptstyle A,L}$: Élément de surface latérale de la gaine, m2

$S_{R, inside}$: Élément de surface transversale interne du toit, m2
$S_{\scriptscriptstyle A,R}$: Élément de surface latérale du toit, m2
<i>M</i> ₁₃	: Variables de substitution, sans dimension
λ ₁₃	: Variables de substitution, sans dimension
$\alpha_{_V}$: Variables de substitution, sans dimension
$\alpha_{_L}$: Variables de substitution, sans dimension
$\gamma_{\scriptscriptstyle L}$: Variables de substitution, sans dimension
$oldsymbol{eta}_{\scriptscriptstyle L}$: Variables de substitution, sans dimension
$\alpha_{_R}$: Variables de substitution, sans dimension
$oldsymbol{eta}_{\scriptscriptstyle R}$: Variables de substitution, sans dimension
a	: Variables de substitution, sans dimension
α	: Variables de substitution, sans dimension
К	: Variables de substitution, sans dimension
$T_{V}(z)$: Température de la vapeur d'éthylène sur la hauteur, en K
$T_L(z)$: Température de la chemise le long de la hauteur, K
$T_R(r)$: Température du toit le long du rayon, K
T _{external}	: Température externe, K
$T_{Ethylene}$: Température de l'éthylène liquide, K
T_R	: Température relative, K
T_{C}	: Température critique, K

T _{Reef}	: Température de référence, K	
\overline{T}_{R}	: Température moyenne de la surface du toit, en K	
\overline{T}_{L}	: Température moyenne de la surface du revêtement, en K	
Tground	: Température constante du sol, K	
$\dot{m}_{_V}$: Taux d'évaporation en masse d'éthylène, kg / h	
Cp_{V}	: Capacité thermique spécifique de l'éthylène, J / kg.K	
K_{L}	: Conductivité de la chemise, W / m.K	
$U_{extern,L}$: Transfert de chaleur global par conduction entre la surface 3	
	et l'environnement externe, W / m2.K	
$h_{\!\scriptscriptstyle L,Ethylene,radiation}$: Taux de convection équivalent pour le taux de transfert de chaleur	
	radiatif entre le liner et l'éthylène liquide, W / m2.K	
σ	: Constante de Stefan Boltzmann, W / m2.K4	
K _R	: Conductivité du toit W / m.K	
$K_{glass \ wool}$: Conductivité d'isolation en laine de verre, W / m.K	
K _{Perlite}	: Conductivité d'isolation en laine de perlite, W / m.K	
K _{Steel}	: Conductivité de l'acier, W / m.K	
$U_{\scriptscriptstyle B,conduction}$: Transfert de chaleur global par conduction entre la surface 4	
	et le sol, W / m2.K	
$U_{\rm FP}$: Transfert de chaleur global par conduction entre la surface 3 et	
<i>L</i> ,N	l'environnement extérieur, W / m2.K	
ω	: Facteur acentrique de l'espèce, sans dimension	
Ζ	: Facteur de compressibilité, sans dimension	

$h_{\scriptscriptstyle Evaporation, ethylene}$: Enthalpie d'évaporation de l'éthylène, W / m2.K	
$h_{L-V}(T_L,T_V)$: Transfert de chaleur convectif et radiatif équivalent entre le liner	
	et les vapeurs, W / m2.K	
$h_{L,V,Convection}(T_L,T_V)$: Transfert de chaleur radiatif équivalent entre le liner et les	
	vapeurs, W / m2.K	
$h_{L,V,Radiation}(T_L,T_V)$: Transfert de chaleur convectif équivalent entre le liner et les	
	vapeurs, W / m2.K	
$\dot{H}_{_V}\left _z\right.$: Flux d'enthalpie ascendante en z pour un volume cylindrique	
	Infinitésimal de rayon et de hauteur, W / m2.K	
$\dot{H}_{_{V}}\left _{_{z+dz}}\right.$: Flux d'enthalpie vers le haut pour un volume cylindrique infinitésimal	
	de rayon et de hauteur, W / m2.K	
Р	: Pression de service maximale admissible, en MPa	
S	: Contrainte de traction maximale admissible, MPa	
eff	: Efficacité du joint soudé, sans dimension	
D	: Diamètre intérieur du bateau, m	
L	: Longueur, m	
F _{L athelene}	: Facteur de forme de corps gris entre le liner et la surface du liquide	
L _s ethylene	Éthylène, sans dimension	
$\boldsymbol{\varepsilon}_{_{L}}$: Émissivité moyenne de la doublure thermique, sans dimension	
$f_{L.ethylene}$: Facteur de vue entre le liner et la surface de l'éthylène liquide, sans dimension	
F _{R ethylene}	: Facteur de forme de corps gris entre le toit et la surface de	
азатуюно	L'éthylène liquide, sans dimension	
$\boldsymbol{\varepsilon}_{_{R}}$: Émissivité thermique moyenne du toit, sans dimension	

$f_{\rm R.ethylene}$: Facteur de vue entre le toit et la surface de l'éthylène liquide, sans dimension
$\sum m_{in}$: Flux de masse d'admission, kg / s
$\sum m_{out}$: Débit de masse en sortie, kg / s
Q	: Quantité de chaleur nette fournie au système, W
W	: Quantité nette de travail fourni au système, W
Q_E	: Tête retirée du gaz d'éthylène, W
W _{tot}	: Travail total de l'installation, W
$\sum H_{out}$: Enthalpie d'entrée, kJ / kg.s
$\sum H_{in}$: Flux d'enthalpie en sortie, en kJ / kg.s
e _{out}	: Flux énergie d'entrée, kJ / kg
e _{in}	: Flux d'exergie de sortie, kJ / kg
Q_E	: Capacité de refroidissement, W
e Specific	: Exergie spécifique, kJ / kg
h	: Quantité d'enthalpie dans un état donné, kJ / kg
h_0	: Enthalpie spécifique aux conditions de référence, en kJ / kg
S	: Quantité d'entropie à un état donné, kJ / kg.K
<i>s</i> ₀	: Entropie spécifique à une condition de référence, kJ / kg.K
h^S	: Isotropie de l'enthalpie à un état donné, kJ / kg
$\eta_{\scriptscriptstyle Comp_i}$: Efficacité isentropique du compresseur, sans dimension
Ex	: Flux d'exergie, kJ / kg.s

СОР	: Coefficient de performance, sans dimension	
LEG	: Gaz d'éthylène liquéfié	
R	: Constante de gaz universelle, J / mol. K.	
$J_{_0}ig(oldsymbol{ heta}ig)$: Premier type de fonction de Bessel, sans dimension	
$Y_{_{0}}(\boldsymbol{ heta})$: Seconde sorte de fonction de Bessel, sans dimension	
Q_{L-V}	: Débit de transfert de chaleur par convection et par conduction équivalent entre	
$Q_{extern,L,cond}$	doublure (surface 1) et les vapeurs d'éthylène, W	
$Q_{\scriptscriptstyle L,V,radiation}$: Taux de transfert de chaleur par conduction, convection et rayonnement entre	
$Q_{\scriptscriptstyle L,V,convection}$	surface-1 et l'environnement extérieur, W	
$Q_{cond} \mid_z$: Flux radiatif en z pour une surface cylindrique annulaire infiniment petite d'un rayon et d'une hauteur entre le liner et l'éthylène liquide, W	
$Q_{cond} \mid_{z+dz}$: Taux de transfert de chaleur par convection entre le liner et les vapeurs d'éthylène, W	
$Q_{E,R,conduction}$: Taux de transfert de chaleur par conduction à travers la surface 1 entre le toit et	
	l'éthylène liquide en z, W	
$Q_{\scriptscriptstyle R, \scriptscriptstyle V, \scriptscriptstyle radiation}$: Taux de transfert de chaleur par conduction à travers la surface 1	
$Q_{R,conduction} \mid_r$: Taux de transfert de chaleur par conduction et par rayonnement entre la surface 3 et la 	
$Q_{\rm R,conduction} \left _{r+dr} \right $	environnement externe, W	

$\mathcal{Q}_{\scriptscriptstyle Condutction}$: Flux radiatif pour et entre la surface interne du toit et l'éthylène liquide, W	
Q_{Liner}	: Taux de transfert de chaleur par conduction à travers le toit, de la partie	
	extérieure du toit à la partie intérieure du toit, à rayon r	
$Q_{\scriptscriptstyle Radiation\ Liner}$: Taux de transfert de chaleur par conduction à travers le toit depuis	
	la partie externe	
$\mathcal{Q}_{\it Radiation, Roof}$: Chaleur radiative reçue par l'éthylène liquide du toit, W	
$Q_{\scriptscriptstyle Bottom}$: Chaleur conductrice reçue par l'éthylène liquide du sol, W	
C_E	: Coût d'équipement avec capacité Q, dollars	
C _B	: Coût de base connu pour un équipement de capacité QB, en dollars	
М	: Constante en fonction du type d'équipement, sans dimension	
f_M	: Facteur de correction pour les matériaux de construction, sans dimension	
f_T	: Facteur de correction pour la température de conception, sans dimension	
f_P	: Facteur de correction pour la pression de calcul, sans dimension	
<i>C</i> ₁	: Coût de l'équipement en année 1, en dollars	
C_2	: Coût de l'équipement en année 2, en dollars	
INDEX ₁	: Index de l'an 1, sans dimension	
INDEX ₂	: Index de l'an 2, sans dimension	

Introduction

Introduction

1.1. Applications de l'éthylène :

L'éthylène (également appelé éthane) est l'un des produits organiques les plus légers de la planète. C'est un gaz incolore inflammable avec une odeur légèrement douce dans des conditions normales. C'est également l'un des hydrocarbures oléfiniques les plus importants de l'industrie pétrochimique [1].

L'éthylène est souvent utilisé dans la fabrication d'autres produits chimiques comme produits intermédiaires, en particulier les plastiques. Grâce à sa double liaison hautement réactive dans sa structure chimique, l'éthylène peut être impliqué dans toutes sortes de réactions - addition, oxydation, polymérisation, entre autres - pour se transformer en produit final ou produit intermédiaire dans l'industrie de la pétrochimie. En outre, l'éthylène est également une matière première importante pour la fabrication de divers produits, notamment les plastiques, les textiles, le papier, les solvants, les colorants, les additifs alimentaires, les pesticides et les produits pharmaceutiques. Il peut également être étendu aux secteurs de l'emballage, du transport, de la construction, des tensioactifs, des peintures et des revêtements, ainsi que d'autres industries [2].

L'éthylène peut être utilisé pour produire des produits chimiques tels que le chlorure de vinyle (CH2 = CHCI) et le styrène (CH2 = CH (C6H5)), qui peuvent à leur tour subir une polymérisation pour produire respectivement du polychlorure de vinyle (PVC) et du polystyrène. Les matériaux traditionnels, y compris l'acier, le verre et même la céramique, sont désormais remplacés par du PVC pour ses propriétés polyvalentes. Sa polyvalence découle du fait que de simples modifications des composants de base peuvent donner lieu à différentes propriétés. En plus de ses propriétés thermoplastiques, le PVC peut également être mélangé avec des additifs qui lui permettent une flexibilité et le renforce contre les rayons UV [2].

L'éthylène est utilisé pour produire de l'éthylène glycol (CH2OH-CH2OH), également appelé antigel. Dans sa forme pure, l'éthylène glycol est un liquide incolore et visqueux. Il est facilement soluble dans l'eau. Par conséquent, pour les solutions antigel, l'éthylène glycol est mélangé à de l'eau, ce qui donne un liquide à température d'ébullition élevée et à basse température de congélation que l'eau pure. En outre, il n'est pas corrosif et est donc couramment utilisé dans les radiateurs d'automobile [2].

Une des applications importantes de l'éthylène est la production d'éthanol, qui est ensuite utilisé comme solvant dans les produits pharmaceutiques, les encres, les cosmétiques et comme réactif pour les applications industrielles. La réaction entre l'éthylène et l'eau en présence d'acide phosphorique, le catalyseur produit de l'éthanol [5].

L'éthylène est naturellement présent dans les plantes et stimule la maturation des fruits. En cultivant des fruits dans une serre, par exemple. Le degré de déchirure peut être contrôlé en

faisant varier les quantités d'éthylène présent. Ce processus a lieu pendant quelques jours et plus il y a d'éthylène, plus le fruit mûrira vite [2].

Au cours des dernières années, de 2000 à 2012, le prix de l'éthylène a fluctué en fonction de l'offre et de la demande, allant de 600 USD / tonne à 1800 USD / tonne. Le prix au comptant dans l'UE est illustré à la figure 1.1 pour la période 2000-2012 [3].

Figure 1.1. Prix spot de l'éthylène.

De 2000 à 2004, le prix de l'éthylène était en moyenne d'environ 600 / tonne. De 2004 à la mi-2008, le prix de l'éthylène a augmenté régulièrement pour atteindre plus de 1 800 dollars / tonne. En raison de la crise financière mondiale (GFC) de 2008/9, les prix des produits de base ont fortement chuté. Le prix de l'éthylène s'est redressé relativement rapidement, puis, à partir de 2009, le prix de l'éthylène a régulièrement augmenté, mais il dépassait encore les 1 000 / tonne à la mi-2012. De 2008 à 2012, la Chine s'est lancée dans de grandes installations de production d'éthylène utilisant du charbon. Il s'agit d'une entreprise à coût élevé, nécessitant à la fois du charbon à faible coût et des prix élevés de l'éthylène [3].

1.2. Japanese Gas Corporation Algeria

1.2.1. Introduction

Japanese Gas Corporation Algeria, JGC Algeria, est une société pétrolière et énergétique créée en 2006 et basée à Alger. Il est membre du groupe JGC avec plus de 47 filiales et 32 sociétés affiliées à travers le monde. Deux centres d'opérations permanents se trouvent en Algérie, le centre d'opérations d'Alger (AOC) et le centre d'opérations de Hassi Messaoud (HOC). Les deux centres gèrent tous les projets en Algérie. Au cours de son histoire, la société JGC a mis en œuvre plus de 40 projets.

1.3. Issue du projet

Le complexe CP2K situé dans le complexe d'essence de Skikda utilise l'éthylène dans le processus «Chevron Phillips FP» pour la production d'un polyéthylène haute densité. Ce matériau, le monomère de la réaction, est stocké sous forme liquide à une température (-104 ° C) sous pression atmosphérique dans une cuve cryogénique de stockage dotée d'une capacité de production de 120 000 tonnes / an.

Le réservoir de stockage ne peut pas être parfaitement isolé, de sorte que des phénomènes de transfert de chaleur auront lieu entre l'extérieur et l'intérieur du réservoir de stockage. Cet échange de chaleur entraîne une augmentation de la température interne du réservoir de stockage et par conséquent de l'éthylène liquide qui s'y trouve. Cette élévation provoquera l'évaporation d'éthylène par évaporation et exercera une pression sur le réservoir de stockage, ce qui compromettra son intégrité. Ce problème a été résolu en envoyant du gaz d'évaporation à l'éthylène dans une torche, entraînant un coût allant de 850 à 1 200 dollars par mètre cube d'éthylène perdu.

Par conséquent, une nouvelle unité de micro-liquéfaction destinée à récupérer les vapeurs d'éthylène "Boil-Off" doit être définie. La nouvelle installation doit récupérer les vapeurs d'éthylène et les liquéfier aux conditions suivantes : Éthylène state : liquid

- Température : -104 ° C
- Pression : 101.33kPa

La nouvelle installation doit avoir un système de dérivation pour envoyer l'éthylène récupéré directement à un tiers dans les conditions suivantes :

- État d'éthylène : gazeux
- Température : ambiante (31 ° C)
- Pression : 1,96 2,15 MPa

<u>1.4. Structure du document</u>

Ce document est structuré en cinq chapitres qui sont décrits comme suit :

Le chapitre I décrit l'état de la technique du phénomène d'évaporation par éthylène en présentant les recherches qui ont été réalisées pour décrire, quantifier, liquéfier le gaz éthylénique par évaporation et en mettant en évidence les travaux expérimentaux et théoriques pertinents.

Les études sur l'ébullition d'éthylène ne sont pas nombreuses comparées au GNL, de sorte que les études sur l'évaporation au GNL sont présentées en fonction de l'importance du GNL en tant que carburant liquéfié. Le gaz est liquéfié et ensuite transporté dans des conditions environnementales et de stockage générant automatiquement de l'ébullition. En se basant sur ce qui a été dit précédemment, le présent chapitre conclut en soulignant la principale motivation de la liquéfaction de l'éthylène-liquéfié. L'ébullition dégage de l'éthylène par une approche économique et environnementale.

Le chapitre II a pour objectif principal de présenter le modèle mathématique du phénomène d'évaporation. Ce modèle quantifiera les pertes de chaleur et les débits massiques. La quantification de ces pertes aidera à déterminer le processus de liquéfaction le plus approprié.

Le chapitre III comparera les procédés courants de liquéfaction cryogénique pour l'éthylène gazeux et sélectionnera le plus intéressant en termes de coefficient de performance et d'utilisation pratique, puis définira tous les équipements du procédé choisi en fonction de la température et de la pression de fonctionnement.

Le chapitre IV présente l'approche technico-économique utilisée dans le projet. Principalement, en évaluant les pertes économiques dues à l'ébullition de l'éthylène. Secondaire, une évaluation financière est proposée pour le processus décrit précédemment au chapitre III, puis terminée par une analyse de retour sur investissement.

Nous finissons le manuscrit par une conclusion générale qui met en évidence les résultats obtenus dans le projet ainsi que les perspectives potentielles pour sa continuité.

Chapitre I État de l'art sur le boil-off d'éthylène

État de l'art sur le boil-off d'éthylène

2.1. Introduction

En raison de l'intérêt économique que présente la re-liquéfaction de gaz d'ébullition, de nombreux documents de recherche ont été publiés en abordant la re-liquéfaction de la BOG de manière théorique et pratique. Cependant, la plupart des recherches menées étaient axées sur la re-liquéfaction par évaporation du GNL par rapport à la re-liquéfaction de l'éthylène.

Pour ce qui suit, l'état de la technique sera présenté pour le GNL et l'ébullition à l'éthylène.

2.2. Cas du boil-off du GNL

Chin [4] a effectué une analyse de cycle afin de déterminer le point de conception optimal du système de reliquéfaction de gaz d'ébullition de GNL. En utilisant l'analyse thermodynamique, le système pourrait être défini par trois variables d'état. Par conséquent, les performances du système pourraient être décrites par les trois températures d'extrémité froide de l'échangeur de chaleur à trois passes. Cela a permis d'étudier les performances du cycle en termes de paramètres de l'échangeur thermique. Il a constaté que de plus grands échangeurs de chaleur étaient nécessaires pour obtenir des performances plus élevées du système. De plus, il a été constaté que le pincement thermique dans les échangeurs cryogéniques agissait comme un facteur limitant les performances du système.

Moon et al. [5] ont utilisé des méthodes numériques pour comparer les cycles de réfrigération de Claude et Kaptiza. Ils ont constaté que le cycle de réfrigération Kaptiza est plus efficace en termes d'opérabilité et de coût pour l'usine de re-liquéfaction de gaz naturel liquide que le cycle Claude. Les auteurs ont décrit l'effet de la température de sortie du condenseur de gaz d'évaporation pour le cycle de l'azote, ainsi que le rapport entre la masse détendue par le turbo-expandeur et la masse du débit total sur l'efficacité du système de reliquéfaction par liquéfaction de GNL sélectionné. cycle. En conséquence, la valeur optimale unique pour le rapport de la masse dilatée à travers le turbo-expandeur au débit massique total s'est avérée exister.

Pil et al. [6] ont introduit l'évaluation de la fiabilité des systèmes de re-liquéfaction du gaz d'évaporation sur les méthaniers en accordant une attention particulière à l'optimisation de la redondance et aux stratégies de maintenance. La modélisation de la fiabilité était basée sur une approche de Markov dépendante du temps. Quatre options de système différentes ont été étudiées, avec différents degrés de redondance. Les défaillances du système de re-liquéfaction peuvent nécessiter une évaporation du BOG, et le coût associé est comparé au coût

d'introduction de la redondance et au coût de la maintenance à bord. Un modèle d'optimisation de la maintenance est développé et illustré sur l'unité principale du système de re-liquéfaction.

Afin d'obtenir un rendement supérieur et des émissions plus faibles que les méthaniers classiques, Shipboard est équipé d'un système de liquéfaction pour les grands méthaniers. Les méthaniers liquéfiés au gaz naturel permettent l'utilisation de moteurs diesel à faible vitesse. Anderson et al. [7] ont présenté en détail les activités de conception, de qualification et de développement, ainsi que les modes de fonctionnement des premiers systèmes de re-liquéfaction du méthanier, les méthaniers Q-Flex et Q-Max.

Shin et Lee [8] ont présenté une simulation dynamique orientée objet facilitant la conception de l'installation et du système de contrôle du processus thermique. Le processus de reliquéfaction conçu utilisé était basé sur le cycle inverse de Brayton. Il a été constaté que la température de sortie de l'extenseur est la variable de processus clé pour la commande et que la commande du processus fonctionne correctement lorsque trois actionneurs sont activés dans trois régimes de charge BOG différents. L'étude montre que le contrôle de la pression du séparateur pour maintenir la fraction de vapeur à la sortie du papillon des gaz aussi basse que possible est une méthode efficace pour purger l'azote du BOG. L'algorithme développé permet une configuration d'installation flexible et polyvalente en modélisant l'équipement à l'aide de l'orientation d'objet.

Dimopoulos et al. [9] ont analysé le modèle d'évaporation élaboré pour la variation du débit massique, de la composition et des propriétés thermodynamiques du BOG au cours du transport maritime. Le modèle utilisé utilise des équations thermodynamiques et des équations de conservation différentielles non linéaires couplées non linéaires entre phase vapeur et phase liquide, décrivant l'évolution de la quantité et de la composition du GNL dans le temps. Le modèle a été utilisé pour étudier la variation de la quantité, de la composition et des propriétés thermodynamiques du GNL et du BOG au cours de profils de voyage types d'un méthanier étudié. Les résultats ont été comparés aux approches traditionnelles utilisées dans les pratiques techniques marines. Le modèle utilisé est un modèle facile à mettre en œuvre et non coûteux en calcul. Il peut également être intégré pour la simulation et l'optimisation thermo-économique. Ce modèle peut également être étendu à d'autres composants chimiques, tels que l'éthylène.

Hoseyn et al. [10] ont présenté une optimisation thermo-économique du système de liquéfaction LNG BOG, le modèle thermo-économique était basé sur des analyses d'énergie et d'exergie et un modèle économique basé sur les besoins en revenus totaux (TRR) a été développé. Un algorithme génétique a été utilisé pour minimiser le coût unitaire de l'effet de réfrigération en tant que produit de l'usine de reliquéfaction BOG. Les résultats de l'optimisation thermo-économique ont été comparés aux caractéristiques correspondantes du système de référence. Cependant, il s'avère qu'en optimisant toutes les caractéristiques économiques, l'efficacité exergétique diminue.

Beladjine et al. [11] ont analysé un système de re-liquéfaction de GNL BOG fonctionnant selon le cycle de réfrigération Claude et utilisant de l'oxygène comme réfrigérant. Le système est composé de deux parties: le cycle LNG BOG et le cycle Oxygen. Ils ont conclu à une analyse complète de l'exergie d'un système de re-liquéfaction BOG installé à bord d'un méthanier. Les données d'exploitation courantes ont été utilisées pour effectuer une analyse thermodynamique du système.

Beladjine et al. [12] ont procédé à une analyse exergétique d'une usine de reliquéfaction de GNL BOG identique à celle de Beladjine et al. [11] mais utilisant de l'azote comme fluide de travail du cycle de Claude. L'équation d'état de Virial a été utilisée pour calculer les propriétés thermodynamiques de l'azote. L'analyse de l'énergie et de l'exergie du cycle de Claude a été adoptée pour calculer les performances thermodynamiques. Les simulations ont montré l'influence des conditions de fonctionnement sur les pertes d'exergie et l'efficacité de ce système. L'utilisation d'azote au lieu d'un système de liquéfaction d'oxygène nécessite une pression bien inférieure à la pression de fonctionnement avec des résultats comparables.

Baek et al. [13] ont présenté une enquête sur un nouveau procédé de re-liquéfaction de GNL dans lequel l'exergie froide du GNL sous-refroidi est utilisée pour re-condenser le composant léger vaporisé du GNL après qu'il a été séparé du séparateur. Ils ont démontré expérimentalement que la régénération de l'exergie froide est particulièrement efficace et importante, du point de vue thermodynamique, lorsqu'un processus cryogénique est impliqué. Les auteurs ont conclu que l'utilisation d'un liquide sous-refroidi sous pression obtenu par une pompe à liquide peut certainement réduire le pouvoir de pompage du gaz naturel vaporisé. Cela peut économiser la dépense énergétique globale liée au processus de re-liquéfaction de GNL. Des investigations expérimentales ont été effectuées pour démontrer la validité de l'étude.

Romero et al. [14] ont présenté une analyse thermodynamique du cycle de refroidissement de Brayton pour la reliquéfaction de l'évaporation sur des navires à gaz naturel liquéfié (GNL). Ils ont également évalué les conditions de fonctionnement, les paramètres et la consommation d'énergie requis dans le processus, y compris l'influence du choix et de la variation de divers facteurs sur les conditions de fonctionnement et la puissance. Pour ce processus, des recherches supplémentaires sur l'analyse exégétique doivent être développées afin de trouver et d'améliorer la conception optimale.

Gomez et al. [15] ont présenté une installation de re-liquéfaction de gaz évaporé de GNL fonctionnant selon des cycles de compression de vapeur en cascade, utilisant du propylène et de l'éthylène comme réfrigérants, à bord de méthaniers. Une nouvelle conception originale est proposée pour réduire la consommation d'énergie et améliorer son efficacité exergétique grâce aux résultats de l'analyse. L'analyse thermodynamique a été réalisée à l'aide de l'environnement logiciel Engineering Equation Solver (EES). Les résultats de la conception améliorée mise en œuvre sur l'usine de re-liquéfaction des réservoirs de GNL ont permis d'obtenir un rendement COP et une efficacité exergétique supérieurs de 22,22% et 19,35% à la conception initiale.

Hongbo et al. [16] ont proposé un nouveau système de re-liquéfaction de gaz d'évaporation destiné aux méthaniers afin d'améliorer l'efficacité énergétique du système. L'analyse thermodynamique basée sur le bilan exergétique et la conservation de l'énergie. Deux cycles de réfrigérants mélangés en cascade (ou le cycle de réfrigérants à double mélange, DMR) sont utilisés pour fournir la capacité de refroidissement nécessaire à la reliquéfaction du BOG. Les performances du nouveau système ont été analysées sur la base des données thermodynamiques obtenues lors de la simulation du processus dans le logiciel Aspen HYSYS. Les résultats montrent que la puissance consommée peut être réduite de 25%. Il présente une amélioration de 33% de la COP et de l'efficacité exergétique par rapport aux valeurs correspondantes du système existant. Il indique que l'utilisation du système de re-liquéfaction BOG basé sur DMR pourrait améliorer considérablement l'efficacité énergétique du système des méthaniers.

2.3. Cas du Boil- off d'éthylène

Berlinck et al. [17] ont introduit une simulation numérique du procédé de re-liquéfaction de l'éthylène. Le modèle de simulation utilisait la loi de conservation de la masse et de l'énergie et comportait deux cascades distinctes de réfrigération et de liquéfaction, utilisant respectivement de l'ammoniac pour le côté haute pression et de l'éthylène pour le côté basse pression. Bien que les simulations des résultats aient été validées pour un plan réel, certaines des hypothèses de simplification, basées sur un modèle empirique, devraient être améliorées.

Plus tard, Chien et Shih [18] ont proposé une conception innovante d'optimisation du procédé de re-liquéfaction de gaz d'évaporation (BOG) pour les navires LEG (Liquéfied Ethylene Gas), qui consiste, comme Berlinck et al. [17] d'un système de re-liquéfaction séparé et d'un système de cycle de réfrigération, mais cette fois-ci en utilisant un réfrigérant à l'azote. L'efficacité exogène de la re-liquéfaction BOG optimisée était d'environ 19,0% supérieure à celle du processus de re-liquéfaction BOG existant à ce moment-là. La quantité de réfrigérant et d'eau de mer utilisée dans le processus optimisé a été réduite d'environ 44,8% et 27,1% par heure, respectivement. Le processus optimisé a permis d'économiser 16,2% de plus que le processus existant en termes de consommation d'énergie. De plus, la réduction des débits de circulation du fluide frigorigène et du processus de re-liquéfaction BOG a entraîné une baisse importante de la demande d'équipements, de pipelines et de vannes, ce qui a également permis de réduire considérablement les coûts d'investissement totaux d'un processus de re-liquéfaction.

L'année prochaine, Li et al. [19] ont reproduit le travail de Chien et Shih [18] avec le même résultat. Nanowski [20] a décrit brièvement une installation de re-liquéfaction d'éthylène basée sur le diagramme de Molière et l'a comparée pour plusieurs conceptions d'économiseur afin de réduire les températures de décharge de deuxième étage des compresseurs à mouvement alternatif.

Beladjine et al. [21] ont proposé une analyse thermodynamique des réfrigérants à base d'hydrocarbures pour le système de reliquéfaction de l'éthylène BOG, les auteurs ont conclu que le R600 serait le meilleur réfrigérant en termes de COP et d'efficacité énergétique. Ils ont également constaté que l'augmentation de la température du réservoir améliorerait les

performances du système. Mais de l'autre côté, cela augmentera également la température de condensation du réfrigérant. La méthodologie utilisée consistait à utiliser une approche de modélisation thermodynamique simple et fiable permettant une évaluation thermodynamique rapide en comparant une longue liste de fluides frigorigènes.

Basé sur le résultat de Beladjine et al. [21] pour les réfrigérants optimaux pour la reliquéification de l'éthylène, Hongbo et al. [22] ont comparé trois processus potentiels de re-liquéfaction de BOG pour des navires LEG (deux proposés par Chien et Shih [18] et un par Beladjine et al. [21]) en termes de coefficient de performance (COP) et d'efficacité exergétique . Nous avons également comparé les effets de la pression de stockage d'éthylène, de la température de condensation du propane, de la pression d'évaporation du propane, des pressions intermédiaires de réfrigération et des cycles de liquéfaction sur les performances du système. Les paramètres des processus ont été optimisés individuellement dans le but de minimiser la consommation électrique du système. Bien que les travaux aient eu une approche détaillée, ils n'ont malheureusement pas tenu compte des différentes pertes de tête.

2.4. Conclusion

Grâce à cet état de l'art, nous pouvons constater que le nombre de publications concernant la reliquéfaction de la BOG de GNL est nettement supérieur à celui de l'éthylène. Néanmoins, ces dernières années, l'intérêt du secteur universitaire pour la re-liquéfaction de l'éthylène BOG s'est considérablement accru, ce qui peut être compris par la hausse de son prix.

Une approche de conception prenant en compte une perte de charge supplémentaire dans les échangeurs de chaleur et un aspect technico-économique du système de reliquéfaction de l'éthylène BOG n'ont pas été abordés, ce qui constitue toute l'opportunité de ce projet.

Chapitre II Modélisation Mathématique Du Boil-Off D´Ethylène

Modélisation Mathématique Du Boil-Off D'éthylène

3.1. Introduction

Ce chapitre vise à définir un modèle mathématique afin d'estimer le taux de COG de la vapeur d'éthylène dans le réservoir de stockage cryogénique. La méthodologie est basée sur la précédente étude réalisée par Lekhal [22]. L'auteur a évalué le taux d'évaporation du gaz naturel liquéfié (GNL) d'un réservoir cryogénique. La première étape consistait à établir les différents équilibres thermiques des surfaces internes et des vapeurs du réservoir de stockage afin d'évaluer leur distribution de température à l'aide d'une approche analytique. Cette distribution des températures a ensuite été moyennée pour évaluer le transfert de chaleur au GNL. Ensuite, en utilisant la distribution de température moyenne, l'auteur a évalué le bilan de transfert de chaleur entre le GNL et toutes les autres sources de chaleur. Enfin, avec le bilan de transfert de chaleur des surfaces internes au GNL, il a évalué le taux final de BOG à l'aide d'une procédure itérative. La même procédure sera utilisée afin d'estimer le taux de gaz d'ébullition d'éthylène en améliorant certains concepts mathématiques. Le résultat obtenu sera ensuite comparé à la mesure réelle sur site.

3. 2. Description du réservoir de stockage

Le réservoir de réserve est classé comme un réservoir aérien et a une forme cylindrique avec un toit en forme de dôme. Il stocke jusqu'à 12 000 tonnes d'éthylène à 169 K et à la pression atmosphérique. La figure 3.1 illustre le plan de conception du réservoir de stockage extérieur.

Figure 3.1. Plan de conception du réservoir de stockage externe.

Le réservoir de stockage est composé d'un réservoir externe et d'un réservoir interne. Le réservoir externe a une forme cylindrique avec un toit en forme de dôme qui contient le réservoir interne. Il isole le réservoir de stockage interne avec une épaisse couche de perlite entourée d'une couche d'acier, tandis que le fond est isolant en fibre de verre. Le réservoir interne, sous la même forme que le réservoir externe, contient de l'éthylène; l'isolation utilisée ici est de l'azote partagé entre deux couches d'acier inoxydable.

La figure 3.2 représente la vue en coupe des réservoirs de stockage interne et externe. Notez que le toit en forme de dôme a été rapproché dans un disque cylindrique.

Figure 3. 2. Schéma d'une vue en coupe des réservoirs de stockage extérieur et intérieur.

Le tableau 3.1 présente les données de certains paramètres d'éthylène et d'azote gazeux dans le réservoir de stockage.

	Inner tank	Outer tank
Capacity	12 000	None
Name of the compound	Ethylene	Nitrogen gas
Density	0.57	-
Temperature (K)	169 K	Atmospheric temperature
Design pressure (kPa)	-490.3 to 196.1	490.3 to -490.3

Table 3. 1. Paramètres de l'éthylène et de l'azote dans le réservoir de stockage.

3.2. Model physique

Pour estimer la distribution de la température interne, le réservoir est modélisé par un système de surfaces bidimensionnel couplé thermiquement et en considérant la symétrie par rapport à l'axe médian. La figure 3.3 résume illustre les détails liés au modèle physique utilisé.

La doublure (surface 1) représente la paroi interne en contact avec la vapeur d'éthylène. Il commence à la surface de l'éthylène liquide et se termine par un ancrage dans la partie supérieure de la paroi interne du toit du réservoir de stockage.

Figure 3. 3. Détails liés au modèle physique utilisé.

Le toit (surface 3) représente la face interne du toit, un disque co-centrique qui constitue la deuxième surface, centrée sur son axe.

Les surfaces 2 et 4 représentent respectivement le contact latéral et le contact inférieur avec l'éthylène liquide. Les deux surfaces seront réglées à une température constante car elles sont en contact direct avec l'éthylène liquide à 169K.

Un bilan thermique est réalisé sur une couche mince d'ébullition générée qui permet d'estimer l'évolution de la température en fonction de la hauteur.

Le toit en forme de dôme sera rapproché en un toit en forme de disque afin de résoudre le modèle mathématique avec un coût de calcul moindre, cette hypothèse est parfaitement acceptable en raison du faible rayon de courbure du dôme, car elle conduit presque aux mêmes résultats.

Les surfaces-1,2 (parois verticales intérieures) sont séparées de l'environnement extérieur par une multicouche d'isolant en acier inoxydable, une isolation en perlite dans un environnement à l'azote gazeux, en acier et enfin dans l'environnement extérieur. Une résistance thermique moyenne et équivalente sera utilisée pour calculer les pertes thermiques entre les surfaces 1,2 et l'environnement, en tenant compte de tous les rayonnements de conduction et de convection. La surface-3 (toit), identique à la surface-1 et à la surface-2, est séparée de l'environnement extérieur par une isolation multicouche composée d'isolant en acier inoxydable-perlite dans un environnement à l'azote - l'acier et enfin l'environnement externe. Une résistance thermique moyenne et équivalente sera utilisée pour calculer les pertes de chaleur.

La surface 4 (en bas) est séparée du sol avec une isolation multicouche, de l'acier inoxydable, de la laine de verre, de l'acier et enfin de la terre à une température constante. Une résistance thermique moyenne et équivalente sera également utilisée pour calculer les pertes de chaleur.

L'épaisseur de l'azote et de la perlite constituant l'isolation latérale est représentée par «n» et «p». L'épaisseur d'isolation du haut et du bas est représentée par "e" et "w" respectivement.

Le réservoir de stockage a une hauteur de "H" et " z_L " la hauteur de la surface libre de l'éthylène liquide

3.3. Model Mathématique

Pour déterminer l'expression mathématique des distributions de température, nous utilisons un bilan thermique sur un élément infinitésimal relatif à chacune des surfaces constituant le modèle géométrique adopté. [22]

3.3.1. Vapeurs d'éthylène

La figure 3.4 montre le bilan thermique d'un élément de volume constitué d'une mince couche de vapeur d'une épaisseur de «dz». Il reflète la variation du flux d'enthalpie porté par les vapeurs ascendantes entre les deux abscisses "z" et "z + dz", ce qui est égal à l'échange thermique latéral par convection et rayonnement sur la surface-1.

Figure 3.4. Bilan thermique de la couche de vapeur d'éthylène infinitésimale.

À l'état d'équilibre, l'équation du bilan énergétique sur la vapeur d'éthylène donne:

$$Q_{L-V} = \dot{H}_{V}|_{z+dz} - \dot{H}_{V}|_{z}$$
(3.1)

Where:

- Q_{L-V} : est le taux de transfert de chaleur par convection et par conduction équivalent entre le liner (Surface-1) et les vapeurs d'éthylène.
- $\dot{H}_{_{V}|_{z}}$: est le flux d'enthalpie ascendante a dz pour un volume cylindrique infinitésimal d'un rayon r_i et d'une hauteur dz.
- $\dot{H}_{V}|_{z+dz}$: est le flux d'enthalpie ascendante a z + dz pour un volume cylindrique infinitésimal d'un rayon et d'une hauteur.

Le taux de transfert de chaleur équivalent est exprimé comme suit:

$$Q_{L,V} = h_{L,V}(T_L, T_V) . S_{L, inside} . (T_L(z) - T_V(z))$$
(3.1.a)

Où:

 $T_{V}(z)$ et $T_{L}(z)$ sont les températures de la vapeur d'éthylène et de la chemise (surface-1) respectivement.

 $h_{L-V}(T_L,T_V)$ est le taux de transfert de chaleur convectif et radiatif équivalent:

$$h_{L-V} = h_{L,V,Convection}(T_L, T_V) + h_{L,V,Radiation}(T_L, T_V)$$
(3.1.b)

D'après [23].

$$h_{L,V,Convection} = 0.4. (T_L(z) - T_V(z))^{\frac{1}{3}}$$
 (3.1.c)

$$h_{L,V,Radiation} = \sigma \cdot F_{L,V} \cdot \left(T_L^2(z) + T_V^2(z)\right) \left(T_L(z) + T_V(z)\right)$$
(3.1.c)

La surface intérieure devient:

$$S_{L, inside} = 2.\pi r_i dz$$

L'expression du flux d'enthalpie à z et z + dz:

$$\dot{H}_{V}|_{z} = \dot{m}_{V}.Cp_{V}(T_{V}).T_{V}|_{z}$$
 (3.1.1)

$$\dot{H}_{V}|_{z+dz} = \dot{m}_{V}.Cp_{V}(T_{V}).T_{V}|_{z+dz}$$
(3.1.2)

En utilisant la série de Taylor de premier ordre, nous obtenons:

$$\dot{H}_{V}|_{z+dz} = \dot{H}_{V}|_{z} + \frac{d}{dz} (\dot{m}_{V}.Cp_{V}(T_{V}).T_{V}).dz$$
(3.1.3)

En combinant les équations (3.1) et (3.1.1) à (3.1.3), et en supposant que $Cp_V(T_V) \approx Cp_V$ on obtient:

$$\frac{dT_V(z)}{dz} + \frac{2.\pi r_i h_{L-V}}{Cp_V \dot{m}_V} \left(T_L(z) - T_V(z) \right) = 0$$
(3.1.4)

L'équation (3.1.4) est une équation différentielle du premier ordre avec un deuxième membre pour la variable représentant la température de la vapeur le long de l'axe «z», couplé géométriquement à la température de la doublure T_{L} .

3.3.2. Liner (Surface-1)

Afin de déterminer le profil de température de la paroi verticale interne, la Surface-1 sera modélisée comme un cylindre en forme d'anneau partant de la surface exempte de liquide $z = z_L$ et se terminant en z = H. La figure 3.5 illustre l'échange thermique de la couche annulaire infinitésimale du liner (Surface-1).

À l'équilibre, le bilan énergétique de la Surface-1 donne:

$$Q_{cond} \mid_{z+dz} + Q_{extern,L,cond} = Q_{L,V,radiation} + Q_{L,V,convection} + Q_{cond} \mid_{z}$$
(3.2)

- $Q_{extern,L,cond}$: est le taux de transfert de chaleur conducteur, convectif et radiatif entre le liner (Surface-1) et l'environnement extérieur en utilisant une résistance thermique équivalente.
- $Q_{L,V,radiation}$: est le flux radiatif à *z* pour une surface cylindrique annulaire infinitésimale d'un rayon r_i et hauteur dz entre le liner et l'éthylène liquide.
- $Q_{L,V,convection}$: est le taux de transfert de chaleur par convection à pour un anneau annulaire cylindrique infinitésimal la surface d'un rayon r_i et la hauteur dz entre la doublure et les vapeurs d'éthylène.
- $Q_{cond}|_{z}$: est le taux de transfert de chaleur conducteur à travers la Liner (Surface-1) du toit à l'éthylène liquide en utilisant une résistance thermique équivalente.
- $Q_{cond}|_{z+dz}$: est le taux de transfert de chaleur conducteur à travers la chemise (Surface-1) du toit à l'éthylène liquide en z + dz en utilisant une résistance thermique équivalente.

L'expression de chaque terme de l'équation (3.2) donne:

$$Q_{cond}|_{z} = K(T_{L}).S_{A,L}.\frac{dT_{L}(z)}{dz}\Big|_{z}.dz$$
(3.2.1)

$$Q_{cond}|_{z+dz} = K(T_L) S_{A,L} \cdot \frac{dT_L(z)}{dz} \bigg|_{z+dz} \cdot dz$$
(3.2.2)

$$Q_{extern,L,cond} = U_{extern,L} \cdot S_{A,L} \cdot \left(T_L(z) - T_{External}\right)$$
(3.2.3)

$$Q_{L,V,convection} = h_{L,V} \cdot S_{L,inside} \cdot \left(T_L(z) - T_V(z)\right)$$
(3.2.4)

$$Q_{L,Ethylene,radiation} = h_{L,Ethylene,radiation} S_{L,inside} \left(T_L(z) - T_{Ethylene} \right)$$
(3.2.5)

Le taux de convection équivalent pour le taux de transfert de chaleur radiatif est le suivant:

$$h_{L,Ethylene,radiation} = \sigma \cdot F_{L,Ethylene} \cdot \left(T_L^2(z) + T_{Ethylene}^2\right) \cdot \left(T_L(z) + T_{Ethylene}\right)$$
(3.2.a)

Le transfert de chaleur global par conduction entre la surface-1 et l'environnement extérieur est de:

$$U_{External,L} = \frac{1}{\frac{L_{Perlite}}{K_{Perlite}} + \frac{2.L_{Steel}}{K_{Steel}} + \frac{1}{h_{External}} + \frac{1}{h_{L, Ethylene}}}$$
(3.2.b)
Les surfaces $S_{A,L}$ et S_{inside} représente respectivement la surface transversale interne et la surface transversale interne de la chemise. L'expression les deux surfaces sont:

$$S_{A,L} = \pi \cdot \left(r_e^2 - r_i^2 \right)$$
 (3.2.c)

$$S_{L,inside} = 2.\pi r_i dz \tag{3.2.d}$$

En remplaçant les équations (3.2.1), (3.2.5) et (3.2.a) à (3.2.d) dans (3.2), après réarrangement, on obtient:

$$\frac{d}{dz} \left(\frac{dT_{L}(z)}{dz} \right) - 2 \cdot \frac{r_{e} \cdot U_{extern,L} + r_{i} \cdot \left(h_{L,V} + h_{L,Ethylene}\right)}{K(T_{L})(r_{e}^{2} - r_{i}^{2})} T_{L}(z) + 2 \cdot \frac{r_{i} \cdot h_{L,V}}{K(T_{L})(r_{e}^{2} - r_{i}^{2})} T_{L}(z) + 2 \cdot \frac{r_{i} \cdot h_{L,Ethylene}}{K(T_{L})(r_{e}^{2} - r_{i}^{2})} T_{extern} = 0$$
(3.2.6)

L'équation (3.2.6) est une équation différentielle du second ordre pour la variable T_L qui représente la température du liner (surface 1) le long de l'axe z, couplée géométriquement à la température de la vapeur T_V .

3.3.3. Toit (surface 3)

Afin de déterminer le profil de température du toit interne, la Surface-3 sera modélisée comme un disque de forme annulaire se terminant à $r = r_m$. Ou $r_m = (r_i + r_e)/2$.

La figure 3.6 illustre l'échange thermique de la couche annulaire infinitésimale du toit (Surface-3).

À l'équilibre, le bilan énergétique de la surface interne du toit donne:

$$Q_{R,conduction} |_{r+dr} + Q_{E,R,conduction} = Q_{R,V,radiation} + Q_{R,conduction} |_{r}$$
(3.3)

- $Q_{E,R,conduction}$: Est le taux de transfert de chaleur par conduction et par rayonnement entre la surface interne du toit (Surface-3) et l'environnement extérieur en utilisant une résistance thermique globale équivalente.
- $Q_{R,V,radiation}$: Est le flux radiatif pour une surface de disque annulaire infinitésimale d'un rayon \mathcal{V} et d'une épaisseur dr comprise entre la surface interne du toit et l'éthylène liquide.

- $Q_{R,conduction}|_r$: Taux de transfert de chaleur par conduction à travers le toit (surface 3) de la partie extérieure du toit à la partie intérieure du toit en r en utilisant une résistance thermique équivalente.
- $Q_{R,conduction}|_{r+dr}$: Taux de transfert de chaleur par conduction à travers le toit (surface 3) de la partie extérieure du toit à la partie intérieure du toit en r + dr nous utilisons une résistance thermique équivalente.

Figure 3. 6. Bilan thermique du cylindre annulaire infinitésimal du toit.

L'expression de chaque terme de l'équation (3.3) donne:

$$Q_{R,conduction} \mid_{r} = K_{R} \cdot S_{A,R} \cdot \frac{dT_{R}}{dr} \mid_{r}$$
(3.3.1)

$$Q_{R,conduction}|_{r+dr} = K_R S_{A,R} \frac{dT_R}{dr}|_{r+dz}$$
(3.3.2)

$$Q_{extern,R,conduction} = U_{E,R} S_{A,R}(r) (T_{extern} - T_R(z))$$
(3.3.3)

$$Q_{R,V,radiation} = h_{R,Ethylene,radiation} S_{R,inside}(r) \cdot (T_T(r) - T_{Ethylene})$$
(3.3.4)

 K_L, K_R représentent la conductivité longitudinale équivalente du mur. Elle est déterminée en utilisant la méthode de résistance parallèle équivalente. Nous supposons que la conductivité ne varie pas de manière significative avec la température.

Chapitre II

$$K_R = K_L = \frac{1}{\frac{L_{Perlite}}{K_{Perlite}} + \frac{2.L_{Steel}}{K_{Steel}}}$$
(3.3.a)

$L_{Perlite}$: Est l'épaisseur de l'isolant de perlite
$K_{Perlite}$: Est la conductivité d'isolation de perlite
L_{Steel}	: Est l'épaisseur de l'acier environnant.
K _{Steel}	: Est la conductivité d'isolation de perlite

Les surfaces $S_{A,R}$ and $S_{R, inside}$ représente respectivement la surface transversale latérale et la surface interne du toit. Les expressions de ces deux surfaces sont les suivantes:

$$S_{A,R}(r) = 2.\pi r.e$$
 (3.3.b)

$$S_{R.inside}(r) = \pi.dr.(2.r+dr) = 2.\pi.r.dr$$
 (3.3.c)

Le transfert de chaleur équivalent par rayonnement est:

$$h_{R,Ethylene,radiation} = \sigma.F_{R,Ethylene} \cdot \left(T_R^2(z) + T_{Ethylene}^2\right) \cdot \left(T_R(z) + T_{Ethylene}\right)$$
(3.3.d)

En utilisant la série de Taylor de premier ordre, nous obtenons:

$$Q_{R,conduction} \mid_{r+dr} = Q_{R,conduction} \mid_{r} + dr \left(K_{R} \cdot S_{A,R} \cdot \frac{dT_{R}}{dr} \mid_{r} \right)$$
(3.3.5)

En remplaçant les équations (3.3.1) à (3.3.5) et (3.3.2.a) à (3.3.2.d) dans l'équation (3.3), on obtient:

$$\begin{bmatrix} \frac{d}{dr} \left(\frac{dT_{R}(r)}{dr} \right) + \frac{1}{r} \cdot \frac{dT_{R}(r)}{dr} \end{bmatrix} - \frac{U_{E,R} + h_{R,Ethylene,radiation}}{K_{R} \times e} \cdot T_{R}(r) + \frac{U_{E,R} + h_{R,Ethylene,radiation}}{e} \cdot \frac{T_{ethylene}}{T_{extern}}}{r_{extern}} \cdot T_{extern} = 0$$
(3.3.6)

L'équation (3.3.6) est une équation différentielle du second ordre pour la variable T_R qui représente la température du toit à partir de l'axe r_m .

3.4. Systeme d'équations différentiels

Les équations (3.1.8), (3.2.5) et (3.3.6) constituent un système d'équations différentielles ordinaires reformulé dans l'équation (3.4.1), et en ce qui concerne la variable T_L , T_V and T_R .

Chapitre II

Les équations (3.4.1.a) et (3.4.1.b) sont couplées aux variables, tandis que l'équation (3.4.1.c) ne dépend que de T_{R} .

Les paramètres $\alpha_V, \alpha_L, \beta_L, \gamma_L, \alpha_R$ and β_R dépendent également de T_L, T_V and T_R , mais en raison de la complexité du système d'équations, il est plus pratique de les définir car les paramètres résolvent le système d'équation de manière analytique, puis remplacent les nouvelles valeurs T_L, T_V and T_R de dans l'ensemble $\alpha_V, \alpha_L, \beta_L, \gamma_L, \alpha_R$ and β_R de paramètres et se répètent jusqu'à la convergence.

$$\begin{cases} \dot{T}_{V}(z) + \alpha_{V} \cdot (T_{V}(z) - T_{L}(z)) = 0 & (a) \\ \dot{T}_{L}(z) - \alpha_{L} \cdot T_{L}(z) + \beta_{L} \cdot T_{V} + \gamma_{L} \cdot T_{external} = 0 & (b) \\ \dot{T}_{R}(r) + \frac{\dot{T}_{R}(r)}{r} - \alpha_{R} \cdot T_{R}(r) + \beta_{R} \cdot T_{external} = 0 & (c) \end{cases}$$
(3.4)

Ou :

•
$$\alpha_{V} = \frac{2.\pi .r_{i} \cdot h_{L-V}}{Cp_{V} \cdot m_{V}}$$

• $\alpha_{L} = 2 \cdot \frac{U_{extern,L} \cdot r_{e} + (h_{L,V} + h_{L,Ethylene}) \cdot r_{i}}{K_{L} \cdot (r_{e}^{2} - r_{i}^{2})}$
• $\beta_{L} = 2 \cdot \frac{h_{L,V} \cdot r_{i}}{K_{L} \cdot (r_{e}^{2} - r_{i}^{2})}$

•
$$\gamma_L = 2. \frac{h_{L,Ethylene} \cdot r_i \frac{T_{Ethylene}}{T_{extern}} + U_{extern,L} \cdot r_e}{K_L \cdot (r_e^2 - r_i^2)}$$

•
$$\alpha_{R} = \frac{U_{E,R} + h_{R,Ethylene,radiation}}{K_{R} \times e}$$

•
$$\beta_{R} = \frac{U_{E,R} + h_{R,Ethylene,radiation} \cdot \frac{T_{ethylene}}{T_{extern}}}{K_{R} \times e}$$

3.5. Résolution analytique

Les équations (3.4.a) et (3.4.b) peuvent être réécrites comme suit:

Chapitre II

$$\begin{cases} \dot{T}_{V}(z) + \alpha_{V} \cdot \left(T_{V}(z) - T_{L}(z)\right) = 0 & (a) \\ \ddot{T}_{L}(z) - \alpha_{L} \cdot T_{L}(z) + \beta_{L} \cdot T_{V} + \gamma_{L} \cdot T_{external} = 0 & (b) \end{cases}$$
(3.4.1)

Les équations différentielles (3.4.1.a) et (3.4.1.b) peuvent être résolues analytiquement en utilisant des hypothèses adéquates. En raison de la complexité de l'expression mathématique de la distribution de température, seules la forme générale de l'expression et l'application numérique seront présentées.

En séparant les variables $T_{I}(z)$ and $T_{V}(z)$ on a :

$$\frac{1}{\alpha_{V}}\ddot{T}_{L}(z) + \ddot{T}_{L}(z) - \frac{\alpha_{L}}{\alpha_{V}}\dot{T}_{L}(z) + (\beta_{L} - \alpha_{L})T_{L}(z) + \gamma_{L}T_{external} = 0$$

$$\frac{1}{\alpha_{V}}\ddot{T}_{V}(z) + \ddot{T}_{V}(z) - \frac{\alpha_{L}}{\alpha_{V}}\dot{T}_{V}(z) + (\beta_{L} - \alpha_{V})T_{V}(z) + \gamma_{L}T_{external} = 0$$
(3.4.1.a)

En considérant les paramètres comme constants et en combinant les deux équations ci-dessus, nous pouvons les séparer en équations différentielles ordinaires avec une seule variable pouvant être résolue séparément. Puisque les coefficients des deux équations de l'ensemble des équations (3.4.1.a) sont strictement identiques, cela signifie que:

$$T_{I}(z) = T_{V}(z)$$
 (3.4.2)

En utilisant la transformé de Laplace pour résoudre l'ODE nous obtenons:

$$T_{L}(z) = T_{V}(z) = M_{1}e^{\lambda_{1}.z} + M_{2}e^{\lambda_{2}.z} + M_{3}e^{\lambda_{3}.z} + M_{4}$$
(3.4.3)

 $M_{1,4}$, $\lambda_{1,4}$ sont des constantes qui seront déterminées avec les conditions initiales.

L'équation (3.4.c) a une expression analytique comme suit:

$$T_{R}(r) = \frac{\beta_{R}.T_{external}}{\alpha_{R}} + O_{1}J_{0}(i \times r \times \sqrt{\alpha_{R}}) + O_{2}Y_{0}(-i \times r \times \sqrt{\alpha_{R}})$$
(3.4.4)

 $J_{0}(\theta) \qquad : \text{Est la fonction de Bessel de premier ordre du premier type.} \\ Y_{0}(\theta) \qquad : \text{Est la fonction de Bessel de premier ordre du deuxième type.}$

Where O_1 and O_2 are constants, determined with the initial conditions.

Les principes de continuité dans (3.4.6) et les résultats (3.4.3) impliquent que la température de la toiture est constante et que les constantes O₁ et O₂ doivent être égales à zéro.

L'expression finale de la répartition de la température du toit est donnée comme suit:

$$T_{R}(r) = \frac{\beta_{R} T_{external}}{\alpha_{R}}$$
(3.4.5)

3.6. Conditions limites

En utilisant les conditions initiales et de continuité, les conditions aux limites du modèle mathématique sont les suivantes:

$$\begin{cases} T_{V}(z = z_{L}) = T_{ethylene} = 169 \ K & (a) \\ T_{L}(z = z_{L}) = T_{ethylene} = 169 \ K & (b) \\ T_{L}(z = H) = T_{R}(r = r_{m}) & (c) \\ \frac{dT_{L}}{dz} \bigg|_{z=H} = \frac{dT_{R}}{dr} \bigg|_{r=r_{m}} & (d) \\ \frac{dT_{R}}{dr} \bigg|_{r=0} = 0 & (e) \\ \frac{dT_{L}}{dz} \bigg|_{z=z_{L}} = 0 & (f) \end{cases}$$

Using the made assumptions, only (a), (b), (c), (f) boundary conditions will be used.

3.7. détermination du flux de boil-off

Pour évaluer le taux d'évaporation de l'éthylène, on procède à un équilibre d'échange de chaleur entre l'éthylène liquide et les éléments environnants et à un équilibre liquide-gaz. À partir de cela, nous calculons le flux de masse pour évaluer le taux de BOG. [23] [24]

La figure 3.7 résume l'échange de chaleur entre l'éthylène liquide et les surfaces environnantes.

Figure 3. 7. Bilan thermique avec l'éthylène liquide.

A l'équilibre, le bilan thermique donne:

$$Q_{Conduction} + Q_{Liner} + Q_{Radiation,Liner} + Q_{Radiation,Roof} + Q_{Bottom} = \dot{m}_V \cdot h_{Evaporation,ethylene}$$
(3.5)

Where:

 $Q_{Condutction}$ Est-ce la chaleur conductrice reçue par l'éthylène liquide à travers le liner
(surface-1). Q_{Liner} Est-ce que la chaleur conductrice reçue par l'éthylène liquide à travers la
doublure provient de l'environnement extérieur. $Q_{Radiation,Liner}$ Est-ce que la chaleur radiative reçue par l'éthylène liquide provient de la
paroi de la doublure Surface-1. $Q_{Radiation,Roof}$ Est la chaleur radiative reçue par l'éthylène liquide du toit. Q_{Bottom} Est-ce que la chaleur conductrice reçue par l'éthylène liquide provient du sol.L'expression de chaque terme de l'équation (3.5) donne:

$$Q_{Condutction} = K_{L} \cdot \pi \cdot (r_{e}^{2} - r_{i}^{2}) \frac{dT_{L}(z)}{dz} \bigg|_{z=z_{L}}$$
(3.5.1)

où :

$$\frac{dT_{L}(z)}{dz}\bigg|_{z=z_{L}} = M_{1}.\lambda_{1}.e^{\lambda_{1}.z} + M_{2}.\lambda_{2}e^{\lambda_{2}.z} + M_{3}.\lambda_{3}.e^{\lambda_{3}.z}$$
(3.5.2)

$$Q_{Liner} = 2.\pi r_e Z_L U_{extern,L} (T_{extern} - T_{ethylene})$$
(3.5.3)

 $U_{extern,L}$

: est le transfert de chaleur global - conducteur, convectif et radiatif - entre l'environnement extérieur et le liner.

L'équation (3.6.2) devient:

$$Q_{Radiation,Liner} = \sigma \cdot F_{L,ethylene} \cdot 2 \cdot \pi \cdot r_i \cdot (z_L - H) \cdot (\overline{T}_L^4 - T_{ethylene}^4)$$
(3.5.4)

Où::

•
$$\overline{T}_{L} = \frac{1}{z_{L} - H} \int_{z_{L}}^{H} T_{L}(z) dz$$

• $F_{L,ethylene} = \frac{1}{\frac{1 - \varepsilon_{L}}{\varepsilon_{L}} + \frac{1}{f_{L,ethylene}}}$

 $\begin{array}{l} \overline{T}_{L} & : \mbox{ est la température moyenne de la surface du revêtement.} \\ F_{L,ethylene} & : \mbox{ facteur de forme de corps gris entre le liner et la surface de l'éthylène liquide.} \\ \hline \varepsilon_{L} & : \mbox{ est l'émissivité moyenne de la doublure thermique.} \\ f_{L.ethylene} & : \mbox{ est le facteur de vision entre le liner et la surface de l'éthylène liquide.} \end{array}$

Ensuite:

$$Q_{Radiation,Roof} = \boldsymbol{\sigma}.F_{R,ethylene}.\boldsymbol{\pi}.r_i^2.\left(\overline{T}_{R}^4 - T_{ethylene}^4\right)$$
(3.5.5)

Avec:

•
$$\overline{T}_{R} = \frac{1}{r_{i}} \int_{0}^{r_{i}} T_{R}(z) dz$$

• $F_{L,ethylene} = \frac{1}{\frac{1 - \varepsilon_{R}}{\varepsilon_{R}} + \frac{1}{f_{R,ethylene}}}$

 $\boldsymbol{\varepsilon}_{\scriptscriptstyle R}$

 $F_{\rm R,ethylene}$

: est la température moyenne de la surface du toit.

: facteur de forme de corps gris entre le toit et la surface de l'éthylène liquide.

: est l'émissivité moyenne du toit.

 $f_{R.ethylene}$: est le facteur de vue entre le toit et la surface de l'éthylène liquide.

 \Rightarrow

$$Q_{Bottom} = U_{B,conduction} \cdot \pi \cdot r_i^2 \cdot \left(T_{ground} - T_{ethylene} \right)$$
(3.5.6)

With:

$$U_{B,conduction} = \frac{1}{\frac{L_{glass \ wool}}{K_{glass \ wool}} + \frac{2.L_{Steel}}{K_{Steel}}}$$

Where:

Tground

: est la température constante du sol.

 $L_{glass \ wool}$

: L'épaisseur de l'isolant en laine de verre

 $K_{glass \ wool}$

: Est la conductivité d'isolation en laine de verre

3.8. Résolution numérique

L'évaluation de la valeur numérique du taux d'évaporation de l'éthylène utilise une combinaison d'une approche analytique et numérique. Une évaluation analytique des distributions de température sera effectuée en utilisant un premier ensemble de valeurs T_V, T_L, T_R et de taux d'évaporation. À partir de la nouvelle distribution de température T_V, T_L and T_R , en utilisant les valeurs moyennes de alpha beta et gamma ; les paramètres et le taux d'évaporation seront mis à jour pour calculer une nouvelle distribution de température analytique. Ce processus sera répété jusqu'à la convergence du taux d'évaporation.

La figure 3. 8 illustre l'algorithme permettant de déterminer le taux d'évaporation.

Figure 3. 8. Algorithme de calcul du taux d'ébullition.

3.9. Hypothèses

Les résultats numériques issus de cette application seront comparés à la mesure du taux d'évaporation sur site. Cependant, l'installation sur site a été construite dans les années 70, elle a subi toutes sortes de dégradations naturelles pendant 50 ans. Par conséquent, le taux

d'évaporation moyen de 625 kg / h peut être supérieur à ce que peut produire le modèle mathématique. dans des conditions météorologiques normales sur le site

Le tableau 3.2 de l'annexe 1 montre les propriétés géométriques et thermiques utilisées pour l'application numérique. Notez qu'en raison du manque de références académiques pour le taux de convection différent dans le réservoir de stockage, les valeurs utilisées seront calibrées pour avoir le même ordre de grandeur que ce qui peut être attendu sur site.

3.10. Results

En utilisant l'algorithme décrit dans la figure 3.8, l'équation (3.4) combinée aux conditions (3.4.6), le taux d'évaporation calculé est résumé dans le tableau 4.3 comme suit:

Tableau 3.3. Résultats des applications numériques liées aux taux d'évaporation.

	Calcul mis en place (kg / h)	571.84
	taux d'évaporation minimal (%)	43
Relative difference to the-	taux d'évaporation moyen (%)	8.5
	taux d'évaporation maximal (%)	48

Lorsque ce résultat est comparé aux mesures sur site, la différence relative entre la sortie du modèle mathématique et la mesure est suffisamment proche pour supposer parfaitement que le modèle mathématique peut produire des résultats proches de la réalité avec une différence relative de 8,5%. l'évaporation moyenne mesurée. Cette différence est probablement due à la dégradation de l'ensemble du réservoir de stockage, ce qui entraîne une infiltration de chaleur à l'intérieur de celui-ci.

Chapitre III Procédé De Re-Liquéfaction Et Dimensionnement.

Procédé de re-liquéfaction et dimensionnement

4.1. Introduction

Ce chapitre porte sur le processus de re-liquéfaction des gaz d'évaporation d'éthylène. il comparera et évaluera 3 processus prometteurs, l'un présenté par Ouadha et Beladjine [4] et deux par Li et al. [5] Tan et al. [1] a déjà présenté une étude détaillée des 3 procédés mentionnés ci-dessus pour un taux d'évaporation de 3000 kg / h et mettant en évidence les paramètres à optimiser pour maximiser le coefficient de performance et l'efficacité. Ce chapitre étudiera le même processus sélectionné que Tan et al. [1] dans différentes conditions de fonctionnement, des recherches plus approfondies seront menées pour sélectionner le réfrigérant le plus approprié d'un point de vue pratique. Ouadha et Beladjine [4] ont étudié le réfrigérant le plus approprié et ont conclu que le R600a était aussi performant que le R600 suivi, dans l'ordre, par le R290 et le R1270.

4.2. Methodologie

Afin de faire une comparaison équitable, les 3 processus seront étudiés en parallèle en utilisant la condition imposée de l'installation. Étant donné que les conditions de fonctionnement ne sont pas exactement les mêmes que celles de Tan et al. Nous allons procéder à une nouvelle analyse afin de déterminer le meilleur processus avec le réfrigérant le plus optimal. Les performances de l'ensemble du processus seront évaluées à l'aide du coefficient de performance, noté COP, en tant que métrique. Le logiciel Hysys Aspen V8.8 est utilisé pour effectuer des calculs et des analyses.

En premier lieu, les 3 processus seront conçus et optimisés en utilisant le propane comme réfrigérant afin de comparer la magnitude des différents paramètres à la référence [1]. Ensuite, différents gaz frigorifiques seront étudiés et comparés ensemble en termes de COP et d'utilisation pratique.

Les études étudiées peuvent différer des références en raison des exigences de l'installation et pour des raisons pratiques.

4.2.1. Refrigerants

Le réfrigérant R22 a été largement utilisé dans les systèmes de re-liquéfaction en cascade à bord des navires. L'élimination de ce fluide frigorigène est prévue d'ici 2020 selon le protocole de Montréal. Certains réfrigérants HFC tels que le R404a ont été proposés pour remplacer le R22. Bien que ces fluides présentent plusieurs avantages, notamment d'excellentes propriétés thermodynamiques et de sécurité, ils ne sont pas tout à fait acceptables au regard du protocole de Kyoto. Leur contribution aux problèmes de réchauffement de la planète n'est pas négligeable. Par conséquent, plusieurs chercheurs estiment qu'un choix efficace et durable devrait être tourné vers les réfrigérants naturels tels que l'ammoniac et les hydrocarbures.

Certains hydrocarbures tels que le butane (R600), le propane (R290), l'isobutane (R600a) et le propylène (R1270) peuvent être considérés comme des choix objectifs car ils sont abondants, peu coûteux et possèdent d'excellentes propriétés thermo-physiques [4].

Le tableau 4.1 présente les principales propriétés thermo-physiques, telles que la température d'ébullition et la pression critique, les propriétés de sécurité basées sur ASHRAE 34 et les propriétés environnementales des fluides sélectionnés.

Substance	Thermophysical data				Security group	Environ prope	mental rties
	M (g/mol)	Tb (°C)	Tc (°C)	Pc (bar)		ODP	GWP
R22	86.5	-40.9	96.15	49.9	A1	0.055	1810
R290	44.1	-42.1	96.70	42.5	A3	0	-20
R600a	58.1	-11.7	134.7	36.3	A3	0	-20
R1270	42.1	-47.6	91.75	46.0	A3	0	-20
R1150	28.1	-103.7	9.19	50.4	A3	0	-20

Table 4. 1. Propriétés thermophysiques, sécuritaires et environnementales de certains fluides
frigorigènes.

Où:

Le potentiel d'appauvrissement de la couche d'ozone (ODP) d'un composé chimique est la quantité relative de dégradation qu'il peut causer à la couche d'ozone.

Le potentiel de réchauffement planétaire (PRP) est une mesure de la contribution d'une masse de gaz donnée au réchauffement planétaire. Le PRG est une échelle relative qui compare la quantité de chaleur piégée par les gaz à effet de serre à la quantité de chaleur piégée dans la même masse de dioxyde de carbone. Le PRG du dioxyde de carbone est de 1 par définition [6].

4.2.2. Le procédé

Trois processus, notés cas-A, -B et -C seront comparés afin de déterminer le plus approprié pour notre application, la description de chacun des processus est donnée ci-dessous.

4.2.2.1. Procédé 1 (cas-A)

La figure 4.1 représente un diagramme d'un des trois processus de reliquéfaction de l'éthylène désigné par le cas A, qui consiste en deux sous-systèmes en cascade, un réfrigérant et un cycle de liquéfaction. Chacun des deux sous-systèmes est simplement un système de réfrigération à compression à deux étages.

Le cycle de réfrigérant sert à condenser le gaz d'évaporation sous pression sortant du compresseur du deuxième étage (A-Comp-4) dans l'échangeur de chaleur en cascade (Cond-Evap) pendant que le réfrigérant, dans le cycle de réfrigérant, est évaporé. Le réfrigérant vaporisé, dans le cycle du réfrigérant, est comprimé par le compresseur (A-Comp-1) à une pression intermédiaire et mélangé aux vapeurs du pré-refroidisseur A-1. Le mélange est refroidi puis comprimé en un compresseur de deuxième étage (A-Comp-2). Après la compression du deuxième étage, le propane à haute pression est refroidi et condensé par de l'eau de mer. Le propane liquide sous pression se divise en deux flux, les flux A-6-1 et A-6-2. Une fraction du flux, le flux (A-6-2), passe à travers un clapet d'étranglement où elle est soumise à une pression

intermédiaire et absorbe la chaleur de la fraction restante, le flux (A-6-1), passe à travers une chaleur à contre-courant échangeur (pré-refroidisseur 1). Le flux A-6-2 converge pour se mélanger au propane comprimé provenant de A-Comp-1, tandis que le flux A-6-1 quitte le A-Pre-Cooler-1 sous une forme sous-refroidie. Il se dilate à la pression PO à travers un papillon des gaz où il devient un mélange saturé gaz-liquide. Le propane gaz-liquide s'évapore complètement grâce à l'échangeur de chaleur à contre-courant A-Cond-Evap. Il absorbe la chaleur du cycle de liquéfaction pour condenser le BOG d'éthylène sous pression. Après cela, il passe au compresseur 1 (A-Comp-1) où il redémarre le cycle.

Figure 4. 1. Schéma du procédé de re-liquéfaction de l'éthylène cas-A.

Le cycle de liquéfaction fonctionne à trois niveaux de pression et est similaire au cycle de réfrigération, et l'évaporateur dans le cycle de liquéfaction est supposé jusqu'au réservoir de stockage où l'évaporation a lieu. Le BOG est pressurisé à la pression P15 par le compresseur d'éthylène de premier étage (A-Comp-3) et est mélangé aux vapeurs provenant des prérefroidisseurs A 2, le mélange de vapeurs résultant est compressé avec un compresseur de 2e étage (A-Comp -4) à une pression P9. Les vapeurs sont refroidies à l'eau de mer puis entièrement condensées dans l'A-Cond-Evap. Le flux est ensuite divisé en deux flux, les flux 10-1 et 10-2. Le flux 10-2 passe à travers une vanne d'étranglement pour s'étendre en P15, et les deux flux passent à travers un échangeur de chaleur à contre-courant (précooler-2) où la capacité de refroidissement fournie par le processus d'étranglement pour produire un mélange éthylène gaz-liquide. Le mélange passe à travers un séparateur où l'éthylène liquide se dirige

vers le réservoir de stockage pendant que les vapeurs sont recompressées par le compresseur comp-1 et redémarrent la boucle.

4.2.2.2. Procédé 2 (Cas-B)

Fig. 2 Schéma du deuxième procédé de re-liquéfaction d'éthylène, désigné par Case-B. Il est assez similaire au Case-A avec peu de modifications.

La configuration du processus Case-B fonctionne à deux niveaux de pression dans le cycle de réfrigération, P0 et P5; Contrairement au cas A, qui fonctionne à trois niveaux de pression. Cela entraîne une diminution de la pression de sortie dans le papillon des gaz BV-1, ce qui entraîne une chute importante de la température de sous-refroidissement de la partie restante du réfrigérant condensé (7-1), ce qui se traduit par une plus grande capacité de refroidissement en étranglant la quantité spécifique de réfrigérant dans le BV-2.

Figure 4. 2. Schémas du procédé de reliquéfaction de l'éthylène Cas-B.

4.2.2.3. Procédé 3 (Case-C)

Fig. 3 Schéma du troisième procédé de re-liquéfaction d'éthylène désigné par Case-C. Il est assez similaire au Case-B avec d'autres modifications.

Le troisième processus, appelé cas-C, est illustré à la figure 4.3 où, comme dans le cas-B, le cycle de réfrigération comporte deux niveaux de pression, notés P0 et P5. Un récupérateur, noté C-Pre-cooler3, est ajouté pour sous-refroidir le propane liquide condensé avec le mélange avec

les flux 0 et 8-2 à la pression P0. Ensuite, les vapeurs du courant sont comprimées dans C-Comp-3. Dans le cycle de liquéfaction, le liquide d'éthylène condensé (9) est sous-refroidi par le BOG saturé (13-1) dans un autre récupérateur, puis développé dans du C-V-4 pour donner un mélange d'éthylène (12-1) gaz-liquide. On peut constater que le B-V-3 dans le procédé C est éliminé et que le débit de l'éthylène condensé haute pression (9) peut être diminué.

Figure 4. 3. Diagramme du processus de re-liquéfaction d'éthylène-C.

4.3. Modélisation, hypothèses et paramètres d'entrée pour la simulation

La simulation à l'état d'équilibre de trois processus de re-liquéfaction potentiels a été réalisée dans Aspen HYSYS V8.8 à l'aide de l'équation d'état de Peng-Robinson afin d'établir les propriétés thermodynamiques des fluides de travail. Les composants des processus ont été modélisés en tenant compte à la fois du bilan massique et énergétique. Les hypothèses suivantes ont été définies pour la simulation de tous les processus.

• La perte de charge dans les conduites et la fuite de chaleur du système sont négligées.

• Les rendements isentropiques des compresseurs sont de 75%.

• Les approches de température minimale (Δ Tmin) dans les échangeurs de chaleur ont été supposées être de 3 ° C.

• L'énergie potentielle et cinétique est négligée.

• Le débit BOG généré dans le LEG est de 1100 kg / h.

En utilisant un volume de contrôle, à l'état d'équilibre, les bilans de masse, d'énergie et d'exergie peuvent être représentés comme suit:

$$\sum m_{in} = \sum m_{out} \tag{4.1}$$

$$Q = \sum H_{out} - \sum H_{in} + W = \sum m_{out} \cdot e_{out} - \sum m_{in} \cdot e_{in} + W$$
(4.2)

$$Ex_D = \sum Ex_{in} - \sum Ex_{out} + W = \sum m_{in} \cdot e_{in} - \sum m_{out} \cdot e_{out} + W$$
(4.3)

Où l'exergie spécifique, e, est définie comme:

$$e = h - h_0 - T(s - s_0)$$
(4.4)

Où h_0 et s_0 sont respectivement une enthalpie et une entropie spécifiques à l'état de référence. (c'est-à-dire: 101 325 Pa et 303,15 K)

Les bilans énergétique et énergétique de tous les composants du processus sont résumés dans le tableau 4.2.

Table 4. 2 .	Exergie et bilan	énergétique po	ur chaque	composante du	processus de
		liquéfact	tion.		

Component	Energy balance	Exergy balance
Compressor	$W_{i} = m_{Comp_{i}} \cdot \left(h_{out, Comp_{i}} - h_{in, Comp_{i}} \right)$ $= m_{Comp_{i}} \cdot \left(h_{out, Comp_{i}}^{s} - h_{in, Comp_{i}} \right) / \eta_{Comp_{i}}$	$Ex_{D,Comp_i} = m_{Comp_i} \cdot \left(e_{in,Comp_i} - e_{out,Comp_i}\right) + W_i$
Throttle- valves	$h_{in, V_i} = h_{out, V_i}$	$Ex_{D,V_i} = m_{V_i} \cdot \left(e_{in,V_i} - e_{out,V_i} \right)$
Coolers	$Q_{Coller} = m_{Cooler_i} \cdot \left(h_{out, Cooler_i} - h_{in, Cooler_i} \right)$	$Ex_{D, Cooler_i} = m_{V_i} \cdot \left(e_{in, Cooler_i} - e_{out, Cooler_i} \right)$
Pre-coolers	$Q_{PC_i} = m_{PC_i, HP} \left(h_{in, PC_i, HP_i} - h_{out, PC_i, HP} \right)$	$Ex_{D, PC_i} = m_{PC_i, HP} \cdot e_{in, PC_i, HP} + m_{PC_i, LP} \cdot e_{in, PC_i, LP}$
	$= m_{PC_i, LP} \cdot \left(h_{out, PC_i, LP_i} - h_{in, LC_i, HP} \right)$	$-m_{PC_i, HP} \cdot e_{out, PC_i, HP} - m_{PC_i, LP} \cdot e_{out, PC_i, LP}$
Cond-Evap	$Q_{CHX} = m_{CHX, C2} \cdot (h_{in, CHX, C2} - h_{out, CHX, C2})$	$Ex_{D,CHX} = m_{CHX,C2} \cdot e_{in,CHX,C2} + m_{CHX,R} \cdot e_{in,CHX,C2}$
	$= m_{CHX, R} \left(h_{out, CHX, R_i} - h_{in, CHX, R} \right)$	$-m_{CHX, C2} \cdot e_{out, CHX, C2} - m_{CHX, R} \cdot e_{out, CHX, C2}$
Separator	$m_{in,S}.h_{in,S} = m_{out,S,Vap}.h_{out,S,Vap}$	$Ex_{D,S} = m_{in,S} \cdot e_{in,S} - m_{out,S,Vap} \cdot e_{out,S,Vap}$
	$+ m_{out, S, Liq} \cdot h_{out, S, Liq}$	$-m_{out, S, Liq} \cdot e_{out, S, Liq}$
Evaporator	$Q_e = m_{LEG} \cdot \left(h_{out, \ LEG} - h_{in, \ LEG} \right)$	

Pour évaluer le meilleur processus, nous les comparons en terme de coefficient de performance (COP).

$$COP = \frac{Q_E}{W_{tot}} = \frac{Q_E}{\sum W_i}$$
(4.5)

4.3. 1. Equations d'états

L'équation d'état semi-empirique de Peng-Robinson (EOS) est utilisée pour calculer la propriété thermodynamique des gaz. La raison de ce choix est que le Peng-Robinson (EOS) est spécifiquement conçu pour les hydrocarbures légers [2, 3].

Les résultats sont aussi précis que ceux de l'EOS Soave-Redlich-Kwong, bien qu'il soit généralement supérieur pour prédire la densité liquide du matériau, en particulier pour une molécule non polaire identique à celle de l'éthylène.

$$P = \frac{RT}{V_m - b} - \frac{a.\alpha}{V_m^2 + 2bV_m - b^2}$$
(4.6)

•
$$a \approx 0.45724 \frac{R^2 T_c^2}{p_c}$$

•
$$b \approx 0.07780 \frac{RT_c}{p_c}$$

•
$$\alpha = \left(1 + \kappa \left(1 - T_r^{\frac{1}{2}}\right)\right)^2$$

•
$$\kappa \approx 0.37464 + 1.54226 \omega - 0.26992 \omega^2$$

•
$$T_R = \frac{T}{T_c}$$

Où:

- ω: est le facteur acentrique de l'espèce.
- R: est la constante de gaz universelle.
- Z: est le facteur de compressibilité.

4.3. 2. Description du site et hypothèses

Le complexe est situé dans le complexe pétrolier de Skikda, en Algérie. C'est près de l'eau de mer avec le climat méditerranéen. L'installation sur site peut fournir suffisamment d'eau de mer de refroidissement pour tous les besoins en refroidissement de la nouvelle installation. Le gaz d'évaporation doit être liquéfié dans les conditions suivantes:

- Etat: liquide
- Température: -104 ° C
- Pression: 101,325 kPa

L'installation doit fournir un by-pass aux conditions suivantes:

- Etat: gaz
- Température: +31 ° C
- Pression: 2200 kPa

Le gaz d'évaporation arrive aux conditions suivantes

Composition	Fraction molaire (%)	aire (%) Paramètres	
Hydrogen	0.005	Température (C)	-11
Nitrogen	0.0	Pression (kPa)	101.325
Methane	0.040	Débit minimal (kg / h)	400
Ethylene	99.930	Débit normal (kg / h)	625
Ethane	0.025	Débit nominal (kg / h)	1100

Table 4. 3. Composition et paramètres thermodynamiques de l'éthylène BOG.

4.3.3. Coefficient de performance

Une première approche consistait tout d'abord à comparer les 3 processus disponibles en termes de COP utilisant du propane comme réfrigérant.

Table 4. 4. COP de l'étude préliminaire avec la référence.

	Case-A	Case-B	Case-C
Référence de la littérature	0.767	0.726	0.742
Étude préliminaire			
-	0,845	0,843	0.614
Différence relative%	9,23	13,87	20.84

Le coefficient de performance est significativement supérieur à la référence académique [1] pour les cas A, B et C. Le taux de compression élevé entraîne une élévation significative du COP.

4.3.4. Résultat numérique

D'autres simulations ont été réalisées avec différents réfrigérants pour augmenter le COP, les résultats sont résumés dans le tableau suivant:

Table 4. 5. COP des cas A, B et C utilisant les réfrigérants R1270, R600a et R290.

Refrigerant	Case-A	Case-B	Case-C
R1270	0.768	0.765	0.569
R600a	0.676	0.673	0.540
R290	<u>0.845</u>	0.843	0.614

Comme le montre le tableau 4.5, le meilleur processus pour cette application est le cas A avec le R290 en tant que réfrigérant.

4.3.5. Process final

Le processus et le réfrigérant sélectionnés seront optimisés. Pour des raisons pratiques et des conditions imposées, l'optimisation de ce circuit se fera en ajustant manuellement quelques paramètres clés.

La figure 4. 4 représente le circuit final avec le nom des flux et de l'équipement. Les figures 4.5 et 4.6 montrent le même circuit avec sa température de fonctionnement et sa pression, respectivement. Les chiffres sont en annexe 1.

4.3.6. Performances

Le processus peut liquéfier jusqu'à 88% de l'éthylène BOG en une seule boucle. Le reste non liquéfié est recyclé dans le circuit.

4.4. Dimensionnement

Cette section est consacrée au dimensionnement des différents équipements du processus de liquéfaction sur la base des résultats du chapitre 4. Elle sera subdivisée en 2 parties principales; La première partie présentera les différents types d'équipements utilisés dans ce processus avec un contraste entre l'équipement principal et secondaire. La seconde partie listera les différents équipements du processus d'installation avec leurs paramètres pertinents. Le logiciel Hysys Aspen V8.8 est utilisé pour le dimensionnement des différents équipements. Un premier dimensionnement est effectué par le logiciel, puis ajusté pour une utilisation pratique et une opérabilité par un opérateur.

4.4.1. Principaux équipements

L'équipement principal de l'installation concerne l'équipement qui joue un rôle majeur dans le processus de liquéfaction, cet équipement a une influence majeure sur les performances globales et une légère modification de leurs paramètres entraîne une chute brutale des performances.

4.4.2. Compresseur

Les compresseurs augmentent la pression du fluide et le processus s'accompagne d'une augmentation de la température. Pour notre application, les compresseurs à vis et à piston rotatifs sont généralement utilisés pour comprimer le réfrigérant et l'éthylène à ce taux de compression. Idéalement, le compresseur à plusieurs étages sera dimensionné de manière à avoir une consommation électrique similaire pour chaque étage du compresseur et, par conséquent, un seul moteur et un seul arbre d'entraînement alimentant les deux étages du compresseur. les paramètres des compresseurs sont principalement définis par leur type, leur taux de compression et leur efficacité isentropique. Cependant, son prix est principalement influencé par le pouvoir de consommation.

4.4.3. Echangeurs de chaleur

Un échangeur de chaleur est un dispositif utilisé pour transférer de la chaleur entre deux fluides ou plus. Ils sont utilisés dans les processus de refroidissement et de chauffage. [7] Pour cette application, nous allons utiliser un échangeur de chaleur tubulaire répondant aux normes de l'Association des fabricants d'échangeurs tubulaires (également connu sous le nom de TEMA) pour définir le meilleur échangeur de chaleur. La raison de choisir un échangeur de chaleur à tube et coque est qu'ils peuvent être facilement nettoyés. Bien que les échangeurs de chaleur aient la même fonction, leurs fonctions peuvent différer. Trois types d'échangeurs de chaleur sont utilisés pour cette application.

Watercooler:	Le refroidisseur d'eau sert à refroidir ou à condenser le flux chaud sortant du compresseur à une température acceptable. Ils utilisent de l'eau de mer à une température d'entrée de 25 ° C.
Condenser:	Sont utilisés pour condenser l'éthylène ou le réfrigérant jusqu'à 30 ° C avec de l'eau de mer.
Economizer:	Un économiseur est utilisé comme échangeur de chaleur en préchauffant (ou en pré-refroidissant) un fluide afin de réduire la consommation d'énergie. Il est utile d'avoir un coefficient de performance plus élevé.

En général, le prix des échangeurs de chaleur est fortement corrélé à la surface d'échange.

4.4.4. Résultats

Table 4. 6. Caractéristiques géométriques et énergétiques essentielles de l'échangeur de chaleur.

Heat exchanger	Designation	Туре	Heat transfer rate(kW)	Size (mm)		Surface of exchange (m ²)
Condenser	A-Cond-Evap	BKU	216.7	400	3800	37.2
Economizer	A-Precooler-2	BKU	88	400	2000	23.6
Sea Water Cooler	Cooler A-Cool-Ethylene-1		118.6	300	1800	17
Sea Water Cooler	A-Cond-Prop	BEU	401.1	500	3600	55.9
Economizer	A-Precooler-1	BKU	81.4	400	1000	27.8

4.4.1.4. Separateur de phase

Le séparateur de phases, également appelé récipient sous pression, est un récipient qui sépare le mélange en gaz et en liquide total. Un séparateur biphasé peut être horizontal, vertical ou sphérique. Le liquide quitte le récipient au fond par une vanne de contrôle de niveau ou de décharge. Le gaz quitte la cuve par le haut en passant par un extracteur de brouillard pour éliminer les petites gouttelettes de liquide contenues dans le gaz [8]. Le prix d'un séparateur de phase est fortement corrélé à son poids.

Dans le circuit, il y a 2 séparateurs notés P-S-1 et P-S-2, à la sortie de l'échangeur de chaleur A-Cond-prop et A-Cond-Evap, respectivement. Bien qu'ils n'influencent pas le circuit principal, leur présence est importante pour éliminer les gaz résiduels accumulés qui ne peuvent pas être liquéfiés, tels que l'hydrogène.

	Flow rate per 15 min					Tan to tan	Pressure
	(kg)	Density	Volume	x2	Diameter	length (mm)	(MPa)
P-S-2	467	457.6	0.97	2.04	1	2300	2504
P-S-1	961,5	435	0.45	4.42	1.4	2500	1560

 Table 4.7. Caractéristiques du séparateur de phase.

Pendant le processus de séparation, le liquide / gaz s'écoule pendant 15 minutes dans le séparateur. Le séparateur est conçu pour être rempli à moitié d'une phase liquide et l'autre moitié d'une phase gazeuse de longueur raisonnable. Le poids final est déterminé en fonction du débit volumique, de la longueur, du diamètre et de l'épaisseur de la coque [9].

La figure 4.10 représente un schéma d'un séparateur horizontal.

Figure 4.10. Schéma d'un séparateur horizontal.

À partir de [13] [14] et selon l'application et la température de fonctionnement, la forme de récipient à pression la plus appropriée serait le type horizontal à tête ellipsoïdale utilisant l'ASME A516 Gr. 65 acier au carbone. Le volume d'un récipient sous pression ellipsoïdal est calculé comme suit:

$$V = \frac{\pi . D^3}{12} + \frac{\pi . D^2 . L}{4}$$
(4.7)

Ou :

D : Diamètre intérieur du bateau

L : Bronzage à la longueur

Formule de calcul d'épaisseur minimale pour le cylindre:

$$t = \frac{P.D}{2.S.e - 0.6P}$$
(4.8)

Formule de calcul d'épaisseur minimale pour la tête:

$$t = \frac{P.D}{2.S.e - 0.2P}$$
(4.9)

Ou;

- P : Pression de service maximale admissible égale à 110% de la pression de travail.
- D : Diamètre interieur.
- *S* : Contrainte de traction maximale admissible.
- *e* : L'efficacité du joint soudé, égale à 100%

Selon [14], la contrainte de traction maximale admissible pour A516 Gr. 65 soit 120 MPa.

Le tableau 4.7.2 donne les caractéristiques de l'appareil sous pression après calcul numérique au moyen des équations 4.8, 4.9 et 4.10.

	Cylinder				Head				
	Thickness (mm)	Internal Radius (mm)	External Radius (mm)	Thickness (mm)	Internal Radius (mm)	External Radius (mm)	Volume (m3)	Density kg/m3	Weight (kg)
P-S-2	5.77	1005.78	1011.56	5.75	500	505.75	0.094	7800	734.95
P-S-1	5.16	1405.16	1410.31	5.14	700	705.14	0.131	7800	1022.00

Table 4. 8. Caractéristiques du séparateur de phase.

4.4.1.5. Vanes de détente

Le rôle des vannes d'expansion / papillon est de convertir un fluide haute pression en basse pression en le forçant par des orifices étroits. Dans le cas hypothétique, l'enthalpie reste constante, le seul travail possible est le travail en flux aux emplacements où la masse entre et sort du volume de contrôle. Il n'y a généralement pas de transfert de chaleur significatif avec l'environnement et le changement d'énergie potentielle entre l'entrée et la sortie est négligeable [12].

4.4.1.6. Mixer/splitter

Le mélangeur et le séparateur ont une fonction relativement similaire. La fonction du mélangeur est de mélanger deux flux et plus, puis de les sortir en un seul flux. La fonction Splitter est une entrée d'un flux unique dans plusieurs flux de sortie.

4.4.2. Equipements secondaire

L'équipement secondaire de l'installation concerne l'équipement jouant un rôle mineur dans le processus de liquéfaction. Bien qu'ils n'influencent pas directement les performances, leur présence est nécessaire pour garantir les meilleures conditions d'exploitation et les performances à long terme. Les équipements secondaires seront également pris en compte dans l'étude techno-économique.

L'équipement secondaire peut inclure

- vannes de sécurité.
- •Système anti incendie.
- Capteurs.
- les régulateurs.

4.4.2. Liste des équipements et paramètres clés

Le tableau 4.8 montre la liste des équipements principaux avec leurs paramètres pertinents.

	· 1 1									
		A-Comp-3-1		30.75						
	Compressor	A-Comp-4-1	Power (kW)	65.27	kW					
		A-Comp-4-2		65.09						
Liquefaction Cycle	Sea Water Cooler	A-Cool-Ethylene-1		17						
	Condenser	A-Cond-Evap	Surface of exchange	37.2	m ²					
	Economizer	A-Precooler-2		23.6						
	Purge	Separator	Weight	734.95	kg					
	Commence	A-Comp-1	Deriver (IrW)	45.52	ĿW					
	Compressor	A-Comp-2	Power (Kw)	65.33						
Refrigeration Cycle	Sea Water Cooler	A-Cond-Prop	Surface of evelopes	55.9	m ²					
	Economizer	A-Precooler-1	Surface of exchange	27.8						
	Purge	Separator	Weight	1022.00	kg					
	Security Valves									
Additional	Fire Protection System									
		Sen	sors							
		Regu	lators							

Table 4	49	Liste	des	éani	nements	nrinci	naux	avec	leur	naramètres	nertinents
I abit.	τ. ノ.	LISIC	ucs	cyui	pements	princi	раил	avec	icui	parametres	pertinents.

Chapitre IV Analyse technico-économique

Analyse technico-économique

5.1. Introduction

L'objectif principal de tout projet d'ingénierie est d'améliorer l'efficacité ou de limiter les pertes. Cependant, même avec une conception technique efficace, ils ne peuvent pas tous générer suffisamment de ressources financières pour justifier l'investissement. Ce chapitre évaluera le potentiel financier du procédé de liquéfaction d'éthylène conçu en fonction de plusieurs paramètres et analysera les résultats.

5.2. Methodologie

L'évaluation du procédé de liquéfaction de l'éthylène conçu se fera en trois étapes:

- 1) L'évaluation des coûts d'équipement évaluera l'investissement initial du projet. Cela inclut l'achat et la construction d'équipements.
- 2) L'évaluation des coûts d'exploitation permettra d'estimer les coûts d'exploitation du processus.
- 3) À partir des résultats des étapes 1 et 2, l'évaluation financière évaluera les paramètres clés pour valider ou non ce projet.

5.3. Évaluation du « Capital cost »

Les coûts en capital sont les capitaux fixes qui sont engagés lors de l'achat ou de la location. L'installation comprend tout l'équipement qui sera acheté pour exécuter cette installation. Les coûts pour chaque équipement dépendent de la taille de la machine et de sa fonction. Pour estimer le coût en capital fixe, il faut suivre les étapes suivantes:

- 1) Énumérer le type d'équipement principal de l'usine et estimer sa taille.
- 2) Estimez le coût d'équipement des principaux équipements puis ajustez ses coûts sur une base de temps commune en utilisant un indice de coût.
- 3) Convertissez le coût des principaux éléments de l'installation en acier au carbone, pression modérée et température modérée.
- Sélectionnez les sous-facteurs d'installation appropriés dans les tableaux 1 à 4 de l'annexe 4 et adaptez-les aux circonstances individuelles en fonction des matériaux de construction, de la température de fonctionnement et de la pression.
- 5) Appliquez l'équation 2.6 à l'aide du tableau 5 de l'annexe 4 pour estimer le montant total du coût en capital.

L'équation 5.1 donne le coût de l'équipement en fonction de sa capacité.

$$C_E = C_B \cdot \left(\frac{Q}{Q_B}\right)^M \cdot f_M \cdot f_P \cdot f_T$$
(5.1)

 C_{F} : Equipment cost with capacity Q (Annex 2 Table 5.7)

 C_B : QB (Annex 2 Table 5.7)

- *M* : Constant depending on equipment type (Annex 2 Table 5.7)
- f_M : Correction factor for building materials (Annex 4 Table 5.1, 5.2 and 5.3)
- f_T : Correction factor for design temperature (Annex 4 Table 5.5)
- f_p : Correction factor for design pressure (Annex 4 Table 5.4)

Le tableau 5.1 répertorie les principaux types d'équipements avec leur taille de base (CEPCI 2000) [39].

Equipment	Material	Base measure	Base cost size Q_B	Cost $C_B(\$)$	Exponent M
Pressure vessel	Stainless steel	Mass(t)	6	9.84E+04	0.82
Shell-and-tube heat exchanger	Carbon steel	Heat transfer area (m ²)	80	3.28E+04	0.68
Compressor (including motor)		Power(kW)	250	9.84E+04	0.46

Table 5. 1. Liste des principaux types d'équipement avec leur taille de base.

5.4. Index

Suite aux changements de la valeur de la monnaie dus à l'inflation constante dans le temps, les indices des usines de produits chimiques sont les nombres sans dimension utilisés pour actualiser le coût en capital requis pour ériger des usines de produits chimiques d'un temps passé à un autre. Les données peuvent être actualisées et mises sur une base commune en utilisant des indices de coût en utilisant l'équation 5.2 donnée par:

$$\frac{C_1}{C_2} = \frac{INDEX_1}{INDEX_2}$$
(5.2)

Where

 C_1 : Coût de l'équipement en année 1

 C_2 : Coût de l'équipement en année 2

 $INDEX_1$: Index de l'an 1

 $INDEX_2$: Index de l'an 2

Le tableau 5.1 présente les données pour les types d'équipements, sur la base des coûts de janvier 2000 avec un indice de coût d'équipement (CEPCI) = 435,8. Le CEPCI de 2018 = 603,1 [39,40].

$$C_1 = \frac{INDEX_1}{INDEX_2}.C_2$$

$$C_1 = \frac{603.1}{435.8}.C_2$$

$$C_1 = 1,3838 \times C_2$$

La multiplication du coût de l'équipement par 1 3838 fera passer son prix de base de 2000 à 2018.

5.5. Évaluation du coût des matériaux

Cette section présente l'évaluation du coût des équipements en fonction de la taille, de la puissance et du poids de chaque équipement issu du chapitre IV.

Les tableaux 5.2 à 5.4 présentent le coût de chaque type d'équipement de l'installation : échangeur de chaleur, compresseur et réservoir sous pression, respectivement.

5.5.1. Échangeurs de chaleur

Le tableau 5.2 illustre les coûts des échangeurs de chaleur.

Heat exchanger	Surface of exchange (m2)]	Base cost	(cı	Base cost urrent index)	Correction factor	Actual cost
A-Cond-Evap	37.2	\$	19 486.86	\$	26 967.70	4.35	\$ 117 309.51
A-Precooler-2	23.6	\$	14 300.55	\$	19 790.42	4.35	\$ 86 088.31
A-Cool-Ethylene-1	17	\$	11 441.37	\$	15 833.61	6.96	\$ 110 201.95
A-Cond-Prop	55.9	\$	25 704.71	\$	35 572.53	6.96	\$ 247 584.83
A-Precooler-1	27.8	\$	15 985.39	\$	22 122.04	4.35	\$ 96 230.88
Total Cost			86 918.87		120 286.31		657 415.47

 Table 5. 2. Coûts des échangeurs de chaleur

5.5.2. Compressor

Le tableau 5.3 présente les coûts des compresseurs.

(5.3)

Compressor	Power (KW)	Base cost	(cu	Base cost irrent index)	Correction factor	Actual cost
A-Comp-3-1 (x2)	30.75	\$ 75 055.31	\$	207 736.85	3.20	\$ 664 757.92
A-Comp-4-1	65.27	\$ 53 053.12	\$	73 419.78	5.10	\$ 374 440.86
A-Comp-4-2	65.09	\$ 52 985.77	\$	73 326.57	2.40	\$ 175 983.76
A-Comp-1	45.52	\$ 44 948.55	\$	62 203.93	3.20	\$ 199 052.58
A-Comp-2	65.33	\$ 53 075.55	\$	73 450.82	2.40	\$ 176 281.96
Total Cost		\$ 279 118.31	\$	490 137.94		\$ 1 590 517.08

Table	5.	3	Coûts	des	com	presseurs.
1 and	J.	υ.	Cours	ucs	com	presseurs.

Un second compresseur identique est ajouté à l'A-Comp-3-1 en tant que compresseur de secours en cas de défaillance du premier.

5.5.3. Récipient a pression

Le tableau 5.4 indique le coût de l'appareil récipient à pression

Purges	weight (Ton)	Base cost	Base cost (current index)	correction factor	Actual cost
Purge ethylene	0.637	\$ 21 670.16	\$ 29 989.16	4.80	\$ 143 947.96
Purge propane	0.887	\$ 28 414.30	\$ 39 322.32	1.50	\$ 58 983.47
Total Cost		\$ 50 084.46	\$ 69 311.47		\$ 202 931.43

 Table 5. 4. Coût des récipients a pression

5.5.4. Évaluation du coût de l'équipement

D'après les tableaux 5.2 à 5.4, le coût final de l'équipement principal est donné par le tableau 5.5.

Table 5. 5. Les coûts d'équipeme	nt finaux.
----------------------------------	------------

	Base cost	Base cost (current index)	actual cost
Total Cost	\$ 416 121.65	\$ 679 735.72	\$ 2 450 863.99

5.5.5. Évaluation des coûts d'installation

Lorsqu'un équipement utilise un matériau autre que l'acier au carbone (par exemple l'acier inoxydable) ou fonctionne à des pressions et à des températures extrêmes, le coût en capital doit être réajusté en conséquence. L'équation 5.3 décrit la méthode permettant de calculer le coût total du capital fixe [39].

$$\begin{split} C_F = \sum_i & \left[f_M \cdot f_P \cdot f_T \left(1 + f_{PIP} \right) \right]_i C_{E,i} + \left(f_{ER} + f_{INST} + f_{ELEC} + f_{UTIL} \right. \\ & \left. + f_{OS} + f_{BUILD} + f_{SP} + f_{DEC} + f_{CONT} + f_{WS} \right) \sum_i C_{E,i} \end{split}$$

Ou;

- f_{ER} : Montage d'équipement,
- f_{PIP} : Tuyauterie (installée)
- f_{INST} : Instrumentation et contrôles (installés)
- f_{ELEC} : Électrique (installé)
- f_{UTIL} : Utilitaires
- f_{OS} : frais hors du sites
- f_{BUILD} : Bâtiments (y compris les services)
- f_{SP} : Préparation du site
- f_{DEC} : Conception, ingénierie et construction,
- f_{CONT} : Imprévus (environ 10% des coûts en capital fixe)
- f_{wc} : Fonds de roulement (% 15 du coût en capital)

Il prend en compte les coûts associés à l'équipement, tels que:

• Coûts des études d'ingénierie.

• Les coûts de construction incluent les coûts de la tuyauterie, de l'instrument de contrôle, de l'installation électrique, du bâtiment, de la préparation du site et de divers services publics.

- Frais de transport pour l'expédition du matériel.
- événement indésirable.

Le tableau 5.6 donne le coût de l'énergie électrique pour chaque compresseur du processus.

Item	Compressor	Consumption (kWh)
	A-Comp-3-1	30.75
	A-Comp-4-1	65.27
Compressor designation	A-Comp-4-2	65.09
	A-Comp-1	45.52
	A-Comp-2	65.33
Total consur	271.96	

 Table 5. 6. Coût de l'énergie électrique pour chaque compresseur.

Le résultat numérique de l'équation (5.3) donne:

Le coût total de l'installation est égal à 9 190 739 USD

Le coût total de l'installation est estimé à 9 190 739,96 \$. Cela donne à un ordre de grandeur du coût que sa précision est d'environ 30% du prix réel attendu. Ce coût sera réparti de manière égale sur la longueur totale de la construction de l'usine; qui est estimé à environ 3 ans.

5.6 Coûts de fonctionnement des services publics 5.6.1 Coûts d'électricité

Les compresseurs sont la partie de l'installation qui consomme le plus d'énergie électrique. Toute la consommation électrique restante est négligée à côté de la consommation du compresseur.

Le coût du kWh d'énergie en Algérie pour le secteur industriel est fixé à 0,03 dollar par kWh. Les coûts électriques sont calculés à l'aide de l'équation 5.4:

$$Electrical\cos t = P.LF.EC.OT$$
(5.4)

Where:

Р	: Consommation d'énergie
LF	: Facteur de charge en pourcentage
EC	: Prix de l'électricité (\$ / kWh)
OT	: Temps de fonctionnement

Le tableau 5.7 donne le coût total de l'énergie électrique par pourcentage d'utilisation.

The tetal electricity	percentage of operating time		Cost	
The total electricity	50%	\$	35 735.54	
COST	100%	\$	71 471.09	

Table 5. 7. Coût total de l'énergie électrique par pourcentage de la durée de fonctionnement.

5.6.2. Maintenances et coûts d'exploitation

Les coûts de maintenance et d'exploitation annuels, pour l'usine chimique, représentent environ 5,6% du coût des matériaux. Le tableau 5.8 indique les coûts de maintenance annuelle pour 50% et 100% de la durée de fonctionnement.

Table 5. 8. Coût de maintenance annuelle pour 50% et 100% de la durée de fonctionnement.

Type of cost	percentage of operating time	cost	
Maintenance costs and operating	50%	\$	90 246.71
costs	100%	\$	180 493.42

5.6.3. Coût de l'approvisionnement en eau

L'alimentation en eau sert à refroidir et à liquéfier le propane et l'éthylène à travers le cycle de réfrigération et de liquéfaction. L'usine de produits chimiques sur place se trouve près de l'eau de mer et contient une installation déjà opérationnelle pour fournir suffisamment d'eau de mer pour le refroidissement. Le coût d'un mètre cube d'eau de refroidissement de la mer est de 1,05 dollar par mètre cube.

Chapitre IV

Le tableau 5.9 présente le coût annuel du refroidissement à l'eau pour 50% et 100% de la durée de fonctionnement.

Table 5. 9. Les coûts annuels de refroidissement par eau représentent 50% et 100% de la durée de fonctionnement.

Type of cost	percentage of operating time	cost	
Total water cost	50%	\$	110 376.00
l otal water cost	100%	\$	220 752.00

5.6.4. Coût total d'exploitation

Le tableau 5.10 indique le coût total d'exploitation de l'installation pour 50% et 100% du temps d'exploitation.

Table 5. 10. Total des coûts d'exploitation de l'installation pour 50% et 100% du tempsd'exploitation.

	percentage of operating time	cost	
T. 4.1	50%	\$	214 735.74
Total operating cost	100%	\$	429 471.47

5.7. Bénéfice brut

Le bénéfice brut de l'installation dépend de la durée de fonctionnement annuelle et du prix du polyéthylène à haute densité pouvant être produit à partir d'éthylène. Il est possible de produire 1 tonne de polyéthylène haute densité avec 1 052 tonnes d'éthylène, qui est ensuite vendue 133 133 DZD, quel que soit le prix actuel de l'éthylène. Cela correspond à environ 1 069,55 dollars. (taux de change officiel, juin 2019). L'étude économique sera réalisée en mesurant le manque à gagner en perdant l'éthylène au lieu de produire et de vendre du polyéthylène haute densité. Pour cette application, différents scénarios seront étudiés en utilisant différentes durées de fonctionnement par an:

- 50% de l'année.
- 100% de l'année.

Le procédé a été conçu pour liquéfier jusqu'à 1100 kg / h de gaz d'évaporation d'éthylène, ce qui correspond au débit d'évaporation maximal. Toutefois, l'évaluation financière sera effectuée pour le taux d'évaporation moyen mesuré qui correspond à 625 kg / h.

Le tableau 5.11 représente le bénéfice brut total par période donnée; heures, jour, mois, 6 mois, année.

 Table 5. 11. Bénéfice économique total pour un prix minimal d'éthylène par période donnée; heure, jour, mois, 6 mois, année.

				Gro	oss	gain per-	
Case	Usd/ton	Т	Hour	Month		6 Month	Year
Maximal boil off	\$ 1 069.55	1.1	\$ 1 176.5	\$ 847 082.0	\$	5 082 492.1	\$ 10 164 984.2
Average boil off	\$ 1 069.55	0.625	\$ 668.5	\$ 481 296.6	\$	2 887 779.6	\$ 5 775 559.2
Minimal boil off	\$ 1 069.55	0.4	\$ 427.8	\$ 308 029.8	\$	1 848 178.9	\$ 3 696 357.9

Le tableau 5.12 récapitule le bénéfice brut par tonne d'éthylène recyclé pour les pertes moyennes.

Table 5. 12. Bénéfice économique annuel total pour chaque scénario pour 50% et 100% dutemps de fonctionnement.

Percentage of usage	Gross profit
50%	\$ 2 887 779.60
100%	\$ 5 775 559.20

5.8. Évaluation financière

5.8.1. Hypothèses

- Le coût initial de l'investissement sera fourni par la société propriétaire de ce projet.
- Le taux d'actualisation est supposé constant et égal à 10%.
- L'évaluation financière utilisera les méthodes de la période de récupération (PP), de la
- Période de récupération actualisée (DPP), de la valeur actualisée nette (VAN) et du taux de rendement interne (TRI), qui sont des indicateurs fiables pour évaluer le potentiel d'un projet donné.
- L'installation a une durée de vie de 25 ans.

5.8.2. Definitions

• Flux de trésorerie actualisé (DCF):

L'analyse des flux de trésorerie actualisés pour l'objet d'estimer les entrées de fonds futures est fonction de la valeur de l'argent. La valeur temporelle de l'argent suppose qu'un dollar aujourd'hui vaut plus d'un dollar demain.

• Période de récupération (PP):

La période de récupération a été - approximativement - première méthode utilisée pour calculer approximativement le temps nécessaire pour récupérer le coût des investissements induits par les entrées de trésorerie successives [42].

• Période de récupération réduite (DPP):

La période de récupération d'achat (DPP) est similaire à la méthode de période de récupération. Cependant, il prend en compte la valeur future des entrées de trésorerie avec un taux d'actualisation [43].

• Valeur actuelle nette (VAN):

La valeur actuelle nette - compensée - compensée - compensée par la différence entre les entrées de trésorerie générées par les investissements réalisés dans le projet [44].

• Taux de rendement interne (TRI):

TRI (TRI) is a taux of a normal value of zero trading on a flow. Le TRI est ainsi utilisé lors de la sélection des investissements en fonction du retour [45].

5.8.3. Methodes d'évaluations

Plusieurs méthodes d'évaluation telles que PP, DPP, NPV et IRR seront étudiées séparément pour évaluer le potentiel financier de ce projet.

Le tableau 5.13 donne les méthodes d'évaluation des critères applicables pour accepter un projet.

Critère d'évaluation	Accepted if:
Période de récupération (PP)	PP varies from 2 to 3 years
Période de récupération réduite (DPP)	DPP vary from 3 to 5 years
Valeur actuelle nette (VAN)	NPV > 0
Taux de rendement interne (TRI)	IRR varies from 10-15% (developing countries)

 Table 5. 13. Méthodes d'évaluation des critères applicables pour accepter un projet.

Le tableau 5.14 donne la formule de calcul des critères applicables.

Où:

- *I* : Investissement initial
- *r* : Taux de remise
- *n* : Nombre d'années
- B : Entrées de fonds = recettes dépenses.

		Formule mathématique
Méthode	Critères	B constante
Méthode non actualisée	Période de récupération	$PP = \frac{I}{B}$
Méthode actualisée	Période de récupération réduite (DPP)	$DPP = \frac{\log\left(\frac{B}{B-r.I}\right)}{\log(1+r)}$
	Valeur actuelle nette (VAN)	$NPV = -I + B \times \frac{\left(1+r\right)^{n} - 1}{r\left(1+r\right)^{n}}$
	Taux de rendement interne (TRI)	Value of n to satisfy this equality: $0 = -I + B \times \frac{(1+r)^n - 1}{r(1+r)^n}$

 Table 5. 14. Formule de calcul des critères applicables.

5.9. Résultats

5.9.1. Encaissement annuel net

Le tableau 5.15 donne les rentrées de fonds nettes annuelles.

Table 5. 15	. Encaissement	annuel	net.
--------------------	----------------	--------	------

Percentage of usage	Net profit
50%	\$ 2 673 043.86
100%	\$ 5 346 087.73

5.9.2. Période de récupération

Le tableau 5.16 illustre la période de retour sur investissement.

Table 5.	16.	Période	de	récu	pération
----------	-----	---------	----	------	----------

Percentage of usage	Payback period in years		
50%	3.4		
100%	1.7		

5.9.3. Période de récupération réduite

Le tableau 5.17 indique la durée de la période de récupération réduite.

Percentage of usage	Discounted payback period in years
50%	4.4
100%	2.0

 Table 5. 17. Période de période de récupération réduite.

La période de récupération des deux méthodes est relativement proche, en raison de la courte récupération de l'investissement initial et du potentiel économique élevé de ce projet. Au moment où les investissements initiaux sont récupérés, l'argent récupéré n'était pas particulièrement actualisé.

5.9.4. Entrée de trésorerie actualisée

L'entrée nette de trésorerie est le bénéfice total réalisé en soustrayant les coûts d'exploitation au bénéfice brut. Notez que les rentrées de fonds nettes diminuent au fil des ans en raison de la diminution de la valeur de chaque dollar.

Le tableau 5.18 indique les entrées nettes de fonds (B) correspondant aux prix maximal et moyen de l'éthylène dans le scénario restant, soit 50% de l'utilisation et 100% de l'utilisation.
	Discounted cash inflow					
Year	50% of usage	100% of usage				
0	\$ 2 673 043.86	\$ 5346087.73				
1	\$ 2 430 039.88	\$ 4 860 079.75				
2	\$ 2 209 127.16	\$ 4 418 254.32				
3	\$ 2 008 297.42	\$ 4 016 594.84				
4	\$ 1 825 724.93	\$ 3 651 449.85				
5	\$ 1 659 749.93	\$ 3 319 499.87				
6	\$ 1 508 863.58	\$ 3 017 727.15				
7	\$ 1 371 694.16	\$ 2743388.32				
8	\$ 1 246 994.69	\$ 2 493 989.38				
9	\$ 1 133 631.54	\$ 2 267 263.07				
10	\$ 1 030 574.12	\$ 2 061 148.25				
11	\$ 936 885.57	\$ 1873771.13				
12	\$ 851 714.15	\$ 1703428.30				
13	\$ 774 285.59	\$ 1 548 571.19				
14	\$ 703 895.99	\$ 1 407 791.99				
15	\$ 639 905.45	\$ 1 279 810.90				
16	\$ 581 732.23	\$ 1 163 464.45				
17	\$ 528 847.48	\$ 1 057 694.96				
18	\$ 480 770.43	\$ 961 540.87				
19	\$ 437 064.03	\$ 874 128.06				
20	\$ 397 330.94	\$ 794 661.88				
21	\$ 361 209.94	\$ 722 419.89				
22	\$ 328 372.68	\$ 656 745.35				
23	\$ 298 520.61	\$ 597 041.23				
24	\$ 271 382.38	\$ 542 764.75				
25	\$ 246 711.25	\$ 493 422.50				

Table 5. 18. Entrée nette de fonds	pour 50% d'utilisation et 100% d'utilisation.

La figure 5.1 montre les rentrées de fonds nettes et leur épuisement au fil des ans pour chaque scénario.

Figure 5. 1. Entrée de fonds actualisée pendant 25 ans pour 50% de l'utilisation.

La figure 5.1 illustre les entrées de fonds futures ajustées en fonction de la valeur temps de la monnaie; la diminution des rentrées de fonds diminue la rentabilité à long terme.

5.9.4. Valeur actuelle nette (NPV)

Valeur actuelle nette pour 50% d'utilisation

Le tableau 5.19 représente la valeur actuelle nette pour 50% et 100% d'utilisation.

Year	Net Present	Value, 50% of usage	Net Present Value,	100% of usage
-3	\$	(9 190 739.96)	\$	(9 190 739.96)
-2	\$	(6 760 700.09)	\$	(4 330 660.21)
-1	\$	(4 551 572.93)	\$	87 594.11
0	\$	(2 543 275.51)	\$	4 104 188.95
1	\$	(717 550.58)	\$	7 755 638.80
2	\$	942 199.35	\$	11 075 138.67
3	\$	2 451 062.93	\$	14 092 865.82
4	\$	3 822 757.09	\$	16 836 254.14
5	\$	5 069 751.78	\$	19 330 243.52
6	\$	6 203 383.31	\$	21 597 506.59
7	\$	7 233 957.44	\$	23 658 654.84
8	\$	8 170 843.00	\$	25 532 425.97
9	\$	9 022 557.16	\$	27 235 854.28
10	\$	9 796 842.75	\$	28 784 425.46
11	\$	10 500 738.74	\$	30 192 217.45
12	\$	11 140 644.19	\$	31 472 028.35
13	\$	11 722 376.42	\$	32 635 492.80
14	\$	12 251 223.90	\$	33 693 187.76
15	\$	12 731 994.33	\$	34 654 728.63
16	\$	13 169 058.36	\$	35 528 856.69
17	\$	13 566 389.30	\$	36 323 518.57
18	\$	13 927 599.24	\$	37 045 938.45
19	\$	14 255 971.92	\$	37 702 683.80
20	\$	14 554 492.53	\$	38 299 725.03
21	\$	14 825 874.91	\$	38 842 489.79
22	\$	15 072 586.16	\$	39 335 912.29
23	\$	15 296 869.12	\$	39 784 478.20
24	\$	15 500 762.72	\$	40 192 265.39
25	\$	15 686 120.53	\$	40 562 981.02

 Table 5. 19. Valeur actuelle nette pour 50% et 100% d'utilisation.

La figure 5.2 représente la valeur actuelle nette pour 50% et 100% d'utilisation.

Figure 5. 2. Valeur actuelle nette pour 50% et 100% d'utilisation.

Pour 50% et 100% de l'utilisation, la valeur actuelle nette est acceptée. La figure 5.2 montre que la valeur actuelle nette dépasse.

5.9.6. Taux de rendement interne

Le tableau 5.20 indique les taux internes pour 50% et 100% d'utilisation.

	Internal rate	of return (IRR)
Years	50% of usage	100% of usage
1	-50%	-25%
2	-20%	6%
3	-4%	20%
4	4%	28%
5	10%	32%
6	14%	35%
7	16%	37%
8	18%	38%
9	19%	38%
10	20%	39%
11	21%	39%
12	21%	39%
13	22%	40%
14	22%	40%
15	22%	40%
16	23%	40%
17	23%	40%
18	23%	40%
19	23%	40%
20	23%	40%
21	23%	40%
22	23%	40%
23	23%	40%
24	23%	40%
25	23%	40%

 Table 5. 20. Tarifs internes pour 50% et 100% d'utilisation.

La figure 5.3 montre le taux de rendement interne au fil des ans pour 50% et 100% de l'utilisation, respectivement.

La figure montre que le taux de rendement interne converge à 40% et 23% pour 50% et 100% de l'utilisation, respectivement. Ces valeurs sont acceptables selon le tableau 5.15.

Étant donné que le TRI doit être inférieur au taux d'actualisation, ses valeurs actuelles sont nettement supérieures au taux d'actualisation, ce qui signifie que le projet ne risque pas de devenir non rentable en raison du taux d'actualisation au fil du temps.

Figure 5. 3. Taux de rendement interne au fil des ans pour 50% et 100% d'utilisation.

5.10. Analyse des résultats

Toutes les mesures utilisées pour déterminer le potentiel économique de ce projet montrent une perspective particulièrement bonne et un risque proche de zéro. Bien que les rentrées de fonds annuelles diminuent avec le temps, les PP et DPP attendus sont plus qu'acceptables. Le calcul de la VAN renforce les résultats du PP et du PDP en fournissant des résultats similaires avec 7 et 23,5 millions de dollars générés après 10 ans pour 50% et 100% de l'utilisation. Enfin, le TRI renforce une deuxième fois la pertinence des valeurs en VAN, car elle est supérieure au taux d'actualisation. Pour résumer, toutes les mesures indiquent que ce projet a une perspective de rentabilité élevée, cela prouve également que cette analyse financière est pertinente et peut être utilisée comme un argument solide pour le potentiel économique.

Conclusions

Conclusions

Le présent travail est consacré à l'étude technico-économique de la récupération des vapeurs d'éthylène générées par Boil-off au complexe gazier de Skikda. L'étude fait partie d'un projet dans le cadre duquel l'appel d'offres a été lancé par la société Sonatrach et repris par la Japanese Gas Corporation (JGC). Notez que dans le complexe de stockage d'éthylène, le fluide est stocké sous forme liquide à une température de (-104 ° C) et à la pression atmosphérique dans un réservoir de stockage cryogénique d'une capacité de 12 000 tonnes.

En raison du fait que le réservoir de stockage ne peut pas être parfaitement isolé, des phénomènes de transfert de chaleur se produiront entre l'environnement extérieur et l'intérieur du réservoir de stockage. Cet échange de chaleur entraîne une augmentation de la température interne du réservoir de stockage et par conséquent de la température de l'éthylène liquide.

L'élévation de la température de l'éthylène liquide entraîne son évaporation partielle et la génération d'une pression importante sur la paroi interne du réservoir de stockage, ce qui met en danger l'intégrité du réservoir de stockage. Pour remédier à ce risque technologique, une purge évacue le gaz d'éthylène vers une torche où il sera brûlé, ce qui entraînera une perte économique (1 200 dollars par mètre cube envoyé à la torche) en plus de l'impact écologique.

Il convient donc de définir une unité de micro-liquéfaction pour la récupération des vapeurs d'éthylène générées par Boil-Off à partir du réservoir d'éthylène.

L'installation conçue doit assurer la récupération des vapeurs d'éthylène en les renvoyant dans le réservoir de stockage. La question à laquelle nous avons tenté de répondre dans le cadre de ce projet est la suivante : est-il techniquement et économiquement rentable d'investir dans la liquéfaction des vapeurs d'éthylène générées par Boil-off et de les recycler dans le réservoir de stockage, puis quelle est l'usine de micro-liquéfaction offrir ?

En parcourant l'état de la technique sur le sujet, il est prouvé que même le phénomène de bouillonnement était connu depuis des décennies. Outre le GNL, il n'y avait aucune enquête approfondie sur le système de re-liquéfaction de l'éthylène, l'évaporation de l'éthylène être

systématiquement incendié. Récemment, l'intérêt du procédé de re-liquéfaction par évaporation de l'éthylène a été soulevé, probablement en raison des préoccupations économiques liées à la combustion de matières premières coûteuses, le prix de l'éthylène étant compris entre 850 et 1 800 dollars la tonne. Mais aussi, la prise de conscience écologique par le gouvernement en imposant des taxes - des taxes sur le carbone - pour les industriels qui brûlent des hydrocarbures.

Un modèle mathématique a été présenté afin de déterminer les débits massiques d'éthylène gaz généré par Boil-off. Ce modèle mathématique relatif aux équations différentielles ordinaires a été résolu numériquement avec des conditions aux limites adéquates. Notez que la capacité à estimer avec précision le taux des gaz d'évaporation d'éthylène, même avant la construction du réservoir de réserve, permet d'avoir une idée générale de la quantité d'évaporation attendue et, parallèlement, des pertes économiques. Cela peut aider à planifier dès les premières étapes la construction d'un système de re-liquéfaction par évaporation et à pouvoir fonctionner, car le réservoir de stockage est rempli pour la première fois. Une installation de micro-liquéfaction des vapeurs d'éthylène a été conçue. Le dimensionnement de l'installation est effectué à l'aide du logiciel commercial Hysis.

Les résultats obtenus ont été validés par des mesures expérimentales réalisées sur site. Les détails techniques et géométriques relatifs aux équipements composant cette installation ont été apportés. Afin de tester la rentabilité de l'usine de liquéfaction proposée, une analyse technique et économique a été réalisée. Le potentiel économique du procédé a été évalué pour le procédé de récupération en ce qui concerne la quantité d'éthylène récupéré. Il est démontré que la faisabilité technique et l'opportunité économique du projet sont très prometteuses et que la le projet est rentable.

References

References

- [1] Meisong Y. Simulation and optimization of an ethylene plant. Master of Science in Chemical Engineering, Texas Technical University, USA, 2000.
- [2] Pamanta sanng Lungsodng Maynila. Ethylene Production, Internal report, College of Engineering and Technology. Department of Chemical Engineering Petrochemicals. Manila University, Philippines, 2015.
- [3] Duncan S., FRACI, CChem, MSPE, Duncan Seddon & Associates Pty Ltd, Ethylene price history and trends. [Consulted on June 14, 2019] available at: <u>http://duncanseddon.com/ethylene-price-history-and-trends</u>
- [4] Chin Y.W. Cycle Analysis on LNG Boil-off Gasre-liquefaction plant. J Korean Institute Appl. Superconductivity Cryogenics, Vol. 8, pp. 34-38, 2006.
- [5] Moon J.W., Lee Y. P., Jin Y. W., Hong E.S. and Chang H.M. Cryogenic refrigeration cycle for re-liquefaction of LNG boil-off gas. Int. Cryocooler Conference, Boulder, pp. 629-635, 2007.
- [6] Pil C.K., Rausand M. and Vatn J. Reliability assessment of re-liquefaction systems on LNG carriers. Reliability Engineering & System Safety, Vol. 93, pp. 1345-1353, 2008.
- [7] Anderson T.N., Ehrhardt M.E., Foglesong R. E., Bolton T. and Jones D. Richardson A. Shipboard re-liquefaction for large LNG carriers. Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10-12 January 2009.
- [8] Shin Y. and Lee Y. P. Design of a boil-off natural gas liquefaction control system for LNG carriers. Applied Energy, Vol.86, pp. 37-44, 2009.
- [9] Dimopoulos G.G. and Frangopoulos CA. A Dynamic model for liquefied natural gas evaporation during marine transportation. Int. J. Thermodynamics, Vol. 11, N°3, pp 123-133, 2010.
- [10] Boumedienne M., Beladjine B. M., Ouadhaa A. and Adjlout L, Performance analysis of oxygen refrigerant in an LNG BOG re-liquefaction plant. Procedia Computer Science, Vol. 19, pp. 762-769, 2013.
- [11] Sayyaadi H., M. Babaelahi. Thermo-economic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas. International Journal of Refrigeration, Vol. 33, N°6, pp. 1197-1207, 2010.

- [12] Beladjine B.M, Ouadha A., Benabdesslam Y., Adjlout L. Exergy analysis of an LNG BOG re-liquefaction plant. Proceedings of the 23rd IIR International Congress of Refrigeration, Prague, Czech Republic, 2011.
- [13] Baek S., Hwang G., Lee S. and Jeong D. Choi. Novel design of LNG (liquefied natural gas) re-liquefaction process. Energy Conversion and Management, Vol. 52, N°8–9, pp 2807-2814, 2011.
- [14] Romero J., Orosa A. J. and Armando O. Research on the Brayton cycle design conditions for re-liquefaction cooling of LNG boil off. Journal of Marine Science and Technology, Vol. 17, N°4, pp 532-541, 2012.
- [15] Romero J. G., Lopez Bernal J. and Baaliña I. Analysis and efficiency enhancement of a boil-off gas re-liquefaction system with cascade cycle onboard LNG carriers, Energy Conversion and Management, vol. 94, pp. 261–274, 2015.
- [16] Hongbo T., Siyu S., Yang N. and Qingxuan Z. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, Volume 92, pp. 84-92, 2018.
- [17] Berlinck C., Parise E. A. R, Pitanga J. and Marques, R. Numerical simulation of an ethylene re-liquefaction plant. International Journal of Energy Research, International Journal of Energy Research, Vol. 21, N°7, pp.597-614, 1997.
- [18] Chien M. H., Shih M.Y. An Innovative optimization design for a boil-off gas reliquefaction of LEG vessels. J. Petroleum, Vol. 47, N° 4, pp. 65-74, 2011.
- [19] Li, Y., Jin, G. and Zhong, Z. Thermodynamic Analysis-Based Improvement for the Boiloff Gas Re-liquefaction Process of Liquefied Ethylene Vessels. Chemical Engineering and Technology, Vol. 35, N°10, pp. 1759–1764, 2012.
- [20] Nanowski D. Gas plant of ethylene gas carrier and a two stages compression optimization of ethylene as a cargo based on thermodynamic analysis. J. Polish CIMAC, Vol.7, N° 1, pp. 183-190, 2012.
- [21] Beladjine B., Ouadha A., and Addad Y. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system. Journal of Marine Science and Application, Vol. 15, N° 3, pp. 321-330, 2016.
- [22] Hongbo T., Yang Z., Siyu S. and Qingxuan Z. Comparative study of boil-off gas reliquefaction processes for liquid ethylene vessels. Conference: The 24th IIR International Congress of Refrigeration ICR, Yokohama, Japan, 2018.
- [23] R LEKHAL, Etude et simulation des pertes par boil-off dans un réservoir de GNL, Mémoire de Magister, Ecole Nationale Polytechnique Alger, 2009.

- [24] D.T.Neill, H.T Hashemi, C.M Sliepcevich boil off rate and wall temperature in aboveground LNG storage tanks, Advances in cryogenic heat transfer, chemical engineering progress symposium series, No 87, pp 111-119, 1968.
- [25] Hongbo Tan, Yang Zhang, Siyu Shan, and Qingxuan Zhao. Comparative study of boil-off gas re-liquefaction processes for liquid ethylene vessels. Journal of Marine Science and Technology. Vol 24, Issue 1, pp 209–220. March 2018.
- [26] Ding-Yu Peng and Donald B. Robinson, A New Two-Constant Equation of State. 4th Intl. Heat Transfer Conf., Paris-Versailles, "Heat Transfer 1970", Vol. VI, paper B.7.b, 1970.
- [27] Donnez P., Essentials of Reservoir Engineering. Editions Technips, France, 2007
- [28] Ouadha, A., Beladjine B. Exergy Analysis of an Ethylene bog re-liquefaction system. The 24th IIR International Congress of Refrigeration ICR2015, Yokohama, Japan, 2015.
- [29] Li Y, Jin G, Zhong Z. Thermodynamic analysis-based improvement for the boil-off gas re-liquefaction process of liquefied ethylene vessels. Chem Eng Technol, Vol. 35, issue, pp. 1759–1764, 2012.
- [30] Thomas F. Stocker and Dahe Qin. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Inter-governmental Panel on Climate Change, Ch.8, IPCC, 2013: Climate Change, 2013.
- [31] Ahmed T. Al-Sammarraie M., Vafai K. Heat transfer augmentation through convergence angles in a pipe. Numerical Heat Transfer, Part A: Applications, 72:3, 197-214, 2017.
- [32] Shlumberger Oilfield glossary, Two phase separator. [consulted on June 14, 2019] available at:https://www.glossary.oilfield.slb.com/en/Terms/t/two_phase_separator.aspx
- [33] National Programme on Technology Enhanced Learning. Chemical Engineering Chemical Engineering Design. [consulted on June 14, 2019] available at: https://nptel.ac.in/syllabus/syllabus_pdf/103103027.pdf
- [34] Tubular exchanger manufacturers association. Standards of The Tubular Exchanger Manufacturers Association. 9th Edition, New York, USA, 2007
- [35] Anchasa P., Liu H., Kakaç S. Heat Exchangers: Selection, Rating, and Thermal Design. 3rd edition, 2012
- [36] Moran M. J., Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey. Fundamentals of Engineering Thermodynamics, 8th edition, 2014.
- [37] Maan J. H. Stress in ASME pressure vessels. Wiley Press Series, USA, 2017

[38] American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section II, Part D., 2010.

- [39] Robin S. Chemical Process Design and Integration, 2nd edition Wiley, USA, 2016.
- [40] Jenkins S. Chemical engineering plant cost index: 2018 annual value. [Consulted on June 14, 2019] available at: <u>https://www.chemengonline.com/2019-cepci-updates-januaryprelim-and-december-2018-final/</u>
- [41] Ministère de l'énergie, tarification de l'énergie. [Consulted on June 14, 2019] available at:<u>http://www.energy.gov.dz/francais/uploads/2016/Energie/decision%20tarification.pdf</u>
- [42] Kenton W.Direct Participation Program (DPP). [Consulted on June 14, 2019] available at: <u>https://www.investopedia.com/terms/d/dpp.asp</u>
- [43] Kenton W.Discounted Payback Period Definition. [Consulted on June 14, 2019] available at: <u>https://www.investopedia.com/terms/d/discounted-payback-period.asp</u>
- [44] Kenton W.Net present value. [Consulted on June 14, 2019] available at: https://www.investopedia.com/terms/n/npv.asp
- [45] Kenton W. Calculating internal rate of return using excel. [Consulted on June 14, 2019] available at: <u>https://www.investopedia.com/articles/investing/102715/calculating-internal-rate-return-using-excel.asp</u>
- [46] Toumi Ilyes Zakaria. Technical and economic study of an ethylene boil-off recovery at the petrochemical complex in Skikda, Japaneese Gas Corporation, Alger , 2019.

Annexes

Annexe 1

Parameters	Value	Unit
h	31	m
	24	m
r_i	16.5	m
r_e	17.4	m
T _{external}	300	K
$T_{Ethylene}$	169	K
T_{ground}	288	К
L _{Perlite}	0.9	m
L_{Steel}	0.009	m
$L_{glass \; wool}$	0.009	m
K _{Perlite}	0.03	W/m ² .K
K _{Steel}	36	W/m ² .K
$K_{\it glass\ wool}$	0.04	W/m ² .K
Cp_{ν}	2	kJ/kg.K
K_L	0.0476	W/m.K
K_R	0.0476	W/m.K
$h_{\scriptscriptstyle Evaporation, ethylene}$	483	KJ/kg
$h_{external}$	400	W/m ² .K
$h_{L, Ethylene}$	200	W/m ² .K
$h_{L-V}(T_L,T_V)$	0.2	W/m ² .K
$h_{L,V,Convection}(T_L,T_V)$	520	W/m ² .K
$h_{L,V,Radiation}(T_L,T_V)$	490	W/m ² .K
$\varepsilon_{\scriptscriptstyle L}$	0.8	-dimension less-
$\boldsymbol{\varepsilon}_{_{R}}$	0.8	-dimension less-

Table 3. 2. Propriété géométrique et thermique utilisé pour l'application numérique

Figure 4. 1 Circuit finale

Figure 4. 2 Circuit Finale avec les pressions opératoire

Annexe 3

Table 4. 10 A-Cool-Ethylene-1

Compony								
Company:								
Location:								
Service of Unit:	0	ur Referen	ice:					
Item No.:	You	r Referenc	ce:					
Date: Rev	No.: Jo	b No.:						
Size : 300 - 1800	mm	Ту	pe: AEU	Horizontal		Connected in	: 1 parallel	2 series
Surf/unit(eff.)	17.9	m²	Shells/u	init 2		Surt/s	hell(eff.)	9 m²
			PERFC	DRMANCE C	DF ONE U	NIT		2 1.1
Fluid allocation					Shell	Side	Tube	Side
Fluid name					A-16-2->	>A-17-2	4-2-:	>5-2
Fluid quantity, Total			kg/h		180	65	60	00
Vapor (In/Out)			kg/h	186	5	1865	0	0
Liquid			kg/h	0		0	6000	6000
Noncondensable			kg/h	0		0	0	0
Temperature (In/Out)			°C	148.	53	31.14	25	42.03
Dew / Bubble poin	t		°C					
Density Vapor,	/Liquid		kg/m³	21.2 /		33.23 /	/ 1007.52	/ 994.58
Viscosity			ср	0.0149 /		0.0113 /	/ 0.8904	/ 0.6272
Molecular wt, Vap				27.9	98	27.98		
Molecular wt, NC								
Specific heat			kJ/(kg-K)	2.041 /		1.947 /	/ 4.179	/ 4.179
Thermal conductivity			W/(m-K)	0.0371 /		0.0248 /	/ 0.611	/ 0.634
Latent heat			kJ/kg					
Pressure (abs)			kPa	251	.7	2515.171	700	684.092
Velocity (Mean/Max)			m/s		0.84 /	1.4	0.73 /	0.87
Pressure drop, allow./	alc.		kPa	40		1.829	0.1	15.908
Fouling resistance (mi	n)		m²-K/W		0.00	009	9E-05 0.0	0012 Ao based
Heat exchanged	118.6		۲\M	•		MTD (co	rested) 22.72	°C
neat exchanged	110.0						Tecleu) 52.75	
Transfer rate, Service	202			Dirty	201.7	Cle	ean 253.7	W/(m ² -K)
Transfer rate, Service	202	CONSTRU		Dirty HELL	201.7	Cle	ean 253.7 Ske	W/(m ² -K) tch
Transfer rate, Service	202	CONSTRU	CTION OF ONE S	Dirty HELL de	201.7	Cle Tube Side	ean 253.7	W/(m ² -K)
Transfer rate, Service	202 (C ONSTRU kPa	CTION OF ONE S Shell Sid	Dirty HELL de	201.7 800	Cle Tube Side	253.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature	202 oressure	CONSTRU kPa °C	CTION OF ONE S Shell Sid 2800 / 185	Dirty HELL de /	201.7	Tube Side / / / 185	an 253.7 Ske	w/(m²-K) tch
Design/Vacuum/test p Design temperature	202 oressure	CONSTRU kPa °C	CTION OF ONE S Shell Sid 2800 / 185 1	Dirty HELL de /	201.7 800	Tube Side / / 185 6	253.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance	202 oressure	CONSTRU kPa °C	CTION OF ONE S Shell Sid 2800 / 185 1 3.18	Dirty HELL de /	201.7	Tube Side / / 185 6 3.18	an 253.7 Ske	W/(m ² -K) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections	202 oressure ell	CONSTRU kPa °C mm	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77 93	Dirty HELL de /	201.7	Tube Side / / 185 6 3.18 77.93 / -	an 253.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating	202 oressure ell	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sir 2800 / 185 1 3.18 1 77.93 1 77.93	Dirty HELL de / / / / /	201.7 800 1 1	Tube Side / / / 185 6 3.18 77.93 / - 77.93 / -	an 253.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID	202 oressure ell In Out	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93	Dirty HELL de / / / - / / -	201.7 800 1 1 1 1	Tube Side / / / 185 6 3.18 77.93 / - 77.93 / -	an 253.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID	202 oressure ell In Out Intermediate	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93	Dirty HELL de / / / / / / / / /	201.7 800 1 1 1 1 1	Tube Side / / 185 6 3.18 77.93 / - 77.93 / - 77.93 / - 1800 m m	m Pitch 25.4	W/(m ² -K) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain	202 oressure ell In Out Intermediate OD 19.0	KPa °C mm mm 05 Tks Av	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93	Dirty HELL de / / - / - / - mm erial C	201.7 800 1 1 1 1 1 1 1 2 1 1 5 4 5 1 5 1 5 1 5 1 5	Tube Side / / / 185 6 3.18 - 77.93 / 77.93 / - - 1800 mi	m Pitch 25.4	tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel	202 oressure ell In Out Intermediate OD 19.0	CONSTRU kPa °C mm mm 25 Tks Av	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / / - / - mm erial C	201.7 800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 tength arbon Ste	Classical Tube Side / / 185 6 3.18 77.93 77.93 77.93 - 77.93 - 1800 m el n Shell cover	m Pitch 25.4 Tube pattern 9	W/(m ² -K) tch mm 0 eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet	202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9	CONSTRU kPa °C mm mm 05 Tks Av 00 Steel	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / / / / - mm erial C	201.7 800 1 1 1 Length Garbon Ste	Cle Tube Side / / 185 6 3.18 77.93 / 77.93 / 77.93 / 77.93 / 1800 m el n Shell cover Channel cover	m Pitch 25.4 Tube pattern 9 Carbon Str	W/(m ² -K) tch mm 0 eel eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet	202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9	CONSTRU kPa °C mm mm 05 Tks Av 100 Steel	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / / / / / - mm erial C	201.7 800 1 1 1 1 Length arbon Ste	Cle Cle Cle Cle Cle Cle Cle Cle	m Pitch 25.4 Tube pattern 9 Carbon Ste	W/(m ² -K) tch mm 0 eel eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Eloating head cover	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / / / / / - mm erial C	201.7 800 1 1 1 Length Garbon Ste	Cle Cle Cle Cle Cle Cle Cle Cle	m Pitch 25.4 Tube pattern 9 Carbon Sto Carbon Sto	W/(m ² -K) tch mm 0 eel eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross. Carbon	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 - Steel	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / - / - / - mm erial C	201.7 800 1 1 1 1 1 Length arbon Ste mn	Cle Cle Cle Cle Cle Cle Cle Cle	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Detection None	W/(m ² -K) tch mm 0 eel eel eel
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon i	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel	CONSTRU kPa °C mm mm 05 Tks Av 000 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / - / - / - mm erial C	201.7 800 1 1 1 Length arbon Ste mn	Cle Cle Cle Cle Cle Cle Cle Cle	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Detection None H Spacing: c/c 180	W/(m ² -K) tch mm 0 eel eel eel mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel	CONSTRU kPa °C mm mm 05 Tks Av 000 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76 - Single segm Seal Type	Dirty HELL de / - / - / - mm erial C	201.7 800 1 1 1 1 Length arbon Ste mn	Cle Cle Cle Cle Cle Cle Cle Cle	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Carbon Ste Detection None H Spacing: c/c 180 Inlet 206.47	W/(m ² -K) tch mm 0 eel eel mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Pupace coal	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel U-bend	CONSTRU kPa °C mm mm 25 Tks Av 300 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76 - Single segm Seal Type 0	Dirty HELL de / - / - / - mm erial C ental (201.7 800 1 1 1 Length arbon Ste mn	Cle Tube Side / / 185 6 3.18 77.93 / 77.93 / 77.93 / 77.93 / 1800 m el N Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Detection None H Spacing: c/c 180 Inlet 206.47	W/(m ² -K) tch mm 0 eel eel mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Evenerican init	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 - Steel U-bend	CONSTRU kPa °C mm mm 25 Tks Av 300 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76 - Single segm Seal Type 0 T	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 Length arbon Ste mn Cut(%d) eet joint	Cle Tube Side / / 185 6 3.18 77.93 / - 77.93 / - 77.93 / - 1800 mm el n Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Carbon Ste Detection None H Spacing: c/c 180 Inlet 206.47	W/(m ² -K) tch mm 0 eel eel mm 7 mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint Dhav(2 Lete parela	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel U-bend	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 17.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76 - Single segm Seal Type 0 T	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 Length arbon Ste mn Cut(%d) eet joint pe No	Tube Side / / 185 6 3.18 77.93 / - 77.93 / - 77.93 / - 1800 mm el n Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Carbon Ste Detection None H Spacing: c/c 180 Inlet 206.47	W/(m ² -K) tch mm 0 eel eel eel mm ' mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 - Steel U-bend 557	CONSTRU kPa °C mm mm 05 Tks Av 00 Steel Steel Type	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 Length arbon Ste mn Cut(%d) eet joint be No	Cle Tube Side / / 185 6 3.18 77.93 / 77.93 / 77.93 / 77.93 / 77.93 / 1800 m el N Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit	m Pitch 25.4 Tube pattern 9 Carbon Sta Carbon Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta	W/(m ² -K) tch mm 0 eel eel eel mm ' mm ' mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 - Steel U-bend 557 Flat	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Type Type	KW Shell Sid 2800 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 700 316.76 - Single segm Seal Type 0 T Bundle entra ket Fibe	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 Length arbon Ste mn Cut(%d) eet joint be No	Tube Side / 185 6 3.18 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77.93 6 3.18 77.93 77.93 - Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M	m Pitch 25.4 Tube pattern 9 Carbon Sta Carbon Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta	W/(m ² -K) tch mm 0 eel eel eel mm ' mm ' mm ' mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel U-bend 557 Flat d	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Type Type	CTION OF ONE S Shell Sid 2800 / 185 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 verage 2.11 #/m Mate OD 316.76 - Single segm Seal Type 0 T - Bundle entra sket Fibe	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 1 Length arbon Ste mn Cut(%d) eet joint pe No	Tube Side / / 185 6 3.18 77.93 / 77.93 / 77.93 / 77.93 / 77.93 / 1800 mi el n Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M	m Pitch 25.4 Tube pattern 9 Carbon Sta Carbon Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta	W/(m ² -K) tch mm 0 eel eel eel mm ' mm ' ') kg/(m-s ²)
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 Carbon 9 - Steel U-bend 557 Flat d - ASME Co	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Steel Type Metal Jac pde Sec VI	CTION OF ONE S Shell Sid 2800 / 185 1 3.18 1 77.93 1 7	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 1 Length arbon Ste mn Cut(%d) eet joint be No TEMA c	Tube Side / / 185 6 3.18 77.93 / 77.93 / 77.93 / 77.93 / 77.93 / 1800 mi el n Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M lass R - refinery se	m Pitch 25.4 Tube pattern 9 Carbon Str Carbon Str Carbon Str Carbon Str Carbon Str Carbon Str 25 etal Jacket Fibe	W/(m ² -K) tch mm 0 eel eel eel mm ' mm ' mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 - Steel U-bend 557 Flat d - ASME Co 473.1	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Steel Type Metal Jac pde Sec VI Filled w	KW Shell Sid 2800 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 Single segm Seal Type 0 T Bundle entra Rundle entra El Div 1 vith water 594.5	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 1 Length arbon Ste mn Cut(%d) eet joint pe No TEMA c Bundle	Tube Side / 185 6 3.18 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77.93 77 1800 m Shell cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M lass R - refinery se 164.4	m Pitch 25.4 Tube pattern 9 Carbon Str Carbon Str Carbon Str Carbon Str Carbon Str Carbon Str 25 etal Jacket Fibe	W/(m ² -K) tch mm 0 eel eel eel mm ' mm '' mm '' mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 Car	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Steel Type Metal Jac pde Sec VI Filled w	KW Shell Sid 2800 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 Single segm Seal Type 0	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 1 Length arbon Ste mn Cut(%d) eet joint pe No TEMA c Bundle	Tube Side / / 185 6 3.18 77.93 / 77.93 / - 77.93 / - 1800 m el n Shell cover Channel cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M lass R - refinery set 164.4	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Carbon Ste Carbon Ste Detection None H Spacing: c/c 180 Inlet 206.47 y (2 grooves)(App.A 'i 25 etal Jacket Fibe	W/(m ² -K) tch mm 0 eel eel eel mm ' mm '' mm '' mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sh Corrosion allowance Connections Size/Rating ID Tube No. Us Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon : Baffle-cross Carbon : Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	202 202 oressure ell In Out Intermediate OD 19.0 ID 3 Carbon 9 Carbon 9 Car	CONSTRU kPa °C mm mm 05 Tks Av 300 Steel Steel Steel Type Metal Jac pde Sec VI Filled w	KW Shell Sid 2800 185 1 3.18 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 1 77.93 Single segm Seal Type 0 T - Bundle entra ket Fibe II Div 1 vith water 594.5	Dirty HELL de / / / / / / / / / / / / / / / / / /	201.7 800 1 1 1 1 1 Length arbon Ste mn Cut(%d) eet joint pe No TEMA c Bundle	Tube Side / 185 6 3.18 77.93 / 77.93 / - 77.93 / - 1800 m el n Shell cover Channel cover Channel cover Tubesheet-floatin Impingement pro 38.36 Type Expanded only ne Bundle exit Flat M Id4.4	m Pitch 25.4 Tube pattern 9 Carbon Ste Carbon Ste Carbon Ste Carbon Ste Carbon Ste Carbon Ste Carbon Ste Carbon Ste 25 etal Jacket Fibe ervice kg	W/(m ² -K) tch mm 0 eel eel eel '' mm '' mm '' mm

Table 4. 11 A-Precooler-2

Company								
Company:								
Location:		0						
Service of Unit:		Our Referen	ice:					
Item No.:		Your Reference	ce:					
Date: Re	/ No.:	Job No.:						
Size : 400,625	· 2000	mm	Type: BKU	Horizonta		Connected in	: 1 parallel	1 series
Surf/unit(eff.)	23.6	m²	Shells/u	init 1		Surt/s	hell(eff.)	23.6 m²
			PERFC	DRMANCE C	DF ONE U	NIT		c : 1
Fluid allocation					Shell	Side	lube	Side
Fluid name					A-11-2-	-2->8-2	A-10-1-2-	>A-11-1-2
Fluid quantity, Total			kg/h		56	54	12	56
Vapor (In/Out)			kg/h	180)	564	0	0
Liquid			kg/h	384	1	0	1256	1256
Noncondensable			kg/h	0		0	0	0
Temperature (In/Out)			°C	-84.6	65	-84.68	-28	-78.88
Dew / Bubble poir	nt		°C					
Density Vapor	/Liquid		kg/m³	5.32 /	538.88	5.27 / 538.91	/ 435.29	/ 531.83
Viscosity			ср	0.0066 /	0.1279	0.0066 / 0.1279	/ 0.0627	/ 0.1184
Molecular wt, Vap				27.8	85	27.99		
Molecular wt, NC								
Specific heat			kJ/(kg-K)	1.463 /	2.517	1.462 / 2.517	/ 3.095	/ 2.519
Thermal conductivity			W/(m-K)	0.0122 /	0.1659	0.0122 / 0.1659	/ 0.1077	/ 0.1593
Latent heat			kJ/kg	450.	.1	449.9		
Pressure (abs)			kPa	280)	277.702	2504.721	2504.626
Velocity (Mean/Max)			m/s		0.16 /	0.24	0.04 /	/ 0.04
Pressure drop, allow./	calc.		kPa	40		2.298	1	0.095
Fouling resistance (m	in)		m²-K/W		0.0	009	0.0009 0.0	0109 Ao based
Heat exchanged	48		kW			MTD (cor	rected) 23.01	°C
·····							100100.)	,
Transfer rate, Service	88			Dirty	88	Cle	ean 106.7	W/(m ² -K)
Transfer rate, Service	88	CONSTRU	CTION OF ONE S	Dirty HELL	88	Cle	ean 106.7	W/(m ² -K)
Transfer rate, Service	88	CONSTRU	CTION OF ONE S Shell Sid	Dirty HELL de	88	Cle Tube Side	ean 106.7	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test	88 pressure	CONSTRU kPa	CTION OF ONE S Shell Sid 400 /	Dirty HELL de /	88 	Tube Side	ean 106.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature	88 pressure	CONSTRU kPa °C	CTION OF ONE S Shell Sid 400 / 35	Dirty HELL de /	88 	Tube Side / / / 35	ean 106.7	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh	88 pressure nell	CONSTRU kPa °C	Shell Sid 400 / 35	Dirty HELL de /	88 	Tube Side / / 35 2	aan 106.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance	88 pressure nell	CONSTRU kPa °C mm	CTION OF ONE S Shell Sid 400 / 35 1 0	Dirty HELL de /	88 2800	Tube Side / / 35 2 0	aan 106.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections	88 pressure iell In	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8	Dirty HELL de / /	88 2800 1	Tube Side / / / / / 35 2 0 0 50.8 / - -	san 106.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating	88 pressure eell In Out	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75	Dirty HELL / / / / /	88 2800 1 1	Tube Side / / / / 35 2 0 50.8 / - 31.75 / -	san 106.7 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal	88 pressure eell In Out Intermed	CONSTRU kPa °C mm mm iate	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75	Dirty HELL / / / / / / /	88 2800 1 1	Tube Side / / / 35 2 0 50.8 / - 31.75 / - / -	interior interio interior interior interior interior interior interior inte	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us	88 oressure Iell In Out Intermed OD	CONSTRU kPa °C mm mm iate 19.05 Tks Av	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65	Dirty HELL de / / / / / / / / / / /	88 2800 1 1 1 Length	Tube Side / / / / 35 2 0 50.8 / - 31.75 / - 2000 mr	n Pitch 25.4	W/(m ² -K) etch
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain	88 pressure Iell In Out Intermed OD	CONSTRU kPa °C mm mm iate 19.05 Tks Av	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 1 Length S 304	Tube Side / / / 35 2 0 50.8 / - 31.75 / - 2000 mm	n Pitch 25.4 Tube pattern 9	W/(m ² -K) etch
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304	88 pressure lell Out Intermed OD	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304	Tube Side / / / 35 2 0 50.8 - 31.75 / - 2000 mr n Shell cover	n Pitch 25.4 Tube pattern 9 SS 304	W/(m ² -K) etch
Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet	88 poressure eell Out Intermed OD ID SS 30	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410	Dirty HELL de / - / - / - mm erial S:	88 2800 1 1 Length S 304 mr	Tube Side / / / 35 2 0 0 50.8 / 31.75 / / - 2000 mr m Shell cover Channel cover	n Pitch 25.4 Tube pattern 9 SS 304	W/(m ² -K) etch
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary	88 pressure eell Out Intermed OD ID SS 30 SS 30	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 24	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410	Dirty HELL de / - / - / - mm erial St	88 2800 1 1 Length S 304 mr	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mm n Shell cover Channel cover Tubesheet-floatin	n Pitch 25.4 Tube pattern 9 SS 304 - ng -	W/(m ² -K) etch
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover	88 pressure eell Out Intermed OD ID SS 30 SS 30 -	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 14 14	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 werage 1.65 #/m Mate OD 410	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304 mr	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mm N Shell cover Channel cover Tubesheet-floatin Impingement pro	m Pitch 25.4 Tube pattern 9 SS 304 - ng - otection None	W/(m ² -K) etch
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304	88 pressure nell Out Intermed OD ID SS 30 SS 30 -	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 24 24 24 24 24 24 24 24 24 24 24 24 24	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304 mr	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mm Shell cover Channel cover Tubesheet-floatir Impingement pro	m Pitch 25.4 Tube pattern 9 SS 304 - ng - otection None Spacing: c/c	W/(m ² -K) etch mm 0 mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long -	88 pressure nell Out Intermed OD ID SS 30 SS 30 -	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 04 74 400	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type	Dirty HELL de / / / / / - mm erial S: ental (88 2800 1 1 1 Length S 304 mr	Tube Side / / / 35 2 0 50.8 / - 31.75 / - 2000 mr 2000 mr Shell cover Channel cover Tubesheet-floatir Impingement pro	m Pitch 25.4 Tube pattern 9 SS 304 - ng - ntection None Spacing: c/c Inlet	W/(m ² -K) etch mm 0 mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube	88 pressure eell Out Intermed OD ID SS 30 SS 30 SS 30 -	CONSTRU kPa °C °C mm mm iate 19.05 Tks Av 400 44 400 14 Yppe	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0	Dirty HELL de / - / - / - mm erial S: ental (88 2800 1 1 1 5 304 mr	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr Shell cover Channel cover Tubesheet-floatir Impingement pro	m Pitch 25.4 Tube pattern 9 SS 304 - ng - stection None Spacing: c/c Inlet	W/(m ² -K) etch mm 0 mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal	88 pressure eell Out Intermed OD ID SS 30 SS 30 - -	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 44 400 44 400 24 end	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T	Dirty HELL de / - / - / - mm erial S: ental (ube-tubesh	88 2800 1 1 Length S 304 mr	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr Shell cover Tubesheet-floatir Impingement pro Type Expanded only	n Pitch 25.4 Tube pattern 9 SS 304 - ng - otection None Spacing: c/c Inlet	W/(m ² -K) etch mm 0 mm 0 mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint	88 pressure eell Out Intermed OD ID SS 30 SS 30 - U-be	CONSTRU kPa °C °C mm mm iate 19.05 Tks Av 400 04 400 04 7ype end	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T	Dirty HELL de / - / - / - mm erial S: ental (ube-tubesh Typ	88 2800 1 1 Length S 304 mr Cut(%d) eet joint pe Nc	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mm n Shell cover Channel cover Tubesheet-floatin Impingement pro Type Expanded only one	n Pitch 25.4 Tube pattern 9 SS 304 - ng - neg - neg - neg c/c Inlet	W/(m ² -K) etch mm 0 mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	88 pressure eell Out Intermed OD ID SS 30 SS 30 SS 30 - -	CONSTRU kPa °C °C mm mm iate 19.05 Tks Av 400 44 400 24 Type	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304 mr Cut(%d) eet joint pe Nc	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr 31.75 / - / - 2000 mr M Shell cover Channel cover Tubesheet-floatir Impingement pro Type Expanded only one Bundle exit	m Pitch 25.4 Tube pattern 9 SS 304 - ng - neg - s - neg - ne	W/(m ² -K) etch mm 0 mm mm mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	88 pressure lell In Out Intermed OD SS 30 SS 30 SS 30 - U-be 322	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 400 400 M Flat Metal Jac	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra cket Fibe	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304 mr Cut(%d) eet joint be Nc	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mm 2000 mm Channel cover Channel cover Tubesheet-floatin Impingement pro Expanded only one Bundle exit Flat M	n Pitch 25.4 Tube pattern 9 SS 304 - ng - netection None Spacing: c/c Inlet / (2 grooves)(App.A 'i 0 etal Jacket Fibe	W/(m ² -K) etch mm 0 mm mm mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	88 pressure nell Out Intermed OD ID SS 30 SS 30 - U-be 322 ad	CONSTRU kPa °C mm mm iate 19.05 Tks Av 400 400 400 M Type end Flat Metal Jac -	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra cket Fibe	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 1 Length S 304 mr Cut(%d) eet joint pe Nc	Tube Side / / 35 2 0 50.8 / - 31.75 / - 2000 mr 2000 mr 2000 mr Channel cover Tubesheet-floatir Impingement pro Expanded only one Bundle exit Flat M	n Pitch 25.4 Tube pattern 9 SS 304 - ng - otection None Spacing: c/c Inlet (2 grooves)(App.A 1 0 etal Jacket Fibe	W/(m ² -K) etch mm 0 mm mm mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	88 pressure In Out Intermed OD ID SS 30 SS 30 - - U-be 322	CONSTRU kPa °C °C mm mm iate 19.05 Tks Av 400 44 400 44 400 44 94 Flat Metal Jac - E Code Sec VI	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra sket Fibe	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 1 1 1 5 304 mr Cut(%d) eet joint be No	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr Shell cover Channel cover Tubesheet-floatir Impingement pro Channel cover Tubesheet-floatir Impingement pro Expanded only one Bundle exit Flat M lass R - refinery se	n Pitch 25.4 Tube pattern 9 SS 304 - ng - stection None Spacing: c/c Inlet (2 grooves)(App.A 't	W/(m ² -K) etch mm 0 mm mm mm mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell	88 pressure eell In Out Intermed OD ID SS 30 SS 30 SS 30 SS 30 	CONSTRU	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 - Bundle entra ket Fibe II Div 1 vith water 1727.	Dirty HELL de / - / - / - mm erial S: ental (ube-tubesh Typ nce 0 Tube side	88 2800 1 1 Length S 304 mr Cut(%d) eet joint be No TEMA c Bundle	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr Shell cover Channel cover Tubesheet-floatir Impingement pro Channel cover Tubesheet-floatir Impingement pro Expanded only one Bundle exit Flat M lass R - refinery se 353.4	n Pitch 25.4 Tube pattern 9 SS 304 - ng - otection None Spacing: c/c Inlet (2 grooves)(App.A 1 0 etal Jacket Fibe	W/(m ² -K) etch mm 0 mm mm mm mm mm mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross SS 304 Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	88 pressure eell In Out Intermed OD ID SS 30 SS 30 - U-be 322 ad ASM 790.9	CONSTRU	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra :ket Fibe III Div 1 vith water 1727.	Dirty HELL de / - / - / - / - mm erial S: ental (ube-tubesh Typ nce 0 Tube side	88 2800 1 1 Length S 304 mr Cut(%d) Cut(%d) eet joint pe No Eut Eut Cut Sut Cut Cut Sut Sut Sut Sut Sut Sut Sut Sut Sut S	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mr m Shell cover Channel cover Tubesheet-floatir Impingement pro Channel cover Tubesheet-floatir Impingement pro Expanded only one Bundle exit Flat M lass R - refinery se 35.4	n Pitch 25.4 Tube pattern 9 SS 304 - ng - neg - netection None Spacing: c/c Inlet / (2 grooves)(App.A 'i 0 etal Jacket Fibe	W/(m ² -K) etch mm 0 mm mm 1) kg/(m-s ²)
Transfer rate, Service Transfer rate, Service Design/Vacuum/test Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube No. Us Tube type Plain Shell SS 304 Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	88 pressure eell Out Intermed OD ID SS 30 SS 30 SS 30 - U-be 322 ad ASM 790.9	CONSTRU kPa °C °C mm mm iate 19.05 Tks Av 400 44 400 44 400 44 400 5 Flat Metal Jacc - E Code Sec VI 9 Filled v	CTION OF ONE S Shell Sid 400 / 35 1 0 1 50.8 1 31.75 verage 1.65 #/m Mate OD 410 - Single segm Seal Type 0 T - Bundle entra :ket Fibe III Div 1 vith water 1727.	Dirty HELL de / / / / / / / / / / / / / / / / / /	88 2800 1 1 Length S 304 mr Cut(%d) eet joint pe Nc TEMA c Bundle	Tube Side / / 35 2 0 50.8 / - 31.75 / - / - 2000 mm n Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only one Bundle exit Flat M lass R - refinery se 353.4	n Pitch 25.4 Tube pattern 9 SS 304 - ng - neg - neg - neg c. Inlet / (2 grooves)(App.A 'i 0 etal Jacket Fibe rvice kg	W/(m ² -K) etch mm 0 mm mm mm mm mm

Company:									
Location:									
Service of Unit:		Our Referen	ce:						
Item No.:	Y	our Referenc	:e:						
Date: Rev	No.:	Job No.:							
Size : 400 / 625	· 1000	mm	Type: BK	Ű	Horizonta	al	Connected in	: 1 parallel	1 series
Surf/unit(eff.)	27.8	m²	She	ells/ui	nit 1		Surf/s	hell(eff.)	27.8 m ²
			PI	ERFO	RMANCE C	OF ONE UN	п		
Fluid allocation						Shell S	ide	Tube	Side
Fluid name						17->	20	18-:	>19
Fluid quantity, Total			kç	g/h		144	7	28	08
Vapor (In/Out)			kç	g/h	0		770	0	0
Liquid			kç	g/h	144	7	677	2808	2808
Noncondensable			kç	g/h	0		0	0	0
Temperature (In/Out)				°C	-7.1	.9	-7.49	45.55	6.87
Dew / Bubble point	t			°C			-7.24		
Density Vapor/	Liquid		kg/	/m³	8.33 /	537.74	8.28 / 538.49	35.01 / 457.56	/ 521.19
Viscosity				ср	0.0074 /	0.1388	0.0074 / 0.1398	0.0094 / 0.0775	/ 0.1186
Molecular wt, Vap					44.1	1	44.1	44.1	
Molecular wt, NC									
Specific heat			kJ/(kg	ј-К)	1.687 /	2.458	1.684 / 2.455	2.365 / 2.941	/ 2.529
Thermal conductivity			W/(m	i-K)	0.0219 /	0.0879	0.0219 / 0.0881	0.0312 / 0.0651	/ 0.0824
Latent heat			kJ/	/kg	381.	.8	382.3	293.3	
Pressure (abs)			k	kPa	380)	376.211	1560	1559.99
Velocity (Mean/Max)			n	n/s		0.62 /	0.82	0.04 /	0.05
Pressure drop, allow./c	alc.		k	kPa	50		3.789	1	0.01
Fouling resistance (mir	ו)		m²-K	(/W		0.000)2	0.0002 0.0	0026 Ao based
Heat avebanged	Q1 /		1.1.1.1				NATE (mantad) 21 F	0.0
Heat exchanged	01.4		KVV				MID (co	rrected) 31.5	Ľ
Transfer rate, Service	91.5		ĸvv		Dirty	91.5	Cle	ean 95.4	W/(m ² -K)
Transfer rate, Service	91.5	CONSTRU		NE SH	Dirty IELL	91.5	Cle	ean 95.4	<u>لار (</u> m²-K) tch
Transfer rate, Service	91.5	CONSTRU		NE SH ell Sid	Dirty HELL le	91.5	MTD (col Cle Tube Side	ean 95.4 Ske	W/(m ² -K)
Transfer rate, Service	91.5 ressure	CONSTRU kPa	CTION OF ON She	NE SH ell Sid	Dirty IELL /	91.5	Cle Cle Cle Cle	ean 95.4 Ske	<u>لار(m²-K)</u> tch
Design/Vacuum/test p	91.5 ressure	CONSTRU kPa °C	CTION OF ON She	NE SH ell Sid 85	Dirty IELL /	91.5	Tube Side / 85	ean 95.4	<u>کر</u> W/(m ² -K) tch
Design/Vacuum/test p Dusign temperature	91.5 ressure	CONSTRU kPa °C	CTION OF ON She	NE SH ell Sid 85 1	Dirty IELL /	91.5	Tube Side / 85 2	ean 95.4	с W/(m ² -К) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance	91.4 91.5 ressure	CONSTRU kPa °C mm	CTION OF ON	NE SH ell Sid 85 1 3.18	Dirty IELL /	91.5	Tube Side / 85 2 3.18	ean 95.4	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections	91.4 91.5 ressure ell In	CONSTRU kPa °C mm mm	CTION OF OF She 500 /	NE SH ell Sid 85 1 3.18 6.64	Dirty IELL / / / -	91.5	MID (co Cle / 85 2 3.18 154.05 /	san 95.4	W/(m ² -K) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating	91.4 91.5 ressure ell In Out	CONSTRU kPa °C mm mm	CTION OF OF She 500 / 1 2/ 1 4/	NE SH ell Sid 85 1 3.18 6.64 0.89	Dirty IELL / / / - / -	91.5 1800 / 1 1 1	Kill (col Cle / 85 2 3.18 154.05 / 102.26 /	san 95.4 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID	91.4 91.5 ressure ell In Out Intermedia	CONSTRU kPa °C mm mm ite	CTION OF OF She 500 / 1 2/ 1 4/	NE SH ell Sid 3.18 6.64 0.89	Dirty IELL / / / / - / -	91.5 1800 / 1 1 1 1	MID (col Cle / 85 2 3.18 154.05 102.26 /	metted) 31.5 ean 95.4 Ske	W/(m ² -K) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain	91.4 91.5 ressure ell Out Intermedia DD 1	CONSTRU kPa °C mm mm ite 9.05 Tks Av	CTION OF OF She 500 / 1 2/ 1 4/ /erage 2.11	NE SH ell Sid 85 1 3.18 :6.64 :0.89	Dirty IELL / / / - / - mm rial	91.5 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Kill (col Cle / 85 2 3.18 154.05 102.26 / - 000	melled) 31.5 ean 95.4 Ske	W/(m ² -K) tch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain	91.4 91.5 ressure ell Out Intermedia DD 1	CONSTRU kPa °C mm mm ate 9.05 Tks Av	CTION OF OP She 500 / 1 2/ 1 4/ /erage 2.11 #/m 1	NE SH ell Sid 3.18 6.64 0.89 Mater 9.05	Dirty IELL / / / / - mm rial C	91.5 1800 / 1 1 1 Length 1 arbon Stee	MID (co Cle / 85 2 3.18 154.05 / - 102.26 / - 000 mi Shell cover	m Pitch 25.4 Tube pattern 9	W/(m ² -K) tch mm 0 pol
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bognet	91.4 91.5 ressure ell Out Intermedia DD 1 ID	CONSTRU kPa °C mm mm ate .9.05 Tks Av 400 p Steel	CTION OF OF She 500 / 1 2 1 4 /erage 2.11 #/m 1 OD 41	NE SH ell Sid 3.18 6.64 0.89 Mater .9.05	Dirty IELL / / - / - / - mm rial C	91.5 1800 / 1 1 1 Length 1 arbon Stee mm	Kill (co Cle / 85 2 3.18 154.05 / 102.26 / / - 000 Shell cover Channel cover	m Pitch 25.4 Tube pattern 9 Carbon Ste	W/(m ² -K) tch mm 0 eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationant	91.4 91.5 ressure ell In Out Intermedia DD 1 ID Carbo	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel p Steel	CTION OF OF She 500 / 1 20 1 40 /erage 2.11 #/m 1 OD 41	NE SF ell Sid 85 1 3.18 (6.64 (0.89 Mate 9.05	Dirty IELL / / / / - / mm rial C	91.5 1800 / 1 1 1 1 1 Length 1 arbon Stee mm	Cle Cle Cle State Cle Cle Cle Cle Cle Cle Cle Cl	m Pitch 25.4 Tube pattern 9 Carbon Sto	W/(m ² -K) tch mm 0 eel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Eloating head cover	ell In Out Intermedia DD 1 ID Carbo Carbo	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel	CTION OF OF She 500 / 	NE SH ell Sid 85 1 3.18 26.64 0.89 Mate 9.05	Dirty IELL / / - / - / - mm rial C	91.5 1800 / 1 1 1 Length 1 arbon Stee mm	Cle Cle Cle State Cle Cle Cle Cle Cle Cle Cle Cl	m Pitch 25.4 Tube pattern 9 Carbon Ste	W/(m ² -K) tch mm 0 eel
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffleccross Carbon S	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo Carbo	CONSTRU kPa °C mm mm te .9.05 Tks Av 400 n Steel n Steel	CTION OF OF She 500 / 1 2/ 1 4/ /erage 2.11 #/m 1 OD 41	NE SH ell Sid 85 1 3.18 26.64 0.89 Matee 9.05	Dirty IELL le / - / - / - mm rial C	91.5 1800 / 1 1 1 1 Length 1 arbon Stee mm	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - 102.26 / - 000 mi Shell cover Channel cover Tubesheet-floatin Impingement pro	m Pitch 25.4 Tube pattern 9 Carbon Stre - otection None Spacing: c/c	W/(m ² -K) tch mm 0 eel
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo Carbo -	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel n Steel	CTION OF OF She 500 / 1 2/ 1 4/ /erage 2.11 #/m 1 OD 41 OD 41	NE SH ell Sid 85 1 3.18 (6.64 (0.89 (0.89) (Dirty IELL / - / - / - mm rial C ental C	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Kirld (color Cle / 85 2 3.18 154.05 / 102.26 / / 000 mil Shell cover Channel cover Tubesheet-floatin Impingement pro	merected) 31.5 ean 95.4 Ske Carbon Ste Carbon Ste Carbon Ste - ng - otection None Spacing: c/c	W/(m ² -K) tch mm 0 eel mm
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	91.4 91.5 ressure ell In Out Intermedia DD 1 ID Carbo Carbo - iteel	CONSTRU kPa °C mm mm ete 9.05 Tks Av 400 n Steel n Steel n Steel Type	CTION OF OF She 500 / 1 20 1 44 /erage 2.11 #/m 1 OD 41 - Single se Seal Type	NE SF ell Sid 85 1 3.18 (6.64 10.89 Matee 9.05 egme	Dirty IELL / / / / - / / - mm rial C ental C	91.5 1800 / 1 1 1 1 1 Length 1 arbon Stee mm	Tube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mm Shell cover Channel cover Tubesheet-floatin Impingement pro	m Pitch 25.4 Tube pattern 9 Carbon Sta - otection None Spacing: c/c Inlet	W/(m ² -K) tch mm 0 eel mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Baffle-long - Supports-tube Bypass seal	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo - iteel	CONSTRU kPa °C mm mm ate .9.05 Tks Av 400 n Steel n Steel Type 10	KW CTION OF OF She 500 / 1 1 2 1 44 verage 2.11 #/m 0D 41 OD Single se Seal Type 0	NE SF ell Sid 3.18 26.64 10.89 Mate 19.05 egme	Dirty IELL / / / / - / / - / mm rial C ental C	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mm Shell cover Channel cover Tubesheet-floatin Impingement pro	m Pitch 25.4 Tube pattern 9 Carbon Ste - ng - otection None Spacing: c/c Inlet	•C W/(m ² -K) tch mm 0 eel mm mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Baffle-long - Supports-tube Bypass seal Expansion joint	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm ate .9.05 Tks Av 400 n Steel n Steel Type 	KW CTION OF OF She 500 / 1 2 1 2 1 4 /erage 2.11 #/m I OD 41	NE SF ell Sid 85 1 3.18 26.64 00.89 Matee 9.05	Dirty IELL Ie / / - / - / - / - mm rial C ental C ube-tubesh	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 Cut(%d) eet joint ve Non	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mm 1 Shell cover Tubesheet-floatin Impingement pro- Tubesheet-floatin Impingement pro- Expanded only e	m Pitch 25.4 Tube pattern 9 Carbon Ste - otection None Spacing: c/c Inlet y (2 grooves)(App.A 'i	
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo Carbo - iteel U-ber 966	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel n Steel n Steel n Steel	VCTION OF OF She 500 / 1 20 1 44 verage 2.11 #/m f OD 41 OD 41 Single se Seal Type 0 - Bundle e	NE SF ell Sid 85 1 3.18 26.64 0.89 Matee 9.05 egme egme	Dirty IELL le / / - / - / - mm rial C ental C ube-tubesh Typ nce 79	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - 102.26 / - 000 mi Shell cover Channel cover Tubesheet-floatin Impingement pro- Expanded only e Bundle exit	m Pitch 25.4 Tube pattern 9 Carbon Stra - otection None Spacing: c/c Inlet 189	
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel n Steel n Steel n Steel n Steel at Metal Jac	VCTION OF OF She 500 / 1 20 1 44 verage 2.11 #/m 1 OD 41 OD 41 Single se Seal Type 0 Bundle e ket Fibe	NE SF ell Sid 3.18 16.64 10.89 Matee 9.05 egme cme rtu	Dirty IELL le / / - / - / - / - mm rial C ental C ube-tubeshy Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Tube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mm Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only e Bundle exit Flat M	m Pitch 25.4 Tube pattern 9 Carbon Str - otection None Spacing: c/c Inlet 189 etal Jacket Fibe	
Transfer rate, Service Image: Interpretent of the service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Corrosion allowance Connections Size/Rating ID Tube No. 21 Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Carbo - iteel U-ber 966 F d -	CONSTRU kPa °C mm mm ate 19.05 Tks Av 400 n Steel n Steel n Steel n Steel n Steel at the steel n	CTION OF OF She 500 / 1 24 1 44 verage 2.11 #/m 1 OD 41 OD 41 - Single se Seal Type 0 - Bundle e ket Fibe	NE SF ell Sid 3.18 26.64 10.89 Mate. 9.05 egme egme	Dirty IELL le / - / - / - / - mm rial C ental C ube-tubesha Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Interview Classical Interview / 85 2 3.18 154.05 102.26 / 102.26 / / - 000 mm Interview / Channel cover Channel cover Tubesheet-floatin Impingement pro Expanded only - Bundle exit Flat M	m Pitch 25.4 Tube pattern 9 Carbon Stre - ng - otection None Spacing: c/c Inlet y (2 grooves)(App.A 'i 189 etal Jacket Fibe	W/(m²-K) tch Imm Imm 0 eel mm mm mm kg/(m-s²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Floating head Steper seal	91.4 91.5 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel Type ad Type ad Code Sec VI	CTION OF OF She 500 / 1 24 1 44 verage 2.11 #/m 1 OD 41 OD 41 Single se Seal Type 0 - Bundle e ket Fibe I Div 1	NE SF ell Sid 3.18 26.64 10.89 Mate 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05	Dirty IELL / - / - / - / - / - mm rial C ental C ube-tubesh Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mi 102.26 / - / - 000 mi Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only e Bundle exit Flat M sss R - refinery se	m Pitch 25.4 Tube pattern 9 Carbon Stra - ng - otection None Spacing: c/c Inlet 189 etal Jacket Fibe	W/(m ² -K) tch mm 0 eel mm mm mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21 Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Sata Carbo Carb	CONSTRU kPa °C mm mm ate 19.05 Tks Av 400 n Steel n Steel Type 10 10 10 10 10 10 10 10 10 10	KW CTION OF OF She 500 / 1 24 1 24 1 44 verage 2.11 #/m f OD 41 OD 41 OD 41 Single se Seal Type 0 - Bundle e ket Fibe I Div 1 /ith water 1	NE SF ell Sid 85 1 3.18 26.64 0.89 Mate 9.05 9.05 egme egme egme	Dirty IELL / - / - / - / - mm rial C ental C ube-tubesho Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	Cle Fube Side / 85 2 3.18 154.05 / - 102.26 / - / - 000 mi 102.26 / - / - 000 mi Shell cover Channel cover Tubesheet-floatin Impingement pro- Expanded only e Expanded only e Bundle exit Flat M ss R - refinery se 439.2	m Pitch 25.4 Tube pattern 9 Carbon Stra - otection None Spacing: c/c Inlet 189 etal Jacket Fibe	W/(m²-K) tch Imm Imm 0 eel mm mm mm kg/(m-s²)
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21 Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks -	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Ca	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 n Steel n Steel n Steel n Steel n Steel at Metal Jac Code Sec VI Filled w	CTION OF OF She 500 / 1 2/ 1 4/ verage 2.11 #/m f OD 41 OD 41 OD 41 Single se Seal Type 0 Bundle e ket Fibe	NE SF ell Sid 85 1 3.18 26.64 10.89 Mate 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05	Dirty IELL le / / - / - / - mm rial C ental C ube-tubesh Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	MID (co Cla Ibe Side / 85 2 3.18 154.05 / 102.26 / / 000 mid Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only e Bundle exit Flat M iss R - refinery se 439.2	m Pitch 25.4 Tube pattern 9 Carbon Str - otection None Spacing: c/c Inlet 189 etal Jacket Fibe ervice kg	
Transfer rate, Service Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube No. 21Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	91.4 91.5 ressure ell Out Intermedia DD 1 ID Carbo Ca	CONSTRU kPa °C mm mm ate 9.05 Tks Av 400 in Steel n Steel n Steel Type 10 Code Sec VI Filled w	CTION OF OF She 500 / 1 2/ 1 2/ 1 4/ verage 2.11 #/m 1 OD 41 OD 41 OD 41 Single se Seal Type 0 Bundle e ket Fibe I Div 1 /ith water 1	NE SF ell Sid 85 1 3.18 16.64 10.89 Mate 19.05 egme egme contrar	Dirty IELL le / / - / - / - mm rial C ental C ube-tubesh Typ nce 79 Tube side	91.5 1800 / 1800 / 1 1 1 1 1 1 1 1 1 1 1 1 1	MID (co Cla Fube Side / 85 2 3.18 154.05 / 102.26 / / 000 mid Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only e Bundle exit Flat M sss R - refinery se 439.2	m Pitch 25.4 Tube pattern 9 Carbon Str - ng - otection None Spacing: c/c Inlet 189 etal Jacket Fibe envice kg	

Table 4. 12 A-Precooler-1

Company:								
Location:								
Service of Unit:		Our Referen	ice:					
Item No.:	Y	our Referend	ce:					
Date: Rev	No.:	Job No.:						
Size : 400,641	· 3800	mm	Type: BKU	Horizonta		Connected in	: 1 parallel	1 series
Surf/unit(eff.)	37.2	m²	Shells/u	init 1		Surf/s	hell(eff.)	37.2 m ²
			PERFC	DRMANCE O	F ONE UN	IT		
Fluid allocation					Shell S	Side	Tube	e Side
Fluid name					21-2->A	۹-0-2	A-17-4	->A-9-2
Fluid quantity, Total			kg/h		2974	4	18	320
Vapor (In/Out)			kg/h	1113	3	2974	1820	0
Liquid			kg/h	1863	1	0	0	1820
Noncondensable			kg/h	0		0	0	0
Temperature (In/Out)			°C	-37.5	53	-37.63	30.56	-27.66
Dew / Bubble poin	t		°C				-20.64	-22.55
Density Vapor/	'Liquid		kg/m³	2.95 / 5	575.46	2.87 / 576.14	33.17 /	/ 434.01
Viscosity			dD dD	0.0064 / 0	0.2041 (0.0064 / 0.2058	0.0113 /	/ 0.0623
Molecular wt, Vap			•	44.1	L	44.1	27.99	
Molecular wt, NC								
Specific heat			kJ/(kg-K)	1.47 /	2.32	1.468 / 2.318	1.945 /	/ 3.124
Thermal conductivity			W/(m-K)	0.0176 /	0.099 (0.0176 / 0.0992	0.0248 /	/ 0.1074
Latent heat			kJ/kg	419.	2	419.9	295.5	
Pressure (abs)			kPa	125	;	121.847	2505	2504.699
Velocity (Mean/Max)			m/s		0.82 /	1.18	0.59	/ 1.1
Pressure drop, allow./c	alc.		kPa	50		3.153	1	0.302
Fouling resistance (min	า)		m²-K/W		0.000)2	0.0009 0.0	00116 Ao based
Heat exchanged	216.7		kW			MTD (cor	rected) 19.44	°C
Transfer rate, Service	301.6			Dirty	301.6	Cle	ean 510.3	W/(m²-K)
Transfer rate, Service	301.6	CONSTRU	CTION OF ONE S	Dirty HELL	301.6	Cle	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service	301.6	CONSTRU	CTION OF ONE S Shell Si	Dirty HELL de	301.6	Cle Tube Side	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p	301.6 ressure	CONSTRU kPa	CTION OF ONE S Shell Si 300 /	Dirty HELL de /	301.6 	Cle Tube Side /	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature	301.6 ressure	CONSTRU kPa °C	CTION OF ONE S Shell Si 300 / 70	Dirty HELL de /	301.6 	Cle Tube Side / 70	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sho	301.6 ressure ell	CONSTRU kPa °C	CTION OF ONE S Shell Si 300 / 70 1	Dirty HELL de /	301.6 	Cle Tube Side / 70 2	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance	301.6 ressure ell	CONSTRU kPa °C mm	CTION OF ONE S Shell Si 300 / 70 1 3.18	Dirty HELL de /	301.6	Cle Tube Side / 70 2 3.18	ean 510.3	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections	301.6 ressure ell In	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4	Dirty HELL de / /	301.6 2800 / 1	Cle Tube Side / 70 2 3.18 101.6 / -	ean 510.3	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating	301.6 ressure ell In Out	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4 1 101.6	Dirty HELL / / / - / -	301.6 2800 / 1 1	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / -	ean 510.3	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal	301.6 ressure ell In Out Intermedia	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4 1 101.6	Dirty HELL / / / / / / /	301.6 2800 / 1 1	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - / -	ean 510.3 Ske	W/(m ² -K)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C	301.6 ressure ell In Out Intermedia DD 1	CONSTRU kPa °C mm mm te 9.05 Tks Av	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4 1 101.6 verage 2.11	Dirty HELL de / / / / / / / / / mm	301.6 2800 / 1 1 Length 3	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - / - 800 mt	ean 510.3 Ske	W/(m ² -K) etch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain	301.6 ressure ell Out Intermedia DD 1	CONSTRU kPa °C mm mm te 9.05 Tks Av	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 1 1 Length 3 arbon Stee	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - / - 800 mi	ean 510.3 Ske U m Pitch 25.4 Tube pattern 9	W/(m ² -K) etch
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us of Tube type Plain Shell Carbon Steel	301.6 ressure ell Out Intermedia DD 1 ID	CONSTRU kPa °C mm mm tte 9.05 Tks Av 400	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05	Dirty HELL de / / / / / mm erial Ca	301.6 2800 / 1 1 Length 3 arbon Stee mm	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - / - 800 mm	ean 510.3 Ske U M Pitch 25.4 Tube pattern S Carbon St	W/(m ² -K) etch mm 00 reel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet	301.6 ressure ell Out Intermedia DD 1 ID Carbo	CONSTRU kPa °C mm mm tte 9.05 Tks Av 400 n Steel	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 1 1 Length 3 arbon Stee mm	Cle / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mm 800 mm Channel cover	ean 510.3 Ske u u u u u u u u u u u u u u u u u u u	W/(m ² -K) etch mm 00 reel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	301.6 ressure ell Out Intermedia DD 1 ID Carbo Carbo	CONSTRU kPa °C mm mm ite 9.05 Tks Av 400 n Steel n Steel	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 1 1 Length 3 arbon Stee mm	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr Shell cover Channel cover Tubesheet-floatir	ean 510.3 Ske u m Pitch 25.4 Tube pattern S Carbon St - ng -	W/(m ² -K) etch mm 00 seel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	301.6 ressure ell Out Intermedia DD 1 ID Carbo Carbo -	CONSTRU kPa °C mm mm tte 9.05 Tks Av 400 n Steel n Steel	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05	Dirty HELL de / / - / - / - mm erial Ca	301.6 2800 / 2800 / 1 1 Length 3 arbon Stee mm	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 800 mr Shell cover Channel cover Tubesheet-floatir Impingement pro	ean 510.3 Ske U M Pitch 25.4 Tube pattern 9 Carbon St - ng - otection None	W/(m ² -K) etch mm 00 ceel
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	301.6 ressure ell Out Intermedia DD 1 ID Carbo Carbo - Steel	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel n Steel Type	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 Length 3 arbon Stee mm	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr Shell cover Channel cover Tubesheet-floatir Impingement pro	ean 510.3 Ske price 25.4 Tube pattern S Carbon St - ng - otection None Spacing: c/c	W/(m ² -K) etch mm 00 reel mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us of Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo	CONSTRU kPa °C mm mm tte 9.05 Tks Av 400 n Steel n Steel n Steel Type	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 Length 3. arbon Stee mm	Cle / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr Shell cover Channel cover Tubesheet-floatir Impingement pro	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 0 ceel mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel n Steel Type	CTION OF ONE S Shell Si 300 / 1 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 1 1 Length 3 arbon Stee mm Cut(%d)	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mm 800 mm Channel cover Tubesheet-floatin Impingement pro	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 0 ceel mm mm
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm ite 9.05 Tks Av 400 n Steel n Steel Type nd	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 Length 3 arbon Stee mm Cut(%d) cut(%d)	Cle / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 800 mr 4 Shell cover Channel cover Tubesheet-floatir Impingement pro Type Expanded only	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 reel mm mm i')
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo - Steel U-ber	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel Type nd	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 Length 3 arbon Stee mm Cut(%d) cut(%d) eet joint e Non	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mm Shell cover Channel cover Tubesheet-floatir Impingement pro Type Expanded only re	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 ceel mm mm i')
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel Type nd	CTION OF ONE S Shell Si 300 / 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 1 Length 3 arbon Stee mm Cut(%d) eet joint e Non	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 50.8 / - Khell cover Channel cover Tubesheet-floatin Impingement pro Expanded only te Bundle exit	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel Type d	CTION OF ONE S Shell Si 300 / 1 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 1 1 Length 3 arbon Stee mm Cut(%d) eet joint e Non	Cle I ube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mm 800 mm 1 Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only te Bundle exit Flat M	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm mm a ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo Fi du Carbo	CONSTRU kPa °C mm mm te 9.05 Tks Av 400 n Steel n Steel Type nd at Metal Jac	CTION OF ONE S Shell Si 300 / 1 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra	Dirty HELL de / / / - / - mm erial Ca controls ube-tubeshe Typ nce 11 Tube side	301.6 2800 / 2800 / 1 1 Length 3 arbon Stee mm Cut(%d) cut(%d) eet joint e Non	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mm 800 mm 4 Shell cover Channel cover Tubesheet-floatin Impingement pro Expanded only the Bundle exit Flat M	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 0 ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Fild 4 - ASME	CONSTRU	CTION OF ONE S Shell Si 300 / 1 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra cket Fibe	Dirty HELL de / / / - / - / - mm erial Ca controls ube-tubeshe Typ nce 11 Tube side	301.6 2800 / 2800 / 1 1 1 Length 3 arbon Stee mm Cut(%d) cut(%d) eet joint e Non TEMA cla	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 800 mr 800 mr 1 Shell cover Channel cover Tubesheet-floatir Impingement pro Expanded only 1 Expanded only 1 1 Bundle exit Flat M ass R - refinery se	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us C Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Pace	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo Fi du ASME 1572	CONSTRU kPa °C °C mm mm ite 9.05 Tks Av 400 n Steel n Steel Type d ite Code Sec Vi Filled v	CTION OF ONE S Shell Si 300 / 70 1 3.18 1	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 1 Length 3 arbon Stee mm Cut(%d) cut(%d) eet joint e Non TEMA cla Bundle	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 800 mr 50.8 / - Kell cover Channel cover Tubesheet-floatir Impingement pro Expanded only 1 Expanded only 1 Bundle exit Flat M ass R - refinery se 645	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo Fi du ASME 1572	CONSTRU kPa °C mm mm ite 9.05 Tks Av 400 n Steel n Steel Type id code Sec Vi Filled v	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra ket Fibe II Div 1 vith water 3159.	Dirty HELL de / / / / / / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 1 Length 3. arbon Stee mm Cut(%d) Eet joint e Non TEMA cla Bundle	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 50.8 / - 800 mr / - 800 mr 800	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm 00 ceel mm mm i') kg/(m-s ²)
Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube No. Us O Tube type Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	301.6 ressure ell In Out Intermedia DD 1 ID Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo Carbo Fi d ASME 1572	CONSTRU kPa °C °C mm mm ite 9.05 Tks Av 400 n Steel n Steel n Steel Type id code Sec VI Filled v	CTION OF ONE S Shell Si 300 / 70 1 3.18 1 152.4 1 101.6 verage 2.11 #/m Mate OD 419.05 - Unbaffled Seal Type 0 T - Bundle entra sket Fibe II Div 1 vith water 3159.	Dirty HELL de / / / / / / / / / / / / /	301.6 2800 / 2800 / 1 1 1 Length 3 arbon Stee mm Cut(%d) Cut(%d) Eet joint e Non TEMA cla Bundle	Cle Tube Side / 70 2 3.18 101.6 / - 50.8 / - 50.8 / - 800 mr 50.8 / - 800 mr 4 Shell cover Channel cover Tubesheet-floatir Impingement pro- Expanded only te Bundle exit Flat M ass R - refinery se 645	ean 510.3 Ske Ske Ske Ske Ske Ske Ske Ske	W/(m ² -K) etch mm mm o seel i') kg/(m-s ²)

Table 4. 14 A-Cond-Evap

Company:									
Location:									
Service of Unit:	Our R	eferen	ce:						
Item No.:	Your Re	eferenc	ce:						
Date: Rev	No.: Job N	o.:							
Size : 500 - 3600	mm	Ту	pe: BEU	Horizontal			Connected in:	1 parallel	1 series
Surf/unit(eff.)	55.9	m²	Shells/u	init 1			Surf/sh	nell(eff.)	55.9 m ²
			PERFC	ORMANCE C	OF ONE U	INIT			
Fluid allocation					Shell	Side		Tube	Side
Fluid name					13-	>14		11-	>9
Fluid quantity, Total			kg/h		36	572		200	000
Vapor (In/Out)			kg/h	367	2		0	0	0
Liquid			kg/h	0			3672	20000	20000
Noncondensable			kg/h	0			0	0	0
Temperature (In/Out)			°C	89.7	'4		45.05	25	42.28
Dew / Bubble poin	t		°C	46.6	68		46.68		
Density Vapor	/Liquid		kg/m³	28.03 /			/ 458.69	/ 1007.52	/ 994.39
Viscosity			cp	0.0105 /			/ 0.078	/ 0.8904	/ 0.6241
Molecular wt, Vap			F	44.1	1				
Molecular wt, NC									
Specific heat			kJ/(ka-K)	2.237 /			/ 2.932	/ 4.179	/ 4.179
Thermal conductivity			W/(m-K)	0.0385 /			/ 0.0654	/ 0.611	/ 0.6343
Latent heat			kJ/ka	290.	.8		291		,
Pressure (abs)			kPa	160	0		1597.209	700	626.005
Velocity (Mean/Max)			m/s		0.5	/ 1.57		1.4 /	/ 2.38
Pressure drop, allow./	alc.		kPa	40)		2.791	1	73.995
Fouling resistance (mi	n)		m²-K/W		0.0	002		0.0002 0.0	0026 Ao based
Heat exchanged	401.1		kW				MTD (corr	rected) 13.04	°C
Transfer rate, Service	550.5			Dirty	550.6		Clea	an 735.6	$W/(m^2-K)$
	CON	ISTRU	CTION OF ONE S	HELL				Ske	tch
			Shell Si	de		Tube	Side		
Design/Vacuum/test p	ressure	kPa	1800 /	1	800	/	/		
Design temperature		°C	125			8	0	<u>م</u> و	g
Number passes per sh	ell		1			10	0		
Corrosion allowance		mm	3.18			3.1	18	╎└╤┫╹╵┢╵╵╵╵	'l' ' 'pV
Connections	In	mm	1 77.93	/ -	1	154.	.05 / -	' ⇔" ⊔	Ц
Size/Rating	Out		1 35.05	/ -	1	154.	.05 / -		
ID	Intermediate			/ -			/ -		
Tube No. Us	DD 19.05	Tks Av	verage 2.11	mm	Length	3600	mn	Pitch 25.4	mm
Tube type Plain			#/m Mate	erial C	arbon Ste	eel		Tube pattern 9	0
Shell Carbon Steel	ID 500		OD 519.05		mi	m She	ell cover	Carbon St	eel
Channel or bonnet	Carbon Stee	al l				Ch	annel cover	-	
Tubesheet-stationary	Carbon Stee	el 👘	-			Tu	besheet-floatin	g -	
Floating head cover	-					Im	pingement prot	tection None	
Baffle-cross Carbon	Steel Typ	be	Single segm	ental (Cut(%d)	3	8.57 H	l Spacing: c/c 160	mm
Baffle-long -			Seal Type					Inlet 823.98	3 mm
Supports-tube	U-bend		0				Туре		
Bypass seal			Т	ube-tubesh	eet joint		Expanded only	(2 grooves)(App.A '	')
Expansion joint			-	Тур	e No	one			
RhoV2-Inlet nozzle	1632		Bundle entra	nce 4			Bundle exit	9	kg/(m-s²)
Gaskets - Shell side	Flat Me	tal Jac	ket Fibe	Tube side			Flat Me	etal Jacket Fibe	
Floating hea	d -								
Code requirements	ASME Code	Sec VI	II Div 1		TEMA c	lass	R - refinery ser	vice	
Weight/Shell	1683.5 F	illed w	vith water 2339.	9	Bundle		958.9	kg	
Remarks									

Annexe 4

Material	Correction factor f_M
Carbon steel	1
Aluminum	1.3
Stainless steel (low grades)	2.4
Stainless steel (high grades)	3.4
Hastelloy C	3.6
Monel	4.1
Nickel and inconel	4.4
Titanium	5.8

Tableau 5.1: Moyens d'équipement types moyens des facteurs de coût en capital de construction.

Tableau 5.2: Facteurs typiques du coût du capital de construction pour les échangeurs de chaleur à tubes et tuyaux (Anson, 1977)

Material	Correction factor f_M
Cs shell and tubes	1
Cs shell, aluminum tubes	1.3
CS shell, monel tubes	2.1
CS shell, SS (low grade) tubes	1.7
SS (low grade) shell and tubes	2.9

Tableau 5.3: Facteurs typiques du coût du capital de construction pour les appareils sous pression et les colonnes de distillation (Mulet, Corripio et Evans, 1981a, 1981)

Material	Correction factor f_M		
Carbon steel	1		
Stainless steel (low grades)	2.1		
Stainless steel (high grades)	3.2		
Monel	3.6		
Inconel	3.9		
Nickel	5.4		
Titanium	7.7		

Tableau 5.4: Facteurs typiques du coût du capital d'investissement lié à la pression.

Design pressure (bar/absolute)	Correction factor f_p			
0,01	2			
0,1	1,3			
0,5–7	1			
50	1.5			
100	1.9			

Design temperature (°C)	Correction factor f_T
0–100	1
300	1.6
500	2.1

Tableau 5.5: Facteurs typiques du coût en capital de la température de l'équipement.

Tableau 5.6: Facteurs typiques du coût en capital basés sur les coûts d'équipement livrés.

Item	Fluid processing			
Direct costs				
Equipment delivered cost	1			
Equipment erection, f_{ER}	0.4			
Piping (installed), f_{PIP}	0.7			
Instrumentation and controls (installed), f_{INST}	0.2			
Electrical (installed), f_{ELEC}	0.1			
Utilities, f_{UTIL}	0			
Off-sites, fos	0			
Buildings (including services), f_{BUILD}	0			
Site preparation, f_{SP}	0.1			
Total capital cost of installed equipment	2.5			
Indirect costs	1			
Design, engineering, and construction, f_{DEC}	0.25			
Contingency (about 10% of fixed capital costs), f_{CONT}	3.75			
Total fixed capital cost				
Working capital (%15 of capital cost) fwc	0.7			
Working capital	4.45			

Tableau 5.7: Coûts d'équipement typiques.

Material of equipement	Capacity construction	Base measure	Base cost size Q B	Cost C B(\$)	Size range	exponent <i>M</i>
Pressure vessel	SS	Mass(t)	6	9.84E+04	6–100	0,82
Shell-and-tube heat exchanger	CS	Heat transfer area(m2)	80	3.28E+04	80-4000	0,68
Compressor (including motor)	Power(kW)	250	9,84E+04	250-10,000	0.46	