REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Department: Industrial Risk Management Engineering

Specialty: QHSE-GRI

End of Studies Project Thesis

In fulfillment of the requirements for: QHSE-GRI Engineer's Degree

Fire and Explosion Risk Assessment: Carrying out a FERA Study within EXPRO's XPII EPF

SOLTANI Hadjer & AIDI Nedjat

Directed By

Mr. BOUBAKEUR Mohammed Mr. BOUSBAI M'hamed Mr. KERTOUS Aboubaker Mr. NASRI Said

Assistant professor A at ENP Associate professor B at ENP Assistant professor A at ENP Process safety engineer at EXPRO

Presented and defended publicly on 21 - 06 - 2023 in front of the jury composed of

President	M ^r . CHERGUI Abdelmalek	Professor	ENP
Examiners	M ^r . SENOUCI BEREKSI Malik	Associate professor B	ENP
	M ^{me} . MERZOUGUI HIND	Doctoral student	ENP

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Department: Industrial Risk Management Engineering

Specialty: QHSE-GRI

End of Studies Project Thesis

In fulfillment of the requirements for: QHSE-GRI Engineer's Degree

Fire and Explosion Risk Assessment: Carrying out a FERA Study within EXPRO's XPII EPF

SOLTANI Hadjer & AIDI Nedjat

Directed By

Mr. BOUBAKEUR Mohammed Mr. BOUSBAI M'hamed Mr. KERTOUS Aboubaker Mr. NASRI Said

Assistant professor A at ENP Associate professor B at ENP Assistant professor A at ENP Process safety engineer at EXPRO

Presented and defended publicly on 21 - 06 - 2023 in front of the jury composed of

President	M ^r . CHERGUI Abdelmalek	Professor	ENP
Examiners	M ^r . SENOUCI BEREKSI Malik	Associate professor B	ENP
	M ^{me} . MERZOUGUI HIND	Doctoral student	ENP

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Département: Maîtrise des Risques Industriels et Environnementaux Filiére: QHSE-GRI

Mémoire de projet de fin d'études

pour l'obtention du diplôme d'ingénieur d'état en QHSE - GRI

Fire and Explosion Risk Assessment: Carrying out a FERA Study within EXPRO's XPII EPF

SOLTANI Hadjer & AIDI Nedjat

Sous la direction de

Mr. BOUBAKEUR Mohammed Mr. BOUSBAI M'hamed Mr. KERTOUS Aboubaker Mr. NASRI Said

Maître assistant A at ENP Maître de conférences B at ENP Maître assistant A at ENP Ingénieur process safety à EXPRO

Présenté et soutenu publiquement en 21 - 06 - 2023 devant le jury composé de

Président	M ^r . CHERGUI Abdelmalek	Professeur	ENP
Examinateurs	M ^r . SENOUCI BEREKSI Malik	Maître de conférences B	ENP
	M ^{me} . MERZOUGUI HIND	Doctorante	ENP

Dedication

To my family, you have been my rock, my guiding light, and my greatest source of encouragement. This work is thus dedicated to you, for your unwavering faith in me and your boundless love

Hadjer

To my dear parents To my unique sister To my unique, closest and loyal friend To my project partner To All my Friends and colleagues And to all my supportive Family,

This engineering thesis is dedicated to each of you, Thank you for being a part of my journey and for shaping the person, I have become.

Nadjet

Acknowledgements

We would like to express our deepest gratitude to the Almighty God, who has always guided us and given us the strength and courage to complete this work and bring an end to all these years of study.

First and foremost, we would like to extend our profound gratitude to Mr. M. BOUBAKEUR Mr. M. BOUSBAI and Mr. KERTOUS for their guidance and direction in the realization of this project. Their advice, expertise, and the time they dedicated to us have been invaluable.

We would also like to express our heartfelt thanks to Mr. Said NASRI and Mr. Taher CHORFI for accepting us as interns and enriching our experience with their valuable insights, critiques, and constructive suggestions.

To the members of the jury, we sincerely appreciate the honor you bestow upon us by taking the time to read and evaluate this work. We express our gratitude for your valuable input and assessment.

We would also like to take this opportunity to express our profound appreciation to Mr. A. ZEGHDOUD, the director of operations, as well as the engineering department for their warm welcome and support during our internship. We are immensely grateful for initiating us into this field and guiding us patiently and pedagogically throughout this experience.

We extend our thanks to all those who have contributed to our success, both directly and indirectly, as well as to all the teachers of the MRIE department (QHSE-GRI) for their continuous support during our training.

Our deepest gratitude goes to our beloved parents, whose unwavering encouragement and support have always been with us. We hope that this work reflects our sincere gratitude and profound respect for them.

ملخص:

تقدم هذه المذكرة تقييما لمخاطر الحريق و الانفجار داخل منشاة الإنتاج الأولي XPII EPF التابعة لشركة تقدم هذه المذكرة تقييما لمخاطر الحريق و الانفجار داخل منشاة الإنتاج الأولي EXPRO، الهدف من هذه الدراسة هو فهم الحالة الحالية للمنشأة بشكل شامل، مع التركيز على المخاطر الكبرى مثل الحرائق والانفجارات. يتم تقييم مدى تكرار وخطورة هذه الحوادث. وتتضمن منهجية الدراسة تحديد المخاطر، تعريف مناطق الحرائق ، تحليل نتائج هذه الحوادث و احتمالية حدوثها بالاضاقة الى تقييم المخاطر وتقديم التوصيات. يتركز الدراسة بشكل خاص على متليل نتائج هذه الحوادث و احتمالية حدوثها بالاضاقة الى تقييم المخاطر وتقديم التوصيات. تركز الدراسة بشكل خاص على محماية المعدات بناءً على طبيعة الموقع والعدد المحدود من الموظفين. من خلال إجراء هذا التقييم أثناء مرحلة تصميم المنشأة، متمكن الشركة من الحمول على موافقة التشغيل العملية من سلطة ضبط المحروقات (ARH) الهدف النهائي هو إنشاء بيئة تتمكن الشركة من الحصول على موافقة التشغيل العملية من سلطة ضبط المحروقات (ARH) الهدف النهائي هو إنشاء بيئة محماية آمدة و محمية، تضمن الحماية المعدات بناءً على طبيعة الموقع والعدد المحدود من الموظفين. من خلال إجراء هذا التقييم أثناء مرحلة تصميم المنشأة، تتمكن الشركة من الحصول على موافقة التشغيل العملية من سلطة ضبط المحروقات (ARH) الهدف النهائي هو إنشاء بيئة تشكيلية آمنة و محمية، تضمن الحفاظ على المنشآت ذات القيمة من خلال إجراء تحليل شامل لمخاطر الحرائق والانفجار. الكلمات المفناحية: تقييم المخاطر، سلطة ضبط المحروقات، نمذجة، المخاطر الكبرى، الحرائق، الانفجار ات.

Résumé:

Cette mémoire présente une évaluation des risques d'incendie et d'explosion menée dans l'installation de production précoce d'EXPRO (EPF XPII). Elle vise à comprendre l'état actuel de l'installation, en se concentrant sur les accidents majeurs tels que les incendies et les explosions. La méthodologie de l'évaluation des risques d'incendie et d'explosion comprend l'identification des dangers, l'analyse des zones d'incendie, l'analyse des conséquences et de la fréquence, l'évaluation des risques et les recommandations. L'accent est mis sur la protection des biens en raison de la nature du site et de sa main-d'œuvre limitée. La réalisation de cette évaluation au cours de la phase de conception de l'installation est cruciale pour obtenir l'approbation opérationnelle d'Autorité De Régulation Des Hydrocarbures (ARH).

Mots clés: l'évaluation des risques, ARH, modélisation, risques majeurs, incendies, explosions.

Abstract:

This engineering thesis presents a fire and explosion risk assessment conducted in EXPRO's early production facility (EPF XPII). It aims to understand the facility's current condition, focusing on major accidents like fires and explosions. The methodology of FERA includes hazard identification, fire zone analysis, consequences and frequency analysis, risk evaluation, and recommendations. Asset protection is emphasized based on the site's nature and limited workforce. Conducting this assessment during the facility's conception phase is crucial for obtaining operational approval from the Hydrocarbons Regulatory Authority (HRA).

Key words: Risk assessment, ARH, modeling, major risks, fires, explosions.

Table of Contents

Tables List	t	
Figures Lis	st	
Acronyms	list	
General In	troduction	18
Chapter 1.	Context of the Project	20
Introduc	ction	21
1.1 Pr	resentation of EXPRO	21
1.1.1	EXPRO Algeria overview	21
1.1.2	Services provided	21
1.1.3	EXPRO Algeria Content	21
1.1.4	EXPRO facilities in Algeria	22
1.2 G	eneral description of XPII EPF	25
1.2.1	PROCESS DESCRIPTION	25
1.3 Pt	urpose of the study	30
1.4 R	esearch background and significance	30
1.4.1	Accidentology	30
1.4.2	Significance of the Study	31
Conclusi	ion	33
Chapter 2.	State of the Art	34
Introduc	ction	35
2.1 Fi	ire and Explosion Risk Assessment FERA	35
2.1.1	Definition	35
2.1.1	Necessary tools	35
2.2 M	fethodology of FERA	36
2.2.1	Hazard identification	37
2.2.2	Frequency analysis	38

2.2.3	Consequences Analysis
2.2.4	Equipment Vulnerability Criteria
2.2.5	5 Risk Assessment
Conclu	1sion
Chapter	3. Frequency Analysis 50
Introd	uction
3.1	Event Tree
3.2	Breach diameter Distribution
3.3	Fires & Explosions frequencies Calculation
Conclu	1sion
Chapter	4. Consequences Analysis
Introd	uction
4.1	Hazard Identification
4.1.1	Congested Area Definition
4.2	Fire Zones Identification
4.3	Input of Consequences Analysis
4.3.1	Meteorology
4.3.2	2 Operating Data and Fluids Properties
4.4	Results of Consequences Modeling
4.4.1	Source Term modeling
4.4.2	2 Fire accidents modeling results
4.4.3	Vapor Cloud Explosion Modeling Results
Conclu	1sion
Chapter	5. Risk Assessment
Introd	uction
5.1	Risk Matrix
5.1.1	Frequency Levels

5.1.2	Severity Levels	
5.2 Fi	rst Level Risk Assessment	
5.3 Se	econd Level Risk Assessment	
5.3.1	Exposure to 37.5 KW.m ⁻²	
5.3.2	Exposure to Pool Fire impingement	
5.3.3	Exposure to Jet Fire impingement	
5.3.4	Exposure to 350 mbar	
5.4 R	ecommendations to Prevent Equipment Failure	
5.5 R	etention Dike dimensioning	
5.5.1	Dike sizing calculation details	
Conclusi	on	
General Co	nclusion	
Bibliograp	ny	
Appendix A	A.Accidentology	
Appendix I	3. Fire and Explosion Consequences Modeling	
B.1 So	burce term	
B.1.1	Liquid release through a vessel breach	
B.1.2	Liquid release through a pipe breach	
B.1.3	Gas release through a vessel breach	
B.1.4	Gas release through a pipe rupture or breach	
B.1.5	Evaporation of a liquid from a pool	
B.2 Fi	re accidents modeling:	
B.2.1	Pool Fires	
B.2.2	Jet fire	
B.3 V	apor Cloud Explosions	
B.3.1	The TNO Multi-Energy Model	
B.3.2	Cloud Size	

B.3	.3 Identification of Blast Sources	178
B.3	.4 Defining Congested Areas	
B.3	.5 Calculating the cloud congested volume	
B.3	.6 Calculating Blast Parameters	
Append	ix C.Frequency Analysis Results	
C.1	Failure frequencies:	
C.2	Probability of ignition:	
Append	ix D.Consequences analysis modeling results	192
D.1	Scenario N°1.1	
D.2	Scenario N°1.2	
D.3	Scenario N 2.1	
D.4	Scenario N°2.2	
D.5	Scenario N°2.3	
D.6	Scenario N°2.4	
D.7	Scenario N°3.1	
D.8	Scenario N°3.2	
D.9	Scenario N°4	
D.10	Scenario N°5.1	
D.11	Scenario N°5.2	
D.12	Scenario N°6	
D.13	Scenario N°7	
D.14	Scenario N°8	

Tables List

Table 1-1 EXPRO Algeria employees 22	2
Table 1-2 EXPRO Algeria services 22	2
Table 2-3 Explosion probabilities 41	1
Table 2-1 Detection and Isolation Classification [7] 42	2
Table 2-2 Maximum Leak Durations [7] 43	3
Table 2-4 Thermal Impact Evaluation Criteria 44	4
Table 2-5 Overpressure Impact Evaluation Criteria 47	7
Table 3-1 Breach diameter Distribution [13] 53	3
Table 3-2 Fires & Explosions Frequencies Calculations 54	4
Table 4-1 Fire Zone Identification 73	3
Table 4-2 Production data [1]77	7
Table 4-3 Meteorological data [1], [12] 77	7
Table 4-4 Source Term Modeling Results 78	8
Table 4-5 Fire Accidents Modeling Results	0
Table 4-6 VCE Modeling Results 83	3
Table 5-1 Frequency Levels 88	8
Table 5-2 Severity Levels 89	9
Table 5-3 EXPRO Risk Matrix 89	9
Table 5-4 Critical Equipment Cost in Pound 90)
Table 5-5 First Level Risk Evaluation within XPII EPF 91	1
Table 5-6 Risk Assessment for Assets Exposed to Thermal Radiation Intensity 117	7
Table 5-7 Risk Assessment for Assets Exposed to Pool Fire Impingement	0
Table 5-8 Risk Assessment for Assets Exposed to Jet Fire Impingement	5
Table 5-9 Risk Assessment for Assets Exposed to 350 mbar	7
Table 5-10 Results for Retention Dike Dimensioning 129	9
Table A-1 Accidentology [25] 134	4

Table B-1 Pipe roughness [6]	. 146
Table B-2 Clapeyron-Clausius equation constants for common organic compounds [10]	. 152
Table B-3 flame models and their applicability [10]	. 153
Table B-4 Minimum pool thickness [10]	. 155
Table B-5 Blast Strength Selection Guide [10]	175
Table B-6 Coefficient b and c for equation (C-106)	179
Table B-7 Data for energy-scaled distance and scaled pressure [9]	179
Table C-1 Inlet line failure frequencies [2], [13]	. 181
Table C-2 Separator failure frequencies [2], [13]	. 182
Table C-3 Surge tank failure frequencies [2], [13]	. 184
Table C-4 Knock out Vessel failure frequencies [13], [22]	. 186
Table C-5 Centrifugal pumps failure frequencies [13], [23]	. 187
Table C-6 Oil expedition line failure frequencies [13], [24]	. 188
Table C-7 Gas expedition line failure frequencies [13], [24]	. 189
Table C-8 Ignition probabilities [8]	. 189
Table D-1 Scenario FZ-1.1-005 modeling results	. 192
Table D-2 Scenario FZ-1.1-025 modeling results	. 193
Table D-3 Scenario FZ-1.1-100 modeling results	. 194
Table D-4 Scenario FZ-1.1-150 modeling results	. 194
Table D-5 Scenario FZ-1.2-005 modeling results	. 201
Table D-6 Scenario FZ-1.2-025 modeling results	. 202
Table D-7 Scenario FZ-1.2-100 modeling results	. 202
Table D-8 Scenario FZ-1.2-150 modeling results	. 203
Table D-9 Scenario FZ-2.1-005 modeling results	. 215
Table D-10 Scenario FZ-2.1-025/100/150 modeling results	.216
Table D-11 Scenario FZ-2.2-005 modeling results	. 227
Table D-12 Scenario FZ-2.2-025 modeling results	. 227

Table D-13 Scenario FZ-2.2-100 modeling results	
Table D-14 Scenario FZ-2.2-150 modeling results	
Table D-15 FZ-2.3-005-modeling results	
Table D-16 FZ-2.3-025-modeling results	
Table D-17 FZ-2.3-100-modeling results	
Table D-18 FZ-2.3-150-modeling results	
Table D-19 Scenario FZ-2.4-005 modeling results	
Table D-20 Scenario FZ-2.4-025 modeling results	
Table D-21 Scenario FZ-2.4-100 modeling results	
Table D-22 Scenario FZ-2.4-150 modeling results	
Table D-23 Scenario FZ-3.1-005 modeling results	
Table D-24 Scenario FZ-3.1-025 modeling results	
Table D-25 Scenario FZ-3.2-005 modeling results	
Table D-26 Scenario FZ-3.2 -025 modeling results	
Table D-27 Scenario FZ-3.2 -100 modeling results	
Table D-28 Scenario FZ-3.2 -150 modeling results	
Table D-29 Scenario FZ-4-005 modeling results	
Table D-30 Scenario FZ-4-025 modeling results	
Table D-31 Scenario FZ-4-100 modeling results	
Table D-32 Scenario FZ-4-150 modeling results	
Table D-33 Scenario FZ-5.1-005 modeing results	
Table D-34 Scenario FZ-4-025 modeling results	
Table D-35 Scenario FZ-5.2-005 modeling results	
Table D-36 Scenario FZ-6 -005 modeling results	
Table D-37 Scenario FZ-6-025 modeling results	
Table D-38 Scenario FZ-6 -100 modeling results	
Table D-39 Scenario FZ-6 -150 modeling results	

Table D-40 Scenario FZ-7-005 modeling results	293
Table D-41 Scenario FZ-7-025 modeling results	294
Table D-42 Scenario FZ-7-100 modeling results	294
Table D-43 Scenario FZ-7-150 modeling results	295
Table D-44 Scenario FZ-8 modeling results	299

Figures List

Figure 1-1 EXPRO Main Base	24
Figure 1-2 Expro in GoogleMAP	24
Figure 1-3 IKRAM Base	25
Figure 1-4 Process Flow Diagram for XPII EPF	29
Figure 2-1 FERA Methodology [5], [6]	37
Figure 2-2 General Overview about an Event Tree	38
Figure 2-3 Probability of ignition versus release rate [8]	40
Figure 3-1 Event tree of gas leak	51
Figure 3-2 Event tree for Oil leak	52
Figure 4-1 Congested Aread Definition in XPII EPF	72
Figure 4-2 Fire Zones Definition	74
Figure 4-3 Average High and Low Temperature [12]	75
Figure 4-4 Humidity [12]	75
Figure 4-5 Average Wind Speed [12]	76
Figure 5-1 Frequency Mapping for 37.5 kW.m ⁻² Thermal Radiation Intensity	. 115
Figure 5-2 Frequency Mapping for Pool Fire Impingement	. 119
Figure 5-3 Frequency Mapping for Jet Fire Impingement	. 123
Figure 5-4 Frequency Mapping for 350 mbar	. 126
Figure B-1 Liquid Release through Vessel Breach [6]	.144
Figure B-2 Moody Chart [6]	. 148
Figure B-3 Gas flow through Pipe Breach [6]	. 150
Figure B-4 Solid Flame Shape [6]	. 154
Figure B-5 Configuration for radiative exchange between two differential elements[6]	. 157
Figure B-6 Tilted cylinder configuration [10]	. 159
Figure B-7 View factor of a vertical plane surface [11]	. 160
Figure B-8 Evolution of the average emissive power in the function of the pool diameter .	. 161

Figure B-9 Jet Fre Flame Shape [19]	.165
Figure B-10 Flame Configuration for View Factor [9]	.170
Figure B-11 Comparison Between the three VCE models [6]	.172
Figure B-12 Scaled dynamic pressure versus scaled distance [18]	.173
Figure B-13 Scaled positive phase duration versus scaled distance [18]	.174

Acronyms list

ıble

- **ARIA** Analyse, Recherche et Information sur les Accidents
- **BDV** Blowdown Valve
- BOD Basis of Design
- **DST** Drill Stem Testing
- **EP** Early Pool Fire
- **EPF** Early Production Facility
- FC Failure Case
- **FERA** Fire and Explosion Risk Assessment
- **FEf** Fire & Explosion frequency
- **FPSO** Floating Production Storage and Offloading
- **FT** Flow Transmitter
- **FZ** Fire Zone
- HAZID Hazard Identification
- HAZOP Hazard and Operability analysis
- **IOGP** International Association of Oil and Gas Procedures
- KOV Knock out Vessel
- LCV Level Control Valve
- LPG Liquefied Petroleum Gas
- LOC Loss of containment
- LP Late Pool Fire
- MOPU Mobile Offshore Production Units
- O&M Operations and Maintenance
- **P&ID** Piping and Instrumentation Diagram

PEX	Probability of Explosion
PFD	Process Flow Diagram
PII	Probability of Immediate Ignition
PDI	Probability of Delayed Ignition
PSI	Process Safety Information
PSM	Process Safety Management
PTI	Probability of Total Ignition
SDV	Shutdown Valve
ТСР	Tubing Conveyed Perforating
VCE	Vapor Cloud Explosion
WUU	Well Unloading Units

General Introduction

In today's industrial landscape, ensuring the safety of personnel and protecting critical assets from potential fire and explosion hazards are paramount concerns for any organization. The oil and gas industry, with its complex infrastructure and high-risk operations, requires stringent measures to mitigate these risks and maintain a safe working environment. In this context, the present study focuses on conducting a comprehensive fire and explosion risk assessment within the XP II early production facility of EXPRO Company.

Considering the composition of the EPF XPII facility, which mainly consists of equipment and has minimal personnel presence, the emphasis of this study is directed towards protecting valuable assets. While personnel safety remains critical in any industrial setting, the specific focus here is to identify and mitigate risks associated with fires and explosions that could potentially cause damage to equipment and disrupt production operations.

The primary objective of this study is to gain a comprehensive understanding of the current condition of the EPF XPII early production facility, with a specific focus on major accidents. By employing a rigorous evaluation and assessment process, we seek to determine the frequency and severity of these incidents, thereby identifying potential risks to the facility's assets.

Moreover, it is crucial to recognize the significance of conducting this risk assessment during the conception phase of the facility, according to the regulations set by the Hydrocarbons Regulatory Authorities (ARH) to acquire the operational exploitation approval. Therefore, conducting this study not only ensures compliance with regulatory obligations but also actively contributes to establishing a safe and secure operational environment during the facility's conception phase.

The methodology employed in this study consists of several key steps. Firstly, a thorough hazard identification process is conducted to identify potential sources of fires and explosions. Subsequently, fire zones are identified, followed by a comprehensive analysis of the consequences that could arise from such incidents. Frequency analysis is then used to evaluate the likelihood of these events occurring. Finally, the risk associated with fires and explosions is evaluated, leading to the formulation of effective recommendations to enhance asset protection measures.

The findings and recommendations derived from this study not only aid in safeguarding valuable assets within the EPF XPII early production facility but also contribute to establishing a solid foundation for the safe and efficient operation of the facility during its initial phases. Proactively addressing fire and explosion risks in the conception phase can prevent or effectively manage potential incidents, minimize disruptions, ensure continuity of production, and ultimately achieve the objectives set forth by regulatory authorities.

Chapter 1. Context of the Project

Introduc	tion	
1.1 Pr	resentation of EXPRO	21
1.1.1	EXPRO Algeria overview	21
1.1.2	Services provided	21
1.1.3	EXPRO Algeria Content	21
1.1.4	EXPRO facilities in Algeria	22
1.2 G	eneral description of XPII EPF	25
1.2.1	PROCESS DESCRIPTION	25
1.3 Pu	urpose of the study	
1.4 R	esearch background and significance	
1.4.1	Accidentology	
1.4.2	Significance of the Study	
Conclusi	on	33

Introduction

In the following chapter, we shall initially introduce the multinational corporation EXPRO, accompanied by an overview of the early production facility (EPF) referred to as XPII. Subsequently, our attention will be directed towards the fire and explosion risk assessment (FERA) conducted specifically for this EPF. Furthermore, there will be subsequent segments dedicated to discussing the study's objectives, its intended aims, and its noteworthy implications for the organization.

1.1 Presentation of EXPRO

1.1.1 EXPRO Algeria overview

EXPRO has established a presence in Algeria since 1995, with two bases spanning an extensive area of 22,000 square meters in Hassi Messaoud. Additionally, the company maintains an office proximate to Sonatrach in Algiers, serving as a hub for administrative, financial, and legal support pertaining to its operational activities. EXPRO's commitment to delivering enhanced value to its clientele is exemplified through the development of innovative solutions. The expertise and knowledge garnered from EXPRO's ventures in the North Sea have been effectively transferred to the Algerian context, thereby benefiting over 14 distinct clients.

1.1.2 Services provided

- Well Testing,
- Slickline,
- DST,
- PVT lab studies,
- Sonar flow measurement,
- Mobile Production facilities (EPFs).
- Compressors Cased hole logging
- QI: Coilhose + Annulus intervention service

1.1.3 EXPRO Algeria Content

EXPRO currently employs a workforce of 686 individuals in Algeria, with 96% comprised of local personnel and 4% consisting of expatriates. The distribution of these employees is as follows:

SEGMENT	НС	%
OPERATIONS	517	75%
DIRECT SUPPORT	48	7%
WORKSHOP & MAINTENANCE	41	6%
INDIRECT	80	12%
TOTAL	686	

 Table 1-1 EXPRO Algeria employees

For technical staff or operations, the head count divided is as follows:

Table 1-2 EXPRO Algeria services

SERVICES	НС
WELL INTERVENTION	96
DST	21
DAQ/LOGGING/CHS	71
METERS	22
WELL TESTING	274
WELL SERVICES	00
PRODUCTION	33
LABORATOIRE	08

1.1.4 EXPRO facilities in Algeria

Since 1995, EXPRO has maintained its presence in Hassi Messaoud, where it has established itself as a prominent entity. The company provides exceptional support services across North Africa West, bolstered by its modernized infrastructure. In 2013, EXPRO inaugurated a state-of-the-art combined life camp and operations facility spanning an impressive area of 25,000 square meters, further enhancing its capabilities in the region. Additionally, in 2019, the company expanded its operations with the establishment of a new second base, thereby reinforcing its commitment to delivering comprehensive services and support to its clientele.

1.1.4.1 HASSI MESSAOUD Office

EXPRO maintains two bases in Hassi Messaoud in order to support Expro operations in Algeria, which contain:

- Accommodation, restaurant and recreational facilities are provided for both staff National and expatriates.

- Total storage yard and workshop
- Well test Operations
- Wireline Operations
- Gold PVT Lab (The GOLD PVT laboratory is housed in the workshop).
- DST Operations
- Cased hole and electrical operation PLT, RCT, Cats and DHVC
- Production
- Full maintenance facility including
- Independent Pressure Test Bay with fixed blast walls
- Instrument calibration laboratory
- Dedicated Training facilities
- Control room for real time monitoring and follow up data from EPF sites

Figure 1-1 EXPRO Main Base

Figure 1-2 Expro in GoogleMAP

Figure 1-3 IKRAM Base

1.2 General description of XPII EPF

The EPF (Early Production Facilities) unit which is the subject of this study is a hydrocarbon installation subject to an environmental impact assessment and a hazard assessment as mentioned in table (A) of appendix 01 of executive decree no. 21-319 [4].

1.2.1 PROCESS DESCRIPTION

The process principle aims to utilize the contrasting properties between the target compound (gas, crude oil, or water) and the remaining mixture (crude oil) to create a distinct pathway for the desired phase. This separation is achieved by subjecting the mixture to a specific force field, allowing the desired phase to deviate and be effectively isolated for individual recovery. At the XPII site, density serves as the key chemical property exploited to enable this separation process.

1.2.1.1 Gas phase

Approximately half of the gas will be sent to GBR on a 12" Gas line while the rest will be torched on site [1].

1.2.1.2 Oil phase

The condensate from the three-phase separator is sent to the surge tank for gas particle recovery and protection of the oil export pumps from cavitation. The booster and export pumps then expedite the condensate to X-Cina at the desired pressure [1].

The facility receives well fluids through the inlet manifold, which is equipped with monitoring systems for pressure and temperature. Furthermore, a shutdown valve is installed as part of the inlet manifold. To ensure operational safety, an inlet high-pressure trip mechanism, along with an associated shutdown valve, is incorporated. This safety measure becomes active if the inlet pressure exceeds 44.6 barg. Additionally, an inlet pressure safety valve is in place to safeguard the downstream system in the event of excessive inlet pressure. In the event of detecting high pressure at the inlet of the facility, the inlet shutdown valve (SDV) will promptly close to mitigate any potential risks [1].

1.2.1.3 Horizontal Separator

The liquids from the inlet header are directed to the inlet of the Horizontal Separator, which is designed to [1] consists of the following components:

- An oil outlet connected to the surge tank, equipped with a manual isolating valve, a flow meter (FT) with a flow transmitter sending data to the control room, a bypass with isolation valves, and an automatic level control valve (LIC) [1], [2].

- A water outlet connected to the liquid export system, equipped with a manual isolating valve, a flow meter (FT) with a flow transmitter sending data to the control room, and an automatic level control valve (LIC) [1], [2].

- A gas outlet connected to the knock out vessel, with an option for decompression to the hot flare line. This outlet is equipped with an orifice meter, a ball valve on the flare line, a shutdown valve (SDV) on the process gas line, a manual isolating valve, a flow meter (FT) with a flow transmitter sending data to the control room, and an automatic pressure control valve (PV) with a bypass [1]–[3].

- A data recording system for the three phases (oil, water, and gas), with transmission of data to the data acquisition cabin [1].

- Pressure safety valves for protection [1], [2].
- Level indication (local and on the data acquisition system).

- Pressure indication (local and on the data acquisition system).

1.2.1.4 Knock-Out Vessel

The gas, after leaving the outlet of the 3-phase separator, undergoes pressure regulation through pressure control valve PCV-004, which is equipped with a pressure indicator controller. Subsequently, the gas is directed to the inlet of the knock-out vessel [1].

The purpose of the knock-out vessel is to effectively separate any liquids that may have passed through the inlet 3-phase separator and remain entrained within the gas. The knock-out vessel is designed specifically for this purpose and includes the following components [1]:

• One liquid outlet, equipped with manual isolation valve, flow meter (FT) with flow transmitter to the control room and bypass with isolation valves and (FT).

• One gas outlet line to **EPF XP II** gas export line, equipped with pressure gauge and manual isolation valves.

• Pressure safety valves for protection.

1.2.1.5 Surge tank

The liquids from the separator liquids outlet are directed through a flow meter and a level control valve before entering the inlet of the surge tank. The surge tank is designed to effectively separate the incoming liquids from any accompanying gas. Its primary purpose is then to facilitate the second stage separation, ensuring that no gas is present in the liquids sent to the EXPRO export pumps for export. The surge tank comprises the following components [1]:

- One liquid outlet equipped with manual isolating valve.

- Pressure safety valves for protection.

1.2.1.6 Booster Pumps

The arrangement of the booster pumps in the pump system is strategically positioned upstream of the oil export pumps to ensure a constant flow rate and the required pressure at the export pumps. This configuration is designed to optimize the performance and efficiency of the pump system [1].

By placing the booster pumps upstream, they play a vital role in increasing the pressure of the crude oil and maintaining a steady flow rate. This is particularly important to meet the specific requirements of the oil export pumps, taking into account their minimum required net positive

suction head (NPSHr) [1]. The NPSHr represents the minimum pressure needed at the pump inlet to prevent cavitation, a phenomenon that can lead to reduced pump performance and potential damage.

1.2.1.7 Export pumps

The pump system consists of export pumps that are high-pressure multistage centrifugal pumps. Their primary function is to increase the pressure of the oil condensate to a level suitable for reaching the designated export destination [1].

1.2.1.8 Unit Blowdown

During a level 0 shutdown, all rotating equipment is stopped, and all facility inlet and outlet points are closed. To ensure safety, any high-pressure gas exceeding 50% of the design operating pressure is released to the flare system. This is achieved by opening the BDV4-2 (Blowdown valve) while the SDV4-1 (Shutdown valve) is closed, allowing controlled gas release and preventing excess pressure buildup [1].

1.2.1.9 Flare System

EXPRO offers a comprehensive relief system for facilities, including a hot flare system and a cold pit for pressure relief. It extends to the surge tank and knock-out vessel. The hot flare line has an automatic ignition system for safe combustion of gases. A flare header purge system enhances operational reliability and safety. This system ensures controlled and secure release of excess pressure, minimizing potential risks [1].

1.2.1.10 Instrument Air system

The instrument air system consists of redundant air compressors, refrigerant drying system for moisture removal, and strategically placed air receiver to meet demand. This setup ensures a reliable and consistent supply of dry and compressed air for operational needs [1].

1.2.1.11 Control and Shutdown System

The facility's control system is a hybrid combination of programmable logic controllers (PLCs) serving as both a process control system (PCS) and an emergency shutdown system (ESD). It regulates process control functions and establishes communication links with EXPRO's control system and the existing company control system, if necessary Fire and gas detection systems are also implemented, [1].

Chapter 1. Context of the Project

Figure 1-4 Process Flow Diagram for XPII EPF

1.3 Purpose of the study

The objective of the current study is to gain a comprehensive understanding of the current condition of the **EPF XPII** early production facility, specifically concerning major accidents such as fires and explosions. This will be achieved through the evaluation and assessment of the frequency and severity of these incidents.

Typically, inherently safer designs are implemented as a preventive measure before conducting fire risk assessments. However, the findings of the fire and explosion risk assessment (FERA) may indicate the need for additional investigations into the facility's design. FERA serves as a valuable tool in identifying potential areas of improvement and suggesting further studies or modifications to enhance the safety and protection measures against fire and explosion hazards. The study aims to enhance the overall safety a resilience of the **EPF XPII** facility through informed decision-025aking based on the results of the assessment.

1.4 Research background and significance

1.4.1 Accidentology

The study of Accidentology is a valuable resource that provides a wealth of information to support the analysis of hazardous phenomena. It offers insights into various aspects, including:

Incident Causes: Accidentology helps identify the root causes and contributing factors that lead to accidents. It allows for a thorough examination of the underlying reasons, such as equipment failures, human errors, organizational deficiencies, or environmental factors.

Accident Patterns: By studying past accidents, Accidentology reveals patterns and trends in the occurrence of hazardous events. It helps identify common scenarios, sequences of events, or critical conditions that contribute to accidents, enabling proactive measures to be taken to prevent or mitigate similar incidents in the future.

Consequences: Accidentology provides a deep understanding of the consequences resulting from accidents, including the impact on human life, property, and the environment. It helps assess the severity of the effects, such as injuries, fatalities, damage, environmental pollution, and economic losses.

Lessons Learned: Analyzing accident data and case studies allows for the extraction of valuable lessons learned. It helps identify best practices, effective safety measures, and areas where improvements can be made to prevent or mitigate accidents in similar contexts.

Risk Assessment and Management: Accidentology serves as a foundation for risk assessment and management processes. By examining past incidents, it helps identify high-risk areas, potential hazards, and vulnerabilities, which inform the development and implementation of appropriate risk reduction strategies and safety protocols.

Overall, Accidentology plays a crucial role in enhancing safety practices, shaping policies, and guiding decision-taking processes to prevent accidents and improve safety performance in various domains. In order to carry out the risk analysis, it is necessary to know the experience feedback in terms of accidents on compressor stations. This allows us to identify the risk factors that have actually occurred and the associated dangerous phenomena.

1.4.1.1 Evaluation of the Accidentology with the Analysis of Similar Installations

In order to conduct a risk analysis, it is essential to have access to the experience feedback regarding accidents in compression stations.

This enables the identification of the actual risk factors that have occurred and the associated hazardous phenomena.

This analysis was conducted based on the accidents recorded by BARPI (Bureau d'Analyse des Risques et Pollution Industriels), which falls under the French Ministry responsible for the environment. BARPI is responsible for compiling, analyzing, and disseminating information and experience feedback on industrial and technological accidents. This compilation is carried out in the ARIA (Analyse Recherche et Information sur les Accidents) database.

These accidents can be found in Appendix A, The data covers accidents that occurred during the period from 1998 to 2014 which highlights the main sources of hazards that could potentially lead to an accident at the EPF site of EXPRO.

1.4.2 Significance of the Study

The significance of conducting a FERA study lies in its potential to enhance the safety and resilience of the facility or operation. Key aspects of the research significance include:

1- Risk Reduction: FERA studies aim to identify potential fire and explosion hazards, assess their associated risks, and propose effective measures to reduce or eliminate these risks. By understanding and addressing these risks, the study contributes to creating a safer working environment for personnel and protecting valuable assets.

Regulatory Compliance: The FERA study is essential for ensuring compliance with safety regulations, codes, and standards. It helps identify areas of non-compliance and suggests improvements to enhance safety measures. By conducting the study, companies can meet regulatory requirements, such as those outlined in executive decree $n^{\circ}21-319$ by the Hydrocarbons Regulatory Authority (ARH). The ARH mandates the inclusion of an HSE preliminary file, which typically includes the FERA study along with other assessments [4]. Compliance with the FERA study findings helps companies maintain a legally compliant operation and align with safety regulations set by regulatory authorities.

Business Continuity: Fires and explosions can have severe consequences, including injuries, loss of life, property damage, environmental pollution, and operational disruptions. By identifying and mitigating potential fire and explosion risks, the FERA study helps safeguard business continuity, minimize downtime, and protect the reputation of the facility and the organization.

Stakeholder Confidence: Demonstrating a proactive approach to fire and explosion risk management through a comprehensive FERA study enhances stakeholder confidence. It assures employees, investors, clients, and regulatory bodies that the facility's safety measures are robust, and the organization is committed to protecting people, property, and the environment.

Conclusion

In conclusion, this chapter has provided a comprehensive overview of the objectives of the Fire and Explosion Risk Assessment (FERA) study, as well as key details about the multinational company, EXPRO where the study is implemented. Furthermore, a detailed description of the XPII EPF facility was provided, emphasizing its importance as the focal point of the FERA study. Key features, such as the early production facility's structure, equipment, and processes, were outlined, setting the stage for a comprehensive risk assessment.

Lastly, the significance of the study was highlighted, emphasizing its role as a decision-025aking tool for addressing fire and explosion protection issues. While inherently safer designs are typically implemented prior to conducting fire risk assessments, the findings from the FERA study may suggest the need for further design evaluation and improvements.

By combining the objectives, company presentation, facility description, and study significance, this chapter sets the foundation for the subsequent detailed analysis and evaluation of fire and explosion risks within the XPII EPF facility.

Chapter 2. State of the Art

Introdu	iction	
2.1 Fi	re and explosion risk assessment FERA	
2.1.1	Definition	
2.1.1	Necessary tools	
2.2 M	ethodology of FERA	
2.2.1	Hazard identification	
2.2.2	Consequences Analysis	
2.2.3	Frequency analysis	
2.2.4	Equipment Vulnerability Criteria	44
2.2.5	Risk Assessment	47
Conclus	sion	
Introduction

In various industries and sectors, the risk of fire and explosion poses significant threats to assets, including facilities, equipment, and infrastructure. The consequences of such incidents can range from property damage and operational disruptions to environmental impacts. In order to proficiently handle these risks, organizations need to carry out thorough evaluations of fire and explosion risks that are specifically customized to their assets. This chapter delves into the methodology and tools used in fire and explosion risk assessment, providing a comprehensive understanding of the process. We will explore the definition of FERA, the key steps involved, the methodology employed, and the essential tools utilized in this crucial endeavor.

2.1 Fire and Explosion Risk Assessment FERA

2.1.1 Definition

The Fire & Explosion Risk Assessment (FERA) constitutes a structured and methodical process aimed at discerning and evaluating the risks engendered by fire and explosion hazards. This indispensable undertaking plays a pivotal role in upholding the safety of a facility and its occupants. The examination entails identifying potential origins of fire and explosion, as well as events triggered by Loss of Containments (LOCs) within the premises, while simultaneously assessing the probability and potential ramifications of these perils. The conclusions derived from FERA serve as the basis for establishing secure facility layouts, stipulating passive and active fire protection prerequisites.

2.1.1 Necessary tools

2.1.1.1 Process Flow Diagram

A process flow diagram (PFD) is a schematic representation of a process or system, illustrating the sequence of major steps, equipment, and materials involved. It provides a visual overview of the process, highlighting the flow of materials, energy, and information. They are mainly used to:

- To know Process topology.
- For conveying the heat and material balances.
- For conveying major pieces of equipment.
- For conveying processing conditions.
- For conveying utilities.

2.1.1.2 Piping and Instrumentation Diagram

A Piping and Instrumentation Diagram - P&ID, is a schematic illustration of functional relationship of piping, instrumentation and system equipment components, it contains mainly:

- Major and minor equipment
- Valves
- Instrumentation
- Stand-alone controllers
- Buttons used to control motors and devices
- Motors and drives
- Limit and point devices
- Piping
- Virtual devices

The mainly uses are:

- Act as the definitive representation of the process from which all engineering, fabrication, construction, and operational activities derive their foundation.

- Serve as reference for Process Safety Information (PSI) in Process Safety Management (PSM).

2.1.1.3 Basis of Design

The basis of design (BOD) is a concise document that outlines the fundamental principles, requirements, and criteria for the design and construction of a project or system. It serves as a guiding framework for the design team, providing a clear understanding of the project objectives, constraints, and performance expectations.

2.2 Methodology of FERA

The FERA methodology is based on the following steps :

Figure 2-1 FERA Methodology [5], [6]

2.2.1 Hazard identification

The initial phase of the Fire & Explosion Risk Assessment (FERA) involves a systematic approach to hazard identification, which serves as a crucial foundation for the assessment. Like

figure shows, studies like HAZOP and HAZID can serve as inputs for conducting hazard identification within a facility as well as Accidentology that shows the history of similar instillations accidents.

2.2.2 Frequency analysis

2.2.2.1 Event Tree

Post-release frequency analysis involves utilizing event trees, which are graphical representations of logic models or truth tables. These trees are based on logic theory and are used to calculate the frequency of different outcomes. The frequency of a specific outcome is determined by multiplying the frequency of the initiating event and the probabilities of subsequent conditional events that may lead to that outcome as illustrated in figure [5], [6].

Figure 2-2 General Overview about an Event Tree

In the oil and gas sector, the initiating event is typically the loss of containment in equipment. Its frequency can be determined through established approaches like part count analysis and failure frequency data from databases. Subsequent events that determine the occurrence of specific phenomena include immediate ignition, delayed ignition, and explosion.

2.2.2.2 Part count analysis

A Part Count Analysis is performed to calculate the frequencies of failure events for the different fire zones sections for different breach diameters. This analysis take into consideration leaks from all equipment (pipelines, valves, flanges, instrumentation, scrapper stations...) specifying the lengths for pipelines and the number for the rest of the equipment. In addition, it

allows us to calculate the frequency of a breach diameter taking into consideration all possible failure cases. Such as containment system integrity and material properties. This information helps identify vulnerabilities, determine critical breach diameters, and guide risk reduction measures.

The loss of containments frequencies are mainly taken from the "*Risk assessment data directory - Process Release Frequencies*" *database, version 2019.* For piping, the frequencies are given in failures per meter per year.

The failure frequencies are obtained for each breach diameter and it is the sum of multiplication of the part count and the loss of containment frequencies of the equipment, the calculation results are summarized in Appendix C.

2.2.2.3 Probabilities of ignition

a. Immediate ignition

Simultaneous inflammation occurs alongside the initial release and is typically triggered by mechanisms associated with the leak's cause. These mechanisms can include sparks from a rupture, electrical sparks from the flow, or external impacts that cause both leakage and ignition to happen simultaneously. The Probability of Ignition (PII) is taken as 0.001 [8].

b. **Delayed ignition**

Delayed ignitions refer to leaks that are initially inflamed but do not immediately ignite. The calculation of ignition probability refers to the use of the IOGP 434-6 "Risk assessment data directory - Ignition Probabilities" from 2019, which includes a log-log graph.

On log-log axes, each segment of the curves depicting ignition probability versus release rate forms a straight line. These curves represent the overall likelihood of ignition. According to the method, the immediate probability of ignition is assumed to be 0.001 and is not influenced by the release rate. Consequently, all curves start at 0.001 with a release rate of 0.1 kg/s. The delayed ignition probabilities are calculated by subtracting 0.001 from the total ignition probability [8].

Delayed ignition probability = Total ignition probability – immediate ignition probability

$$PDI = PTI-PII$$
 (2-1)

It is important to mention that the curves are classified according to certain scenarios; in the present study, we have chosen the 6th one "Small Plant Liquid" for the liquid parts without bunds, the 7th one for parts with bunds and the 5th one "Small Plant Gas LPG" for the gas parts according to the area of the facility, The aforementioned ignition probabilities can be read from the graphs in Figure 2-4.

Figure 2-3 Probability of ignition versus release rate [8]

2.2.2.4 Evaluation of failure Frequencies

The step of calculating failure frequencies for breach diameters is essential in fire and explosion risk assessment. It involves quantitatively analyzing the likelihood of breaches occurring for each component such as pipes, flanges, valves or even instruments.

2.2.2.5 **Probability of explosion (flame acceleration)**

The probability of explosion is the likelihood of a flammable cloud forming a blast waves once the flame acceleration take place. It is a function of the amount spilled because the flame front must attain a high speed and produce a large amount of overpressure after a specific amount of time and reasonably high flammable concentrations as shown in the table below [6]:

	Amount Generic		Specific explosion probability					
Activity	spilled (Kg)	Explosion probability	LPG	Light fraction	Crude oil	Diesel oil		
	1-100	0.06	0.043	0.067	0.088	0.044		
Fixed plants	100-10,000	0.30	0.22	0.34	0.44	0.22		
I	>10,000	0.40	0.29	0.45	0.58	0.29		

Table 2-1 Explosion probabilities

2.2.2.6 Fires & Explosions frequencies

After determining the failure frequency of each fire zone and calculating the probabilities of immediate and delayed ignition, as well as the probability of explosion, the next step in the FERA method is to compute Fires & Explosions frequencies. This is achieved by utilizing an event tree specific to the type of fluid spilled.

2.2.3 Consequences Analysis

2.2.3.1 Source term modeling

To assess the consequences of fires and explosions, it is essential to determine the discharge rate that occurs during a loss of containment event. This can be achieved by employing empirical and mathematical models specifically developed for various configurations. These models provide estimates of the release rates of hazardous materials based on factors such as vessel size, pressure, temperature, and properties of the substance involved. By accurately calculating the discharge rate, it becomes possible to evaluate the potential extent and impact of the resulting fire or explosion.

Details on the different correlations used to evaluate the discharge rate can be found in Appendix B.

2.2.3.2 Release duration

Effective detection and isolation mechanisms are crucial in shortening the length of hazardous material releases. This is particularly important for estimating the impacts of toxic releases, as

the severity of effects depends on concentration and duration of exposure. Choosing the release duration can then be defined according to the following steps [7]:

- Find out if the unit has any detection or isolation systems.

- Define the classes of these systems according to table.

- Using the classification obtained and table, choose the maximum release duration for each breach.

Type of detection system	Detection classification
Instrumentation designed specifically to detect material losses by changes in operating conditions (i.e. loss of pressure or flow) in the system.	А
Suitably located detectors to determine when the material is present outside the pressure- 150ontaining envelope.	В
Visual detection, cameras, or detectors with marginal coverage.	С
Type of isolation system	Isolation classification
Type of isolation system Isolation or shutdown systems activated directly from process instrumentation or detectors, with no operator intervention.	Isolation classification
Type of isolation systemIsolation or shutdown systems activated directly from process instrumentation or detectors, with no operator intervention.Isolation or shutdown systems activated by operators in the control room or other suitable locations remote from the leak.	Isolation classification A B

 Table 2-2Detection and Isolation Classification [7]

Detection system rating	Isolation system rating	Maximum leak duration
А	А	20 minutes for 6.4 mm leaks 10 minutes for 25 mm leaks 5 minutes for 102 mm leaks
А	В	30 minutes for 6.4 mm leaks 20 minutes for 25 mm leaks 10 minutes for 102 mm leaks
А	С	40 minutes for 6.4 mm leaks 30 minutes for 25 mm leaks 20 minutes for 102 mm leaks
В	A or B	40 minutes for 6.4 mm leaks 30 minutes for 25 mm leaks 20 minutes for 102 mm leaks
В	С	1 hour for 6.4 mm leaks 30 minutes for 25 mm leaks 20 minutes for 102 mm leaks
С	A or B or C	1 hour for 6.4 mm leaks 40 minutes for 25 mm leaks 20 minutes for 102 mm leaks

 Table 2-3 Maximum Leak Durations [7]

2.2.3.3 Fire accidents modeling

In this study, the Mudan model was selected to assess the consequences of pool fires, while the Chamberlain method was chosen for modeling jet fires. These models, described in detail in Appendix B, provide valuable tools for evaluating the potential impacts and severity of fire accidents. By utilizing these models, the study aims to gain insights into the behavior and characteristics of pool fires and jet fires, enabling a more accurate assessment of their consequences.

2.2.3.4 Vapor cloud explosion modeling

For vapor cloud explosion modeling, the study employed the multi-energy TNO model. The specific details of this model can be found in Appendix B.

2.2.4 Equipment Vulnerability Criteria

2.2.4.1 Thermal Radiation Effects on Assets

After modeling a fire, it is crucial to assess its consequential effects. Fires generate gases, flames, heat, and smoke, which vary in composition and intensity depending on the materials involved. The outputs of a fire can cause various damages, such as discoloration, deformation, ignition, breaking, and structural failure, which are influenced by thermal radiation intensity and material and physical characteristics [5].

Several methodologies exist to evaluate these effects. Comparing computational findings against predetermined benchmarks allows for assessment based on established requirements [6]. A conservative approach assumes equilibrium, while a comprehensive approach considers heat transfer and temperature thresholds for structural failure due to decreased yield strength under elevated temperatures [5]. However, in the absence of sufficient data on specific construction types and material characteristics, implementing the latter approach may not be feasible.

a. Thermal Impact Evaluation Criteria

When evaluating the heat flux effects, it is mandatory to define the thresholds limits beforehand. Typical thermal radiation intensity levels were proposed in various references. In table (), the thresholds chosen in this study are shown:

Thermal Effects	Exposure Temperature (°C)	Exposure Duration (min)	Consequences on Assets	References						
Pool Fire Impingement	816	≥10	Equipment failure *	[5]						
Jet fire Impingement	1100	≥05	Equipment failure *	[5]						
37.5 kW.m ⁻²	575	> 10	Equipment failure *	[5]–[7], [9]						
12.5 kW.m ⁻²	350	> 10	Equipment damaged **	[5], [6], [9]						
*: Lost of containment **: Normal paint discolors, electrical & electronic equipment's permanent damage										

Table 2-4 Thermal Impact Evaluation Criteria

b. Fire impingement

Fire impingement occurs when flames directly contact a surface, transferring heat energy and potentially causing ignition or thermal damage. It involves rapid heat transfer through radiation, convection, and conduction. Fire impingement can lead to material deterioration, melting, or combustion, ranging from surface effects to structural collapse. Flame jet impingement generates high heat fluxes, surpassing those of pool fires, with significant convective and radiative contributions [5]. Estimations indicate maximum radiation intensity of 200 kW.m-2 for natural gas jets [6].

c. Exposure Time

Exposure time to flames can be defined as the interval of time, typically measured in seconds or minutes, during which an object or individual is subjected to the direct heat transfer mechanisms associated with the combustion process, including radiation, convection, and conduction. This duration of exposure plays a crucial role in assessing the potential risks and determining the likelihood of heat-related damage, ignition, or injury. To establish a quantitative measurement of exposure time to flames, it is adequate to calculate the burning duration of the flame in the case of pool fires. Conversely, for jet flames, the exposure time is essentially equivalent to the duration of the release itself.

- Burning duration in Early Pool Fires:

Early pool fires, as aforementioned, are a result of the prompt ignition of a flammable pool, leading to a longer duration compared to late pool fires.

The estimation of exposure time can be accomplished under the assumption that the peak fire size is rapidly reached and remains constant as long as there is an adequate supply of fuel. Subsequently, the burning duration can be calculated utilizing the general provided expression [7], [10]:

$$t_b = \frac{M}{A_{pool} \cdot m_{inf}"} \tag{2-2}$$

Where M (Kg) is the fuel mass available to burn.

In this particular scenario, where the fuel ignites upon its release into the environment, the burning duration can be conceptually divided into two distinct components: t_{b1} (s) and t_{b2} (s).

These terms represent the duration of the fire for the entire period of fuel release and the duration following the cessation of the leak, respectively.

$$t_{b1} = \frac{\dot{m}.\,t_{spill}}{A_{pool}.\,m_{inf}"} \tag{2-3}$$

$$t_{b2} = \frac{h_{min} \cdot \rho}{m_{inf}"} \tag{2-4}$$

Where \dot{m} (Kg.s⁻¹) is the discharge rate and t_{spill} (s) is the duration of the leak that is specified in Table 2-2.

The total burning duration is thus:

$$t_b = t_{b1} + t_{b2} \tag{2-5}$$

- Burning duration for Late Pool Fires:

Late pool fires, conversely, originate from the delayed ignition of fuel subsequent to the termination of its release. In this case, the available mass to sustain combustion can be readily determined by evaluating the mass flow rate and spill duration. As a result, the estimation of the fires burning duration is accomplished employing equation (2-3).

- Burning duration for jet fires:

Since jet fires are related to the immediate ignition of gas releases, the burning duration can be obtained using the release duration which can be found in Table 2-2.

2.2.4.2 Explosions impact on assets

The vulnerability of a building or industrial facility to damage caused by an overpressure wave is contingent upon various factors, which include the peak overpressure, impulse, and additional considerations such as potential reflection due to partial confinement, turbulence effects, and the structural strength of the installation [6].

a. Overpressure impact evaluation criteria:

Table provides a comprehensive understanding of the assessment criteria utilized to evaluate the effects and potential damage resulting from overpressure waves.

Overpressure	Damage nature						
200 mbar	Heavy machines suffer little damage	[6]					
350 mbar	Displacement of pipe bridge, failure of piping, equipment failure	[6], [7]					
700 mbar	Total structural damage and heavy machines moved and badly damaged	[6]					

Table 2-5 Overpressure Impact Evaluation Criteria

2.2.5 Risk Assessment

Once consequences and frequency analysis have been completed, two approaches can employed in risk assessment:

- **First level evaluation**: the first approach involves a general evaluation of the identified hazardous events using a risk matrix. The steps that should be followed in this approach are:

- •Risk matrix application: utilize a risk matrix that should be defined beforehand, which provides a frameworks for categorizing and evaluating risks based on the combined severity and likelihood scores. Match the assessed parameters of each hazardous event with corresponding matrix cells to determine the overall risk level.
- Critical scenario identification: Analyze the results from the risk matrix evaluation to identify the most critical events. These are the events that pose higher risks based on the assessed parameters and are therefore prioritized for further risk mitigation and control measures.

- **Second level evaluation:** the second procedure involves a more detailed approach that focuses on calculating the individual risk at each point within the plant site. This method requires dividing the plant into grids of small enough size to capture specific locations and equipment. In order to apply it, we can proceed as follows [6]:

- Grid division: Divide the plant site into grids or sections of appropriate size to ensure that individual areas and equipment can be assessed accurately.
- Hazardous Event Contribution: Identify the hazardous events that may contribute to the failure of equipment or pose risks within each grid.
- Individual Risk Calculation: Calculate the individual risk at each grid by considering the aggregated frequency of hazardous events contributing to equipment failure. This provides an understanding of the probability of failure at each point within the plant site.

• Risk assessment for assets: Risk on assets should then evaluated using the same matrix but this time using the aggregated failure frequency instead of the hazardous event frequency of occurrence. After that, safeguards should be recommended in case the risk was deemed high or medium, for the latter we ought to do a cost-benefit analysis to see if the risk is tolerable, i.e. the safeguards do not have to be implemented and vice-versa.

By employing these two procedures, organizations can gain a comprehensive understanding of the overall risk levels and critical scenarios within their facility. The general evaluation using the risk matrix provides a broad assessment of risk, while the detailed approach of calculating individual risk allows for a more granular analysis at specific locations. Both procedures contribute to effective risk management strategies by identifying and prioritizing areas that require mitigation and control measures.

2.2.5.1 Risk Matrix

A risk matrix is a helpful visual tool for identifying high-risk areas by classifying hazards based on their frequency and severity. It provides a clear representation of the risk level associated with each risk bundle by considering the accident's frequency and severity categories [7].

Conclusion

In conclusion, the FERA method is a comprehensive approach used to assess and mitigate fire and explosion risks in various industrial settings. Throughout this chapter, we have explored the fundamental aspects of FERA, including its definition, essential tools, and detailed methodology. FERA consists of several key steps. The first step is hazard identification, which involves gathering information from various sources such as HAZOP (Hazard and Operability Study), HAZID (Hazard Identification Study), and industry accident history to identify potential hazards.

The next step is fire zone definition, where the facility is divided into specific zones based on the identified hazards and their potential consequences. This step aids in determining the appropriate firefighting and safety measures for each zone. Consequences analysis is another critical step in FERA, where the potential impacts of fire and explosion events are evaluated. This analysis considers factors such as property damage, environmental impact, and potential disruption to operations. Frequency analysis is conducted to assess the likelihood of fire and explosion events occurring. This involves analyzing historical data, industry statistics, and expert judgment to estimate the frequency of such incidents.

Finally, risk assessment is performed to evaluate the overall risk associated with identified hazards. This assessment takes into account parameters such as frequency of occurrence, financial loss, and exposure time. A risk matrix, based on the company's predefined criteria, is often utilized to determine critical scenarios and prioritize risk mitigation efforts.

By following the FERA methodology and diligently conducting each step, organizations can gain a comprehensive understanding of their fire and explosion risks, enabling them to implement appropriate preventive and protective measures to safeguard their assets, personnel, and the surrounding environment.

Chapter 3. Frequency Analysis

Intro	oduction	51
4.1	Event Tree	51
4.2	Breach diameter Distribution	53
4.3	Accident Frequencies Calculation	53
Con	clusion	69

Introduction

In this chapter, we will explore the fundamental concepts and methodologies of frequency analysis, focusing specifically on the calculation of failure frequencies and accident probabilities based on event trees, and the calculation of different ignition probabilities using The IOGP databases and a specific calculation approach.

3.1 Event Tree

The probabilities of accidents are calculated using event trees according to different scenarios:

- 1. For the gas leak, there is three possible events: Immediate ignition, Delayed ignition, and flame acceleration, which can result in the accidents below:
 - Immediate ignition can lead to a jet fire
 - > Delayed ignition will result in a flash fire or a VCE depending on the flame acceleration.
 - > If none of the above events is present, the gas will disperse leading to air pollution.

Figure 3-1 Event tree of gas leak

a. <u>Jet fire:</u>

$$FEf = Ff * PII \tag{3-1}$$

b. Flash fire:

$$FEf = Ff * (1 - PII) * PDI * (1 - PEX)$$
 (3-2)

c. Explosion :

$$FEf = Ff * (1 - PII) * PDI * PEX$$
(3-3)

- 2. For the oil leak the possible events that can happen are: : Immediate ignition, Delayed ignition, and flame acceleration, which can result in the accidents below:
 - Immediate ignition can results on an early pool fire.
 - Delayed ignition can lead to a late pool fire or flash fire, a VCE also can happen if there is a flame acceleration.
 - If none of the above events is present, the vapor will disperse resulting in air and sol pollution.

Initiation event	Immediate ignition	Delayed ignition	Flame acceleration	Consequences	Dangerous Effects
Oil leak	yes Pil			Early pool fire	Thermal Effects
Ff	No 1-Pii	Yes PDI	Yes PEX	VCE L.pool fire	Overpressure/ Thermal Effects
			No 1-PEX	Late pool fire Flash fire	Thermal Effects
		No 1-PDI	 	dispersion	Soil/air Pollution

Figure 3-2 Event tree for Oil leak

a. Early pool fire:

$$FEf = Ff * PII \tag{3-4}$$

b. Late pool fire

$$FEf = Ff * (1 - PII) * PDI * (PEX + 1 - PEX) = Ff * (1 - PII) * PDI$$
 (3-5)

c. Flash fire:

$$FEf = Ff * (1 - PII) * PDI * (1 - PEX)$$
 (3-6)

d. Explosion:

$$FEf = Ff * (1 - PII) * PDI * PEX$$
(3-7)

3.2 Breach diameter Distribution

Breach diameters are identified using IOGP 434-1 « Risk assessment data directory - Process Release Frequencies » version 2019 database.

Breach diameter	Breach diameter interval (mm)	Breach diameter (mm)		
Small	3-10	5		
Medium	10-50	25		
Large	50-150	100		
Rupture	>150	>150		

 Table 3-1 Breach diameter Distribution [13]

3.3 Fires & Explosions frequencies Calculation

Frequencies calculation was based on one train since the trains are identical, the results for the second train will be the same as the first.

	Fires & Explosions frequencies											
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)			
			E. Pool fire	7,52E-04	0,001	0,001		0,44	7,52E-07			
		5	L. Pool fire	7,52E-04	0,001	0,001	070.2	0,44	7,51E-07			
		JIIIII	Flash fire	7,52E-04	0,001	0,001	919.2	0,44	4,21E-07			
			Explosion	7,52E-04	0,001	0,001		0,44	3,31E-07			
- 0)	=	25mm	E. Pool fire	2,06E-04	0,001	0,019	- 12244.2	0,58	2,06E-07			
st lin	le 16		L. Pool fire	2,06E-04	0,001	0,019		0,58	3,91E-06			
'Inle	et lin		Flash fire	2,06E-04	0,001	0,019		0,58	1,64E-06			
one 1	: Inl		Explosion	2,06E-04	0,001	0,019		0,58	2,27E-06			
ire Z	⁷ Z 01		E. Pool fire	6,18E-05	0,001	0,099	83121	0,58	6,18E-08			
Ц	Ц	100	L. Pool fire	6,18E-05	0,001	0,099		0,58	6,11E-06			
		100mm	Flash fire	6,18E-05	0,001	0,099		0,58	2,57E-06			
			Explosion	6,18E-05	0,001	0,099		0,58	3,55E-06			
		150mm	E. Pool fire	1,38E-04	0,001	0,099	27404 5	0,58	1,38E-08			
		150mm	L. Pool fire	1,38E-04	0,001	0,099	37404.3	0,58	1,36E-05			

Table 3-2 Fires & Explosions Frequencies Calculations

	Fires & Explosions frequencies											
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)			
			Flash fire	1,38E-04	0,001	0,099		0,58	5,73E-06			
			Explosion	1,38E-04	0,001	0,099		0,58	7,92E-06			
			E. Pool fire	2,69E-04	0,001	0,001		0,44	2,69E-07			
		5mm	L. Pool fire	2,69E-04	0,001	0,001	920.4	0,44	2,69E-07			
			Flash fire	2,69E-04	0,001	0,001	630.4	0,44	1,50E-07			
	:		Explosion	2,69E-04	0,001	0,001		0,44	1,18E-07			
	le 12		E. Pool fire	1,35E-04	0,001	0,019	10200	0,58	1,35E-07			
	et lir	25mm	L. Pool fire	1,35E-04	0,001	0,019		0,58	2,56E-06			
	: Inl	2511111	Flash fire	1,35E-04	0,001	0,019	10389	0,58	1,08E-06			
	^z Z 01		Explosion	1,35E-04	0,001	0,019		0,58	1,49E-06			
	F		E. Pool fire	4,05E-05	0,001	0,099		0,58	4,05E-08			
		100	L. Pool fire	4,05E-05	0,001	0,099	67.057.20	0,58	4,01E-06			
		TUUIIIII	Flash fire	4,05E-05	0,001	0,099	07937,20	0,58	1,68E-06			
			Explosion	4,05E-05	0,001	0,099		0,58	2,32E-06			

	Fires & Explosions frequencies											
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)			
			E. Pool fire	5,80E-05	0,001	0,099		0,58	5,80E-08			
		150	L. Pool fire	5,80E-05	0,001	0,099	22 514 90	0,58	5,74E-06			
		150mm	Flash fire	5,80E-05	0,001	0,099	55 514,80	0,58	2,41E-06			
			Explosion	5,80E-05	0,001	0,099		0,58	3,33E-06			
		5mm	E. Pool fire	1,07E-03	0,001	0,001		0,44	1,07E-06			
			L. Pool fire	1,07E-03	0,001	0,001	556.92	0,44	1,07E-06			
-			Flash fire	1,07E-03	0,001	0,001		0,44	5,99E-07			
TOF	iase)		Explosion	1,07E-03	0,001	0,001		0,44	4,70E-07			
ARA	id pł		E. Pool fire	4,08E-04	0,001	0,0014		0,44	4,08E-07			
SEP	(liqu	25	L. Pool fire	4,08E-04	0,001	0,0014	6960	0,44	5,71E-07			
one 2	rator	25mm	Flash fire	4,08E-04	0,001	0,0014		0,44	3,20E-07			
ire zo	Sepa		Explosion	4,08E-04	0,001	0,0014		0,44	2,51E-07			
F			E. Pool fire	1,01E-04	0,001	0,099		0,58	1,01E-07			
		100mm	L. Pool fire	1,01E-04	0,001	0,099	55686	0,58	9,99E-06			
			Flash fire	1,01E-04	0,001	0,099		0,58	4,20E-06			

	Fires & Explosions frequencies												
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)				
			Explosion	1,01E-04	0,001	0,099		0,58	5,79E-06				
			E. Pool fire	8,36E-05	0,001	0,099		0,58	8,36E-08				
		150	L. Pool fire	8,36E-05	0,001	0,099	40508.4	0,58	8,27E-06				
		150mm	Flash fire	8,36E-05	0,001	0,099	40598.4	0,58	3,47E-06				
			Explosion	8,36E-05	0,001	0,099		0,58	4,80E-06				
			Jet fire	1,13E-03	0,001	0		0,043	1,13E-06				
	ase)	5mm	Flash fire	1,13E-03	0,001	0	27.6	0,043	0,00E+00				
	ıs pha		Explosion	1,13E-03	0,001	0		0,043	0,00E+00				
	r (Ga		jet fire	5,72E-04	0,001	0,001	331.74	0,22	5,72E-07				
	arato	25mm	Flash fire	5,72E-04	0,001	0,001		0,22	4,46E-07				
	Sep		Explosion	5,72E-04	0,001	0,001		0,22	1,26E-07				
		100mm	Jet fire	8,27E-05	0,001	0,029	2655	0,22	8,27E-08				

	Fires & Explosions frequencies								
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			Flash fire	8,27E-05	0,001	0,029		0,22	1,87E-06
			Explosion	8,27E-05	0,001	0,029		0,22	5,27E-07
			Jet fire	7,11E-05	0,001	0,079		0,22	7,11E-08
		150mm	Flash fire	7,11E-05	0,001	0,079	1926.3	0,22	4,38E-06
			Explosion	7,11E-05	0,001	0,079		0,22	1,23E-06
	FROM L=26,2)	5mm	Jet fire	3,82E-04	0,001	0	26.4	0,043	3,82E-07
			Flash fire	3,82E-04	0,001	0		0,043	0,00E+00
	1800 OV(]		Explosion	3,82E-04	0,001	0		0,043	0,00E+00
	3B3- 70 K		jet fire	1,80E-04	0,001	0,001		0,22	1,80E-07
	ν-0) 046 Τ	25mm	Flash fire	1,80E-04	0,001	0,001	331.8	0,22	1,40E-07
	10"-F		Explosion	1,80E-04	0,001	0,001		0,22	3,96E-08
	R TX		Jet fire	4,38E-05	0,001	0,029		0,22	4,38E-08
	AS L]	100mm	Flash fire	4,38E-05	0,001	0,029	2650.5	0,22	9,90E-07
	E G/		Explosion	4,38E-05	0,001	0,029		0,22	2,79E-07
	TH	150mm	Jet fire	6,96E-05	0,001	0,079	1854.6	0,22	6,96E-08

				Fires	& Explo	osions frequ	iencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			Flash fire	6,96E-05	0,001	0,079		0,22	4,28E-06
			Explosion	6,96E-05	0,001	0,079		0,4	2,20E-06
			E. Pool fire	1,22E-03	0,001	0		0,44	1,22E-06
)1m)	5mm	L. Pool fire	1,22E-03	0,001	0		0,44	0,00E+00
	tank (6"/9		Flash fire	1,22E-03	0,001	0		0,44	0,00E+00
			Explosion	1,22E-03	0,001	0		0,44	0,00E+00
	urge		E. Pool fire	4,94E-04	0,001	0,019	- 3 826,80	0,44	4,94E-07
	nd S		L. Pool fire	4,94E-04	0,001	0,019		0,44	9,38E-06
	ator 2	25mm	Flash fire	4,94E-04	0,001	0,019		0,44	5,25E-06
	epara		Explosion	4,94E-04	0,001	0,019		0,44	4,13E-06
	een s		E. Pool fire	1,12E-04	0,001	0,099		0,58	1,12E-07
	betw	100	L. Pool fire	1,12E-04	0,001	0,099	20 614 40	0,58	1,11E-05
	Pipe	TOOMM	Flash fire	1,12E-04	0,001	0,099	30 614,40	0,58	4,65E-06
			Explosion	1,12E-04	0,001	0,099		0,58	6,42E-06

	Fires & Explosions frequencies								
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			E. Pool fire	9,88E-05	0,001	0,099		0,58	9,88E-08
		150mm	L. Pool fire	9,88E-05	0,001	0,099	12 776 54	0,58	9,77E-06
		13011111	Flash fire	9,88E-05	0,001	0,099		0,58	4,10E-06
			Explosion	9,88E-05	0,001	0,099		0,58	5,67E-06
		5mm	E. Pool fire	2,30E-03	0,001	0	326.4	0,44	2,30E-06
			L. Pool fire	2,30E-03	0,001	0		0,44	0,00E+00
ank'			Flash fire	2,30E-03	0,001	0		0,44	0,00E+00
rge T	ınk		Explosion	2,30E-03	0,001	0		0,44	0,00E+00
3 'Su	.ge ta		E. Pool fire	1,14E-03	0,001	0,014		0,44	1,14E-06
Fire zone3	Sur	25	L. Pool fire	1,14E-03	0,001	0,014	1057	0,44	1,59E-05
		25mm	Flash fire	1,14E-03	0,001	0,014	4056	0,44	8,93E-06
			Explosion	1,14E-03	0,001	0,014		0,44	7,02E-06
		100mm	E. Pool fire	1,87E-04	0,001	0,099	32400	0,58	1,87E-07

				Fires	& Explo	sions frequ	iencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			L. Pool fire	1,87E-04	0,001	0,099		0,58	1,85E-05
			Flash fire	1,87E-04	0,001	0,099		0,58	7,77E-06
			Explosion	1,87E-04	0,001	0,099		0,58	1,07E-05
			E. Pool fire	1,55E-04	0,001	0,099		0,58	1,55E-08
		150mm	L. Pool fire	1,55E-04	0,001	0,099	- 23571	0,58	1,53E-05
	ort		Flash fire	1,55E-04	0,001	0,099		0,58	6,44E-06
			Explosion	1,55E-04	0,001	0,099		0,58	8,89E-06
			E. Pool fire	3,74E-04	0,001	0	- 354	0,44	3,74E-07
	d exp	5	L. Pool fire	3,74E-04	0,001	0		0,44	0,00E+00
	k and 2m)	Smm	Flash fire	3,74E-04	0,001	0		0,44	0,00E+00
	e tan "/43,		Explosion	3,74E-04	0,001	0		0,44	0,00E+00
	surg ps (8		E. Pool fire	1,66E-04	0,001	0,019		0,44	1,66E-07
	ween	25	L. Pool fire	1,66E-04	0,001	0,019	4 426 20	0,44	3,15E-06
	e bet	25mm	Flash fire	1,66E-04	0,001	0,019	4 420,20	0,44	1,76E-06
	Pipe be		Explosion	1,66E-04	0,001	0,019		0,44	1,39E-06

				Fires	& Explo	osions frequ	iencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			E. Pool fire	3,93E-05	0,001	0,099		0,58	3,93E-08
		100	L. Pool fire	3,93E-05	0,001	0,099	25 412 20	0,58	3,89E-06
		TOOIIIII	Flash fire	3,93E-05	0,001	0,099		0,58	1,63E-06
			Explosion	3,93E-05	0,001	0,099		0,58	2,25E-06
		150mm	E. Pool fire	3,35E-05	0,001	0,099	 15 935,58	0,58	3,35E-08
			L. Pool fire	3,35E-05	0,001	0,099		0,58	3,31E-06
			Flash fire	3,35E-05	0,001	0,099		0,58	1,39E-06
			Explosion	3,35E-05	0,001	0,099		0,58	1,92E-06
ut			Jet fire	1,97E-03	0,001	0		0,043	1,97E-06
ne 4 'Knock Ou Vessel'		5mm	Flash fire	1,97E-03	0,001	0	21.23	0,043	0,00E+00
	N		Explosion	1,97E-03	0,001	0		0,043	0,00E+00
	KC		jet fire	9,81E-04	0,001	0,001		0,22	9,81E-07
re zo		25mm	Flash fire	9,81E-04	0,001	0,001	265.38	0,22	7,64E-07
Ë			Explosion	9,81E-04	0,001	0,001		0,22	2,16E-07

				Fires	& Explo	osions frequ	iencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			Jet fire	1,59E-04	0,001	0,029		0,22	1,59E-07
		100mm	Flash fire	1,59E-04	0,001	0,029	2123.1	0,22	3,59E-06
			Explosion	1,59E-04	0,001	0,029		0,22	1,01E-06
			Jet fire	1,56E-04	0,001	0,059		0,22	1,56E-07
		150mm	Flash fire	1,56E-04	0,001	0,059	1540.8	0,22	7,17E-06
			Explosion	1,56E-04	0,001	0,059		0,22	2,02E-06
		5mm	E. Pool fire	5,67E-03	0,001	0	685,2	0,44	5,67E-06
"sqm			L. Pool fire	5,67E-03	0,001	0		0,44	0,00E+00
nd C	sdi		Flash fire	5,67E-03	0,001	0		0,44	0,00E+00
XPR(und .		Explosion	5,67E-03	0,001	0		0,44	0,00E+00
zone 5 'EX	oster		E. Pool fire	1,50E-03	0,001	0,019		0,44	1,50E-06
	Bo	25	L. Pool fire	1,50E-03	0,001	0,019	1056	0,44	2,85E-05
Fire		2311111	Flash fire	1,50E-03	0,001	0,019	4056	0,44	1,59E-05
E			Explosion	1,50E-03	0,001	0,019		0,44	1,25E-05

				Fires	& Explo	osions frequ	iencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			E. Pool fire	2,64E-04	0,001	0,099		0,58	2,64E-07
		100	D. Pool fire	2,64E-04	0,001	0,099	22400	0,58	2,61E-05
		TOOIIIII	Flash fire	2,64E-04	0,001	0,099		0,58	1,10E-05
			Explosion	2,64E-04	0,001	0,099		0,58	1,51E-05
		150mm	E. Pool fire	4,74E-05	0,001	0,099	23571	0,58	4,74E-08
			L. Pool fire	4,74E-05	0,001	0,099		0,58	4,69E-06
			Flash fire	4,74E-05	0,001	0,099		0,58	1,97E-06
			Explosion	4,74E-05	0,001	0,099		0,58	2,72E-06
			E. Pool fire	5,85E-03	0,001	5,00E-04		0,44	5,85E-06
	sdur	E	L. Pool fire	5,85E-03	0,001	5,00E-04	1006.2	0,44	2,92E-06
	ort pu	əmm	Flash fire	5,85E-03	0,001	5,00E-04	- 1096,2	0,44	1,64E-06
	Expc		Explosion	5,85E-03	0,001	5,00E-04		0,44	1,29E-06
		25mm	E. Pool fire	2,10E-03	0,001	0,029	4056	0,44	2,10E-06

				Fire	es & Explo	osions freq	uencies		
Fire Zone	Sec	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
			L. Pool fire	2,10E-03	0,001	0,029		0,44	6,08E-05
			Flash fire	2,10E-03	0,001	0,029		0,44	3,41E-05
			Explosion	2,10E-03	0,001	0,029		0,44	2,68E-05
			E. Pool fire	4,32E-04	0,001	0,099		0,58	4,32E-07
		100mm 150mm	L. Pool fire	4,32E-04	0,001	0,099	32400	0,58	4,27E-05
			Flash fire	4,32E-04	0,001	0,099		0,58	1,79E-05
			Explosion	4,32E-04	0,001	0,099		0,58	2,48E-05
			E. Pool fire	1,11E-04	0,001	0,099	- 23571	0,58	1,11E-08
			L. Pool fire	1,11E-04	0,001	0,099		0,58	1,10E-05
			Flash fire	1,11E-04	0,001	0,099		0,58	4,61E-06
			Explosion	1,11E-04	0,001	0,099		0,58	6,37E-06
Fire zone 6 'Oil Expedition line'	lon		E. Pool fire	2,12E-03	0,001	0		0,44	2,12E-06
	jediti line'	5mm	L. Pool fire	2,12E-03	0,001	0	744	0,44	0,00E+00
	511111	Flash fire	2,12E-03	0,001	0		0,44	0,00E+00	

			Fire	es & Explo	osions freq	Juencies		
Fire Zone	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)
		Explosion	2,12E-03	0,001	0		0,44	0,00E+00
		E. Pool fire	1,02E-03	0,001	0,019		0,44	1,02E-06
	25	L. Pool fire	1,02E-03	0,001	0,019	0.212	0,44	1,94E-05
	25mm	Flash fire	1,02E-03	0,001	0,019	9312	0,44	1,08E-05
		Explosion	1,02E-03	0,001	0,019		0,44	8,52E-06
_		E. Pool fire	2,06E-04	0,001	0,099	- 74 536,80	0,58	2,06E-08
	100mm	L. Pool fire	2,06E-04	0,001	0,099		0,58	2,04E-05
		Flash fire	2,06E-04	0,001	0,099		0,58	8,56E-06
		Explosion	2,06E-04	0,001	0,099		0,58	1,18E-05
		E. Pool fire	2,85E-04	0,001	0,099		0,58	2,85E-08
	150	L. Pool fire	2,85E-04	0,001	0,099	22.541.62	0,58	2,82E-05
	150mm	Flash fire	2,85E-04	0,001	0,099	33 341,02	0,58	1,18E-05
		Explosion	2,85E-04	0,001	0,099		0,58	1,63E-05
							·	

	Fires & Explosions frequencies								
Fire Zone	Breach diameter	Dangerous Phenomenon	Ff (1/year)	PII	PDI	Amount of liquid released (Kg)	PEX	FEf (1/year)	
		Jet fire	2,18E-03	0,001	0		0,043	2,18E-06	
	5mm	Flash fire	2,18E-03	0,001	0	20,4	0,043	0,00E+00	
-o		Explosion	2,18E-03	0,001	0		0,043	0,00E+00	
n lin		jet fire	1,07E-03	0,001	0		0,22	1,07E-06	
'Gas Expeditio	25mm	Flash fire	1,07E-03	0,001	0	257,4	0,22	0,00E+00	
		Explosion	1,07E-03	0,001	0		0,22	0,00E+00	
	100mm	Jet fire	1,70E-04	0,001	0,019	2058	0,22	1,70E-07	
ne 7		Flash fire	1,70E-04	0,001	0,019		0,22	2,52E-06	
re zo		Explosion	1,70E-04	0,001	0,019		0,22	7,10E-07	
Ë		Jet fire	2,11E-04	0,001	0,039		0,22	2,11E-07	
	150mm	Flash fire	2,11E-04	0,001	0,039	926,7	0,22	6,41E-06	
		Explosion	2,11E-04	0,001	0,039		0,22	1,81E-06	
Fire zone 8' Storage tanks				Bund H	Fire			2,26E-06	

The frequency analysis provides valuable insights into the occurrence probabilities of various failure cases and breach diameters. The summarized results in the table showcase the frequencies associated with each scenario. One notable observation is that the highest frequencies, reaching 10⁻⁵, are predominantly attributed to late pool fires along with explosions. This indicates that late pool fires pose a greater risk in terms of frequency compared to other Dangerous phenomenons.

On the other hand, early pool fires exhibit lower frequencies, never reaching the 10⁻⁵ threshold. This suggests that the occurrence of early pool fires is relatively less frequent compared to late pool fires and explosions. Additionally, certain hazardous phenomena show a frequency of 0, which is attributed to the discharge rate being too small, resulting in practically no delayed ignition rate. These events may be considered less significant in terms of frequency due to their minimal likelihood of occurrence.

Another noteworthy finding is that some failure cases, specifically for breach diameters of 100 mm and above, exhibit a frequency of 10^{-8} , which is negligible. This aligns with the assumptions made during the consequences modeling phase. As a best practice, events with frequencies of 10^{-8} and less are typically not considered credible and should be disregarded for risk assessment purposes.

Conclusion

By quantifying all the probabilities, we gain valuable insights into the frequencies of the dangerous events occurring within the EPF XP II, so we can assess the likelihood of major Hazardous Event occurrences and implement effective risk mitigation strategies to enhance overall safety and reliability.

Chapter 4. Consequences Analysis

Intro	duo	ction	71
3.1	Ha	zard Identification	71
3.1.	1	Congested Area Definition	72
3.2	Fir	e Zones Identification	72
3.3	Inp	out of Consequences Analysis	74
3.3.	1	Meteorology	74
3.3.	2	Operating Data and Fluids Properties	76
3.4	Re	sults of Consequences Modeling	77
3.4.	1	Source Term modeling	77
3.4.	2	Fire accidents modeling results	79
3.4.	3	Vapor Cloud Explosion Modeling Results	83
Conc	lusi	ion	86
Introduction

This chapter focuses on the consequences analysis within Expro's Early Production Facility as part of the Fire and Explosion Risk Assessment (FERA) process. It covers several key points, including hazard identification using historical data and hazard studies, congested area definition for vapor cloud explosions, fire zone identification, inputs for consequences modeling (operational and meteorological), source term modeling results, and fire accidents and vapor cloud explosions modeling results. These elements contribute to a comprehensive understanding of the potential impacts of fire and explosion events, aiding in risk mitigation and ensuring the safety of personnel and assets.

4.1 Hazard Identification

By utilizing data obtained from the Accidentology, HAZOP study, and HAZID findings, we have successfully identified the failure cases and associated hazardous phenomena that can potentially occur within our study subject. It is important to note that the majority of these failure cases primarily involve instances of loss of containment. The potential dangerous phenomena that can compromise the safety of assets are as follows:

- **Pool Fire:** This phenomenon arises when a pool of flammable liquid ignites following a release, such as the loss of containment of liquid or vapor accompanied by rain-out. The resulting fire emits thermal radiation, which poses a significant risk within the studied system [5], [6], [9].

- **Jet Fire:** highly dynamic directional fires that emit significant amounts of thermal radiation. These fires occur as a result of the ignition of high-pressure hydrocarbons in scenarios involving gaseous releases [5], [6].

- **Flash Fire:** The rapid ignition of a gas cloud. This ignition occurs as a result of a gas leak or the gas phase of a bi-phase release, or it can also result from the evaporation of a non-ignited pool of liquid. It is important to note that this ignition is accompanied by negligible overpressure [11].

- **Vapor Cloud Explosion:** The instantaneous ignition of a gas cloud resulting from a gas leak, bi-phase release, or evaporation of a non-ignited liquid pool. This ignition is accompanied by the formation of a shockwave due to the acceleration of the flame front through congestion effects, leading to overpressure [6], [11].

4.1.1 Congested Area Definition

It is important to define the congested zone since it is one of the main causes for flame acceleration and as a consequence, explosions.

The following figure illustrates the congested area that was identified within XPII EPF, see Appendix B for details about the procedure that was followed.

Figure 4-1 Congested Aread Definition in XPII EPF

4.2 Fire Zones Identification

The fire zones are identified by dividing the XPII EPF site into different geographic zones according to the near distance between equipment and each fire zone is divided into sections, which is characterized, by a single equipment and a specific fluid (Gas/Liquid), See Table 4-1 and Figure 4-2.

Fire	Foiluro coso			Dar	Dangerous phenomena			
zone	Failure case	Code	Fluid	Flash fire	Jet fire	VCE	Pool fire	
EZ 01	Loss of containment in the end of Inlet Pipe 16"-PF- 06B3-1400	FC-1.1	Crude oil	\checkmark	X	\checkmark	\checkmark	
12.01	Loss of containment in the end of Inlet pipe 12"-PF 03B3-1401	FC-1.2	Crude oil	\checkmark	Х	\checkmark	\checkmark	
Loss of containment in Separator TX1H-046 'Liquid part'		FC-2.1	Crude oil	\checkmark	\checkmark	\checkmark	\checkmark	
FZ 02	Loss of containment in Separator TX1H-046 'Gas part'	FC-2.2	Natural Gas	\checkmark	\checkmark	\checkmark	X	
	Loss of containment in the end of gas line 10"-PV- 03B3-1800 from separator TX1H-046 TO KOV	FC-2.3	Natural Gas	\checkmark	\checkmark	\checkmark	Х	
	Loss of containment in the end of Pipe between separator and Surge tank	FC-2.4	Crude oil	\checkmark	X	\checkmark	\checkmark	
	Loss of containment in Surge Tank TX6961-014	FC-3.1	Crude oil	\checkmark	Х	\checkmark	\checkmark	
FZ 03	Loss of containment in the end of Pipe between surge tank and booster pumps	FC-3.2	Crude oil	\checkmark	X	\checkmark	\checkmark	
FZ 04	Loss of containment in KOV 01-XRZ-009	FC-4	Natural Gas	\checkmark	\checkmark	\checkmark	Х	
F7 05	Loss of containment in Booster Pumps	FC-5.1	Crude oil	\checkmark	Х	\checkmark	\checkmark	
FZ 05	Loss of containment in Export pumps	FC-5.2	Crude oil	\checkmark	Х	\checkmark	\checkmark	
E7.06	Loss of containment in the Oil Expedition line	FC-6.1	Crude oil	\checkmark	\checkmark	Х	\checkmark	
Г <u>С</u> 00	Loss of containment in the Gas Expedition line	FC-6.2	Natural Gas	\checkmark	\checkmark	\checkmark	Х	
FZ 07	Loss of containment in Diesel Tank	FC-7	Diesel	\checkmark	Х	\checkmark	\checkmark	

Table 4-1 Fire Zone Identification

Figure 4-2 Fire Zones Definition

4.3 Input of Consequences Analysis

4.3.1 Meteorology

a. <u>Temperature</u>

The hot season lasts for 3.2 months, from June 6 to September 13, with an average daily high temperature above 96°F. The hottest month of the year is July, with an average high of 104°F and low of 80°F. The cool season lasts for 3.5 months, from November 20 to March 6, with an average daily high temperature below 70°F. The coldest month of the year is January, with an average low of 42°F and high of 62°F [12].

Chapter 4. Consequences Analysis

Figure 4-3 Average High and Low Temperature [12]

b. <u>Humidity</u>

In the site location, the period with higher humidity levels spans approximately 3.0 months, starting from July 16 and lasting until October 17. During this time, the comfort level can be described as muggy, oppressive, or even miserable, occurring for at least 4% of the time. The month of September experiences the highest number of muggy days in El Oued, with approximately 3.9 days considered muggy or worse [12].

Figure 4-4 Humidity [12]

c. <u>Wind</u>

The windier part of the year lasts for 4.3 months, from March 17 to July 27, with average wind speeds of more than 9.2 miles per hour. The windiest month of the year is June, with an average hourly wind speed of 10.5 miles per hour. The calmer time of year lasts for 7.7 months, from July 27 to March 17. The calmest month of the year is November, with an average hourly wind speed of 7.9 miles per hour [12].

Figure 4-5 Average Wind Speed [12]

4.3.2 Operating Data and Fluids Properties

a. Production Data

Properties	Unit	EPF XPII
Gas Flowrate	Sm³/d	1,200,000
Maximum expected flow rate	-	1,500,000
Gas SG	-	0.8
Gas Density	Kg/Sm ³	0.62
Oil Flowrate (Min/Max)	m³/d	9,540 (60,000 BOPD)
Water Flowrate (Min/Nor/Max)	m³/d	Normal 0
Oil Density at 15°C	Kg/m ³	808
Inlet Pressure (Min/Nor/Max)	Barg	8/10/11
Operating Temperature	°C	0-50
Oil Discharge Pressure @ B/L	Bar g	10
Gas Discharge Pressure @ B/L	Bar g	52 to 55
Oil & Gas Max Discharge Temperature@ B/L	°C	70

Table 4-2 Production data [1]

b. Meteorological Data

Table 4-3 Meteorological data [1], [12]

	Summer	Winter
Ambient temperature (°C)	50	12
Wind velocity (m.s ⁻¹)	4.6	3.47
Relative humidity (%)	15	50

4.4 Results of Consequences Modeling

Consequences modeling was performed on train 1 only because the equipment are identical and have the same operating parameters. Calculations were performed using MATLAB programs that are based on the correlations and models specified in Appendix B.

4.4.1 Source Term modeling

Fire zone	Failure case	Breach Diameter (mm)	Discharge rate (Kg.s ⁻¹)
		5	0.82
	EC 1 1	25	20.41
	гС-1.1	100	277.07
FZ 01		>150	623.41
		5	0.69
	EC 1 2	25	17.32
	ГС-1.2	100	226.52
		>150	558.58
		5	0.46
	EC 2 1	25	11.60
	FC-2.1	100	185.62
		>150	673.64
FZ 02		5	0.02
	FC-2.2	25	0.55
		100	8.85
		>150	32.11
	FC-2.3	5	0.02
		25	0.53
		100	8.83
		>150	30.89
	FC-2.4	5	0.25
		25	6.38
		100	102.05
		>150	229.61
		5	0.27
	EC 2 1	25	6.81
	FC-3.1	100	108.95
E7 02		>150	245.14
FZ 03		5	0.29
	EC 2 2	25	7.38
	FC-3.2	100	118.04
		>150	265.59
		5	0.01
FZ 04	FC-4	25	0.44
		100	7.08

Table 4-4 Source Term Modeling Results

Chapter 4.	Consequences	Analysis
------------	--------------	----------

Fire zone	Failure case	Breach diameter (mm)	Discharge rate (Kg.s ⁻¹)
		>150	25.68
		5	0.57
	EC 5 1	25	14.29
	FC-3.1	100	228.68
E7 05		>150	514.53
FZ 05		5	1.16
	FC-5.2	25	29.39
		100	464.52
		>150	868.61
		5	0.62
FZ 06	FC-6	25	15.52
		100	248.45
		>150	559.03
FZ 07		5	0.01
	EC 7	25	0.43
	Г С -/	100	6.86
		>150	15.44

Based on the source term modeling, several observations can be made regarding the characteristics of releases.

Firstly, it is evident that liquid releases exhibit larger discharge rates in comparison to gas releases since it has higher density. This implies that in the event of a release, liquids are more likely to be discharged at a higher rate, potentially leading to a more rapid spread of the hazardous material. Furthermore, the discharge rate is influenced by the size of the breach.

Larger breaches result in higher discharge rates, emphasizing the importance of effectively managing breaches to minimize potential hazards.

Although smaller sizes are the ones that are more harder to detect. Additionally, pressure plays a crucial role in determining the strength of a release. Higher pressures are associated with more forceful and intense releases, which can lead to increased risks and potential consequences.

4.4.2 Fire accidents modeling results

Fire		Dangerous	Breach	Thermal radiation extents (m)		
zone	Failure case	Phenomenon	diameter	12.5	37.5	
			(mm)	Kw.m ⁻²	Kw.m ⁻²	
			5	7.48	6.60	
		Farly Pool fire	25	26.50	3.30	
		Early 1 001 life	100	N/A	N/A	
	FC1 1		>150	N/A	N/A	
	101.1		5	14.00	11.57	
		Late Pool Fire	25	37.27	2.40	
		Late 1 001 1 lie	100	45.60	3.50	
F7 01			>150	80.10	Not reached	
12.01			5	7.02	6.40	
		Farly Pool Fire	25	25.56	15.50	
			100	N/A	N/A	
	FC-1.2		>150	N/A	N/A	
		Late Pool Fire	5	13.11	10.90	
			25	34.76	3.94	
			100	41.70	3.60	
			>150	76.35	Not reached	
			5	5.76	5.30	
		Farly Pool Fire	25	6.30	Not reached	
		Larry 1 001 The	100	6.30	Not reached	
	FC 2 1		>150	N/A	N/A	
	1 C 2.1		5	14.50	12.46	
		Late Pool Fire	25	6.30	Not reached	
		Late 1 0011 lite	100	6.30	Not reached	
F7 02			>150	6.30	Not reached	
12.02			5	1.91	Not reached	
	EC 2 2	Ist Fire	25	8.11	3.61	
	10-2.2	JetThe	100	29.49	13.93	
			>150	53.88	26.04	
			5	1.84	Not reached	
	EC 2.2	Lat Fira	25	7.99	3.54	
	1.6-2.3	זכו רוופ	100	29.46	13.92	
			>150	52.92	25.55	

Table 4-5 Fire Accidents Modeling Results

Chapter 4. Consequences Analysis

Fire		Dangerous	Breach	Thermal radiation extents (m)		
zone	Failure case	Phenomenon	diameter	12.5 Kw.m ⁻	37.5	
			(mm)	2	Kw.m ⁻²	
			5	4.15	4.20	
		Farly Pool Fire	25	17.31	13.80	
		Larry 1 001 1 ne	100	52.26	2.30	
	FC-2.4		>150	N/A	N/A	
			5	11.78	9.69	
		Late Pool Fire	25	31.15	3.23	
			100	73.35	Not reached 2.44	
			>130	<u> </u>	4.30	
			25	7.23	Not reached	
		Early Pool Fire	100	7.23	Not reached	
FZ 03			100	7.23	Not reached	
	FC-3.1		>150	1.23	Not reached	
		Late Pool Fire	5	11.99	10.24	
			25	7.23	Not reached	
			100	7.23	Not reached	
			>150	7.23	Not reached	
	FC-3.2	Early Pool Fire	5	4.65	4.50	
			25	18.35	14.10	
			100	N/A	N/A	
			>150	N/A	N/A	
		Late Pool Fire	5	12.30	10.31	
			25	33.15	3.20	
			100	33.90	3.80	
			>150	41.60	3.65	
			5	1.67	Not reached	
			25	7.31	3.24	
FZ 04	FC-4	Jet Fire	100	26.57	12.51	
			>150	48.53	23.36	
			5	6.44	5.80	
			25	7.57	Not reached	
		Early Pool Fire	100	7.57	Not reached	
			>150	7 57	Not reached	
FZ 05	FC-5.1		5	16.02	12 91	
			25	7 57	Not reached	
		Late Pool Fire	100	7.57	Not reached	
			100	1.31	Not reached	
			>150	1.57	Not reached	

Fire	Failure case	Dangerous	Breach	Thermal radiation extents (m)	
zone		Phenomenon	(mm)	12.5 Kw.m ⁻²	37.5 Kw.m ⁻²
			5	6.74	Not reached
	FC-5.2	Farly Dool Fire	25	6.74	Not reached
			100	6.74	Not reached
			>150	6.74	Not reached
			5	6.74	Not reached
		Lata Dool Fira	25	6.74	Not reached
			100	6.74	Not reached
			>150	6.74	Not reached
	FC-6	Early Pool Fire	5	6.61	6.10
			25	24.58	11.10
			100	N/A	N/A
E7 06			>150	N/A	N/A
FZ 00		Late Pool Fire	5	16.40	13.16
			25	45.05	2.78
			100	42.90	3.61
			>150	76.15	Not reached
			5	1.67	0.73
EZ 07	EC 7	Lat Fina	25	7.21	3.22
Γ Ζ U/	FC-7	Jet File	100	26.19	12.40
			>150	38.25	18.36
FZ 08	FC-8	Pool Fir	e	6.20	Not reached

Chapter 4. Consequences Analysis

According to the observations made, we can interpret the results as follows:

- Breach diameter and Pool Fires: For a breach diameter of 150 mm, instantaneous releases occur, making the modeling of early pool fires not applicable. However, for a breach diameter of 100 mm, the distinction between continuous and instantaneous releases needs to be verified based on specific conditions outlined in Appendix B. This differentiation is important for accurately modeling and assessing the corresponding fire behavior.

- Pool Fire Radiation Intensity: The thermal radiation intensity of pool fires is influenced by various factors, including pool diameter, view factor, flame shape, and atmospheric transmissivity. It is important to note that even with a significant discharge rate, the radiative impact may not be significant when the pool diameter increases. The emissive power tends to

decline with larger pool diameters, often resulting in the 37.5 kW/m^2 threshold not being reached in larger sizes.

- Pool Fires and Retention Dikes: The presence of a retention dike for pool fires can limit the spread of the pool to other equipment. However, it also concentrates the danger on the equipment source. The rectangular flame shape associated with pool fires contributes to reducing the danger as the view factor for this configuration is smaller compared to a cylindrical flame. Consequently, a rectangular bund is considered more suitable as a passive protection measure in such scenarios.

- Jet Fires and Thermal Radiation Intensity: Jet fires exhibit an increase in the extent of thermal radiation intensity with the breach diameter, as there is a direct relationship between discharge rate and radiation intensity. This indicates that larger breaches result in more severe thermal radiation effects.

- Jet Fires vs. Pool Fires: Jet fires are generally more dangerous than pool fires due to the absence of mitigation measures like bunds to reduce their consequences' severity. The thermal radiation intensity of jet fires often exceeds the 37.5 kW/m² threshold, except for very small breaches.

4.4.3 Vapor Cloud Explosion Modeling Results

Fire	Failure case	Breach	Blast Overpressure extents (m)			
zone		(mm)	200 mbar	350 mbar	700 mbar	
		5	50	35	21	
	EC 1 1	25	59	41	25	
	FC-1.1	100	63	43	27	
EZ 01		>150	65	45	28	
FZ 01	FC-1.2	5	42	29	18	
		25	56	39	24	
		100	62	43	27	
		>150	65	45	28	
FZ 02		5	39	27	17	
	EC 2 1	25	45	31	19	
	FC-2.1	100	45	31	19	
		>150	45	31	19	
	FC-2.2	5	17	12	8	

Table 4-6 VCE Modeling Results

Chapter 4. Consequences Analysis

Fire		Breach	Blast Ov	verpressure exte	ents (m)
zone	Fanure case	(mm)	200 mbar	350 mbar	700 mbar
		25	26	18	12
		100	34	24	15
		>150	33	23	14
		5	18	13	8
		25	29	20	13
	FC-2.3	100	37	26	16
		>150	36	25	16
		5	29	20	13
		25	36	25	16
	FC-2.4	100	56	39	24
		>150	41	29	18
		5	35	22	14
	EC 2 1	25	34	23	15
	FC-3.1	100	34	23	15
E7 02		>150	34	23	15
FZ 03	FC-3.2	5	Not reached	Not reached	Not reached
		25	19	13	Not reached
		100	24	17	11
		>150	31	21	13
		5	16	11	7
E7 04	EC 4	25	27	19	12
ГZ 04	FC-4	100	38	26	16
		>150	37	25	16
		5	Not reached	Not reached	Not reached
	EC 5 1	25	Not reached	Not reached	Not reached
	FC-3.1	100	Not reached	Not reached	Not reached
F7 05		>150	Not reached	Not reached	Not reached
12.05		5	Not reached	Not reached	Not reached
	FC-5.2	25	Not reached	Not reached	Not reached
	10-3.2	100	Not reached	Not reached	Not reached
		>150	Not reached	Not reached	Not reached
		5	Not reached	Not reached	Not reached
F7 06	FC 6 1	25	Not reached	Not reached	Not reached
12.00	1.0-0.1	100	Not reached	Not reached	Not reached
		>150	Not reached	Not reached	Not reached
FZ 07	FC-7	5	Not reached	Not reached	Not reached

Fire	ire Failure case	Breach diameter	Blast Overpressure extents (m)		
zone		zone randre case diameter (mm)	200 mbar	350 mbar	700 mbar
		25	Not reached	Not reached	Not reached
		100	Not reached	Not reached	Not reached
		>150	Not reached	Not reached	Not reached

The VCE modeling results shed light on the consequences of potential VCE incidents in the early production facility. The adopted modeling approach, using the TNO multi energy model, considered the presence of congested areas. In areas without obstacles or minimal congestion, the blast strength was assumed to be low, resulting in the explosion thresholds not being reached. This suggests relatively lower impact and severity of VCE explosions in these unobstructed zones. However, in congested areas, the severity of VCE explosions depended on the size of the intersection volume between the vapor cloud and congestion. Larger intersection volumes correlated with more severe explosions. This highlights the significant influence of congestion on the potential consequences and magnitude of VCE incidents.

Conclusion

This chapter has provided an overview of the consequences analysis within Expro's Early Production Facility as part of the Fire and Explosion Risk Assessment (FERA) process. By incorporating hazard identification from various sources such as historical data, HazOp, and HazId studies, the identification of congested areas critical to vapor cloud explosions, and the definition of fire zones, the chapter has laid the foundation for assessing the potential consequences of fire and explosion events.

Furthermore, the chapter highlighted the importance of accurate inputs for consequences modeling, considering both operational factors and meteorological conditions. Through source term modeling, valuable insights into the release of hazardous substances were obtained, enabling a better understanding of the potential extent and impact of accidents. The modeling results of fire accidents and vapor cloud explosions further enhance the understanding of the potential consequences, aiding in risk evaluation and the development of effective mitigation measures. By assessing the potential impacts on personnel, assets, and the surrounding environment, proactive measures can be implemented to prevent or minimize the severity of such incidents.

Overall, the consequences analysis presented in this chapter serves as a crucial step in the FERA process, enabling the identification of high-risk areas and guiding decision-making for safety improvements.

Chapter 5. Risk Assessment

Introdu	ction	
5.1 Ri	sk Matrix	
5.1.1	Frequency Levels	88
5.1.2	Severity Levels	89
5.2 Fi	rst Level Risk Evaluation	
5.3 Se	econd Level Risk Evaluation	114
5.3.1	Exposure to 37.5 KW.m ⁻²	115
5.3.2	Exposure to Pool Fire impingement	119
5.3.3	Exposure to Jet Fire impingement	123
5.3.4	Exposure to 350 mbar	126
5.4 Re	ecommendations to Prevent Equipment Failure	
5.5 Re	etention Dike dimensioning	
5.5.1	Dike sizing calculation details	129
Conclus	sion	130

Introduction

This chapter delves into the crucial process of evaluating and quantifying risks within the context of the early production facility. This chapter focuses on the application of two essential procedures that have been discussed in previous chapters: general risk evaluation using risk matrices and individual risk calculation. These procedures serve as valuable tools for comprehensively assessing and managing risks associated with various hazards and potential incidents.

5.1 Risk Matrix

To assess the risk for the XPII early production facility, we used EXPRO's risk matrix. The matrix comprises six categories for both frequency and severity. These categories serve as a framework for evaluating the likelihood and impact of potential incidents or accidents. The severity categories not only consider the safety aspects but also take into account the financial implications associated with each event. The specific details and classification of these categories can be found in the provided tables.

5.1.1 Frequency Levels

Category	Frequency level	Description	Frequency Range 1/year
1	Unlikely / Unknown	Not expected to occur	$F < 10^{-6}$
2	Remote	A remotely possible but known occurrence	$10^{-6} \le F \le 10^{-5}$
3	Occasional	Could occur but probably not more than once	$10^{-5} < F \le 10^{-4}$
4	Probable	Likely to occur occasionally more than once	$10^{-4} < F \le 10^{-3}$
5	Frequent	Likely to occur regularly	$10^{-3} < F \le 10^{-2}$
6	Highly likely	Likely to occur very regularly/always present	$F > 10^{-2}$

	Table	5-1	Frequency	Levels
--	-------	-----	-----------	--------

5.1.2 Severity Levels

Category	Financial Loss range in £
1	$F_{loss} < 1000 E$
2	$1000 \pounds \leq F_{loss} < 5000 \pounds$
3	$5000 \pounds \le F_{loss} < 50000 \pounds$
4	$50000 \pounds \leq F_{loss} < 100000 \pounds$
5	$100000 \pounds \le F_{loss} \le 1000000 \pounds$
6	$F_{loss} > 1000000E$

Table 5-2 Severity Levels

Table 5-3 EXPRO Risk Matrix

				Frequenc	y (1/year)				
	Category	1	2	3	4	5	6		
	1	1	2	3	4	5	6		
ý	2	2	4	6	8	10	12		
Severi	3	3	6	9	12	15	18		
	4	4	8	12	16	20	24		
	5	5	5 10		20	25	30		
	6	6	12	18	24	30	36		
Low I	Risk	Acceptable risk, no further measure are required							
Medium Risk		ALARP region, proposed safeguards should be implemented if the sacrifice is not in gross disproportion with the benefit.							
High 1	Risk	I	nacceptable	e risk, furthe	er measures	are require	d		

5.2 First Level Risk Assessment

As highlighted in Chapter II, the initial step in the assessmet process involves conducting a comprehensive assessment that takes into account various factors such as likelihood, exposure

time in the event of fire accidents, and financial implications. To facilitate this evaluation, it is crucial to gather information pertaining to equipment costs within the early production facility. This data will aid in determining the potential financial loss associated with different incidents or accidents.

Equipment	Cost in £
Separator including instruments and valves	200000
Surge tank including instruments and valves	100000
Knock out vessel including instruments and valves	150000
Booster pump	10000
Export pump	20000
Diesel tank	3000
10" pipe	50/meter
12" pipe	60.80/meter
16" pipe	75/meter

Table 5-4 Critical Equipment Cost in Pound

Using the above information and the contours in Appendix D, we can conduct the general risk evaluation as depicted in Table 5-5, with hazardous events coded as follow:

FZ-N.P-DPh-S

Where:

FZ: Fire Zone

N: Numbering of fire zone

P: Numbering of failure case

DPh: Type of dangerous phenomenon (EP, LP, JF or VCE)

S: Breach diameter

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-1.1-EP- Ea	Early Pool	Pipes	37.5 KW.m ²	26 min 30 s			7481	3	Low Risk
005	005 Fire	16",12",10"	Fire Impingement		7,52E-07	1	1961	2	Low Risk
FZ-1.1-EP-	Early Pool		37.5 Kw.m ²	13 min 45			4380	2	Low Risk
025 Fire	Fire	Pipe 16"	Fire Impingement	s	2,06E-07	1	6889.76	3	Low Risk
FZ-1.2-EP- 005	Early Pool Fire	Pipes 16",12",10" and Train 1 separator	37.5 Kw.m ²	27 min	2,69E-07	1	284900	5	Medium Risk
		Train 1 Separator and 12" pipe	Fire Impingement				225000	5	Medium Risk
		Pipes 16",12",10"	37.5 Kw.m ²				69780	4	Low Risk
FZ-1.2-EP- 025	Early Pool fire	Train 1 Separator, KOVand 12" pipe	Fire Impingement	13 min 35 s	1,35E-07	1	360000	5	Medium Risk
FZ-1.2'-EP- 005	Early Pool fire	Pipes 16",12",10" and Train 2 separator	37.5 Kw.m ²	27 min	2,69E-07	1	284900	4	Low Risk

Table 5-5 First Level Risk Evaluation within XPII EPF

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
		Train 2 Separator and 12" pipe	Fire Impingement				225000	4	Low Risk
	Early Pool Fire	Pipes 16",12",10"	37.5 Kw.m ²	13 min 35 s			69780	4	Low Risk
FZ-1.2'-EP- 025		Train 2 Separator, KOVand 12" pipe	Fire Impingement		1,35E-07	1	360000	5	Medium Risk
FZ-1.1-LP-	Late Pool	Pipes 16" and	37.5 Kw.m ²	2 min 15	7.510.07		5300	2	Low Risk
005	Fire	Fire12"FireImpingement	S	7,51E-07	1	1500	2	Low Risk	
		16" pipe	37.5 Kw.m ²				1000		Low Risk
FZ-1.1-LP- 025	Late Pool Fire	Train 1 and 2 separators, KOV, 16",12",10"	Fire Impingement	2 min 14 s	3,91E-06	2	4000	2	Low Risk
		16"	37.5 Kw.m ²				1000		Low Risk
FZ-1.1-LP- 100	Late Pool Fire	Train 1 and 2 separators, KOV, 16",12",10"	Fire Impingement	2 min 13 s	6,11E-06	2	4000	2	Low Risk
FZ-1.1-LP- 150	Late Pool Fire	Train 1 and 2 separators, surge tanks,	Fire Impingement	2 min 15 s	1,36E-05	3	10000	3	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
	Lata Dool	16",12" and 10" pipes	37.5 Kw.m ²	2 min 16 s			1600	2	Low Risk
005	Fire	Train 1 separator and 12" pipe	Fire Impingement		2,69E-07	1	3000	2	Low Risk
FZ-1.2-LP- 025		12" inlet pipe	37.5 Kw.m ²	2 min 15 s	2,56E-06		1000	2	Low Risk
	Late Pool Fire	Train 1 separator, KOV and 12 pipe	Fire Impingement			2	3500	2	Low Risk
FZ-1.2-LP- 100	Late Pool Fire	12" inlet pipe	37.5 Kw.m ²	2 min 17 s	4,01E-06		1000	2	Low Risk
		Train 1 and 2 separators, KOV, Train 1 surge tank	Fire Impingement			2	5200	3	Medium Risk
FZ-1.2-LP- 150	Late Pool Fire	Train 1 and 2 separators, surge tanks KOV	Fire Impingement	2 min 14 s	5,74E-06	2	6000	3	Medium Risk
FZ-1.2'-LP- 005		16",12" and 10" pipes	37.5 Kw.m ²	- 2 min 16 s			1600	2	Low Risk
	Late Pool Fire	Train 2 separator and 12" pipe	Fire Impingement		2,69E-07	1	3000	2	Low Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
		12" inlet pipe	37.5 Kw.m ²				1000	2	Low Risk
FZ-1.2'-LP- 025	Late Pool Fire	Train 2 separator, KOV and 12 pipe	Fire Impingement	2 min 15 s	2,56E-06	2	3500	2	Low Risk
	Late Pool Fire	12" inlet pipe	37.5 Kw.m ²				1000	2	Low Risk
FZ-1.2'-LP- 100		Train 1 and 2 separators, KOV, Train 2 surge tank	Fire Impingement	2 min 17 s	4,01E-06	2	5200	2	Low Risk
FZ-1.2'-LP- 150	Late Pool Fire	Train 1 and 2 separators, surge tanks KOV	Fire Impingement	2 min 14 s	5,74E-06	2	6000	2	Low Risk
FZ-1.1- VCE-005	Vapor Cloud Explosion	Train 1 and 2 separators, Kov and piping	350 mbar overpressure	/	3,31E-07	1	160000	5	Medium Risk
FZ-1.1- VCE-025	Vapor Cloud Explosion	Train 1 and 2 separators Surge tanks, KOV piping	350 mbar overpressure	/	2,27E-06	2	203000	4	Medium Risk
FZ-1.1- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators Surge tanks, KOV piping	350 mbar overpressure	/	3,55E-06	2	203000	4	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-1.1- VCE-150	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	7,92E-06	2	263000	5	Medium Risk
FZ-1.2- VCE-005	Vapor Cloud Explosion	Train 1 and 2 separators,KOV and piping	350 mbar overpressure	/	1,18E-07	1	158000	5	Medium Risk
FZ-1.2- VCE-025	Vapor Cloud Explosion	Train 1 and 2 separators, Surge tanks, KOVpiping	350 mbar overpressure	/	1,49E-06	2	203000	5	Medium Risk
FZ-1.2- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators, Surge tanks, KOVpiping	350 mbar overpressure	/	2,32E-06	2	203000	5	Medium Risk
FZ-1.2- VCE-150	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	7,92E-06	2	263000	5	Medium Risk
FZ-1.2'- VCE-005	Vapor Cloud Explosion	Train 1 Separators, KOV and piping	350 mbar overpressure	/	1,18E-07	1	203000	5	Medium Risk
FZ-1.2'- VCE-025	Vapor Cloud Explosion	Train 1 and 2 separators, train 1 surge tank, KOV and piping	350 mbar overpressure	/	1,49E-06	2	198000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-1.2'- VCE-100	Vapor Cloud Explosion	Train 1 and 2 Surge tanks, separators, KOV piping	350 mbar overpressure	/	2,32E-06	2	203000	5	Medium Risk
FZ-1.2'- VCE-150	Vapor Cloud Explosion	Train 1 and 2 except export pumps and piping	350 mbar overpressure	/	7,92E-06	2	263000	5	Medium Risk
FZ-2.1-EP- 005	Early Pool fire	Train 1 separator	37.5 Kw.m ² Fire Impingement	28 min 26 s	1,07E-06	2	200000	5	Medium Risk
FZ-2.1-EP- 025	Early Pool Fire	Train 1 separator	Fire Impingement	16 min	4,08E-07	1	200000	5	Medium Risk
FZ-2.1-EP- 100	Early Pool Fire	Train 1 separator	Fire Impingement	96 min 50s	1,01E-07	1	200000	5	Medium Risk
FZ-2.1-LP- 005	Late Pool Fire	Train 1 separator	37.5 Kw.m ² Fire Impingement	2 min 14 s	1,07E-06	2	2000	2	Low Risk
FZ-2.1-LP- 025	Late Pool Fire	Train 1 separator	Fire Impingement	11 min 31 s	5,71E-07	1	200000	5	Medium Risk
FZ-2.1-LP- 100	Late Pool Fire	Train 1 separator	Fire Impingement	92 min 21 s	9,99E-06	2	64000	4	Medium Risk
FZ-2.1-LP- 150	Late Pool Fire	Train 1 separator	Fire Impingement	67 min	8,27E-06	2	64000	4	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2.1- VCE-005	Vapor Cloud Explosion	Train 1 and 2 separators; train 1 surge tank, KOV	350 mbar overpressure	/	4,70E-07	1	198000	5	Medium Risk
FZ-2.1- VCE-025	Vapor Cloud Explosion	Train 1 and 2 separators; train 1 surge tank, KOV	350 mbar overpressure	/	2,51E-07	1	198000	5	Medium Risk
FZ-2.1- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators; train 1 surge tank, KOV	350 mbar overpressure	/	5,79E-06	2	198000	5	Medium Risk
FZ-2.1- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators; train 1 surge tank, KOV	350 mbar overpressure	/	4,80E-06	2	198000	5	Medium Risk
FZ-2.2-JF- 005	Jet Fire	/	Fire Impingement	20 min	1,13E-06	2	/	1	Low Risk
FZ-2.2-JF- 025	Jet Fire	Train 1 separator	37.5 Kw.m ²	10 min	5,72E-07	1	200000	5	Medium Risk
FZ-2.2- VCE-025	Vapor Cloud Explosion	Train 1 separator, KOV and piping	350 mbar overpressure	/	1,26E-07	1	350000	5	Medium Risk
FZ-2.2- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators	350 mbar overpressure	/	5,27E-07	1	550000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2.2- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators, KOV and piping	350 mbar overpressure	/	1,23E-06	2	550000	5	Medium Risk
FZ-2.3-JF- 005	Jet Fire	/	37.5 Kw.m ²	20 min	3,82E-07	1	/	1	Low Risk
FZ-2.3-JF- 025	Jet Fire	Train 1 separator	37.5 Kw.m ²	10 min	1,80E-07	1	200000	5	Medium Risk
FZ-2.3- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators, train 1 surge tank KOV and piping	350 mbar overpressure	/	2,79E-07	1	650000	5	Medium Risk
FZ-2.3- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators, KOV and piping	350 mbar overpressure	/	2,20E-06	2	550000	5	Medium Risk
FZ-2.4-EP-	Early Pool	Train 1 separator and surge tank	37.5 Kw.m ²	32 min	1,22E-06	2	300000	5	Medium Risk
005	гне	Train 1 surge tank	Fire Impingement				100000	4	Medium Risk
FZ-2.4-EP-	Early Pool	Train 1 separator, surge tank and KOV	37.5 Kw.m ²	12 min 24	4,94E-07	1	450000	5	Medium Risk
025	гие	Train 1 surge tank	Fire Impingement	8			100000	4	Low Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2.4-EP- 100	Early Pool Fire	Train 1 separator, surge tank and KOV	Fire Impingement	9 min 30s	1,12E-07	1	2000	2	Low Risk
FZ-2.4-LP-		Pipe 10"	37.5 Kw.m ²				900	1	
025	Late pool fire	Train 1 surge tank	Fire Impingement	2 min 15s	9,38E-06	2	1600	2	Low Risk
FZ-2.4-LP- 100	Late pool fire	Train 1 and 2	Fire Impingement	2 min 15s	1,11E-05	3	15000	3	Medium Risk
		Pipe 10"	37.5 Kw.m ²				900	1	Low Risk
FZ-2.4-LP- 150	Late Pool Fire	Train 1 separator, surge tank, booster pumps, train 2 surge tank	Fire Impingement	2 min 15s	9,77E-06	2	9000	3	Medium Risk
FZ-2.4- VCE-025	Vapor Cloud Explosion	Train 1 separator, surge tank, booster pumps and KOV	350 mbar overpressure	/	4,13E-06	2	480000	5	Medium Risk
FZ-2.4- VCE-100	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	6,42E-06	2	1100000	6	Medium Risk
FZ-2.4- VCE-150	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	5,67E-06	2	1100000	6	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2'.1-EP- 005	Early Pool fire	Train 2 separator	37.5 Kw.m ² Fire impingement	28 min 26 s	1,07E-06	2	200000	5	Medium Risk
FZ-2'.1-EP- 025	Early Pool Fire	Train 2 separator	Fire Impingement	16 min	4,08E-07	1	200000	5	Medium Risk
FZ-2'.1-EP- 100	Early Pool Fire	Train 2 separator	Fire Impingement	96 min 50s	1,01E-07	1	200000	5	Medium Risk
FZ-2'.1-LP- 005	Late Pool Fire	Train 2 separator	37.5 Kw.m ² Fire Impingement	2 min 14 s	1,07E-06	2	2000	2	Low Risk
FZ-2'.1-LP- 025	Late Pool Fire	Train 2 separator	Fire Impingement	11 min 31 s	5,71E-07	1	200000	5	Medium Risk
FZ-2'.1-LP- 100	Late Pool Fire	Train 2 separator	Fire Impingement	92 min 21 s	9,99E-06	2	200000	5	Medium Risk
FZ-2'.1-LP- 150	Late Pool Fire	Train 2 separator	Fire Impingement	67 min	8,27E-06	2	200000	4	Medium Risk
FZ-2'.1- VCE-005	Vapor Cloud Explosion	Train 1 and 2 separators; train 2 surge tank, KOV	350 mbar overpressure	/	4,70E-07	1	450000	5	Medium Risk
FZ-2'.1- VCE-025	Vapor Cloud Explosion	Train 1 and 2 separators; train 2 surge tank, KOV	350 mbar overpressure	/	2,51E-07	1	450000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2'.1- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators; train 2 surge tank, KOV	350 mbar overpressure	/	5,79E-06	2	450000	5	Medium Risk
FZ-2'.1- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators; train 2 surge tank, KOV	350 mbar overpressure	/	4,80E-06	2	450000	5	Medium Risk
FZ-2'.2-JF- 005	Jet Fire	/	Fire Impingement	20 min	1,13E-06	2	/	1	Low Risk
FZ-2'.2-JF- 025	Jet Fire	Train 2 separator	37.5 Kw.m ²	10 min	5,72E-07	1	200000	5	Medium Risk
FZ-2'.2- VCE-025	Vapor Cloud Explosion	Train 2 separator, KOV and piping	350 mbar overpressure	/	1,26E-07	1	350000	4	Medium Risk
FZ-2'.2- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators, KOV and piping	350 mbar overpressure	/	5,27E-07	1	550000	5	Medium Risk
FZ-2'.2- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators, KOV and piping	350 mbar overpressure	/	1,23E-06	2	550000	5	Medium Risk
FZ-2'.3-JF- 005	Jet Fire	/	Fire impingement	20 min	3,82E-07	1	/	1	Low Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2'.3-JF- 025	Jet Fire	Train 2 separator	37.5 Kw.m ²	10 min	1,80E-07	1	200000	5	Medium Risk
FZ-2'.3- VCE-100	Vapor Cloud Explosion	Train 1 and 2 separators, train 2 surge tank KOV and piping	350 mbar overpressure	/	2,79E-07	1	650000	5	Medium Risk
FZ-2'.3- VCE-150	Vapor Cloud Explosion	Train 1 and 2 separators, KOV and piping	350 mbar overpressure	/	2,20E-06	2	550000	5	Medium Risk
FZ-2'.4-EP-	Early Pool	Train 2 separator and surge tank	37.5 Kw.m ²	32 min	1,22E-06	2	300000	5	Medium Risk
005	Fire	Train 2 surge tank	Fire Impingement				100000	4	Medium Risk
FZ-2'.4-EP-	Early Pool	Train 2 separator, surge tank and KOV	37.5 Kw.m ²	12 min 24	4,94E-07	1	450000	5	Medium Risk
025	The	Train 2 surge tank	Fire Impingement	5			100000	4	Low Risk
FZ-2'.4-EP- 100	Early Pool Fire	Train 2 surge tank and KOV	Fire Impingement	9 min 30s	1,12E-07	1	2000	2	Low Risk
FZ-2'.4-LP-	I (10	Pipe 10"	37.5 Kw.m ²	2 . 15	0.205.06	2	900	1	Low Risk
025	Late pool fire	Train 2 surge tank	Fire Impingement	2 min 15s	9,38E-06	2	1700	2	Low Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-2'.4-LP- 100	Late pool fire	Train 1 and 2	Fire Impingement	2 min 15s	1,11E-05	3	15000	3	Medium Risk
FZ-2'.4-LP-	Late Pool	Pipe 10"	37.5 Kw.m ²			_	900	1	Low Risk
150	Fire	Train 2 surge tank	Fire Impingement	2 min 15s	9,77E-06	2	1000	2	Low Risk
FZ-2'.4- VCE-025	Vapor Cloud Explosion	Train 2 separator, surge tank, booster pumps and KOV	350 mbar overpressure	/	4,13E-06	2	480000	5	Medium Risk
FZ-2'.4- VCE-100	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	6,42E-06	2	1000000	6	Medium Risk
FZ-2'.4- VCE-150	Vapor Cloud Explosion	Train 1 and 2 except export pumps	350 mbar overpressure	/	5,67E-06	2	1000000	6	Medium Risk
FZ-3.1-EP- 005	Early Pool Fire	Train 1 surge tank	37.5 Kw.m ² Fire Impingement	31 min 38 s	2,30E-06	2	100000	4	Medium risk
FZ-3.1-EP- 025	Early Pool Fire	Train 1 surge tank	Fire Impingement	17 min 13 s	1,14E-06	2	100000	3	Medium risk
FZ-3.1-EP- 100	Early Pool Fire	Train 1 surge tank	Fire Impingement	106 min 13 s	1,87E-07	1	100000	4	Low Risk
FZ-3.1-LP- 025	Late Pool Fire	Train 1 surge tank	Fire Impingement	12 min 43 s	1,59E-05	3	100000	3	Medium risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-3.1-LP-	Late Pool	Train 1 surge	Fire	101 min	1,85E-05	3	100000	3	Medium risk
FZ-3.1-LP- 150	Late Pool Fire	Train 1 surge tank	Fire Impingement	48 min	1,53E-05	3	100000	3	Medium risk
FZ-3.1- VCE-025	Vapor Cloud Explosion	Train 1 separator, surge tank and booster pump	350 mbar overpressure	/	7,02E-06	2	330000	5	Medium Risk
FZ-3.1- VCE-100	Vapor Cloud Explosion	Train 1 separator, surge tank and booster pump	350 mbar overpressure	/	1,07E-05	3	330000	5	Medium Risk
FZ-3.1- VCE-150	Vapor Cloud Explosion	Train 1 separator, surge tank and booster pump	350 mbar overpressure	/	8,89E-06	2	330000	5	Medium Risk
FZ-3.2-EP- 005	Early pool fire	Train 1 surge tank,booster pumps and export pumps	37.5 Kw.m ²	31 min	3,74E-07	1	190000	5	Medium Risk
		Booster pumps	Fire Impingement				30000	3	Low Risk
FZ-3.2-EP- 025	Early pool fire	Train 1 surge tank, booster pumps and export pumps	37.5 Kw.m ²	12 min 36 s	1,66E-07	1	130000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
		Booster pumps	Fire Impingement				30000	3	Low Risk
FZ-3.2-LP-	Lata Pool fire	Pipe between ST and pumps	37.5 Kw.m ²	2 min 150	3 15E 06	2	900	1	Low Risk
025		Train 1 booster pumps	Fire Impingement	2 11111 1.58	5,15E-00	۷.	1100	2	Low Risk
FZ-3.2-LP-	Lata Dool fira	Pipe between ST and pumps	37.5 Kw.m ²	2 min 16	3 80E 06	2	900	1	Low Risk
100 Late Foot file	Train 1 booster pumps	Fire Impingement	8	5,89E-00		1100	2	Low Risk	
FZ-3.2-LP-	Lata Dool fire	Pipe between ST and pumps	37.5 Kw.m ²	2 min 13	2 21E 06	2	300	1	Low Risk
150	Late Pool life	Train 1 booster pumps	Fire Impingement	S	5,51E-00	2	1100	2	Low Risk
FZ-3.2- VCE-025	Vapor Cloud Explosion	Train 1 surge tank and booster pumps	350 mbar overpressure	/	1,39E-06	2	130000	5	Medium Risk
FZ-3.2- VCE-100	Vapor Cloud Explosion	Train 1 surge tank and booster pumps	350 mbar overpressure	/	2,25E-06	2	130000	5	Medium Risk
FZ-3.2- VCE-150	Vapor Cloud Explosion	Train 1 surge tank and booster pumps	350 mbar overpressure	/	1,92E-06	2	130000	5	Medium Risk
FZ-3'.1-EP- 005	Early Pool Fire	Train 2 surge tank	37.5 Kw.m ² Fire Impingement	31 min 38 s	2,30E-06	2	100000	4	Medium risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-3'.1-EP-	Early Pool	Train 2 surge	Fire	17 min 13	11/E06	2	100000	Λ	Medium
025	Fire	tank	Impingement	S	1,14E-00	2	100000	4	risk
FZ-3'.1-EP-	Early Pool	Train 2 surge	Fire	106 min	1 87E-07	1	100000	4	Low Rick
100	Fire	tank	Impingement	13 s	1,0712-07	1	100000		LOW KISK
FZ-3'.1-LP-	Late Pool	Train 2 surge	Fire	12 min 43	1 59E-05	3	100000	4	Medium
025	Fire	tank	Impingement	S	1,572-05	5	100000		risk
FZ-3'.1-LP-	Late Pool	Train 2 surge	Fire	101 min	1 85E-05	3	100000	4	Medium
100	Fire	tank	Impingement	23 s	1,051 05	5	100000	•	risk
FZ-3'.1-LP-	Late Pool	Train 2 surge	Fire	48 min	1 53E-05	3	100000	4	Medium
150	Fire	tank	Impingement		1,552 05		100000	•	risk
FZ-3'.1- VCE-025	Vapor Cloud Explosion	Train 2 separator, surge tank and booster pump	350 mbar overpressure	/	7,02E-06	2	330000	5	Medium Risk
FZ-3'.1- VCE-100	Vapor Cloud Explosion	Train 2 separator, surge tank and booster pump	350 mbar overpressure	/	1,07E-05	3	330000	5	Medium Risk
FZ-3'.1- VCE-150	Vapor Cloud Explosion	Train 2 separator, surge tank and booster pump	350 mbar overpressure	/	8,89E-06	2	330000	5	Medium Risk
FZ-3'.2-EP- 005	Early pool fire	Train 2 surge tank, booster pumps and export pumps	37.5 Kw.m ²	31 min	3,74E-07	1	330000	5	Medium Risk
Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
---------------------	---	---	--	------------------	-----------	-----------------------	------------------------	---------------------	------------------
		Booster pumps	Fire Impingement				30000	3	Low Risk
FZ-3'.2-EP- 025	Early pool fire	Train 2 surge tank, booster pumps and export pumps	37.5 Kw.m ²	12 min 36 s	1,66E-07	1	190000	5	Medium Risk
		Booster pumps	Fire Impingement				30000	3	Low Risk
FZ-3'.2-LP-	2-LP- 5 Late Pool fire $\frac{Pipe}{STa}$ Train	Pipe between ST and pumps	37.5 Kw.m ²	2 min 150	3 15E 06	2	900	1	Low Risk
025		Train 2 booster pumps	Fire Impingement		5,15E-00	2	1100	2	Low Risk
FZ-3'.2-LP-	Loto Dool fine	Pipe between ST and pumps	37.5 Kw.m ²	2 min 16 s	2 20E 06	2	900	1	Low Risk
100	Late Pool life	Train 2 booster pumps	Fire Impingement		3,89E-06		1100	2	Low Risk
FZ-3'.2-LP-	Loto Do al fina	Pipe between ST and pumps	37.5 Kw.m ²	2 min 13	2 21E 06	2	900	1	Low Risk
150	Late Pool life	Train 2 booster pumps	Fire Impingement	S	5,51E-00	2	1100	2	Low Risk
FZ-3'.2- VCE-025	Vapor Cloud Explosion	Train 2 surge tank and booster pumps	350 mbar overpressure	/	1,39E-06	2	130000	5	Medium Risk
FZ-3'.2- VCE-100	Vapor Cloud Explosion	Train 2 surge tank and booster pumps	350 mbar overpressure	/	2,25E-06	2	130000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-3'.2- VCE-150	Vapor Cloud Explosion	Train 2 surge tank and booster pumps	350 mbar overpressure	/	1,92E-06	2	130000	5	Medium Risk
FZ-4-JF-005	Jet Fire	/	/	20 min	1,97E-06	2	/	1	Low Risk
FZ-4-JF-025	Jet Fire	KOV	37.5 Kw.m ²	10 min	9,81E-07	1	150000	5	Medium Risk
	Jet Fire	KOV	37.5 Kw.m ²	2 min 30s	1,59E-07		150000	2	Low Risk
FZ-4-JF-100		Train 1 separator or train 2 separator	Fire Impingement			1	1000	2	Low Risk
		Train 1 and 2 separators and KOV	37.5 Kw.m ²	1 min	1,56E-07	1	3000	2	Low Risk
FZ-4-JF-150	Jet Fire	Train 1 separator or train 2 separator	Fire Impingement				1000	2	Low Risk
FZ-4-VCE- 025	Vapor Cloud Explosion	Train 1 and train 2 separators and KOV	350 mbar overpressure	/	2,16E-07	1	550000	5	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-4-VCE- 100	Vapor Cloud Explosion	Train 1 and train 2 separators and KOV	350 mbar overpressure	/	1,01E-06	2	550000	5	Medium Risk
FZ-4-VCE- 150	Vapor Cloud Explosion	Train 1 and train 2 separators and KOV	350 mbar overpressure	/	2,02E-06	2	550000	5	Medium Risk
FZ-5.1-EP- 005	Early pool fire	Train 1 booster pumps	37.5 Kw.m ² Fire Impingement	27 min 36s	5,67E-06	2	30000	3	Medium Risk
FZ-5.1-EP- 025	Early pool fire	Train 1 booster pumps	Fire Impingement	27 min 30 s	1,50E-06	2	30000	3	Medium Risk
FZ-5.1-EP- 100	Early pool fire	Train 1 booster pumps	Fire Impingement	189 min	2,64E-07	1	30000	3	Low Risk
FZ-5.1-LP- 025	Late Pool Fire	Train 1 booster pumps	Fire Impingement	23 min	2,85E-05	3	30000	3	Medium Risk
FZ-5.1-LP- 100	Late Pool Fire	Train 1 booster pumps	Fire Impingement	184 min 30s	2,61E-05	3	30000	3	Medium Risk
FZ-5.1-LP- 150	Late Pool Fire	Train 1 booster pumps	Fire Impingement	83 min	4,69E-06	2	30000	3	Medium Risk
FZ-5.2-EP- 005	Early pool fire	Train 1 export pumps	Fire Impingement	7 min 12 s	5,85E-06	2	1000	2	Low Risk
FZ-5.2-EP- 025	Early pool fire	Train 1 export pumps	Fire Impingement	38 min 44 s	2,10E-06	2	60000	4	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-5.2-EP- 100	Early pool fire	Train 1 export pumps	Fire Impingement	275 min	4,32E-07	1	60000	4	Low Risk
FZ-5.2-LP- 005	Late Pool Fire	Train 1 export pumps	Fire Impingement	2 min 40s	2,92E-06	2	1000	2	Low Risk
FZ-5.2-LP- 025	Late Pool Fire	Train 1 export pumps	Fire Impingement	34 min 42 s	6,08E-05	3	60000	4	Medium Risk
FZ-5.2-LP- 100	Late Pool Fire	Train 1 export pumps	Fire Impingement	270 min 40 s	4,27E-05	3	60000	4	Medium Risk
FZ-5.2-LP- 150	Late Pool Fire	Train 1 export pumps	Fire Impingement	101 min 12 s	1,10E-05	3	60000	4	Medium Risk
FZ-5'.1-EP- 005	Early pool fire	Train 2 booster pumps	37.5 Kw.m ² Fire Impingement	27 min 36s	5,67E-06	2	30000	3	Medium Risk
FZ-5'.1-EP- 025	Early pool fire	Train 2 booster pumps	Fire Impingement	27 min 30 s	1,50E-06	2	30000	3	Medium Risk
FZ-5'.1-EP- 100	Early pool fire	Train 2 booster pumps	Fire Impingement	189 min	2,64E-07	1	30000	3	Low Risk
FZ-5'.1-LP- 025	Late Pool Fire	Train 2 booster pumps	Fire Impingement	23 min	2,85E-05	3	30000	3	Medium Risk
FZ-5'.1-LP- 100	Late Pool Fire	Train 2 booster pumps	Fire Impingement	184 min 30s	2,61E-05	3	30000	3	Medium Risk
FZ-5'.1-LP- 150	Late Pool Fire	Train 2 booster pumps	Fire Impingement	83 min	4,69E-06	2	30000	3	Medium Risk
FZ-5'.2-EP- 005	Early pool fire	Train 2 export pumps	Fire Impingement	7 min 12 s	5,85E-06	2	1000	2	Low Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
FZ-5'.2-EP- 025	Early pool fire	Train 2 export pumps	Fire Impingement	38 min 44 s	2,10E-06	2	60000	4	Medium Risk
FZ-5'.2-EP- 100	Early pool fire	Train 2 export pumps	Fire Impingement	275 min	4,32E-07	1	60000	4	Low Risk
FZ-5'.2-LP- 005	Late Pool Fire	Train 2 export pumps	Fire Impingement	2 min 40s	2,92E-06	2	1000	2	Low Risk
FZ-5'.2-LP- 025	Late Pool Fire	Train 2 export pumps	Fire Impingement	34 min 42 s	6,08E-05	3	60000	4	Medium Risk
FZ-5'.2-LP- 100	Late Pool Fire	Train 2 export pumps	Fire Impingement	270 min 40 s	4,27E-05	3	60000	4	Medium Risk
FZ-5'.2-LP- 150	Late Pool Fire	Train 2 export pumps	Fire Impingement	101 min 12 s	1,10E-05	3	60000	4	Medium Risk
FZ-6.1-EP-	Early Pool	Train 1 export Pumps	37.5 Kw.m ²	25 min	2 12E 06	2	60000	4	Medium Risk
005	Fire	Expedition pipe	Fire Impingement	23 min	2,12E-06	Z	4500	2	Low Risk
FZ-6.1-EP-	Early Pool	Train 1 export Pumps	37.5 Kw.m ²	13 min	1 02E 06	2	60000	4	Medium Risk
025	Fire	Expedition pipe	Fire Impingement	30s	1,02E-00	2	4500	2	Low Risk
FZ-6.1-LP-	Late Pool	Train 1 export Pumps	37.5 Kw.m ²	2 min 17	1 04E 05	3	1600	2	Medium Risk
025	Fire	Expedition pipe	Fire Impingement	s	1,94E-05	3	1000	1	Low Risk
FZ-6.1-LP- 100	Late Pool Fire	Train 1 export Pumps	37.5 Kw.m ²	2 min 17 s	2,04E-05	3	1600	2	Medium Risk

Hazardous Event	Dangerous phenomenon	Target equipment	Thermal radiation /blast exposure	Exposure Time	Frequency	Frequency category	Financial loss in £	Outcome category	Level of risk
		Expedition pipe	Fire Impingement				1000	1	Low Risk
FZ-6.1-LP- 150	Late Pool Fire	Expedition pipe	Fire Impingement	2 min 17 s	2,82E-05	3	1000	1	Low Risk
FZ-6.2-JF- 005	Jet Fire	KOV and expedition pipe	37.5 Kw.m ²	20 min	2,18E-06	2	160000	5	Medium Risk
FZ-6.2-JF- 025	Jet Fire	KOV and expedition pipe	37.5 Kw.m ²	10 min	1,07E-06	2	160000	5	Medium Risk
FZ-6.2-JF- 100	Jet Fire	KOV and expedition pipe	37.5 Kw.m ²	2 min 30s	1,70E-07	1	2500	2	Low Risk
FZ-6.2-JF- 150	Jet Fire	KOV and expedition pipe	37.5 Kw.m ²	1 min	2,11E-07	1	2500	2	Low Risk
FZ-7-PF	Pool Fire	/	/	/	2,26E-06	2	/	1	Low Risk

Based on the general risk assessment table above and for different types of hazardous events we can interpret the results as follows:

Late pool fires in pipelines generally pose a low risk level due to their limited exposure time, which remains below the defined threshold in the evaluation criteria for equipment vulnerability. As a result, these fires have relatively limited potential impact and consequences.
Vapor cloud explosions (VCE) typically present a medium risk level as they have a larger

footprint compared to fires, affecting a wider area. The extended contours of VCE incidents increase the potential risks and hazards associated with them.

- Impingement in pipeline pool fires has minimal impact on equipment, thanks to the presence of a retention dike wall that prevents the fire from reaching the equipment. Consequently, the risk of damage or adverse effects on the equipment is reduced.

- Pool fires resulting from breaches in process vessels or pumps expose equipment primarily to fire impingement. The significant thickness of the flammable liquid in these incidents leads to a longer burning duration and exposure time, surpassing the specified threshold in Chapter II.

- Early pool fires pose a greater danger compared to late pool fires due to their significantly longer burning duration. The prolonged duration increases the exposure time and potential risks associated with these fires.

- Jet fires, on the other hand, exhibit a low risk level for larger breaches, as they result in a rapid pressure drop and shorter burning time.

Thus for a more thorough evaluation, specific considerations should be taken into account. For a threshold of 37.5 Kw.m⁻², early pool fires in pipelines, jet fires for smaller breaches (where the exposure time exceeds 10 minutes), and early pool fires in separators and surge tanks for a 5 mm breach diameter should be considered. All incidents of vapor cloud explosions require assessment. Regarding pool fire impingement, pool fires in equipment with retention dikes should be considered, taking into account an exposure time equal to or greater than 10 minutes. Lastly, for jet fire impingement, the exposure time should exceed 5 minutes to be considered a hazardous event.

By evaluating and considering these risk levels and factors, appropriate measures can be implemented to enhance safety, mitigate potential hazards, and minimize the associated risks within the early production facility.

5.3 Second Level Risk Assessment

Following the steps outlined in chapter II, a MATLAB program was developed based on image recognition. It consists of the following steps:

- The code starts by defining the path to a folder containing contour images (See Appendix D) and selects the appropriate file type in that folder.

- The contour image is divided into grids, with each grid having a specified size.

- An array of values is defined, representing the accidents frequencies associated with each image and thus with each hazardous event.

- Cell arrays are initialized to store the grids, their coordinates, whether they are colored or not, and the values associated with each grid.

- A target color palette is defined according to the targeted zones for example in case of vapor cloud explosions the failure zone in question is the one delimited with the blue color while for fires the failure zone is the red (See Appendix), which will be used to identify colored grids in the images.

- The code processes each image individually by performing the following steps:

- \succ The image is read.
- Grids are created within the image based on the specified grid size, a grid of 5 m was chosen.
- Each grid is checked to determine if it is colored or not based on the average color within the grid region.
- Values are assigned to the colored grids based on the provided array of values.
- If the current image index is greater than 1 and the previous grid is colored, the value of the current grid is updated to include the value of the previous grid, this will result in the aggregation of contributing events frequencies.

- The code then visualizes the results by creating a blank canvas and displaying it. It iterates through each image and each grid, determining the appropriate color based on the associated frequency. grids are plotted on the blank canvas with the assigned color.

In summary, the code performs calculations and visualizations to analyze the grids and associated values within a set of images. It identifies colored grids based on average colors, assigns values to the colored grids, and generates a visual representation of the results on a blank canvas.

5.3.1 Exposure to 37.5 KW.m⁻²

5.3.1.1 Frequency Mapping

Figure 5-1 Frequency Mapping for 37.5 kW.m⁻²Thermal Radiation Intensity

The frequency mapping figure illustrates the distribution of frequencies for hazardous events that have the potential to cause equipment failures, considering a threshold of 37.5 kW/m^2 . The white space in the mapping represents frequencies that are below 10^{-8} , indicating very low probabilities of occurrence.

Analyzing the figure, it can be observed that:

- Both trains separators exhibit parts with failure frequencies below 10^{-6} , indicating a relatively low likelihood of failure in those sections. Additionally, there are other parts where the failure frequencies range between 10^{-6} and 10^{-5} , suggesting a slightly higher probability of failure in those areas.

- Most pipelines in the system demonstrate failure frequencies below 10⁻⁶, indicating a generally low risk of failure along their routes. This suggests that the pipelines are adequately designed and maintained to minimize the occurrence of hazardous events.

- The presence of retention dikes proves to be beneficial, as it significantly reduces the likelihood of failure for critical equipment. The majority of critical equipment is unlikely to experience failures, enhancing the overall safety and reliability of the facility.

- However, it is worth noting that the train 2 booster pumps occasionally exhibit failures, as indicated by their higher failure frequencies compared to other equipment. This highlights the importance of closely monitoring and maintaining these pumps to mitigate the associated risks.

5.3.1.2 Risk Assessment for Assets

Table 5-6 Risk Assessment for Assets Exposed to 37.5 kW.m⁻² Thermal Radiation Intensity

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No))
						Fire and gas system	40000	Yes
			200000	5		Firefighting system	20000	Yes
Train 1 Separator	$10^{-6} \le F \le 10^{-5}$	2			Medium Risk	Spacing	Technically not possible	No
							On site surveillance within relatively short periods	Personnel availability
Train 2 Separator	$10^{-6} \le F \le 10^{-5}$	2	200000	5	Medium Risk	Same as train 1 separator		
KOV	$F < 10^{-6}$	1	150000	5	Medium Risk	Same a	as train 1 separat	or
Train 1 Surge Tank	$F < 10^{-6}$	1	100000	4	Low Risk	/	/	/
Train 2 Surge Tank	$F < 10^{-6}$	1	100000	4	Low Risk	/	/	/
Train 1	$10^{-6} < E < 10^{-5}$	2	30000	3	Medium	Fire and gas system	40000	No
pumps	$10^{-6} \le F \le 10^{-5}$	2	30000	3	Risk	Firefighting system	20000	Yes

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No))	
						Spacing	Technically not possible	No	
						On site surveillance within relatively short periods	Personnel availability	Yes	
Train 2 booster pumps	$10^{-5} < F \le 10^{-4}$	3	30000	3	Medium Risk	Same as previous			
Train 1 Export pumps	$F < 10^{-6}$	1	60000	4	Low Risk	/	/	/	
						Fire and gas system	40000	Yes	
Troin 2						Firefighting system	20000	Yes	
Export	$10^{-6} \le F \le 10^{-5}$	2	60000	4	Medium Risk	Spacing	Technically not possible	No	
րաործ						On site surveillance within relatively short periods	Personnel availability	Yes	

5.3.2 Exposure to Pool Fire impingement

5.3.2.1 Frequency Mapping

Figure 5-2 Frequency Mapping for Pool Fire Impingement

The frequency mapping figure presented depicts the distribution of frequencies for pool fire impingement events, with the white spaces indicating frequencies below 10⁻⁸, signifying extremely low probabilities of occurrence.

Upon examining the figure, it becomes evident that both trains, with the exception of the export pumps, demonstrate a frequency level classified as "remote." This classification suggests that the likelihood of pool fire impingement on most components within the trains is relatively low.

5.3.2.2 Risk Assessment for Assets

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No)	
						Fire and gas system	40000	Yes	
						Fireproofing	5906.4	Yes	
		2	200000			Deluge system	30000	Yes	
Train 1 Separator	$10^{-6} \le F \le 10^{-5}$			5	Medium Risk	Medium Risk	Firefighting system	20000	Yes
						Drainage system for retention dikes	30000	Yes	
						On site surveillance within relatively short periods	Personnel availability	Yes	
Train 2 Separator	$10^{-6} \le F \le 10^{-5}$	2	200000	5	Medium Risk	San	ne as previous		
KOV	$F < 10^{-8}$	1	/	1	Low Risk	/	/	/	
						Fire and gas system	40000	Yes	
						Fireproofing	2468	Yes	
Train 1 Surge Tank	$10^{-6} \le F \le 10^{-5}$	2	100000	4	Medium Risk	Deluge system	30000	Yes	
Surge Tank					K18K	Firefighting system	20000	Yes	
						Drainage system for retention dikes	30000	Yes	

Table 5-7 Risk Assessment for Assets Exposed to Pool Fire Impingement

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No))
						On site surveillance within relatively short periods	Personnel availability	Yes
Train 2 Surge Tank	$10^{-6} \le F \le 10^{-5}$	2	100000	4	Medium Risk	Same as previous		
						Fire and gas system	40000	No
		2	30000	3		Fireproofing	1000	Yes
Train 1 booster pumps	$10^{-6} \le F \le 10^{-5}$				Medium	Firefighting system	20000	Yes
					Risk	Drainage system for retention dikes	30000	Yes
						On site surveillance within relatively short periods	Personnel availability	Yes
Train 2 booster pumps	$10^{-6} \le F \le 10^{-5}$	2	30000	3	Medium Risk	San	ne as previous	
						Fire and gas system	40000	Yes
Train 1					Medium	Fireproofing	1000	Yes
Export pumps	$10^{-5} \le F \le 10^{-4}$	3	60000	4	Risk	Firefighting system	20000	Yes
						Drainage system for retention dikes	30000	Yes

Chapter 5. Risk Assessment

						On site surveillance within relatively short periods	Personnel availability	Yes
Train 2 Export pumps	$10^{-5} \le F \le 10^{-4}$	3	60000	4	Medium Risk	San	ne as previous	

5.3.3 Exposure to Jet Fire impingement

5.3.3.1 Frequency Mapping

Figure 5-3 Frequency Mapping for Jet Fire Impingement

The frequency mapping for jet fire provides important insights into the probabilities of failure in different areas. The white space in the mapping indicates very low frequencies, with a likelihood of less than 10^{-8} . This suggests that these areas have a minimal probability of experiencing jet fire incidents.

In particular, the failure frequency at the train 2 separator is also less than 10⁻⁸, indicating a very low probability of failure in this component. However, it is important to note that the Knock out Vessel is more susceptible to jet fire impingement. This is because both the gas export line and the pipe coming from the separators are in close proximity to it. The failure frequency for the Knock out Vessel is classified as remote, indicating a higher probability of failure compared to other components.

Chapter 5. Risk Assessment

On the other hand, part of the train 1 separator, specifically the area where the inlet is located, is expected to be exposed to jet fire impingement. The failure frequency for this section is also at a remote level, suggesting a relatively higher probability of failure in this specific area.

Furthermore, it is worth noting that as we follow the gas export line, the oil export line is also at risk of being affected by jet fire incidents. The frequency mapping helps identify these potential areas of concern and allows for targeted safety measures and risk mitigation strategies to be implemented to minimize the likelihood and impact of jet fire events.

5.3.3.2 Risk Assessment for Assets:

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No)
Train 1	$10^{-6} < E < 10^{-5}$	2	200000	5	Medium	Fire and gas system	40000	Yes
Separator	$10 \leq r \leq 10$	2	200000	5	Risk	Fire proofing	5906.4	Yes
Train 2 Separator	$F < 10^{-8}$	1	200000	5	Low Risk	/	/	/
KOV	10-6 <i>- E -</i> 10-5	2	150000	5	Medium	Fire and gas system	40000	Yes
KUV	$10^{\circ} \leq F \leq 10^{\circ}$	2	150000	5	Risk	Fire proofing	2500	Yes
Train 1 Surge Tank	$F < 10^{-8}$	1	100000	4	Low Risk	/	/	/
Train 2 Surge Tank	$F < 10^{-8}$	1	100000	4	Low Risk	Same as train 1 surge tank		
Train 1 booster pumps	$F < 10^{-8}$	1	30000	3	Low Risk	/	/	/
Train 2 booster pumps	$F < 10^{-8}$	1	30000	3	Low Risk	Same as t	rain 1 booster pu	mps
Train 1 Export pumps	$F < 10^{-8}$	1	60000	4	Low Risk	/	/	/
Train 2 Export pumps	$F < 10^{-8}$	1	60000	4	Low Risk	Same as	train 1 export pu	nps

Table 5-8 Risk Assessment for Assets Exposed to Jet Fire Impingement

5.3.4 Exposure to 350 mbar

5.3.4.1 Frequency Mapping

Figure 5-4 Frequency Mapping for 350 mbar

The frequency mapping figure presented illustrates the distribution of failure frequencies for hazardous events capable of causing equipment failures, considering a pressure threshold of 350 mbar. The white spaces within the figure represent frequencies below 10⁻⁸, indicating extremely low probabilities of occurrence. Upon analyzing the figure, it becomes evident that both trains, with the exception of the export pumps, exhibit a failure frequency level classified as "remote." This classification suggests a relatively low likelihood of failure for most components within the trains, emphasizing their overall robustness and reliability.

5.3.4.2 Risk Assessment for Assets

Equipment	Overall frequency range	Category	Outcome in £	Category	Risk Level	Safeguard	Cost in £ or trouble	Is it reasonably practicable? (Yes/No)
Train 1 Separator	$10^{-6} \le F \le 10^{-5}$	2	200000	5	Medium Risk	Fire and gas system	40000	Yes
Train 2 Separator	$10^{-6} \le F \le 10^{-5}$	2	200000	5	Medium Risk	Same as	s train 1 separate)r
KOV	$10^{-6} \le F \le 10^{-5}$	2	150000	5	Medium Risk	Fire and gas system	40000	Yes
Train 1 Surge Tank	$10^{-6} \le F \le 10^{-5}$	2	100000	4	Medium Risk	Fire and gas system	40000	Yes
Train 2 Surge Tank	$10^{-6} \le F \le 10^{-5}$	2	100000	4	Medium Risk	Same as train 1 surge tank		ık
Train 1 booster pumps	$10^{-6} \le F \le 10^{-5}$	2	30000	3	Medium Risk	Fire and gas system	40000	No
Train 2 booster pumps	$10^{-6} \le F \le 10^{-5}$	2	30000	3	Medium Risk	Same as tr	ain 1 booster pu	mps
Train 1 Export pumps	$F < 10^{-8}$	1	60000	4	Low Risk	/	/	/
Train 2 Export pumps	$F < 10^{-8}$	1	60000	4	Low Risk	Same as tr	rain 1 export pu	nps

Table 5-9 Risk Assessment for Assets Exposed to 350 mbar

5.4 Recommendations to Prevent Equipment Failure

To prevent equipment failure when exposed to hazardous events, we can recommend the following:

- Implement temperature-monitoring systems to detect abnormal temperature increases promptly.

- Optimize process conditions to minimize excessive heat generation.

- Establish a regular maintenance program to inspect and clean equipment exposed to high temperatures.

- Use materials with high-temperature resistance and appropriate heat tolerance.

- Install emergency shutdown systems that activate when equipment temperatures exceed safe limits.

- Provide training to operators and maintenance personnel on temperature-related risks and proper equipment handling.

- Ensure compliance with industry standards, codes, and regulations for equipment design and operation in high-temperature environments.

- Implement blow-down and depressurizing systems in case of excess pressure inside the vessel.

5.5 Retention Dike dimensioning

This section focuses on the essential task of determining the appropriate height for a retention dike to effectively contain oil releases. Building upon the findings of the previous FERA study, conducting dike-sizing calculations is highly recommended to enhance safety measures. Specifically, the calculations consider a breach diameter of 25 mm in critical equipment such as Separators, Surge Tanks, Booster Pumps, and Export Pumps, a 5 mm will cause underestimating of the height while a large breach will lead to obtaining an unreasonable dimensioning. By accurately determining the required dike height based on reliable modeling data, the lateral spread of oil can be prevented, minimizing the risks associated with fire, environmental contamination, and other hazards. This section outlines the calculation methodology used, aiming to ensure compliance with regulations and industry standards while promoting effective oil spill containment and emergency response strategies.

5.5.1 Dike sizing calculation details

1. Volume Calculation : The volume calculated is the maximum possible liquid volume that could be released in case of a breach of 25 mm.

2. Surface area: The existing dimensions of the dike were measured using Autocad and considered in the calculation (the platform surface is not counted)

Surface area = Dike surface-Platform surface

3. Dike height: The recommended approach was to design the dike to have a volume 110 percent greater than the total volume of the liquid to be contained. This ensured an additional safety margin for potential expansion, rainfall, or unforeseen variations.

Dike Volume = 1.1 * Volume of Liquid

Dike Height = Dike Volume / Surface Area

The results of the dike height recommended are shown in the table below:

Equipment	M(kg)	Vliquid (m ³)	V _{Dike} (m ³)	Dike surface(m ²)	Dike height(m)
Separator	6961	8,615	9,477	92,440	0,103
Surge Tank	4085	5,056	5,561	64,386	0,086
Booster pumps	8575	10,613	11,674	53,411	0,218
Export pumps	17636,4	21,827	24,010	22,962	1,045

Table 5-10 Results for Retention Dike Dimensioning

In conclusion, based on the findings of the previous study, the recommendation for dike sizing is justified as a practical and effective measure to mitigate risks associated with the handling and storage of the oil liquid released.

Conclusion

In this chapter, we delved into the practical application of risk assessment within the XPII EPF to identify and address potential hazards and risks. Our aim was to ensure the safety of personnel and protect the integrity of the facility. We embarked on both a general evaluation of all hazardous events and a more detailed assessment focused on critical assets failure frequencies.

By analyzing the frequency mapping results, we gained valuable insights into the likelihood of different hazardous events. We discovered that most of the identified risks, such as pool fires and vapor cloud explosions, had relatively low frequencies, indicating a lower chance of occurrence. Armed with this knowledge, we were able to prioritize our efforts and allocate resources effectively. To mitigate these risks, we proposed a range of safeguards tailored to the specific hazards. Moreover, we carefully considered the cost and benefits of these measures, ensuring that they were not only effective but also practical and justifiable.

Additionally, we recognized the crucial role of the retention dike as a passive protection measure. Through meticulous calculations and modeling analysis, we determined the optimal height of the dike. By properly dimensioning the dike, we can prevent the lateral spread of flammable liquids, reducing the potential for fire propagation and environmental contamination.

General Conclusion

Throughout this project, we have delved into the critical area of safety and risk management in industrial facilities, with a particular focus on the Fire and Explosion Risk Assessment (FERA) methodology. FERA has emerged as a comprehensive approach encompassing hazard identification, fire zone definition, consequences modeling, frequency analysis, and risk assessment. By utilizing FERA, we have gained invaluable insights and developed effective strategies to enhance safety and mitigate potential risks.

The first phase of the FERA methodology involved rigorous hazard identification, wherein potential fire and explosion hazards were systematically identified within the industrial facility. This step laid the foundation for subsequent analyses by providing a comprehensive understanding of the risks at hand. Subsequently, fire zones were defined, taking into account various factors such as layout, equipment, and materials present, further refining our understanding of potential fire scenarios.

Consequences modeling enabled us to evaluate the potential impact of fires and explosions within the facility. By considering factors such as thermal radiation and overpressures we were able to quantify the potential consequences and assess the level of risk associated with each identified hazard. Frequency analysis further refined our understanding by quantifying the likelihood of occurrence for each hazard, allowing us to prioritize mitigation efforts.

The culmination of the FERA methodology was the risk assessment, which encompassed both a first level evaluation and a second level evaluation. The first level evaluation provided a broad overview of the facility's overall risk profile according to each hazardous event, identifying the events that are capable of causing equipment failure. In contrast, the second level evaluation focused on critical assets, thoroughly assessing their vulnerability to fire and explosion hazards using frequency mappings and implementing targeted safeguards to minimize the associated risks.

Overall, the application of the FERA methodology has significantly enhanced safety and risk management within the industrial facility. By following a systematic and comprehensive approach, we have successfully identified and evaluated potential hazards, quantified their consequences and likelihood of occurrence, and implemented appropriate risk mitigation measures. The FERA methodology serves as a valuable tool for ongoing safety improvement, ensuring that the facility is well-prepared to prevent and effectively respond to fire and explosion risks.

Bibliography

- [1] XPII Basis of Design, EP-51531-P-BOD-0001 (MM)
- [2] XPII TRAIN 1 P&ID, EP-51531-P-PID-0101(01)
- [3] XPII Process Flow Diagram, EP-51531-P-PFD-0001 (FF)
- [4] Décret éxecutif n° 21-319 du 14 Aout 2021 relatif au régime d'autorisation d'exploitation spécific aux installations et ouvrages des activités des hydrocarbures ainsi que les modalités d'approbation des études de risques relatives aux activités de recherche et leur contenu.
- [5] Center for Chemical Process Safety "Guidelines for fire protection in chemical petrochemical and hydrocarbon processing facilities" 2003.
- [6] Joaquim Casal, "Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants", second edition 2018.
- [7] API Recommended Practice 581, "Risk Based Inspection Methodology", third edition, 2016.
- [8] International Association of Oil & Gas Producers, Risk Assessment Directory, Report IOGP 434-06, "Ignition Probabilities", September 2019.
- [9] Marc J. Assael, Konstantinos E. Kakosimos, "Fires, Explosions, and Toxic Gas Dispersions, Effects Calculation and Risk Analysis", 2010.
- [10] Society of Fire Protection Engineers, "SFPE Handbook of Fire Protection Engineering", fifth edition, 2016.
- [11] Center for Chemical Process Safety "Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards", 2010
- [12] "The Weather Year Round Anywhere on Earth Weather Spark." https://weatherspark.com/ (accessed Jun. 15, 2023).
- [13] International Association of Oil & Gas Producers, Risk Assessment Directory, Report IOGP 434-01, "Process Release Frequencies", September 2019.
- [14] R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, "Transport Phenomena", 2001
- [15] Prentice-Hall international series in the physical and chemical engineering sciences, Daniel A. Crowl, Joseph F. Louvar, "Chemical process safety-fundamentals with applications", 2002.
- [16] The Plenum Chemical Engineering Series, Octave Levenspiel, "Engineering Flow and Heat Exchange", 1998
- [17] TNO- The Netherlands Organization of Applied Scientific Research, "Methods for the Calculation of Physical Effects", second edition, 2005.
- [18] DNV-GL, "Pool Vaporization Theory", October 2017.
- [19] DNV-GL, "JFSH Jet Fire Model Theory", December 2020.
- [20] DNV-GL, "Obstructed Region Explosion Model Theory", March 2019
- [21] Guowei Ma, Yimiao Huang and Jingde Li, "Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities ", 2019.
- [22] XPII Knock out Vessel P&ID, EP-51531-P-PID-0001

- [23] XPII PUMP TRAIN 1 P&ID, EP-51531-P-PID-0003 (01)
- [24] XPII Oil & Gas Export P&ID, EP-51531-P-PID-0007 (01).
- [25] "La base de données ARIA," La référence du retour d'expérience sur accidents technologiques. https://www.aria.developpement-durable.gouv.fr/le-barpi/la-base-de-donnees-aria/ (accessed Jun. 16, 2023).
- [26] Renato Benintendi, "Process Safety Calculations", 2018.

\mathbf{N}°	Year	Location	Substance	Phenomena	Causes	Consequences	Equipment	Summary
55597	2020	France	Petrol	Leak	Corrosion	Pollution	Pipeline	Traces of hydrocarbons were identified on both sides of a sub- catchment wall in a crude oil. A first non-destructive test shows internal and external corrosion of the section of line. As a consequence 810 kg of crude oil were released
53177	2018	CANADA	Petrol	Leak	Maintenance	Pollution	Valve/Flange/ seal/associated equipment.	An oil leak occurs on a 3/4 inch screwed fitting of a flow meter, installed in 2009, in a pipeline pumping station. Wear and tear caused by vibrations of the flowmeter's support spigot was the cause of its rupture. As a result, 4.8 m ³ of crude oil spilled into the ground of the station.

 Table A-1 Accidentology [25]

								Some product was found on the vegetation beyond the site. The pumping of fluids was suspended for 15 hours.
45159	2014	France	Petrol	Leak	Human Error,	Pollution	Valve/Flange/ seal/associated equipment.	A leak of 30 m3 of crude oil occurred at a hydrocarbon storage site. A spill of 25 m3 spilled into a retention tank and into a buffer tank. The remaining 5 m3 spilled onto the surface of a brine retention area (spread over several hundred m2 contained by a dam). The leak is due to a purge valve opened by mistake.
34636	2008	France	Oil	Leak	Equipment	Pollution	canalization	At 3:30 pm, a crude oil pool of several square meters was reported near the storage tanks of a pipeline transport company.

								Pumping equipment was
								deployed on site and 7 m ³ of
								water-crude mixture was
								recovered. The pollution was
								caused by a leak on a 34"
								pipeline.
								A construction accident
								involving a mechanical shovel
								led to the damage of a natural
								gas boiler room connection,
								causing an explosion and
								subsequent fire. The boiler
32777	2007	France	Natural gas	Explosion	Constructions	Injuries	canalization	room, semi-buried and adjacent
52111	2007	Trance	Tuturur gus	Lapiosion	constructions	injuites		to a building, suffered from gas
								leakage through a torn pipe and
								a crack in the technical shaft.
								The ignition occurred upon
								contact with an electric motor or
								burner flame, resulting in minor
								injuries to six individuals,
1								

								including workers on-site.
								Adherence to safety protocols
								and accurate knowledge of
								network layouts are crucial to
								prevent such incidents and
								ensure the safety of personnel
								and structures.
34641	2007	USA	Natural gas	Explosion	Not disclosed	Injuries	Treatment unit	An explosion occurred around 11:30 a.m. local time in a natural gas processing plant. Four people were injured, two of them seriously.
34641	2007	USA	Natural gas	Explosion	Not disclosed	Injuries	Treatment unit	An explosion occurred around 11:30 a.m. local time in a natural gas processing plant. Four people were injured, two of them seriously.

31324	2006	Norway	Natural gas	Leak	Weather conditions	Pollution	Canalization	A significant gas leak on an oil platform led to the temporary halt of hydrocarbon production. Smoke and gas detectors prompted the evacuation of 17 workers out of 91. The leak resulted in a production loss of 35,000 barrels of oil and 5 million cubic meters of natural gas. Investigations are underway to determine the leak's origin and prevent potential explosions. The dispersion of gas by wind reduced immediate risks, and production will resume once deemed safe.
31324	2006	Norway	Natural gas	Leak	Weather conditions	Pollution	Canalization	A significant gas leak on an oil platform led to the temporary halt of hydrocarbon production. Smoke and gas detectors

								prompted the evacuation of 17
								workers out of 91. The leak
								resulted in a production loss of
								35,000 barrels of oil and 5
								million cubic meters of natural
								gas. Investigations are underway
								to determine the leak's origin
								and prevent potential explosions.
								The dispersion of gas by wind
								reduced immediate risks, and
								production will resume once
								deemed safe.
								An oil depot guard discovered a
								leak near Tank 121 containing
								32,000 m ³ of crude oil with a
32443	2006	France	Oil	Leek	Fauinment	Pollution	Tank	low flash point. Multiple leakage
52775	2000	Trance	Oli	Lædk	Equipment	ronution	Tank	points were observed around the
								tank's base, resulting in an
								estimated leakage rate of 1 m ³ /h.
				1	1		1	
								Immediate response measures

								were taken, including stopping operations, deploying safety equipment, and initiating tank emptying at a reduced rate. Ongoing monitoring and atmospheric measurements were conducted to assess the situation.
33574	2006	USA	Oil	Explosion	Maintenance	Fatalities	Tank	An explosion occurs during the installation of a connection between 2 hydrocarbon storage tanks in an oil field depot. While welding, sparks ignited hydrocarbon vapors escaping from a nearby open pipe.
30082	2005	France	Natural gas	Fire	Other	Material damage	Compression station	A fire in a natural gas recompression station triggered a level 2 alert. The automatic CO2 extinguishing system contained the fire, and site

								personnel used a portable
								extinguisher to suppress flames
								when opening the turbine casing.
								The fire was extinguished by
								5pm, and the station was
								temporarily shut down for 3-4
								hours. The incident was caused
								by the ignition of lubricating oil
								in a turbine seal.
								At a natural gas extraction site, a
								gas alarm is triggered due to a
								technical issue with a
								compressor. The maintenance
							Pumps	team safely shuts down the unit,
30861	2005	France	Natural gas	Others	Others	None	/Compressors	and the POI is not activated.
							, compressors	Following a thorough
								inspection, a 100,000 m ³ crude
								oil tanker is returned to service
								at a marine terminal. However, a
								significant drop of 300 m ³ of oil
		1	1	1				

								is detected, with oil appearing in
								the valve chamber manhole. An
								excavation on 02/09 uncovers
								product around an 8" drain pipe
								used for tank bottom water
								drainage.
								At a natural gas extraction site, a
								gas alarm is triggered due to a
								technical issue with a
								compressor. The maintenance
								team safely shuts down the unit,
								and the POI is not activated.
28247	2004	France	Oil	Leak	Corrosion	Pollution	Canalization	Following a thorough
								inspection, a 100,000 m ³ crude
								oil tanker is returned to service
								at a marine terminal. However, a
								significant drop of 300 m ³ of oil
								is detected, with oil appearing in
								the valve chamber manhole.
Appendix B. Fire and Explosion Consequences Modeling

B.1 Source term

In this section we will discuss the most typical loss-of-containment events' source term models which are as follows:

- Release of liquid from a vessel breach.
- Release of liquid from a pipe wall breach.
- Compressed gases release from a hole in a vessel.
- Compressed gases release from a hole in a pipe.
- Evaporation of a liquid from a pool.

This study does not encompass pressurized liquefied gases, as the fluids examined in the initial pretreatment facility consist of oil, a non-volatile liquid, and natural gas.

B.1.1 Liquid release through a vessel breach

When a vessel breach occurs, resulting in the release of liquid (as depicted in the provided Figure), the hydrostatic pressure within the vessel is a determining factor that influences the mass flow rate of the outflow. This hydrostatic pressure is directly influenced by the disparity in height between the liquid level and the point of outflow. The outflow mass flow rate can be computed utilizing the following expression [9]:

$$\dot{m} = \rho C_d A_{or} \sqrt{2 \frac{P - P_0}{\rho}}$$
(B-1)

Where \dot{m} is the mass flow rate (kg.s⁻¹), C_d (-) denotes the discharge coefficient, ρ (kg.m⁻³) is the liquid density, A_{or} (m²) the cross-sectional area of the orifice, P (Pa) the total pressure in the breach and P_0 is the outside pressure which usually is the atmospheric pressure.

The discharge coefficient C_d (-) is a function that depends on the hole geometry, d_{or}/d_{pipe} , and the Reynolds number inside of it. In case the Reynolds numbers greater than 10⁴, C_d (-) will approximately be 0.61 for all values of d_{or}/d_{pipe} [14]. Although usual values may be found in engineering handbooks depending on the type of breaches: 0.62 for sharp-edged orifices, straight orifices $C_d = 0.82$, rounded orifices $C_d = 0.97$ and for full-bore rupture $C_d = 1$ [6].

The total pressure P (Pa) is determined by adding the hydrostatic pressure, P_h (Pa), resulting from the liquid level in the vessel, to the absolute pressure P_{cont} (Pa) exerted on the liquid's surface inside the vessel, that is [9]:

$$P = P_h + P_{cont} = \rho g h_l + P_{cont} \tag{B-2}$$

Where h_l (m) is the height of liquid above the leak and g (m.s⁻²) denotes the gravitational acceleration (=9.81 m.s⁻²).

By replacing P with its expression (B-2) in (B-1) we obtain the mass flow rate final expression:

Figure B-1 Liquid Release through Vessel Breach [6]

It is crucial to acknowledge that, in the context of risk analysis, the approach for determining the mass flow rate is contingent upon the type of vessel under consideration. Two primary scenarios can be distinguished: an atmospheric/pressurized storage tank and a process vessel. The disparity between these cases lies in the liquid height above the position of the leak and its temporal evolution.

a. <u>Storage tanks:</u>

As the liquid is discharged, the liquid level within the tank diminishes, consequently causing a reduction in the flow rate through the orifice. To ascertain the mass discharge rate at any given time 't' for vessels characterized by a constant cross-sectional area, the subsequent expression can be utilized [15]:

$$\dot{m}(t) = \rho C_d A_{or} \sqrt{2gh_{l_{initial}} + 2\frac{P_{cont} - P_{amb}}{\rho} - \frac{\rho g C_d^2 A_{or}^2}{A_t}t}$$
(B-4)

b. <u>Process vessel:</u>

Regarding process vessels and within the scope of consequences analysis it is assumed that the liquid level in the vessel will remain approximately constant under the condition of a consistently present input flow rate.

B.1.2 Liquid release through a pipe breach

For a liquid release through a pipe breach and a given flow rate, the fluid experiences a pressure drop. The Fanning equation can be used to calculate the relationship between the later and fluid velocity for an incompressible liquid flowing through a piping system [6]:

$$u = \sqrt{\frac{\Delta P d_p}{2f_F \rho l_p}} \tag{B-5}$$

With ΔP (Pa) being the pressure drop, f_F (-) is the Fanning friction factor, ρ (Kg.m⁻³) the liquid density, u (m.s⁻¹) is the fluid velocity, l_p (m) is the pipe length and d_p (m) being the pipe diameter.

Fluid velocity can also be calculated using the Reynolds number:

$$u = \frac{\mu R e}{d_n \rho} \tag{B-6}$$

With μ (Pa.s or N.s.m⁻² or Kg.s⁻¹.m⁻¹) is the fluid dynamic viscosity.

The leak flow rate can then be calculated using the expression below [9]:

$$\dot{m} = A_{or}\rho u \tag{B-7}$$

As for the Fanning friction factor, it depends on Reynolds number and the pipe roughness ε (see Table B-1) [16]:

$$f_F = f\left[\begin{pmatrix} Reynolds number: \\ a \ combination \ of \ d_p, u, \mu, \rho \end{pmatrix}, \begin{pmatrix} pipe \\ roughness, \varepsilon \end{pmatrix}\right]$$
(B-8)

In the case of laminar flow (Re<2100), f_F can be found from the following expression derived by Poiseuille [16]:

$$f_F = \frac{16}{Re} \tag{B-9}$$

While for the turbulent regime (Re>4000) the friction factor can be obtained using either the Moody chart (See Figure B-2) or the Colebrook equation [6]:

$$\frac{1}{\sqrt{f_F}} = -4\log(\frac{1}{3.7} \cdot \frac{\varepsilon}{d_p} + \frac{1.255}{Re\sqrt{f_F}})$$
(B-10)

Table B-1 Pipe roughness [6]

Pipe Material	Pipe roughness ε	
Riveted steel	1-10	
Concrete	0.3-3	
Wood stave	0.2-1	
Cast iron	0.25-0.26	
Galvanized iron	0.15	
Asphalted cast iron	0.12	
Commercial steel or wrought iron	0.043-0.046	
Drawn tubing	0.0015	
Glass / Plastic	0	

Equation (B-10) can be either solved by trial and error or by the expression obtained symbolically using the function SOLVE in MATLAB

$$f_F = \frac{86248369d_p^2 \log(10)^2}{\left[37148d_p lambert W(0, x) - 2000 \log(10) \varepsilon Re\right]^2}$$
(B-11)

Where

$$x = \frac{10^{\frac{500 \varepsilon Re}{9287d_p} 50 \log(10) Re}}{251}$$
(B-12)

With d_p (m) being the pipe diameter and lambertW(0, x) also called the omega function returns the principal branch of the Lambert W function meaning it gives us a set of solutions for the equation:

$$x = W(x)e^{W(x)} \tag{B-13}$$

While for a fully developed turbulent flow, the factor doesn't depend on Reynolds number and can be found simply with [15]:

$$\frac{1}{\sqrt{f_F}} = 4\log(3.7\frac{d_p}{\varepsilon}) \tag{B-14}$$

For smooth pipes ($\epsilon = 0$) and Re<100,000, the Fanning friction factor can be calculated as follows [6]:

$$f_F = 0.0791 R e^{-0.25} \tag{B-15}$$

And when Re>100,000, the expression down below can be used instead [6]:

$$f_F = 0.0232Re^{-0.1507} \tag{B-16}$$

Appendix B. Fire and Explosion Consequences Modeling

Figure B-2 Moody Chart [6]

Given the unknown Reynolds number, the accurate estimation of the Fanning friction factor necessitates employing a trial-and-error methodology, following the procedure outlined below:

- Define the initial point (1) and the final point (2) explicitly, where the latter designates the location of the breach orifice or the point of rupture.
- 2- Calculate the pressure drop between the two points.
- 3- Assume an initial value for Reynolds number then calculate the friction factor using the solution of the Colebrook equation (B-10).
- 4- Calculate fluid velocity using equation (B-5).
- 5- Compute fluid velocity using Reynolds number, equation (B-6).
- 6- Compare the two values, if they are not equal; apply a correction on the Reynolds number assumed earlier.

7- The resulted fluid velocity will be used to calculate the mass discharge rate utilizing (B-7).

B.1.3 Gas release through a vessel breach

In a situation where gas flows through a breach, we should first consider the existence of two distinguished cases: where it exits with a sonic velocity (choked flow) or with a subsonic one (non-choked flow) which has a relation with the pressure inside the tank P_{cont} and the hole outlet pressure P_{choked} [6].

Using isentropic expansion as an assumption we can express the relationship between the two pressures as follows [6]:

$$\frac{p_{choked}}{P_{cont}} = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$
(B-17)

Where γ (-) denotes the Poisson ratio or the ratio of specific heat capacity at constant pressure. For atmosphere releases, the gas will exit with a sonic velocity if the condition below is fulfilled [9]:

$$\frac{P_{cont}}{P_a} \ge (\frac{\gamma+1}{2})^{\frac{\gamma}{\gamma-1}}$$
(B-18)

This will come in handy when calculating the mass flow rate of gas exiting an orifice where we can use the expression [6]:

$$\dot{m} = C_d A_{or} P_{cont} \varphi \sqrt{\gamma (\frac{2}{\gamma+1})^{\frac{\gamma+1}{\gamma-1}} \frac{W_g}{ZRT_{cont}}}$$
(B-19)

With $C_d(-)$ being the discharge coefficient discussed above, $A_{or}(m^2)$ is the cross-sectional area of the orifice, P_{cont} (Pa) is the pressure inside the container, $\varphi(-)$ is a factor that depends on the gas velocity,

 W_g (Kg.mol⁻¹) is the gas molar weight, Z (-) denotes the compressibility factor for gases at P_{cont} (Z=1 for ideal gases), T_{cont} (K) is the temperature inside the vessel and R (J.mol⁻¹.K⁻¹) is the ideal gases constant.

Where for sonic gas velocity [17]:

$$\varphi^2 = 1 \tag{B-20}$$

As for a subsonic velocity, the factor can be calculated as follows [17]:

$$\varphi^{2} = \frac{2}{\gamma - 1} \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{\gamma - 1}} \left(\frac{P_{a}}{P_{cont}}\right)^{\frac{2}{\gamma}} \left[1 - \left(\frac{P_{a}}{P_{cont}}\right)^{\frac{\gamma - 1}{\gamma}}\right]$$
(B-21)

B.1.4 Gas release through a pipe rupture or breach

A gas leak can take place if there is a full-bore rupture or a breach in the pipe wall. The pressure in the pipe must be measured at a position just in front of the opening (Figure B-3) in both circumstances. This necessitates knowing the gas flow rate, which is determined by the pressure drop between the upstream constant pressure source and the aforementioned point. As a consequence, we should proceed in a trial-and-error manner [6].

Figure B-3 Gas flow through Pipe Breach [6]

Thus, the equation (B-19) in this case becomes:

$$\dot{m}_{hole} = C_d A_{or} P_p \varphi \sqrt{\gamma (\frac{2}{\gamma+1})^{\frac{\gamma+1}{\gamma-1}} \frac{W_g}{ZRT_p}}$$
(B-22)

Where P_p (Pa) is the pipe pressure just in front of the orifice and T_p (K) being the gas temperature also in front of the opening.

These two parameters can be estimated using a trial and error procedure so that the following condition can be verified [9]:

$$\dot{m}_{pipe} = \dot{m}_{hole} \tag{B-23}$$

The gas mass flow rate in the pipe \dot{m}_{pipe} (Kg/s) can in its turn be found using the equation below [9]:

$$\dot{m}_{pipe} = A_p \sqrt{\frac{\rho P_a}{2f_f \left(\frac{l_p}{d_p}\right)} \frac{\gamma}{1+\gamma} \left(\left(\frac{P_a}{P_p}\right)^{\frac{1+\gamma}{\gamma}} - 1\right)}$$
(B-24)

To find the mass flow rate in question and since the pressure in front of the orifice is unknown we can proceed as follow:

1- Propose an initial value for P_p so that: $P_a < P_p < P_{cont}$.

Calculate the Fanning friction factor using equation (B-14) assuming that the gas is circulating with a fully developed turbulent flow [15].

2- Estimate the temperature in front of the opening using the following correlations [6]:

$$Y_i = 1 + \frac{\gamma - 1}{2} M a_i^{\ 2} \tag{B-25}$$

$$\frac{T_p}{T_{cont}} = \frac{Y_{cont}}{Y_p} \tag{B-26}$$

$$\frac{\gamma+1}{2}\ln\left(\frac{Ma_p^2Y_{cont}}{Ma_{cont}^2Y_p}\right) - \left(\frac{1}{Ma_{cont}^2} - \frac{1}{Ma_p^2}\right) + \gamma\left(\frac{4f_Fl_p}{d_p}\right) = 0$$
(B-27)

In the case where we have a sonic velocity $Ma_p = 1$ thus, the equations above can become:

$$\frac{T_p}{T_{cont}} = \frac{2Y_{cont}}{\gamma + 1} \tag{B-28}$$

$$\frac{\gamma+1}{2}\ln\left(\frac{2Y_{cont}}{(\gamma+1)Ma_{cont}^2}\right) - \left(\frac{1}{Ma_{cont}^2} - 1\right) + \gamma\left(\frac{4f_Fl_p}{d_p}\right) = 0$$
(B-29)

- 3- Calculate the mass flow rate at the hole using the equation (B-22).
- 4- Calculate the pipe mass flow rate using the equation (B-24).
- 5- Compare the two values, in case the two aren't equal make some corrections about the pressure P_p .

B.1.5 Evaporation of a liquid from a pool

When the source term is a liquid and when spilled it remains as a pool on the ground, the liquid is going to evaporate with time forming a flammable cloud which can in its turn cause a vapor cloud explosion if ignited. It is important to note that liquid vaporization depends highly on the vapor pressure of the substance which also changes according to the temperature as follows using the Clapeyron-Clausius expression [10]:

$$P_{\nu} = 133.3 \times 10^{-0.2185 \left(\frac{E}{T}\right) + F}$$
(B-30)

Where P_{ν} (Pa) is the substance vapor pressure, T (K) is the ambient temperature, and the constants E and F have values for each substance (See Table B-2).

Table B-2 Clapeyron-Clausius equation constants for common organic compounds [10]

	E	F	Temperature range
n-Pentane	6595.1	7.4897	-77 °C to 191°C
n-Hexane	7627.2	7.7171	-54 °C to 209 °C
n-Heptane	8928.8	8.2585	/
iso-Octane	8548.0	7.9349	-36 °C to 99 °C

The substance vapor pressure P_{ν} can then be used to find its mass evaporation rate by the Mackey and Matsugu model [6]:

$$Ev = 2.10^{-3} A_{pool} u_w^{0.78} r^{-0.11} \frac{P_a W_g}{RT} \ln\left(1 + \frac{P_v - P_{amb}}{P_a - P_v}\right)$$
(B-31)

 A_{pool} (m²) Is the pool area, while u_w is the wind velocity measured 10m above the ground. P_v (Pa), P_{amb} (Pa), And W_g (Kg.Kmol⁻¹) are the vapor pressure, the partial pressure of the liquid in the atmosphere and the molecular mass of the spilled substance and T is the pool temperature in K. r (m) is the pool radius.

B.2 Fire accidents modeling:

Fire is typically the accident type in the process sector whose consequences are noticed over relatively shorter distances, while hazardous gas clouds and explosions typically cover

considerably wider areas. The thermal flux following a fire, however, can have detrimental effects on other machinery (domino effect), leading to other incidents, which can greatly increase the magnitude of the catastrophe. It is for that reason fire modeling came into existence since it helps us estimate and evaluate accidents' consequences and design appropriate preventive measures [6].

In this section we will focus on two fire types often encountered in the oil and gas sector: Pool fires and Jet fires.

B.2.1 Pool Fires

Four techniques for calculating radiation from pool fires have been identified and assessed. Two procedures can be categorized as simple screening approaches, which are the point source model and the Shokri & Beyler correlation, while we have the Mudan method and the shokri & Beyler model as the more thorough ones. The table shows the range of applicability for each method [10].

In this study, the Mudan model was selected since contrary to the other methods it is applicable for all heat fluxes regardless of the target's position, besides the fact that it takes into consideration the effect of the wind in its calculations.

Method	Range of use (KW/m ²)
Shokri and Beyler correlation	All heat fluxes, ground level only
Point source model	0–5 kW/m2
Shokri and Beyler model	≥5 kW/m2
Mudan model	All heat fluxes

Table B-3 flame models and their applicability [10]

Although for all methods, especially for the ones based on the solid flame approach, it is necessary to know its shape and estimate the flame size.

B.2.1.1 Flame shape:

In a solid flame model such as the Mudan method, the flame is supposed as a grey body that remains still [6]. It is important then, to identify its shape beforehand since it affects the view factor, which will be discussed later on, and can be critical in evaluating the consequences of a fire accident.

For pool fires, if the pool is circular the flame will be almost cylindrical while a parallelepiped shape can be assumed if the liquid is contained within a retention dike (Figure B-4).

Figure B-4 Solid Flame Shape [6]

a. Pool Diameter:

Once we have modeled the source term and obtained the leak mass flow rate, we can calculate the diameter of the pool formed. Depending on the layout of the ground and the characteristics of the fluid, different approaches might be utilized. In general, it's reasonable to assume that the liquid spreads

instantly, either to cover the full containment area (a retention dike for example) or, in the case of an uncontained spill, to reach a minimal pool thickness, this can be expressed mathematically using [10]:

$$A_p = \min(A_{eq}, A_{dike}) \tag{B-32}$$

Where A_{dike} (m^2) is the containment area and A_{eq} (m^2) depends on whether the ignition is immediate, producing an early pool fire while the vessel or pipe is still leaking or delayed causing a late pool fire.

In the first case, A_{eq} can be expressed as follows [6]:

$$A_{eq} = \frac{\pi D_{eq}^2}{4} \text{ With } D_{eq} = 2\left(\frac{\dot{m}}{\pi m}\right)^{\frac{1}{2}}$$
(B-33)

m (Kg.m⁻²s⁻¹) being the liquid burning rate which can be calculated either by [6]:

$$m = 0.001 \frac{\Delta H_c}{\Delta H_v + c_p (T_0 - T_a)} \tag{B-34}$$

Where ΔH_c (KJ.Kg⁻¹) is the combustion heat, ΔH_v (KJ.Kg⁻¹) at T_0 (K), is the liquid's boiling temperature.

Or:
$$m = m_{\infty}(1 - e^{-KD_{pool}})$$
 (B-35)

With m_{∞} (Kg.m⁻²s⁻¹) being the burning velocity for an infinite diameter pool and K (m⁻¹) being a constant.

Since we are essentially trying to estimate the pool diameter, equation (B-34) is more suitable. As for late pool fires, the area A_{eq} is calculated using the spilled liquid volume V_l (m³) and the minimum thickness h_{min} (m) [10]:

$$A_{eq} = \frac{V_l}{h_{min}} \tag{B-36}$$

The minimum thickness can be expressed in its turn as [10]:

$$h_{min} = \max(\sqrt{\frac{2\sigma(1 - \cos\theta)}{g\rho}}, \varepsilon)$$
(B-37)

With σ being the surface tension, θ is the contact angle, and ε is the surface roughness.

In reality, when a leak takes place, the pool is usually formed on concrete or soil where the roughness factor dominates the effect of surface tension, i.e $h_{min} = \varepsilon$ [10]. Examples of usual pool thickness are given in the table below [18].

 Table B-4 Minimum pool thickness [10]

Surface	Minimum pool thickness (m)
Dry soil	0.02
Wet soil	0.01
Concrete	0.005

Another thing that should be taken into consideration is that if the release is instantaneous, the equivalent diameter should be calculated as follows [26]:

$$D = 2\sqrt[8]{\frac{V_l^3 \cdot g}{m}}$$
(B-38)

To verify whether the release is instantaneous or not, a dimensionless time should be estimated using the expression down below [26]:

$$t_{cr} = \frac{t_{spill} \cdot m}{\sqrt[3]{V_l}} \tag{B-39}$$

If t_{cr} (-) is greater than 0.002 then the release is instantaneous.

b. Flame Height:

The flame height in this method depends upon the pool diameter and the burning rate and under the influence of the wind, the following correlation was given by Thomas [9]:

$$H = 55D_{pool} \left(\frac{m}{\rho \sqrt{gD_{pool}}}\right)^{0.67} (u^*)^{-0.21}$$
(B-40)

Where u^* (-) is the non-dimensional wind velocity and it can be obtained through the expression below [6]:

$$u^* = \frac{u_w}{\left(\frac{gmD_{pool}}{\rho_a}\right)^{\frac{1}{3}}} \tag{B-41}$$

 u_w (m.s⁻¹) denotes the wind velocity.

B.2.1.2 <u>View Factor:</u>

The view factor is originally expressed as a closed integral The view factor is originally expressed as a closed integral [6]:

$$F_{dA_2 \to A_1} = \oint \frac{\cos\varphi_1 \cos\varphi_2}{\pi d^2} dA_1 \tag{B-42}$$

The variables in the equation above are represented in the figure.

Figure B-5 Configuration for radiative exchange between two differential elements[6]

In this paper, correlations derived from calculations based on specific and somewhat idealized shapes were employed. As mentioned earlier, when examining pool fires, two frequently encountered shapes can be distinguished: cylindrical and parallelepipedic.

a. Cylindrical flame:

An uncontained pool fire can be represented with a tilted vertical cylinder (under the influence of the wind) with a height H (m) and a diameter D (m) (See figure). The view factor of a plane surface can then be found using the correlations below [10] :

For a vertical target on ground level ($\theta = 0$), the view factor is given by:

$$\pi F_{v} = \frac{a\cos\theta}{b - a\sin\theta} \frac{a^{2} + (b+1)^{2} - 2b(1 + a\sin\theta)}{\sqrt{AB}} \tan^{-1} \sqrt{\frac{A}{B}} \left(\frac{b-1}{b+1}\right)^{\frac{1}{2}} + \frac{\cos\theta}{\sqrt{C}} \left[\tan^{-1}\frac{ab - (b^{2} - 1)\sin\theta}{\sqrt{b^{2} - 1}\sqrt{C}} + \tan^{-1}\frac{(b^{2} - 1)\sin\theta}{\sqrt{b^{2} - 1}\sqrt{C}}\right] - \frac{a\cos\theta}{(b - a\sin\theta)} \tan^{-1} \sqrt{\frac{b-1}{b+1}}$$
(B-43)

For a horizontal target on ground level ($\theta = \pi/2$), the view factor is given by:

$$\pi F_{H} = \tan^{-1} \sqrt{\frac{b-1}{b+1}}$$

$$-\frac{a^{2} + (b+1)^{2} - 2(b+1+absin\theta)}{\sqrt{AB}} \tan^{-1} \sqrt{\frac{A}{B}} \left(\frac{b-1}{b+1}\right)^{\frac{1}{2}} \qquad (B-44)$$

$$+\frac{\sin\theta}{\sqrt{C}} \left[\tan^{-1} \frac{ab - (b^{2} - 1)sin\theta}{\sqrt{b^{2} - 1}\sqrt{C}} + \tan^{-1} \frac{(b^{2} - 1)sin\theta}{\sqrt{b^{2} - 1}\sqrt{C}}\right]$$

Where:

$$a = \frac{H}{R} \qquad b = \frac{d}{R}$$

$$A = a^{2} + (b+1)^{2} - 2a(b+1)sin\theta$$

$$B = a^{2} + (b-1)^{2} - 2a(b-1)sin\theta$$

$$C = 1 + (b^{2} - 1)\cos^{2}\theta$$
(B-45)

With H (m) being the flame height, R (m) the pool radius, d (m) denotes the distance between the fire and the target and θ is the tilt angle because of the wind effect. Its value can be estimated using the dimensionless wind velocity u^* (-) according to The American Gas Association (AGA) [10]:

$$cos\theta = 1$$
 For $u \le 1$ (B-46)

$$cos\theta = \frac{1}{\sqrt{u^*}}$$
 For $u \gg 1$ (B-47)

Figure B-6 Tilted cylinder configuration [10]

b. <u>Rectangular Flame:</u>

For a horizontal target on ground level ($\theta = \pi/2$), the view factor is given by [11]:

$$F_h = \frac{1}{2\pi} \left[\tan^{-1} \frac{1}{X_r} - AX_r \tan^{-1} A \right]$$
(B-48)

For a vertical target on ground level ($\theta = 0$), the view factor is given by [11]:

$$F_{\nu} = \frac{1}{2\pi} \left[h_r A \tan^{-1} A + \frac{B}{h_r} \tan^{-1} B \right]$$
(B-49)

With [11]:

$$h_r = \frac{H}{w}$$
$$X_r = \frac{d}{w}$$
$$A = \frac{1}{\sqrt{h_r^2 + X_r^2}}$$
$$B = \frac{h_r}{\sqrt{1 + X_r^2}}$$

For both configurations, the maximum view factor can be obtained using [11]:

$$F = \sqrt{F_h^2 + F_v^2}$$
(B-50)

Figure B-7 View factor of a vertical plane surface [11]

B.2.1.3 <u>Emissive power:</u>

The radiative characteristics of a fire can be expressed through a parameter called emissive power which can be defined as: "the radiant heat emitted per unit surface of the flame and per unit time ($kW.m^{-2}$)". Two types of emissive powers can be differentiated [6]:

- Point emissive power, relating to the value measured over a small area of the flame only.
- Average emissive power is the emissive power of the entire flame surface. The one taken into account in this study.

While it is commonly stated that an average emissive power is estimated by considering the entirety of the flame surface, it is important to recognize that flames typically consist of two distinct zones: a luminous zone and a non-luminous zone. Consequently, the emissive power can be expressed as the sum of these two zones [6]:

$$E = \chi_{lum} E_{lum} + E_{soot} [1 - \chi_{lum}]$$
(B-51)

Where E_{lum} (kW.m⁻²) corresponds to the emissive power for the luminous zone of the flame while E_{soot} (kW.m⁻²) is for the non-luminous one. χ_{lum} , on the other hand, denotes the proportion of the fire surface that is covered by the luminous flame.

Experiences for gasoline and diesel oil pool fires indicated that E_{soot} is constant regardless of the diameter, and a value was obtained: $E_{soot} = 40 \ kW. \ m^{-2}$. On the contrary, E_{lum} varies with the pool diameter as follows [6]:

$$E_{lum(gasoline)} = 53.64D^{0.474}$$
; $E_{lum(diesel)} = 28.03D^{0.877}$ for $D \le 5 m$ (B-52)

$$E_{lum} = 115 \text{ kW. m}^{-2} \quad for \ D \ge 5 \ m$$
 (B-53)

As for the proportion of the fire surface that is covered by the luminous flame. It is constant for $D \le 5 m \chi_{lum} = 0.45$, from that extent, it begins to decrease gradually until it reaches 0 for diameters superior to 20 m, in other words $E \approx E_{soot}$ for this range.

Some authors expressed this factor as a function of the diameter and the extinction coefficient $s \text{ (m}^{-1})[10]$:

$$\chi_{lum} = e^{-sD} \tag{B-54}$$

Equation (B-51) becomes then:

$$E = E_{lum}e^{-sD} + E_{soot}[1 - e^{-sD}]$$
 (B-55)

The evolution of the average emissive power can be represented according to the figure below.

Figure B-8 Evolution of the average emissive power E (kW.m-2) in the function of the pool diameter D (m) [6]

B.2.1.4 Atmospheric Transmissivity:

The radiation emitted by the fire is attenuated by absorption and scattering as it traverses the surrounding medium. Water vapor (H_2O) and carbon dioxide (CO_2) are the primary constituents of the atmosphere responsible for absorbing heat radiation. Absorption and scattering along the intervening passage will mitigate the radiation from the fire to nearby objects. Water vapor

(H₂O) and carbon dioxide (CO₂) are the primary elements of the atmosphere that absorb heat radiation [10].

The carbon dioxide concentration in the atmosphere remains relatively constant, whereas the water vapor content is influenced by temperature and humidity levels. The transmissivity of the atmosphere is also contingent upon the distance between the flame and the target. Therefore, it can be computed using the following set of equations [6]:

$$\tau = 1.53 (P_w.d)^{-0.06} for P_w.d < 10^4 N.m^{-1}$$
 (B-56)

$$\tau = 2.02 (P_w.d)^{-0.09} for \ 10^4 \le P_w.d \le 10^5 \ N.m^{-1}$$
(B-57)

$$\tau = 2.85 (P_w.d)^{-0.12} \ for \ P_w.d > 10^5 \ N.m^{-1}$$
(B-58)

Where $P_w(N.m-1)$ is the partial pressure of water in the atmosphere and d (m), is the distance between the flame surface and the target.

The partial pressure of the water can be estimated using the expression [6]:

$$P_w = P_{wa} \frac{H_R}{100} \tag{B-59}$$

With P_{wa} (N.m⁻¹) being the saturated water vapor pressure at the atmospheric temperature, and H_R (%) being the relative humidity.

 P_{wa} in its turn can be obtained by [6]:

$$\ln P_{wa} = 23.18986 - \frac{3816.42}{T - 46.13} \tag{B-60}$$

B.2.1.5 <u>Thermal radiation intensity</u>

The Mudan model has proposed a correlation for thermal radiation intensity that depends on the parameters discussed above, the flame configuration that is expressed through a view factor for the two most common flame shapes, the emissive power that depends on the diameter, and the atmospheric transmissivity. It can then be expressed as follows [10]:

$$q'' = \tau F E \tag{B-61}$$

B.2.2 Jet fire

Jet fires refer to extensive turbulent diffusion flames observed within processing facilities due to either unintended releases of hydrocarbon vapors or intentional disposal of unwanted gases through flaring methods [10]. Consequently, it is crucial to ascertain the characteristics of jet flames and quantify the amount of radiant energy that can potentially impact a particular target [19].

Multiple models have been proposed to precisely estimate the dissipated thermal radiation intensity from jet fires. These models can be categorized into three distinct categories:

a. Semi-empirical Models

They were developed to predict a jet fire's size and the heat it produces. Their advantage is that they are relatively simple to compute. They in turn include sub-models such as:

- Point source model **PSM** (API-521 model), it's a method where the flame is reduced to a single point as the source of radiation.
- Multiple point source models **MPSM**, on the other hand, attempts to go further by representing the flame as a centerline with multiple point sources distributed on it.
- Surface emitter models **SEM**, are closer to reality than the models above since the flame is considered a solid object (a cone or a cylinder usually).

a. Field models:

These models are based on time-dependent Navier-Stocks equation solutions, they are thus more complicated and difficult to code but the most accurate in modeling since they take into consideration physical and chemical processes taking place during a combustion reaction [19].

b. Integral models:

Integral models were developed trying to simplify field models through assumptions and thus turning the partial differential equation in the previous model into ordinary ones which helped reduce the effort needed to compute and the time to run the necessary calculations.

The model adopted to estimate the thermal radiation intensity is the model of Chamberlain, a semi-empirical model and one of the SEM models discussed above. It describes the flame characteristics analytically such as the flame length, width, and tilt. This model was developed

at Shell Oil Company's Thornton Research Center and validated with wind tunnel experiments and onshore and offshore field tests [9].

B.2.2.1 Fire Shape:

The Chamberlain model represents the flame as a solid object resembling a cone frustum, as depicted in the figure. This approach eliminates the geometric inaccuracies encountered in the PSM model and offers easier implementation compared to the MPSM method. Furthermore, the Chamberlain model exhibits significantly shorter run times while maintaining the same level of accuracy.

Figure B-9 Jet Fire Flame Shape [19]

With:

- L_B : The flame length.
- α : The tilt angle between the hole axis and the flame axis.
- B: The frustum lift-off distance.
- Θ_i : The angle between the hole axis and the wind vector.
- R_L : The length of the frustum.
- W_1 : Frustum base width.

 W_2 : Frustum's tip width.

B.2.2.2 Exit Velocity of The Jet:

Before trying to estimate the flame dimensions, the exit velocity u_j (m.s⁻¹) of the jet is needed which is often expressed with respect to the Mach number according to the equation below [9]:

$$M_j = \frac{u_j}{u_{sound}} \tag{B-62}$$

Where u_{sound} (m.s⁻¹) is the sound velocity and for ideal gases it is often calculated using the expression [9]:

$$u_{sound} = \sqrt{\frac{\gamma RT}{W_g}} \tag{B-63}$$

By replacing u_{sound} by its expression (B-63) in (B-62) the exit velocity can easily be determined as follows:

$$u_j = M_j \sqrt{\frac{\gamma RT}{W_g}} \tag{B-64}$$

Where the Mach number depends on the type of the flow: sonic or subsonic. The condition indicates inequality (B-18).

For sonic flows it can be then estimated through the correlation [9]:

$$M_{j} = \sqrt{\frac{(\gamma + 1)(\frac{P_{or}}{P_{a}})^{\frac{\gamma - 1}{\gamma}} - 2}{\gamma - 1}}$$
(B-65)

Where P_{or} (Pa) is the pressure at the exit point.

While in a subsonic regime, the Mach number is obtained with the expression [9]:

$$M_j = \sqrt{\frac{\sqrt{1 + 2(\gamma - 1)u_{0r}^2} - 1}{\gamma - 1}}$$
(B-66)

With u_{or} (m.s⁻¹) being the velocity at the exit point and is expressed with the relation [9]:

$$u_{or} = \frac{4\dot{m}}{\pi d_{or}^2} \cdot \frac{1}{P_a} \cdot \sqrt{\frac{RT_s}{\gamma W_g}}$$
(B-67)

Assuming an adiabatic flow the pressure and the temperature at the jet can be calculated using the relations [6]:

$$P_{or} = P_{cont} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \tag{B-68}$$

$$T_j = T_s \left(\frac{P_a}{P_{cont}}\right)^{\frac{\gamma-1}{\gamma}} \tag{B-69}$$

Where P_{cont} (Pa) and T_s (K) are the pressure and the temperature in the vessel respectively.

B.2.2.3 The Effective Orifice Diameter:

The effective orifice diameter D_S refers to the hypothetical diameter of an orifice through which air would be released at the same flow rate as the gas being released. This concept is defined in terms of the density of air [19]. In the case of choked flow, the effective orifice diameter can be determined using the following relationship [6]:

$$D_S = D_j \sqrt{\frac{\rho_j}{\rho_{air}}} \tag{B-70}$$

Where D_j (m) is the diameter of the expanded jet at the gas outlet and it can be obtained as follows [6]:

$$D_j = \sqrt{\frac{4\dot{m}}{\pi\rho_j u_j}} \tag{B-71}$$

 ρ_j (Kg.m⁻³) is the expanding jet density at the release point. It can be easily determined through the classic ideal gases equation:

$$\rho_j = \frac{P_{or}.W_g}{RT_j} \tag{B-72}$$

B.2.2.4 Size of the Jet Fire

a. The Flame Length

The flame length in the Chamberlain model is calculated using the correlation below [9]:

$$L_B = L_{B0}(0.51e^{-0.4u_w} + 0.49)[1 - 0.00607(\Theta_j - 90)]$$
(B-73)

Where [9]:

$$L_{B0} = YD_S \tag{B-74}$$

With Y being the solution of the equation by trial and error [9]:

$$\begin{bmatrix} 0.024 \left(\frac{gD_s}{u_j^2}\right)^{\frac{1}{3}} \end{bmatrix} Y^{\frac{5}{3}} + 0.2Y^{\frac{2}{3}} - \left[\left(\frac{2.85}{W}\right)^{\frac{2}{3}} \right] = 0$$
(B-75)

and $W = \frac{W_g}{15.816W_g + 0.0395}$

While Θ_i the angle between the hole axis and the wind vector as illustrated in the Figure B-9.

b. The Tilt Angle

The tilt angle can be calculated using the set of equations depending on certain conditions [6]:

$$\alpha = 8000 \frac{R_w}{Ri(L_{B0})} + (\Theta_{jv} - 90)(1 - e^{-25.6R_w}) \qquad for R_w \le 0.05 \qquad (B-76)$$

$$\alpha = \frac{1726\sqrt{R_w - 0.026} + 134}{Ri(L_{B0})} + (\Theta_{jv} - 90)(1 - e^{-25.6R_w}) \text{ for } R_w > 0.05 \quad (B-77)$$

With R_w the ratio of the wind and the jet velocity:

$$R_w = \frac{u_w}{u_i} \tag{B-78}$$

And $Ri(L_{B0})$ is the Richardson number based on L_{B0} [6]:

$$Ri(L_0) = L_0 \left(\frac{g}{D_s^2 u_j^2}\right)^{1/3}$$
(B-79)

c. <u>The Lift-Off Distance</u>

On the other hand, the frustum' lift-off distance b (m) can be calculated geometrically as follows [9]:

$$b = L \frac{\sin(K\alpha)}{\sin(\alpha)} \tag{B-80}$$

Where [9]:

$$K = 0.187e^{-20R_W} + 0.015 \tag{B-81}$$

d. The Length Of The Frustum

The length of the frustum R_L can also be obtained from the geometrical relation [9]:

$$R_L = \sqrt{L_B^2 - b^2 \sin(\alpha)} - b\cos(\alpha) \tag{B-82}$$

e. The Frustum Base Width

The Chamberlain model proposes an empirical correlation to calculate the frustum base W_1 (m) [9]:

$$W_{1} = D_{S}(13.5e^{-6R_{w}} + 1.5) \left\{ 1 - e^{-70Ri(D_{S})CR_{w}} \left[1 - \frac{1}{15} \sqrt{\frac{\rho_{air}}{\rho_{j}}} \right] \right\}$$
(B-83)

Where:

$$C = 1000e^{-100R_w} + 0.8 \tag{B-84}$$

$$Ri(D_S) = D_S(\frac{g}{u_j^2 D_S^2})^{1/3}$$
(B-85)

f. The Frustum's Tip Width

There is an empirical correlation to calculate the tip width developed by Chamberlain [9]:

$$W_2 = L(0.18e^{-1.5R_w} + 0.31)(1 - 0.47e^{-25R_w})$$
(B-86)

g. The Surface Area Of the Frustum Including End Discs

The surface area can be calculated using the expression:

$$A = \frac{\pi}{4} (W_1^2 + W_2^2) + \frac{\pi}{2} (W_1 + W_2) \sqrt{R_L^2 + \left(\frac{W_2 - W_1}{2}\right)^2}$$
(B-87)

B.2.2.5 The View Factor

When it comes to jet flames, the flame is typically depicted as a cylinder that is slanted and whose diameter is equal to the average of the two end discs of the frustum. Equations (B-43) and (B-44) can then be used to calculate the maximum view factor for a jet flame, though the distance, tilt angle, and radius will be different since the configuration is changed (Figure B-10) [9]:

$$d' = \sqrt{(b \sin \theta_{jv})^2 + (d - b \cos \theta_{jv})^2}$$
(B-88)

$$\theta' = 90^{\circ} - \Theta_{jv} + \alpha - \arctan(\frac{a \sin \Theta_{jv}}{d - a \cos \Theta_{jv}})$$
(B-89)

$$R' = \frac{W_1 + W_2}{4} \tag{B-90}$$

Figure B-10 Flame Configuration for View Factor [9]

B.2.2.6 Surface Emissive Power

For jet flames, the surface emissive power SEP (kW.m⁻²) can be expressed as [19]:

$$SEP = X_r \frac{\dot{m}}{A} \Delta H_c \tag{B-91}$$

Where ΔH_c (KJ/Kg) is the combustion heat for the fuel studied, A (m²) is the frustum area calculated with equation (B-87) while X_r denotes the fraction of the heat radiated from the surface of the flame that depends on the gas post-expansion velocity u_j and it can be estimated using [9]:

$$X_r = 0.21e^{-0.00323u_j} + 0.11 \tag{B-92}$$

Although, modifications were applied to the fraction X_r by the JFSH-Cook model when it was observed that it varies additionally on the fuel molecular weight from $W_q = 21$ (g/mol) [19]:

$$X_r = 0.21e^{-0.00323u_j} + 0.11$$
 for $W_g \le 21$ (B-93)

$$X_r = \sqrt{\frac{W_g}{21}} \left(0.21e^{-0.00323u_j} + 0.11 \right) \quad for \ 21 \le W_g \le 60$$
(B-94)

$$X_r = 1.69(0.21e^{-0.00323u_j} + 0.11) \quad for W_g > 60$$
 (B-95)

B.2.2.7 Thermal Radiation intensity:

The thermal radiation intensity can be calculated similarly with pool fires:

$$q'' = SEP. F. \tau \tag{B-96}$$

With τ is the atmospheric transmissivity discussed in the pool fire section and can be estimated using the equations (B-56), (B-57), or (B-58).

B.3 Vapor Cloud Explosions

In the subsequent section, our primary focus will be directed towards Vapor Cloud Explosions, as they demonstrate a comparatively higher occurrence frequency in comparison to other explosion types.

Vapor Cloud Explosions (VCEs) have undergone comprehensive research over the years, leading to the development of numerous models aimed at providing accurate descriptions of their characteristics:

• **The TNT Equivalent Method:** It is the simplest model that analysis VCEs. The method is based on evaluating how effective the chemical energy transformation into mechanical energy [10].

- The TNO Multi-Energy Model: The model was developed after it was observed that only potions of the vapor cloud trigger a blast wave. The general approach of the TNO is that those portions are the ones partially or fully congested. The TNO vapor cloud explosion is therefore considered a collection of smaller explosions from multiple cloud sources [10].
- The Baker-Strehlow-Tang: In this model, multiple parameters were combined to estimate the blast overpressure: Confinement effect, fuel reactivity, and congestion. They are then used to obtain the flame speed according to a table of 27 combinations [20].

When comparing the three analytical models, it is noteworthy that the TNT equivalent method does not incorporate any obstacles within its calculations, thus assuming an idealistic environment. In contrast, both the TNO and BST models account for the presence of obstacles. However, based on the depicted Figure B-11, it can be observed that all three models yield comparable outcomes when evaluating blast effects at greater distances [6].

Figure B-11 Comparison Between the three VCE models [6]

Based on that, the TNO Multi-Energy model was adopted and will be discussed in detail in the following section.

B.3.1 The TNO Multi-Energy Model

In the TNO Multi-Energy Model, the blast overpressure and duration can be obtained directly from the abacus or curves, as depicted in the figures. These figures illustrate 10 blast classes, with the scaled distance represented on the x-axis, the scaled peaked overpressure on the y-axis

(Figure B-12), and the scaled duration on the y-axis (Figure B-13). The values for the scaled peaked overpressure and duration are calculated using the following correlations [21]:

$$r' = x \left(\frac{E}{P_a}\right)^{-\frac{1}{3}} \tag{B-97}$$

$$P_s' = \frac{P_s}{P_a} \tag{B-98}$$

$$t_{p} = \frac{t_{p}'}{c_{0}} \left(\frac{E}{P_{a}}\right)^{\frac{1}{3}}$$
(B-99)

With E (J) being the explosion energy, x (m), the target distance from the center of the explosion, P_a (Pa) is the atmospheric pressure, and c_0 (m.s⁻²), the sound velocity of atmospheric air.

Appendix B. Fire and Explosion Consequences Modeling

Figure B-12 Scaled dynamic pressure versus scaled distance [18]

Appendix B. Fire and Explosion Consequences Modeling

Figure B-13 Scaled positive phase duration versus scaled distance [18]

As depicted in Figure B-12, the curves in the graph are labeled with numbers corresponding to different blast strengths, ranging from 1 (representing a weak blast) to 10 (representing a detonation). It can be observed that for blast classes 7 and above, the curves tend to converge towards the 10th class curve, which represents the detonation limit, as the energy-scaled distances increase [10].

The selection of the appropriate blast strength is of utmost importance in evaluating the overpressure. As the determination of blast strength can be subjective in certain scenarios, a table was introduced as a reference guide Table B-5 to aid in the decision-making process. This table assists in making informed judgments regarding the appropriate blast strength to be used for accurate overpressure assessment.

Ignition Energy	Obstruction	Confinement	Blast class
High	High	Parallel plane	7-10
High	High	Unconfined	7-10
Low	High	Parallel plane	5-7
High	Low	Parallel plane	5-7
High	Low	Unconfined	4-6
High	None	Parallel plane	4-6
Low	High	Unconfined	4-5
High	None	Unconfined	4-5
Low	Low	Parallel plane	3-5
Low	Low	Unconfined	2-3
Low	None	Parallel plane	1-2
Low	None	Unconfined	1

Table B-5 Blast strength selection guide [10]

The selection criteria can be explained further as follows:

a. Ignition Energy

Ignition energy refers to the supply of energy required to initiate the combustion of fuel. A high-level ignition energy source can be exemplified by a confined vented explosion, whereas low-level sources encompass sparks, hot surfaces, and flames [10].

b. **Obstruction**

In an unobstructed location, the explosion blast strength is significantly low due to the absence of obstacles, which facilitates a uniform distribution of the cloud. Conversely, in an obstructed zone characterized by numerous obstructions such as machinery, the flow transitions from laminar to turbulent, leading to an increased spreading velocity of the cloud. Consequently, the intensity of the explosion blast is heightened in such cases.

c. <u>Confinement</u>

A vapor cloud is considered contained if it is enclosed on two or three sides by walls or barriers. On the other hand, if a gas vapor is only confined by the ground, it is classified as unconfined[10]. After determining the appropriate blast strength, the estimation of overpressure at various distances from a target can be accomplished by following a specific procedure, which can be outlined in the following steps:

- **2-** Cloud Size determination.
- 3- Identification of possible blast sources.
- 4- Defining congested zones.
- 5- Finding the cloud congested volume.
- 6- Calculating blast parameters.

B.3.2 Cloud Size

In order to assess the size of a cloud resulting from an unintended release and utilize that information in explosion calculations, it is customary to conduct a dispersion study. In cases where a dispersion calculation is unavailable, the mass quantity is often approximated [21]. The estimation of the quantity is accomplished by employing the previously discussed source term modeling. However, the approach may vary depending on the nature of the released fluid.

a. Liquid Releases

As elaborated in the section pertaining to pool evaporation source term modeling, the process of liquid vaporization plays a significant role in the generation of a potentially flammable vapor cloud. By quantifying the rate of evaporation using equation (B-93), we can subsequently utilize this information to estimate the amount of liquid that has evaporated, employing the following methodology:

$$M_{ev} = Ev.t_{ex} \tag{B-100}$$

Where M_{ev} (Kg) is the evaporated amount, Ev (Kg.s⁻¹) is the evaporation rate and t_{ex} (s) is the explosion time ranging from 5 to 10 minutes [9].

b. Gas Release

The utilization of gas release modeling enables us to determine the mass discharge rate, which serves as a direct measure for evaluating the quantity of gas that has been released into the surrounding atmosphere:

$$M_{aas} = \dot{m}.t \tag{B-101}$$

With t (s) being the duration of the leak.

Upon quantifying the fuel quantity that contributes to the formation of a vapor cloud explosion, our objective is to determine the total volume of the cloud. This can be achieved through the following procedure:

1. Establishing the combustion reaction of the fuel:

This step enables us to determine the gas-to-air ratio by considering the stoichiometric coefficient derived from the combustion reaction. For instance, alkanes can be represented by the following general reaction equation:

$$C_n H_{2n+2} + \frac{3n+1}{2}O_2 \rightarrow nCO_2 + (n+1)H_2O_2$$

The ratio of gas/oxygen is then: $\frac{2}{3n+1}$

And since the oxygen percentage in the air is 21% the ratio above should be multiplied by $1/_5$ to obtain the ratio gas/air, in other words:

$$GAR = \frac{2}{5(3n+1)}$$
(B-102)

GAR(-) is the ratio of gas/air and n(-) is the number of carbon atoms in the compound.

2. Calculating the cloud total volume:

The total volume of the cloud can then be obtained simply by:

$$V = \frac{1}{GAR} \frac{M}{\rho} \tag{B-103}$$

Where M (Kg) is the amount of gas released after a leak or the evaporated amount in case of a liquid release forming a pool and ρ (Kg.m⁻³) is the density of the gas or the liquid in a vapor phase.

3. Determining the cloud radius:

The cloud radius comes in handy in representing the cloud on a facility layout plan, it can be derived from the cloud volume considering it as a hemisphere:

$$R = \left(\frac{3}{2}\frac{V}{\pi}\right)^{\frac{1}{3}} \tag{B-104}$$

B.3.3 Identification of Blast Sources

To accurately determine the most likely blast source, it is essential to apply engineering judgment. Several common locations can serve as potential blast sources, including process equipment within chemical plants or refineries, confined spaces between parallel walls or barriers, enclosed areas such as tunnels, corridors, or covered conveyor belts, and areas where highly turbulent fuel-air mixtures may occur due to high-pressure releases. These locations are known to present conditions conducive to initiating a blast event [10].

B.3.4 Defining Congested Areas

To define the congested area, two empirical conditions were proposed to identify which equipment to include in the obstructed zone [9]:

$$X < 25 m$$

$$X < 10D_1 \qquad or \qquad X < 1.5D_2$$

Where D_1 (m) is the object's smallest dimension measured on a plane perpendicular to the flame's direction and D_2 (m) is the object's dimension perpendicular to the flame's propagation direction.

B.3.5 Calculating the cloud congested volume

Once the congested area and the vapor cloud have been depicted on the facility layout plan, the relevant volume for subsequent calculations is determined by considering the intersection between the cloud and the obstructed zone. This intersection volume represents the portion where the vapor cloud and the congested area overlap, and it is the specific volume taken into account for further analysis and computations.

B.3.6 Calculating Blast Parameters

B.3.6.1 Explosion Energy

The energy released from an explosion can be calculated using [9]:

$$E = V_c(\Delta H_c \times \rho \times GAR) \tag{B-105}$$
Where V_c (m³) is the volume of the intersection between the vapor cloud and the congested zone.

B.3.6.2 The Blast Overpressure

After calculating the energy-scaled distance with equation (B-97) we can find the scaled peaked pressure using the abacus (See Figure B-12).

However, if we want to compute the TNO multi-energy model, the curves corresponding to the blast classes (1-10) should be interpolated.

A correlation was proposed for two classes 3 and 10 [9]:

$$P_s' = 10^{-b \log_{10} r' - c} \tag{B-106}$$

Where the constants b (-) and c (-) are obtained from Table B-8 [9]:

Blast Class	Ranges of r'	В	С
	0.15 < r' < 1.0	2.3721	0.3372
10	$1.0 \le r' \le 2.5$	1.5236	0.3372
	r' > 2.5	1.1188	0.5120
2	$r' \leq 0.6$	0	1.3010
3	r' > 0.6	0.9621	1.5145

 Table B-6 Coefficient b and c for equation (B-106) [9]

As for the other blast classes, we tried to interpolate the curve of class 7 since it's the class we chose for the blast.

After observing the blast pressure abacus (See Figure B-12), it becomes apparent that all curves can be divided into three segments, the 7th class curve for instance can be split like below:

- 1- For $r' \in [0.25, 0.4] P'_s = 1$.
- 2- For r' ∈]0.4, 1] a best-fit function for the data gathered (Table B-7) was obtained using the curve fitting toolbox in MATLAB:

<i>r</i> ′	0.5	0.54	0.58	0.6	0.68	0.7	0.79	0.8	0.89	0.9
P'_s	0.95	0.9	0.85	0.8	0.75	0.7	0.66	0.62	0.59	0.52

Table B-7 Data for energy-scaled distance and scaled pressure

An exponential function with a squared determination factor of $R^2=0.98$ was thus obtained:

$$P_s' = 1.897e^{-1.39r'} \tag{B-107}$$

3- For r' > 1 the 7th curve is fitted on top of the 10th class curve which means they basically have the same evolution in that interval, as a result, the scaled overpressure in this range can be calculated using equation (B-106).

C.1 Failure frequencies:

FZ 01 : Inlet line 16''									
Dalaasa soow		Part		Leak fre	quencies				
Release source	ces	Count	5 mm	25 mm	100 mm	>150 mm			
Piping	Piping 16"	30	4,10E-06	3,30E-06	1,24E-06	1,80E-06			
Flanges	16"	8	2,50E-05	7,30E-06	9,00E-07	8,10E-06			
Manual Valve	6"	2	3,60E-05	1,50E-05	7,10E-06	9,00E-06			
Actuated valve	16"	1	5,70E-05	1,90E-05	3,20E-06	1,30E-06			
Instrument connections	1/2"	6	5,00E-05	N/A	0,00E+00	0,00E+00			
Total			7,52E-04	2,06E-04	6,18E-05	1,38E-04			
		FZ 01 :	Inlet line 12	211					
Dalaasa sour		Part	Leak frequencies						
Kelease source	les	Count	5 mm	25 mm	100 mm	>150 mm			
Piping	Piping 12"	23,56	4,10E-06	3,30E-06	1,24E-06	1,80E-06			
Flanges	12"	2	1,50E-05	5,90E-06	1,10E-06	3,90E-06			
Manual Valua	1"	1	1,30E-05	7,40E-06	0,00E+00	N/A			
wanuar varve	12"	1	2,40E-05	1,30E-05	3,50E-06	3,50E-06			
Actuated valve	12"	1	5,50E-05	2,50E-05	5,60E-06	4,30E-06			
Instrument connections	1/2"	1	5,00E-05	N/A	0,00E+00	0,00E+00			
То	tal		2,69E-04	1,35E-04	4,05E-05	5,80E-05			

Table C-1 Inlet line failure frequencies [2], [13]

FZ 02: Separator TX1H-046 'Gas part'									
		Part		Leak fre	quencies				
Release sou	irces	Count	5 mm	25 mm	100 mm	>150 mm			
	1/2''	6	6,00E-06	2,80E-06	N/A	N/A			
	2"	1	6,00E-06	2,80E-06	N/A	N/A			
Flores	3"	5	6,90E-06	3,18E-06	N/A	N/A			
Flanges	4"	1	7,80E-06	3,55E-06	1,10E-06	N/A			
	6''	6	9,60E-06	4,30E-06	9,90E-07	1,70E-06			
	8''	2	1,23E-05	5,10E-06	1,05E-06	2,80E-06			
	1/2''	4	1,30E-05	7,40E-06	0,00E+00	N/A			
Manual Valua	3''	1	1,30E-05	7,00E-06	0,00E+00	N/A			
Manual valve	6''	2	1,30E-05	6,20E-06	1,50E-06	1,20E-06			
	8''	2	1,85E-05	9,60E-06	2,50E-06	2,35E-06			
Actuated valve	6''	2	6,20E-05	3,00E-05	7,20E-06	6,10E-06			
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05			
Instrument	1"	3	5,00E-05	2,70E-05	0,00E+00	0,00E+00			
connections	2"	2	5,00E-05	2,00E-05	6,60E-06	0,00E+00			
Te	otal		1,13E-03	5,72E-04	8,27E-05	7,11E-05			
FZ 02: THE GAS	LINE 10"-PV	-03B3-1 KOV(800 FROM	I SEPERAT	OR TX1H-	046 TO			
		Part		Leak fre	quencies				
Release sou	irces	Count	5 mm	25 mm	100 mm	>150 mm			
Distant	10"	17,2	5,10E-06	2,50E-06	6,40E-07	5,60E-07			
Piping	12"	9	5,10E-06	2,50E-06	6,40E-07	5,60E-07			

Table C-2 Separator failure frequencies [2], [13]

	10"	10	1,50E-05	5,90E-06	1,10E-06	3,90E-06
Flanges	12"	4	1,50E-05	5,90E-06	1,10E-06	3,90E-06
	10"	5	2,40E-05	1,30E-05	3,65E-06	3,50E-06
Manual Valve	12"	1	2,40E-05	1,30E-05	3,50E-06	3,50E-06
A structure division	10"	1	5,50E-05	2,50E-05	5,60E-06	4,30E-06
Actuated valve	12"	1	5,50E-05	2,50E-05	5,60E-06	4,30E-06
Instrument connections	1	4	5,00E-05	2,70E-05	0,00E+00	0,00E+00
Т	otal		3,82E-04	1,80E-04	4,38E-05	6,96E-05
FZ 02 : Separator TX1H-046 'Oil part'						
		Part	Leak frequencies			
Kelease sou	lirces	Count	5 mm	25 mm	100 mm	>150 mm
	1/2''	20	6,00E-06	0,00E+00	N/A	N/A
Elenand	3''	6	6,90E-06	3,18E-06	N/A	N/A
rianges	4"	2	7,80E-06	3,55E-06	1,10E-06	N/A
	6''	28	9,60E-06	4,30E-06	9,90E-07	1,70E-06
Manual Valua	1/2''	6	1,30E-05	0,00E+00	0,00E+00	N/A
	3"	3	1,30E-05	7,00E-06	0,00E+00	N/A
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05
Instrument connections	2"	5	5,00E-05	2,00E-05	6,60E-06	0,00E+00
T	otal		1,07E-03	4,08E-04	1,01E-04	8,36E-05
	FZ 02: Pipe be	tween se	eparator an	d Surge tar	ık	
Dalaasa so	14000	Part		Leak fre	quencies	
Release sources		Count	5 mm	25 mm	100 mm	>150 mm
Piping	6''	91	6,70E-06	2,70E-06	5,60E-07	3,50E-07

Flanges	6''	28	9,60E-06	4,30E-06	9,90E-07	1,70E-06
Manual Valve	6"	11	1,30E-05	6,20E-06	1,50E-06	1,20E-06
	1/2"	6	1,30E-05	0,00E+00	0,00E+00	N/A
Actuated valve	4"	1	6,20E-05	3,00E-05	9,60E-06	N/A
	6''	1	6,20E-05	3,00E-05	7,20E-06	6,10E-06
Instrument connections	2"	9	5,00E-05	2,00E-05	6,60E-06	0,00E+00
Te	otal		1,22E-03	4,94E-04	1,12E-04	9,88E-05

 Table C-3 Surge tank failure frequencies [2], [13]

FZ 03 : Surge Tank (GAS)									
Dalaasa		Part	Leak frequencies						
Release sources		Count	5 mm	25 mm	100 mm	>150 mm			
	1/2''	1	6,00E-06	N/A	N/A	N/A			
Element	2"	2	6,00E-06	2,80E-06	N/A	N/A			
Flanges	4"	4	7,80E-06	3,55E-06	1,10E-06	N/A			
	6''	4	9,60E-06	4,30E-06	9,90E-07	1,70E-06			
	1/2''	1	1,30E-05	N/A	0,00E+00	N/A			
	2"	1	1,30E-05	7,40E-06	0,00E+00	N/A			
Manual valve	4"	3	1,30E-05	6,80E-06	7,50E-07	N/A			
	6''	5	1,30E-05	6,20E-06	1,50E-06	1,20E-06			
	4"	1	6,20E-05	3,00E-05	9,60E-06	N/A			
Actuated valve	6''	2	6,20E-05	3,00E-05	7,20E-06	6,10E-06			
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05			
Instrument	1"	6	5,00E-05	2,70E-05	0,00E+00	0,00E+00			
connections	2"	2	5,00E-05	2,00E-05	6,60E-06	0,00E+00			
TOTAL			1,06E-03	5,28E-04	9,33E-05	6,10E-05			
	FZ	03 : Sur	ge Tank (O	il)					
Release sou	urces			Leak fre	equencies				

		Part Count	5 mm	25 mm	100 mm	>150 mm
	1/2''	1	6,00E-06	2,80E-06	N/A	N/A
Flore and	4"	6	1,09E-05	4,65E-06	1,48E-06	N/A
Flanges	6"	2	9,60E-06	4,30E-06	9,90E-07	1,70E-06
	8''	6	1,23E-05	5,10E-06	1,05E-06	2,80E-06
	4"	3	1,30E-05	6,80E-06	7,50E-07	N/A
Manual valve	6"	4	1,30E-05	6,20E-06	1,50E-06	1,20E-06
	8''	2	1,85E-05	9,60E-06	2,50E-06	2,35E-06
Actuated valve	8''	1	5,85E-05	2,50E-05	6,40E-06	5,20E-06
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05
Instrument	1"	9	5,00E-05	2,70E-05	0,00E+00	0,00E+00
connections	2"	1	5,00E-05	2,00E-05	6,60E-06	0,00E+00
TC	TAL	I	1,23E-03	6,17E-04	9,36E-05	9,36E-05
TC F.	TAL Z 03: Pipe bety	veen sur	1,23E-03 ge tank and	6,17E-04 l export pu	9,36E-05 mps	9,36E-05
TC F.	TAL Z 03: Pipe bety	veen sur Part	1,23E-03 ge tank and	6,17E-04 l export pu Leak fre	9,36E-05 mps equencies	9,36E-05
TC F Release sou	OTAL Z 03: Pipe bety urces	veen sur Part Count	1,23E-03 ge tank and 5 mm	6,17E-04 l export pu Leak fre 25 mm	9,36E-05 mps equencies 100 mm	9,36E-05 >150 mm
TC F. Release sou Pipe	OTAL Z 03: Pipe bety arces 8''	veen sur Part Count 43,2	1,23E-03 ge tank and 5 mm 5,90E-06	6,17E-04 l export pu Leak fro 25 mm 2,60E-06	9,36E-05 mps equencies 100 mm 6,00E-07	9,36E-05 >150 mm 4,55E-07
TC F Release sou Pipe	DTAL Z 03: Pipe bety arces 8'' 6"	veen sur Part Count 43,2 3	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06	6,17E-04 1 export pu Leak fro 25 mm 2,60E-06 4,30E-06	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07	9,36E-05 >150 mm 4,55E-07 1,70E-06
TC F Release sou Pipe Flanges	DTAL Z 03: Pipe bety urces 8'' 6" 8"	veen sur Part Count 43,2 3 5	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06 1,23E-05	6,17E-04 export pu Leak fro 25 mm 2,60E-06 4,30E-06 5,10E-06	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07 1,05E-06	9,36E-05 >150 mm 4,55E-07 1,70E-06 2,80E-06
TC F Release sou Pipe Flanges	DTAL Z 03: Pipe betv arces 8'' 6" 8" 6"	veen sur Part Count 43,2 3 5 1	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06 1,23E-05 1,30E-05	6,17E-04 l export pu Leak fro 25 mm 2,60E-06 4,30E-06 5,10E-06 6,20E-06	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07 1,05E-06 1,50E-06	9,36E-05 >150 mm 4,55E-07 1,70E-06 2,80E-06 1,20E-06
TC F Release sou Pipe Flanges Manual valve	DTAL Z 03: Pipe bety arces 8'' 6" 8" 6" 8"	veen sur Part Count 43,2 3 5 1 1	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06 1,23E-05 1,30E-05 1,85E-05	6,17E-04 1 export pu Leak fro 25 mm 2,60E-06 4,30E-06 5,10E-06 6,20E-06 9,60E-06	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07 1,05E-06 1,50E-06	9,36E-05 >150 mm 4,55E-07 1,70E-06 2,80E-06 1,20E-06 2,35E-06
TC F Release sou Pipe Flanges Manual valve Actuated valve	DTAL Z 03: Pipe bety arces 8'' 6" 8" 6" 8" 8" 8"	veen sur Part Count 43,2 3 5 1 1 1	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06 1,23E-05 1,30E-05 1,85E-05 5,85E-05	6,17E-04 export pu Leak fre 25 mm 2,60E-06 4,30E-06 5,10E-06 6,20E-06 9,60E-06 2,50E-05	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07 1,05E-06 1,50E-06 2,50E-06 6,40E-06	9,36E-05 >150 mm 4,55E-07 1,70E-06 2,80E-06 1,20E-06 2,35E-06 5,20E-06
TC F Release sou Pipe Flanges Manual valve Actuated valve Instrument connections	DTAL Z 03: Pipe bety arces 8'' 6" 8" 6" 8" 8" 8" 1/2"	veen sur Part Count 43,2 3 5 1 1 1 1 2	1,23E-03 ge tank and 5 mm 5,90E-06 9,60E-06 1,23E-05 1,30E-05 1,85E-05 5,85E-05 5,00E-05	6,17E-04 export pu Leak fro 25 mm 2,60E-06 4,30E-06 5,10E-06 6,20E-06 9,60E-06 2,50E-05 2,70E-05	9,36E-05 mps equencies 100 mm 6,00E-07 9,90E-07 1,05E-06 1,50E-06 2,50E-06 6,40E-06 0,00E+00	9,36E-05 >150 mm 4,55E-07 1,70E-06 2,80E-06 1,20E-06 2,35E-06 5,20E-06 0,00E+00

	FZ 04 : K0	OV 01-X	(RZ-009 (G	as Part)		
		Part		Leak fre	equencies	
Release so	ources	Count	5 mm	25 mm	100 mm	>150 mm
	1''	5	6,00E-06	2,80E-06	N/A	N/A
	2''	1	6,00E-06	2,80E-06	N/A	N/A
	3''	1	6,90E-06	3,18E-06	N/A	N/A
Flanges	4''	4	7,80E-06	3,55E-06	1,10E-06	N/A
	8''	11	1,23E-05	5,10E-06	1,05E-06	2,80E-06
	10"	3	1,50E-05	5,90E-06	1,10E-06	3,90E-06
	12"	2	1,50E-05	5,90E-06	1,10E-06	3,90E-06
	1/2"	3	1,30E-05	7,40E-06	0,00E+00	N/A
	4''	2	1,30E-05	6,80E-06	7,50E-07	N/A
Manual valve	6''	2	1,30E-05	6,20E-06	1,50E-06	1,20E-06
	8''	2	1,85E-05	9,60E-06	2,50E-06	2,35E-06
	12"	1	2,40E-05	1,30E-05	3,50E-06	3,50E-06
	6''	2	6,20E-05	3,00E-05	7,20E-06	6,10E-06
Actuated valve	10"	1	5,50E-05	2,50E-05	5,60E-06	4,30E-06
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05
Instrument	1"	6	5,00E-05	2,70E-05	0,00E+00	0,00E+00
connections	2"	3	5,00E-05	2,00E-05	6,60E-06	0,00E+00
TO	DTAL		1,33E-03	6,47E-04	1,12E-04	1,13E-04
	FZ 04 : KO	V 01-XI	RZ-009 (Liq	luid part)		
Dalaasa sa		Part		Leak fre	equencies	
Kelease su	Juices	Count	5 mm	25 mm	100 mm	>150 mm
	1"	3	6,00E-06	2,80E-06	N/A	N/A
Flonges	2"	10	6,00E-06	2,80E-06	N/A	N/A
rianges	3"	14	6,90E-06	3,18E-06	N/A	N/A
	4"	1	7,80E-06	3,55E-06	1,10E-06	N/A

 Table C-4 Knock out Vessel failure frequencies [13], [22]

Manual valve	2"	5	1,30E-05	7,40E-06	0,00E+00	N/A
Manual valve	3"	6	1,30E-05	7,00E-06	0,00E+00	N/A
Actuated valve	3"	1	6,20E-05	3,00E-05	7,20E-06	6,10E-06
Process vessels	Inlets >150 mm	1	2,60E-04	1,40E-04	3,80E-05	3,60E-05
TOTAL			6,47E-04	3,33E-04	4,63E-05	4,21E-05

Table C-5 Centrifugal pumps failure frequencies [13], [23]

FZ 05 : Booster Pumps								
Delessor		Part		Leak fre	equencies			
Kelease so	urces	Count	5 mm	25 mm	100 mm	>150 mm		
Dining	6"	17,86	6,70E-06	2,70E-06	5,60E-07	3,50E-07		
riping	10"	9,1	5,10E-06	2,50E-06	6,40E-07	5,60E-07		
a	1"	6	6,00E-06	2,80E-06	N/A	N/A		
Tlanges	6''	17	9,60E-06	4,30E-06	9,90E-07	1,70E-06		
Managalarahar	1/2"	6	1,30E-05	N/A	0,00E+00	N/A		
Manual valve	6''	6	1,30E-05	6,20E-06	1,50E-06	1,20E-06		
Pumps: Centrifugal	Inlets 50 to 150 mm diameter	3	1,40E-03	3,00E-04	3,90E-05	N/A		
Instrument	1"	3	5,00E-05	2,70E-05	0,00E+00	0,00E+00		
connections	2"	16	5,00E-05	2,00E-05	6,60E-06	0,00E+00		
TC	DTAL		5,67E-03	1,50E-03	2,64E-04	4,74E-05		
	FZ	Z 05 : Ex	port Pump	S				
D alaasa sa		Part		Leak fre	equencies			
Kelease so	urces	Count	5 mm	25 mm	100 mm	>150 mm		
Dining	6"	17,86	6,70E-06	2,70E-06	5,60E-07	3,50E-07		
Piping	10"	9	5,10E-06	2,50E-06	6,40E-07	5,60E-07		
<u>flama a c</u>	1"	6	6,00E-06	2,80E-06	N/A	N/A		
nanges	6''	16	9,60E-06	4,30E-06	9,90E-07	1,70E-06		
Manual valve	1/2"	6	1,30E-05	N/A	0,00E+00	N/A		

	6"	6	1,30E-05	6,20E-06	1,50E-06	1,20E-06
Manual valve	1/2"	6	1,30E-05	N/A	0,00E+00	N/A
	6"	6	1,30E-05	6,20E-06	1,50E-06	1,20E-06
Pumps: Centrifugal	Inlets 50 to 150 mm diameter	3	1,40E-03	3,00E-04	3,90E-05	N/A
Instrument	1"	3	5,00E-05	2,70E-05	0,00E+00	0,00E+00
connections	2"	16	5,00E-05	2,00E-05	6,60E-06	0,00E+00
TOTAL			5,67E-03	1,50E-03	2,64E-04	4,74E-05

 Table C-6 Oil expedition line failure frequencies [13], [24]

FZ 06 : Oil Expedition line									
Dalaasa so	17220	Part	Part Leak frequencies						
Release sources		Count	5 mm	25 mm	100 mm	>150 mm			
Piping	12"	191m	5,10E-06	2,50E-06	6,40E-07	5,60E-07			
	8''	4	1,23E-05	5,10E-06	1,05E-06	2,80E-06			
Flores	10"	8	1,50E-05	5,90E-06	1,10E-06	3,90E-06			
Flanges	12"	13	1,50E-05	5,90E-06	1,10E-06	3,90E-06			
	14"	4	2,50E-05	7,30E-06	9,00E-07	8,10E-06			
	1/2"	1	1,30E-05	7,40E-06	N/A	N/A			
	8''	2	1,85E-05	9,60E-06	2,50E-06	2,35E-06			
Manual valve	10"	4	2,40E-05	1,30E-05	3,65E-06	3,50E-06			
	12"	5	2,40E-05	1,30E-05	3,50E-06	3,50E-06			
	14"	2	3,00E-05	1,80E-05	5,30E-06	6,25E-06			
Actuated valve	12"	1	5,50E-05	2,50E-05	5,60E-06	4,30E-06			
Instrument connections	1/2''	6	5,00E-05	N/A					
тс	DTAL		2,12E-03	1,02E-03	2,06E-04	2,85E-04			

FZ 07 : Gas Expedition line								
D .1		Part	Leak frequencies					
Kelease sources		Count	5 mm	25 mm	100 mm	>150 mm		
Piping	10"	170,32m	5,10E-06	2,50E-06	6,40E-07	5,60E-07		
	2"	12	6,00E-06	2,80E-06	N/A	N/A		
Flanges	8"	2	1,23E-05	5,10E-06	1,05E-06	2,80E-06		
	10"	18	1,50E-05	5,90E-06	1,10E-06	3,90E-06		
	12"	2	1,50E-05	5,90E-06	1,10E-06	3,90E-06		
Manual valua	2"	5	1,30E-05	7,40E-06	0,00E+00	N/A		
Manual valve	10"	5	2,40E-05	1,30E-05	3,65E-06	3,50E-06		
	8"	1	5,85E-05	2,50E-05	6,40E-06	5,20E-06		
Actualed valve	10"	2	5,50E-05	2,50E-05	5,60E-06	4,30E-06		
Instrument connections	1/2"	11	5,00E-05	2,70E-05	0,00E+00	0,00E+00		
TOTAL	_		2,18E-03	1,07E-03	1,70E-04	2,11E-04		

Table C-7	Gas expedition	line failure	frequencies	[13],	[24]
-----------	----------------	--------------	-------------	-------	------

C.2 Probability of ignition:

Table C-8 Ignition	probabilities	[8]
--------------------	---------------	-----

	Fire zone	Breach diameter	Release rate (Kg/s)	Immediate ignition	Delayed ignition
		5 mm	0.816	0,001	0,001
	Inlet Pipe 16"-PF- 06B3-1400 (30m)	25 mm	20.407	0,001	0,019
		100 mm	277.07	0,001	0,099
FZ01		150 mm	623.407	0,001	0,099
		5 mm	0.692	0,001	0,001
	Inlet pipe 12"-PF 03B3-1401 (123.56m)	25 mm	17.316	0,001	0,019
		100 mm	226.524	0,001	0,099

				[
		150 mm	558.580	0,001	0,099
		5 mm	0,460	0,001	0,001
	Separator TX1H-046	25 mm	11.60	0,001	0,014
	'Liquid part'	100 mm	185.62	0,001	0,099
		150 mm	673.64	0,001	0,099
		5 mm	0,023	0,001	0
	Separator TX1H-046	25 mm	0,553	0,001	0,001
	'Gas part'	100 mm	8,850	0,001	0,029
FZ02		150 mm	32,105	0,001	0,079
		5 mm	0.0213	0,001	0
	The Gas Line 10"	25 mm	0.532	0,001	0,001
	From Separator To KOV		8.835	0,001	0,029
			30.893	0,001	0,079
	Pipe between separator and Surge tank (91m)	5 mm	0.255	0,001	0
		25 mm	6.378	0,001	0,019
		100 mm	102.048	0,001	0,099
		150 mm	229.609	0,001	0,099
		5 mm	0.270	0,001	0
	Surge Tank TX6961-	25 mm	6.760	0,001	0.014
	014	100 mm	108	0,001	0,099
E702		150 mm	392.85	0,001	0,099
FZ03		5 mm	0.295	0,001	0
	Pipe between surge	25 mm	7.377	0,001	0,019
	pumps (43,2m)	100 mm	118.041	0,001	0,099
		150 mm	265.593	0,001	0,099
		5 mm	0.017	0,001	0
E704	Knock-Out Vessel 01-	25 mm	0.42	0,001	0.001
FZ04	XRZ009 IS 02	100 mm	7.077	0,001	0.029
		150 mm	25.68	0,001	0.059

		5 mm	0.571	0,001	0
	Booster pumps	25 mm	14.292	0,001	0,019
	(20.8m)	100 mm	228.679	0,001	0,099
EZ 05		150 mm	514.528	0,001	0,099
FZ 03		5 mm	1.161	0,001	0,0005
	Export pumps	25 mm	29.394	0,001	0.029
		100 mm	464.526	0,001	0,099
		150 mm	868.617	0,001	0,099
		5 mm	0.62	0,001	0
		25 mm	15.52	0,001	0,019
	On Expedition line	100 mm	248.456	0,001	0,099
E7.06		150 mm	559.027	0,001	0,099
FZ 00		5 mm	0.017	0,001	0
	Cas Expedition line	25 mm	0.429	0,001	0
	Gas Expedition line	100 mm	6.861	0,001	0,019
		150 mm	15.445	0,001	0,039

Appendix D. Consequences analysis modeling results

D.1 Scenario N°1.1: Loss of Containment in the Admission Line 16"

SMALL BREACH								
Description: The initiating event is the loss of containment of hydrocarbon liquid due to a small breach (5 mm) in the admission line 16"-PF-06B3-1400.								
Leak flow(Kg/s) 0.816								
	Early Pool Fi	ire w	ith a 4.161 m	diameter				
Atmospheric condition	Flame Height (r	n)	Distance KW/m ²	e at 12.5 ² in (m)	D I	istance at 37.5 KW/m ² in (m		
Summer	4.6158		7.4	180		6.5		
Winter	4.470		7.4	182		6.6		
Burning duration (s)			159	90.0				
	Late Pool F	ire w	ith a 8.78 m d	liameter				
Atmospheric condition	Flame Height (r	n) Distance at 12.5 Distance at 37. KW/m^2 in (m) KW/m^2 in (m)			istance at 37.5 KW/m ² in (m			
Summer	7.895		13.	869	10.258			
Winter	7.7098	14.000			11.570			
Burning duration (s)			134	1.72				
	Vapo	or Clo	oud Explosion	ı				
Amount of liquid released (Kg)			97	9.2				
Vaporization rate	Summer		0.888	Evapora	ted	265.67		
(Kg/s)	Winter		0.188	amount (Kg)	56.521		
Total volume of the	Summer		3605.5	Congested	cloud	676		
cloud (m ³)	Winter		767.07	volume (m ³)	241		
Cloud radius (m)	Summer			11.98	5			
Cloud radius (III)	Winter			7.154	ļ			
Atmospheric condition	Distance at 200 m in (m)	bar	Distance at in (i	350 mbar m)	Dista	ance at 700 mbar in (m)		
Summer	50		35	5		21		
Winter	36		25	5		16		

Table D-1 Scenario FZ-1.1-005 modeling results

MEDIUM BREACH									
Description: The initiating event is the loss of containment of hydrocarbon liquid due to an									
medium breach (25 mm) in the admission line 16 ⁷ -PF-06B3-1400.									
Leak flow(Kg/s)	Leak flow(Kg/s)20.407								
	Early Pool	Fire wit	h 21.634 m	diameter					
Atmospheric condition	Flame height	(m)	Distance KW/m ²	e at 12.5 ² in (m)	D I	istance at 37.5 KW/m ² in (m			
Summer	14.593		26.	505		0.9			
Winter	14.178		26.	502		3.3			
Burning duration (s)			824	.49					
	Late Pool F	ire with	a 31.059 m	diameter					
Atmospheric condition	Flame height	(m)	Distance KW/m ²	e at 12.5 ² in (m)	D k	istance at 37.5 XW/m ² in (m)			
Summer	19.235		37.	270		0.4			
Winter	19.588	37.2		270		2.4			
Burning duration (s)			134.67 (2	min 14 s)					
	Va	por Clou	ud Explosion	1					
Amount of liquid released (Kg)			122	44.2					
Vaporization rate	Summer	9	9.636	Evaporat	ed	2890.9			
(Kg/s)	Winter	2	.0502	amount (H	Kg)	766.32			
Total volume of the	Summer	3	9234	Congested of	cloud	2143			
cloud (m ³)	Winter	1	0400	volume (r	n ³)	1438.38			
Cloud radius (m)	Summer			26.558					
Cloud radius (III)	Winter			17.061					
Atmospheric condition	Distance at 200 in (m)	mbar Distance at 350 mbar Distance at 700 mbar in (m) in (m)				ance at 700 mbar in (m)			
Summer	59		2	41		25			
Winter	51			36		22			

Table D-2 Scenario FZ-1.1-025 modeling results

LARGE BREACH								
Description: The central event is the loss of containment of hydrocarbon liquid due to a large								
Leak flow(Kg/s)	ch (100 mm) m the		<u>11551011 IIIe</u> 2'	77.07	1400.			
	Pool Fire w	vith a	38.271 m d	liameter				
Atmospheric condition	Flame height (1	m)	Distan KW/I	nce at 12.5 m^2 in (m)	Dis K	stance at 37.5 W/m ² in (m)		
Summer	23.579		44	4.300		0.5		
Winter	32.202		4:	5.600		3.500		
Burning duration (s)			134.66 ((2 min 13 s)				
Vapor Cloud Explosion								
Amount of liquid released (Kg)			41	560,5				
Vaporization rate	Summer		21.962	Evaporat	ed	6588.6		
(Kg/s)	Winter		4.672	amount(H	Kg)	1401.8		
Total volume of the	Summer		89417	Congested	cloud	2656.08		
cloud (m ³)	Winter		19024	volume (1	m ³)	1766.23		
	Summer			34.951	-			
Cloud radius (m)	Winter			20.865	5			
Atmospheric condition	Distance at 200 mbar in (m))	Distance at 350 mbar Distance at 700 mbar in (m) in (m)					
Summer	63		2	43		27		
Winter	55		,	38		24		

Table D-3 Scenario FZ-1.1-100 modeling results

Table D-4 Scenario FZ-1.1-150 modeling results

CATASTROPHIC BREACH									
Description: The central event is the loss of containment of hydrocarbon liquid due to a catastrophic breach (>150 mm) in the admission line 16"-PF-06B3-1400.									
Leak flow(Kg/s)	Leak flow(Kg/s) 623.407								
	Pool Fire with a	54.28 m diameter							
Atmospheric condition	Atmospheric conditionFlame height (m)Distance at 12.5 KW/m^2 in (m)Distance at 37.5 KW/m^2 in (m)								
Summer 22.520 79.700 N/A									
Winter	22.184	80.100	N/A						

Appendix D. Consequences analysis modeling results

Burning duration (s)	134.67						
Vapor Cloud Explosion							
Amount of Liquid released (Kg)	37404.5						
Vaporization rate	Summer		27.684	Evaporat	ted	8305.2	
(Kg/s)	Winter		5.890	amount(Kg)		1767.0	
Total volume of the	Summer		112720	Congested		2836.268	
cloud (m ³)	Winter		23981	(m^3)		1895.824	
Cloud radius (m)	Summer	Summer 37.755					
Cloud radius (III)	Winter		22.539				
Atmospheric	Distance at200 m	bar	Distance at	350 mbar	Dista	ance at 700 mbar	
condition	in (m)		in (m)		in (m)	
Summer	65		4.	5		28	
Winter	57		3	9		24	

Figure D-1 Scenario FZ-1.1-EP-005 modeling contours

Figure D-2 Scenario FZ-1.1-EP-025 modeling contours

Figure D-3 Scenario FZ-1.1-LP-005 modeling contours

Figure D-4 Scenario FZ-1.1-LP-025 modeling contours

Figure D-5 Scenario FZ-1.1-LP-100 modeling contours

Figure D-6 Scenario FZ-1.1-LP-150 modeling contours

Figure D-7 Scenario FZ-1.1-VCE-005 modeling contours

Figure D-8 Scenario FZ-1.1-VCE-025 modeling contours

Figure D-9 Scenario FZ-1.1-VCE-100 modeling contours

Figure D-10 Scenario FZ-1.1-VCE-150 modeling contours

D.2 Scenario N°1.2: Loss of Containment in the Admission Line 12"

SMALL BREACH								
Description: The initiating event is the loss of containment of hydrocarbon liquid due to a small breach (5 mm) in the admission line 12"-PF-03B3-1401								
Leak flow(Kg/s)	0.692							
Early Pool Fire with a 3.832 m diameter								
Atmospheric condition	Flame Height (m)		Dista KW/	Distance at 12.5 KW/m ² in (m)		Distance at 37.5 KW/m ² in (m		
Summer	4.3445			7.016		6.3		
Winter	4.2078			7.025		6.4		
Burning duration (s)		1619.9 (27 min)						
Late Pool Fire with a 8.088 m diameter								
Atmospheric condition	Flame Height (m)		Dista KW/	Distance at 12.5 KW/m ² in (m)		Distance at 37.5 KW/m ² in (m		
Summer	7.356	7.356		13.050		10.580		
Winter	7.244]	13.110		10.900		
Burning duration (s)	134.78 (2 min 16 s)							
Vapor Cloud Explosion								
Amount of liquid released (Kg)	830.4							
Vaporization rate	Summer	0.7578		Exempted of	mount	227.34		
(Kg/s)	Winter	0.1612		Evaporated at	nount	48.3		
Total volume of the cloud (m ³)	Summer	3085.3		Congested cloud		757.444		
	Winter	656.40		volume (n	n ³)	351.222		
	Summer	11.378						
Cloud radius (m)	Winter	6.7926						
Atmospheric condition	Distance at200 i in (m)	mbar Distance		Distance at 350 mbar in (m)		Distance at 700 mbar in (m)		
Summer	42	29 18			18			
Winter	33	22		14				

Table D-5 Scenario FZ-1.2-005 modeling results

MEDIUM BREACH							
Description: The central event is the loss of containment of hydrocarbon liquid due to an							
$\frac{1}{12.216}$ medium breach (25 mm) in the admission line 12"-PF-03B3-1401.							
Leak flow(Kg/s) 17.316							
Early Pool Fire with a 20.094 m diameter							
Atmospheric condition	Flame height (m)		Distance at 12.5 KW/m ² in (m)		Distance at 37.5 KW/m ² in (m)		
Summer	13.696		25.485		9.9		
Winter	13.265		25.562			15.5	
Burning duration (s)	815.38 (13 min 35 s)						
Late Pool Fire with a 28.598 m diameter							
Atmospheric condition	Flame height (height (m)		nce at 12.5 m^2 in (m)	Distance at 37.5 KW/m ² in (m)		
Summer	20.266	3.		4.530		0.5	
Winter	19.629		3	4.760	3.940		
Burning duration (s)	134.78 (2 min 15 s)						
Vapor Cloud Explosion							
Amount of liquid released (Kg)	10389						
Vaporization rate	Summer	8.2445		Evaporated amount		2473.4	
(Kg/s)	Winter	1.7541		(Kg)		526.2	
Total volume of the	Summer	33567		Congested	cloud	1821.824	
cloud (m ³)	Winter	7141.5		volume (m ³)	1071.237	
Cloud radius (m)	Summer	25.213					
Cloud radius (m)	Winter	15.051					
Atmospheric condition	Distance at 200 mbar in (m)	C	Distance in	at 350 mbar Distar (m)		nce at 700 mbar in (m)	
Summer	56	39 24			24		
Winter	47	32 20			20		

Table D-6 Scenario FZ-1.2-025 modeling results

LARGE BREACH							
Description: The central event is the loss of containment of hydrocarbon liquid due to a large breach (100 mm) in the admission line 12"-PF-03B3-1401							
Leak flow(Kg/s)	226.524						
Pool Fire with a 35.487 m diameter							
Atmospheric condition	Flame height (m)		Distance at 12.5 KW/m ² in (m)		Distance at 37.5 KW/m ² in (m)		
Summer	22.025		40	40.860		0.600	
Winter	21.604 41.700			1.700	3.600		
Burning duration (s)	135.82 (2 min 17 s)						
Vapor Cloud Explosion							
Amount of liquid released (Kg)	33 9786						
Vaporization rate	Summer	1	19.041	Evaporated amount (Kg)		5712.2	
(Kg/s)	Winter		4.051			1215.3	
Total volume of the cloud (m ³)	Summer	,	77523	Congested cloud volume (m ³)		2498.66	
	Winter		16493			1438.82	
	Summer		33.327				
Cloud radius (m)	Winter	19.895					
Atmospheric condition	Distance at 200 mbar in (m)	0 Distance i		Distance at 350 mbar in (m)		Distance at 700 mbar in (m)	
Summer	62		43 27			27	
Winter	51		36 22			22	

Table D-7 Scenario FZ-1.2-100 modeling results

Table D-8 Scenario FZ-1.2-150 modeling results

CATASTROPHIC BREACH						
Description : The initiating event is the loss of containment of hydrocarbon liquid due to a catastrophic breach (>150 mm) in the admission line 12"-PF-03B3-1401 .						
Leak flow(Kg/s)558.58						
Pool Fire with a 51.386 m diameter						
Atmospheric condition	Flame height (m)Distance at 12.5 KW/m^2 in (m)Distance at 37.5 KW/m^2 in (m)					
Summer	22.182	76.100	N/A			
Winter	21.522	76.350	N/A			

Appendix D. Consequences analysis modeling results

Burning duration (s)	134.67 (2 min 14 s)						
Vapor Cloud Explosion							
Amount of Liquid released (Kg)	33 514,8						
Vaporization rate (Kg/s)	Summer	24.956		Evaporated an	mount 7 486,8		
	Winter	5.309		(Kg)		1 592,7	
Total volume of the cloud (m ³)	Summer	101610		Congested c	loud	2913.668	
	Winter	2	21617	volume (m ³)		1558.824	
Cloud radius (m)	Summer	36.472					
	Winter	21.773					
Atmospheric condition	Distance at200 i in (m)	nbar	Distance at 350 mbar in (m)		Distance at 700 mbar in (m)		
Summer	65		45		28		
Winter	53		37		23		

Figure D-11 Scenario FZ-1.2-EP-005 modeling contours

Figure D-12 Scenario FZ-1.2-EP-025 modeling contours

Figure D-13 Scenario FZ-1.2'-EP-005 modeling contours

Figure D-14 Scenario FZ-1.2'-EP-025 modeling contours

Figure D-15 Scenario FZ-1.2-LP-005 modeling contours

Figure D-16 Scenario FZ-1.2-LP-025 modeling contours

Figure D-17 Scenario FZ-1.2-LP-100 modeling contours

Figure D-18 Scenario FZ-1.2-LP-150 modeling contours

Figure D-19 Scenario FZ-1.2'-LP-005 modeling contours

Appendix Figure D-20 Scenario FZ-1.2'-LP-025 modeling contours

Figure D-21 Scenario FZ-1.2'-LP-100 modeling contours

Figure D-22 Scenario FZ-1.2'-LP-150 modeling contours

Figure D-23 Scenario FZ-1.2-VCE-005 modeling contours

Figure D-24 Scenario FZ-1.2-VCE-025 modeling contours

Figure D-25 Scenario FZ-1.2-VCE-100 modeling contours

Figure D-26 Scenario FZ-1.2-VCE-150 modeling contours

Figure D-27 Scenario FZ-1.2'-VCE-005 modeling contours

Figure D-28 Scenario FZ-1.2'-VCE-025 modeling contours

Figure D-29 Scenario FZ-1.2'-VCE-100 modeling contours

Figure D-30 Scenario FZ-1.2'-VCE-150 modeling contours
D.3 Scenario N 2.1: Loss of Containment in the Separator TX1H-046 Part Liquid

Equipment : Separator TX1H-046							
Description	The TX1H-046 three-phase separator ensures the separatio of the received crude oil into three phases: gas, oil and water						
Design parameter	Dimension	2.134 m/8.8 m					
On anoting non-motor	Pressure	150 psia (10,3421 bar)					
Operating parameter	Temperature	100 °F					
Substance	Gas / Oil / Water						

For the modeling of the effects, we first consider that the TX1H-046 separator filled with oil in a conservative way and then filled with gas.

Table D-9 Scenario FZ-2.1-005 modeling results

SMALL BREACH								
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a small breach (5mm) in the TX1H-046 separator.								
Leak flow(Kg/s)		0.4641						
Early Pool Fire with a 3.137 m diameter								
Atmospheric condition	Flame heigh (m)	Flame heightDistance at 12.5Distance at 37.5(m)KW/m2 (m)KW/m² in (m)						
Summer	3.751	5	5.763 5.4					
Winter	3.63	3.63 5.763 5.3						
Burning duration (s)	1706.2 (28 min 26 s)							
	Late Pool	fire with a 6.61 m	diameter					
Atmospheric condition	Flame heigh (m)	nt Distan KW/	ce at 12.5 /m2 (m)	Dis K	stance at 37.5 W/m ² in (m			
Summer	7.651	14	4.600		12.483			
Winter	7.410	14	4.502		12.467			
Burning duration (s)		134.65 (2 min 14 s)					
	Va	por cloud explosio	n					
Amount of liquid released (Kg)		55	56.92					
	Summer	0.518			311.21			

Vaporization rate (Kg/s)	Winter	0.110 Evaporated amount(Kg)		ed Kg)	33.106	
Total volume of the	Summer		4223.6	Congested cloud		598.444
cloud (m ³)	Winter		449.29	volume (1	m ³)	264.444
Cloud radius (m)	Summer	10				
Cloud radius (III)	Winter	5.986				
Atmospheric	Distance at 200 I	mbar	Distance at	350 mbar in	Dista	nce at 700 mbar
condition	in m			m		in m
Summer	39		27			17
Winter	31		21			13

Table D-10 Scenario FZ-2.1-025/100/150 modeling results

MEDIUM/LARGE/CATASTROPHIC BREACHES								
Description: The central feared event is the loss of containment of liquid hydrocarbon due to a breach (25/100/150mm) in the TX1H-046 separator in presence of retention dike (Rectangular flame shape).								
Breach sizes		Leak flo	w (Kg/s)					
25mm		11.	602					
100mm		185	5.62					
150mm		673	3.64					
Pool fire with a 14.602 m equivalent diameter								
Atmospheric condition	Dike width (m)	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m ² in (m				
Summan	10.59	11 612	4.800	N/A				
Summer	15.3	11.012	5.400	N/A				
Winton	10.59	11 247	5.600	N/A				
w inter	15.3	11.247	6.300	N/A				
		Early pool fire						
Breach sizes		Burning d	uration (s)					
25mm		962.26 ((16 min)					
100mm		5812.2 (9	6 min 50s)					
		Late Pool fire						
Breach sizes		Burning d	uration (s)					
25mm		692.90 (11	l min 31 s)					
100mm		5542.8 (92	2 min 21 s)					

150mm		4020.2 (67 min)							
Vapor Cloud Explosion									
Amount of	25mm 6960								
liquid released	100mm		27 843						
(Kg)	150mm	40598.4							
Vaporization	Summer	1.2	02	Evaporated amount		360.62			
rate (Kg/s)	Winter	0.2	55	(Kg)		76.724			
Total volume of	Summer	4894.2		Congested clou	ıd	918.444			
the cloud (m ³)	Winter	1041.2		volume (m ³)		413.237			
Cloud radius	Summer			13.27					
(m)	Winter			7.922					
Atmospheric condition	Distance at in r	200 mbar n	Distance	Distance at 350 mbar in m		ance at 700 mbar in m			
Summer	45			31	19				
Winter	35			24		15			

Figure D-31 Scenario FZ-2.1-EP-005 modeling contours

Figure D-32 Scenario FZ-2.1'-EP-005 modeling contours

Figure D-33 Scenario FZ-2.1-EP-025 modeling contours

Figure D-34 Scenario FZ-2.1-EP-100 modeling contours

Figure D-35Scenario FZ-2'.1-EP-025 modeling contours

Figure D-36 Scenario FZ-2'.1-EP-100 modeling contours

Figure D-37 Scenario FZ-2'.1-LP-005 modeling contours

Figure D-38 Scenario FZ-2'.1-LP-025 modeling contours

Figure D-39 Scenario FZ-2'.1-LP-100 modeling contours

Figure D-40 Scenario FZ-2'.1-LP-150 modeling contours

Figure D-41 Scenario FZ-2.1-VCE-005 modeling contours

Figure D-42 Scenario FZ-2.1-VCE-025 modeling contours

Figure D-43 Scenario FZ-2.1-VCE-100 modeling contours

Figure D-44 Scenario FZ-2.1-VCE-150 modeling contours

Figure D-45 Scenario FZ-2'.1-VCE-005 modeling contours

Figure D-46 Scenario FZ-2'.1-VCE-025 modeling contours

Figure D-47 Scenario FZ-2'.1-VCE-100 modeling contours

Figure D-48 Scenario FZ-2'.1-VCE-150 modeling contours

D.4 Scenario N°2.2: Loss of Containment in the Separator TX1H-046 Part Gas

Table D-11 Scenario FZ-2.2-005 modeling rest	ılts
--	------

SMALL BREACH								
Description: The initiating event is the loss of containment of hydrocarbon gas due to a small breach (5mm) in the TX1H-046 separator.								
Leak flow(Kg/s)			0	0.023				
Jet fire with a velocity of 709.30 m/s in summer and 666.29m/s in winter								
Atmospheric condition	Flame length (r	n)	Distar KW/i	nce at 12.5 m^2 in (m)	Di K	stance at 37.5 W/m ² in (m		
Summer	1.841	1.945 N/A						
Winter	1.905	1.907			N/A			
Vapor Cloud Explosion								
Amount of gas released (Kg)				27.6				
Total volume of the	Summer	2	456.20	Congested of	cloud	263.444		
cloud (m ³)	Winter	2	406.48	volume (r	m ³)	246.444		
Cloud radius (m)	Summer			6.016				
Cloud radius (iii)	Winter			5.789				
Atmospheric condition	Distance at 200 mbar in (m)	Distance at 350 mbar Distance at 700 in (m) in (m)			nce at 700 mbar in (m)			
Summer	17			12		8		
Winter	16			11		7		

Table D-12 Scenario FZ-2.2-025 modeling results

MEDIUM BREACH								
Description: The central feared event is the loss of containment of hydrocarbon gas due to an medium breach (25mm) in the TX1H-046 separator.								
Leak flow (Kg/s)	Leak flow (Kg/s) 0.553							
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length (m)	Distance at 12.5 KW/m ² in (m)	Distance at 37.5 KW/m ² in (m					
Summer	7.882	7.844	3.513					
Winter	8.145	8.109	3.609					

Vapor Cloud Explosion									
Amount of gas released (kg)		331.74							
Total volume of	Summer		5484.3	Congested of	cloud	963.444			
the cloud (m ³)	ne cloud (m ³) Winter 4886.6	volume (r	m ³)	902.444					
Cloud radius	Summer			13.783	13.783				
(m)	Winter		13.263						
Atmospheric	Distance at 200 p	mbar	Distance at	t 350 mbar in	Distar	nce at 700 mbar in			
condition	in m			m		m			
Summer	26			18		12			
Winter	25			17		11			

Table D-13 Scenario FZ-2.2-100 modeling results

LARGE BREACH								
Description: The initiating event is the loss of containment of hydrocarbon gas hydrocarbon due to a large breach (100mm) in the TX1H-046 separator.								
Leak flow (Kg/s)				8.85				
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length	(m)	Distar KW/	nce at 12.5 m^2 in (m)	Di K	stance at 37.5 W/m ² in (m		
Summer	27.344			27.84		12.861		
Winter	28.215	29.49			13.935			
	Vap	or Clou	d Explosi	on				
Amount of gas released				2655				
Total volume of the	Summer	4	3884	Congested c	loud	2177.224		
cloud (m ³)	Winter	3	9102	volume		1993.178		
Classifier (m)	Summer			27.569				
Cloud radius (m)	Winter			26.528				
Atmospheric condition	Distance at 200 in m	mbar Distance at 300 mbar in m		Dista	nce at 700 mbar in m			
Summer	34			24		15		
Winter	34			23		14		

CATASTROPHIC BREACH								
Description: The initiating event is the loss of containment of hydrocarbon gas due to a catastrophic breach (>150mm) in the TX1H-046 separator.								
Leak flow (Kg/s)			3	2.105				
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length	(m)	Distar KW/	nce at 12.5 m ² in (m)	Di K	stance at 37.5 W/m ² in (m		
Summer	48.388		5	0.290		23.893		
Winter	49.899	53.88			26.043			
Vapor Cloud Explosion								
Amount of gas released (Kg)			1	926.3				
Total volume of the	Summer	31840		Congested c	loud	1898.82		
cloud (m ³)	Winter	2	26528	volume (n	n ³)	1672.02		
	Summer			24.773				
Cloud radius (m)	Winter			23.838				
Atmospheric condition	Distance at200 r in m	mbar Distance at 350 mbar Distance at 700 in m in m			nce at 700 mbar in m			
Summer	33			23		14		
Winter	32			22		13		

Table D-14 Scenario FZ-2.2-150 modeling results

Figure D-49 Scenario FZ-2.2-JF-005 modeling contours

Figure D-50 Scenario FZ-2.2-JF-025 modeling contours

Figure D-51 Scenario FZ-2'.2-JF-005 modeling contours

Figure D-52 Scenario FZ-2'.2-JF-025 modeling contours

Figure D-53 Scenario FZ-2.2-VCE-025 modeling contours

Figure D-54 Scenario FZ-2.2-VCE-100 modeling contours

Figure D-55 Scenario FZ-2.2-VCE-150 modeling contours

Appendix Figure D-56 Scenario FZ-2'.2-VCE-025 modeling contours

Figure D-57 Scenario FZ-2'.2-VCE-100 modeling contours

Figure D-58 Scenario FZ-2'.2-VCE-150 modeling contours

D.5 Scenario N°2.3: Loss of Containment in the Gas LINE 10"-PV-03B3-1800 from Separator TX1H-046 TO KOV

	SMALL BREACH							
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a small breach (5mm) in the gas line 10"-PV-03B3-1800								
Leak flow(Kg/s)			(0.021				
Jet fire with	n a velocity of 696	5.01m/	's in summe	r and 676.72 n	n/s in w	vinter		
Atmospheric condition	Flame length	(m)	Distar KW/1	nce at 12.5 m^2 in (m)	Di K	stance at 37.5 W/m ² in (m)		
Summer	1.799		1	.880		N/A		
Winter	1.863		1	.840	N/A			
	Vapor Cloud Explosion							
Amount of gas released (Kg)				26.4				
Total volume of the	Summer	4	16.53	Congested c	loud	315.38		
cloud (m ³)	Winter	(1)	371.13	volume (n	n ³)	298.25		
Cloud radius (m)	Summer			5.837				
Cloud radius (III)	Winter			5.616				
Atmospheric condition	Distance at 20 mbar in (m)	00 Distance at 350 mbar) in (m)			Dista	nce at 700 mbar in (m)		
Summer	18			13		8		
Winter	17			12		7		

Table D-15 FZ-2.3-005-modeling results

Table D-16 FZ-2.3-025-modeling results

MEDIUM BREACH								
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a medium breach (25mm) in the gas line 10"-PV-03B3-1800								
Leak flow (Kg/s)	0.532							
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length (m)	Distance at 37.5 KW/m ² in (m)						
Summer	7.771	7.730	3.452					
Winter	8.029	7.990	3.544					

Vapor Cloud Explosion								
Amount of gas released (Kg)		331.8						
Total volume of the	Summer	5276		Congested c		Congested cloud		1288.38
cloud (m ³)	Winter		4701	volume	;	1102.25		
Cloud radius (m)	Summer	13.607						
	Winter	13.093						
Atmospheric	Distance at 2	00	Distance	Distance at 350 mbar		nce at 700 mbar		
condition	mbar in m		in m		in m			
Summer	29		20		13			
Winter	28		19		12			

Table D-17 FZ-2.3-100-modeling results

LARGE BREACH								
Description : The initiating event is the loss of containment of gaseous hydrocarbon due to a large breach (100mm) in the gas line 10"-PV-03B3-1800								
Leak flow (Kg/s)			8	3.835				
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length (m)Distance at 12.5 KW/m^2 in (m)Distance at 37. KW/m^2 in (m)					stance at 37.5 W/m ² in (m)		
Summer	27.581		2	7.820		12.851		
Winter	28.456	29.460			13.924			
Vapor Cloud Explosion								
Amount of gas released (Kg)			2	650.5				
Total volume of the	Summer	4	3785	Congested of	cloud	2770.268		
cloud (m ³)	Winter		39013	volume (r	m ³)	2300.98		
	Summer			27.548				
Cloud radius (m)	Winter			26.508				
Atmospheric condition	Distance at 20 mbar in m	00 Distance at 350 mbar in m			Dista	nce at 700 mbar in m		
Summer	37			26		16		
Winter	36			25		15		

CATASTROPHIC BREACH								
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a catastrophic breach (>150mm) in the gas line 10"-PV-03B3-1800								
Leak flow (Kg/s)			3	0.893				
Jet fire with a velocity of 696.01m/s in summer and 676.72 m/s in winter								
Atmospheric condition	Flame length (m)Distance at 12.5 KW/m^2 in (m)Distance at 12.5 KW/m^2 in (m)				stance at 37.5 W/m ² in (m)			
Summer	47.987		4	9.410		23.453		
Winter	49.482	52.920			25.559			
Vapor Cloud Explosion								
Amount of gas released (Kg)			1	854.6				
Total volume of the	Summer		30638	Congested of	loud	2563.28		
cloud (m ³)	Winter		27299	volume (r	n ³)	2117.55		
	Summer			24.457				
Cloud radius (m)	Winter			23.534				
Atmospheric condition	Distance at 20 mbar in m	00 Distance at 350 mbar in m			Dista	nce at 700 mbar in m		
Summer	36			25		16		
Winter	35			24		15		

Table D-18 FZ-2.3-150-modeling results

Figure D-59 Scenario FZ-2.3-JF-005 contours

Figure D-60 Scenario FZ-2.3-JF-025 contours

Figure D-61 Scenario FZ-2'.3-JF-005 contours

Figure D-62 Scenario FZ-2'.3-JF-025 contours

Figure D-63 Scenario FZ-2.3-VCE-005 contours

Figure D-64 Scenario FZ-2.3-VCE-100 contours

Figure D-65 Scenario FZ-2.3-VCE-150 contours

D.6 Scenario N°2.4: Loss of Containment in the Pipe between Separator & Surge Tank 6"-PL-03B3-1200

		Ũ						
SCENARIO N°2.4.1 : SMALL BREACH								
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a small breach (5mm) in the pine between separator and surge tenk 6" PL 02P2 1200								
Leak flow(Kg/s)	n) in the pipe between set	0.255	<u>1L-03D3-1200</u>					
Early Pool fire with a diameter of 2.326m								
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2 (m)					
Summer	3.0103	4.263	4.2					
Winter	2.6822	4.158 4.2						
Burning duration (s)	1924.6 (32 min)							
	Late Pool fire with	a diameter of 6.522 m						
Atmospheric condition	Flame height (m)	Distance at 12.5 Distance at 3 KW/m2 (m) KW/m2 (t						
Summer	6.327	11.600	9.32					

Table D-19 Scenario FZ-2.4-005 modeling results

Winter	6.438			11.786	9.695			
Burning duration (s)	155.38 (2 min 35 s)							
Vapor Cloud Explosion								
Amount of liquid released (Kg)		306						
Vaporization rate	Summer	0.262		Evaporated amoun		78.6		
(Kg/s)	Winter	0.055		(Kg)		16.4		
Total volume of the	Summer	1066.9		Congested cloud		243.4		
cloud (m ³)	Winter	2	26.98	volume (m ³)		127.4		
Cloud radius (m)	Summer			7.986				
Cloud faulus (III)	Winter			4.767				
Atmospheric condition	Distance at 200 in (m)	mbar	Distanc	Distance at 350 mbar in (m)		ance at 700 mbar in (m)		
Summer	29			20 13		13		
Winter	23		16		N/A			

Table D-20 Scenario FZ-2.4-025 modeling results

SCENARIO N°2.4.2 : MEDIUM BREACH							
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a medium breach (25 mm) in the pipe between separator and surge tank 6"-PL-03B3-1200							
Leak flow (Kg/s)		6.378					
Early Pool fire with a diameter of 13.089 m							
Atmospheric condition	Flame height (m)Distance at 12.5 KW/m2 (m)Distance at 37.5 KW/m2 (m)						
Summer	9.001 17.317 13.700						
Winter	8.7244	17.315	13.800				
Burning duration (s)	743.56 (12 min 24 s)						
	Late Pool fire with a	diameter of 17.364 m					
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2 (m)				
Summer	14.544	30.600	0.775				
Winter	14.086	31.150	3.239				
Burning duration (s)	Burning duration (s) 134.66 (2 min 15s)						
Vapor Cloud Explosion							

Amount of liquid released (Kg)	3 826,8						
Vaporization rate	Summer	3.210		Evaporated amoun		963	
(Kg/s)	Winter	0.683		(Kg)		204.9	
Total volume of the	Summer	13073		Congested cloud		503.4	
cloud (m ³)	Winter	2	781.3	volume (m	n ³)	322.4	
Cloud radius (m)	Summer	18.412					
	Winter		10.992				
Atmospheric	Distance at 200	mbar	Distance at 350 mbar		Dista	nce at 700 mbar	
condition	in (m)		in (m)		in (m)		
Summer	36		25		16		
Winter	31	31		22		14	

Table D-21 Scenario FZ-2.4-100 modeling results

	SCENARIO	N°2.4 :	LARGE	BREACH			
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a large breach (100 mm) in the pipe between separator and surge tank 6"-PL-03B3-1200							
Leak flow (Kg/s)			1	02.048			
	Early Pool fire	with a	diameter	of 46.557 m			
Atmospheric condition	Flame heigh (m)	nt	Dista: KW	nce at 12.5 //m2 (m)	Di I	stance at 37.5 KW/m2 (m)	
Summer	27.214		5	52.268		0.4	
Winter	26.357 52.262 2.300						
Burning duration (s)	569.05 (9 min 30s)						
Late Pool fire with a diameter of 49.112 m							
Atmospheric condition	Flame heigh (m)	nt	Distance at 12.5 KW/m2 (m)		Distance at 37.5 KW/m2 (m)		
Summer	29.037		7	/3.200		N/A	
Winter	28.123		7	/3.350	N/A		
Burning duration (s)			134.67	(2 min 15s)			
	Vapo	or Clou	d Explosi	on			
Amount of liquid released (Kg)			15	5 305.2			
Vaporization rate	Summer	22.910		Evaporate	ed	6 873	
(Kg/s)	Winter	4.	.874	amount(K	ount(Kg) 146		
	Summer	93276				1869.624	

Total volume of the cloud (m ³)	Winter	19845		Congested cloud volume (m ³)		569.4
Cloud radius (m)	Summer			35.446		
Cloud radius (m)	Winter	21.161				
Atmospheric condition	Distance at 200 mbar in (m)		Distance at 350 mbar in (m)		Distance at 700 mbar in (m)	
Summer	56		39		24	
Winter	38		26		17	

Table D-22 Scenario FZ-2.4-150 modeling results

SCENARIO N°2.4.4 : CATASTROPHIC BREACH							
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a large breach (>150 mm) in the pipe between separator and surge tank 6"-PL-03B3-1200							
Leak flow (Kg/s)			22	29.609			
	Pool fire v	with a d	iameter of	32.946 m			
Atmospheric condition	Flame height (m)	Flame height (m) Distance at 12.5 KW/m2 (m) Distance at 37.5 K					
Summer	22.267		52.000			0.426	
Winter	21.789		52.105			2.448	
Burning duration (s)	134.84 (2 min 17s)						
Vapor Cloud Explosion							
Amount of Liquid released (Kg)			13	776,54			
Vaporization rate	Summer	1	2.121	Evap	orated	3 636,3	
(Kg/s)	Winter		2.578	amou	nt(Kg)	773,4	
Total volume of the	Summer	2	13860	Conges	ted cloud	750.362	
cloud (m ³)	Winter	9	331.3	volun	ne (m^3)	456.4	
Classifier (m)	Summer			27	.564		
Cloud radius (m)	Winter			16	.455		
Atmospheric condition	Distance at 200 in (m)) mbar	Distance ii	at 350 mb n (m)	oar Dist	ance at 350 mbar in (m)	
Summer	41			29		18	
Winter	35			25		15	

Figure D-66 Scenario FZ-2.4-EP-005 contours

Figure D-67 Scenario FZ-2.4-EP-025 contours

Figure D-68 Scenario FZ-2.4-EP-100 contours

Figure D-69 Scenario FZ-2'.4-EP-005 contours

Figure D-70 Scenario FZ-2'.4-EP-025 contours

Figure D-71 Scenario FZ-2'.4-EP-100 contours

Figure D-73 Scenario FZ-2.4-LP-100 contours

Figure D-75 Scenario FZ-2'.4-LP-025 contours

Figure D-76 Scenario FZ-2'.4-LP-100 contours

Figure D-77 Scenario FZ-2'.4-LP-150 contours

Figure D-78 Scenario FZ-2.4-VCE-025 contours

Figure D-79 Scenario FZ-2.4-VCE-100 contours

Figure D-80 Scenario FZ-2.4-VCE-150 contours

Figure D-81Scenario FZ-2'.4-LP-025 contours

Figure D-82 Scenario FZ-2'.4-LP-100 contours

Figure D-83 Scenario FZ-2'.4-LP-150 contours

D.7 Scenario N°3.1: Loss of Containment in the Surge Tank TX6961-014

Equipment : SURGE TANK TX6961-014						
Description	Oil surge tank is a vessel designed to store liquid hydrocarbons after separation					
Design parameter	Dimension 1.192 m/ 4.8 m					
Operating perometer	Pressure	4 bar				
Operating parameter	Temperature	100 °F				
Substance	Oil					

Table D-23 Scenario FZ-3.1-005 modeling results

SCENARIO N°3.1.1 : SMALL BREACH						
Description : The initiating event is the loss of containment of liquid hydrocarbon due to a small breach (5mm) in surge tank TX6961-014						
Leak flow(Kg/s)				0.272		
	Early Pool Fire with a 2.402 m diameter					
Atmospheric condition	Flame heig (m)	;ht	Dista KV	Distance at 12.5 KW/m2 (m)		stance at 37.5 W/m ² in (m
Summer	3.082			4.401		4.3
Winter	2.827			4.450		4.300
Burning duration (s)			1897.9	(31 min 38 s)		
Late Pool fire with a 7.176 m diameter						
Atmospheric condition	Flame heig (m)	;ht	Distance at 12.5 KW/m2 (m)		Distance at 37.5 KW/m ² in (m)	
Summer	6.830		11.900		10.298	
Winter	6.615		11.998		10.242	
Burning duration (s)			136.10	(2 min 16 s)		
	Vap	or Cloud	d Explosi	on		
Amount of liquid released (Kg)				326.4		
Vaporization rate	Summer	mer 0.313		Even enoted or	nount	94.174
(Kg/s)	Winter	0.	066	Evaporated amount		19.8
Total volume of the	Summer	12	78.1	Congested cloud volume (m ³)		331.4
cloud (m ³)	Winter	27	1.92			196.4

Cloud radius (m)	Summer	8.482				
Cloud radius (m)	Winter	5.0636				
Atmospheric condition	Distance at 200 mbar in m		Distance at 350 mbar in m	Distance at 700 mbar in m		
Summer	35		22	14		
Winter	27		19	12		

Table D-24 Scenario FZ-3.1-025 modeling results

SCENA	SCENARIO N°3.1.2 : MEDIUM/LARGE/CATASTROPHIC BREACH					
Description: The initiating event is the loss of containment of liquid hydrocarbon due to breach (25/100/150mm) in surge tank TX6961-014 in the presence of a retention dike (Rectangular flame shape).						
Breach sizes	Leak flow (Kg/s)					
25mm			6.8	809		
100mm			108.	953		
150mm			245	.145		
	Pool fir	e wit	h a 10.668 m equiva	llent diameter		
Atmospheric condition	Dike width ((m)	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m ² in (m	
Summor	7.15		0.211	5.020	N/A	
Summer	12.5		9.211	6.120	N/A	
Winton	7.15		<u> 9 02 1</u>	5.770	N/A	
winter	12.5		8.921	7.230	N/A	
			Early Pool fire			
Breach sizes			Burning du	uration (s)		
25mm			1032.5 (17	7 min 13 s)		
100mm			6372.6 (10	6 min 13 s)		
			Late Pool fire			
Breach sizes			Burning du	uration (s)		
25mm			762.80 (12	2 min 43 s)		
100mm	6082.7 (101 min 23 s)					
150mm	2746.0 (48 min)					
		V	apor Cloud Explosi	on		
	25			4056		

	-						
Amount of	100		16342.95				
(Kg)	150	23571					
Vaporization	Summer	0.664		Even ereted emou	199		
rate (Kg/s)	Winter	0.141		Evaporated amou	int (k g)	44.065	
Total volume of	Summer	2704.1		Congested cloud volume		388.19	
the cloud (m ³)	Winter	598.0	3	(m ³)		274.4	
Cloud radius (m)	Summer			10.889			
Cloud radius (III)	Winter			6.585			
Atmospheric	Distance at 2	00 mbar in	Dista	nce at 350 mbar in	Distance	e at 700 mbar in	
condition	m		m			m	
Summer	34		23			15	
Winter	30		21			13	

Figure D-85 Scenario FZ-3'.1-EP-005 contours

Figure D-87 Scenario FZ-3'.1-EP-025 contours

Figure D-88 Scenario FZ-3.1-VCE-025 contours

Figure D-89 Scenario FZ-3'.1-VCE-025 contours

D.8 Scenario N°3.2: Loss of Containment in the Pipe between the

Surge Tank & Pumps

SMALL BREACH							
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a small							
breach (5 mm	n) in the pipe betwe	een su	rge tank ar	nd pumps 10"-I	PL-03B	3-1218	
Leak flow (Kg/s)			(0.295			
	Early Pool fin	re with	h a diamete	er of 2.502			
Atmospheric	Flame height	t	Dista	nce at 12.5	Dis	stance at 37.5	
condition	(m)		KW	//m2 (m)	K	W/m2 (m)	
Summer	3.1759		2	4.651		4.500	
Winter	3.0759		4	4.651		4.600	
Burning duration (s)			1864.	6 (31 min)			
	Late Pool fire	with a	a diameter	of 7.468 m			
Atmospheric	Flame height	t	Dista	nce at 12.5	Dis	stance at 37.5	
condition	(m)		KW/m2 (m)		KW/m2 (m)		
Summer	7.0356		12.300		10.314		
Winter	6.814		12.700			10.245	
Burning duration (s)	136.02 (2 min 12 s)						
	Vapo	or Clou	ud Explosi	on			
Amount of liquid released (Kg)				354			
Vaporization rate	Summer	0).3385	Evaporated amount		101.55	
(Kg/s)	Winter	0	0.0720	(Kg)		21.605	
Total volume of the	Summer	1	378.1	Congested cloud		/	
cloud (m ³)	Winter	293.21		volume (1	m ³)	/	
	Summer			8.697			
Cloud radius (m)	Winter	r 5.192					
Atmospheric	Distance at 200)	Distance	at 350 mbar	Distance at 700 mbar		
condition	mbar in (m)		in	u (m)		in (m)	
Summer	N/A		1	N/A	N/A		
Winter	N/A		1	N/A		N/A	

	MEDIUM BREACH						
Description: The ini	tiating event is the	e loss	of containn	nent of liquid	hydroca	rbon due to a	
medium breach (25	mm) in the pipe	betwe	een surge ta	nk and pumps	10"-PL	-03B3-1218	
Leak flow (Kg/s)			7	7.377			
	Early Pool fire	with	a diameter	of 13.903 m			
Atmospheric condition	Flame heigh (m)	ıt	Distar KW	nce at 12.5 7/m2 (m)	Dist K	tance at 37.5 W/m2 (m)	
Summer	9.5837		1	8.356		14.100	
Winter	9.1406		1	8.356		14.200	
Burning duration (s)			755.40 (12 min 36 s)			
	Late Pool fire	with	a diameter	of 26.41 m			
Atmospheric condition	Flame heigh (m)	ıt	Distar KW	nce at 12.5 7/m2 (m)	Dis K	Distance at 37.5 KW/m2 (m)	
Summer	17.952		3	2.500	0.753		
Winter	17.387		3	33.156		3.203	
Burning duration (s)			134.66	(2 min 15s)			
	Vapo	or Clo	oud Explosi	on			
Amount of liquid released (Kg)			4	426,2			
Vaporization rate	Summer		3.6841	Evaporated amount		1105.2	
(Kg/s)	Winter		0.783	(Kg)		235.14	
Total volume of the	Summer		15000	Congested	cloud	70.3	
cloud (m ³)	Winter		3191.2	volume (m ³)	/	
	Summer			19.276	5		
Cloud radius (m)	Winter	11.507					
Atmospheric condition	Distance at 20 mbar in (m)	0 Distance in		Distance at 350 mbar in (m)		Distance at 700 mbar in (m)	
Summer	19			13		N/A	
Winter	N/A		Ν	N/A		N/A	

Table D-26 Scenario FZ-3.2 -025 modeling results

LARGE BREACH							
Description: The init large breach (100 1	Description: The initiating event is the loss of containment of liquid hydrocarbon due to a large breach (100 mm) in the pipe between surge tank and pumps 10"-PL-03B3-1218						
Leak flow (Kg/s)			11	8.041			
	Pool fire with	n a di	iameter of 2	7.792 m			
Atmospheric condition	Flame height (m)		Distand KW/	ce at 12.5 m2 (m)	Dista KV	ance at 37.5 W/m2 (m)	
Summer	18.786		32	986		0.782	
Winter	18.051		33	.900		3.800	
Burning duration (s)			135.75 (2	2 min 16 s)			
	Vapor Cloud Explosion						
Amount of liquid released (Kg)			17 7	706,15			
Vaporization rate	Summer		11.997	Evapora	ated	3599.0	
(Kg/s)	Winter		2.552	amount	(Kg)	765.70	
Total volume of the	Summer		48843	Congested	l cloud	148.4	
cloud (m ³)	Winter		10392	volume	(m ³)	33	
	Summer			28.570	0		
Cloud radius (m)	Winter			17.050	6		
Atmospheric condition	Distance at 200 mbar in (m)	Distance at 200 mbar in (m)		Distance at 350 mbar in (m)		Distance at 700 mbar in (m)	
Summer	24		17		11		
Winter	15		11			7	

Table D-27 Scenario FZ-3.2 -100 modeling results

Table D-28 Scenario FZ-3.2 -150 modeling results

CATASTROPHIC BREACH					
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a catastrophic breach (>150 mm) in the pipe between surge tank and pumps 10"-PL-03B3-1218					
Leak flow (Kg/s)	265.593				
	Pool fire with a dia	ameter of 35.433 m			
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2 (m)		
Summer	28.746	40.553	0.625		
Winter	27.841	41.600	3.652		

Burning duration (s)	134.65 (2 min 13 s)					
Vapor Cloud Explosion						
Amount of Liquid released (Kg)		15 935,58				
Vaporization rate	Summer	1	2.361	Evaporat	ed	3708.4
(Kg/s)	Winter	2	.6299	amount(Kg)		788.98
Total volume of the	Summer	Summer 50328		Congested of	cloud	300.4
cloud (m ³)	Winter	1	0708	volume (m ³)		37.27
Cloud radius (m)	Summer			28.857		
Cloud radius (III)	Winter	17.227				
Atmospheric	Distance at 2	200	Distance	e at 350 mbar	Distar	nce at 700 mbar
condition	mbar in (m	i) internet		in (m)		in (m)
Summer	31			21		13
Winter	16		11			N/A

Figure D-91 Scenario FZ-3'.2-EP-005 contours

Figure D-92 Scenario FZ-3.2-EP-025 contours

Figure D-93 Scenario FZ-3'.2-EP-025 contours

Figure D-95 Scenario FZ-3'.2-LP-100 contours

Figure D-96 Scenario FZ-3'.2-LP-150 contours

Figure D-97 Scenario FZ-3.2-LP-025 contours

Figure D-98 Scenario FZ-3.2-LP-100 contours

Figure D-99 Scenario FZ-3.2-LP-150 contours

Figure D-100 Scenario FZ-3.2-VCE-025 contours

Figure D-101 Scenario FZ-3.2-VCE-100 contours

Appendix Figure D-102 Scenario FZ-3.2-VCE-150 contours

Figure D-103 Scenario FZ-3'.2-VCE-025 contours

Figure D-104 Scenario FZ-3'.2-VCE-100 contours

Figure D-105 Scenario FZ-3'.2-VCE-150 contours

D.9 Scenario N°4: Loss of Containment in the Knock-Out Vessel 01-XRZ009 IS 02 (GAS)

Equipment : Knock-out vessel 01-XRZ-009						
Description	Container used to remove liquid droplets from the gas. Located on the separator gas line.					
Design parameter	Dimension	1.872 m / 4.705 m				
Operating personator	Pressure	116 psia (8 bar)				
Operating parameter	Temperature	100 °F				
Substance	Gas					

Table D-29 Scenario FZ-4-005 modeling results

	SMALL BREACH									
Description: the initiating event is the loss of containment of gaseous hydrocarbon due to a small breach (5mm) in the Konck-Out Vessel 01-XRZ009 IS 02										
Leak flow in Kg/s	v in Kg/s 0.017									
Jet fire with a velocity of 667.25 m/s in summer and 648.76m/s in winter										
Atmospheric condition	Flame length (m)Distance at 12.5 KW/m^2 in (m)Distance a KW/m^2 in									
Summer	1.630		1	.710		N/A				
Winter	1.3986		1	.670	N/A					
	Vapor Cloud Explosion									
Amount of gas released (Kg)			2	21.23						
Total volume of the	Summer	337.19		Congested c	loud	219.38				
cloud (m ³)	Winter	3	00.44	volume (n	n ³)	187.526				
Claud and ing (m)	Summer			5.440						
Cloud radius (m)		5.234								
	Winter			5.234						
Atmospheric condition	Winter Distance at 20 mbar in m	00	Distance	5.234 at 350 mbar n m	Dista	nce at 700 mbar in m				
Atmospheric condition Summer	Winter Distance at 20 mbar in m 16	00	Distance	5.234 at 350 mbar n m 11	Dista	nce at 700 mbar in m 7				

MEDIUM BREACH									
Description: the initiating event is the loss of containment of gaseous hydrocarbon due to a medium breach (25mm) in the Knock-Out Vessel 01-XRZ009 IS 02									
Leak flow in Kg/s				0.442					
Jet fire with a velocity of 667.25 m/s in summer and 648.76m/s in winter									
Atmospheric condition	Flame length	(m)	Dista KW	nce at 12.5 /m ² in (m)	Distance at 37.5 KW/m ² in (m				
Summer	7.121			7.100		3.166			
Winter	7.441			7.310	3.243				
Vapor Cloud Explosion									
Amount of gas released (Kg)			~ _	265.38					
Total volume of the	Summer	4	383.5	Congested cloud		1043.38			
cloud (m ³)	Winter	3	905.7	volume (m ³	⁵)	979.23			
	Summer			12.791					
Cloud radius (m)	Winter			12.309					
Atmospheric condition	Distance at 200 in m	mbar	Distance	at 350 mbar in m	Dis	tance at 700 mbar in m			
Summer	27			19		12			
Winter	26			18		11			

Table D-30 Scenario FZ-4-025 modeling results

Table D-31 Scenario FZ-4-100 modeling results

LARGE BREACH									
Description: the initiating event is the loss of containment of hydrocarbon gas due to a large breach (100mm) in the KONCK-OUT VESSEL 01-XRZ009 IS 02.									
Leak flow in Kg/s	7.077								
Jet fire wi	Jet fire with a velocity of 679.99 m/s in summer and 638.76 m/s in winter								
Atmospheric condition	Flame length (m)	Distance at 16 KW/m ² in (m)	Distance at 37.5 KW/m ² in (m						
Summer	24.991	25.110	11.561						
Winter	25.787	26.570	12.511						
	Vapor Cloud Explosion								
Amount of gas released (Kg)	2123.1								

Total volume of the	Summer		35093	Congested	cloud	2843.268
cloud (m ³)	Winter		31268	volume (m ³)	1536.26.8
Cloud radius (m)	Summer	25.589		9		
Cloud fadius (III)	Winter	24.623				
Atmospheric	Distance at 200 m	bar	Distance at 350 mbar in		Distance at 700 mbar	
condition	in m		r	n	in m	
Summer	38		26		16	
Winter	37		2	.5		15

Table D-32 Scenario FZ-4-150 modeling results

CATASTROPHIC BREACH									
Description: the initiating event is the loss of containment of gaseous hydrocarbon due to a catastrophic breach (>150mm) in the Knock-Out Vessel 01-XRZ009 IS 02									
Leak flow in Kg/s			2	5.684					
Jet fire with a velocity of 667.25 m/s in summer and 648.76m/s in winter									
Atmospheric condition	Flame length ((m)	Distan KW/1	Distance at 12.5 KW/m ² in (m)		Distance at 37.5 KW/m ² in (m			
Summer	44.233		4	5.400		21.451			
Winter	45.615		48	8.530	23.360				
Vapor Cloud Explosion									
Amount of gas released (Kg)		1540.8							
Total volume of the	Summer	25472		Congested c	loud	2660.268			
cloud (m ³)	Winter		22696	volume (n	n ³)	2369.25			
Cloud radius (m)	Summer			22.997					
Cloud radius (III)	Winter			22.129					
Atmospheric condition	Distance at 200 r in m	nbar	Distance a	t 350 mbar in m	Dista	nce at 700 mbar in m			
Summer	37			25		16			
Winter	37			24		15			

Figure D-106 Scenario FZ-4-JF-005 contours

Figure D-107 Scenario FZ-4-JF-025 contours

Figure D-108 Scenario FZ-4-JF-100 contours

Figure D-109 Scenario FZ-4-JF-150 contours

Figure D-110 Scenario FZ-4-VCE-025 contours

Figure D-111 Scenario FZ-4-VCE-100 contours

Figure D-112 Scenario FZ-4-VCE-150 contours

D.10 Scenario N°5.1: Loss of Containment in the Booster Pumps

SMALL BREACH									
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a small breach (5 mm) in booster pumps									
Leak flow (Kg/s)		0.571							
Early Pool fire with a diameter of 3.481 m									
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2 (m)						
Summer	4.048	6.440	5.800						
Winter	3.971	6.441	5.800						
Burning duration (s)		1661.2 (27 min 36s)							
	Late Pool fire with a	diameter of 10.391 m							
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2 (m)						
Summer	9.031	15.900	12.90						
Winter	8.747	16.025	12.911						
Burning duration (s)		134.88 (2 min 17 s)							

Table D-33 Scenario FZ-5.1-005 modeing results

Vapor Cloud Explosion								
Amount of liquid released (Kg)		685,2						
Vaporization rate	Summer	0.631		Evaporated	amount	189.58		
(Kg/s)	Winter	0.1344		(Kg)		40.334		
Total volume of the	Summer		2572.9 C		cloud	/		
cloud (m ³)	Winter		547.39	volume (m ³)		/		
Cloud radius (m)	Summer			10.710				
	Winter	Vinter			6.393			
Atmospheric condition	Distance at 200 in (m)	mbar	Distance at 350 mbar in (m)		Distance at 700 mbar in (m)			
Summer	N/A		N/A		N/A			
Winter	N/A		N/A			N/A		

Table D-34 Scenario FZ-4-025 modeling results

MEDIUM/LARGE/CATASTROPHIC BREACHES								
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a breach (25/100/150) in booster pumps in the presence of retention dike (Rectangular flame shape).								
Breach sizes		Leak flo	w (Kg/s)					
25 mm		14.	292					
100 mm		228	.679					
150 mm	514.528							
	Pool fire with a 11.470 m equivalent diameter							
Atmospheric condition	Dike width (m)	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m ² in (m				
Summor	16.4	0.710	6.280	N/A				
Summer	6.3	9.719	4.550	N/A				
Winter	16.4	0.4122	7.570	N/A				
w mer	6.3	9.4152	5.200	N/A				
		Early pool fire						
Breach sizes		Burning d	uration (s)					
25 mm		1653.9 (27	7 min 30 s)					
100 mm		11344 (1	189 min)					
		Late Pool fire						

Breach sizes		Burning duration (s)							
25mm		1384.3 (23 min)							
100mm			110′	75 (184 min 30 s)				
150mm			4	983.6 (83 min)					
Vapor cloud explosion									
Amount of liquid	25			4056					
released (Kg)	100			32400)				
	150			-					
Vaporization rate	Summer	0.7	7617			228.50			
(Kg/s)	Winter	0.	162	Evaporated ar	48.614				
Total volume of	Summer			3101.1	1				
the cloud (m ³)	Winter			659.77	7				
	Summer			11.398	3				
Cloud radius (m)	Winter			6.8042	2				
Atmospheric condition	Distance a mbar in	t 200 m	Distance	at 350 mbar in m	Distance at	700 mbar in m			
Summer	N/A			N/A	N/A				
Winter	N/A			N/A	N/A				

Figure D-113 Scenario FZ-5.1-EP-025 contours

Figure D-114 Scenario FZ-5.1-EP-100 contours

Appendix Figure D-115 Scenario FZ-5'.1-EP-025 contours

Figure D-116 Scenario FZ-5'.1-LP-100 contours

D.11 Scenario N°5.2: Loss of Containment in the Export Pumps

SMALL/MEDIUM/LARGE/CATASTROPHIC BREACHES									
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a breach (5/25/100/150) in export pumps in the presence of retention dike (Rectangular flame shape).									
Breach sizes		Leak flow (Kg/s)							
5 mm				1.1	61				
25 mm				29.	394				
100 mm				464	.526				
150 mm				868	.617				
	Pool fire	with	a 13.496 m equ	iiva	lent diameter				
Atmospheric condition	Dike width (r	n)	Flame heigh (m)	t	Distance at 12.5 KW/m2 (m)	Dis KV	tance at 37.5 V/m^2 in (m)		
Summer	13.6				5.550		N/A		
Summer	11				5.220		N/A		
Winter	13.6		- 10.614		6.740		N/A		
w inter	11				6.260		N/A		
Early Pool fire									
Breach sizes	Burning duration (s)								
5 mm			431.75	5 (7	min 12 s)				
25mm			2324.6	5 (38	3 min 44 s)				
100mm			1650)9 (2	275 min)				
			Late Pool fire	e					
Breach sizes			Burnir	ng d	uration (s)				
5 mm			162.3	5 (2	2 min 40s)				
25 mm			2053.5	6 (34	4 min 42 s)				
100 mm			16240	(27)	0 min 40 s)				
150 mm			6073.4	(10	1 min 12 s)				
		Va	por cloud expl	osio	on				
Amount of liquid	25				4056				
released (Kg)	100				32400				
	150				23571				
	Summer		1.035		Evaporated amount		310.74		

Table D-35 Scenario FZ-5.2-005 modeling results

Vaporization rate (Kg/s)	Winter	0.220				66.112		
Total volume of	Summer			4217.2	4			
the cloud (m ³) Winter		897.23						
Cloud radius (m)	Summer	12.628						
Cloud radius (III)	Winter	7.538						
Atmospheric	Distance at 20	00 mbar	Distance at 350 mbar		Distance at	700 mbar in		
condition	in m		in m		r	n		
Summer	N/A		N/A		Ν	/A		
Winter	N/A		N/A		N/A			

Figure D-117 Scenario FZ-5.2-EP-005 contours

Figure D-118 Scenario FZ-5'.2-EP-005 contours

Figure D-119 Scenario FZ-5.2-LP-005 contours

Figure D-120 Scenario FZ-5'.2-LP-005 contours
D.12 Scenario N°6: Loss of Containment in the Oil Expedition Pipe

12"-Pl-06b3-1254

Table D-36 Scenario FZ-6 -005 modeling results

	SMALL BREACH						
Description: The initia	Description: The initiating event is the loss of containment of liquid hydrocarbon due to a small						
bre	each (5 mm) in the	e expe	dition line	12"-PL-06B3-1	254		
Leak flow (Kg/s)				0.62			
	Early Pool fir	e with	a diameter	of 3.821 m			
Atmospheric	Flame heigh	nt	Dista	nce at 12.5	Di	stance at 37.5	
condition	(m)		KW	//m2 (m)]	KW/m2 (m)	
Summer	4.172			6.613		6.000	
Winter	4.0413			6.618		6.100	
Burning duration (s)			1490.	1 (25 min)			
	Late Pool fire with a diameter of 7.656 m						
Atmospheric	Flame height Distance at 12.5			nce at 12.5	Di	stance at 37.5	
condition	(m)		KW	//m2 (m)	KW/m2 (m)		
Summer	8.436		16.400		13.168		
Winter	7.989		16.582			13.257	
Burning duration (s)	134.82 (2 min 17 s)						
	Vap	or Clo	ud Explosi	on			
Amount of liquid released (Kg)				744			
Vaporization rate	Summer	C	0.6831	Evaporated a	nount	204,93	
(Kg/s)	Winter	(0.145	(Kg)		43,5	
Total volume of the	Summer			2781.2			
cloud (m ³)	Winter			591.71			
	Summer			10.992			
Cloud radius (m)	Winter	6.561					
Atmospheric	Distance at 200 1	mbar	Distance	at 350 mbar	Dista	nce at 700 mbar	
condition	in (m)		iı	n (m)		in (m)	
Summer	N/A			N/A		N/A	
Winter	N/A	N/A N/A			N/A		

	MEDIUM BREACH						
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a							
Leals flow (Va/a)	breach (25 mm) ir	i the	expedition	line 12 ²⁷ -PL-06	B3-125	4	
Leak now (Kg/s)				15.52			
	Early Pool fire with a diameter of 19.160 m						
Atmospheric	Flame height		Distar	nce at 12.5	Dis	tance at 37.5	
condition	(m)		KW	<u>/m2 (m)</u>	K	W/m2 (m)	
Summer	13.106		2	4.474		11.000	
Winter	12.618		2	4.583		11.100	
Burning duration (s)			807.62 ((13 min 30s)			
Late Pool fire with a diameter of 27.086 m							
Atmospheric	Flame height	Flame height Distance at 12.5			Dis	tance at 37.5	
condition	(m)	(m) KV		/m2 (m)	K	W/m2 (m)	
Summer	19.547	19.547 44.300				0.5340	
Winter	18.799 45.058		5.058		2.788		
Burning duration (s)	134.67 (2 min 15 s)						
	Vapo	r Clo	oud Explosio	on			
Amount of liquid released (Kg)			Ç	9 312			
Vaporization rate	Summer		7.439	Evaporated a	mount	2 231,7	
(Kg/s)	Winter		1.5618	(Kg)		468,6	
Total volume of the	Summer			30291	-		
cloud (m ³)	Winter			6444.5	5		
	Summer			24.364	1		
Cloud radius (m)	Winter 14.545						
Atmospheric	Distance at200 m	bar	Distance	at 350 mbar	Distar	nce at 700 mbar	
Condition			111 				
Summer	IN/A		ſ	N/A		IN/A	
Winter	N/A	N/A N/A			N/A		

Table D-37 Scenario FZ-6-025 modeling results

LARGE BREACH						
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a large breach (100 mm) in the expedition line 12"-PL-06B3-1254						
Leak flow (Kg/s)	248.456					
	Pool fire with a diameter of 36.738 m					
Atmospheric condition	Flame height (m)Distance at 12.5 KW/m2 (m)Distance at 37 KW/m2 (m)				stance at 37.5 XW/m2 (m)	
Summer	22.380		4	2.650		0.465
Winter	22.161		4	2.900		3.612
Burning duration (s)	134.66 (2 min 15s)					
Vapor Cloud Explosion						
Amount of liquid released (Kg)	74 536,8					
Vaporization rate	Summer		20.329	Evaporat	ed	6098.7
(Kg/s)	Winter		4.325	amount(k	Kg)	1297.5
Total volume of the	Summer			82769		
cloud (m ³)	Winter			17609		
	Summer			34.062	2	
Cloud radius (m)	Winter			20.334	ł	
Atmospheric condition	Distance at 200 mbar in (m)	Distance at 350 mbar in I (m)			Dista	nce at 700 mbar in (m)
Summer	N/A		1	N/A		N/A
Winter	N/A		N/A			N/A

Table D-38 Scenario FZ-6 -100 modeling results

Table D-39 Scenario FZ-6 -150 modeling results

CATASTROPHIC BREACH						
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a catastrophic breach (>150 mm) in the expedition line 12"-PL-06B3-1254						
Leak flow (Kg/s) 559.027						
Pool fire with a diameter of 51.407 m						
Atmospheric condition	Flame height (m)	Distance at 12.5 KW/m2 (m)	Distance at 37.5 KW/m2			
Summer 22.458 76.100 N/A						
Winter	21.527	76.150	N/A			

Burning duration (s)	134.66 (2 min 15 s)								
Vapor Cloud Explosion									
Amount of Liquid released (Kg)	33 541,62								
Vaporization rate	Summer		24.975	24.975 Evaporated 7492.5					
(Kg/s)	Winter		5.3135 amount(K		Kg)	1594.0			
Total volume of the	Summer	101680							
cloud (m ³)	Winter	21634							
Cloud radius (m)	Summer			36.481					
Cloud radius (III)	Winter	21.778							
Atmospheric	Distance at 2	DO Distance at 350 mbar		Dista	nce at 700 mbar				
condition	mbar in (m))	in (m)			in (m)			
Summer	N/A		N/A			N/A			
Winter	N/A		N/A			N/A			

Figure D-121 Scenario FZ-6-EP-005 contours

Figure D-122 Scenario FZ-6-EP-005 contours

Figure D-123 Scenario FZ-6-LP-025 contours

Figure D-124 Scenario FZ-6-LP-100 contours

Figure D-125 Scenario FZ-6-LP-150 contours

D.13 Scenario N°7: Loss of Containment in the Gas Expedition Pipe 10"-Pv-06b3-1039:

SMALL BREACH						
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a small breach (5 mm) in the gas expedition pipe 10"-PV-06B3-1039						
Leak flow (Kg/s)		0.017				
Jet fire with a velocity of 679.99 m/s in summer and 638.76 m/s in winter						
Atmospheric condition	Flame length ((m)	Distance at 12.5 KW/m ² in (m)	Distance at 37.5 KW/m ² in (m)		
Summer	1.621		1.710	0.758		
Winter	1.678		1.670	0.727		
Vapor Cloud Explosion						
Amount of gas released (Kg)	20.4					
	Summer 337.19					

Table D-40 Scenario FZ-7-005 modeling results

Total volume of the cloud (m ³)	Winter	300.44			
Cloud radius (m)	Summer	5.4401			
Cloud radius (III)	Winter	5.234			
Atmospheric condition	Distance at 200 mbar in m		Distance at 350 mbar in m	Distance at 700 mbar in m	
Summer	N/A		N/A	N/A	
Winter	N/A		N/A	N/A	

Table D-41 Scenario FZ-7-025 modeling results

MEDIUM BREACH						
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a medium breach (25 mm) in the gas expedition pipe 10"-PV-06B3-1039						
Leak flow (Kg/s)			0.429			
Jet fire with	a velocity of 679.9	99 m/s	s in summer and 638.76	m/s in winter		
Atmospheric condition	Flame length (m)Distance at 12.5 KW/m^2 in (m)Distance at 37.2 KW/m^2 in (m)					
Summer	7.104		7.000	3.144		
Winter	7.341		7.210	3.219		
Vapor Cloud Explosion						
Amount of gas released (Kg)	257.4					
Total volume of the	Summer		4254.5	5		
cloud (m ³)	Winter	3790.9				
	Summer		12.665	5		
Cloud radius (m)	Winter 12.187					
Atmospheric condition	Distance at 20 mbar in m	Distance at 350 mbar Distance at 700 ml In m In m				
Summer	N/A		N/A	N/A		
Winter	N/A		N/A	N/A		

Table D-42 Scenario FZ-7-100 modeling results

LARGE BREACH						
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a large breach (100 mm) in the gas expedition pipe 10"-PV-06B3-1039						
Leak flow (Kg/s)	6.861					

Jet fire with a velocity of 679.99 m/s in summer and 638.76 m/s in winter					
Atmospheric condition	Flame length (m)		Distance at 12.5 KW/m ² in (m)	Distance at 37.5 KW/m ² in (m)	
Summer	24.649		24.750	11.467	
Winter	25.434		26.190	12.405	
Vapor Cloud Explosion					
Amount of gas released (Kg)	2058.1				
Total volume of the	Summer 34021				
cloud (m ³)	Winter	30314			
Cloud radius (m)	Summer		25.326		
Cloud radius (III)	Winter		24.370		
Atmospheric condition	Distance at 2 mbar in m	200 Distance at 350 mbar in m		Distance at 700 mbar in m	
Summer	N/A		N/A	N/A	
Winter	N/A		N/A	N/A	

Table D-43 Scenario FZ-7-150 modeling results

CATASTROPHIC BREACH						
Description: The initiating event is the loss of containment of gaseous hydrocarbon due to a catastrophic breach (>150 mm) in the gas expedition pipe 10"-PV-06B3-1039						
Leak flow (Kg/s)	15.445					
Jet fire with a velocity of 679.99 m/s in summer and 638.76 m/s in winter						
Atmospheric condition	Flame length (m)Distance at 12.5 KW/m^2 in (m)Distance at 3' KW/m^2 in (m)					
Summer	35.330		35.960	16.902		
Winter	36.443		38.250	18.362		
Vapor Cloud Explosion						
Amount of gas released (Kg)			926.7			
Total volume of the	Summer		15317	7		
cloud (m ³)	Winter		13648	}		
Cloud radius (m)	Summer		19.41	1		
	Winter	18.678				
Atmospheric condition	Distance at 20 mbar in m	00 Distance at 350 mbar Distance at 700 mb in m in m				

Summer	N/A	N/A	N/A
Winter	N/A	N/A	N/A

Figure D-126 Scenario FZ-7-JF-005 contours

Figure D-127 Scenario FZ-7-JF-025contours

Figure D-128 Scenario FZ-7-100 contours

Figure D-129 Scenario FZ-7-150 contours

D.14 Scenario N°8: Loss of Containment in the Diesel Tank:

Equipment : DIESEL TANK								
Description	DIESEL TANK							
Design parameter	Capacity							
Operating parameter	Pressure	1 atm						
	Temperature	40 °C						
Substance	Diesel							

Table D-44 Scenario FZ-8 modeling results

SCENARIO N°8								
Description: The initiating event is the loss of containment of liquid hydrocarbon due to a s breach in the Diesel tank which leads to the formation of an inflammable pool with a surface of $24m^2$.								
Pool fire with a diameter of 5.527m								
Atmospheric condition	Retention dike width (m)		Flame height (m)		Distance at 12.5 KW/m ² in (m)	Distance at 37.5 KW/m ² in (m		
Summer	8	5.251			5.800	N/A		
	3				3.760	N/A		
Winter	8	5.082		6.200	N/A			
	3			4.000	N/A			
Vapor Cloud Explosion								
Vaporization rate (Kg/s)	Summer	0.135 Eva		porated amount	40.701			
	Winter		0.070	(Kg)		21.175		
Total volume of the cloud (m ³)	Summer	552.37						
	Winter	287.37						
Cloud radius (m)	Summer	6.412						
	Winter	5.157						
Atmospheric condition	Distance at 200 mbar				Distance at 300 mbar			
Summer	N/A				N/A			
Winter	N/A			N/A				