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Resumé

Ce travail se concentre sur le diagnostic de l’état de l’huile des transformateurs de puissance
par l’analyse des gaz dissous comprenant H2, CH4, C2H2, C2H4 et C2H6. À cette fin, de
nombreux algorithmes d’apprentissage automatique ont été développés. Huit vecteurs d’entrée
ont été considérés et plusieurs techniques de prétraitement ont été utilisées. La base de données
utilisée contient 666 échantillons, dont 506 sont sélectionnés pour l’entraînement et 160 pour
le test. Inspiré par des normes internationales telles que IEC et IEEE, six défauts électriques
et thermiques ont été considérés, à savoir PD, D1, D2, T1, T2 et T3. Le meilleur taux de
diagnostic est de 99,375 % a été obtenu en utilisant un arbre de décision personnalisé.

Mots clés: Transformateur de puissance, huile isolante, diagnostic, analyse des gaz dissous
défauts électrique et thermiques, Apprentissage automatique.

Abstract

This work focuses on diagnosing the condition of power transformer oil through dissolved gas
analysis consisting of H2, CH4, C2H2, C2H4, and C2H6. For this purpose, many machine
learning algorithms have been developed. eight input vectors have been considered, and several
pre-processing techniques were used. The database used contains 666 samples, of which 506
are selected for training and 160 for testing. Inspired by international standards such as IEC
and IEEE, six electrical and thermal faults have been considered, namely PD, D1, D2, T1, T2,
and T3. The best diagnostic rate of 99.375% was achieved using a custom-built decision tree.

Keywords: Power transformer, insulating oil, diagnosis, dissolved gas analysis, electrical and
thermal faults, Machine Learning.
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Introduction

0.1 Introduction

Power transformers are crucial and essential components in the transmission and distribution
chain of electrical energy. These electrical equipment, which are quite expensive, must operate
correctly for many years. The lifespan of a power transformer depends closely on the lifespan
of its insulation system, generally consisting of a traditional solid component (such as paper,
printed cardboard, etc.) and a dielectric fluid [1].

Immersed power transformers use insulating oil as the dielectric fluid due to its good physio-
chemical and electrical properties and low cost. Besides insulation, this oil helps dissipate the
heat generated by the magnetic circuit and winding’s. During operation, the insulating oil is
subjected to various constraints, including electrical, thermal, and chemical stresses. These
constraints lead to the progressive degradation of the insulating oil and eventually result in
the transformer being taken offline if not analyzed in time [2, 3]. Hence, various oil analysis
techniques are proposed to diagnose the internal condition of power transformers. The most
popular ones are physio-chemical analyses [1, 4, 5] and dissolved gas analysis (DGA) [3, 5].

Monitoring to Detect the initial degradation of an insulation, which could lead to its total
breakdown, enables us to foresee an incident, and thus possibly avoid a widespread power cut
and the shutdown of factories and other important socio-economic structures.

DGA(Dissolved Gas Analysis) is a widely used diagnostic technique based on interpreting
the concentrations of dissolved gases in the oil. Under the influence of electrical and thermal
stresses, the oil decomposes, releasing gases in small quantities [3, 5]. These gases are separated
and quantified using gas chromatography [5]. DGA can be performed in the laboratory on
samples taken (offline mode) which is the oldest and most used method, There is also the
online mode by introducing sensors into transformers in service. [6].

The five main gases resulting from the oil decomposition are hydrogen (H2), methane (CH4),
acetylene (C2H2), ethylene (C2H4), and ethane (C2H6). The proportions of the concentrations
of these gases in a sample can determine the type of faults, In addition, the decomposition
of insulation paper produces carbon monoxide (CO) and carbon dioxide (CO2).[7]. According
to IEC 60599-2008 [8] and IEEE Standard C57.104-2019 [9], six electrical and thermal faults
exist, consisting of partial discharges (PD), low-energy discharges (D1), high-energy discharges
(D2), thermal faults for T < 300°C (T1), thermal faults for T from 300°C to 700°C (T2), and
finally, thermal faults for T > 700°C (T3).

In order to interpret the results of DGA of transformer oil, various conventional techniques
have been developed [10]. Detailed in the second chapter of this present dissertation, these
techniques include:

- Methods using individual gas concentrations in ppm such as the IEEE Standard C57.104-
2019 method, also known as Total Dissolved Combustible Gas (TDCG), or in percentages
such as the Key Gas Method (KGM) [9];

- Methods of gas concentration ratios, such as those of Dornenburg [11], Rogers [12], and
IEC 60599-2008 [8];

- Graphic methods of Duval using percentage concentration ratios, such as the triangle
with its seven versions (1 to 7) [13] and the pentagon with its two variants (I and II) [14].

Conventional methods have been the subject of several research works and are still relevant.
Syafruddin and Nugroho [15] applied TDCG, KGM, Dornenburg’s and Rogers’ ratios, as well
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as Duval’s triangle to determine faults in transformer oil. The faults detected were of a thermal
nature. Benmahamed [7] used Duval’s triangle, Duval’s pentagon I, Rogers’ ratios, and IEC
60599 ratios. Duval’s triangle provided the best diagnostic result, with a success rate of 90%.
Furthermore, Dukam et al [16] proposed an intermediate diagnostic method between Duval’s
triangle and Duval’s pentagon I. It is a four-dimensional simplexe which have ten triangular
faces. The proposed technique successfully competed with conventional ones, achieving the
best detection rate of 93%.

In order to improve transformer oil diagnosis through DGA, many techniques integrate tradi-
tional methods with those based on artificial intelligence and metaheuristics. Benmahamed et
al [7, 17] developed two algorithms to improve the classification rate of Duval pentagon I. The
first (Duval pentagon-SVM-PSO) consists of a combination of Duval’s pentagon and Support
Vector Machines (SVM) that reached an accuracy of 98%, with parameters optimized by the
Particle Swarm Optimization (PSO) technique. The second (Duval pentagon-KNN) combines
Duval’s pentagon with the k-Nearest Neighbors (kNN) algorithm. The first algorithm achieved
a success rate of 98% compared to 92% for the second. In another research work, Benmahamed
et al [18] applied Naive Bayes (NB), to diagnose transformer oil insulation by DGA. The Naive
Bayes algorithm provided a relatively low accuracy rate of 86%. Furthermore, Benmahamed et
al [19] developed two classifiers. The first is Gaussian, and the second (SVM-Bat) uses Support
Vector Machines (SVM), with parameters optimized by the Bat algorithm. The success rate
of SVM-Bat is 93.75% compared to 69.37% for Gaussian. Also, Guerbas and el in [20] used
neural networks with PSO to acheive a 99.375% Accuracy, The best so far. Finally, Kherif et
al [21] developed an algorithm combining KNN with the decision tree principle. An accuracy
rate exceeding 93% was obtained, demonstrating the effectiveness of the proposed algorithm
and because of it’s effectiveness we will see later in chapter 4 how we used this principle to
achieve a 99.375% accuracy.

This dissertation aims to explore different machine learning (ML) algorithm’s for the fault
diagnosis of power transformers through Dissolved Gas Analysis (DGA) and to compare its
effectiveness with other conventional and AI-based diagnostic methods.

For this purpose, We started by using SVM and Ensemble learning methods to get better
insights about this methods achieving an accuracy rate of 96.625% and in order to get better
results, A decision tree principle with ML algorithm’s is developed. We opted for a decision
tree combined with Extreme Gradient Boosting (XGBoost), and Random Forest (RF) which
at the end gave us a 99.375% accuracy. A total of 666 sets of sample data are considered, with
three-quarters used for the learning process (506 samples) and the remaining quarter used for
testing (160 samples). The six classes of faults (PD, D1, D2, T1, T2, and T3) recommended
by IEC 60599-2008 and IEEE Standard C57.104-2008 are adopted [8, 9]. A comparative study
is conducted among the different algorithms used by us and those from other papers. Thus,
the present dissertation is structured around four distinct chapters.

The first chapter focuses on generalities about insulating oils for power transformers. We first
present the technology of such transformers by showing their locations in electrical installations,
their classification and constitution, as well as their sources of failures. We then discuss the
different components of the insulation system, namely the insulating part (paper and cardboard)
and the liquid part (mainly composed of insulating oils). We reveal the composition, types, and
roles of each component. The different electrical, physical, and chemical properties of insulating
oils, as well as the influence of the main aging factors, are also mentioned. We conclude this
chapter by illustrating the diagnosis of transformer insulating oils by dissolved gas analysis.

In the second chapter, we present the main conventional (traditional) diagnostic techniques fol-
lowing the three major categories mentioned earlier. The first, using concentrations of dissolved
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gases, in ppm or percentages individually, concerns the method of IEEE Standard C57.104-2019
or TDCG (concentrations in ppm) and the Key Gas Method (KGM) (concentrations in per-
centages) [9]. The second, employing concentration ratios, includes Dornenburg’s, Rogers’, and
IEC 60599-2008 methods [8]. The last category, based on gas concentration ratios, includes
the two graphical representations of Duval, namely the triangle and the pentagon with their
variants. These representations actually use the percentage concentration ratios of dissolved
gases in the insulating oil. The advantages and disadvantages of conventional methods are also
revealed.

Chapter three is dedicated to the theoretical aspects of the machine learning algorithms used in
our study, specifically Support Vector Machines (SVM) and Ensemble Learning methods (EL).
We begin by introducing these algorithms, delving into the mathematical foundations and the-
oretical principles that underpin them. First, we present Support Vector Machines (SVM). The
mathematical formulation is thoroughly discussed to provide a comprehensive understanding
of SVM’s capabilities and limitations. Next, we focus on Ensemble Learning methods. We
emphasize two main types of ensemble learning: Bagging and Boosting. For Bagging methods,
we concentrate on Random Forest and then Extra-Tree, explaining its structure and the pro-
cess of building multiple decision trees. For Boosting methods, We highlight Extreme Gradient
Boosting (XGBoost) and its iterative approach to model building.

The fourth and final chapter presents the results obtained from using the four machine learning
algorithms discussed in Chapter III. We begin by detailing the tools and software used, followed
by a description of our input vectors and the preprocessing techniques applied to our data.
Subsequently, we discuss and interpret all the results obtained. Based on these results, we
select three algorithms, two input vectors, and two preprocessing techniques, which are then
combined using a decision tree principle, achieving an accuracy of 99.375%. Additionally, we
present a final table comparing our work with other studies on the same test data.

In conclusion, our dissertation underscores the effectiveness of our AI-based approach in fault
diagnosis, utilizing Support Vector Machines (SVM), Ensemble Learning methods, and the
decision tree principle. Our study demonstrates significant enhancements in accuracy.

17



Chapter 1
Insulating oils for transformers

1.1 Introduction

The escalating need for electrical power necessitates the deployment of high-quality transformers
catering to both transmission and distribution systems. Insulating oils play a pivotal role as
cooling and insulating agents within transformers, with a myriad of oil types engineered to
ensure optimal insulation. Key considerations include stability against oxidation and thermal
fluctuations. Mineral oil emerges as the predominant choice among these oils. This chapter
offers an in-depth exploration of the primary properties of insulating oils, accounting for the
diverse operational constraints they encounter. It commences with a concise introduction to
power transformers, followed by an examination of their malfunctions and causes, and the
essential properties of insulating oils. Additionally, It talk about the aging processes of these
oils and the diagnostic methods used to ensure transformer reliability And it concludes with
the different types of faults that can occur in power transformers.



Power transformers

1.2 Power transformers

A power transformer is a static AC electrical machine (with no moving parts, and therefore
no mechanical losses) featuring a single, closed ferromagnetic circuit [22]. The cores are
wound with concentric, tightly coupled coils, with no electrical connections between them. The
transformer transmits electrical power electromagnetically, at a fixed frequency, from a primary
circuit on the receiver side to a secondary circuit on the generator. Generally speaking, the
voltage and current magnitudes change, but the power remains stable. The IEC divides power
transformers in oil into three categories according to apparent power [23].

- Distribution transformer: up to 2,500 kVA three-phase or 833 kVA single-phase.

- Medium-power transformer: from 2.5 MVA up to 100 MVA three-phase and 33.3 MVA
single-phase.

- High-power transformer: three-phase over 100 MVA, single-phase over 100 MVA.

Figure 1.1 illustrates the main parts of a power transformer.

Figure 1.1: View of a power transformer [24]

The Table 1.3 have the power transformer parts as enumerated in Figure 1.1
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Table 1.1: Power transformer parts [24]

N N N
1. Oil filter valve 12. Tap changer handle 23. Coil
2. Conservator 13. Fastener for core and coil 24. Coil pressure plate
3. Buchholz relay 14. Lifting hook for core and coil 25. Core
4. Oil filter valve 15. End frame 26. Terminal box
5. Pressure-relief vent 16. Coil pressure bolt 27. Rating plate
6. High-voltage bushing 17. Oil drain valve 28. Dial thermometer
7. Low-voltage bushing 18. Jacking boss 29. Radiator
8. Suspension lug 19. Stopper 30. Manhole
9. B C T Terminal 20. Foundation bolt 31. Lifting hook
10. Tank 21. Grounding terminal 32. oil level gauge.
11. De-energized tap changer 22. Skid base

1.3 Malfunctions, causes and statistics

Power transformer failures are one of the most frequent causes of long-term power supply
interruptions, with serious repercussions on electrical system reliability. Transformer failure
can occur due to a variety of causes and conditions. they can be defined as [23]:

- A transformer failure followed by forced unavailability of service (winding damage, faulty
tap changer, etc.);

- A problem requiring the transformer to be disconnected for repair, or extensive on-site
maintenance (excessive gas production, presence of moisture, etc.).

Faults can occur in a transformer in a variety of ways: electrical, thermal or mechanical, internal
or external. Table 1.2 lists some of them.

Table 1.2: Causes of malfunctions of power transformers [23]

Internal Causes External Causes
- Deterioration of insulation - Overvoltages from switching or atmospheric
- Loss of winding tightening Overload
- Overheating
- Solid contamination in insulating oil
- Partial discharge
- Design and manufacturing defects
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1.4 Solid insulation of power transformers

Paper and cardboard have been utilized in electrical machines for over a century, serving as
solid insulation between winding’s and between winding’s and the core. Derived from cellulose,
extracted from wood or cotton fiber, both materials contain approximately 40 to 50% cellulose
[25], Cellulose, comprising long chains of glucose rings connected by oxygen bridges, forms the
structural basis of paper and cardboard. With a dielectric constant twice that of oil, paper
and cardboard are strategically employed in regions of high electric field to reinforce insulation
within the oil. Through a process known as oil impregnation, wherein the paper undergoes
vacuum drying to reduce moisture content to 0.5%, followed by the introduction of dried and
degassed insulating oil, the insulation system attains exceptional dielectric and mechanical prop-
erties. Moreover, cardboard in power transformers serves additional functions beyond electrical
insulation, providing mechanical support for winding’s and facilitating coolant circulation chan-
nels [26]. Hence, paper and cardboard play a crucial role in enhancing oil insulation within high
electric field areas of transformers, Cellulose and glucose structures are illustrated in Figure 1.2.

Figure 1.2: Glucose and cellulose structures [27, 28]

1.5 Liquid insulation for power transformers

The liquid insulation of transformers is achieved through insulating liquids primarily composed
of mineral oils, vegetable oils, and synthetic oils. Mineral oils account for 90-95% of the insu-
lating liquid market, primarily due to their low cost and favorable physio-chemical properties
[29].

1.5.1 Oil Role

Transformer oil, in particular, serves dual purposes as both an insulating medium and a
coolant, playing a crucial role in preventing insulation breakdowns and ensuring the seamless
operation of transformers within electrical power systems. The oil inside power transformers
primarily serves three roles [30]:

- Electrical insulation;

- Ensuring the dissipation of heat produced by losses at the winding level towards cooling
devices (external radiators);

- Slowing down the degradation of solid insulation.
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1.5.2 Oil degradation

The prolonged use of oil under various stresses—electrical, thermal, and chemical—generally
leads to its degradation. Aging is the phenomenon resulting in a slow and irreversible change
in the material’s properties [30]. The main types of aging of transformer oil are thermal
aging, electro-chemical aging, and electrical aging. The change in properties significantly affects
insulation performance and leads to a reduction in its lifespan.

Thermal aging corresponds to repeated or continuous long-term cyclic heating at relatively
high temperatures. Electro-chemical aging is mainly characterized by the consequences,
under the influence of the electric field, of the long-term action of certain chemicals accidentally
introduced into the oil or resulting from its own degradation. Electrical aging, on the other
hand, is mainly characterized by the long-term action of partial discharges or any ionization
phenomenon due to the electric field. It is characterized by an increase in dielectric losses and
a decrease in cross-resistance.

1.5.3 Categories of insulating oils

Insulating oils are classified according to their origins. Three types are distinguished: vegetable
oils (or natural esters), mineral oils (based on refined petroleum products), and synthetic oils.
This classification is linked to their chronological order of appearance in power transformers
applications. Indeed, vegetable oils were the first to be used, followed by mineral oils, and then
synthetic liquids were subsequently manufactured to address the shortcomings of mineral oil in
certain applications.

The Table 1.3 below indicates the typical performance characteristics of dielectric liquids used
in immersed transformers.

Table 1.3: Performance characteristics of dielectric liquids used in immersed transformers [29]

Properties Mineral Oil Silicone Oil Synthetic Esters Vegetable Oils Test Methods
Dielectric Strength (kV) 30-85 35-60 45-70 82-97 IEC 60156
Relative Permittivity at 25◦C 2.1-2.5 2.6-2.9 3-3.5 3.1-3.3 IEC 60247
Viscosity at 0◦C, mm2/s < 76 81 − 92 26 − 50 43 − 77 ISO 3104
Viscosity at 40◦C, mm2/s 3 − 16 35 − 40 14 − 29 16 − 37
Viscosity at 100◦C, mm2/s 2 − 2.5 15 − 17 4 − 6 4 − 8
Pour Point (◦C) −30 to −60 −50 to −60 −40 to −50 −19 to −33 ISO 3016
Flash Point (◦C) 100 − 170 300 − 310 250 − 270 315 − 328 ISO 2592 (I)
Fire Point (◦C) 110 − 185 340 − 350 300 − 310 350 − 360 ISO 2592 (I)
Density at 20◦C, kg/dm3 0.83 − 0.89 0.96 − 1.10 0.90 − 1.00 0.87 − 0.92 ISO 3675
Specific Gravity at 20◦C 1.6 − 2.0 1.5 1.8 − 2.3 1.5 − 2.1 ASTM E 1269
Thermal Conductivity (W/m · K) 0.11 − 0.16 0.15 0.15 0.16 − 0.17 (DCS)
Coefficient of Expansion (10−4 · K−1) 7 − 9 10 6.5 − 10 5.5 − 5.9 ASTM D1903

1.5.3.1 Mineral oils

Mineral oil, a hydrocarbon-based insulating fluid derived from petroleum refining, constitutes
the predominant choice for insulation in power transformers. Its widespread usage stems from
com- mendable dielectric properties and efficient thermal conductivity, facilitating effective dis-
sipation of heat generated during transformer operation. Despite its prevalent adoption, min-
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eral oil is en- cumbered by inherent drawbacks, notably its susceptibility to combustion, which
poses significant fire hazards, and its potential environmental impact due to its flammability
and propensity for pollution [8].

1.5.3.2 Synthetic and silicon oils

Although mineral oils play a significant role among liquids for electro-technical applications,
synthetic oils are used whenever specific properties are required [31]. This is particularly the
case when it comes to improving the fire resistance of transformers located near the population
(distribution and traction). These synthetic liquids are all obtained from various petrochemical
processes. There are three main types intended for transformers:

- Pentaerythritol esters, also known as synthetic esters or organic esters (as opposed to
natural esters or vegetable oils),

- Silicones Table 1.3,

- Chlorinated hydrocarbons (halogenated), such as PCB’s (Polychlorinated biphenyl).

1.5.3.3 Vegetable oils

Although primarily used in capacitors, vegetable oils, due to the environmental enthusiasm,
have been the subject of numerous studies [32] to be developed for usage in power transformer.

1.5.4 Usage

1.5.4.1 Mineral Oils

Mineral oil is the most widely used insulating liquid in electrical equipment due to its excellent
dielectric and heat transfer properties, its compatibility with cellulose insulators, and its low
cost (the latter can contain between 40,000 and 80,000 liters of oil!). It is primarily for this
techno-economic reason that this oil is also the most commonly used in power transformers [8].

1.5.4.2 Synthetic esters

Tetraesters are used for filling "fire-resistant" distribution transformers. Their high flash point
(> 300°C) compared to mineral oils is the primary characteristic of these products. This is why
they are found in equipment close to the population, in buildings, tunnels, etc. However, since
their use is relatively recent (about fifteen years), there is not enough data available to fully
understand their long-term behavior, considering that the normal lifespan of a transformer is
at least 25 years.

Primarily due to their higher cost (about four times more expensive than mineral oils), tetra-
esters have not been widely adopted in power transformers. The synthetic esters intended for
transformers, the most well-known and commercially available of which are Midel 7131 manu-
factured by M&I Materials, or Envirotemp 200 manufactured by Cooper Power Systems[31].
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1.5.4.3 Silicons oil or PDMS

PDMS(Polydimethylsiloxane) is primarily used for filling distribution and traction transformers,
where some level of fire resistance is desired. Their use is less common than organic esters due
to their very high cost (eight times more expensive than mineral oil) and the difficulty in
disposing of them after use as they are not biodegradable at all. However, they are widely
used for traction transformers (installed on trains) because they have good thermal stability,
withstanding temperatures of 125 to 150°C.

The most well-known silicone oils are Rhodorsil 604V50 manufactured by Rhodia and 561 by
Dow Corning [33].

1.5.4.4 Vegetable oil

As said earlier in Section 1.4.3.3, this type of oil is not commonly used in transformers. However,
especially with the growing interest in biodegradable products in recent years, numerous studies
have been conducted to replace mineral oil with vegetable oils for transformer impregnation.
Examples include Biotemp oil marketed by ABB and Envirotemp FR3 marketed by Cooper
Power Systems [32].

1.6 Characteristics of transformer insulating oils

The choice of an insulating oil is based on a large number of properties, grouped into three
categories: electrical, physical and chemical [3], the Table 1.4 summarizes industry standards
and related publications concerning standardized test procedures for transformer oil character-
istics. These tests are grouped into routine tests, supplementary tests and special investigation
tests [34].
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Table 1.4: Transformer oil characteristic test standards [34]

Test Group Test Name Test Standard

Routine Tests

Color Determination
Breakdown Voltage
Water Content
Acidity (Neutralization Value)
Dielectric Loss Factor
Inhibitor Content
Oxidation

ISO 2049
IEC 60156
IEC 60814
IEC 62021
IEC 60247
IEC 60666
IEC 61125 method C

Additional Tests
Interfacial Tension
Particles (Number of Particles)

ISO 6295
IEC 6097

Special Investigative Tests

Oxidation Stability
Flash Point
Compatibility
Pour Point
Density
Viscosity
Polychlorinated Biphenyls (PCB)
Corrosive Sulfur

IEC 61125
ISO 2719
IEC 61125
ISO 3016
ISO 3675
ISO3104
IEC 61619
DIN 51353

1.6.1 Electrical properties

The electrical properties of liquids depend on their formation. The study of electrical properties
is a multidisciplinary field, involving chemistry, electronics and mechanics [3].

1.6.1.1 Dielectric strength and breakdown voltage

Dielectric strength corresponds to the maximum electric field (breakdown voltage over the inter-
electrode distance) that can be applied without a disruptive discharge. The breakdown voltage
of a volume of insulating liquid is measured between two electrodes whose nature, shape and
distance apart are specified in IEC 60156-1995 [35]. Dielectric strength follow this formula:

Ec = Uc

e
(1.1)

Ec is the dielectric strength (kV/mm), Uc is the breakdown voltage (kV ), e is the distance
between the two inter-electrode (mm).
Dielectric strength varies based on several parameters, including electrode shape and the dis-
tance between them, which ranged from a few millimeters to a few centimeters [36]. A small
amount of moisture in the oils significantly reduces dielectric strength [7]. Breakdown voltage of
oil improves with temperature Figure 1.3, as water solubility increases with rising temperature.
Initially, it increases with the number of breakdowns, then stabilizes, and finally decreases. This
is due to moisture in the oil, which dissipates through breakdowns (heating and evaporation of
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water) or gas bubble elimination. Numerous breakdowns degrade the oil, potentially rendering
it unusable [7].

Figure 1.3: Effect of temperature on the breakdown voltages of an insulating oil with different
water contents [37]

1.6.1.2 Relative Permittivity

Permittivity is the fundamental macroscopic constant that characterizes a dielectric. It ex-
presses the possibility of polarization under the action of an electric field. It is defined by the
following relationship[38].

ε = ε0εr (1.2)
ε is the absolute permittivity of oil (F/m), ε0 is the Vacuum permittivity (ε0 = 1

36π109 =
8.85pF/m) and εr is the oil relative permittivity (No unit).
The relative permittivity εr of an insulator is defined as the ration between the capacitance of a
capacitor filled with this insulator (Cr) and the capacitance of the same capacitor in a vacuum
(C0) [38].

εr = Cr

C0
(1.3)

1.6.1.3 Dielectric loss factor

The dielectric loss factor, or dissipation factor (tan δ), is a dimensionless value directly related
to resistivity and permittivity in alternating voltage. The smaller the δ is, the smaller the
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dielectric losses. The higher the dielectric temperature is, the higher the dielectric losses [7].

1.6.1.4 Conductivity / Resistivity

The conductivity of an insulating liquid is due to the presence of free charges that move under
the effect of an electric field, thus generating a conductive current. A good oil should have the
lowest possible conductivity. In other words, it must have very high resistance. Insulating oils
have a conductivity of between 10−11 to 10−13 (S/m) [7].

1.6.1.5 Partial discharges

Partial discharges are caused by the presence of gas bubbles or other impurities (moisture,
particles, etc.) in the oil. Under the action of the electric field, these impurities can be the site
of localized discharges. Gases that may be present in transformer oil include hydrogen (H2)
and light hydrocarbons such as methane (CH4), as well as smaller quantities of ethane (C2H6),
ethylene (C2H4) and ethylene (C2H4). acetylene (C2H2), as well as carbon monoxide (CO) and
carbon dioxide[39].

1.6.1.6 Gassing effect

Gassing (mm3/mm) is the rate of change of gas volume during 120 min of voltage application
(10kV at 80◦C). If the volume increases, the oil will have positive gassing. otherwise, the oil
will have negative gassing [7].

1.6.2 Physical properties

1.6.2.1 Viscosity

Viscosity is a very important factor in heat transfer. r. The more viscous the liquid, the more
difficult it is to circulate it through the radiators to cool the active parts. The viscosity of
hydrocarbons is correlated to their molecular weight; the lighter the product, the lower its
viscosity. It is expressed by this relation [40]:

CST = Ct − b

t
(1.4)

CST is viscosity in centi-stokes, Ct the viscosity constant, t the flow time in seconds and b the
viscosity coefficient.
The viscosity index is a characteristic giving the variation in viscosity of an oil as a function of
temperature. The lower the variation in viscosity with temperature, the better the oil is [7].

1.6.2.2 Flow point

The use of electrical devices outdoors requires knowing the viscosity of liquid insulators at low
temperatures (in winter the temperature can reach −25◦C, and even −60◦C).
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Flow point is defined as the maximum temperature below which circulation of liquid cannot be
established, therefore it is the temperature at which liquids freeze. It is determined according
to the ISO 3016 standard [41].

1.6.2.3 Flash point

The proper operation of electrical equipment requires a sufficiently high flash point (min 135◦C),
measured in accordance with ISO 2719 (Pensky-Martens method in isolation). The flash point
is the minimum temperature for which the concentration of vapors emitted is sufficient to
produce a fire blast on contact with a flame or a hot spot [42].

1.6.2.4 Fire point

This is the temperature at which steam ignites and sustains combustion for at least 5 seconds
when the ignition source is removed [7].

1.6.2.5 Thermal capacity

Heat capacity (or specific heat) is defined as the quantity of heat necessary to increase the
temperature of one kilogram of a substance by one Kelvin. Heat capacity increases with tem-
perature and decreases with density. It is expressed in joules per kilogram kelvin and can be
calculated by the following relationship[29].

Cp = 1684 − 3, 39T
√

ρ15
(1.5)

Cp is the specific heat (J/kg.K), T the temperature (K) and ρ15 the density at 15◦C. The heat
capacity of liquids at 20◦C varies from 1000 to 2300 J/(kg.K).

1.6.2.6 Thermal conductivity

Thermal conductivity (λ) is inversely proportional to density and decreases with temperature.
It expresses the thermal flux flowing in steady state under the effect of a thermal gradient be-
tween two isotherms of the liquid. It is between 0.11 and 0.14 W/(K.m). Thermal conductivity
is a very important parameter because it determines the ability of the oil to dissipate heat [43].
Thermal conductivity decreases with increasing temperature Figure 1.4 [44].
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Figure 1.4: Thermal conductivity varying with temperature [45]

1.6.2.7 Color

The color of new oil is an indication of its degree of refinement. In fact, highly refined oils are
white; A variation in color in deliveries of new oil may indicate a change in the origin of the
oil or in the manufacture, although this is not absolutely certain. In the case of used oil, a
dark color indicates its deterioration [46]. In fact, optical properties are of particularly great
interest, because they can characterize the constitution of a liquid [7].

1.6.2.8 Density and coefficient of expansion

The density ρθ is an essential characteristic of a product. It depends on its chemical composition.
The density is defined by the ratio of a mass m of liquid to its volume, measured at the
temperature θ, it is expressed in kilogram per cubic meter [7].
According to the ISO 3675 standard, the density is determined at 20◦C; temperature at which
it can be between 800 and 2000 kg/m3. The best oils have a density lower than that of water
1000 kg/m3. Thus, water does not rise to the surface of the oil in the event of an emulsion
and therefore does not lead to the appearance of electric arcs. The density decreases when the
temperature increases, it is expressed by the following relation [29]:

ρθ = ρ20 (1 − αv[θ − 20]) (1.6)

ρθ is the density of the oil at temperature θ, ρ20 is the density of the oil at 20◦C (kg/m3), θ the
oil temperature in ◦C and αv the volume expansion coefficient (K−1). The volume expansion
coefficient varies from 5.104 to 10.10−4 K−1 and it is determined according to the standard
ASTM D 1903-03 [47].
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1.6.2.9 Heat transfer capability

The release of heat caused by losses in the transformer requires the development of a cooling
system. This consists of a circulation circuit for a fluid which must be insulating. Two types of
fluid can be used, namely air and oil. This transports heat better and improves the dielectric
strength of the cardboard by impregnating it [7].

1.6.3 Chemical properties

1.6.3.1 Water content

The water content of an oil must be as low as possible. When the oil is new, the water content
is less than 100 ppm (1 ppm = 100 mg/kg) according to standard IEC 60814-1997 [48]. The
latter defines the water content as being:

w(µg/g) = m

M
(1.7)

m is the quantity of water tit-rated in micro-grams µg and M is the mass of insulating liquid
in grams (g).

1.6.3.2 Acidity

Acidity corresponds to the concentrations of free organic and inorganic acids present in the
oil and is expressed in milligrams of potassium hydroxide (KOH) necessary to neutralize the
total free acid contained in one gram of oil. Acids generally arise from oil breakdown, oxidation
products, and external atmospheric sources. The presence of these acids in the oil harms
the insulation system and causes corrosion of the expansion tank. For new oil, it is around
0.005(mgKOH/g). It is measured by calorimetric titration (ISO 6618) [49], or by potentiometric
titration (IEC 62021-1-2003)[50].

1.6.3.3 Oxidation

Oil oxidation causes acidity and the formation of sludge. This can be avoided by using oils with
high oxidation stability minimizing sludge deposition and maximizing the life of the insulation.
Oxidation stability is measured according to method C of IEC 61125 [51].

Oxidation has harmful consequences on the proper functioning of transformers because it leads,
according to [7]:

- An increase in viscosity, resulting in a reduction in the ability to eliminate heat release;

- An increase in dielectric losses;

- An increase in corrosiveness towards cellulose;

- An increase in corrosiveness towards metal parts.

To reduce the effect of oxidation, antioxidant additives can be incorporated into the liquid
insulation to reduce or delay its degradation [7].
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1.7 Aging of insulating oils

The main agents present in transformers that can degrade insulating oils (and cellulose) are
oxygen and humidity. Oxygen is present in dissolved form in the oil and moisture is present in
the paper (even after drying, moisture remains, greater than 0.2% by mass). These sources of
aging are all the more present in the case of power transformers, which are called "breathing"
(like most in Europe), in contact with the atmosphere via a preservative and a desiccator [52].
Oxygen and humidity cause oil degradation by oxidation and hydrolysis, respectively. In ad-
dition to these two “natural” aging factors, there are two other significant catalysts, which
are temperature (pyrolysis) and the electric field. Finally, the presence of the construction
materials of the device, such as iron, copper or cellulose, also act as aging catalysts [53].

1.7.1 Oxidation of mineral oil

The oxidation of mineral oil results mainly from the simultaneous action of molecular oxygen
and temperature in the presence of the materials of construction of the devices (copper, iron,
cellulose, etc.). The action of humidity and the electric field is still poorly understood on the
oxidation phenomenon [53].

Oxidation constitutes the predominant factor in the aging of liquid insulation, and more partic-
ularly in that of mineral oils. This refers to a set of complex and slow chemical reactions during
which hydrocarbons react with dissolved oxygen [54]. Oils, like all natural products, oxidize
giving degradation products which are first characterized by a change in color and odor, linked
to the formation of light acidic compounds, then by an appearance of deposits and aggressive
residues, linked to heavy acids, and accompanied, in general, by an increase in viscosity [53].

It is generally accepted that oxidation proceeds according to a mechanism of chain reactions
initiated by free radicals (molecules or fragments of molecules in an excited electronic state
which have a free valence, and which are chemically very reactive and electrically neutral).
Such reactions are called auto-catalytic, that is to say that the products formed by oxidation
serve as catalysts [53].

The oxidation of a mineral oil leads to the formation of an ester and water. Initially, soluble
decomposition products (related to naphthenic and paraffinic compounds) are formed, such
as aldehydes, ketones and carboxylic acids. Then, through polymerization, insoluble deposits
(linked to aromatic compounds) are formed, also called sludge, which increase the viscosity of
the oil and can block the cooling circuits [29].

The oxidation of mineral oils increases with temperature and oxygen concentration. The reac-
tion rate doubles approximately every 8 to 10 ◦C, starting at 60 ◦C [55].

Nikolay Markovich Emanuel [56] showed that the rate of progress of the reaction follows a law
of the type:

ω = K[R0][O2] (1.8)
ω is the rate of oxygen consumption, K the reaction constant, [R0] the concentration of hydro-
carbon radicals, [O2] the concentration of oxygen in the liquid phase.
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1.7.2 Humidity

Moisture is the “number one enemy” of electrical insulators, in the sense that unlike them, it
conducts electricity. This phenomenon is all the more pronounced in insulating oils because
the latter have low water solubility. We often speak of the phenomenon of hydrolysis to define
the influence of water on the aging of oil [57].
Before filling the transformer, the oil is dried to achieve a low moisture content (or water
content). From this moment on, this moisture content will continually increase for different
reasons. The two main sources of increased water content in oil are the penetration of moisture
from the atmosphere and the degradation of cellulose. Moisture ingress from the atmosphere
comes from the fact that power transformers are often breathable. The degradation of cellulose
provides water because although the latter is dried, there always remains at least 0.2% by mass
of humidity within it [52].
Water can be found in oil in dissolved form, in dispersed form (water droplets) or in emulsion
(appearance of two immiscible phases). The solubility Ws of water in oil is given in mg/kg or
ppm (parts per million). It depends on the condition of the oil, the temperature and the type
of oil. The variation of the solubility of water in oil is expressed by [58]:

Ws = Woile
(− B

T ) (1.9)

Ws is the solubility of water in oil (mg/kg or ppm), T is the temperature of the oil (K), Woil

and B are constants specific to the liquid.
The higher the temperature, the greater the solubility of water in the oil. This variation in
solubility with temperature can prove problematic. Indeed, when the device is hot, water can
dissolve in greater quantities, and when the device cools, the solubility of the water decreasing
again can allow free water to appear [58]. Thus, it is always appropriate to determine the
solubility of the oil at the same temperature at which the oil was taken. The standardization
committee for electrotechnical fluids has established a correction factor which makes it possi-
ble to reduce the value of the water content of a mineral oil taken at a certain temperature
(> 20 ◦C) to the temperature of 20 ◦C to have a criterion of comparison [52].

On contact with a humid atmosphere, water gradually dissolves in the oil. This is why so-
called “breathing” transformers are always equipped with a desiccator to dry the air. The
water content of an oil is often expressed as a percentage of saturation at a given temperature,
also called relative humidity [53].

1.7.3 Partial discharge

under the effect of electrical field and local inhomogeneities (gas, humidity, particles), micro-
discharges can appear which decompose the oil by generating gases. In the long term, these
discharges can become harmful if they tend to attach to the impregnated solid insulators and
reach a sufficient level to deteriorate them [53].

1.7.4 Temperature

As we saw previously, temperature acts as a catalyst for oxidation. It is also a factor which
gradually degrades insulating oils. We often speak of thermal stability to define the behavior of
the product at high temperature, ignoring any other constraints such as oxidation, hydrolysis or
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partial discharges. The effect of temperature on the aging of an oil is often defined as pyrolysis.
Under normal conditions of use of transformers (temperature between 80 and 100 ◦C), the
stability of existing insulating liquids is largely sufficient. Temperature therefore mainly acts
as a catalyst and not as a trigger. However, there may be hot spots in certain parts of the
transformer that degrade the oil [53].

1.8 Diagnosis of transformer oil by dissolved gas analysis

Power transformers are extremely expensive devices. Evaluating the condition of a device
based on analyzes carried out on the oil it contains is much less expensive compared to the
cost of interrupting the supply of electrical energy following a transformer breakdown and the
replacement of the latter. In-service monitoring of large transformers is therefore systematic.
This monitoring also exists on small transformers, but on a more punctual basis, in particular
to try to explain certain malfunctions [53].

1.8.1 Insulator oil decomposition

The decomposition of transformer oil also results in the formation of solid compounds and the
formation of gases. These gases are usually generated by typical anomalies such as aging of
insulation, the formation of electric arcs, partial discharges, locally high temperatures or, more
generally, imperfect cooling [9].
These gases, soluble in oil as indicated, are an important indicator of faults arising in a
transformer. Constant monitoring and evaluation of gas formation makes it possible to re-
act promptly, avoid greater damage and significantly increase the lifespan of transformers [9].
Dissolved gas analysis, which involves looking for gases in the oil, is one of the most reliable
power transformer diagnostic methods used [2].

1.8.2 Dissolved gaz analysis

Dissolved Gaz Analysis (DGA) introduced more than forty years ago, is one of the most used
techniques for transformer diagnosis thanks to the fact that it is non-destructive and can be
used for real-time monitoring. To perform an analysis, this technique requires only a small
quantity of insulating oil and does not require transformer service interruption. The main gases
produced are methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), hydrogen
(H2), monoxide (CO) and carbon dioxide (CO2)) [14].

1.8.3 Principle of detection and measurement of dissolved gas

To extract and quantify these gases, Gas Chromatography (GC) is applied. GC is a method
of separating gaseous compounds or compounds capable of being vaporized by heating without
decomposition. This method is carried out using the chromatograph. The results obtained by
the latter indicate the proportions of the concentrations of gases dissolved in the oil in ppm [2].
The chromatography operation is shown on Figure 1.5, a representative oil sample is extracted
and introduced into the DGA system. There, the dissolved gases trapped within the oil are
separated through a gas extraction process. These separated gases then travel through a gas
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chromatography column where they are divided based on their unique properties. Finally, a
detector identifies and measures each gas component, allowing the analyze of the concentrations
and diagnose potential transformer faults [59].

Figure 1.5: The use of DGA on power transformer oil [59]

1.8.4 Type of power transformer faults

Standards IEC 60599-2008 [8] and IEEE standard C57.104-2019 [9] classify transformer faults
detectable by dissolved gas analysis into two categories: electrical fault and thermal fault.
These two main categories can be further classified into six types of transformer faults, based
on the magnitudes of the fault energy [60]:

- Partial discharges (PD);

- Low energy discharges (D1);

- High energy discharges (D2);

- Thermal faults with temperatures below 300 ◦C (T1);

- Thermal faults with temperatures between 300 ◦C and 700 ◦C (T2);

- Thermal faults with temperatures above 700 ◦C (T3).

1.8.4.1 Partial discharges

A partial discharge is a very localized, low-intensity electrical discharge that occurs between
two separate conductors. Partial discharges appear in the form of short-duration pulses which
are often accompanied by the emission of sound, light, heat and chemical reactions. Sources
of partial discharges include voids and cracks in solid insulation, floating components such as
water drops and air bubbles, and corona caused by sharp edges and corners of insulation solid,
winding’s or tank [61].
Partial discharge is the type of discharge that only partially fills the insulation gap between
the electrodes. The discharge can occur completely inside the transformer insulation or near
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the conductors. The partial discharge around an electrode in a gaseous medium is called cold
plasma discharge or "corona effect", while others such as that occurring in a transformer liquid
is commonly called "streamer" [62].
Partial discharges, known as one of the most determining reasons for the degradation of insula-
tors, which could lead to breakdown when they accumulate and propagate completely between
two electrodes. To avoid costly transformer failures, it is extremely important to monitor par-
tial discharge activities for early detection of fault inception in transformers [60]. Usually, this
type of fault is characterized by the production of hydrogen and methane [62].

1.8.4.2 Arc or spark discharges

After decades of study, it is now generally accepted that breakdown occurs after the streamers
fully propagate through the electrode gap. When the energy of dielectric breakdown is limited,
it acts as small arcs called “sparking faults”. Compared to partial discharge faults, sparking
faults generate much more gas during the fault which can be critical for the operation of the
transformer [60].
Arc discharges generate very high temperatures (above 5000 ◦C) and a large amount of gas,
mainly acetylene and hydrogen. This type of fault is very dangerous and, if left unchecked, can
cause excessive pressure in the transformer tank, even leading to an explosion [61].

1.8.4.3 Thermal faults

Thermal faults result from overheated conductors, short circuits, overheated winding’s due to
eddy currents, loose connections and insufficient cooling. Localized overheating is known as
hot spots. The temperature of a hot spot on a metal surface can reach 1500 ◦C, causing local
heating of the surrounding oil, leading to the generation of hydrocarbon gases [61]. Different
types of fault gas will be formed in different temperature ranges. Therefore, fault gases could
be used to diagnose the transformer fault temperature [60].

1.9 Conclusion

It emerges from this first chapter that the choice of a liquid insulator is not based solely on
these electrical, physical or chemical properties, but also depends on its resistance to aging
and its capacity to evacuate heat. It appears that the main factors responsible for the aging
of an insulating oil are oxygen, temperature and humidity. This humidity comes mainly from
the atmosphere and cellulose. The combined action of temperature and oxygen causes the
insulating oil to oxidize. These overriding factors may over time lead to the appearance of
various defects.
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Chapter 2
Conventional diagnostic methods

2.1 Introduction

The oil used in power transformers is regarded as the memory of events that have occurred
on this electrical equipment. Such events are detected by analyzing and interpreting dissolved
gases, based on their concentrations and proportions, in the sampled oil. In fact, any abnormal
operation of the transformer generates dissolved gases in the oil.

Dissolved gas analysis (DGA) is an important measure in transformer life-cycle management.
Correct interpretation of dissolved gas analysis can provide valuable information on the health
of transformers. In fact, it can be used to identify and interpret faults (thermal and electrical)
and the source of their creation, with a view to preventing malfunctions at an early stage.

This chapter is devoted to the presentation of the most popular conventional methods, which
we divide into three main categories.

- The first category uses dissolved gas concentrations on an individual basis, assigning each
gas one or more defects. Gas concentrations can be expressed in ppm for the Individual
gases method [5] IEEE Standard C57.104-2019 method, also known as the Total Dissolved
Combustible Gas (TDCG) [9], or in percentages for the Key Gas Method (KGM) [5, 7].

- The second category uses concentration ratios. These include the Dornenburg method,
the Rogers method and IEC 60599-1978 [11, 12][63].

- The third category is based on graphical representations, such as Duval triangle (with its
seven versions) [13] and the pentagon (with its two variants I and II) [14].
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2.1.1 Methods that uses gas concentration

2.1.1.1 Individual gases method

Generally speaking, several types of combustible and non-combustible gases can be extracted
from oil. The main combustible gases are hydrogen (H2), methane (CH4), ethane (C2H6),
ethylene (C2H4), acetylene (C2H2) and carbon monoxide (CO). The main non-combustible
gases are carbon dioxide (CO2), Nitrogen (N2) and oxygen (O2). Table 2.1 shows the main
combustible and non-combustible gases and their corresponding defects. From this table, each
type of gas is generally linked to a single defect, with the exception of ethylene (C2H4) and
ethane (C2H6), which are linked to two separate defects [5].

Table 2.1: Main gases and associated faults [5]

Gas Associated Faults
Acetylene (C2H2) High-energy electrical fault (electrical arcs, sparks)

Ethylene (C2H4)
Thermal fault characterized by local overheating;
Thermal decomposition of oil

Ethane (C2H6) Low-energy thermal fault;
Thermal decomposition of oil

Hydrogen (H2) Low-energy electrical fault (low discharges, corona effect)
Methane (CH4) Partial discharges (arcs) or thermal decomposition of oil

Carbon monoxide (CO) Thermal decomposition (due to overheating) of cellulose (paper)
Carbon dioxide (CO2) Thermal decomposition (due to overheating) of cellulose (paper)

Nitrogen (N2) Sample defect
Oxygen (O2) Leakage fault

2.1.1.2 IEEE Standard C57.104 or TDGC method

TDGC (Total dissolved gaz concentration) is based on the use of concentrations, in ppm, of
all combustible gases. These consist of the gases resulting from the decomposition of the oil,
namely hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4) and ethane (C2H6),
and those due to the decomposition of the insulation paper, consisting of carbon monoxide (CO)
and carbon dioxide (CO2) [9].

For an easy and correct application of this method, it is necessary to have the previous history
of dissolved gases determining the normal operating state of the transformer. Consequently,
it can be difficult to determine whether a transformer is operating normally in the absence
of previous dissolved gas history. In these circumstances, four conditions (levels) have been
established to classify the risks associated with transformers and are presented in Table 2.2.
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Table 2.2: Conditions for dissolved gas concentration according to IEEE standard C57.104-2019
[9]

State
Key Gas Concentration Limits [µg/L(ppm)]

H2 CH4 C2H2 C2H4 C2H6 CO CO2 TDGC
Condition 1 100 120 1 50 65 350 2500 720
Condition 2 101 − 700 121 − 400 2 − 9 51 − 100 66 − 100 351 − 570 2500 − 4000 721 − 1920
Condition 3 700− 401− 10− 101 − 200 101 − 150 571− 4001− 1921−

1800 1000 35 1400 10000 4630
Condition 4 > 1800 > 1000 > 35 > 200 > 150 > 1400 > 10000 > 4630

The conditions interpretation is as follows [9]:

1. The transformer is in good working order as long as the TDCG is below the level indicated
in Table 2.2. However, any gas whose concentration exceeds the values indicated requires
special attention.

2. A TDGC value within the range implies that the dissolved gas value is higher than normal.
This may result in a fault. Thus, any combustible gas exceeding the specific level requires
further investigation.

3. A TDGC value within the range indicates a high level of insulation decomposition (paper
and/or oil). This situation may give rise to a strong possibility of a fault. Indeed, any
combustible gas exceeding the specific level requires daily analysis.

4. A TDGC exceeding the required level indicates excessive decomposition of the insulation
(paper and/or oil). Continued operation of the transformer could lead to transformer
failure. The transformer must be shut down immediately.

2.1.1.3 Key gases method

The KGM uses different concentrations of key gases in percentages to detect defects. This
method can be seen as a modification of the TDGC [64]. KGM determines defect types from
the typical or predominant gases released into the oil. In fact, the key gases and their quantities
are closely related to the nature of the defect.

Table 2.3 summarizes the main gases and defects generated when applying KGM. The defects
considered are those listed in IEC 60599-1999 [65]. The four main faults are as follows:

- Thermal fault due to oil overheating;

- Thermal fault due to cellulose overheating;

- Electrical fault due to corona or partial discharge;

- Electrical fault due to arcing.
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Table 2.3: Diagnostic criteria by KGM [66]

Key Gas Faults Detected Gases Percentage of Dominant
Gases

C2H4 Oil Overheating

In addition to ethylene and methane,
decomposition products also include small
amounts of hydrogen and ethane. Moreover,
traces of acetylene may be detected during
severe faults or those involving electrical
contacts.

C2H4 : 63%
C2H6 : 20%

CO Cellulose Overheating

Cellulose overheating generates large
quantities of carbon monoxide and dioxide. If
the fault involves an oil-impregnated structure,
methane and ethylene will also be formed.

CO : 92%

H2 Partial Discharges (Corona Effect)

Low-energy electrical discharges develop
hydrogen and methane, and small amounts
of ethane and ethylene. Additionally, discharges
in cellulose release comparable amounts
of carbon monoxide and dioxide.

H2 : 85%
CH4 : 13%

H2 and
C2H2

Electrical Arcs

Electrical arcs cause the formation of
significant amounts of hydrogen and acetylene,
and small amounts of methane and ethylene.
If electrical arcs touch cellulose, there may also
be formation of CO and CO2.

H2 : 60%
C2H2 : 30%

Note that single gas methods seem straightforward. However, they are characterized by a low
fault classification rate. Indeed, they are not considered reliable diagnostic tools for power
transformers.

2.1.2 Methods that uses gas concentration ratio’s

Gas concentration ratios were first used by Dornenburg, then confirmed by Rogers and the
European community in particular, and the scientific community in general. Such methods use
six main ratios (R1 to R6) of key gases in power transformer oil fault diagnosis [5, 7]. These
ratios consist of :

R1 = CH4

H2
R2 = C2H2

C2H4
R3 = C2H2

CH4
R4 = C2H6

C2H2
R5 = C2H4

C2H6
R6 = C2H6

CH6

2.1.2.1 Dornenburg method

Dornenburg ratio method (DRM) This method is one of the first techniques introduced for
diagnosing power transformer oils, with a view to interpreting the results of dissolved gas
analysis (DGA). This method can only be valid if the concentration of each gas is above the
permissible limit (L1) reported in Table 2.4 [11].
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Table 2.4: Dissolved gas concentration (L1) for DRM [9]

Gases Dornenberg(L1) (ppm)
H2 100
CH4 120
CO 350
C2H2 35
C2H4 50
C2H6 65

Once dissolved gas levels are sufficient, the ratios R1 to R4 are calculated. By comparing
the gas concentration values with those of the admissible limits (L1), the fault, if any, can be
detected. In fact, three types of defects are considered, namely:

- Thermal decomposition;

- Low-energy partial discharges or corona;

- High-energy electric arcs.

These fault types are determined according to the range of variation of each ratio (R1 to R4),
as shown in table Table 2.5.

Table 2.5: Dornenberg method suggested fault diagnosis [11]

Suggested Fault Diagnosis Ratio 1 Ratio 2 Ratio 3 Ratio 4
Thermal Decomposition > 1 < 0.75 < 0.3 > 0.4
Partial Discharge (Low-intensity PD) < 0.1 Not significant < 0.3 > 0.4
Arcing (High-intensity PD) 0.1 to 1 > 0.75 > 0.3 < 0.4

Based on IEEE Standard C57.104-2019 [9], the Dornenburg ratio method can be applied, for
any oil sample, according to the flow chart in Figure 2.1.

The Huge drawback of the DRM diagnosis is that it cannot be conducted if the key gas con-
centration of H2, CO, CH4, C2H2, C2H4, and C2H6 exceeds the relevant L1, check Table 2.4 [9].
Also, it does not cover all possible faults in power transformers, as it considers only three faults:
thermal decomposition, low-energy partial discharges or corona, and high-energy electric arcs.
As a result, its interpretation is very limited and inadequate.

2.1.2.2 Rogers method

With a view to improving on the Dornenburg method, Rogers ratio method (RRM) initially
developed an investigation based on dissolved gas analysis using four ratios R1, R2, R5 and R6,
before deleting the R6 ratio, which he felt was not sufficiently useful in identifying defects [12].

The methodology and procedure of Rogers’ methods are similar to those of Dornenburg. How-
ever, Rogers’ methods can be applied even when gas concentrations (in ppm) do not exceed
the threshold limit values reported in Table 2.4 for the dornenburg method.
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Figure 2.1: Flowchart for DRM fault classification [10]

Rogers proposed and exploited the three ratios to generate three codes, namely 0, 1 and 2.
Each code corresponds to a range of variation of each ratio. The ranges of the three ratios and
their codes are shown in Table 2.6.

Table 2.6: Ranges of the three ratios and their codes according to the Rogers method [12]

Gas Ratio Range Code

R1 = CH4
H2

R1 < 0.1 1
0.1 ≤ R1 ≤ 1 0

R1 > 1 2

R2 = C2H2
C2H4

R2 < 0.1 0
0.1 ≤ R2 ≤ 3 1

R2 > 3 2

R5 = C2H4
C2H6

R5 < 1 0
1 ≤ R5 ≤ 3 1

R5 > 3 2

The combination of codes from the three reports can be linked to an interpretation giving a
specific fault diagnosis, as shown in Table 2.7. The latter also shows the six defects considered
by Rogers’ method [12].
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Table 2.7: Codes and faults following RRM [12]

Case
Code

Type of Fault
R1 R2 R5

1 0 0 0 No Fault
2 1 0 0 Partial Discharges with Low Energy
3 1 1 0 Partial Discharges with High Energy
4 0 1 ∼ 2 1 ∼ 2 Electrical Discharge with Low Energy
5 0 1 2 Electrical Discharge with High Energy
6 0 0 1 Overheating with temperature T < 150◦C

7 2 0 0
Overheating with temperature

150◦C < T < 300◦C

8 2 0 1
Overheating with temperature

300◦C < T < 700◦C
9 2 0 2 Overheating with temperature T > 700◦C

Table 2.7 clearly shows the disadvantage of Rogers’ three-ratio method. In fact, only 9 cases
can be interpreted out of all possible combinations. The others, such as (1,1,1) and (1,0,0) of
the ratios R1, R2 and R5, cannot be interpreted at all. Furthermore, similar to the Dornenburg
method, Rogers’ ratios may be insignificant, leading to misinterpretation. This limits the use
of this method.

The flow chart illustrating the application of Rogers’ three-ratio method to analyze and identify
defects in an oil sample is shown in Figure 2.2.
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Figure 2.2: Roger ratio method flow chart [10]

2.1.2.3 IEC 60599 Method

The IEC 60599 method is used as a guide for interpreting the analysis of dissolved gases in
the oil of transformers in service. In order to proceed with the diagnosis, it is necessary to
ensure that the measured concentrations of dissolved gases are significant, in order to be able
to interpret the results. Low concentrations can lead to misinterpretation [8, 63].

The IEC 60599 method uses Roger’s three ratios (R1, R2 and R5) and codes (0, 1 and 2).
In addition, it has standardized its six faults as follows: partial discharge (PD), low-energy
electrical discharge (D1), high-energy electrical discharge (D2), thermal fault T<300°C (T1),
thermal fault 300°C< T<700°C (T2)and thermal fault T>700°C (T3) [8, 63].

The interpretation of the different defect types, after dissolved gas analysis, is presented in
Table 2.8.
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Table 2.8: Interpretation of DGA by IEC 60599 Method [8]

Case Characteristic Defect R1 R2 R5

PD Partial discharges NS(1) < 0.1 < 0.2
D1 Low-energy discharges > 1 0.1 − 0.5 > 1
D2 High-energy discharges 0.6 − 2.5 0.1 − 1 > 2
T1 Thermal defect (T < 300◦C) NS(1) > 0.1 < 1
T2 Thermal defect (300◦C < T < 700◦C) < 0.1 > 1 1 − 4
T3 Thermal defect (T > 700◦C) 0.2(2) > 1 > 4

(1)NS= Not Significant
(2) an increasing C2H2 value may indicate that the hot spot is at a temperature above 1000°C

As with Rogers’ method, there are only 9 interpretable cases among all possible combinations.
This proves that this method and the ratio’s method in general are limited. Check the Figure 2.3
for the IEC method flow chart.
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Figure 2.3: IEC method flow chart [10]
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2.2 Graphical methods

Instead of classifying the fault based on the type of gasses produced directly, Offering a quanti-
tative approach, Graphical methods involve visual interpretation of gas concentration patterns
for identifying fault conditions use the gazes ratio’s, Each method utilizes a distinct mapping
technique to represent fault types within the graphical space, providing a qualitative analysis.
It was first introduced by Duval with his triangle’s [13]. Duval also developed a pentagon
representation [14].

2.2.1 Duval triangle’s

M. Duval developed a triangular (graphical) representation based on the use of three gases.
Seven versions of the triangle were developed by M. Duval, each version applied to a well-
defined oil type or case [13, 14]. Table 2.9 illustrates the combinations of gases used in each
triangle version.

Table 2.9: Gases used in each Duval triangle [13, 67]

H2 CH4 C2H2 C2H4 C2H6

Triangle 1 ✓ ✓ ✓

Triangle 2 ✓ ✓ ✓

Triangle 3 ✓ ✓ ✓

Triangle 4 ✓ ✓ ✓

Triangle 5 ✓ ✓ ✓

Triangle 6 ✓ ✓ ✓

Triangle 7 ✓ ✓ ✓

Triangles 3, 6 and 7 have been developed for vegetable oils and silicone oils. In the following, In
order not to make the manuscript too long. we only present the versions developed for mineral
oils. i.e. 1, 2, 4 and 5.

For a given sample and Duval triangles, the calculation steps, detailed in [13], can be summa-
rized as follows:

1. Calculation of gas percentages.

2. Plot each gas percentage on its respective axis.

3. Calculation of the coordinates of the percentages of the three gases.

4. Calculate the area of the triangle created.

5. Calculate the coordinates of the new triangle center of mass.

6. Determine the defect by locating this center of mass in the defect zone.
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2.2.1.1 Duval triangle 1 :

it was developed in 1974 for diagnosing transformers and cables with mineral oil insulation.
Duval’s Triangle 1 uses CH4, C2H2 and C2H4 gases, and the faults detected are: DP, D1, D2,
T1, T2, T3 and DT.

DT: mixed electrical and thermal faults.

The Duval triangle I representation is illustrated in Figure 2.4.

Figure 2.4: Duval triangle 1 [13]

2.2.1.2 Duval triangle 2 :

This version applicable in the case of tap changers (auto-transformers) filled with mineral oil.
The gases used are CH4, C2H2 and C2H4. The six zones that define this triangle are : D1, T2,
T3, N (normal operation), X1 (T3 or T2 fault in progress, or D2 severe abnormal arc) and X3
(D1 abnormal arc or thermal fault in progress).

The Duval triangle I representation is illustrated in Figure 2.5.
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Figure 2.5: Duval triangle 2 [13]

2.2.1.3 Duval triangle 4

This version has been developed specifically for low-energy or temperature defects (DP, T1 and
T2) using H2, C2H4 and C2H6 gazes. In order to obtain more information on these defects in
mineral oils, it is characterized by five zones : DP, S (stray gassing), C (hot spot with paper
carbonization at T > 300°C), O (overheating T < 250°C) and the N/D zone (not determined).

The Duval triangle I representation is illustrated in Figure 2.6.

Figure 2.6: Duval triangle 4 [13]
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2.2.1.4 Duval triangle 5

This version employs gases (CH4, C2H4 and C2H6) which are formed more specifically for
thermal defects causing overheating of mineral oil and carbonization of paper. The seven zones
that form triangle 5 which are: PD, T2, T3, and S, C, O, and the N/D zone. the shape of this
zones shown in Figure 2.7.

Figure 2.7: Duval triangle 5 [13]

2.2.2 Duval pentagon

This method was developed in 2014 by M. Duval [14]. Like the triangle method, Duval’s
pentagone is a graphical representation for visualizing different faults. Two types of pentagon
can be distinguished : Pentagon I and Pentagon II.
In the case of Pentagon I, in addition for the six electrical and thermal faults that exists
(PD, D1, D2, T1, T2 and T3), Duval has included a seventh fault named "Stray gassing" [14],
designated by the indication S and standardized by IEC in 2015 (IEC 60599) [68].

The pentagon II defects are: DP, D1, D2, thermal defect T3-H in oil only, thermal defects T3-
C, T2-C and T1-C with paper carbonization (C), oil overheating T1-O < 250°C (O) and stray
gassin S (Table II.11). The oil decomposition gases of interest are hydrogen (H2), methane
(CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6). Duval’s pentagon I and II
method uses percentage concentrations of these gases. This method is based on the principle
of separating fault zones by hyperplanes [69]. Each type of Duval pentagon can identify seven
defects, the differences between these two types of pentagon are summarized in Table 2.10 and
Figure 2.8.
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Table 2.10: Comparison of fault types in the two versions of the duval pentagon [70]

Duval’s Pentagon I Duval’s Pentagon II
PD: Partial discharges PD: Partial discharges
D1: Low-energy discharges D1: Low-energy discharges
D2: High-energy discharges D2: High-energy discharges
T3: Thermal faults > 700◦C T3-H: Thermal fault T3-H in oil only
T2: Thermal faults 300◦C to 700◦C C: Thermal faults T3-C, T2-C, and T1-C with carbonization of paper
T1: Thermal faults < 300◦C O: Overheating T1-O < 250◦C
S: Stray gassing S: Stray gassing

For a given sample and Duval pentagon, the calculation steps, detailed in [14], can be summa-
rized as follows:

1. Calculation of gas percentages.

2. Plot each gas percentage on its respective axis.

3. Calculation of the coordinates of the percentages of the five gases.

4. Calculate the area of the irregular polygon.

5. Calculate the coordinates of the irregular pentagon’s center of mass.

6. Determine the defect by locating this center of mass in the defect zone.

Figure 2.8 shows the exact location of each of the seven zones in the Duval pentagon, with each
zone corresponding to a specific defect [14].

Figure 2.8: Duval Pentagon to represent fault areas: (a) Pent I; (b) Pent II [70]

2.3 Conclusion

In this chapter, we have presented the most popular conventional methods for analyzing dis-
solved gases in power transformer oil. Despite the simplicity of individual gas methods (TDGC
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and KGM), their defect detection rates remain modest. As a result, they are not widely ac-
cepted by the scientific community. On the other hand, ratio methods (Dornenburg, Rogers
and IEC 60599) have been adopted, as their classification rates are acceptable. However, the
use of these methods is limited by their disadvantages (requirement of significant gas concen-
trations, presentation of non-interpretable cases, etc.). Duval’s graphical methods (triangle and
pentagon) offer appreciable classification rates. These methods are still reliable and relevant
today.

To overcome the shortcomings of conventional methods and/or improve their fault detection
rates, it is imperative to develop more accurate diagnostic approaches based on machine learn-
ing algorithm’s. With this in mind, this method’s have been explored, comparing different
classification algorithms such as ensemble learning methods and SVM. These AI-based ap-
proaches offer significant improvements in accuracy and reliability for fault detection by lever-
aging advanced data processing techniques and adaptive learning capabilities. To address the
limitations of conventional methods and enhance fault detection rates, it is essential to develop
more accurate diagnostic approaches based on machine learning algorithms. In this context, we
have explored various methods, comparing different classification algorithms including ensem-
ble learning methods, support vector machines (SVM) and using those algo’s with a decision
tree principle. These AI-based approaches provide substantial improvements in accuracy and
reliability for fault detection by utilizing advanced data processing techniques and adaptive
learning capabilities.
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Chapter 3
Classification techniques

3.1 Introduction :

Classification tasks play a pivotal role within the world of Artificial Intelligence (AI), demon-
strating versatility across numerous domains due to their capability to process a wide array
of datasets. The landscape of classification is characterized by a continuous evolution of algo-
rithms, each aimed at improving accuracy and efficiency.

In this chapter, we explore the theoretical foundations of two key classification algorithms:
Support Vector Machines (SVM) and ensemble learning methods. We will begin by discussing
tree-based methods, focusing on decision trees, which serve as the foundation for many ensemble
learning models. Following this, we will delve into ensemble methods, dividing them into
bagging methods (such as Random Forest and Extra-Trees) and boosting methods (including
Gradient Boosting and XGBoost).
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3.2 Support vector machine

Support Vector Machines (SVM) are supervised statistical learning techniques. These tech-
niques are designed to solve discrimination and regression problems involving high-dimensional
data. SVM classifiers sometimes supplantes neural networks and other learning techniques
[17]. SVMs were first introduced by V. Vapnik in 1995 [19]. They are widely used in statistical
learning and have been very successful in almost every field in which they have been applied.
They have been used, for example, in medical diagnostics (MRI image sequence analysis, car-
diac arrhythmia detection, cancer risk assessment, etc.), pattern recognition (image and speech
processing), and so on [71, 72].

SVM classifiers were first developed for classification problems involving two groups or classes
(also known as binary classification) [73], before being extended to multiple or multi-class
classification [74]. SVM classifiers generate a quadratic optimization problem [75]. Solving the
quadratic optimization problem means finding the separation hyperplane between two classes
with maximum margin. The data may be linearly or non-linearly separable.

3.2.1 Binary SVM

3.2.1.1 Linearly separable DATA

For a dataset T = {xk, yk}m
k , where xk is the input vector, yk ∈ {1, −1} denotes the class label

of xk, and m is the total number of data points, the decision function f(x) of SVM can be
written as follows [73]:

f(xk) =< wxk > +b =
m∑

k=1
wkxk + b (3.1)

w is the weight vector and b the polarization term (to determine the separation position of the
hyperplane).

< wxk > denotes the dot product between the weight vector w and the feature vector xk The
dot product essentially measures the similarity between w and xk indicating how much xk aligns
with the learned pattern represented by w.

A definitely separating hyperplane satisfies the following constraints:

- f(xk) ≥ 1 if yk = 1 → xk belongs to class 1

- f(xk) ≤ −1 if yk = −1 → xk belongs to class - 1

These constraints can be merged as follows:

yk (< w · xk > +b) ≥ 1 pour k = 1, 2, . . . , m (3.2)

As shown in Figure 3.1, the position of the separation hyperplane is defined by w and b. The
maximum margin (corresponding to the maximum distance between the hyperplane and the
nearest data) is evaluated by 2

||w||
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Figure 3.1: linear separation between two classes in SVM [76]

The separation hyper-plan should satisfy the next constraints : yk (< w · xk > +b) ≥ 1 k = 1, 2, . . . , m

min 1
2∥w∥2

(3.3)

∥w∥2 = wT w
The Lagrange principle is used to find the optimal solution for the hyperplane. Lagrange
transforms Equation 3.3 into :

L(w, b, α) = 1
2∥w∥2 −

m∑
k=1

αk[yk(< wxk > +b − 1] (3.4)


∂L(w, b, α)

∂w
= 0

∂L(w, b, α)
∂b

= 0
(3.5)

The resolution of Equation 3.5 gives:
w =

m∑
k=1

αk · xk · yk

m∑
k=1

αk · yk = 0
(3.6)
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a problem like this could be solved using the double representation of wolfe [77]:

maximize L(w, b, a)
subject to w =

m∑
k=1

ak · xk · yk

m∑
k=1

ak · xk = 0

∀k, ak ≥ 0

(3.7)

This system of equations is equivalent to:


maximize

m∑
k=1

ak − 1
2

∑
k,j

akajykyj < xk, xj >

subject to ∀k, ak ≥ 0, and
m∑

k=1
ak · xk = 0

(3.8)

3.2.1.2 Non linearly separable data

In the case of non-linearly separable classes Figure 3.2, we introduce the margin of error.

the margin of error (ζk) into the hyperplane Equation 3.9, as follows: yk (< w · xk > +b) ≥ 1 − ζk k = 1, 2, . . . , m

∀k, 0 < ζk < 1
(3.9)

55



Support vector machine

Figure 3.2: Non linear separation between two classes in SVM [78]

”C” is the margin parameter or regularization constraint (the cost attributed to a misclassified
sample). The optimization problem becomes :

minimze 1
2∥w∥2 + C

m∑
k=1

ζk

subject to yk(w.xk + b) ≥ 1 − ζk

∀k, 0 < ζk < 1 k = 1, 2, ..., m

(3.10)

As a result, in the non-linearly separable case, SVM cannot find any separable hyperplane.
The trick is to find a nonlinear transformation ϕ that represents the original points in a much
higher-dimensional space where it will be easier to find a linear separator, as shown in Figure 3.3.
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Figure 3.3: Space changing [79]

This idea was introduced by Boser and al [80]. The aim of this idea is to place the observations
in a higher-dimensional Hilbert T space. The resulting T space is called the feature space or
transformed space. Applying the Hermitian transformation to the system of Equation 3.8, the
optimization problem becomes :

maximize
m∑

k=1
αk − 1

2
∑
k,j

αkαjykyj < ϕ(xk), ϕ(xj) >

subject to ∀k, 0 ≥ αk ≥ C, and
m∑

k=1
αkxk = 0

(3.11)

It remains to determine the transformation ϕ. However, this transformation could be compro-
mised if the dimension of the space of ϕ(x) is very large. To surpass this problem, Aizerman [81]
introduced a method known as the "kernel trick". Under certain assumptions about ϕ, the
scalar product < ϕ(xi), ϕ(xj) > can be computed using a symmetric function k (kernel). The
kernel k must satisfy Mercer’s conditions [82] (k must be symmetric and positive semi-definite).

k(xi, xj) =< ϕ(xi), ϕ(xj) > (3.12)

All that needs to be done is to replace the scalar product by the non-linear kernel function. As
a result, SVM classifiers can find a linear separating hyperplane. The system Equation 3.11 is
then transformed into the following form:

maximize
m∑

k=1
αk − 1

2
∑
k,j

αkαjykyjk(xk, xj)

subject to ∀k, 0 ≥ αk ≥ C, and
m∑

k=1
αkxk = 0

(3.13)

In practice, a few families of configurable kernel functions are commonly used. It is simply up
to the user to carry out tests to determine which one is best suited to his or her application.
In the literature, we find the following kernel functions [83]:

- Linear function: k(x, y) = x.y
′
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- Polynomial function: k(x, y) = (c + x.y
′)d

- Radial basis function (RBF) : K(x, y) = exp −∥x − y
′∥

2σ2

- The sigmoid function: k(x, y) = tanh(α0(x.y
′) + β0)

3.2.2 SVM for multi-classes classification

In practice, most classification problems contain more than two classes. There are several
approaches (strategies) to solving the multi-class problem, consisting of "all-together", "one-
against-one" and "one-against-all". Comparing these three strategies, it was found that "one-
against-one" and "one-against-all" produces better accuracy and requires fewer support vectors,
and consequently less computation time [84]. As a result, this two strategy’s were adopted in
the present study. In the following, we present the two learning process.

3.2.2.1 One-versus-one

The one-versus-one (OvO) strategy was first associated with SVM by Mayoraz and Alpaydin
[84]. This strategy constructs N (N−1)

2 classifiers (N being the number of classes) where each is
formed by data from two classes. Therefore, we need to find N (N−1)

2 decision functions. The
solution to the multi-class problem is to reformulate it so as to obtain a binary (two-class)
classification. Each classifier separates the data into two categories; the first comprises a single
class, while the other data are merged to form the second class. Figure 3.4 illustrates the
different scenarios that result, for a 4-class problem.

Figure 3.4: one versus one strategy for a 4 classes classification Problem
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3.2.2.2 One-versus-all

The one-versus-all (OvA) strategy, also known as one-versus-rest (OvR), is a common approach
in multi-class classification. In OvA, each class is treated as a separate binary classification
problem, with one classifier trained to distinguish that class from all others. This results in N
classifiers for N classes, where N is the number of classes. During prediction, the class assigned
to an input data point is determined by the classifier with the highest confidence score. This
strategy simplifies the classification task by breaking it down into multiple binary tasks, which
are often easier to solve. For illustration, refer to Figure 3.5.

Figure 3.5: one versus all strategy for a 3 classes classification Problem

3.2.3 Advantages and disadvantages of SVM

The Support Vector Machine (SVM) algorithm addresses problems through a convex function,
featuring a single global optimum that corresponds to minimizing structural risk. This ap-
proach aims to identify the hypothesis with superior generalization capabilities within a given
hypothesis space. A crucial aspect of this process is the selection of the kernel function, which
often includes adjustable parameters. However, finding the optimal values for these parameters
does not equal searching for the minimum of a convex function. Instead, determining the ideal
parameters for the kernel function, known as model selection, is essential [85, 86]. Choosing an
inappropriate kernel function or its parameter values can result in over-fitting. Additionally,
the duration of the SVM algorithm’s training phase is significant, especially concerning model
selection and when dealing with large training datasets.

3.3 Tree-Based methods

Tree-based methods use a sequence of if-then rules to partition the feature input space into
regions, with each region representing a class or an average of the values in that region. Fig-
ure 3.6 illustrates an example of a simple tree structure where the first if-then rule asks if the
first feature X1 is less than or equal to the threshold t1. If true, the next feature is compared
to a new threshold value t2; if also true, we end up in region R1. If not true, feature X1
is compared against a new threshold t3. This principle is used in building Classification and
Regression Trees (CART) [87], commonly known as decision trees.
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Figure 3.6: Example of a simple tree structure [87]

More formally, consider the classification setting with two classes, C1 and C2, given the data
D = {(xi, yi)}N

i=1, where xi ∈ Rk and yi ∈ {C1, C2}. The feature space X is partitioned into J
regions R1, . . . , RJ . The model can be written as:

ŷi = f (xi) = E [yi | xi] =
J∑

j=1
bjI {xi ∈ Rj} , (3.14)

where bj is the most common class in the j-th region, determined by a majority vote. Specifi-
cally,

b̂j,c = 1
Nj

∑
xi∈Rj

I {yi = c} , c ∈ {C1, C2}, (3.15)

where Nj is the total number of data points in region j. A new observation xi+1 ∈ Rj is
assigned to the class with the most votes:

ŷ (xi+1) = arg max
c

b̂j,c. (3.16)

3.3.0.1 Decision tree construction

Here is a step-by-step process for building a Decision Tree for classification [88]:

- Tree Initialization: Start with the root node containing the entire dataset D.

- Node Splitting: For each node, select the feature that best separates the data based
on a certain criterion, such as Information Gain (Equation 3.17) or Gini Impurity (Equa-
tion 3.18).

IG(s, t) = H(t) −
k∑

i=1

|ti|
|t|

H(ti), (3.17)

where H(t) is the entropy of node t, and ti are the child nodes resulting from the split s.

GI(t) = 1 −
C∑

i=1
p2

i , (3.18)
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where pi is the probability of an instance being classified into class i, and C is the number
of classes ( C = 2 for binary classification).

- Split Execution: Split the node into two child nodes based on the selected feature and
split point. Assign instances to the appropriate child node.

- Repeat the Process: Recursively apply the splitting process to each child node until
the stopping criteria are met.

- Stopping Criteria: Define conditions to stop splitting, such as reaching a maximum
depth or having a minimum number of instances per node.

- Leaf Node Prediction: When a node cannot be split further, it becomes a leaf node.
Each leaf node represents a class prediction, with the majority class of instances in the
leaf node being assigned as the prediction.

One way of improving the performance is by aggregating the prediction of multiple trees (Bag-
ging). One method for ensembling CART’s is through Random Forest or Extra-Tree. One way
of improving the performance is by summing up the prediction of multiple trees and where each
tree is called a weak learner (Boosting). One method for ensembling weak learners is through
Gradient Boosting.

3.3.1 Ensemble learning

Ensemble learning (EL) is a powerful technique in machine learning that involves combining
multiple models to solve a particular problem. The core idea is to leverage the strengths
of various individual models, often referred to as base learners, to create a more robust and
accurate predictive model Figure 3.7. By aggregating the predictions of these base learners,
ensemble methods aim to reduce the risk of over-fitting and improve generalization to new,
unseen data. There are various ensemble methods, each with unique approaches to combining
models, including bagging and boosting [89].

Figure 3.7: Ensemble learning model

The primary distinctions between Bagging and Boosting, The two ensemble learning methods
[90], are outlined below:
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- Combining Predictions : Bagging combines predictions from the same type of models,
whereas Boosting combines predictions from different types of models.

- Model Building Process: Bagging builds models independently, whereas Boosting
influences new models based on the performance of previously built models.

- Training Data Subsets: Bagging selects different training data subsets using row sam-
pling with replacement and random sampling methods from the entire training dataset.
Boosting, however, ensures every new subset contains elements that were misclassified by
previous models.

- Parallelism vs. Sequential-ism: In Bagging, base classifiers are trained in parallel,
whereas in Boosting, they are trained sequentially.

3.3.1.1 Bagging

In ensemble algorithms, Bagging (short for Bootstrap aggregating) methods build several in-
stances of estimators on random subsets of the original training set (bootstrapping) and then
aggregate their individual predictions to form a final prediction. These methods reduce the
variance of a base estimator, such as a decision tree, by introducing randomization into its
construction and then creating an ensemble. Bagging methods are a simple way to improve
performance over a single model without needing to adapt the underlying algorithm. By re-
ducing over-fitting, bagging methods work best with strong and complex models, such as fully
developed decision trees, in contrast to boosting methods, which typically work best with weak
models, like shallow or pruned decision trees [91]. Bagging involves the two steps mentioned
earlier [92].

1. Bootstrapping: Bootstrapping is a statistical technique of sampling a data set with
replacement. The resulting new data set is called a bootstrap. It is a random sampling
method that is used to derive samples from the data using the replacement procedure
like in Figure 3.8. In this method, first, random data samples are fed to the primary
model, and then a base learning algorithm is run on the samples to complete the learning
process. bootstraps are generated to simulate different training data set from the same
distribution and thus introduce some diversity between the models

Figure 3.8: Bootstraping from original data

2. Aggregation: This is a step that involves the process of combining the output of all base
models and, based on their output, predicting an aggregate result with greater accuracy
and reduced variance.
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We will discuss one of the most common bagging methods, which has provided great accuracy
for our problem: the Random Forest algorithm.

3.3.1.1.1 Random forest Random Forest (RF) is an ensemble classifier rooted in decision
trees. It is an integration of tree predictors, where each tree depends on values from a randomly
sampled vector, common to every tree in the forest. RF can be used to classify categorical
response variables or to perform regression on continuous ones. Several studies have reported
the application of RF on power transformer condition monitoring and diagnostic [93].

Mathematically, A Random Forest consists of T decision trees. For each tree t, A bootstrap
sample Dt is drawn from the original dataset D with replacement. A random forest can be
built following this steps which are quite similar to the way of building decision trees [91]:

- Tree Initialization : Start with the root node containing the entire bootstrap sample
Di.

- Node Splitting: For each node, perform the following steps :

1. Feature Subset Selection : Randomly select a subset of m features from the
total number of features p (where m is typically √

p for classification tasks). This
randomness helps to create diverse trees and reduces correlation between trees.

2. Best Split Determination : For each feature in the selected subset, calculate the
best split point that maximizes the Information Gain (IG) 3.17 or minimizes the
Gini Impurity (GI) 3.18. The best split is chosen based on the criterion used, When
all criterions are meet and the trees are completed.

3. Split Execution: Split the node into two child nodes using the best feature and
split point determined. Assign instances to the appropriate child node based on the
split condition.

- Repeat the Process : The splitting process is recursively applied to each child node.
This continues until the stopping criteria are met (e.g., a maximum depth is reached, a
minimum number of instances per node is met, or no further information gain is possible.)
When a node cannot be split further (due to stopping criteria), it becomes a leaf node.
Each leaf node represents a class prediction. For classification tasks, the class of the
majority of instances in the leaf node is assigned to it.

- Aggregating Trees in Random Forest : Once all trees in the forest are built, the
Random Forest makes predictions by aggregating the predictions of individual trees, The
number of tree’s is adjustable in order to obtain the highest accuracy possible. For
classification tasks, the final class prediction is determined by majority voting among the
trees.

The purpose for the two sources of randomness (bootstrapping and Feature subset selection)
is to decrease the variance of the forest estimator. Indeed, individual decision trees typically
exhibit high variance and tend to over-fit. The injected randomness in forests yields decision
trees with somewhat decoupled prediction errors. By taking an average of those predictions as
illustrated in Figure 3.9, some errors can cancel out. Random forests achieve a reduced variance
by combining diverse trees, sometimes at the cost of a slight increase in bias. In practice, The
variance reduction is often significant, Yielding an overall better model [91].
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Figure 3.9: Random forest principle [94]

3.3.1.1.2 Extra-Tree The Extremely Randomized Trees Classifier (Extra-Trees Classifier)
is an ensemble learning technique akin to Random Forests but with a distinction in how random-
ness is applied. In Extra Trees, the process of split computation differs by taking an additional
step. Similar to Random Forests, a random subset of candidate features is utilized. However,
instead of seeking the most discriminating thresholds, thresholds are randomly drawn for each
candidate feature. Among these randomly generated thresholds, the best one is selected as the
splitting rule. This approach often results in a further reduction of model variance, albeit with
a slightly greater increase in bias [95]. In random forests, bootstrap samples are used by default
while in extra-trees we use the whole dataset. The Table 3.1 highlights the main differences
between the two methods.

Table 3.1: Comparison between extra-trees and random forest algorithms

Feature Extra Trees Classifier Random Forest Classifier
Data Sampling Uses the entire original training

data for splitting at each node.
Uses bootstrapping to create di-
versified training sets for each
tree.

Feature Splitting Randomly selects the best split
point among a random subset of
features at each node.

Selects the best split point by
considering a random subset of
features at each node.

Overall Bias-Variance
Trade-off

Generally lower variance but po-
tentially higher bias compared to
Random Forest.

Generally lower bias but poten-
tially higher variance compared
to Extra Trees.
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Figure 3.10: comparaison between DT’s, RF and Extra classifier on a subset of the Iris dataset
[91]

3.3.1.2 Boosting

Boosting is an ensemble method that enables each member to learn from the preceding member’s
mistakes and make better predictions for the future. Unlike in bagging method, all base learners
(weak) are arranged in a sequential format so that they can learn from the mistakes of their
preceding learner. Hence, in this way, all weak learners get turned into strong learners and make
a better predictive model with significantly improved performance [96]. The general process
for boosting is shown in Figure 3.11.

Figure 3.11: Boosting algorithm principle [96]
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Our research primarily revolves around using XGBoost, a highly regarded boosting technique.
While we recognize and have explored other methodologies like AdaBoost, CatBoost, and Gra-
dient Boosting, our primary emphasis is on XGBoost due to its widespread adoption and proven
effectiveness across diverse domains [97]. Although XGBoost and Gradient Boosting are not
technically identical, we will describe XGBoost after defining the gradient boost framework for
the sake of simplicity. This approach will help in understanding the unique contributions and
enhancements introduced by XGBoost by building upon the foundational principles of gradient
boosting [96].

3.3.1.2.1 Gradient Boosting The principle of boosting was originally derived in 1990 by
Schapire [98]. He showed that any weak learner or base learner could be efficiently ’boosted’
into a strong learning algorithm. This means that boosting works by repeatedly running a
weak learner on different versions of the training data and combining the classifier into a single
strong classifier. The model can be written in the form [97]:

f(x) =
M∑

m=1
βmϕ (x; am) (3.19)

The function ϕ (x; am) is the m-th generic weak learner, each typically parameterized by am

but not necessary, and βm ∈ R can be seen as a weight of the weak learner that measures how
important has the mth weak learner been in the final boosted model. When using decision
trees, we obtain what has been referred to as Gradient Boosting Decision Trees (GBDT).

The objective is to find the classifier that is optimal in some sense according to a metric that
measures the ’loss’, i.e., the following optimization problem:

min
f

N∑
i=1

L (yi, f (xi)) (3.20)

Where L(y, ŷ) is an arbitrary loss function, and f is given by equation 3.19. It is possible to
derive a solution, known as Gradient Boosting, proposed by Friedman [99].

Solving the optimal f is hard, and the solution builds on a numerical optimization scheme that
takes the form

ŷi = f (xi) =
M∑

m=0
fm (xi) (3.21)

with an initial guess f0(x) and {fm(x)}M
m=1 are incremental functions (’boosts’). Then with the

assumption of a parameterized form of f as in equation 3.19, The minimized estimated loss is

(βm, am) = arg min
β,a

N∑
i=1

L (yi, fm−1 (xi) + βϕ (xi; a)) (3.22)

Then set
fm(x) = fm−1(x) + βmϕ (x; am) (3.23)

The minimization problem of equation 3.22 for arbitrary loss function is infeasible; therefore,
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this is solved stage-wise using gradient descent. Let the gradient be denoted gm = {gm (xi)}N
i=1

and is the best steepest-decent step direction in the functional space fm−1. The gradient takes
the form

gim =
[

∂L (yi, f (xi))
∂f (xi)

]
f=fm−1

(3.24)

and then the step taken is

fm = fm−1 − ρmgm (3.25)

ρm Is the step length which in turn can be calculated with the aid of line search, a method of
finding a local minimum of the following objective function

ρm = arg min
ρ

N∑
i=1

L (yi, fm−1 (xi) + ρϕ (xi; am)) (3.26)

However, the gradient is only defined at the data points. Therefore, we do not learn a function
that can generalize. To address this, the algorithm is modified by fitting a weak learner to ap-
proximate the negative gradient −gm(x) using a least-squares function minimization constraint

am = arg min
a

N∑
i=1

[−gim − ϕ (xi; a)]2 (3.27)

3.3.1.2.2 Extreme Gradient Boost (XGBoost) is an optimized and scalable implemen-
tation of the Gradient Boosting presented in Section 3.3.1.2.1. It is publicly available as an
open-source library for large-scale and distributed computing environments. XGBoost has sev-
eral advanced features that make it a powerful tool for predictive modeling, including support
for missing values, parallel processing, early stopping to prevent over-fitting, and regularization
to control over-fitting. In summary, Gradient Boosting is a general concept, and XGBoost is
an optimized implementation of Gradient Boosting.

In Section 3.3.1.2.1, the basis function or weak learner ϕ(·) was not explicitly determined when
we defined the gradient boosting concept. In the XGBoost implementation, the weak learner is
a CART discussed earlier in Section 3.3 where the data is recursively split based on the value
of different features, to minimizing impurity in equations 3.18 and 3.17. Let the tree ensemble
model be made up of K trees

ŷi = f (xi) =
K∑

k=1
fk (xi) (3.28)

fk (xi) = ϕ
(
xi; {bj, Rj}J

j=1

)
= ∑J

j=1 bjI (x ∈ Rj), hence the weak learner is a parameterized
CART tree with coefficients, bj ∈ R and boundary regions/splitting variables Rj. Then the
goal is the same as stated in Equation 3.20, find the function (sum of trees) that optimizes
according to some objective function. In the setting of XGBoost, the objective has an added
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regularization term

L =
N∑

i=1
L (yi, f (xi)) +

K∑
k=1

Ω (fk) (3.29)

So that the objective becomes the sum of training loss and the complexity of the trees. The
regularization term

Ω(f) = γT + 1
2λ∥b∥2 (3.30)

Ω(f) is a contribution of the number of leaf nodes (regions) T scaled by a hyperparameter γ
and the L2-norm of leaf weights, b scaled by a hyperparameter λ. As previously shown, this
optimization problem is infeasible and relies on an additive approach, so for each step t, the
goal is to solve Equation 3.22, which with the added regularization term, becomes

Lt =
N∑

i=1
L

(
yi, ŷ

(t−1)
i (xi) + ft (xi)

)
+ Ω (ft) (3.31)

The goal is to minimize the objective function with the proposed gradient boosting algorithm,
which requires the calculation of the gradient. Chen’s derivation in [100] takes the second-order
Taylor expansion at the previous prediction yt−1

i , hence the objective at step t becomes

Lt =
n∑

i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft) (3.32)

Where gi = ∂ŷi
(t − 1)Lt

(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷi
(t − 1)Lt

(
yi, ŷ

(t−1)
i

)
are the first and second

derivatives of the loss function. To connect these derivatives to the tree structure, define Ij =
{i | q (xi) = j} as all sample points that belong to leaf node j. Here q represents the structure
of one unique tree that maps a sample to a leaf. Then let f(x) = bq(x) represent the score
vector b ∈ R of each leaf node given the structure q : Rd → {1, 2, . . . , T}. With this notation,
Equation 3.32 becomes

Lt =
Tt∑

j=1

[
Gjbt,j + 1

2 (Hj + λ) b2
t,j

]
+ γTt (3.33)

where Gj = ∑
i∈Ij

gj and Hj = ∑
i∈Ij

hi. In contrast to the previous, it was stated that bj was
set to the average number of samples corresponding to that leaf node. Instead, we derive the
optimal value by assuming a fixed tree structure, q(x). Since Gjbt,j + 1

2 (Hj + λ) b2
t,j is convex

w.r.t bt,j. Taking the derivative leads to the optimal value of leaf j at step t,

b∗
t,j = − Gj

Hj + λ
(3.34)

Then the objective function becomes

Lt(q) = −1
2

T∑
j=1

G2
j

Hj + λ
+ γTt (3.35)
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Lt(q) can be used to evaluate the quality of tree structure. It is similar to how decision trees
are evaluated, but it works for a broader range of objective functions [100].

Usually, it is not possible to consider every possible tree structure. Instead, a greedy algorithm
is used. It starts from a tree with a depth of 0 and adds branches to the tree one at a time.
After splitting the data into two sets, the loss reduction is calculated using IL and IR as the
instance sets for the left and right nodes, respectively. I = IL ∪IR represents the entire instance
set. The loss reduction after the split is then calculated by

Gain = G2
L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ
− γ (3.36)

where G and H are the gradients and Hessians (second-order derivatives) of the loss function,
respectively, R and L refers for the right and left node.

To evaluate the optimal split rule for a node, go through all the available features. For each
feature, sort the instances based on their feature values. Then, use a linear scan to determine
the optimal split according to the Gain for that feature. Finally, choose the best split, i.e., the
one with the highest Gain among all the features.

Finally, the hyper-parameters γ and λ should be optimized when used in a practical setting.
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3.4 Conclusion

In this chapter, we presented the essential theoretical foundations for understanding the prin-
ciples of supervised learning methods, specifically SVM and tree-based methods, which are the
foundations of ensemble learning. We discussed bagging (Random Forest and Extra Tree) and
boosters (Gradient Boost and Extreme Gradient Boost). In Chapter 4, we will explore the
application of these algorithms to diagnosing power transformers oils, their use separately, and
how we implemented a custom-built decision tree.
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Chapter 4
Application of SVM, Ensemble learning methods
and decision tree principle in fault diagnosis

4.1 Introduction

The aim of this chapter is to identify fault types based on dissolved gas analysis of power
transformers oils. Leveraging the intelligent methods discussed in Chapter 3, we will use 8 input
vectors and 4 preprocessing techniques for the data. hyperparameters tuning for all algorithms
will be conducted using Optuna. We will compare the results with conventional methods and
introduce our hybrid approach, which integrates a decision tree principle with XGBoost and
Random Forest algorithms. At the end, we will evaluate and compare the performance of these
machine learning methods against other works.
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4.2 Software, libraries, and frameworks

4.2.1 Python

Python is an interpreted, multi-paradigm, and cross-platform pro-
gramming language. It encourages structured imperative, func-
tional, and object-oriented programming. It features strong dy-
namic typing, automatic memory management through garbage col-
lection, and an exception handling system. Due to its simplicity and
readability, Python has become a popular choice for both beginners
and experienced developers.

The Python programming language was created in 1989 by Guido van Rossum in the Nether-
lands. The name Python is a tribute to the television series Monty Python’s Flying Circus,
of which G. van Rossum is a fan. The first public version of this language was released in
1991. Since then, Python has evolved significantly and is now widely used in various fields,
including web development, data science, artificial intelligence, scientific computing, and more.
The language’s extensive standard library and vibrant community contribute to its versatility
and widespread adoption.

4.2.2 Scikit-learn

Scikit-learn is a free Python library designed for machine
learning. It is developed by numerous contributors, partic-
ularly in the academic world. Scikit-learn provides simple
and efficient tools for data mining and data analysis, mak-
ing it accessible for both beginners and professionals in data
science.

It offers a wide range of ready-to-use algorithm libraries within its framework. These libraries
are available to data scientists for various tasks such as classification, regression, clustering, and
dimensionality reduction. Scikit-learn includes functions for estimating decision trees, random
forests, logistic regressions, and support vector machines (SVM). Additionally, it provides util-
ities for model selection, evaluation, and preprocessing, facilitating the entire machine learning
workflow from start to finish.

Scikit-learn is designed to work seamlessly with other free Python libraries, notably NumPy
and Pandas. This interoperability allows for easy integration and manipulation of data, en-
hancing the overall efficiency of the data analysis process. The combination of Scikit-learn’s
comprehensive functionality and ease of use has made it a cornerstone in the toolkit of data
scientists and machine learning practitioners.

4.2.3 XGBoost

XGBoost, or Extreme Gradient Boosting, is an open-source library designed for gradient boost-
ing algorithms. Developed by Tianqi Chen, it is widely used for supervised learning tasks,
particularly in machine learning competitions and industry applications.
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XGBoost is known for its efficiency, speed, and accu-
racy in handling large datasets. It provides implemen-
tations for various machine learning algorithms, includ-
ing regression, classification, and ranking. Its algorithm
is based on the principles of gradient boosting, enhancing the performance of weak learners
through iterative learning, The library offers a range of features, such as parallelization, regu-
larization, and tree pruning, to optimize model performance.

4.2.4 Optuna

Optuna is an automatic hyperparameter optimization software framework,
particularly designed for machine learning and deep learning. It provides
a powerful and flexible platform to efficiently search for the best hyper-
parameters to maximize model performance. Optuna achieves this by us-
ing techniques such as Bayesian optimization, which intelligently narrows
down the search space based on previous trials.

The hyperparameter tuning process with Optuna involves defining an objective function that
evaluates model performance with given hyperparameters. Optuna then uses this function to
explore and exploit the hyperparameter space, finding the optimal combination of parameters
to maximize accuracy. This process is as follows :

- Define the Objective Function: This function trains the model with a given set of
hyperparameters and returns a performance metric, such as accuracy.

- Search Space Definition: Specify the range of hyperparameters to be optimized, in-
cluding their types (e.g., integers, floats) and possible values.

- Optimization Process: Optuna uses a sampler, such as Tree-structured Parzen Es-
timator (TPE) or Bayesian optimization, to sample hyperparameters and evaluate the
objective function.

- evaluation and Pruning: During the optimization process, trials that do not show
promise based on intermediate results can be pruned to save computation time.

- Best Hyperparameters: After a predefined number of trials or a stopping criterion,
Optuna identifies the hyperparameters that resulted in the best performance.

In our study, we employed Optuna to tune hyperparameters across all algorithms, including
SVM, XGBoost, Random Forestn and Extra-Tree. By exploring the hyperparameter space,
Optuna helped us identify the optimal parameters that maximized the accuracy of our models.
This automated approach enhance models performance and significantly reduced the time and
effort required for manual hyper-parameter tuning.

4.3 DGA input vector’s

Eight different input vectors were considered, following the methodology used by Kherif et al.
(2021) [21]. These vectors were designed to effectively represent the concentrations and ratios
of dissolved gases in order to achieve higher accuracy.

73



DGA input vector’s

- Vector 1: Since the database contains the concentrations of the five gases in parts per
million or ppm, each sample X is represented as follows:

X = [H2, CH4, C2H2, C2H4, C2H6]

- Vector 2: The IEC Ratios method is used to produce the following input vector con-
taining three ratios of the dissolved gases given by:

X =
[

CH4

H2
,
C2H2

C2H4
,
C2H4

C2H6

]

- Vector 3: Roger’s four-ratio method has been selected in this case to transform each
sample to the following one:

X =
[

CH4

H2
,
C2H2

C2H4
,
C2H4

C2H6
,
C2H6

CH4

]

- Vector 4: Dornenburg’s method is also investigated in this study. In this method, the
input consists of four ratios computed as a function of the dissolved gases in ppm as
follows:

X =
[

CH4

H2
,
C2H2

C2H4
,
C2H4

C2H6
,
C2H2

CH4

]

- Vector 5: Duval triangle is a graphical method that uses only the concentration of three
gases (CH4, C2H2 , and C2H4 ) to produce the input vector as follows:

X = [Cx, Cy]

where the components Cx and Cy are computed by:

Cx = xCH4 + xC2H4 + xC2H2

3

and
Cy = yCH4 + yC2H4 + yC2H2

3
A Python script was used to map the gas concentrations into duval triangle and then
retrieve the x and y coordinates, as the result is shown in Figure 4.1.
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Figure 4.1: Example of mapping points into duval triangle

- Vector 6: Duval pentagon is a graphical method that uses the concentration of all five
gases (CH4, C2H2, C2H4, C2H6, H2) ) to produce the input vector as follows::

X = [Cpx, Cpy]

where the components Cpx and Cpy are computed by :

Cx = xH2 + xCH4 + xC2H2 + xC2H4 + xC2H6

5

and
Cy = yH2 + yCH4 + yC2H2 + yC2H4 + yC2H6

5
A Python script was also used to map the gas concentrations into duval pentagon and
then retrieve the x and y coordinates, as the result is shown in Figure 4.2.
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Figure 4.2: Example of mapping points into duval Pentagon

- Vector 7: This combination consists of an input vector of five ratios which are the
mixture of Roger’s and Dornenburg’s methods given by:

X =
[

CH4

H2
,
C2H2

C2H4
,
C2H4

C2H6
,
C2H2

CH4
,
C2H6

CH4

]
(4.1)

- Vector 8: The input vector, in this case, has four components given as follows:

X = [Cx, Cy, Cpx, Cpy]

According to Duval’s triangle and pentagon, this vector has been computed using the
concentration of five gases in percentages. Cx and Cy are calculated according to the
triangle method, while Cpx and Cpy employ the pentagon technique.

4.4 Preprocessing techniques

Preprocessing involves preparing and cleaning raw data before using it in a machine learning
algorithm. In this dissertation, four preprocessing techniques were employed: NormalizeScaler,
MinMaxScaler, RobustScaler, and StandardScaler [101].
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4.4.1 NormalizeScaler

For a dataset with N rows and C columns represented by a matrix X, the NormalizeScaler
function scales each feature (column) by dividing each element by the sum of its respective row,
computing the normalized matrix X ′ as:

X ′
ij = Xij

C∑
k=1

Xik

where Xij represents the element at row i and column j of matrix X, and
C∑

k=1
Xik is the sum

of the elements in row i.

4.4.2 MinMaxScaler

MinMaxScaler scales each feature to a given range (usually [0, 1]) by subtracting the minimum
and dividing by the range:

X ′
ij =

Xij − Xminj

Xmaxj
− Xminj

where Xminj
and Xmaxj

are the minimum and maximum values of column j, respectively.

Both NormalizeScaler and MinMaxScaler are effective for datasets with strictly positive values
because they preserve the relative relationships between the data points and ensure that all
features are within a specific range.

4.4.3 RobustScaler

RobustScaler scales features using statistics that are robust to outliers. It subtracts the median
and divides by the interquartile range:

X ′
ij = Xij − median(Xj)

IQR(Xj)

where median(Xj) is the median and IQR(Xj) is the interquartile range of column j.

4.4.3.1 Interquartile Range (IQR)

The interquartile range (IQR) is a measure of statistical dispersion, representing the range
between the first quartile (Q1) and the third quartile (Q3) of a dataset. In the context of
a specific column j in a dataset, the interquartile range (IQR(Xj)) provides insight into the
spread of the data within that column. Q1 and Q3 and the IQR are represnted in Figure 4.3.
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Figure 4.3: Q1, Q3 and the interquartile range [102]

- Sorting the Data: First, you need to sort the values in column j from smallest to
largest.

- Identifying Quartiles:

◦ First Quartile (Q1): This is the value below which 25% of the data falls. It is the
median of the lower half of the data.

◦ Third Quartile (Q3): This is the value below which 75% of the data falls. It is
the median of the upper half of the data.

- Calculating IQR: Once you have identified Q1 and Q3, the interquartile range (IQR(Xj))
is computed as:

IQR(Xj) = Q3 − Q1

The interquartile range is a useful measure of spread because it is not affected by extreme
values or outliers in the data, making it more robust than other measures like the range or
standard deviation. It provides a measure of the middle 50% of the data, giving insight into
the variability of the dataset without being overly influenced by extreme values. This makes
it particularly useful for scaling data in a way that is robust to outliers, as is done in the
RobustScaler preprocessing technique.

4.4.4 StandardScaler

StandardScaler standardizes features by removing the mean and scaling to unit variance:
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X ′
ij = Xij − mean(Xj)

std(Xj)

where mean(Xj) is the mean and std(Xj) is the standard deviation of column j.

RobustScaler and StandardScaler are suitable for datasets with negative values because they
are less influenced by outliers and ensure that the data distribution is centered around zero
with a standard deviation of 1, which is desirable for many machine learning algorithms.

4.4.5 Why preprocessing is important

Preprocessing is a very important step in the data analysis pipeline, especially in the context
of classification methods. Here are the key reasons why preprocessing is important [103]:

- Improves data quality: preprocessing removes noise and irrelevant features, reducing
the risk of misleading patterns in the data and improving the overall quality of the dataset.

- Enhances model accuracy: By normalizing or scaling the data, preprocessing ensures
that features contribute equally to the model, preventing dominance by features with
larger magnitudes and leading to more accurate predictions.

- reduces overfitting: By selecting relevant features and normalizing data, preprocessing
can help in reducing overfitting, where the model learns noise instead of the actual pattern.

- Speeds up training: Well-preprocessed data can significantly reduce the computational
load and training time, as the model can converge faster when the data is scaled and
cleaned properly.

- Improves interpretability: Preprocessed data can make it easier to understand the
influence of each feature on the classification outcomes, leading to better insights and
interpretability of the model.

4.4.6 Train and test data

Our dataset contains 666 samples and like most classification tasks our classes are unbalanced,
The total data distribution can be summarized in Table 4.1:
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Table 4.1: Distribution of classes in the dataset used

Classes Train Test
PD 58 16
D1 70 26
D2 118 42
T1 95 32
T2 62 16
T3 103 28

Total 506 160

The histogram in Figure 4.4 illustrates the significant imbalance in the dataset, with certain
fault types, such as D2, being much more frequent than others like T2 and PD. This imbalance
can affect the performance and reliability of classification models, as they may become biased
towards the more prevalent classes. Therefore, it is important to apply careful considerations
and techniques when developing and evaluating our machine learning models to mitigate this
issue.

Figure 4.4: Distribution of classes over all dataset
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4.4.7 Evaluating the model :

4.4.7.1 Confusion Matrix

The confusion matrix is a summary of predictions which results in a classification problem.
Correct and incorrect predictions are highlighted and distributed by class. The results are then
compared with the actual values [104].

This matrix allows understanding how the classification model is confused when making pre-
dictions. This not only allows knowing what errors are made but especially the type of errors
made. Users can analyze them to determine which results indicate how errors are made. We
will have a graphical representation of true and false positives and negatives in the form of a
matrix as shown in Figure 4.5.

We will thus have the true classes represented in columns and the classes predicted by our
models arranged in rows.

Figure 4.5: Confusion matrix [104]

This matrix allows for quick and effective observation of the quality of classification and the
classes for which the model’s distinction is most difficult.

4.4.7.2 Accuracy

Accuracy is the most commonly used metric for evaluating artificial intelligence models. It is
calculated as the ratio of correctly predicted instances to the total instances in the dataset.
The formula for accuracy is:
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Accuracy = TP + TN

TP + TN + FP + FN
(4.2)

This metric provides a straightforward measure of the model’s overall performance.

4.5 Applying ML algorithms to power transformer DGA
Data

This section is the summary for our work, we delve into the practical application of the four
machine learning algorithms discussed in chapter 3 on identifying fault types based on dissolved
gas analysis data of power transformer oil. We go over these three steps for each algorithm :

1. Data preparation:
Utilizing the eight-entry vectors and various preprocessing techniques discussed in Sec-
tions 4.3 and 4.4, we prepare the data for feeding into the models. This step is crucial
for ensuring that the input data is clean, consistent, and appropriately formatted for the
machine learning algorithms.

2. Objective function definition for Optuna: We define the objective function for
Optuna, specifying the ranges for the parameters used during the training phase. This
step is essential for optimizing the performance of the machine learning models by fine-
tuning their hyperparameters.

3. Performance evaluation: We assess the accuracy of all combinations of datasets and
compare the results to identify the model with the highest accuracy. Additionally, we plot
the confusion matrices for these models. This comparative analysis helps us understand
the effectiveness of each algorithm under different conditions and select the most suitable
model for our application.

By following these steps, we aim to get the max out of SVM, Random Forest, Extra-Tree and
XGBoost algorithms in accurately diagnosing faults in power transformers based on DGA data.
Through many testing and comparison, we try to demonstrate the potential of these advanced
machine learning techniques in enhancing the reliability and efficiency of fault diagnosis in
power transformers.

4.5.1 Objective Functions Definition

The following code snippets summarize the range and categories of the parameters used for our
three algorithms. These algorithms and their parameters are discussed in detail in Chapter 3:

4.5.1.1 SVM objective function

1 def objective(trial):
2 # Define the search space for hyperparameters for the SVM
3 c = trial.suggest_float('C', 0.01, 20)
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4 gamma = trial.suggest_float('gamma', 0.01, 20)
5 kernel = trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf', 'sigmoid'])
6 degree = trial.suggest_int('degree', 1, 4)
7 decision_function = trial.suggest_categorical('decision_function_shape', ['ovr','ovo'])
8 random_state = trial.suggest_int('random_state', 1, 100)

4.5.1.2 RF objective function

1 Define the objective function for Random Forest
2 f objective(trial):
3 param_space = {
4 'n_estimators': trial.suggest_int('n_estimators', 10,60),
5 'criterion': trial.suggest_categorical('criterion', ['gini','entropy']),
6 'max_depth': trial.suggest_int('max_depth', 2, 20),
7 'min_samples_split': trial.suggest_int('min_samples_split', 2, 20),
8 'min_samples_leaf': trial.suggest_int('min_samples_leaf', 3, 20),
9 'max_features': trial.suggest_float('max_features', 0.1,1),

10 'random_state': trial.suggest_int('random_state', 1,100),}

4.5.1.3 Extra-Tree objective function

1 # Define the objective function for Extra-Tree
2 def objective(trial):
3 param_space = {
4 'n_estimators': trial.suggest_int('n_estimators', 10, 60),
5 'criterion': trial.suggest_categorical('criterion', ['gini', 'entropy']),
6 'max_depth': trial.suggest_int('max_depth', 2, 20),
7 'max_features': trial.suggest_float('max_features', 0.1,1),
8 'min_samples_split': trial.suggest_int('min_samples_split', 2, 20),
9 'min_samples_leaf': trial.suggest_int('min_samples_leaf', 3, 20),

10 'random_state': trial.suggest_int('random_state', 1, 100),}

Extra-Trees (Extremely Randomized Trees) and Random Forest differ mainly in their splitting
criteria and bootstrapping approach as discussed in their comparison in Table 3.1.

4.5.1.4 XGBoost objective function

1 Define the objective function for XGBoost
2 f objective(trial):
3 # Define the parameter space to search over
4 param_space = {
5 'n_estimators': trial.suggest_int('n_estimators', 1,50),
6 'max_depth': trial.suggest_int('max_depth', 2,10),
7 'min_child_weight': trial.suggest_int('min_child_weight', 2,10),
8 'gamma': trial.suggest_float('gamma', 1, 10),
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9 'subsample': trial.suggest_float('subsample', 0.1, 1.0),
10 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.1,1),
11 'max_leaves': trial.suggest_int('max_leaves', 1,20),
12 'lambda': trial.suggest_float('lambda', 0.5, 3),
13 'alpha': trial.suggest_float('alpha', 0.5, 1),
14 'learning_rate': trial.suggest_float('learning_rate', 0.1, 0.9),
15 'random_state': trial.suggest_int('random_state', 1,100),}

4.5.1.4.1 Parameters explained:

- C, Gamma, kernel and degree are SVM parameters, Explained in details in section
3.2

- n_estimators: The number of boosting rounds or trees to build. Increasing this param-
eter can improve accuracy but also increases computation time.

- max_depth: The maximum depth of each tree. Higher values allow the model to capture
more complex patterns but can also lead to overfitting.

- min_child_weight: The minimum sum of instance weight (hessian) needed in a child.
This parameter controls overfitting by preventing the model from learning from overly
specific patterns in the training data. Higher values make the algorithm more conservative
by avoiding the creation of nodes that correspond to fewer samples.

- min_samples_split: The minimum number of samples required to split an internal
node. This parameter helps control overfitting by ensuring that each split occurs only if
there are enough samples to justify the creation of a new branch in the tree.

- min_samples_leaf : The minimum number of samples required to be at a leaf node.
This parameter prevents the model from learning overly specific patterns by ensuring
that each leaf node represents a sufficient number of samples.

- criterion: The function used to measure the quality of a split. Common criteria in-
clude gini for the Gini impurity and entropy for the information gain. This parameter
determines how the decision tree algorithm splits nodes to maximize information gain or
minimize impurity.

- gamma: The minimum loss reduction required to make a further partition on a leaf
node of the tree. It serves as a regularization parameter and makes the algorithm more
conservative by only allowing splits that significantly reduce the loss.

- subsample: The fraction of samples to be used for fitting individual base learners. This
parameter introduces randomness into the model building process, helping to prevent
overfitting.

- colsample_bytree: The fraction of features to be used for building each tree. Like
subsample, this parameter introduces randomness and helps to prevent overfitting by
ensuring that the model does not rely too heavily on any one feature.

- max_leaves: The maximum number of leaves in a tree. This parameter controls the
complexity of the tree and works in conjunction with max_depth to prevent the model
from becoming too complex.
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- lambda: The L2 regularization term on weights. Increasing this value makes the algo-
rithm more conservative and helps prevent overfitting by penalizing large weights.

- alpha: The L1 regularization term on weights. Similar to lambda, this parameter helps
control the model complexity and prevents overfitting by adding a penalty for large
weights.

- learning_rate: The step size shrinkage used in updates to prevent overfitting. Smaller
values make the model more robust to overfitting by shrinking the impact of each in-
dividual tree, though this requires more boosting rounds to achieve the same level of
performance.

- random_state: The seed used by the random number generator. Setting this parameter
ensures the reproducibility of the model training process by generating the same sequence
of random numbers.

4.5.1.5 Acccuracy evaluation

The diagnostic accuracy of the four algorithm implementations with eight input vectors and the
four preprocessing techniques discussed in Sections 4.3 and 4.4 is summarized in the following
tables:

Table 4.2: Accuracy evaluation for SVM algorithm

SVM ppm IEC Roger’s Doen Triangle Pentagon Mixed Tri-Pent
NormalizeScaler 93.75% 70.625% 78.125% 73.75% 76.875% 77.5% 78.75% 89.375%
MinMaxScaler 60% 25.5% 26.875% 27.5% 78.75% 88.75% 27.5% 95%
StandardScaler 83.125% 27.5% 25.5% 27.5% 79.375% 88.125% 26.875% 95%
RobustScaler 76.875% 70.625% 78.125 73.125% 76.875 78.125% 78.75% 94.375%

Table 4.3: Accuracy evaluation for RF algorithm

RF ppm IEC Roger’s Doen Triangle Pentagon Mixed Tri-Pent
NormalizeScaler 95.625% 76.875% 79.375% 80% 80% 80.625% 80.625% 91.875%
MinMaxScaler 94.375% 89.375% 89.375% 91.25% 80.625% 88.125% 90% 91.875%
StandardScaler 94.375% 88.75% 89.375% 91.25% 81.25% 88.75% 93.125% 91.25%
RobustScaler 95% 88.125% 89.375% 91.25% 80% 88.75% 91.25% 93.75%

Table 4.4: Accuracy evaluation for Extra-Tree algorithm

Extra-Tree ppm IEC Roger’s Doen Triangle Pentagon Mixed Tri-Pent
NormalizeScaler 95% 73.75% 76.25% 73.75% 78.75% 79.375% 78.125% 95.625%
MinMaxScaler 89.375% 70.625% 62.25% 76.25% 79.375% 86.25% 82.5% 90%
StandardScaler 90.625% 68.75% 68.75% 71.25% 78.125% 85.625% 80.625% 90.625%
RobustScaler 90% 73.75% 75% 73.125% 77.5% 84.375% 74.375% 90.625%
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Table 4.5: Accuracy evaluation for XGB algorithm

XGB ppm IEC Roger’s Doen Triangle Pentagon Mixed Tri-Pent
NormalizeScaler 95.62% 72.5% 73.125% 81.875% 78.75% 80% 81.25% 94.375%
MinMaxScaler 86.875% 91.25% 88.125% 91.25% 87.5% 87.5% 87.5% 86.875%
StandardScaler 88.75% 86.25% 89.375% 91.25% 77.5% 87.5% 91.25% 87.5%
RobustScaler 88.75% 87.5% 88.75% 90.625% 77.5% 90% 90% 87.5%

4.5.2 Results interpretation

1. Impact of input vectors on accuracy:

- Different input vectors have a significant impact on the performance of the algo-
rithms. Vectors such as ’Tri-Pent’ and ’ppm’ consistently gave higher accuracy in
most algorithms and preprocessing techniques.

- The ’Tri-Pent’ vector, combining features from both Duval triangle and pentagon
methods, achieved some of the highest diagnostic accuracy scores especially with RF
and XGBoost.

- In contrast, vectors based on ratios such as ’IEC’ and ’Roger’s’ generally resulted
in lower accuracy, particularly for SVM, due to the sensitivity of SVM to feature
scaling and the potential non-linearity introduced by ratios.

- The black lines on each bar on Figure 4.6 represent the confidence intervals (standard
deviation or standard error) of the accuracy measurements, indicating the variability
or uncertainty around the mean accuracy.

- Figure 4.6 provides a comparison of accuracy across all algorithms and input vectors,
illustrating the impact of different input vectors on overall performance.

Figure 4.6: Accuracy comparison across algorithms and input vectors
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2. Impact of preprocessing techniques on accuracy:

- Preprocessing techniques generally improve model performance by transforming the
data, which helps algorithms converge more efficiently and make more accurate pre-
dictions.

- Standardization and normalization ensure that the features are on a similar scale,
which is important for algorithms like SVM that are sensitive to feature scales.

- Robust Scaling, by using the interquartile range, reduces the influence of outliers
and generally leads to more stable models. However, in our study, it did not achieve
the highest accuracy compared to other preprocessing techniques.

- Figure 4.10 shows the average accuracy of each preprocessing technique across all
vectors and algorithms. It is evident that:

◦ NormalizeScaler achieved consistently high accuracy for all algorithms, par-
ticularly for RF and XGB, indicating its effectiveness in standardizing the data
for these models.

◦ MinMaxScaler resulted in a notable improvement in accuracy for RF and
XGB, but it performed poorly for SVM, demonstrating that this scaler might
be better suited for certain algorithms.

◦ StandardScaler showed strong performance for RF and XGB, but less so for
SVM, highlighting the variability in how different algorithms respond to this
scaler.

◦ RobustScaler provided stable but not the highest accuracy across most al-
gorithms, suggesting that while it is effective in handling outliers, it may not
always lead to the best accuracy.

Figure 4.7: Average accuracy for prepossessing techniques
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3. Performance of different methods:

- The primary goal of testing different methods (SVM, Tree based methods (Random
Forest, Extra Trees, and XGBoost), preprocessing techniques and input vectors is
to identify the best combination that maximizes the diagnostic accuracy.

- RF and XGBoost Algorithms generally perform better across most input vectors
and preprocessing techniques compared to SVM and Extra Trees. This is evident
from the high accuracy scores observed in the bar plot comparison (Figure 4.6).

- The box plot of accuracy distribution (Figure 4.8) shows that RF and XGBoost
had the best overall performance when considering the various input vectors and
preprocessing techniques.

- SVM algorithm exhibited higher variance in accuracy, indicating its performance is
more dependent on the choice of preprocessing and input vectors.

- RF and XGBoost demonstrated more consistent performance, highlighting their ro-
bustness across different preprocessing techniques and vectors.

Figure 4.8: Accuracy distribution across algorithms

4. Confusion Matrices analysis:

- For the fault types PD, D2, and T1, all samples have been correctly classified across
all algorithms, with 16 out of 16 for PD, 42 out of 42 for D2, and 32 out of 32 for
T1.

- For the fault type T3, one sample was consistently misclassified as T2 across all
methods, resulting in 27 out of 28 correct classifications.
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- For the fault type T2, the RF and XGBoost algorithms misclassified two samples,
resulting in 14 out of 16 correct classifications. In contrast, the Extra-Tree and SVM
algorithms misclassified three samples, resulting in 13 out of 16 correct classifications.

- For the fault type D1, the confusion matrices for the best-performing models illus-
trate common misclassifications. The Extra-Tree algorithm misclassified 3 samples,
while the other algorithms each misclassified 4 samples.

- Fault type D1 consistently shows lower accuracy across all methods, indicating that it
is often confused with other fault types. This similarity in misclassification patterns
suggests that stacking these models would not provide significant benefits. Therefore,
ensemble stacking was not considered a primary strategy, as the models tend to make
similar errors, reducing the potential gain from combining them.

- Figure 4.9 shows the confusion matrices for the best performing Random forest,
Extra Trees, SVM, and XGBoost models respectively, highlighting the consistent
struggle with fault type D1.

Note that the codes 0, 1, 2, 3, 4, 5 represent PD, D1, D2, T1, T2, T3 respectively.

Confusion Matrix - Random Forest Confusion Matrix - Extra Trees

Confusion Matrix - SVM Confusion Matrix - XGBoost

Figure 4.9: Confusion Matrices for different models (random forest, extra trees, SVM, XGBoost)
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4.6 Accuracy improvement with decision tree principle

Inspired by the work of Kherif et al. (2021) [21], we opted for a custom-built decision tree to
enhance the accuracy of fault classification in transformer data. The strategy for constructing
this decision tree is outlined below.

4.6.1 Decision tree construction strategy

The process begins by dividing the faults into two primary categories: thermal faults and
electrical faults. This initial categorization simplifies the subsequent classification steps by
narrowing down the fault types at each level. For both electrical and thermal faults, we explored
all possible nodes to find the optimal way to classify these faults. This approach ensures that
each type of fault is isolated in a structured manner, allowing for more precise identification at
each level of the decision tree.

Given that we have six faults (PD, D1, D2, T1, T2, T3) that can be further classified in up
to three levels, we considered various nodes at each division step. Electrical faults (PD, D1,
D2) were split in all possible ways: ({PD,D1,D2}) ,({PD}, {D1, D2}), ({D1}, {PD, D2}),
and ({D2}, {PD, D1}). Similarly, thermal faults (T1, T2, T3) were split into : ({T1,T2,T3}),
({T1}, {T2, T3}), ({T2}, {T1, T3}), and ({T3}, {T1, T2}).

In total, we constructed up to eight different decision trees, each representing a unique combi-
nation of splits at each level:

Total possible nodes = (4 different electrical faults nodes) + (4 different thermal
faults nodes) = 8

4.6.2 Input vectors, preprocessing Techniques, and algorithms

4.6.2.1 Input vectors and preprocessing techniques

For the input vectors, we prioritized the ppm and the triangle-pentagon dataset, as these
achieved the highest accuracy across all algorithms. Preprocessing was limited to Standard-
Scaler and NormalizeScaler, selected based on their superior performance in prior analyses. This
approach was adopted to efficiently manage the extensive testing required, involving 8 nodes,
2 input vectors (ppm and Tri-Pent datasets), 2 preprocessing techniques (StandardScaler and
NormalizeScaler) and 2 ML methods (RF and XGB). Consequently, we will be testing 64 mod-
els. This is in contrast to the 128 tests previously conducted in Section 4.5.1.5. This strategy
facilitated improved accuracy within a shorter timeframe. Figure 4.11 provides a rationale for
the exclusive use of these preprocessing techniques.

The bar plot compares the differences in accuracy between NormalizeScaler/StandardScaler
and MinMax/RobustScaler for RF and XGB models on "ppm" and "Tri-Pent" vectors. Positive
values indicate that NormalizeScaler and StandardScaler generally outperform MinMaxScaler
and RobustScaler. This suggests that NormalizeScaler and StandardScaler provide more con-
sistent and superior performance, justifying their selection for preprocessing. These observa-
tions support the conclusion that NormalizeScaler and StandardScaler are preferable choices
for preprocessing compared to MinMaxScaler and RobustScaler specifically for the ppm and
triangle-pentagon datasets.
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Figure 4.10: Difference in performance when using Normalize/StandardScaler and MinMax/Ro-
bustScaler

4.6.2.2 Algorithms used

After constructing this detailed decision tree and in order to optimize the search space, the
Extra-Trees method was dropped because, at its core, it is very similar to Random Forest.
The heatmap in Figure 4.11 illustrates that RF generally performed better in every single
combination except for one spot. Given this consistent superiority, RF was selected over Extra-
Trees for further analysis.

SVM exhibited higher variance in accuracy, indicating its performance is more dependent on
the choice of preprocessing and input vectors. Based on this analysis and the box plot shown in
Figure 4.8, SVM was also dropped. Only XGBoost and RF were retained for further analysis
due to their more consistent and higher accuracy distributions.
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Figure 4.11: Heatmap of accuracy differences between RF and ET with different scalers across
various vectors

4.6.3 Building the decision tree

We will build the decision tree level by level, starting by splitting faults into thermal and
electrical faults and then going deeper as explained in Section 4.6.1.

4.6.3.1 Level 1: Identifying thermal and electrical faults

At this level, we categorize the faults into two types: D (electrical) and T (thermal). Training
at this level was straightforward, as all input vectors, preprocessing techniques, and algorithms
achieved perfect accuracy (100%) as shown in Table 4.6. This result is expected since tree-based
methods often perform better in binary classification compared to multi-class classification due
to the lower computational complexity and reduced potential for errors in binary classifiers
[105].
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Table 4.6: Accuracy of different models for Level 1 fault classification (thermal vs. electrical)

Preprocessor NormalizeScaler StandardScaler
Input Vector ppm Tri-penta ppm Tri-penta
RF 100% 100% 100% 100%
XGB 100% 100% 100% 100%

4.6.3.2 Level 2: Separated electrical and thermal faults nodes

4.6.3.2.1 Electrical fault nodes : Testing the four different trees possible for electrical
faults (PD, D1, D2) and all possible division ways PD, D1, D2, D1, PD, D2, and D2, PD, D1,
we found that the combination PD, D1, D2 achieved 100% accuracy, as shown in Table 4.7.

Table 4.7: Accuracy of different models for various splits of electrical faults

Accuracy
Split XGB RF (Input vector, preprocessing)

95.23% 95.23% (ppm, NormalizeScaler)
{PD,D1,D2}

95.23% 95.23% (Tri-penta, StandardScaler)
100% 100% (ppm, NormalizeScaler)

{PD,{D1,D2}}
100% 100% (Tri-penta, StandardScaler)
95.23% 94.07% (ppm, NormalizeScaler)

{D1,{PD,D2}}
85.7% 86.9% (Tri-penta, StandardScaler)
97.6% 98.8% (ppm, NormalizeScaler)

{D2,{PD,D1}}
95.23% 92.8% (Tri-penta, StandardScaler)

4.6.3.2.2 Thermal fault nodes : Testing the four different trees possible for thermal
faults (T1, T2, T3) and all possible divisions (T1, T2, T3, T2, T1, T3, and T3, T1, T2), we
found that the combination T1, T2, T3 reached 100% accuracy, as shown in Table 4.8.

Table 4.8: Accuracy of different models on different nodes for thermal faults

Accuracy
Split XGB RF (Input vector, preprocessing)

97.63% 97.63% (ppm, NormalizeScaler)
{T1,T2,T3}

93.42% 96.05% (Tri-penta, StandardScaler)
100% 100% (ppm, NormalizeScaler)

{T1,{T2,T3}}
100% 100% (Tri-penta, StandardScaler)
96.05% 96.05% (ppm, NormalizeScaler)

{T2,{T1,T3}}
85.52% 96.05% (Tri-penta, StandardScaler)
97.36% 98.68% (ppm, NormalizeScaler)

{T3,{T1,T2}}
97.36% 98.68% (Tri-penta, StandardScaler)
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4.6.3.3 Level 3: Further faults classification

4.6.3.3.1 Electrical fault side : Given the best accuracy achieved with the node {PD},
{D1, D2}, we proceeded with it at the next level. The results are shown in Table 4.9:

Table 4.9: Accuracy of different models on different nodes for the D1, D2 node

{D1,D2} NormalizeScaler StandardScaler
Input Vector ppm Tri-penta
RF 97.07% 98.52%
XGB 95.58% 94.17%

4.6.3.3.2 Thermal fault side Using the same strategy as for the electrical faults, we
achieved 100% accuracy for the thermal faults, as shown in Table 4.10:

Table 4.10: Accuracy of different Models on different nodes for the T2, T3 node

{T2,T3} NormalizeScaler StandardScaler
Input Vector ppm Tri-penta
RF 95.45% 97.72%
XGB 93.81% 100%

Despite extensive experimentation with all mentioned algorithms and additional methods, the
highest achievable accuracy was 98.52%. While perfect accuracy of 100% might suggest over-
fitting, the current accuracy level is considered excellent. Achieving 100% accuracy in this case
could indeed be an indication of overfitting, especially given the limitations of the dataset.
Without access to additional data, it is challenging to definitively determine the model’s per-
formance beyond our test data. Therefore, while the model demonstrates strong performance
on the available test data, caution is warranted in interpreting these results, as there may be a
risk of overfitting. Nonetheless, the results are promising and indicate a high level of accuracy.
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4.6.4 Final decision tree

Figure 4.12: The most accurate decision tree combination

As shown in Figure 4.12, we can see that the model misses only one D1 sample. This supports
the analysis of the confusion matrices in Figure 4.9 as they all struggled with the D1 faults.

4.7 Comparative analysis of our approach and alterna-
tive methods

It wouldn’t be fair to compare our work with other studies that used different test data sets,
as the results would not be directly comparable. Therefore, to ensure a fair and accurate
comparison, All methods compared are on the same set of 160 test data points. The tables 4.11
and 4.12 below summarizes the accuracy’s of different algorithms and approaches, including
the conventional methods discussed in Chapter 2. This comprehensive comparison highlights
the performance of our approach’s in relation to traditional diagnostic techniques as well as
various machine learning models.
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Table 4.11: Performance of conventional diagnostic methods on test data

ACT
Duval
Triangle

IEC
Code-60599

Rogers 4
Ratios

Modified
IEC Code

Modified Rogers
4 Ratios

PD 16 93.75 43.75 37.5 8.5 75
D1 26 76.92 26.92 0 76.92 84.61
D2 42 85.71 66.66 73.80 90.47 88.09
T1 32 65.62 53.125 90.62 93.75 93.75
T2 16 50 68.75 25 93.75 93.75
T3 28 100 82.14 57.14 89.28 89.28
All 160 80 58.12 53.75 88.75 88.12

Table 4.12: Comparison of our approaches with other machine learning techniques

KNN ANN-PSO RF ET XGB SVM
DT

(KNN)
DT

(RF & XGB)
PD 100 100 100 100 100 100 100 100
D1 80.77 98.52 84.62 88.46 84.62 84.62 80.77 98.52
D2 97.62 100 100 100 100 100 97.62 100
T1 95.18 100 100 100 100 100 98.93 100
T2 81.25 100 87.5 81.25 87.5 81.25 81.25 100
T3 96.43 100 96.43 96.43 96.43 96.43 96.43 100
All 91.875 99.375 95.625 95.625 95.526 95 92.5 99.375

The accuracy’s presented in the tables highlight the effectiveness of each method in diagnosing
the test data. It is important to interpret these results in the context of the specific char-
acteristics and complexities of the test data used. Variations in accuracy can be attributed
to the different strengths and weaknesses of each algorithm, as well as their ability to handle
the specific nuances of the data. Our hybrid approach, which combines multiple techniques,
demonstrates a significant improvement in accuracy in general matching the ANN-PSO (Parti-
cle Swarm Optimization), underscoring the potential benefits of leveraging ensemble methods
in diagnostic applications.

4.8 conclusion

In this chapter, we aimed to improve the accuracy of power transformer oil diagnosis based on
dissolved gas analysis data using machine learning algorithms. By employing Support Vector
Machines and ensemble learning methods, including Random Forest , Extra-Trees, and XG-
Boost, we used various input vectors and preprocessing techniques. Our initial experiments
achieved an accuracy of 95.62% with RF, ET, and XGB and the confusion matrix analysis
revealed common miss-classification patterns among these models, particularly with D1 faults.
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To enhance accuracy further, we developed a custom decision tree strategy. This strategy
involved narrowing down the best-performing input vectors, preprocessing techniques, and al-
gorithms based on our initial findings. By constructing a detailed decision tree and leveraging
the optimal combinations, we achieved a diagnostic accuracy of 99.375%, with only one mis-
classified sample (a D1 fault diagnosed as a D2 fault).

Our results highlight the potential of a hybrid approach that combines multiple machine learn-
ing algorithms with a well-structured decision tree. This approach demonstrates significant
improvements in diagnostic accuracy of power transformers oil, underscoring the benefits of
leveraging ensemble methods and customized strategies in fault diagnosis applications.
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4.9 General Conclusion

The lifespan of power transformers is closely linked to the condition of the insulating oil used.
This oil degrades due to faults resulting from overheating, electrical arcs, low or high energy
discharges, and other factors. Such degradation can lead to transformer failures or malfunctions.
Early detection of these faults is a critical step in preventing such failures. Therefore, in this
study, we focused on the application and improvement of fault diagnosis using dissolved gas
analysis technique, considered one of the fastest and most economical techniques widely used.

We began this dissertation with extensive bibliographic research, divided into two chapters.
The first chapter is devoted to general information about power transformer oils. Through
this chapter, we learned that such transformers are essential components in the operation of
electrical networks. Their lifespans essentially depend on their insulation systems. Degradation
of these systems can lead to significant economic losses due to the high repair costs and the
unavailability of electrical service they cause. Special attention was given to insulating oil.

The dielectric properties of the oil degrade under the influence of contamination, moisture,
and aging. Aging is primarily caused by oxidation (presence of oxygen), hydrolysis, increased
temperature, and the presence of gaseous inclusions. Characterized by a high electric field,
these inclusions can host micro-discharges that decompose the oil, generating gases.

Various oil analyses can diagnose the internal state of the power transformer. The most pop-
ular analyzes are the electrical, physical, and chemical properties of the oil, and dissolved gas
analysis, which interprets their proportions in the oil under electrical and thermal stress. This
latter analysis is advantageous due to its low cost relative to that of interruption and repair.
Moreover, it uses small amounts of gas and is non-destructive. Furthermore, it can be applied to
transformers in service (online mode) or in the laboratory on collected samples (offline mode).

The second chapter is dedicated to presenting the three most common categories of conventional
methods. The first uses the concentrations of dissolved gases individually, linking each gas to
one or two faults. Gas concentrations can be expressed in ppm (IEEE Standard C57.104 or
TDCG) or in percentages (key gas method). Individual gas methods are simple to apply.
However, they are not very reliable given their modest fault classification rates.

The second category includes the Dornenburg, Rogers, and IEC 60599 methods. These methods
use the ratios of gas concentrations. Given their acceptable classification rates, these methods
are fairly reliable. However, they require significant gas concentrations to be valid. Additionally,
they can present uninterpretable cases, which limits their use.

The third category comprises graphical methods (triangle, pentagon, and their variants) by
Duval, which use the percentages of concentration ratios. These methods are robust and reli-
able. Although their classification rates are appreciable, they could be improved to obtain a
more refined diagnosis.

In order to overcome the limitations of individual gas methods and concentration ratios, and
to further improve the classification rate of graphical methods, the use of more powerful di-
agnostic systems such as artificial intelligence techniques (machine learning) is essential. In
the third chapter, we presented different machine learning algorithms including Support Vector
Machines (SVM), and another branch of machine learning called ensemble learning where we
used Random Forest, Extra Trees, and Extreme Gradient Boosting (XGBoost).

In Chapter 4, we applied the discussed intelligent methods to identify fault types based on
dissolved gas analysis of power transformer oil. We utilized an 8 input vector and various

99



General Conclusion

preprocessing techniques for the data. Hyper-parameter tuning for all algorithms was conducted
using Optuna. We introduced our hybrid approach, which integrates a decision tree principle
with XGBoost and random forest algorithms and finally compared the results with conventional
methods and other AI based works.

The eight different input vectors considered were designed to effectively represent the concen-
trations and ratios of dissolved gases in order to achieve higher accuracy. These vectors included
individual gas concentrations (in ppm), ratios as per IEC, Rogers, and Dornenburg methods,
graphical coordinates from Duval triangle and pentagon, and combinations of these two last
approaches.

Preprocessing techniques such as Normalize, MinMaxScaler, RobustScaler, and StandardScaler
were employed to prepare and clean the data. These techniques are important for improv-
ing data quality, enhancing model accuracy, reducing overfitting, speeding up training, and
improving interpretability.

By employing different input vectors and preprocessing techniques, we achieved an accuracy
of 95.62% with Random Forest, Extra Trees, and XGBoost. However, the confusion matrix
analysis revealed common misclassification patterns among these models, particularly with D1
faults.

In order to enhance the accuracy, our approach also involved the use of a custom built de-
cision tree. Inspired by the previous work, to categorize faults into thermal and electrical
types initially and then further classify them. This custom decision tree, combined with the
best-performing input vectors and preprocessing techniques, achieved an accuracy of 99.375%
(159/160), with only one misclassified sample.

In conclusion, our study demonstrates the potential of a hybrid approach that combines multiple
machine learning techniques with a well-structured decision tree in enhancing the reliability and
establish an efficiency model of fault diagnosis in power transformers oil. This approach shows
significant improvements in diagnostic accuracy compared to traditional methods and other
machine learning models results, underscoring the benefits of leveraging ensemble methods and
customized strategies in practical applications.
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