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Résumé

L’Objectif principal de ce projet de fin d’études concerne la régulation de niveau dans un sys-
tème à 04 réservoirs couplés. Nous commençons par une description du benchmark disponible
au niveau du laboratoire du département d’automatiquen. Ensuite, nous élaborons un modèle
mathématique analytique du système en question à travers lequel la description des caractéris-
tiques dynamiques du système a été effectuée. Un régulateur PI décentralisé a été adopté dont
l’ajustement de ses paramètres a été optimisé par l’algorithme PSO, cette technique de com-
mande est prise comme référence de comparaison avec les techniques que nous avons dévelop-
pés par la suite. En premier lieu, nous développons deux techniques de commande prédictives
(MPC) linéaire et non linéaire. Ensuite, nous proposons une autre approche se basant sur les
réseaux de neurones récurrents (RNN) afin de prédire les entrées de commande et réduire le
temps de calcul par rapport aux méthodes classiques. Enfin, nous avons utilisé les systèmes flous
de type Takagi-Sugeno dans le but de décrire le modèle non-linéaire en vue d’une commande
multi-modèle avec analyse de stabilité en poursuite de trajectoire. Des tests de robustesse ont
été effectués pour évaluer les performances de chaque méthode.

Mots clés : - systèmes à 04 réservoirs couplés -commande PI décentralisée - Commande pré-
dictive - réseaux de neurones récurrents (RNR) - Modèles flous de Takagi-Sugeno- Commande
PDC - inégalité matricielle linéaire (IML) - Algorithme d’Optimisation par Essaim Particulaire
(PSO) .



Abstract

The main objective of this End of Studies project concerns the level control of the coupled
tank systems. We begin with a description of the benchmark available in the laboratory of the
Control Engineering Department, then we develop an analytical mathematical model of the
system in question through which the description of the dynamic characteristics of the system
has been carried out. A decentralised PI controller was adopted whilst the adjustment of its
parameters has been carried out using a PSO algorithm. This control technique was taken as
a reference for comparison with the techniques that we developed subsequently. Firstly, we
develop two control techniques , linear and non-linear model predictive control (MPC) tech-
niques. Additionally, we propose another approach based on recurrent neural networks (RNN)
to predict the control inputs and reduce the computation time compared with conventional
methods. Finally, we used Takagi-Sugeno type fuzzy systems to describe the non-linear model
for multi-model control with stability analysis and trajectory tracking. Robustness tests have
been carried out to evaluate the performance of each method.

Keywords : Quadruple-Tank process- decentralized PI control -Model Predictive Control
(MPC) -Recurrent Neural Networks (RNNs) - Takagi-Sugeno fuzzy models -PDC control -
linear matrix inequality (LMI) - Particle Swarm Optimization (PSO).
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Chapter 1

Introduction

Motivation

Control theory applications are widely spread throughout our daily lives. In particular, process
control is a traditional process engineering field that holds a great practical importance [28].
Usually it involves dynamic modelling, identification, diagnosis, etc [28] and it’s mainly based
on a linear controller, specifically a PID controller.

PID controllers have demonstrated significant effectiveness in regulating both linear and non-
linear systems. Their widespread adoption is attributed to their versatility and reliable per-
formance across a diverse range of operating conditions. Furthermore, there exists a broad
conceptual comprehension of the impact of the three terms P, I and D among control engineers,
facilitating relatively straightforward manual tuning methods such as the Ziegler-Nichols rule
(Ziegler & Nichols, 1942)[42]. Of course, from the theoretical point of view, the PID is used
around a single specific operating point. If the operating region is small, we can effectively use
this type of controller on a nonlinear process whilst modelling the system’s inherent nonlin-
earities as model uncertainties[56]. However, most of real industrial processes exhibit intensive
nonlinear characteristics that makes the operating region really large, thus making usage of
the mentioned controller nearly impossible. It requires then different control techniques that
could eventually make up for the locality problem of the PID while giving the best possible
performances.

The implementation becomes even more complex when coupling is introduced in these systems.
It is usually the case of most industrial MIMO systems where the outputs are dependant of
the process’s states. The problem is discussed first as a stability problem such as in [22] then
it deals with reference tracking, observation and perturbation rejection problems [24].

Another type of highly spread nonlinear processes are interconnected large scale systems, these
systems are characterised by a large numbers of variables, structure of interconnected subsys-
tems, and other features that complicate the control models (time delay, uncertainties..etc) [29].
This notion could be introduced in many applications and surely one of them is the modelling
of interconnected DAM systems [33].
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Interconnected Dam System [57]

A Dam is a barrier that holds the flow of water in a certain place. It constitutes then a
reservoir or a tank that is connected with a series of other tanks in a given region. Controlling
the levels of such gigantic systems requires using a smaller version that could reproduce to a
certain extent the behaviour of such systems. This is where the Four Tanks coupled system
entered the scientific stage not only as a benchmark for nonlinear processes but also for large
scale interconnected systems. Applying control techniques on this system might help us deal
with larger plants, but we should deal with the controlling problem of the QTP first.

Dealing with the quadruple Tank process have been researched extensively by the scientific
community. In this context, many control laws have been developed, the first one being the
decentralized PI controller. The latter presented by the benchmark paper was proven to have
some good performances. Additionally, the process was also used to provide a good testing
platform for observers with their different types. This could be seen through classical high
gain observers and even sliding mode observers. Intelligent modelling through Support Vector
regressor have also been applied. Thus, the applications on this process are very diverse and
different.

Another method that has shown a great impact among control engineers in the industry is
Predictive Control and particularly Model Predictive Control. The latter has proven its
effectiveness in the field while obtaining relatively good performances [28] i.e. MPC can deal
with highly nonlinear and discontinuous plants as well as constraints on the inputs and the
outputs. As its trend began in the late 90s, we’re going to dedicate a whole chapter on this
part solely demonstrating whether or not it will help us in dealing with our problem.

Dealing with nonlinear systems and their problems has also extended to the modelling problem.
Can we effectively model our plant and consider all the nonlinearities dealing with it? This
question was the main research topic of Tomohiro Takagi and Michio Sugeno in [51] as they
have introduced a new benchmark in Fuzzy Control Theory. We will also dedicate a chapter
to fuzzy control and we will try to show its advantages compared to other methods.

Thesis Scope

In this study, we will try to investigate different control techniques applied to the four tanks
coupled system. We will start by introducing the system in question provided by National
instruments available at the LCP laboratory in ENP. The system is considered adequate for
educational purposes as it gives multiple options that we will explain further in this thesis. Then
we will start by implementing a state of the art decentralised PI controller as a benchmark
for the next implemented control strategies where we will be comparing their performances
with it. The controllers in question will be divided into two parts; Predictive and Fuzzy
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Controllers. Predictive control will emphasise the use of vanilla linear and nonlinear model
predictive controllers as well as one of their variants. Additionally, Fuzzy controllers will be
made given a Takagi-Sugeno modelling technique of our four tank plant that will be developed
in this context. Everything will be validated first using simulation on Matlab/Simulink, to
eventually lead to a possible implementation.
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Chapter 2

State of the Art

2.1 Introduction

In this chapter,We will begin with the problem formulation of the quadruple tank process to
where we will extend it by introducing the benchmark material available in our laboratory.
Surely this will be done by defining the nonlinear process using nonlinear ordinary differential
equations. These equations are based on the physical laws of mass balances and Bernoulli’s
fundamental equations. We will then proceed with an overview of the existing literature re-
garding the control strategies used for this particular problem. Additionally, we will set up
a benchmark for the control of the plant by designing a decentralised PI controller to see its
performances and compare it with the other control strategies that we’re going to design.

2.2 Problem Formulation

The quadruple-tank process was introduced by Karl Henrik Johansson [37] in the year 2000 as
a novel multivariable laboratory setup composed of four interconnected water tanks. The main
idea behind the creation of such setup was to illustrate performance limitations due to the zero
location in the multivariable control context. Indeed, it is well known that nonminimum-phase
characteristics of a system impose limitations on the design of linear feedback controllers [9].
These limitations are the results of the constraints put on the sensitivity function by the zeros
found in the right side of the s-plane. These limitations could be well controlled in the context
of the four tanks coupled system as Johansson described in his paper.

Figure 1.1 shows a diagram of the discussed process. Its inputs are the voltages of two pumps
and the outputs are the water levels of the two lower tanks shown in the figure. It is said in
the paper that the process could be built easily by using two double-tank systems that are
used in many laboratories. The paper is also titled "A Multivariable Laboratory Process with
an Adjustable Zero" This is mainly due to the fact that the linearized model of the process in
question has a multivariable-zero that could be located in either the left or the right half-plane
(root locus graph) by changing the valve ratio γ that we’re going to see further more in the
model development section [37].
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Figure 2.1: Schematic diagram of the quadruple-Tank process [37]

As mentionned before, The process inputs are u1 and u2 (input voltages to pumps), and the
outputs are y1 and y2 (voltages from level measurement devices). The target is to control the
level of the two lower tanks with the inlet flow rates.

As shown in figure 1.1, The output of each pump is split into two using a three-way valve.
Pump 1 is shared by tank 1 and tank 3, while pump 2 is shared by tank 2 and tank 4. Thus,
each pump output goes to two tanks, one lower and another upper diagonal tank, and the flow
to these tanks is controlled by the position of the valve represented as γ. The position of the
two valves determines whether the system is in the minimum phase or in the non-minimum
phase. Let the parameter γ be determined by how the valves are set. Particularly, according
to [37]:

The system is nonminimum phase for

0 < γ1 + γ2 < 1

And minimum phase for:
1 < γ1 + γ2 < 2

Of course, the system is much more difficult to control in the nonminimum phase setting than
in it is in the minimum one [37].

Each tank has a discharge valve at the bottom. The discharge from tank 4 goes to tank 1 while
the discharge of tank 3 goes to tank 2. This interaction creates a strong coupling between the
tanks which makes it a multivariable control system. Due to its strong nonlinear behavior, the
problem of identification and control of QTP is always a challenging task for control systems
engineers. Discharge from tank 1 and tank 2 goes to the reservoir tank at the bottom[37].

2.2.1 Model Development

The QTP design is a well-known MIMO system suitable for analysis of various control schemes
used in real-time which have nonlinear dynamics. Some systems cannot be represented by a
linear model and require the use of nonlinear models. The nonlinearity in QTP is due to the
square root term in mass flow relationship, between flow and level of the tank. The nonlinear
models create more difficulty in controlling the system. The linearization of this type of system
requires a stationary point around which the system operates. Taylor series expansion is one of
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the methods used for linearization which approximates the system at a given stationary point.
Generally any system can be represented by state-space or Input-output model. The NL model
will be used to compute A, B, C and D of the state-space representation which are obtained
using Jacobian matrices.[36]

Modelling of a process is necessary to investigate how the behaviour of a process changes with
time under the influence of changes in the external disturbances and manipulated variables and
to consequently design an appropriate controller. This uses two different approaches, one is
experimental and the other is theoretical. In such cases, a representation of the process is re-
quired in order to study its dynamic behaviour. This representation is usually given in terms of
a set of mathematical equations whose solution gives the dynamic behaviour of the process [35].

For each tank i = 1 . . . 4, the mathematical modelling is done by consideration of mass balance
equation and Bernoulli’s law yields:

[Rate of Accumulation of Mass in system] = [Mass flow Rate into the system]−[Mass flow Rate out the system]

Before deriving the mathematical equations of the system, let’s consider the follwing notation:

- The input to pump 1 is denoted by V1, and for pump 2, it’s denoted by V2.

- The valve priority set for the flow is denoted by γ1andγ2 in the range [0, 1].

- The flow through pump 1 when voltage V1 is applied is k1V1, and for pump 2 when voltage V2
is applied is k2V2.

- The flow through the pump is directly proportional to the input voltage applied for the pump.

- The flow in tank 1 after crossing valve 1 is γ1k1V1, and for tank 2 after crossing valve 2 is γ2k2V2.

- The flow in tank 4 after crossing valve 1 is (1− γ1)k1V1, and for tank 3 after crossing valve 2 is
(1− γ2)k2V2.

The non-linear model of the Quadruple tank process is given below. The mass balance equation states
that

[Rate of accumulation] = [Rate of in-flow]− [Rate of out-flow]

Using the law of conservation of mass,

dmT

dt
= min −mout (2.1)

Where,
mT represents the mass accumulated in the tank,

min represents the input mass flow rate, and

mout represents the output mass flow rate.

- Mass accumulated, mT = volume of tank (v)× density of liquid in the tank (ρ)

- Input mass flow rate (min) = volumetric flow rate (qin) × density of liquid in the inlet stream
(ρ1)
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- Output mass flow rate (mout) = volumetric flow rate (qout) × density of liquid in the outlet
stream (ρ2)

then we will have
dρv

dt
= ρ · qin − ρ · qout (2.2)

Since the liquid used is the same throughout the system, then ρ = ρ1 = ρ2.

Modelling of the non-linear Quadruple tank process is given by:

Ai
dhi

dt
= qini − qouti (2.3)

Where, for i = 1, . . . , 4

Ai denotes the cross-sectional area of the tank,

hi represents the water level, and

qini indicates the in-flow of the tank,

qouti signifies the out-flow of the tank

The term qin only depends on the input voltage supplied to the pump .
qout, depends on the acceleration due to gravity and the head of the water in the tank.
qout can be determined using Bernoulli’s equation and the flow rate of the liquid.

therefore:


qin1 = γ1k1V1

qin2 = γ2k2V2

qin3 = (1− γ2)k2V2

qin4 = (1− γ1)k1V1

 (2.4)

Where:

k1, k2 are the pump constants,

V1, V2 are the velocities of the water flow through pumps 1 and 2,

γ1, γ2 are the valve ratios.

And:
qouti = ai

√
2ghi (2.5)

Where, for i = 1, . . . , 4

ai cross sectional area of the outlet pipes,

g acceleration due to gravity,

hi represents level of the water in each tanks,
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2.2.1.1 Tank 01

Figure 2.2: Mass-balance equation for Tank 1[36]

Using the law of conservation of mass,

[Rate of accumulation] = [Rate of in-flow]− [Rate of out-flow]

A1
dh1
dt

= qin1 + qout3 − qout1

= γ1k1V1 + a3
√

2gh3 − a1
√

2gh1

(2.6)

2.2.1.2 Tank 02

Figure 2.3: Mass-balance equation for Tank 2[36]

Using the law of mass conservation,

A2
dh2
dt

= qin2 + qout4 − qout2

= γ2k2V2 + a2
√

2gh2 − a4
√

2gh4

(2.7)

2.2.1.3 Tank 03

Figure 2.4: Mass-balance equation for Tank 3[36]

Using the law of conservation of mass,

[Rate of accumulation] = [Rate of in-flow]− [Rate of out-flow]
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A3
dh3
dt

= qin3 − qout3

= (1− γ2)k2V2 − a3
√

2gh3 (8)
(2.8)

2.2.1.4 Tank 04

Figure 2.5: Mass-balance equation for Tank 4[36]

Using the law of conservation of mass,

[Rate of accumulation] = [Rate of in-flow]− [Rate of out-flow]

A4
dh4
dt

= qin4 − qout4

= (1− γ1)k1V1 − a4
√

2gh4

(2.9)

The Final equations:



dh1(t)
dt

= − a1
A1

√
2gh1(t) + a3

A1

√
2gh3(t) + γ1K1

A1
v1(t)

dh2(t)
dt

= − a2
A2

√
2gh2(t) + a4

A2

√
2gh4(t) + γ2K2

A2
v2(t)

dh3(t)
dt

= − a3
A3

√
2gh3(t) + (1− γ2)K2

A3
v2(t)

dh4(t)
dt

= − a4
A4

√
2gh4(t) + (1− γ1)K1

A4
v1(t)


(2.10)

The above non-linear differential equation represents mathematical model of the four-tank system.
The tank is being mathematically modelled by using law of conservation of mass. It is always enough
to develop a controller for a particular process using its mathematical model. But here in QTP there
is a challenge, that due to its non-linearity and uncertainty it is difficult to develop a controller which
must take a proper control action[35].

Other characteristics that have been mentioned in [37] include that the system is controllable. However,
the interactions should be considered in the choice of the control to output pairs by computing the
Bristol Matrix. Furthermore, the experimental setup that we’re going to present in the next section
have four sensors for each and every single height. Thus, it is wise to consider that the QTP is fully
observable for our study.
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2.3 Experimental Setup Description

For the experimental setup part, we will be considering the use of the pilot plant coupled Tanks 33-
230, from Feedback Instruments. This process was introduced as an educational control system lab
machinery that is present in the "Laboratoire de Commandes des Processus" since two years ago.

The system in question has 4 translucent tanks each with a pressure sensor to measure the water
level. The coupling between the tanks can be modified by the use of seven manual valves to change
the dynamics of the system imposing the use of different controllers. Water is delivered to the tanks
by two independently controlled, submersed pumps.

Step disturbances generation is provided by four manual valves. Drain flow rates can be modified
using easy-to-change orifice caps.

The Coupled Tanks are controlled by using Simulink® and an Advantech PCI1711 Interface card.The
user may build their own models or use the models supplied together with the curriculum. The process
variables can be observed on-screen in plots. The product is supplied with a student manual that pro-
vides information about the physical behaviour of the system models and guides the student through
the control tasks. Control algorithms are developed, tested on the models, and then implemented in
a real-time application.[17]

Figure 2.6: Coupled Tanks mechanical unit process [17]

A fifth reservoir tank is placed at the bottom. In the reservoir, two submersible pumps are placed,
which pump the water on command to the tanks. The water flows freely to the bottom tanks through
the configurable orifice. The way the water flows through the setup can be configured in many ways
with manual valves labelled (MVA, MVB . . . MVG, MV1, MV2. . . MV4). Configuration with valves
allows for dynamic couplings introduction and step disturbances generation, giving vast possibilities
of control. All of these are illustrated in the upper figure.
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The model contains the following parts. All of this assembled according to Figure 1.7:

- 6 tank filling valves, linked 3 to each pump. Each pump connects with the two upper tanks and
with the lower tank on its side

- 4 tank discharge valves, one per tank

- 4 discharge escapes without a valve, one per tank

- 4 area reducers, one per escape

- 1 connection valve between the two upper tanks

- 2 centrifugal pumps

- 6 T connections

- 6 90 degree elbows

- 4 tanks of 128.4mm2 area discounting the discharge

- 4 overflow pipes in the tanks located at 25 and 27mm in height

- 2 diameter reducers, for the connection of the pipes

- 2 flexible pipes with an outer diameter of 18mm

- Rigid pipes of 12mm outer diameter and 10mm inner diameter[25]

Apart from the mechanical parts, the Coupled Tanks system is equipped with a Power Supply Unit
and Power Amplifier (PSUPA) and the Cable Connector Box (Figure 1.7). The PSUPA unit amplifies
the water pressure-level signals and passes them as analogue signals to the PCI1711 card. The pump
control signal can be sent from the PC through the PCI1711 card and PSUPA unit.

Figure 2.7: Coupled Tanks control system [1]
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2.4 Literature Review

The quadruple-tank process is a well-known benchmark system in control theory, widely studied for its
nonlinear, multivariable characteristics, and unique dynamics which include both minimum and non-
minimum phase behaviors. This system provides an ideal platform to test various control strategies
due to its flexibility and complexity.

Initial works on the quadruple-tank system focused on modelling and understanding the system’s
dynamics. As mentioned before, Johansson provided a comprehensive introduction to the system as
the first pioneer that created this multivariable system. He was the first to highlight its decentralized
PI controller design [37], which set the foundation for further research. Later, Numsomran et al.
expanded on this by incorporating unknown disturbances into the model, providing a more realistic
representation of the system [49].

Uçak and Öke introduced a novel approach using Support Vector Regression (SVR) for modelling
the quadruple-tank system, which improved the system’s generalisation due to its basic properties of
structural risk minimization and ensuring global minima[55]. It was also a good introduction of SVRs
as an intelligent modeling technique of nonlinear systems and in tuning of controller parameters based
on this system model.

Figure 2.8: Results Presented by Modelling the QTP using SVR [55]

Following the same trend in these control strategies, decentralized control strategies have been ex-
tensively researched due to their simpler implementation and robustness. Haifen and Wen explored
partially decentralized control where they demonstrated that it could achieve comparable performance
to centralized control with a simpler structure and easier tuning [27]. Ferrese et al. proposed a decen-
tralized control method for nonlinear interconnected large-scale systems. They employed Pontryagin’s
minimum principle for optimal control development [19]. Tunning the decentralized PI controller’s
parameters has been a hot topic in the research community and different Optimization algorithms
alongside different Objective functions have been employed for this matter. For example, Abidin et
al. used Particle Swarm Optimization (PSO) for optimizing PI controller parameters, demonstrating
significant improvements in the control accuracy [3]. Similarly, Rao et al. applied the Grasshop-
per Optimization Algorithm to optimally tune PI controllers, achieving effective level control of the
quadruple-tank system [45].
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Figure 2.9: Decentralized control scheme [34]

High gain observer designs have also been a focal point in control strategies for the QTP. Gaaloul and
M’Sahli developed a high gain output feedback control approach, achieving exponential stability and
maintaining the separation principle [20]. Similarly, Turki et al. and Gouta et al. implemented back-
stepping control combined with adaptive observers, ensuring global asymptotic stability and enhancing
system robustness [53, 26].

Robust control techniques such as H∞ loop shaping and Linear Matrix Inequalities (LMI) have been
applied to the quadruple-tank system to address system uncertainties and ensure stability. Li et al.
utilised H∞ loop shaping for robust performance [41], while Hypiusová and Rosinová employed LMI for
robust control design, ensuring quadratic stability and meeting H2 and H∞ performance specifications
[30].

Adaptive control methods have also seen significant advancements. Sabura Banu and Lakshmanaprabu
used Bat colony optimization for tuning multi-loop fractional order PID controllers, showing improved
performance over traditional methods [50]. In another approach, Zhang and Li applied Gaussian
Process-based Nonlinear Model Predictive Control, enhancing control precision through local lin-
earization techniques [60].

Sliding mode control (SMC) has been explored to mitigate chattering and enhance system stability.
Larguech et al. improved the first-order SMC by adding a term to reduce chattering and developed
a stable adaptive tracking control for nonlinear MIMO systems [40]. El Hajjaji and Chadli used
Takagi-Sugeno fuzzy models for system identification and control. They used parameter estimation
with Levenberg-Marquardt method and least squares methods [5].

Model Predictive Control remains a popular choice for managing the multivariable nature of the
quadruple-tank system. One of the pioneers to apply MPC on the QTP are Deepa et al. where
they developed a discrete-time MPC for level control, demonstrating its effectiveness even with dead
time considerations [15]. The advancements continued with Ghasemi et al. where they proposed
a stabilized hybrid MPC, guaranteeing Lyapunov stability and robustness through an autonomous
switched hybrid system model [23]. Furthermore, Ahmed et al. designed a decoupling neuro-fuzzy
model predictive controller, combining the advantages of fuzzy logic and neural networks for improved
dynamic modelling and control precision [4].

Recent advancements include the application of reinforcement learning for controller design. Ku-
mar and Detroja introduced a reinforcement learning-based PI controller for nonlinear multivariable
systems. They indeed could show the learning capabilities of neural networks to adapt to system
dynamics and improve control performance [39].

To our knowledge, fuzzy TS based controllers haven’t been researched thoroughly in the QTP context.
Especially through the PDC control law based on the Lyapunov stability criterion. Our study will be
first of its kind to propose this approach.
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2.5 Base Method: Decentralised Proportional Integral
Controller Design

In this section we will be tackling down the design of a decentralized PI control law for the quadruple
Tank Process. As mentioned before in the literature review part, the first one that tackled down
the design and the implementation of such control law was of course Johansson [37] The work then
expanded to the research community as a series of papers dealt with the problem of tuning the
parameters of such controller. For our study, we will focus on designing our control law based on a
PSO optimization approach on a Pontriyagin principle of variation based objective function as it is
introduced by [19].

The control laws developed would be considered for two operational modes. In a minimum phase and
a non-minimum phase settings around given points. We will also perform a robustness test over the
consideration of interconnections and a discharge coefficient that models the liquid behavior for higher
viscosity fluids e.g. oil.

2.5.1 Presentation of the Solution

Recall the mathematical model of our four tanks coupled system 2.10 introduced previously:

dh1(t)
dt

= − a1
A1

√
2gh1(t) + a3

A1

√
2gh3(t) + γ1k1

A1
v1(t)

dh2(t)
dt

= − a2
A2

√
2gh2(t) + a4

A2

√
2gh4(t) + γ2k2

A2
v2(t)

dh3(t)
dt

= − a3
A3

√
2gh3(t) + (1− γ2)k2

A3
v2(t)

dh4(t)
dt

= − a4
A4

√
2gh4(t) + (1− γ1)k1

A4
v1(t)

Let’s consider now the following decentralized controller for our QTP:

Figure 2.10: Decentralized controller scheme applied to the QTP [19]

As per [37], This configuration is correct only for the minimum phase setting. Details about the config-
uration would be explained further on in this section. The described closed-loop system incorporates
two proportional-integral (PI) controllers. These controllers operate on decentralized feedback and
are represented by the following equations [19]:

PI1 : v1(t) = kp1(h∗
1 − h1(t)) + ki1

∫ t

0
(h∗

1 − h1(τ))dτ (2.11)

PI2 : v2(t) = kp2(h∗
2 − h2(t)) + ki2

∫ t

0
(h∗

2 − h2(τ))dτ (2.12)

In these equations, kp1 and kp2 are the proportional gains, while ki1 and ki2 are the integral gains of
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the respective controllers. The target water levels in tanks 1 and 2 are denoted by h∗
1 and h∗

2. Notably,
the control system does not account for the water levels in tanks 3 and 4.

To represent the complete closed-loop system in state-space form, we introduce two new state variables,
z1 and z2 [19], defined as follows:

ż1 = h∗
1 − h1 (2.13)

ż2 = h∗
2 − h2 (2.14)

This yields the complete closed-loop system as follows:

ḣ1 = − a1
A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1

A1
v1 (2.15)

ḣ2 = − a2
A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2

A2
v2 (2.16)

ḣ3 = − a3
A3

√
2gh3 + (1− γ2)k2

A3
v2 (2.17)

ḣ4 = − a4
A4

√
2gh4 + (1− γ1)k1

A4
v1 (2.18)

ż1 = h∗
1 − h1 (2.19)

ż2 = h∗
2 − h2 (2.20)

The feedback controller is given by:

PI1 : v1 = kp1(h∗
1 − h1) + ki1z1 (2.21)

PI2 : v2 = kp2(h∗
2 − h2) + ki2z2 (2.22)

Substituting the feedback control law into the system model provides the system in the standard form:

ẋ = f(x, α, t), x(0) = x0, (2.23)

where α = [kp1, kp2, ki1, ki2] is the vector of the controller’s unknown gains [19]. The goal of the control
design is to determine the optimal α to maintain the desired water levels h∗

1 and h∗
2 in tanks 1 and 2,

respectively. Note that the system model is nonlinear, precluding the use of design methods based on
linear control theory [19]. Now we will use nonlinear optimization theory to design our controller.

2.5.2 Optimization Problem formulation and solution

The optimization problem defined above could be considered the same general class known as param-
eter optimization of dynamic systems. In classical optimal control problem, the solution is usually the
best time varying control function that minimizes a given objective function. But in this case, we’re
sure that the controllable quantities are constant parameters rather than time varying functions [19].

Consider the system defined earlier in equation 1.15, where x(t) ∈ Rn is the state vector, and α ∈ Rm

is a constant parameter vector. The cost function is defined as follows
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J(α) = Φ(x(tf )) +
∫ tf

0
L(x, α, t) dt. (2.24)

It is assumed that the functions Φ and L are positive, convex, and differentiable. The objective is to
find the optimal parameter vector α such that the cost is minimized. We assume that the space of
admissible parameters is unconstrained for now. This will be alternated of course in a further part
[19].

Suppose α is the optimal parameter, and x is the corresponding trajectory. Also assume that x+ δx
is a perturbed trajectory corresponding to a non-optimal parameter vector α+ δα.

Defining the augmented cost function

J̃(α) = Φ(x(tf )) +
∫ tf

0
L(x, α, t) dt+

∫ tf

0
⟨ψ(t), f(x, α, t)⟩ dt (2.25)

and taking the first variation, we obtain

δJ̃ =
〈
∂Φ(x(tf ))

∂x
− ψ(tf ), δx(tf )

〉
+
∫ tf

t0

〈
∂H

∂x
(t)− ψ̇, δx(t)

〉
dt (2.26)

+
〈∫ tf

0

∂H

∂α
(t) dt, δα

〉
(2.27)

where H is the Hamiltonian defined by

H(x, ψ, α, t) = L(x, α, t) + ⟨ψ(t), f(x, α, t)⟩. (2.28)

Then, since the variations are arbitrary, we obtain the necessary conditions for optimality as

ẋ = f(x, u, t), x(t0) = x0, (2.29)

ψ̇ = −∂H
∂x

= −∂L
∂x
−
(
∂f

∂x

)⊤
ψ, ψ(tf ) = ∂Φ(x(tf ))

∂x
, (2.30)

and

0 =
∫ tf

0

∂H

∂α
dt =

∫ tf

0

(
∂L

∂α
+
(
∂f

∂α

)⊤
ψ

)
dt. (2.31)

The above equations are of course a set of necessary conditions for the optimal control. Furthermore,
they form what we call a complex two-point-boundary-value problem (TPBVP) [19].

IN [19] they proposed a common iterative gradient method that minimizes the cost by an update on
the control law at every iteration. This is done by considering the first variation of the augmented cost
function and approximating the variations as ∆x , ∆α and ∆Ĵ . This will allow to define an update
law for the parameters α over a gradient on the cost function. Such that:

αi+1 = αi − ϵ
∫ tf

t0

∂H

∂α
(xi, ψi, αi) dt, (2.32)

For our study we would rather use another method that will guarantee a global minima for the cost
function over the control parameters. A Particle Swarm Optimization algorithm is used for our
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problem. The same algorithm was used in [3] but with a different mathematical set up i.e. optimization
criteria.

The cost function J(u) is defined as:

J(u) =1
2s1(h∗

1 − h1(tf ))2 + 1
2s2(h∗

2 − h2(tf ))2

+ 1
2

∫ tf

0

{
q1(h∗

1 − h1(t))2 + q2(h∗
2 − h2(t))2 + d1 ∗ v2

1(t) + d2 ∗ v2
2(t)

}
dt

+R{k2
p1 + k2

p2 + k2
i1 + k2

i2},

(2.33)

where s1 and s2 are weighting factors for the final state errors, q1 and q2 are weighting factors for the
transient errors, d1 and d2 are weighting factors for the control inputs,v1(t) and v2(t) are the control
inputs, and R is a regularization parameter for the controller gains kp1, kp2, ki1, and ki2.

The system’s parameters that were considered to conduct the simulation were the same as [32]. This
is the only work available that has conducted the research on the same experimental setup as ours (the
33-230 coupled tanks system by Feedback Instruments) and they are defined in the following table:

Parameter Value
Ai [cm2] 138.9
ai [cm2] 0.5027

k1 [cm3/Vs] 26.00
k2 [cm3/Vs] 22.94

γ1 0.836
γ2 0.897

g [cm/s2] 981

Table 2.1: System’s parameters extracted by[32]

Important Note : As we can see, the parameters are made up such that the height will be in
centimeters. For this reason, all the simulation figures that we will present in this work will have
the heights expressed in centimeter and the time scale will be in seconds.

In addition, the various weights in the cost function are taken as follows [19]: s1 = 10, s2 = 20,
q1 = 90, q2 = 100, d1 = 30, d2 = 30 and R = 10. The initial water levels are also taken from [19]
where h1(0) = 12.4[cm], h2(0) = 12.7[cm], h3(0) = h4(0) = 1.5[cm]. The chosen references are two
step signals with a respective values of 20 and 16 respectively .

The details related to the PSO algorithm and the code created specifically for this task could be found
in Appendix A.

The algorithm was initialized with a total of 100 particles and around 20 iterations were used for
that. The space search was reduced to the interval [0.0001, 5] because we already had an idea on the
parameters values of the corresponding decentralize controller [19].

2.5.2.1 Minimum Phase setting

This phase corresponds to
1 < γ1 + γ2 < 2
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And according to the benchmark paper [37] it is way easier to find a decentralized controller for this
particular setting. The control scheme is the same one as figure 1.11 and the corresponding results
are the following:

Figure 2.11: Cost Function Evolution with a PSO algorithm update

Figure 2.12: Optimized System Response with the mentioned conditions; h1 (yellow) and h2
(purple)
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Figure 2.13: Corresponding h3 (green) and h4 (cyan) optimized response with the mentioned
conditions

Figure 2.14: Corresponding Control signals with the mentioned conditions
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The optimal parameters were found as follows:

α∗ =


1.4007
2.5549
0.1266
0.2133

 (2.34)

The step response at 95% of the final value is found being at around 14 seconds for both outputs.
It is clearly similar to the one designed in [19] whilst having a much larger Tanks to fill (comparing
the system’s parameters used). It is also worth mentioning that this response is optimized for this
initial with respect to the final values discrepancy and could change depending on the gap between
the desired and the actual output of our plant.

This would imply two things: First, if we made an optimization over a unitary step response for both
outputs is just non usable for actual applications. A unitary step response represent 1[cm] and it is
commonly not our desire to give that in operational conditions [37]. Second, the overshoot would
increase even more (if we set it up with unitary step responses) for normal operational references for
our outputs.

2.5.2.2 Non-minimum Phase setting

This phase corresponds to
0 < γ1 + γ2 < 1

This controller is much more difficult to design than the one in the minimum phase setting [37].

First of all, given the linear system’s RGA matrix around a given operational point [37]:

RGA =

 λ 1− λ
1− λ λ

 (2.35)

Such that:
λ = γ1 × γ2

γ1 + γ2 − 1 (2.36)

So for 0 < γ1 + γ2 < 1 The chosen control pair is inverted with respect to the original min-phase
setting i.e. the chosen set up would be (u1, h2) and (u2, h1).

We will take γ1 = 0 and γ2 = 0. This would be equivalent to no coupling at all, seeming like it would
be easier to do this task. Yet it is purely to see the non-minimum phase behavior as well as making
a robustness test over the interconnections down below in this section. We will also choose the same
initial conditions as before, to see the difference between the dynamics of the system.

Figure 2.15: Cost Function Evolution with a PSO algorithm update
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Figure 2.16: Optimized System Response with the mentioned conditions ; h1 (yellow) and h2
(purple)

Figure 2.17: Corresponding h3 (green) and h4 (blue) optimized response with the mentioned
conditions
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Figure 2.18: Corresponding Control signals with the mentioned conditions

The optimal parameters were found as follows:

α∗ =


1.1267
1.1267
0.0093
0.0093

 (2.37)

The step response at 95% of the final value is found being around 340 seconds for both outputs. As
astonishing as it can be, the benchmark for this type of setting has also a higher duration (as shown
in the figure below). We can explain this physically by the fact that the system in this case depends
on the gravitational force mainly to fill up the lower tanks whilst in the minimum case, it was relaying
on the two lower nozzles that provided a flow with a given γ mainly for that task. In the chosen case,
we can also see that the two upper tanks stabilize at the final values of the two lower ones (outputs).
The inputs have also much bigger values than the case studied earlier. This is mainly due to the fact
that the pump has to provide a constant flow and compensate the fluid that’s being poured down by
the gravitational force.

Figure 2.19: Benchmark Output for the non-minimum phase setting [37]

Even though we named h3 and h4 as hidden states. We assure that it is just an expression to distinct
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them from the two known outputs. The system is completely observable as mentioned before.

2.5.3 Robustness tests and Validation of the controller

2.5.3.1 Robustness with respect to High viscosity fluids

High viscosity fluids have a different dynamics than lower ones like water. Meanwhile, if we look at
our model we can clearly see that there isn’t a single parameter that represents the characteristics
of the used fluid in the QTP. The question remains now, how can we distinct between the different
dynamics and see the effect of using a different fluid on the QTP.

We introduce the discharge coefficient Cd [16], a parameter that will model the ratio between the
actual flow and the theoretical flow i.e:

Cd = Qactual

QT h
(2.38)

given Torricelli equation for a fluid passing through a nozzle in our system:

QT h = ai

√
2ghi (2.39)

Thus:
Qactual = Cdai

√
2ghi (2.40)

We will also do the same thing for the two flows generated by the inputs, the revisited model after
introducing this coefficient will be as follows:

dh1(t)
dt

= −Cda1
A1

√
2gh1(t) + Cda3

A1

√
2gh3(t) + Cdγ1k1

A1
v1(t)

dh2(t)
dt

= −Cda2
A2

√
2gh2(t) + Cda4

A2

√
2gh4(t) + Cdγ2k2

A2
v2(t)

dh3(t)
dt

= −Cda3
A3

√
2gh3(t) + (1− γ2)Cdk2

A3
v2(t)

dh4(t)
dt

= −Cda4
A4

√
2gh4(t) + (1− γ1)Cdk1

A4
v1(t)

(2.41)

We will choose adequate values of Cd according to the literature [16] and we will see its effects on the
step response of our system implemented alongside the decentralized controller in both the minimum
and the non-minimum phase settings and the results were as shown in the figures 2.19 and 2.20.

At glance, we can clearly see that the coefficient induces a latency into the system. It is indeed
expected with a higher viscosity fluid that tends to be more heavy, as we can say in the common
language. The chosen values were 1, 0.8, 0.6, 0.4, 0.2 and the distinction is clear seeing the representing
figures.

In addition to the latency, a pseudo-sinusoidal behavior could also be seen. The overshoot increases
every time we reduce the value of Cd and the system’s response time at 95% from the final values
does also increase. It is well logically following the physical behavior of higher viscosity fluids as the
gravitational force takes a lot of time to change the value of the desired level.

Moreover, we can clearly say that the controller in the minimum phase setting is way more robust
than the one in the non-minimum phase setting. For the critical value of Cd = 0.2 The states for the
system with a zero on the right side of the plane is practically sinusoidal (even though the response
will converge if we increase the simulation time by tenfold). The controller for the minimum phase
can also go for even smaller values of Cd and converge in a reasonable timescale.
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Figure 2.20: Evolution of the System’s states under different values of Cd for the minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4
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Figure 2.21: Evolution of the System’s states under different values of Cd for the non-minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

2.5.3.2 Robustness with respect to the interconnections

For this test, we will only consider the controller in the non-minimum phase setting. We designed
that controller early on whilst considering γ1 = γ2 = 0. These values give us a setting where we will
not consider the interconnections towards the two lower tanks. Making these two fill up completely
using gravitational force and liquid descending from the two upper tanks. But how about we induce
the designed controller with an interconnection i.e. γ1 = γ2 = γ ̸= 0 and see their impact on our
controller. This is shown through the figure down below.

Figure 2.22: Evolution of the System’s states under different values of γ for the non-minimum
phase setting under a robustness of interconnections, Upper left h1, Upper right h2, Lower left
h3, Lower right h4

The first thing we notice is that the interconnections induces a sinusoidal behavior over the system’s
state response. In fact, it does increase the step response time at 95% of the final value and the
response is completely periodic for values γ ≥ 0.2. The increased time is added up to the already
long response of the non-minimum phase setting and we get a convergence time of over 1000[sec] for
γ = 0.15.

The periodicity of the response also depends on the discrepancy between the desired reference signal
and the output of the system. This means that in this case, if we decrease the difference between
them, we could get a pseudo-periodic response, thus an exponential stability of the system.

This fact shows the relative robustness of our controller depending on external parameters related to
the system which plays a huge deal in the common knowledge known about using linear control theory
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on nonlinear systems. Basically, it shows some of the limitations of getting out of the linear range and
trying to extend it to other nonlinear spaces for our system.

2.5.4 Conclusion

In this section, we explored the implementation and evaluation of a Particle Swarm Optimization
(PSO) algorithm to optimize a decentralized controller for both minimum and non-minimum phase
settings of our system. The specifics of the PSO algorithm and the related code are detailed in
Appendix A A. By initializing the algorithm with 100 particles and running it for 20 iterations within
the search space [0.0001, 5], we did a good use of the prior knowledge of parameter values from a
corresponding decentralized controller [19], which proved beneficial.

For the minimum phase setting, defined by 1 < γ1 + γ2 < 2, the design of the decentralized controller
was relatively straightforward. The optimized parameters yielded a system response similar to the
benchmark results, with a 95% step response time of around 14 seconds. This demonstrates the
efficiency of the PSO algorithm in achieving optimal control for this setting.

On the other hand, the non-minimum phase setting, characterized by 0 < γ1 +γ2 < 1, presented more
challenges. Here, the optimized parameters resulted in a longer step response time of approximately
340 seconds. This highlights the increased difficulty of controlling systems in non-minimum phase
settings, where system dynamics heavily depend on gravitational forces, leading to slower stabilization
and higher control effort.

Our robustness tests further validated the controller’s performance under varying conditions. Introduc-
ing high viscosity fluids and different discharge coefficients resulted in increased latency and overshoot
in the system response. Notably, the controller in the minimum phase setting showed greater robust-
ness compared to the non-minimum phase setting, which showed more pronounced sinusoidal behavior
under extreme conditions.

Additionally, testing the robustness with respect to interconnections revealed the impact of coupling
parameters (γ values) on the system’s behavior. Increased interconnections induced periodicity in the
system’s response, extending the step response time. This truly shows the challenges of maintaining
stability and robustness in non-minimum phase systems with significant interconnections.

This being said, we can say that we have made our base control method for the four tanks coupled
system. This method would be used to compare its performance with the performances of other
controllers that are going to be designed in this thesis. The PSO algorithm ensured that we had our
global optimum, Thus the parameters of the decentralized PI controller are relatively perfect with
respect to the considered objective function.
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Chapter 3

Predictive Control

3.1 Introduction

This chapter investigates the fundamentals and different techniques of predictive control known in the
academia. We will first dive into the basics of Model Predictive Control (MPC) and how to implement
an MPC Controller. The controller in question will be diveded into a Linear MPC and a nonlinear
MPC. We will also see the different software tools that are used for this embedded optimization.
Additionally, we will present a Predictive controller based on Recurrent Neural Networks (RNN) and
classical vanilla MPC.

3.2 Background

Model Predictive Control (MPC), also referred to as Receding Horizon Control (RHC), is a method
for deriving a feedback control law by learning open-loop control to assess current states and swiftly
compute a control function for the open-loop system [32].

Also known as Model Based Predictive Control (MBPC), it emerged in the late 1970s and has signifi-
cantly evolved since then. Rather than indicating a single control strategy, the term MPC encompasses
a wide range of control methods that explicitly use a model of the process to derive the control signal
by minimizing an objective function. These design methodologies result in linear controllers with
similar structures and adequate degrees of freedom[12]. The core ideas prevalent in varying degrees
across the predictive control family include:

- Explicit use of a model to forecast the process output at future time instances (horizon).

- Computation of a control sequence that minimizes an objective function.

- A receding horizon strategy, where the horizon moves forward at each instant, applying the first
control signal of the sequence calculated at each step [12].

Different MPC algorithms, primarily differ in the model used to represent the process and noise, as well
as the cost function to be minimized [12]. This control method has an open nature, having an extensive
academic and industrial research and development. Presently, predictive control is successfully applied
across various fields, from the process industry to diverse applications such as robot manipulators and
clinical anesthesia [12].
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3.2.1 Some Advantages

MPC offers several advantages over other control methods [12], notably:

- It is particularly appealing to personnel with limited control knowledge due to its intuitive
concepts and relatively easy tuning.

- It can be applied to a wide variety of processes, from those with simple dynamics to more complex
ones, including systems with long delay times, non-minimum phase systems, or unstable systems.

- It effectively handles multivariable cases.

- It inherently compensates for dead times.

- It naturally incorporates feedforward control to counteract measurable disturbances.

- Its extension to handle constraints is conceptually simple, allowing constraints to be systemat-
ically included during the design process.

- It is highly beneficial when future references (as in robotics or batch processes) are known.

- It is a completely open methodology based on fundamental principles that allow for future
extensions.

3.2.2 Some Drawbacks

As with any control methodology, MPC has its drawbacks [12]. One notable issue is that, despite
the resulting control law being straightforward to implement and requiring minimal computation, its
derivation is more complex compared to classical PID controllers. If the process dynamics remain
constant, the controller’s derivation can be precomputed. However, in adaptive control scenarios,
all computations must be performed at each sampling time [12]. This complexity increases further
when constraints are involved. Although modern computing power reduces this issue to some extent,
it is important to consider that many industrial process control computers may not have optimal
computational capabilities. Additionally, much of the available processing time is often allocated to
tasks other than the control algorithm itself, such as communications, operator interfaces, alarms, and
data recording [12].

Moreover, the greatest drawback of MPC is the necessity for an accurate process model [12]. The
design algorithm relies on prior knowledge of the model, and while the algorithm itself is independent
of the specific model, the performance benefits are directly influenced by the accuracy of the model
in representing the real process.

3.2.3 MPC strategy

The methodology of all controllers within the MPC family is characterized by the following strategy,
represented in the figure 2.1 [12],[32]:
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Figure 3.1: MPC Strategy [12]

1. At each instant t, the future outputs for a determined horizon N , called the prediction horizon,
are predicted using the process model. These predicted outputs y(t + k|t) for k = 1, . . . , N
depend on the known values up to instant t (past inputs and outputs) and on the future control
signals u(t + k|t) for k = 0, . . . , N − 1, which are the signals to be calculated and sent to the
system[32, 12].

2. The set of future control signals is calculated by optimizing a determined criterion to keep the
process as close as possible to the reference trajectory r(t+ k) (which can be the setpoint itself
or a close approximation of it). This criterion typically takes the form of a quadratic function
of the errors between the predicted output signal and the predicted reference trajectory. In
most cases, the control effort is also included in the objective function. An explicit solution
can be obtained if the criterion is quadratic, the model is linear, and there are no constraints;
otherwise, an iterative optimization method must be used. In some cases, assumptions about
the structure of the future control law are made, such as the control law being constant from a
given instant [32, 12].

3. The control signal u(t|t) is sent to the process, while the subsequent control signals calculated
are discarded. At the next sampling instant, y(t+ 1) is known, and step 1 is repeated with this
new value, updating all sequences. Thus, u(t + 1|t + 1) is calculated (which, in principle, will
differ from u(t+ 1|t) due to the new information available) using the receding horizon concept
[32, 12].

To implement this strategy, the basic structure depicted in figure 2.2 [12] is employed. A model is
utilized to predict future plant outputs based on past and current values, as well as on the proposed
optimal future control actions. These actions are calculated by the optimizer, taking into account the
cost function (which considers future tracking error) and constraints.

The process model, consequently, plays a crucial role in the controller. The selected model must
accurately capture the process dynamics to precisely predict future outputs while being simple to
implement and comprehend. Since MPC encompasses a set of different methodologies rather than a
singular technique, various types of models are used in different formulations[12].

One of the most popular models in industry is the Truncated Impulse Response Model. This model is
straightforward to obtain, requiring only the measurement of the output when the process is excited
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with an impulse input [12]. It is widely accepted in industrial practice due to its intuitive nature and
applicability to multivariable processes. However, its main drawbacks include the large number of
parameters required and its limitation to describing only open-loop stable processes. A closely related
model is the Step Response Model, which is derived when the input is a step.

Figure 3.2: MPC Structure [12]

The Transfer Function Model is perhaps the most widespread in the academic community and is used
in most control design methods. This model is favored because it requires only a few parameters and
is valid for all types of processes. Additionally, the State-Space Model is utilized in some formulations,
as it can easily describe multivariable processes [12].

The optimizer is another fundamental component of the MPC strategy as it provides the control ac-
tions. If the cost function is quadratic, its minimum can be determined as an explicit function (linear)
of past inputs and outputs and the future reference trajectory. However, in the presence of inequality
constraints, the solution must be obtained through more computationally intensive numerical algo-
rithms. The size of the optimization problems depends on the number of variables and the prediction
horizons used, and they typically result in relatively modest optimization problems that do not require
sophisticated computer codes to solve. Nonetheless, the computation time needed for constrained and
robust cases can be several orders of magnitude higher than that required for the unconstrained case,
significantly reducing the bandwidth of the process to which constrained MPC can be applied[12, 32].

Notice that the MPC strategy is quite similar to the control strategy used in driving a car. The driver
is aware of the desired reference trajectory for a finite control horizon and, by considering the car’s
characteristics (a mental model of the car), decides which control actions (accelerator, brakes, and
steering) to take in order to follow the desired trajectory. Only the initial control actions are executed
at each moment, and the procedure is repeated for the subsequent control decisions in a receding
horizon manner [12]. In contrast, classical control schemes such as PIDs base their control actions on
past errors. Extending the car driving analogy, as one commercial MPC vendor (SCAP) has done in
their publicity, the PID approach to driving a car would be similar to driving using only the rear-
view mirror, as depicted in the next figure. This analogy, however, is not entirely fair to PIDs, since
MPC utilizes more information (the reference trajectory). If a future point in the desired reference
trajectory is used as the setpoint for the PID, the differences between the two control strategies would
not appear as drastic [12].
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Figure 3.3: MPC Analogy [12]

3.2.4 Stability Analysis of MPC Controllers

The Receding Horizon Control strategy does not ensure the properties of optimal control based meth-
ods. The latter being the stability, the feasability and the optimality of the solution. More accurately,
RHC does not guarentee that the system will evolve to an equilibrium (such as methods like dynamic
programming does) nor to a terminal set. This will lead us to look for possible solutions to ensure the
stability for the closed loop system.

We will now give one way to prove the asymptotic stability of a system under a closed loop interaction
with an MPC.

Given the system x(t + 1) = f(x(t), u(t)) with the origin as the equilibrium point (f(0, 0) = 0). We
assume the following [12]:

- The stage cost l(x, u) is a positive-definite function, meaning it is zero only at l(0, 0) and positive
elsewhere.

- There exists a local control law K(x) for which the terminal set Xf is invariant. This means
that closed-loop trajectories starting within Xf remain in this set indefinitely, and state and
input constraints are satisfied (x ∈ Xf =⇒ K(x) ∈ U).

- The terminal cost lf (x) is a Lyapunov function within Xf and satisfies lf (x(t+ 1))− lf (x(t)) ≤
−l(x,K(x))∀x ∈ Xf .

Before establishing stability, we first need to ensure the recursive feasibility of the MPC. Without
this, there is no guarantee that the controller will not fail due to the optimization problem becoming
infeasible during closed-loop operation.

To establish recursive feasibility, we assume that the initial state x(t) is feasible, and consider [u∗
0, u

∗
1, . . . , u

∗
N−1]

as the optimal control sequence for x(t). For the next time step, i.e., x(t+1), the sequence [u∗
1, u

∗
2, . . . ,K(x∗

N )]
is also feasible due to the second assumption above. Thus, the MPC maintains recursive feasibility,
meaning if we start at a feasible initial state x(t), the MPC problem will remain feasible indefinitely.

To establish asymptotic stability, we need to show that the optimal value function J∗(x(t)) is a
Lyapunov function satisfying the property [12]:

J∗(x(t+ 1))− J∗(x(t)) < 0 ∀x ̸= 0.
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For the optimal control sequence [u∗
0, u

∗
1, . . . , u

∗
N−1] calculated at x(t), the optimal value function is

defined as:

J∗(x(t)) =
N−1∑
k=0

l(x∗
k, u

∗
k) + lf (x∗

N ),

whereas for the feasible, sub-optimal control sequence [u∗
1, u

∗
2, . . . ,K(x∗

N )] for x(t + 1), we have the
sub-optimal value function as follows:

J ′(x(t+ 1)) =
N∑

k=1
l(x∗

k, u
∗
k) + lf (x̂N+1),

where x̂N+1 = f(x∗
N ,K(x∗

N )). Since this is sub-optimal, we have:

J∗(x(t+ 1)) ≤ J ′(x(t+ 1)).

We can rewrite J ′(x(t+ 1)) as follows:

N−1∑
k=0

l(x∗
k, u

∗
k)− l(x∗

0, u
∗
0) + lf (x̂N+1) + l(x∗

N ,K(x∗
N )).

Adding and subtracting lf (x∗
N ) to the above expression, we get:

N−1∑
k=0

l(x∗
k, u

∗
k) + lf (x∗

N )− lf (x∗
N )− l(x∗

0, u
∗
0) + lf (x̂N+1) + l(x∗

N ,K(x∗
N )).

Notice that the first two terms above equal J∗(x(t)), thus we can rewrite the expression as follows:

J∗(x(t))− l(x∗
0, u

∗
0)− lf (x∗

N ) + lf (x̂N+1) + l(x∗
N ,K(x∗

N )).

From the third assumption, we know that lf (x) is a Lyapunov function satisfying lf (x(t + 1)) −
lf (x(t)) ≤ −l(x,K(x))∀x ∈ Xf . Therefore, for the last three terms in the above expression, we have:

−lf (x∗
N ) + lf (x̂N+1) + l(x∗

N ,K(x∗
N )) ≤ 0,

leaving us with the expression:

J∗(x(t+ 1))− J∗(x(t)) ≤ −l(x∗
0, u

∗
0).

In the first assumption, we stated that l(x, u) is strictly positive and is zero only for l(0, 0). Thus, we
have:

J∗(x(t+ 1))− J∗(x(t)) < 0 ∀x ̸= 0,

indicating that the optimal value function J∗(x(t)) is strictly decreasing along closed-loop trajectories.
Therefore, these trajectories will converge to the origin, establishing the asymptotic stability of the
MPC at the origin.
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Important Note : In the above development of the expressions, we assumed that the terminal cost
and the terminal constraint are already given. They can be precomputed offline with the mentioned
properties to establish stability.

For our case, we will not precompute them but we will base our study on previously adopted cost
functions that have been shown to give stability for the coupled tank process [63] [32]. The latter
being only a quadratic cost function similar to the classical LQR function with Q and R as positive
defined matrices such that:

J = min
p∑

i=1
||xk+i|k − xr||Q +

c∑
i=0
||uk+i|k||R (3.1)

This function will not only be used for the linear MPC formulation but also for the nonlinear one.
The details are given in the section down below.

3.3 Controller design and Application on the QTP

The first discussion is about the dynamics models used for the MPC context. Given the following
difference equation:

xk+1 = fk(xk, uk), (3.2)

yk = h(xk, uk), (3.3)

x(k0) = x0, (3.4)

where xk ∈ Rnx are the states, uk ∈ Rnu are the inputs and yk ∈ Rp are the outputs. The initial
condition in 3.4 specifies the state value at k = k0, normally the initial time will be at zero as a
corresponding initial condition for the system [32].

In the following we will only consider the Discrete Time-Invariant Systems (DTIS) case. This means
that a DTIS does not depend explicitly on time, and this fact occurs as long as the problem formulation
does not depend explicitly on time, i.e., the model of the system, cost function, and constraints need
to be independent of time [32]. This means that would be very accurate with respect to the system’s
model depicted in 2.10.

3.3.0.1 Linear Model Predictive Control

Recall the general formulation for any dynamics model from 3.2, a linear model (using state represen-
tation) formulation could be presented as the following [32]:

xk+1 = Axk +Buk, (3.5)

yk = Cxk +Duk, (3.6)

xk0 = x0, (3.7)
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where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rp × nx, and D ∈ Rp × nu are time-invariant matrices defining
the dynamics of the system.

With the aim of applying linear control theory, the model described by 3.2 has to be linearized into
the form of linear equations. Therefore, the variables xi := hi − h0

i and ui := vi − v0
i are introduced,

where h0
i and v0

i are the operating points around which the linear model is considered valid. The
linearized continuous-time state-space representation is then [32]

dx(t)
dt

=


− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4
A2T4

0 0 − 1
T3

0
0 0 0 − 1

T4

x(t) +


γ1k1
A1

0
0 γ2k2

A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

u(t), (3.8)

y(t) =

1 0 0 0
0 1 0 0

x(t), (3.9)

where:
Ti = Aia1s2h0

i

g
, i = 1, . . . , 4

The two chosen operating points for this model will be the values h1∗ = 10[cm] and h2∗ = 10[cm] [32]
in all the LMPCs designed down in this thesis. The results were very satisfactory.

From now on, the plant will be assumed to be a discrete linear model, and the cost function and
constraints from the MPC formulation are quadratic and linear inequalities, respectively. Recovering
the MPC formulation used in previously, the LMPC problem implemented is:

min
uk|k,...,uk+Hp−1|k

Hp∑
i=1
||xk+i|k − xr||Q +

Hc−1∑
i=0
||uk+i|k||R

subject to
xk+i+1|k = Axk+i|k +Buk+i|k,

uk+i|k ∈ U,
xk+i|k ∈ X,

(3.10)

where xr ∈ Rnx is a constant desired set-point. Matrices Q ∈ Rnx×nx and R ∈ Rnu×nu are penalization
weights assigning prioritization for the control objectives. Both states and inputs are subject to some
physical and operating constraints defined as X = {x ∈ Rnx : x ≤ xk ≤ x ∀k} and U = {u ∈ Rnu :
u ≤ uk ≤ u∀k}, respectively, where x and x correspond to the lower and upper limits for the states.
Similarly, u and u are the lower and upper limits for the control signals, respectively. Moreover, Hp

and Hc refer to the prediction and control horizons. It is assumed that each state is measurable; if not,
a state observer should be implemented. Regardless of this fact, we sure know that the experimental
plant has indeed 4 sensors that gives the real time liquid heights in the tanks without any problem.

Normally, for implementation purposes, it is preferred to have the predictions expressed in terms of
∆uk+i|k (slew rate) rather than uk+i|k, where ∆uk+i|k is defined as

∆uk+i|k = uk+i|k − uk−1. (3.11)

This means that the change in the input will be penalized, from the previous iteration, rather than
penalizing the input itself. The OCP, therefore, will also be defined as:
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min
uk|k,...,uk+Hp−1|k

Hp∑
i=1
||xk+i|k − xr||Q +

Hc−1∑
i=0
||∆uk+i|k||R

subject to
xk+i+1|k = Axk+i|k +Buk+i|k,

uk+i|k ∈ U,
xk+i|k ∈ X,

(3.12)

where all the variables retain their previously defined meanings, and ∆uk+i|k ∈ Rnu .

It is important to notice that this OCP, with some mathematical transformations, can be expressed
as a Quadratic Programming (QP) problem of the form,

min
z

1
2z

THz + gT z

subject to
α ≤ Λz ≤ α,

(3.13)

where H ∈ R(nx+nu)×(nx+nu) is the Hessian matrix defined as positive semi-definite, i.e., it defines a
convex optimization problem, and therefore, any locally optimal solution is also globally optimal [32].
The decision vector z ∈ Rnx+nu is defined as z = [xT uT ]T . Moreover, α, α ∈ Rnx and Λ ∈ Rnx×(nx+nu)

define the feasible set, and g ∈ Rnx+nu is the gradient vector. Depending on how the Hessian matrix
H is defined, the problem will be either convex or not. To ensure the convexity of the problem, H
must be defined as positive semi-definite. This is crucial since any locally optimal point of a convex
problem is (globally) optimal [32]. Specialized solvers are going to be used in the next sections to
actually solve that OCP without any issues.

3.3.1 Nonlinear Model Predictive Control

Nonlinear optimal control algorithms are at the center of all Nonlinear Model Predictive Control
(NMPC). In the previous section, it has been shown that for the linear problem, mostly convex
quadratic programs (QP) are solved exactly at each sampling time. Conversely, NMPC algorithms
should deal with two possibilities: solving the problem until a specified convergence criterion is reached
(this procedure may introduce delays between the numerical algorithms and the system to be con-
trolled), or stopping the algorithm prematurely, which means only approximate solutions are used.
In the following section, the NMPC problem has been solved using the nonlinear programming li-
brary CasAdi available on Matlab and Python. This library is considered one of the main libraries to
implement OCPs in general.

If the general formulation for a dynamic system from 3.2 and the formulation for the MPC design are
recovered, the nonlinear optimization problem behind the MPC can be defined in the following way:

min
uk|k,...,uk+N−1|k

N−1∑
i=0

li(xk+i|k, uk+i|k)

subject to
xk+i+1|k = f(xk+i|k, uk+i|k), k = 0, . . . , N − 1,
xk|k = xk, k = 0, . . . , N − 1,
(xk+i|k ∈ X, k = 0, . . . , N,
uk+i|k ∈ U, k = 0, . . . , N − 1),
xk+Hp|k ∈ Xf .

(3.14)
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The OCP in 3.14 can be solved using sequential or simultaneous approaches. In the former approach,
at each optimization iteration the two steps, simulation and optimization, are performed sequentially,
i.e., one after the other. Using a simultaneous approach, the optimization problem is addressed by a
Newton-type optimization algorithm (it computes at each step a linearization of the system) by which
the optimization and the simulation are performed simultaneously. This type of approach usually
involves direct collocation methods as well as direct multiple shooting to construct the nonlinear
programming (NLP) problem to be solved. The two best-known Newton-type optimization algorithms
are interior-point (IP) methods and sequential quadratic programming (SQP).

Single shooting algorithms consider only the control signal as a decision variable while the states is
considered part of the system. This would induce nonlinearities on the states due to propagating the
state function f(x) over our prediction horizon i.e. xN+1 = f(xN ) = f(f(xN−1)) = ... = fN (x0).

Given f is a nonlinear function, the effects of doing such single shooting beginning from a point x0
would be drastic. This is why considering the states x also as a decision variable in addition to the
controls vector u is the most recommended. The state system equation would then be considered a
constraint for our OCP problem and it is verified every single sampling time for our algorithm.

3.4 Software tools for Controller design

3.4.1 MPC Toolbox

The Model Predictive Control Toolbox is a Matlab based library that provides functions, Simulink
blocks and reference examples through a Gui-based user end product. It supports the design of
implicit, explicit, adaptive and gain-scheduled MPC. It does also provide ways to implement NMPCs,
notably by single and multi-stage nonlinear MPC. Additionally, it provides deployable optimization
solvers and enables the use of custom solvers.

This simplified toolbox is based on the formulas presented in 3.13 and 3.14. The controller is then
designed automatically after providing the linear or the nonlinear plant model to the Toolbox. It is
arguably the easiest way to design an MPC on Matlab compared to the other tools that we’re going
to introduce further on in this section.

3.4.1.1 Simulation results

The following figures shows the simulation results of using the LMPC and the NMPC respectively
designed using the corresponding Toolbox.
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Figure 3.4: System’s response h1 (red) and h2 (blue) to two step reference signals of value 10
in the minimum phase setting using the Matlab Toolbox LMPC

Figure 3.5: Corresponding control signals (left) and h3 (orange) and h4 (purple) (right) for the
system’s response to two step signals of value 10 using the Matlab Toolbox LMPC
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Figure 3.6: System’s response h1 (green) and h2 (blue) to two step reference signals of value 10
in the minimum phase setting using the Matlab Toolbox NLMPC

Figure 3.7: Corresponding control signals (left) and h3 (brown) and h4 (blue) (right) for the
system’s response to two step signals of value 10 using the Matlab Toolbox NLMPC

3.4.2 FiOrdOs

FiOrdOs is a versatile code generator toolbox developed by Fabian Ullmann and Stefan Richter at
ETH Zurich [54], designed to interface with MATLAB for solving parametric convex problems using
first-order methods. This toolbox is particularly useful for handling optimization problems formulated
as follows:

min
x

1
2x

THx+ gTx+ c

subject to x ∈ X,
Ax = b,

(3.15)

where x ∈ Rn is the decision variable, H ∈ Sn is the Hessian matrix (which is positive semidefinite,
ensuring convexity), g ∈ Rn, c ∈ R, A ∈ Rm×n, and b ∈ Rm are matrices and vectors that define the
cost function and constraints [54].

The analogy is then clear between the latter formula and the OCP defined in 3.13. We will use the
same basic concept to define a Linear MPC using the FiOrdOs library.

To solve these optimization problems, FiOrdOs uses the Fast Gradient Method, a first-order method
introduced by Yurii Nesterov in [47]. The latter is a variation of the classical gradient method with
additional terms to give faster convergence properties.

3.4.2.1 LMPC design and Code Generation

As we described earlier, the similarities between our OCP for the linear MPC problem and vanilla
convex optimization problems could let us use first order methods to design that.

When the optimization problem is specified and translated into something that could be interpreted
by FiOrdOs, the library uses a user defined solver that gives the required solution. In this case, we
will pre-compute the matrices needed for solving the OCP as the linear model around the chosen
operating point is fixed through time.
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The question now is how do we translate that mathematically, the answer is given in the following ;
Let us consider a problem with box constraints on the inputs [54]:

U = {u ∈ Rnu | 0 ≤ u ≤ 10},

but no state constraints, i.e.,
X = Rn.

To obtain a stable closed loop, we take P = dlyap(A∗, Q) and Xf = Rn [54].

The typical procedure is to eliminate the states via :
x1

x2
...
xN

 =


A

A2

...
AN


︸ ︷︷ ︸

A

x0 +


B 0 · · · 0
AB B · · · 0

...
... . . . ...

AN−1B AB · · · B


︸ ︷︷ ︸

B


u0

u1
...

uN−1

 ,

Such that the optimization problem can be written in condensed form (where the decision variable is
the sequence of inputs U only) as [54]

min
U

1
2U

THU + g(x0)TU + c(x0)

s.t. U ∈ UN

where
H = (BTQB +R),

g(x0) = BTQAx0,

c(x0) = 1
2x

T
0 (ATQA+Q)x0,

with

Q =


Q

. . .
Q

 , R =


R

. . .
R

 .
Thus, the definition of our OCP as a first order optimization problem with constraints on the input.

Additionally, the library has a Matlab function, named generateCode which allows the generation of
C code files. The files in question are *_solver.c and *_solver.h where the fast Gradient Method and
other functions are defined there respectively. Ultimately, we can also generate a Simulink s-function
bloc that uses the *.mex files to automate the computation.

Figure 3.8: Bloc generated by FiOrdOs
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3.4.2.2 Simulation results

Figure 3.9: System’s response h1 (red) and h2 (green) to two step reference signals of value 10
in the minimum phase setting using FiOrdOs LMPC

Figure 3.10: Corresponding Control signals (left) and the h3 (brown) and h4 (blue) (right) for
the system’s response to two step signals of value 10 using FiOrdOs LMPC

3.4.3 CasAdi

CasADi is an open-source software framework for numerical optimization, it offers a significant flexi-
bility compared to your typical algebric modelling language. This flexibility is particularly beneficial
for problems constrained by differential equations, such as optimal control problems [7]. CasADi is
written in self-contained C++ but is most commonly used through its comprehensive interfaces for
Python or Matlab. Since its inception in late 2009, it has been successfully applied in various fields,
including process control, robotics, and aerospace, as well as in academic teaching [7].

Generally speaking, the types of problems that could be handled by CasADi are basic OCPs expressed
in ordinary differential equations (ODE) such defined in the following [7]:
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min
x(·),u(·),p

∫ T

0
L(x(t), u(t), p) dt+ E(x(T ), p)

subject to ẋ(t) = f(x(t), u(t), p),
u(t) ∈ U, x(t) ∈ X, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT , p ∈ P,

(3.16)

where x(t) ∈ RNx represents the differential states, u(t) ∈ RNu denotes the control signals, and
p ∈ RNp are the free parameters. The OCP includes a Lagrange term L, a Mayer term E, and an
ODE with initial X0 and terminal XT conditions, along with admissible sets for states X, controls U ,
and parameters P [7].

These types of problems can be efficiently solved using direct methods, such as direct collocation and
direct multiple shooting, which transcribe the OCP into a nonlinear program (NLP):

min
w

J(w)

subject to g(w) = 0,
w ∈W,

(3.17)

where w ∈ RNw is the decision variable, J is the objective function, and W represents the interval set.

3.4.3.1 NMPC design and Code generation

Seeing the same analogy between the Nonlinear program defined earlier and our problem in 3.14 we
can transform fit the OCP for the NMPC case for this task. Multiple shooting setting is the main
algorithm used to solve these type of problems [7].

Similarly to FiOrdOs, CasAdi is also able to perform c code generation beginning from it’s unitary
entity called a CasAdi function. The latter is similar to the classical Matlab symbolic function but
with other functionalities that incorporates the solver alongside an optimizer to find the solution of a
given NLP problem. The simulation results are displayed down below.

3.4.3.2 Simulation results
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Figure 3.11: System’s response h1 (red) and h2 (blue) to two step reference signals of value 10
in the minimum phase setting using CasAdi NMPC

Figure 3.12: Corresponding Control signals (left) and h3 (orange) and h4 (purple) (right) for
the system’s response to two step signals of value 10 using CasAdi NMPC

3.4.4 Controllers assessment and Comparative Study

In the previous subsection, we introduced some tools to implement Model based predictive controllers
in their linear and nonlinear aspects. Now as the simulation have been conducted with the same
format (two step signals of a value of 10 with null initial conditions on the state vector), we give the
following remarks regarding the general behavior of MPC controllers.

First of all, as the MPC strategy is based technically on a finite horizon LQR and a receding horizon
strategy, when the error between the reference and the output is very large. The solution of the OCP
tends to be the maximum value given by the controller, for our case the value 10[V] for each pump.
This value is given for a certain period of time before the controller converges to a more reasonable
value. The Latter being the equilibrium points equivalent to the desired output.

This being said, working for too much time under a saturation condition for a nonlinear system could
cause a lot of troubles for the system. A deterioration of the performances and even the possibility of
destroying the stability [58]. It is wise to remind ourselves that a saturation is inherently a nonlinear
component in itself. connecting two of them could affect the phase plan and lead the dynamics towards
an unstable limit cycle.

Now for the general behavior of the plant’s outputs and states. the latter have a similar behavior
in general with a little small distinctions between them. For instance, we can look at the LMPC
generated by the Matlab MPC toolbox and see that it has a little overshoot in its response. The
overshoot is little to none from the one generated by CasAdi.

For the designed NMPCs, the same observation could be made between the one designed classically
and the one generated using CasAdi. As for the states h3 and h4, their behavior are quite similar; a
rise into the level that corresponds to the maximum input signal generated by our pumps and then
a trough is seen as soon as the value decreases a little. This is physically explained by the fact that
we’re conducting the simulation while being in the minimum phase setting. The latter corresponds
to γ ratio that leads us to control the lower levels h1 and h2 using the two lower nozzles and not the
water pouring down via the gravitational force.

In addition to these observations, we must mention the time consumed by each controller to compute
a given control value at each sample. This is crucial for our case as we are planning to implement the
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controller in real time on our experimental setup. All of these are detailed in the table down below.

Controller Mean Computation Time per sampling [sec] Sampling Time Ratio Implementable System’s Time Response (previous test)
FiOrdOs LMPC 0.0350 0.2 17.5% yes ∼ 8 [sec]

Matlab Toolbox LMPC 0.0110 0.2 5.5% yes ∼ 12 [sec]
CasAdi NMPC 0.0746 0.2 37.3% yes ∼ 10 [sec]

Matlab Toolbox NMPC 0.3422 0.5 68.4% yes ∼ 9 [sec]

Based on the previous values, All the designed controllers could be implemented in real time on our
experimental plant. Even for the Matlab Toolbox NMPC where the sampling time is higher than the
three others. For reference, the experiments done in [32] have used a sampling time of 1 second, so
the fourth controller still fulfill the conditions for the implementation.

Saying all of this, the other computations and data operations done at each sampling time (like
gathering the data from the sensors..etc) should be added to the time that we have mentioned to
confirm whether or not these controllers could be implemented. In the end, the two best lightweight
MPCs suited for implementation are the Matlab Toolbox LMPC and CasAdi NMPC.

Seeing the similarities between the controllers and taking into account the performances seen only, we
will now conduct the standard experiments (the same ones that we did before in 2.5.2) on the Matlab
Toolbox LMPC and NMPC and we obtain the results illustrated in the subsection down below.

3.4.4.1 LMPC in the Minimum Phase setting

Figure 3.13: System’s h1 (green) and h2 (rose) response in the standard conditions using the
LMPC
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Figure 3.14: Corresponding Control signals (Left) and h3 (orange) and h4 (green) (Right) For
the mentioned test

3.4.4.2 LMPC in the Non-minimum Phase setting

Figure 3.15: System’s response h1 (orange) and h2 (purple) in the standard conditions using
the LMPC
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Figure 3.16: Corresponding Control signals (Left) and h3 (green) and h4 (rose) (Right) For the
mentioned test

3.4.4.3 NMPC in the Minimum Phase setting

Figure 3.17: System’s response h1 (yellow) and h2 (purple) in the standard conditions using
the NMPC
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Figure 3.18: Corresponding Control signals (Left) and h3 (green) and h4 (blue) (Right) For the
mentioned test

3.4.4.4 NMPC in the Non-minimum Phase setting

Figure 3.19: System’s response h1 (green) and h2 (blue) in the standard conditions using the
NMPC
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Figure 3.20: Corresponding Control signals (Left) and h3 (brown) and h2 (blue) (Right) For
the mentioned test

3.4.4.5 Remarks and Observations

After conducting all these simulations, quite a few observations could be made.

First of all, All the control objectives have been reached for both controllers designed in different
settings (Min and non-min settings). The response’s shape has some pseudo-oscillations for the LMPC
in both settings as well as the NMPC in the non-minimum phase setting. The latter has a response
similar to the behavior of a first order system in it’s minimum phase setting with just a little to none
overshoot that’s barely around 0.5% of the final value.

Regarding the control signals, we can see that the signal is smoother for the LMPC whilst the NMPC
has more of a stair case signal type. This is mainly due to the sampling time that was chosen before
the simulations where it was 0.2 seconds for the Linear predictive controller and 0.5 seconds for
the Nonlinear one. For reference, [32] used a sampling time of 1 second and the results were very
satisfactory for the conducted simulations and experimentation.

The significant observation that could be made comparing these results to the PID control scheme is
the drastic improvement in the non-minimum phase setting step response time for both the Linear
and the Nonlinear model predictive controllers. In fact, this time was around 340 seconds for the
benchmark controller and it’s now around 90 seconds for the NMPC and 100 seconds for the LMPC.
This corresponds to reducing that time by around 70% of it’s original configuration and shows the
effectiveness of the predictive control strategies.

3.5 Robustness Tests and Validation of the Controller

For the next part, we will see how robust are the designed controllers with respect to the tests that
we defined before in 2.5.3.1 and 2.5.3.2.
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3.5.1 LMPC

3.5.1.1 Robustness with respect to High viscosity fluids

As we mentioned before, this test is based on the discharge coefficient Cd that could be considered at
the output of each nozzle in our system.

The values taken for this test are the same as in 2.5.3.1 and the results are displayed down below for
the minimum and the non-minimum phase settings. The latter being designed at γ1 = γ2 = 0 and
will be used again in the next test.

Figure 3.21: Evolution of the System’s states under different values of Cd for the minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

Figure 3.22: Evolution of the System’s states under different values of Cd for the non-minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4
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As we could explain early on in 2.5.3.1, high viscosity fluids like oil induce a latency into the system’s
dynamics. The flow is then changed and of course reduced compared to the original flow. This doesn’t
change from a controller to another and the LMPC doesn’t escape the rules of physics.

In addition, the Linear MPC gain a pseudo-sinusoidal behavior when we arrive at the value Cd = 0.2.
We can notice that the dynamics before this are the same but with an induced latency.

Another observation that could be made is that the overshoot isn’t as much as it was during the tests
conducted on the decentralized PI Controller. In fact, that value decreases as much as we decrease
the value of the discharge coefficient. This is one of the main factors that differentiate MPC control
than classical control strategies as it’s based on the Receding Horizon Principle and not only on the
errors between our output and the reference.

The non minimum phase setting is highly affected to variations in the viscosity than the minimum
one. Even though that the results are looking somehow awful due to the increasing magnitude of the
oscillations in our output yet it is definitely better than the results obtained via the decentralized PI
controller in 2.5.3.1.

3.5.1.2 Robustness with respect to the interconnections

Figure 3.23: Evolution of the System’s states under different values of γ for the non-minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

In this part, we test the robustness of our controlled system by designing a controller without taking
the interconnections into consideration and then introducing them as a noise signal with respect to
our system.

As shown in the upper figure 3.5.2.2, the interconnections induces some oscillations in our system.
These oscillations are somehow random and more chaotic let’s say than the ones generated by the
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benchmark controller. In addition, we can see that the final value for the two upper tanks (h3 and h4)
is reduced each time we increase the ratio for the valve. This is due to the fact that the 02 lower tanks
and our control objectives are being divided between what’s been pulled down by the gravitation and
what’s been brought by the lower nozzle.

The major observation that we can see is that the system is robust for a value of γ = 0.15 which
wasn’t the case for our benchmark. The control objectives are reached for this value and the system,
and so we can consider this another advantage of the LMPC Control law.

3.5.2 NMPC

3.5.2.1 Robustness with respect to High viscosity fluids

Figure 3.24: Evolution of the System’s states under different values of Cd for the minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

In the same way as we did before, we conduct the same high viscosity robustness test on the controlled
system using the Nonlinear Model Predictive Controller. The results shows that the system is induced
only with latency and no other behavioral deviation from it’s original form. The overshoot didn’t
increase and stayed the same for h3 and h4 and it decreased barely for h1 and h2. And so to simplify
it, the representation stayed practically the same but with an extension on the time axis for both the
minimum and the non-minimum settings. We can clearly say that this is without a doubt the most
robust controller with respect to high viscosity fluids.

Robustness Tests and Validation of the Controller Page 69



Figure 3.25: Evolution of the System’s states under different values of Cd for the non-minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

3.5.2.2 Robustness with respect to the interconnections

Figure 3.26: Evolution of the System’s states under different values of γ for the non-minimum
phase setting, Upper left h1, Upper right h2, Lower left h3, Lower right h4

On the other hand, after conducting the simulations on the system designed using the NMPC (figures
down below) in the non-minimum phase setting and seeing the results of introducing the interconnec-
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tions on that controller, we can see that the controlled plant can barely maintain the control objective
for a value of γ = 0.1. The designed plant using the decentralized controller as well as the LMPC both
succeeded in making the control objective and so the Nonlinear MPC falls short in this test compared
to its peers.

3.6 Recurrent Neural Network based Predictive Control

As we could see before, we designed both linear and Nonlinear Model Predictive Controllers under
different libraries available in the academia. We’ve seen one of the major problems concerning these
optimization techniques where we had to increase sampling time of the NMPC designed with the
Matlab Toolbox to 0.5[seconds] in 3.4.4.5. Approximately, 70% of this duration is spent on the
computation of the solution of this optimization problem and will lead us eventually to reduce the
number of tasks that could be implemented simultaneously on this system or completely change the
controlling device that’s embedded on. So the question now, how can we avoid this problem and
reduce the effects of having such computational complexity on our controller?

In this section, we will propose a controller that uses a Recurrent Neural Network to predict the
control input based on a training dataset that was generated given the designed NMPC from 3.4.4.5.
This reduces tremendously the computational cost by not requiring to solve the online optimization
problem at each sampling time [11].

3.6.1 Basic Idea

The main idea behind this method is to first design a Model Predictive Controller that satisfies the
performance requirements for our system. Then we will apply a function approximation of that block
using RNNs.

Function approximation techniques have been treated before for this problem, some of them used
Neural Networks to approximate the dynamics of the system and thus a model which the MPC will be
based on [11]. This method however requires an estimation of the hidden states at each sampling time
which goes against our main computational objective. Other works also used vanilla Feed forward
(FF) Neural Networks to approximate the MPC control law [11]. The latter was a mapping from
the system’s states to the optimal control inputs. The optimal law being dependant not only on the
current state but also on the objective, the need to figure out another variable becomes crucial. Rather
than this, Machine learning techniques have also been applied to find either the best control input but
also the best prediction model that have the best closed loop performance [11].

The best solution was presented by [11] where, as we mentioned before, takes the best designed MPC
that satisfies the process specifications and performances. Then data pairs are generated through
simulation means and are made up of control actions and the error between the reference
and the output. The temporal relationships between these variables are captured by the RNN and
ensures that the new control value depends on its past values as well as the past errors between our
output and the desired reference. This way the data contains how does the MPC solves the constrained
optimization problem to generate the control policy.

Once the network is trained, there will be no need to perform an optimization step to return the
optimal control law. Thus, the MPC is completely replaced by the RNN, the latter being employed
for real-time control.

Other advantages of this method is that it doesn’t need a state estimation algorithm as it is independent
from the system’s states. The next figure illustrates the training architecture of the new controller,
known as the RNN-MPC Controller. We will discuss some fundamentals about Neural Networks in
the next subsection.
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Figure 3.27: Training architecture for the RNN-MPC controller based on NMPC. (b) RNN-
MPC controller implementation [11]

3.6.2 Artificial Neural Network

ANNs are computational models inspired by the behavior of the brain and its method of learning from
mistakes. They consist of input, hidden, and output layers. The reasoning behind using ANNs to
model complex dynamic processes lies in their ability to estimate unknown dynamic system outputs
yt ∈ Y by forming a linear combination of neurons responses derived from inputs xt ∈ X and applying
a nonlinear transformation [11].

ANNs are usually used either for classification problems where we want to estimate the probability
that a certain set of inputs could belong to a class A a class B or either for making predictions and
particularly regression problems. Our approach can be framed as a regression problem, which seeks
to identify a function that most accurately characterizes the process dynamics through the mapping
f : X → Y , where X ⊆ Rnx and Y ⊆ Rny represent the input and output spaces, respectively [11].

In an ANN, each neuron performs the following operation:

yt = fy(Wxyxt + b) (3.18)

where yt is the neuron output, xt is the input, f(·) is a nonlinear activation function, Wxy ∈ Rny×nx

is the weight matrix from xt to yt, and b is the bias term. The ANN output, y, is easily computed
by applying 3.18 to each neuron. Common activation functions include the sigmoid function, the
hyperbolic tangent, and the rectified linear unit (ReLU). In this work, the hyperbolic tangent is used:

tanh(x) = ex − e−x

ex + e−x
(3.19)

The learning process involves updating the network’s weight matrices to minimize a chosen loss func-
tion. Typically for regression problems, the loss function is the Mean Squared Error (MSE) between
the desired output data and the ANN’s predictions, which is minimized using a gradient descent
algorithm. The iterative application of the chain rule to compute the gradient leads to the back-
propagation method.
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3.6.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) introduces time dependence to conventional Feed-Forward (FF)
Neural Networks. It can capture the system’s dynamics using a hidden state ht ∈ H ⊆ Rnh , generated
from network inputs xt ∈ X up to time t ∈ N and past hidden states ht−1 ∈ H, which are updated
recursively according to:

ht = fh(Wxhxt +Whhht−1 + b) (3.20)

where Wxh ∈ Rnh×nx and Whh ∈ Rnh×nh are the weight matrices from the input layer to the hidden
layer and from the hidden layer to itself, respectively. Typically, h0 = 0.

Similarly, the output yt is generated as follows:

yt = fy(Whyht) (3.21)

where Why ∈ Rny×nh is the weight matrix from the hidden layer to the output layer. The function fy

is typically an identity function mapping the hidden states to the RNN’s output variable.

Training the RNN involves updating the parameters, which are primarily the weight matricesWxh,Whh,
and Why. This update process is conducted using the back-propagation through time (BPTT) method.

3.6.3.1 RNN Architecture

The following illustration in 3.28 shows a basic architecture of a vanilla RNN. The main components
of the scheme could be depicted as follows [18]:

- Input Nodes (Blue): Denoted as x(t), these nodes receive input vectors at each timestep t.

- Hidden Nodes (Green): Denoted as h(t), these nodes compute the recurrent relationships in
the network, integrating current input with historical data.

- Output Nodes (Purple): Denoted as o(t), these nodes produce the output based on the
hidden state at each timestep.

- Weight Matrices:

◦ U : Weight matrix connecting input nodes to hidden nodes.
◦ W : Recurrent weight matrix connecting hidden nodes from the previous timestep to the

current timestep.
◦ V : Weight matrix connecting hidden nodes to output nodes.

Figure 3.28: Folded and Unfolded RNN for a better visualization [18].
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3.6.3.2 Backpropagation Through Time

BPTT is a method used to compute the gradient of the loss function of a recurrent neural network.
It is essential for training RNNs to perform tasks involving sequential data [18].

The process of BPTT involves several key steps [18]:

1. Unfolding the RNN over time to create a deep network where each "layer" corresponds to a time
step.

2. Performing a forward pass through this network to compute the outputs at each time step.

3. Calculating the loss at the final output or at each time step, depending on the application.

4. The gradients of the loss function L with respect to the network weights are computed by
backpropagating errors from the output back to the inputs.

5. After calculating the gradients for each time step, they are accumulated across the sequence,
and the network weights are updated accordingly. This approach ensures that learning captures
both the immediate and more distant dependencies within the sequence.

3.6.4 Data Retrieving and Model Design

For the data generation, we will be using the designed NMPC using the Matlab Toolbox. The lat-
ter even though has achieved a some good performances, we still want to reduce its computational
complexity.

The controlled plant (plant + controller) will be tracking first a pseudo random binary signal (PRBS).
The MPC response is then saved and is determined to be very satisfactory for our test. This ensures a
sufficient process excitation at all the important frequencies [11]. The stored data sequences are saved
in a dataset that’s divided into 80% for training the network and the remaining 20% will be used for
the validation.

Of course, the data is being pre-processed first where a Min-Max normalization has been done first.
This ensures the apparition of outliers as well as having a good gradient flow during the training
phase. The input configuration for our Network will take the last five samples of the control variables
as well as the five past errors between the desired and the current output. The formula is thus given
as follows [11]:

u(k + 1) = f(u(k), . . . , u(k − 5), e(k), . . . , e(k − 5)) (3.22)

The hidden layer consist of 10 neurons, and the learning rate is set to 0.001. The Mean Square
Error (MSE) was utilized as the loss function, and Stochastic Gradient Descent (SGD) served as the
optimizer. The training process involves around 500 iterations for our system [11].

In addition to these characteristics, we added a Dropout layer with a 0.5 deactivation probability as
well as an L2 regularization term with a 0.001 weight decay to avoid having an over-fitting during the
training phase

To assess the performance of the trained RNN, three distinct reference signal tests were employed: a
Pseudo-Random Binary Sequence (PRBS), a sinusoidal signal, and a step signal.

In [11] they proved that the best network configuration is the one that uses classical RNN and not
a similar configuration that happens to have the same hyper-parameters with an LSTM (Long Short
Term Memory) neuron or a classical Feed Forward Neuron; Thus we will be training only the one
that’s proven to have better results. We will also have the Root Mean Squared Error as well as the
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FIT criterion as metrics to see the model’s performance.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(3.23)

FIT = 1−
∑n

i=1(ŷi− yi)2∑
i = 1n(|ŷi − µ|+ |yi − µ|)2 (3.24)

3.6.5 Results

Figure 3.29 illustrates the plots of the loss function for both the training and the validation set. The
final values were 0.28 for the Test loss and 0.23 for the Train loss. This indicates that the training was
well done and the over-fitting has been avoided (comparing the loss values to their original values).
Some instability of the Train loss could also be seen after converging to a certain value, this shouldn’t
make us worry a lot because the validation loss is still stable.

Figure 3.29: Train and Test Loss of our RNN during the training phase

We will now test the prediction of the control signal U on some validation data that we have. This
could be seen in figure 3.30 where we can see the actual control signal vs the predicted one by our
Recurrent Neural Network. As we can see the prediction is very reliable and we will confirm it even
more in the next test.
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Figure 3.30: Prediction Results on PRBS from the shuffeled test data

The data was also shuffled before introducing it inside our network, making the signal looking like it
has been randomized. In addition, we can notice that the signal is not reaching the peaks enough as
it should be. Of course, these are some estimation errors made by our model.

Now we will test our prediction model on two test sets that weren’t present in the validation set.
These two sets are the data pairs collected from a step signal tracking as well as a sin signal tracking
by the considered MPC for this application. The results are displayed in the figures down below.

(a) Prediction Results of u1 for a step signal
tracking

(b) Prediction Results of u2 for a step signal
tracking

Figure 3.31: Results for a Step signal Tracking of value 10

As we can see from both figures, the prediction made is well rounded in comparison to the behavior
observed in the predicted signal. It match well the real control signal with an error around 0.2 for
the Sin signal tracking and 0.11 for the step signal tracking. Some peaks in the error could happen
in some peak values like the beginning of the signal in 3.31. This however is solved automatically
considering that we will begin the control with at least five time values that are initialized by the
NMPC controller. Then we will switch to the Recurrent Network that provides a solution to the
online optimization problem with a small static error as mentioned before.

The following table give some detailed information about the performance of the conducted tests and
the values found by computing the metrics that we cited before.
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(a) Prediction Results of u1 for a sin signal
tracking

(b) Prediction Results of u2 for a sin signal
tracking

Figure 3.32: Results for a Sin signal tracking

Signal Type Control Input RMSE FIT

Sin Signal Tracking
U1 0.5468226959821079 0.9697289628191685
U2 0.4572867623068304 0.9793170849221486

Step Signal Tracking
U1 0.18406099622058472 0.9865796457382038
U2 0.1897116426874888 0.9882108518078806

Table 3.1: Performance Metrics for Sin and Step Signal Tracking

Seeing these values, we can say that we have achieved a similarity of at least 96.97% between the
predicted control signal and it’s actual value. Additionally, the computational time consumed on a
single feed-forward over our Network is evaluated at around 2.79

1992 = 1.4× 10−3[sec] Which is a drastic
change to which it was estimated before in 3.4.4. We could say that we obtained our objective by
making this application.
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3.7 Conclusion

In this chapter, we dived thoroughly in Predictive Control techniques. We started it by giving a general
historical perspective about this domain. It was then followed by the introduction of Model Predictive
Control and its two variants, the Linear and Nonlinear MPCs and the practical implementation of
these two controllers was rigorously assessed through simulations using standardized tests that we
defined before during our design of our benchmark Decentralized PI Controller.

Then, we established some general observations about MPC controllers. A tendency to output the
maximum control values when a large error between our output and the desired reference was a notable
observation. Even though it reduces the errors pretty quickly, it still poses some risks, particularly
for real nonlinear systems where stability and performance are being compromised. For this matter,
reducing the values of the Weight matrices of the outputs could certainly help in dealing with that
yet a static error will eventually appear in the mentioned output.

Additionally, we conducted the design of the LMPC and NMPC using different libraries. An assessment
of these controllers and the feasibility of real-time implementation was also conducted. The controllers
where then faced with some robustness tests that showed that the NMPC was the best controller till
now to deal with high viscosity fluids. On the other hand, it gave terrible results in the robustness
with respect to interconnections.

To address the computational challenges associated with the NMPC design, we proposed an approach
based on RNNs to predict the control inputs without performing the online optimization at each
sampling time. The objective was well attained as we reduced the time factor by hundreds of times.

In conclusion, this chapter has provided a comprehensive evaluation of MPC strategies, highlighting
their strengths, limitations, and potential for real-time implementation. The integration of RNN
based controller offers a promising method to overcome computational constraints and having way
more efficient and robust predictive controllers.
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Chapter 4

Fuzzy Control

4.1 Introduction

The word “fuzzy” is perhaps no longer fuzzy to many engineers today. Introduced in the earlier 1970s,
fuzzy systems and fuzzy control theories as an emerging technology targeting industrial applications
have added a promising new dimension to the existing domain of conventional control systems engi-
neering. It is now a common belief that when a complex physical system does not provide a set of
differential or difference equations as a precise or reasonably accurate mathematical model, particularly
when the system description requires certain human experience in linguistic terms, fuzzy systems and
fuzzy control theories have some salient features and distinguishing merits over many other approaches.

Fuzzy control methods and algorithms, including many specialized software and hardware available
on the market today, may be classified as one type of intelligent control. This is because fuzzy
systems modeling, analysis, and control incorporate a certain amount of human knowledge into its
components (fuzzy sets, fuzzy logic, and fuzzy rule base). Using human expertise in system modeling
and controller design is not only advantageous but often necessary. Classical controller design has
already incorporated human skills and knowledge: for instance, what type of controller to use and how
to determine the controller structure and parameters largely depend on the decision and preference of
the designer, especially when multiple choices are possible. The relatively new fuzzy control technology
provides one more choice for this consideration; it has the intention to be an alternative, rather than
a simple replacement, of the existing control techniques such as classical control and other intelligent
control methods (e.g., neural networks, expert systems, etc.). Together, they supply systems and
control engineers with a more complete toolbox to deal with the complex, dynamic, and uncertain
real world. Fuzzy control technology is one of the many tools in this toolbox that is developed not only
for elegant mathematical theories but, more importantly, for many practical problems with various
technical challenges.[13]

Almost all of the physical dynamical systems in real life cannot be represented by linear differential
equations and have a nonlinear nature. At the same time, linear control methods rely on the key
assumption of small range of operation for the linear model, acquired from linearizing the nonlinear
system, to be valid. When the required operation range is large, a linear controller is prone to be
unstable, because the nonlinearities in the plant cannot be properly dealt with. Another assumption
of linear control is that the system model is indeed linearizable and the linear model is accurate enough
for building up the controller. However, the highly nonlinear and discontinuous nature of many, for
instance, mechanical and electrical systems does not allow linear approximation. It is also necessary,
in the design process of controllers, that the system model is well achievable through a mathematical
model and the parameters of the system model are reasonably well-known.
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Nevertheless, for many nonlinear plants i.e. chemical processes, building a mathematical model is very
difficult and only the input-output data yielded from running the process is accessible for an estima-
tion. Many control problems involve uncertainties in the model parameters. A controller based on
inaccurate or obsolete values of the model parameters may show significant performance degradation
or even instability. There are some complicated approaches like auto-regressive model based on the
input-output data to compensate model uncertainties, which usually use to design a process control.
However due to the high nonlinearity of the process, the order of the model often becomes very high
so that past effects are taken into account, even if that is physically unrealistic.

One way to cope with such difficulty is to develop a nonlinear model composing of a number of sub-
models which are simple, understandable, and responsible for respective sub-domains. The idea of
multi-model approach is not new, but the idea of fuzzy modeling using the concept of the fuzzy sets
theory offers a new technique to build multi-models of the process based on the input-output data or
the original mathematical model of the system. Facing complex and nonlinear systems, we have to
recognize that modeling is an art and it is important to realize system modeling is generally an act to
understand things directly rather than by computer. At most a linear combination like a fuzzy model
is clearly understandable.[44]

Fuzzy logic provides a simple way to arrive at a definite conclusion based upon vague, imprecise, noisy,
or missing input information. Hence, unlike classical logic, that requires a deep understanding of a
system, exact equations and precise numeric values, fuzzy logic incorporates an alternative way of
thinking, which allows modeling complex systems using a higher level of abstraction originating from
our knowledge and experience. The principal advantage of fuzzy logic systems is their aptitude to
approximate any nonlinear function

In this chapter, a recall is given on modeling by two particular structures of fuzzy models that are
Mamdani and T-S fuzzy models. however, the construction procedure of a T-S fuzzy model is detailed
and will be applied for the coupled tanks system.

We will then use the so approved fuzzy model to design controllers based on the Parallel Distributed
Compensation (PDC) control law for stabilizing the system first. Then, a reference tracking when
adding an integral structure to the latter. The controllers will be divided into two: A complete model
that will be based on 16 fuzzy rules and a simplified model that will be based on 04 fuzzy rules only.
We will then validate them using the robustness tests defined earlier in state of the art chapter. A
thorough comparison will also be made with the benchmark decentralized PI controller throughout
the whole observations written during this chapter.
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Figure 4.1: Fuzzy Model Structure [44]

4.2 Takagi-Sugeno Fuzzy Models

A fuzzy controller is a model that uses fuzzy rules, which are linguistic if-then statements involving
fuzzy sets, fuzzy logic, and fuzzy inference. Fuzzy rules play a key role in representing expert con-
trol/modeling knowledge and experience and in linking the input variables of fuzzy controllers/models
to output variable (or variables). Two major types of fuzzy rules exist, namely, Mamdani fuzzy rules
and Takagi-Sugeno (TS, for short) fuzzy rules. [44]

Mamdani fuzzy systems

Let’s first start with the familiar Mamdani fuzzy systems. A simple but representative Mamdani fuzzy
rule describing the movement of a car is:

IF Speed is High AND Acceleration is Small THEN Braking is (should be) Modest

where Speed and Acceleration are input variables and Braking is an output variable. "High," "Small,"
and "Modest" are fuzzy sets, and the first two are called input fuzzy sets while the last one is named
the output fuzzy set.

The variables as well as linguistic terms, such as "High", can be represented by mathematical symbols.
Thus, a Mamdani fuzzy rule for a fuzzy controller involving three input variables and two output
variables can be described as follows:

IF x1 is M1 AND x2 is M2 AND x3 is M3 THEN u1 is M4;u2 is M5;

where ,

x1, x2, andx3 are input variables (e.g., error, its first derivative and its second derivative), such that

u1, u2 are output variables (e.g., valve openness)

yi is the output of the i-th fuzzy IF-THEN rule.

In theory, these variables can be either continuous or discrete; practically speaking, however, they
should be discrete because virtually all fuzzy controllers and models are implemented using digital
computers. M1, M2, M3, M4, and M5 are fuzzy sets, and AND / OR are fuzzy logic "&" and "+"
operators respectively. "IF x1 is M1 AND x2 is M2 AND x3 is M3" is called the rule antecedent,
whereas the remaining part is named the rule consequent.

Takagi and Sugeno fuzzy systems
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Takagi and Sugeno (Takagi & Sugeno, 1985) came up with the alternative rule format in order to make
automated tuning possible and to reduce the number of fuzzy rules. A T-S fuzzy model is described
by fuzzy IF-THEN rules defined by the following:

Rule i : IF z1(t) is Mi1 and . . . zp(t) is Mip THEN yi = ai
0 + ai

1z1(t) + ai
2z2(t) + · · ·+ ai

pzp(t)

Where,
Mi1, . . .Mip are fuzzy sets,

ai
0, . . . a

i
p are the coefficients of the i-th linear consequent,and

yi is the output of the i-th fuzzy IF-THEN rule.

T-S model represents a dynamical system whose IF-THEN rules represent local linear input-output
relations of the nonlinear dynamical system. The main feature of a T-S fuzzy model is to express the
local dynamics of each fuzzy rule by a linear sub-model, and then the overall fuzzy system is obtained
by fuzzy “blending” of the linear sub-models;

4.2.1 Principle of the T-S fuzzy multimodel approach

The T-S approach is founded on decomposing the dynamic behavior of the nonlinear system into a
set of r operating regions, with each region characterized by a linear sub-model The Figure down
below illustrates this principle in a two-dimensional case, where the set of operating points of the
coordinate system x(t) = (x1(t), x2(t)) has been decomposed into four operating domains denoted
as D1, D2, D3, and D4. The overall operating domain is then defined by the union of these local
domains, D = D1 ∪ D2 ∪ D3 ∪ D4. On each of these local domains, or sub-domains, a local model
can be constructed;

Figure 4.2: T-S fuzzy multimodel approach[52]

4.3 Construction of Takagi Sugeno Fuzzy Model

T-S fuzzy system is used to describe the nonlinear plant by fuzzy IF-THEN rules that represent locally
linear input-output relations of a system[31].
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The Takagi–Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985), on the other hand, uses crisp func-
tions in the consequents. Hence, it can be seen as a combination of linguistic and mathematical
regression modeling in the sense that the antecedents describe fuzzy regions in the input space in
which consequent functions are valid[8].

Figure 4.3: Model-based fuzzy control design[44]

To design a T-S fuzzy controller, we need a T-S fuzzy model for a nonlinear system. Therefore, the
construction of a fuzzy model represent an important and basic procedure in this approach. In general
there are two approaches for constructing fuzzy models:

1. Identification (fuzzy modeling) using input-output data

2. Derivation from given nonlinear system equations.

The identification approach is suitable for modelling of plants that are difficult to represent using
analytical models, whereas when the nonlinear dynamical models are available, the second approach
could be seen as more appropriated.

In both cases, we obtain a T-S fuzzy model whose i-th rule form is:

Rule i : IF z1(t) is Mi1 and . . . zp(t) is Mip THEN:

{
ẋ(t) = Aix(t) +Biu(t)
y(t) = Cix(t)

(4.1)

The final outputs of the fuzzy model are inferred as follows:
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ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) +Biu(t))

y(t) =
r∑

i=1
hi(z(t))Cix(t)

(4.2)

where Z(t) = [z1(t), z2(t), . . . , zp(t)] is the premise variable vector that may be functions of the state
variables, measurable external disturbances and/or time. Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rq×n, x(t) ∈
Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rq is the output vector; r is the number of
IF-THEN rules and Mij is a fuzzy set. hi(z(t)) is the normalized weight for each rule (or the activation
function) and wi(t) is the membership function for rule i, that could be written as:

∀i ∈ {1, 2, . . . , r}, hi(z(t)) ≥ 0,
r∑

i=1
hi(z(t)) = 1 (4.3)

hi(z(t)) = wi(t)∑r
i=1wi(t)

(4.4)

Figure 4.4: Takagi-Sugeno multiple model architecture[46]

4.3.1 Identification approach

From input-output data, we obtain linear sub-models around the different operational points. The
local linear sub-models, are fuzzy IF-THEN rules, whose consequent parts are linear models. This
identification allows us to find an optimal model after estimating the parameters and validating, the
final model. However, a state representation is used in the consequent part in order to extend the
state feedback control principle to the nonlinear case.

4.3.2 Nonlinear dynamical model

When nonlinear dynamical models are easy to obtain, the linearization, the principle of sector nonlin-
earity or local approximation are more appropriated for constructing the fuzzy model [52].
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4.3.2.1 Linearization

The basic idea is to linearize the nonlinear analytical model of the process at various operating points,
which are selected intelligently and carefully to obtain affine linear models connected by activation
functions [52].

4.3.2.2 Sector nonlinearity

The first apparition of sector non linearity in fuzzy model construction was back in 1992, it is based
on considering a simple nonlinear system . x(t) = f(x(t)) where f(0) = 0. The objective is to find
the global sector such that .

x(t) = f(x(t)) ∈ [−a; a]

An exact fuzzy model construction is guaranteed with this method. However, it is sometimes difficult
to find global sectors, then local sector nonlinearity is considered. The nonlinear system is represented
exactly by the fuzzy model in the “local” region d < x(t) < d . But, it is often desirable to simplify
the original nonlinear system as much as possible in order to reduce the number of rules. the following
two figures illustrates this concept.[52]

(a) Global sector nonlinearity[2] (b) Local sector nonlinearity[2]

Figure 4.5: Comparison between global and local non-linearities

To obtain the TS-type model, we will follow the following approach : We consider the nonlinear
mathematical model, assuming the existence of a compact set of premise variables (z ∈ C ⊂ Rz) in
which the nonlinearities are bounded (zi ∈ [min zi,max zi]), where min zi and max zi are the lower
and upper bounds of the nonlinear terms for i ∈ {1, . . . , k}.

then we can write :
(zi(t)) = (max zi)×M0

i (zi(t)) + (min zi)×M1
i (zi(t)) (4.5)

where:


M0

i (zi(t)) = zi(t)− (min zi)
(max zi)− (min zi)

M1
i (zi(t)) = (max zi)− zi(t)

(max zi)− (min zi)

(4.6)

Example
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Consider the following nonlinear system:ẋ1(t)
ẋ2(t)

 =

 −x1(t) + x1(t)x2
2(t)

−x2(t) + (3 + x2(t))x3
1(t)



For simplicity, we assume that x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. Of course, we can assume any range for
x1(t) and x2(t) to construct a fuzzy model. Equation can be written as

ẋ(t) =

 −1 x1(t)x2
2(t)

(3 + x2(t))x2
1(t) −1

x(t);

where x(t) = [x1(t) x2(t)]T and x1(t)x2
2(t) and (3 + x2(t))x2

1(t) are nonlinear terms.

For the nonlinear terms,
z1(t) = x1(t)x2

2(t), non linearity :nl1
z2(t) = (3 + x2(t))x2

1(t) non linearity :nl2

Then, we have :

ẋ(t) =

 −1 z1(t)
z2(t) −1

x(t);

Next, we should calculate the minimum and maximum values of z1(t) and z2(t) under x1(t) ∈ [−1, 1]
and x2(t) ∈ [−1, 1]. They are obtained as follows:

max
x1(t),x2(t)

z1(t) = 1; min
x1(t),x2(t)

z1(t) = −1;

max
x1(t),x2(t)

z2(t) = 4; min
x1(t),x2(t)

z2(t) = 0.

From the maximum and minimum values, z1(t) and z2(t) can be represented by

z1(t) = x1(t)x2
2(t) = M1(z1(t)) · 1 +M2(z1(t)) · (−1);

z2(t) = (3 + x2(t))x2
1(t) = N1(z2(t)) · 4 +N2(z2(t)) · 0;

where
M1(z1(t)) +M2(z1(t)) = 1;
N1(z2(t)) +N2(z2(t)) = 1.

Therefore the membership functions can be calculated as

M1(z1(t)) = z1(t) + 1
2 ; M2(z1(t)) = 1− z1(t)

2 ;

N1(z2(t)) = z2(t)
4 ; N2(z2(t)) = 4− z2(t)

4 ;

We name the membership functions "Positive," "Negative," "Big," and "Small," respectively. Then, the
nonlinear system is represented by the following fuzzy model.

Model Rule 1: IF z1(t) is "Positive" and z2(t) is "Big," THEN ẋ(t) = A1x(t).

Model Rule 2: IF z1(t) is "Positive" and z2(t) is "Small," THEN ẋ(t) = A2x(t).

Model Rule 3: IF z1(t) is "Negative" and z2(t) is "Big," THEN ẋ(t) = A3x(t).

Model Rule 4: IF z1(t) is "Negative" and z2(t) is "Small," THEN ẋ(t) = A4x(t).
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Here,

A1 =

−1 1
4 −1

 ; A2 =

−1 1
0 −1

 ;

A3 =

−1 −1
4 −1

 ; A4 =

−1 −1
0 −1

 ;

Figure 4.6: Membership functions M1(z1(t)) and M2(z1(t))[44]

Figure 4.7: Membership functions N1(z2(t))and N2(z2(t))[44]

After the defuzzification, we have:

ẋ(t) =
4∑

i=1
hi(z(t))Aix(t)

where
h1(z(t)) = M1(z1(t))×N1(z2(t))
h2(z(t)) = M1(z1(t))×N2(z2(t))
h3(z(t)) = M2(z1(t))×N1(z2(t))
h4(z(t)) = M2(z1(t))×N2(z2(t))

Finally, this model represents the nonlinear system in the region [−1, 1]× [−1, 1] of the x1− x2 space.

4.4 TS fuzzy modeling of Coupled Tanks

The dynamic model of the coupled tanks system is the result of applying mass balances and Bernoulli’s
law. Defined earlier in the state of the art chapter, it is represented by the following continuous-time
differential equations:
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dh1(t)
dt

= − a1
A1

√
2gh1(t) + a3

A1

√
2gh3(t) + γ1K1

A1
v1(t) (4.7)

dh2(t)
dt

= − a2
A2

√
2gh2(t) + a4

A2

√
2gh4(t) + γ2K2

A2
v2(t) (4.8)

dh3(t)
dt

= − a3
A3

√
2gh3(t) + (1− γ2)K2

A3
v2(t) (4.9)

dh4(t)
dt

= − a4
A4

√
2gh4(t) + (1− γ1)K1

A4
v1(t) (4.10)

4.4.1 fuzzy model with 16 rules

From the nonlinear system of the Tank system, one can see that the non-linearity is related to the
states

√
hi(t) for i = 1, 2, 3, 4[62]

Thus, by considering the following variable change

Zi(t) = 1√
hi

for i = 1, 2, 3, 4 and assuming that Zi min ≤ Zi(t) ≤ Zi max (4.11)

the following approximation can be obtained


Z1(t) = S1(Z1(t))× Z1 min + S2(Z1(t))× Z1 max

Z2(t) = R1(Z2(t))× Z2 min +R2(Z2(t))× Z2 max

Z3(t) = M1(Z3(t))× Z3 min +M2(Z3(t))× Z3 max

Z4(t) = N1(Z4(t))× Z4 min +N2(Z4(t))× Z4 max

(4.12)


S1(Z1(t)) + S2(Z1(t)) = 1
R1(Z2(t)) +R2(Z2(t)) = 1
M1(Z3(t)) +M2(Z3(t)) = 1
N1(Z4(t)) +N2(Z4(t)) = 1

(4.13)

assuming that the height of each tank as the system output, one can get

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(4.14)

where:

X =


h1

h2

h3

h4

 , U =

v1

v2

 , C =

1 0 0 0
0 1 0 0

B =


γ1K1

A1
0

0 γ2K2
A2

0 (1−γ2)K2
A3

(1−γ1)K1
A4

0



A =



−a1
√

2g
A1

√
h1

0 a3
√

2g
A1

√
h3

0
0 −a2

√
2g

A2
√

h2
0 a4

√
2g

A2
√

h4

0 0 − a3
√

2g
A3

√
h3

0
0 0 0 − a4

√
2g

A4
√

h4
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the matrix A can be rewritten as follows A = ∑r
i=1 hi(z(t))Ai, for i = 1, 2, 3, . . . , r . for r=16

The fuzzy model has the following 16 rules as depicted in the next table.

Rule z1(t) z2(t) z3(t) z4(t) ẋ(t)
1 S1(Z1(t)) R1(Z2(t)) M1(Z3(t)) N1(Z4(t)) A1x(t) + Bu(t)
2 S2(Z1(t)) R1(Z2(t)) M1(Z3(t)) N1(Z4(t)) A2x(t) + Bu(t)
3 S1(Z1(t)) R2(Z2(t)) M1(Z3(t)) N1(Z4(t)) A3x(t) + Bu(t)
4 S2(Z1(t)) R2(Z2(t)) M1(Z3(t)) N1(Z4(t)) A4x(t) + Bu(t)
5 S1(Z1(t)) R1(Z2(t)) M2(Z3(t)) N1(Z4(t)) A5x(t) + Bu(t)
6 S2(Z1(t)) R1(Z2(t)) M2(Z3(t)) N1(Z4(t)) A6x(t) + Bu(t)
7 S1(Z1(t)) R2(Z2(t)) M2(Z3(t)) N1(Z4(t)) A7x(t) + Bu(t)
8 S2(Z1(t)) R2(Z2(t)) M2(Z3(t)) N1(Z4(t)) A8x(t) + Bu(t)
9 S1(Z1(t)) R1(Z2(t)) M1(Z3(t)) N2(Z4(t)) A9x(t) + Bu(t)
10 S2(Z1(t)) R1(Z2(t)) M1(Z3(t)) N2(Z4(t)) A10x(t)+Bu(t)
11 S1(Z1(t)) R2(Z2(t)) M1(Z3(t)) N2(Z4(t)) A11x(t)+Bu(t)
12 S2(Z1(t)) R2(Z2(t)) M1(Z3(t)) N2(Z4(t)) A12x(t)+Bu(t)
13 S1(Z1(t)) R1(Z2(t)) M2(Z3(t)) N2(Z4(t)) A13x(t)+Bu(t)
14 S2(Z1(t)) R1(Z2(t)) M2(Z3(t)) N2(Z4(t)) A14x(t)+Bu(t)
15 S1(Z1(t)) R2(Z2(t)) M2(Z3(t)) N2(Z4(t)) A15x(t)+Bu(t)
16 S2(Z1(t)) R2(Z2(t)) M2(Z3(t)) N2(Z4(t)) A16x(t)+Bu(t)

Table 4.1: Fuzzy Model Rules

The weights are then computed by multiplying the four values from each column for every single rule,
such that:

wi(t) = Si(Z1(t))×Rj(Z2(t))×Mk(Z3(t))×Nl(Z4(t)) for : i, j, k, l = 1, 2 (4.15)

The general form of the matrices Ai can be represented as A(i), where i is the index of the model rule.

A(i) =



−a1
√

2gZ
(i)
1,range

A1
0 a3

√
2gZ

(i)
3,range

A1
0

0 −a2
√

2gZ
(i)
2,range

A2
0 a4

√
2gZ

(i)
4,range

A2

0 0 −a3
√

2gZ
(i)
3,range

A3
0

0 0 0 −a4
√

2gZ
(i)
4,range

A4



Where Z(i)
m,range is defined by the following rules:
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Model Rule i Non-zero elements in A(i)

1 Z1,min, Z2,min, Z3,min, Z4,min

2 Z1,max, Z2,min, Z3,min, Z4,min

3 Z1,min, Z2,min, Z3,max, Z4,min

4 Z1,max, Z2,max, Z3,min, Z4,min

5 Z1,min, Z2,min, Z3,max, Z4,min

6 Z1,max, Z2,min, Z3,max, Z4,min

7 Z1,min, Z2,max, Z3,max, Z4,min

8 Z1,max, Z2,max, Z3,max, Z4,min

9 Z1,min, Z2,min, Z3,min, Z4,max

10 Z1,max, Z2,min, Z3,min, Z4,max

11 Z1,min, Z2,max, Z3,min, Z4,max

12 Z1,max, Z2,max, Z3,min, Z4,max

13 Z1,min, Z2,min, Z3,max, Z4,max

14 Z1,max, Z2,min, Z3,max, Z4,max

15 Z1,min, Z2,max, Z3,max, Z4,max

16 Z1,max, Z2,max, Z3,max, Z4,max

A could then be rewritten as follows:

A =
r∑

i=1
hi(z(t))×Ai

where ∀i ∈ {1, 2, . . . , r}, hi(z(t)) = wi(t)∑r
i=1wi(t)

(4.16)

where the membership functions, are as follows:


S1(Z1(t)) = Z1(t)−Z1 max

Z1 min−Z1 max
, S2(Z1(t)) = 1− S1(Z1(t))

R1(Z2(t)) = Z2(t)−Z2 max
Z2 min−Z2 max

, R2(Z2(t)) = 1−R1(Z2(t))
M1(Z3(t)) = Z3(t)−Z3 max

Z3 min−Z3 max
,M2(Z3(t)) = 1−M1(Z3(t))

N1(Z4(t)) = Z4(t)−Z4 max
Z4 min−Z4 max

, N2(Z4(t)) = 1−N1(Z4(t))

(4.17)

4.4.1.1 Validation of the fuzzy model of 16 rules

for the simulation of the fuzzy model on SIMULINK , we will take the values

% limits on the Tank’s heights
h_min = 0.1;
h_max = 20;
Z_min = 1/sqrt(h_max);
Z_max = 1/sqrt(h_min);

X0 = [10;10;7;8] ; % initial conditions
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Figure 4.8: Time responses of the original states and its fuzzy approximations.

Figure 4.9: Error between the original states and its fuzzy approximations.

4.4.2 fuzzy model with 04 rules

in the same manner used to construct the fuzzy model with 16 rules, we have :

From the nonlinear system of the Tank system, one can see that the non-linearity is related to the
states

√
hi(t) for i = 1, 2, 3, 4[62] Since equation of the tank system clearly shows a relationship between√

h1(t),
√
h2(t) and

√
h3(t),

√
h4(t) we can directly obtain the variables h1(t), h2(t) by approximating

the variables h3(t), h4(t).

Note that, the operating point for the states h1and h2 must be fulfilled the nonlinear relationships.
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In the steady state we have:

ḣ3(t) = 0 =⇒ v2(t) = a3
√

2gh3(t)
(1− γ2)K2

ḣ4(t) = 0 =⇒ v1(t) = a4
√

2gh4(t)
(1− γ1)K1

(4.18)

Substituting into the equations of ḣ1(t) and ḣ2(t) we will have:

h1(t) =
(
a3
√
h3(t)
a1

+ γ1a4
√
h4(t)

(1− γ1)a1

)2

h2(t) =
(
a4
√
h4(t)
a2

+ γ2a3
√
h3(t)

(1− γ2)a2

)2 (4.19)

Note that,
∀i ∈ {1, 2, 3, 4},

√
hi(t) = hi(t)√

hi(t)
(4.20)

thus, by considering the following variable change Zi(t) = 1√
hi

for i = 3, 4 and assuming That
Zi min ≤ Zi(t) ≤ Zi max

the following approximation can be obtained{
Z3(t) = M1(Z3(t))× Z3 min +M2(Z3(t))× Z3 max

Z4(t) = N1(Z4(t))× Z4 min +N2(Z4(t))× Z4 max
(4.21)

with M1(Z3(t)) +M2(Z3(t)) = 1 and N1(Z4(t)) +N2(Z4(t)) = 1

assuming that the height of each tank as the system output, one can get

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where:

X =


h1

h2

h3

h4

 , U =

v1

v2

 , C =

1 0 0 0
0 1 0 0



A =



−a1
√

2g
A1

√
h1

0 a3
√

2g
A1

√
h3

0
0 −a2

√
2g

A2
√

h2
0 a4

√
2g

A2
√

h4

0 0 − a3
√

2g
A3

√
h3

0
0 0 0 − a4

√
2g

A4
√

h4



TS fuzzy modeling of Coupled Tanks Page 92



B =


γ1K1

A1
0

0 γ2K2
A2

0 (1−γ2)K2
A3

(1−γ1)K1
A4

0


the matrix A can be rewritten as follows A = ∑r

i=1 hi(z(t))Ai, for i = 1, 2, 3, . . . , r

A1 =


−δ1

11 0 a3
√

2gZ3 min
A1

0
0 −δ1

22 0 a4
√

2gZ4 min
A2

0 0 −a3
√

2gZ3 min
A3

0
0 0 0 −a4

√
2gZ4 min
A4

 A2 =


−δ2

11 0 a3
√

2gZ3 min
A1

0
0 −δ2

22 0 a4
√

2gZ4 max
A2

0 0 −a3
√

2gZ3 min
A3

0
0 0 0 −a4

√
2gZ4 max
A4



A3 =


−δ3

11 0 a3
√

2gZ3 max
A1

0
0 −δ3

22 0 a4
√

2gZ4 min
A2

0 0 −a3
√

2gZ3 max
A3

0
0 0 0 −a4

√
2gZ4 min
A4

 A4 =


−δ4

11 0 a3
√

2gZ3 max
A1

0
0 −δ4

22 0 a4
√

2gZ4 max
A2

0 0 −a3
√

2gZ3 max
A3

0
0 0 0 −a4

√
2gZ4 max
A4


and we have : the matrix A can be rewritten as follows A = ∑r

i=1 hi(z(t))×Ai

∀i ∈ {1, 2, . . . , r}, hi(z(t)) = wi(t)∑r
i=1wi(t)

Where:

w1(z(t)) = M1(Z3(t))×N1(Z4(t))
w2(z(t)) = M1(Z3(t))×N2(Z4(t))
w3(z(t)) = M2(Z3(t))×N1(Z4(t))
w4(z(t)) = M2(Z3(t))×N2(Z4(t))

(4.22)

M1(Z3(t)) = Z3(t)− Z3 max
Z3 min − Z3 max

, M2(Z3(t)) = 1−M1(Z3(t))

N1(Z4(t)) = Z4(t)− Z4 max
Z4 min − Z4 max

, N2(Z4(t)) = 1−N1(Z4(t))
(4.23)
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δ1
11 = a1

√
2g

A1
× 1

a3
a1Z3 min

+ γ1a4
(1−γ1)a1Z4 min

δ1
22 = a2

√
2g

A2
× 1

a4
a2Z4 min

+ γ2a3
(1−γ2)a2Z3 min

δ2
11 = a1

√
2g

A1
× 1

a3
a1Z3 min

+ γ1a4
(1−γ1)a1Z4 max

δ2
22 = a2

√
2g

A2
× 1

a4
a2Z4 max

+ γ2a3
(1−γ2)a2Z3 min

(4.24)

δ3
11 = a1

√
2g

A1
× 1

a3
a1Z3 max

+ γ1a4
(1−γ1)a1Z4 min

δ3
22 = a2

√
2g

A2
× 1

a4
a2Z4 min

+ γ2a3
(1−γ2)a2Z3 max

δ4
11 = a1

√
2g

A1
× 1

a3
a1Z3 max

+ γ1a4
(1−γ1)a1Z4 max

δ4
22 = a2

√
2g

A2
× 1

a4
a2Z4 max

+ γ2a3
(1−γ2)a2Z3 max

(4.25)

4.4.2.1 Validation of the fuzzy model

for the simulation of the fuzzy model on SIMULINK , we will take these values

%% Parameters Definition
A1=138.9;
A3=138.9;
A2=138.9;
A4=138.9;
a1=0.5027;
a3=0.5027;
a2=0.5027;
a4=0.5027;
gamma_1=0.836;
gamma_2=0.897;
K1=26.00;
K2=22.94;
g = 981;

% limits on the Tank’s heights
h_min = 0.1;
h_max = 20;
Z_min = 1/sqrt(h_max);
Z_max = 1/sqrt(h_min);

X0 = [7;7;3;3] ; % initial conditions
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Figure 4.10: Time responses of the original state h3 and its fuzzy approximation.

Figure 4.11: Time responses of the original state h4 and its fuzzy approximation.

Figure 4.12: Error between original state and its fuzzy approximation.

In [62], they proven that you don’t need to have the right estimation on the states h1 and h2 to
actually control our system. In fact, an error could be seen on these two states due to the made up
approximation. This will be proven in the next section by demonstrating the simulations results.
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4.5 Stability and Stabilization of T-S Fuzzy Systems

The stability of systems in closed loop is one of the most significant problems in control theory. The
T-S systems stability analysis was the objective of several works, In the majority, the goal was the
obtention of a global asymptotic stability by applying Lyapunov’s direct method based on Lyapunov
functions, which measure the system’s energy[2]

Whether for stability analysis or for the calculation of stabilizing control laws, the approach based on
the second method of Lyapunov remains by far the most used. Indeed, the structure of a TS model
lends itself to the application of classical automatic control concepts and approaches because this type
of model is an interconnection of a set of local linear models.[51]

4.5.1 Lyapunov functions

In general, there is no a systematic method to find candidate Lyapunov functions. The degree of
conservatism of the obtained stability conditions depends on the Lyapunov function form and the
system structure. Different Lyapunov functions forms are used by different authors in the literature

4.5.1.1 Quadratic Lyapunov function

This one is the classical form, it is given by:

V (x(t)) = xT (t)Px(t), P > 0, P T = P (4.26)

used initially to stability study of linear systems and then for MIMO nonlinear systems, The principle
of the method is to search a positive definite matrix P, by the way of convex formulation of the
problem. The drawback of this quadratic approach is the conservative stability conditions, but it
remains from a practical point of view easy to implement.[2]

4.5.1.2 Non-Quadratic Lyapunov function

This function is of the form:

V (x(t)) =
r∑

i=1
hi(z(t))xT (t)Pix(t) (4.27)

where Pi is a positive definite matrix and hi(z(t)) ≥ 0,
r∑

i=1
hi(z(t)) = 1. (4.28)

An interesting advantage is that, the non-quadratic form of Lyapunov function takes into account the
speed variation of the decision variables, what allows the conservatism reduction and more relaxed
stability conditions

4.5.2 Stability Analysis of TS Models

To find a Lyapunov function amounts to finding a positive definite matrix P , we speak about quadratic
stability. The following stability theorem that is based on quadratic Lyapunov functions gives sufficient
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conditions to assure stability of the open loop T-S fuzzy system given by:

ẋ(t) =
r∑

i=1
hi(z(t))Aix(t), (4.29)

Theorem 1 (Tanaka & Sugeno, 1992)

The equilibrium of a fuzzy system is globally asymptotically stable if there exists a common positive
definite matrix P such that

AT
i P + PAi < 0, i = 1, . . . , r (4.30)

Where, a common P has to exist for all sub-models [52].

This theorem presents sufficient conditions for quadratic stability. However, they are conservative
since the hi(z(t)) are not taken into account. The common P problem can be solved efficiently via
convex optimization techniques and LMIs (Linear Matrix Inequalities); we call this an LMI feasibility
problem. Therefore, recasting a control problem (such as stabilization via a PDC controller) as an
LMI problem is equivalent to finding a “solution” to the original problem. The existence of P depends
on two conditions: the first one is related to the stability of all sub-models, where each matrix Ai

must be Hurwitz. The second condition relates to the existence of a common Lyapunov function for
the r sub-models. It requires that ∑r

i=1Ai must also be Hurwitz. However, if r, that is, the number
of IF-THEN rules, is large, it might be difficult to find a common P [52].

The proof of Theorem 1 is given : In the following polytopic system [52]

ẋ(t) =
r∑

i=1
hi(z(t))Aix(t)

the derivative of V along the nonzero trajectory x(t) is given by

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ(t)

=
(

r∑
i=1

hi(z(t))Aix(t)
)T

Px(t) + xT (t)P
(

r∑
i=1

hi(z(t))Aix(t)
)

=
r∑

i=1
hi(z(t))

[
xT (t)(AT

i P )x(t) + xT (t)(PAi)x(t)
]

=
r∑

i=1
hi(z(t))xT (t)

(
AT

i P + PAi

)
x(t) < 0

since AT
i P + PAi is negative when P is positive definite, then the polytopic system is quadratically

stable if there exists a symmetric matrix P satisfying the following inequalities:

P > 0, (4.31)
AT

i P + PAi < 0, i = 1, . . . , r (4.32)

[52]

4.5.3 Stabilitsation of TS Models

In the literature, different control laws were proposed to stabilize fuzzy models. These, are based on
stability constraints transformable into LMIs to obtain the gains matrices.[2]
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4.5.3.1 Parallel distributed compensation

The main idea of the PDC controller design is to derive each control rule from the corresponding rule
of T-S fuzzy model so as to compensate it. The resulting overall fuzzy controller, which is nonlinear
in general, is a fuzzy blending of each individual linear controller, knowing that the fuzzy controller
shares the same fuzzy sets with the fuzzy model; Wang et al, [52] used this concept to design fuzzy
controllers to stabilize fuzzy systems.

Figure 4.13: PDC controller design[14]

For the fuzzy system, the following fuzzy controller via PDC is obtained [52]:

Rule i: IF z1(t) is Mi1 and . . . and zp(t) is Mip THEN u(t) = −Fix(t), i = 1, 2, . . . , r

which has a state feedback controller in the consequent parts. The overall fuzzy controller is repre-
sented by

u(t) = −
r∑

i=1
hi(z(t))Fix(t) (4.33)

The PDC scheme that stabilizes the T-S fuzzy model was proposed by Wang et al., as a design frame-
work comprising a control algorithm and a stability test using optimization involving LMI constraints.
The goal is to find appropriate Fi gains that ensure the closed-loop stability [56].

Stability conditions in closed loop

The overall T-S fuzzy system is given by:

ẋ(t) =
r∑

i=1
hi(z(t))(Aix(t) +Biu(t)),

y(t) =
r∑

i=1
hi(z(t))Cix(t)

We note that this equation is a polytopic form of the fuzzy system. Hence, by substituting expression
of the PDC control u in the TS fuzzy system, we obtain the T-S closed-loop fuzzy system as follows:

ẋ(t) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))[Ai −BiFj ]x(t), (4.34)

which can be rewritten as

ẋ(t) =
r∑

i=1
hi(z(t))hi(z(t))Giix(t) + 2

r∑
i=1

∑
i<j

hi(z(t))hj(z(t))
{
Gij +Gji

2

}
x(t), (4.35)
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where Gij = Ai −BiFj and Gii = Ai −BiFi.[52]

we obtain the closed loop stability conditions given by the following theorem.

Theorem 2 (Tanaka & Wang [52]): The equilibrium of the continuous fuzzy control system
is globally asymptotically stable if there exists a common positive definite matrix P such that the
following two conditions are satisfied:

GT
iiP + PGii < 0, i = 1, . . . , r, (4.36)

1
2 (Gij +Gji)T P + P

1
2 (Gij +Gji) ≤ 0, i = 1, . . . , r, (4.37)

i < j s.t. hi ∩ hj ̸= ∅

The proof of this theorem follows directly from theorem 1. We notice that these conditions contributes
to the conservatism reduction since, it is not necessary that all the sub-models are stable.

The common B matrix case:

Assume that B1 = B2 = . . . = Br. The equilibrium of the fuzzy control system is globally asymptoti-
cally stable if there exists a common positive matrix P satisfying :

GT
iiP + PGii < 0, i = 1, . . . , r, (4.38)

The objective is to select Fi to stabilize the closed-loop system. The stability conditions corresponding
to a quadratic Lyapunov function were derived by Tanaka and Sugeno in [52]. They give sufficient
conditions for quadratic stabilization by the following theorem:

Theorem 3 (Tanaka & Wang [52]): The fuzzy system can be stabilized via the PDC controller if
there exists a common positive definite matrix X and Mi (i = 1, . . . , r) such that

−XAT
i −AiX +MT

i B
T
i +BiMi > 0, (4.39)

−XAT
i −AiX −XAT

j −AjX +MT
j B

T
i +BiMj

+MT
i B

T
j +BjMi ≥ 0, ∀i < j s.t. hi ∩ hj ̸= ∅, (4.40)

where
X = P−1, Mi = FiX.

The feedback gains Fi and the common P are given by

P = X−1, Fi = MiX
−1.

Meanwhile, the single quadratic Lyapunov function is given by

V (x(t)) = x(t)X−1x(t).

This approach requires finding a common positive definite matrix P for r sub-models, which makes
it very conservative. An attempt to reduce the conservatism using the same Lyapunov function was
given by Tanaka et al. [51], who proposed relaxed stability conditions given by this theorem.

Theorem 4 [52]: Assume that the number of rules that fire for all t is less than or equal to s,
where 1 < s ≤ r. The equilibrium of the continuous fuzzy control system described before is globally
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asymptotically stable if there exists a common positive definite matrix P and a common positive
semidefinite matrix Q such that

AT
i P + PAi − (s− 1)Q < 0, i = 1, . . . , r, (4.41)

1
2 (Gij +Gji)T P + P

1
2 (Gij +Gji)−Q ≤ 0, i = 1, . . . , r,

i < j s.t. hi ∩ hj ̸= ∅. (4.42)

where s > 1.

4.5.3.2 State stabilization for the fuzzy model of 16 rules via PDC control

we present the simulation results of the proposed control strategy for stabilisation of the states using
PDC control on our TS fuzzy system of 16 rules

% limits on the Tank’s heights
h_min = 0.1;
h_max = 20;
Z_min = 1/sqrt(h_max);
Z_max = 1/sqrt(h_min);

X0 = [7;7;3;3] ; % initial conditions

To stabilize the system, we use a state feedback of the form:

u(t) = −
r∑

i=1
hi(z(t))Fix(t) fori = 1, 2, . . . , 16

The matrices P and Fi are obtained by solving LMIs of Theorem 2 using Yalmip. Thus, from the T-S
formalization of the nonlinear model of the coupled tanks, P and Fi are given in C.

Figure 4.14: The states of the system in closed-loop (PDC control law)
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4.5.3.3 State stabilization for the fuzzy model of 4 rules via PDC control

we present the simulation results of the proposed control strategy for stabilisation of the states using
PDC control

% limits on the Tank’s heights
h_min = 0.1;
h_max = 20;
Z_min = 1/sqrt(h_max);
Z_max = 1/sqrt(h_min);

X0 = [7;6;3;2] ; % initial conditions

To stabilize the system, we use a state feedback of the form:

u(t) = −
r∑

i=1
hi(z(t))Fix(t) = −(h1 × F1 + h2 × F2 + h3 × F3 + h4 × F4)x(t)

The matrices P and Fi are obtained by solving LMIs of Theorem 2 using Yalmip. Thus, from A1, A2,
A3, A4, B, deduced from the T-S formalization of the nonlinear model of the coupled tanks, P and Fi

are given in C.

Figure 4.15: The states of the system in closed-loop (PDC control law)

It is observed that the PDC method allows for the stabilization of the nonlinear system using a
controller derived from a TS fuzzy model with 04 and 16 rules respectively, With each controller
having its own stabilization time.

4.6 Trajectory tracking (PDC with integral action)

As in the case of a linear system model, adding an integral action allows for zero steady-state error.
This is already used with a PDC controller to synthesize a stabilizing control law and ensure setpoint
tracking at the same time.
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In order to achieve the natural equilibrium without static error, an integral action must be added.
Theoretically, the integral action consists in augmenting the initial system state x(t)[59]

Figure 4.16: PDC with Integral structure[6]

This control structure ensures the convergence of the error e(t) to the origin, which allows for setpoint
tracking. We will use the same method to stabilize the TS fuzzy system model; it is sufficient to
rewrite the model by augmenting the state. From the structure, we can write:

Ė = yc − y (4.43)

The T-S fuzzy system is given by:

ẋ(t) =
r∑

i=1
hi(z(t))(Aix(t) +Biu(t)),

y(t) =
r∑

i=1
hi(z(t))Cix(t)

We consider the augmented state

X(t) =

x(t)
E(t)

 (4.44)

which gives the following model:

Ẋ(t) =

 ẋ
Ė

 =

∑r
i=1 hi(z(t))(Aix(t) +Biu(t))

yc − y

 (4.45)

By replacing the output y(t) with its expression:

Ẋ(t) =

∑r
i=1 hi(z(t))(Aix(t) +Biu(t))
yc −

∑r
i=1 hi(z(t))Cix(t)

 (4.46)

Since ∑r
i=1 hi(z(t)) = 1 and yc does not depend on i:

Ẋ(t) =

∑r
i=1 hi(z(t))(Aix(t) +Biu(t))∑r

i=1 hi(z(t))(yc − Cix(t))

 (4.47)

Ẋ(t) =
r∑

i=1
hi(z(t))

I 0
0 I

Aix(t) +Biu(t)
yc − Cix(t)

 (4.48)
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Ẋ(t) =
r∑

i=1
hi(z(t))

 Ai 0
−Ci 0

x(t) +

Bi

0

u(t) +

0
I

 yc

 (4.49)

We define:

Āi =

 Ai 0
−Ci 0

 , B̄i =

Bi

0

 , Bc =

0
I

 (4.50)

We apply the PDC control law to the augmented model:

u(t) = −
r∑

i=1
hi(z(t))F̄jX(t) (4.51)

With:
F̄j =

[
Fj −M

]
(4.52)

To calculate the F̄j , it is sufficient to solve the following inequalities:

XAT
i +AiX −NT

i B
T
i −BiNi + (r − 1)M + (r − 1)M < 0, i ∈ {1, . . . , r} (4.53)

XAT
i +AiX +XAT

j +AjX −NT
j B

T
i −BiNj −NT

i B
T
j −BjNi −M ≤ 0, i < j (4.54)

With:
Ai = Āi and Bi = B̄i (4.55)

Theorem 5 [52]: Assume that the initial condition x(0) is known. The constraint ∥u(t)∥2 ≤ µ is
enforced at all times t ≥ 0 if the LMIs  1 x(0)T

x(0) X

 ≥ 0, (4.56)

X MT
i

Mi µ2I

 ≥ 0 (4.57)

hold, where X = P−1 and Mi = FiX[52]. The proof related to this theorem is given in [52].

Important Note : This condition gives us an upper limit on the norm of our control signal u, still
we don’t have an LMI that express a constraint for the lower value of u [52]. This will imply that our
control signal will always start (and for majority of its applications) with a negative value and our
control input doesn’t tolerate that. Thus, we must put a saturation that limits the control signal to
a value of 0 for all the values smaller than 0, which happens generally when we launch the controller
from a given set point. The effects will be shown directly through the next section.

4.6.1 Trajectory tracking for the TS fuzzy system with 16 rules

4.6.1.1 Minimum Phase setting

This phase corresponds to
1 < γ1 + γ2 < 2

The matrices Fi and Mi are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system,Fi and Mi are given
in C.
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We Assume that the initial condition x(0) = [12.7; 12.4; 1.5; 1.5], and we simulate the same standard
test that we conducted on our decentralized PI controller in 2.5.2. µ is tuned manually such that we
have u(t) ≤ 10. Thus, after some tests we put µ = 27
the corresponding Simulation results are the following :

Figure 4.17: System’s Output Response h1 (yellow) and h2 (purple) with the mentioned con-
ditions

Figure 4.18: Corresponding State Response of h3 (green) and h4 (blue) (left) and the Control
Signals (right)

4.6.1.2 Non-minimum Phase setting

This phase corresponds to
0 < γ1 + γ2 < 1

.

We will take γ1 = 0 and γ2 = 0. This would be equivalent to no coupling at all, seeming like it would
be easier to do this task. Yet it is purely to see the non-minimum phase behavior as well as seeing the
robustness of this particular controller in face of interconnections.
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The matrices Fi and Mi are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system. Fi and Mi are given
in C

We Assume that the initial condition x(0) = [12.7; 12.4; 10; 10], and we simulate the same standard
test defined before 2.5.2. µ is tuned manually such that we have u(t) ≤ 10. Thus, after some tests we
put µ = 20
the corresponding Simulation results are the following :

Figure 4.19: Output System Response h1 (red) and h2 (blue) with the mentioned conditions

Figure 4.20: Corresponding State Response of h3 (orange) and h4 (purple) (left) and the Control
Signals (right)

Observations

In the minimum phase setup, the system reaches stability more quickly, having fewer oscillations after
the initial peak. Both outputs, h1 and h2, settle close to their target values and stabilize around their
respective set points, with oscillations decreasing rapidly. On the other hand, the non-minimum phase
setup takes a longer time to stabilize, with much more noticeable and prolonged oscillations. The
initial overshoot is prominent in both configurations, with h1 peaking at approximately 22.5s and h2
peaking at 18.5s in the minimum phase and around 16.5 in the non-minimum phase. Additionally,
the behaviors of h3 and h4 are similar, initially rising to levels driven by maximum input from the
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pumps, then dipping slightly as values decrease.

Compared to our benchmark decentralized PI controller, the minimum phase response at 95% of the
final value is much more slower (105 seconds to 14 seconds). A small to none overshoot was seen in
the benchmark yet it is the case for the 16 rules based TS controller. The biggest difference between
the two is that the response shown with the TS controller exhibits a non-minimum phase behavior
that corresponds to the saturation on the lower bound (value 0) during the launch of the system.

On the other hand, the non-minimum phase response shows that the TS controller is a little faster
with a time response of 225 seconds compared to the 330 seconds of the benchmark controller. The
trough gets also bigger naturally due to the lower bound on our control signal.

4.6.2 Trajectory tracking for the TS fuzzy system with 4 rules

4.6.2.1 Minimum Phase setting

Previously in this chapter, we successfully derived the following matrices when establishing the fuzzy
modeling with four rules.

A1 =


−0.0059 0 0.0059 0

0 −0.0037 0 0.0037
0 0 −0.0358 0
0 0 0 −0.0358

 A2 =


−0.0263 0 0.0263 0

0 −0.0222 0 0.0222
0 0 −0.0358 0
0 0 0 −0.5069



A3 =


−0.0069 0 0.0069 0

0 −0.0041 0 0.0041
0 0 −0.5069 0
0 0 0 −0.0358

 A4 =


−0.0831 0 0.0831 0

0 −0.0522 0 0.0522
0 0 −0.5069 0
0 0 0 −0.5069



B =


0.1565 0

0 0.1481
0 0.0170

0.0307 0


C =

1 0 0 0
0 1 0 0



The matrices Ki and Mi are obtained by solving LMIs using MATLAB Yalmip Library. Thus, from the
matrices deduced from the T-S formalization of the nonlinear model of the coupled tanks system,Ki

and Mi are given in C.

We Assume that the initial condition x(0) = [12.7; 12.4; 1.5; 1.5], and we simulate the same standard
test defined before 2.5.2. µ is tuned manually such that we have u(t) ≤ 10. Thus, after some tests we
put µ = 27

The corresponding Simulation results are the following :
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Figure 4.21: Output System Response h1 (green) and h2 (rose) with the mentioned conditions

Figure 4.22: Corresponding State Response of h3 (orange) and h4 (green) (left) and the Control
Signals (right)

4.6.2.2 Non-Minimum Phase setting

This phase corresponds to
0 < γ1 + γ2 < 1

. We will take γ1 = 0 and γ2 = 0. This would be equivalent to no coupling at all.

The matrices Fi and Mi are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system,Fi and Mi are given
in C.

We Assume that the initial condition x(0) = [12.7; 12.4; 1.5; 1.5], and we simulate the same standard
test defined before 2.5.2. µ is tuned manually such that we have u(t) ≤ 10. Thus, after some tests we
put µ = 27
The corresponding Simulation results are the following :

Trajectory tracking (PDC with integral action) Page 107



Figure 4.23: Output System Response h1 (orange) and h2 (purple) with the mentioned condi-
tions

Figure 4.24: Corresponding State Response of h3 (green) and h4 (rose) (left) and the Control
Signals (right)

Observations
The minimum phase configuration achieves stability relatively quickly with fewer residual oscillations
post the initial overshoot. Both outputs h1 and h2 stabilize around their respective set points.The
oscillations in the minimum phase configuration are less frequent and dissipate faster. The two states
h3 and h4 will get to an eventual steady stable state for both cases.

Compared to our benchmark, the system alongside a 4 rule based TS PDC controller has a response
time of approximately 38 seconds. This value is already better than the one based on 16 rules yet
it’s still smaller than the PI where the value was around 4 seconds for the minimum phase setting.
However, for the nonminmum phase setting, the response time will be around 260 seconds which is
better than the 330 seconds made by the benchmark.

Some oscillations appears also in the response and of course a trough that is a characteristic of a
nonminimal phase setting, yet, it’s still appearing in the minimum phase setting. We could explain
this physically by the lower bound and saturation made on the control signal that shouldn’t be a
negative value at all during the working phase.
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Comparison between TS Fuzzy Controllers with 16 Fuzzy Rules and 4 Fuzzy Rules in
the Minimum Phase Configuration

When comparing the two figures, which represent the output responses h1 and h2 in the minimum
phase configuration for two different TS fuzzy controllers (one with 16 rules and the other with 4
rules), we observe that under the same initial conditions and control constraints (u), the controller
with 4 fuzzy rules achieves trajectory tracking and convergence to the reference value more rapidly. In
contrast, the controller with 16 fuzzy rules takes about twice to thrice as long, with a response time
of approximately 105 seconds.

From the illustrations, we can also see that The 16-rule controller shows more pronounced sinusoidal
behavior compared to the 4-rule controller . The overshoot values are nearly identical for both con-
trollers, with both reaching approximately 22 cm for h1 and 18 cm for h2, given reference signals of
20 cm and 16 cm,

The major similarity between the two stays in the fact that the designed control value always starts
with a negative value that is replaced then with a zero as a lower bound (or a lower saturation on our
system). This will lead physically to a response that’s looking like a non minimal phase behavior for
a minimal phase setup.

4.7 Robustness tests and Validation of the TS Fuzzy
controller with 16 rules

4.7.1 Robustness with respect to High viscosity fluids

High viscosity fluids have a different dynamics than lower ones like water. Meanwhile, if we look at
our model we can clearly see that there isn’t a single parameter that represents the characteristics of
the used fluid in the QTP.

In this part, we take care to recall the discharge coefficient Cd already used previously to verify the
robustness tests [16], a parameter that will model the ratio between the actual flow and the theoretical
flow i.e:

Cd = Qactual

QT h
(4.58)

We will choose adequate values of Cd according to the literature [16] and we will see its effects on the
step response of our system . The chosen values were 1, 0.8, 0.6, 0.4, 0.2 and the distinction is clear
seeing the representing figures.
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Figure 4.25: Evolution of the System’s states under different values of Cd for the minimum
phase setting for the 16 rules controller, Upper left h1, Upper right h2, Lower left h3, Lower
right h4
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Figure 4.26: Evolution of the System’s states under different values of Cd for the non-minimum
phase setting for the 16 rules controller, Upper left h1, Upper right h2, Lower left h3, Lower
right h4

Observations:
Initially, the system responses exhibit oscillations before stabilizing. For Cd = 1, the system reaches its
peak response faster and with fewer oscillations compared to lower Cd values. As Cd decreases towards
0.2, the oscillations become more pronounced and the time to reach steady-state increases. Higher
Cd values result in more damped responses and quicker settling times. However, as Cd decreases, the
system experiences increased oscillations and slower responses, highlighting the significant impact of
Cd on stability and transient behavior. Controlling the non-minimum phase system is inherently more
challenging due to the initial opposite direction of response, and the impact of Cd is more severe in
this case.

In addition to the latency, a pseudo-sinusoidal behavior could also be seen. The overshoot increases
every time we reduce the value of Cd . It is well logically following the physical behavior of higher
viscosity fluids as the gravitational force takes a lot of time to change the value of the desired level.

Compared to the benchmark performance, we can see that the 16 rules based TS PDC controller is
still much slower in the minimum phase setting. It does also have a more oscillatory behavior. The
trough (nonminimal phase behavior is also observed during the beginning of the minimal phase setting
and it’s probably the major difference between the two of them.

On the other hand, in the non-minimal phase setting and particularly for the value Cd = 0.2 The
system stays stable for the closed loop system behavior but this wasn’t the case for the performance
of the decentralize PI controller.

4.7.2 Robustness with respect to the interconnections

For this test, we will only consider the controller in the non-minimum phase setting. We designed
that controller early on whilst considering γ1 = γ2 = 0. These values give us a setting where we will
not consider the interconnections towards the two lower tanks. Making these two fill up completely
using gravitational force and liquid descending from the two upper tanks. But how about we induce
the designed controller with an interconnection i.e. γ1 = γ2 = γ ̸= 0 and see their impact on our
controller. This is shown through figure 3.27.

The first thing we notice is that the interconnections induces a sinusoidal behavior over the system’s
state response. In fact, it does increase the step response time at 95% of the final value and the
response is completely periodic for values γ ≥ 0.25. The increased time is added up to the already
long response and we get a convergence time of over 1000[sec] for γ = 0.3.

In addition, we can see that Each time gamma increases, the oscillations of the responses increase as
well as the response time. the final value for the two upper tanks (h3 and h4) is reduced each time
we increase the ratio for the valve, This is due to the fact that the 02 lower tanks and our control
objectives are being divided between what’s been pulled down by the gravitation and what’s been
brought by the lower nozzles.
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Figure 4.27: Evolution of the System’s states under different values of γ for the non-minimum
phase setting for the 16 rules controller under a robustness of interconnections, Upper left h1,
Upper right h2, Lower left h3, Lower right h4

Comparing this to the performance of the decentralized PI controller, we can see that the Fuzzy PDC
controller based on 16 rules is way more robust. First, the response still converges till for even a value
of γ = 0.3 but for a longer response time. This wasn’t the case for the performance made by the PI,
where the behavior was completely oscillatory for a value of γ = 0.2

4.8 Robustness tests and Validation of the TS Fuzzy
controller with 4 rules

4.8.1 Robustness with respect to High viscosity fluids

Again, we take care to recall the discharge coefficient Cd already used previously to verify the robust-
ness tests [16], a parameter that will model the ratio between the actual flow and the theoretical flow
i.e:

Cd = Qactual

QT h
(4.59)

We will choose adequate values of Cd according to the literature [16] and we will see its effects on the
step response of our system . The chosen values were 1, 0.8, 0.6, 0.4, 0.2 and the distinction is clear
seeing the representing figures.
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Figure 4.28: Evolution of the System’s states under different values of Cd for the minimum
phase setting for the 4 rules controller, Upper left h1, Upper right h2, Lower left h3, Lower
right h4
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Figure 4.29: Evolution of the System’s states under different values of Cd for the non-minimum
phase setting for the 4 rules controller, Upper left h1, Upper right h2, Lower left h3, Lower right
h4

As always, a latency is observed in the responses as much as we decrease the value of Cd as well as an
pseudo-oscillatory behavior for both the minimal and the nonminimal phase setting.

Compared to the benchmark and the 16 rules based PDC, the PDC based on 4 rules has a better
time response as much as we decrease the value of Cd For the minimal phase setting. On the other
hand for the nonminimal phase setting, the response is still faster yet it is not robust for a value of
Cd = 0.2 Thus, our reason for not representing it in the illustration.

4.8.2 Robustness with respect to the interconnections

For this test, we will only consider the controller in the non-minimum phase setting. We designed
that controller early on whilst considering γ1 = γ2 = 0. These values give us a setting where we will
not consider the interconnections towards the two lower tanks.

Figure 4.30: Evolution of the System’s states under different values of γ for the non-minimum
phase setting under a robustness of interconnections, Upper left h1, Upper right h2, Lower left
h3, Lower right h4

the best performance in terms of response time and minimal overshoot is achieved with γ = 0. It
is evident that as the value of the coefficient γ increases, both the overshoot and the response time
increase The first thing we notice is that the interconnections induces a sinusoidal behavior over the
system’s state response.

Compared to before, the TS PDC controller based on 4 rules could be considered more robust than the
PI because the intensity of the sinusoidal behavior is much smaller than the performances obtained by
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our benchmark. It is definitely more robust in that sense yet it isn’t as robust as the 16 rules based
TS PDC controller.

4.9 How can we fix the trough happening at the launch
of our system?

As we could’ve seen before, our system has an inherent negative value on the control signal when we
launch it from a given set point directly. This will make us choose a saturation for the lower bound
that must be set to zero. This will have no effects on the pumps as it corresponds to the absence of the
Voltage in the input. Yet, it will lead the water level in the tanks to decrease due to the gravitational
force. This, will imply us to see a behavior similar to the nonminimal phase while the system is in its
minimum phase setting.

To prove this, we will do a test where we will give two step signals as references. The 2nd one being
delayed with respect to the first one to a point where the control input is already positive and stable.
The results are illustrated directly in figure 3.31 and 3.32.

We can see clearly that for the second step signal that was ahead of time, the response didn’t have the
trough that’s seen when we launch our system. This is due to the fact that the control input has already
reached a positive steady value and it just needs to adjust to fit the new trajectory. Additionally, The
major improvement that could be seen is in the time response of our adjusted system which is much
smaller than before.

To suggest a proper solution for this problem, we could consider first and at each starting of the
system to regulate it first till a given set point using the benchmark decentralized PI controller and
when we are sure that the control signal generated by the Fuzzy PDC controller is above zero, then
we switch the controllers mid-way alongside a given operational point.

Figure 4.31: Output System Response with the mentioned conditions
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Figure 4.32: Corresponding State Response of h3 and h4 (left) and the Control Signals (right)

A better response could be obtained if we make a pole placement in LMI regions that will eventually
reduce the overshoot in the system’s outputs and Making it more smoother. Additionally, the trough
could maybe solved directly with this technique where we would ensure that the initial value of u is
positive.

4.10 Conclusion

In this chapter, we have detailed the method for modeling a nonlinear system using a multi-model ap-
proach (T-S model) and the sector nonlinearity approach. The problem of Stability and Stabilization
have been dealt with a quadratic lyapunov function approach to design the PDC controller.

Following this, Two different TS models for the QTP have been presented: one with 16 rules and
the other with 4 rules only. After that, we applied PDC stabilization and trajectory tracking for
both minimum and Non-minimum phase settings based on the derived models. We then validated the
controllers by applying two different robustness tests that deals mainly with parametric variations.

The tests have shown that the TS fuzzy controller with 4 rules achieved quicker stabilization and less
oscillatory behavior compared to the 16-rule controller. In contrast, the 16-rule controller exhibited
more oscillations and slower response times, especially under the minimum phase setting. Both setups
showed initial overshoot, with the minimum phase configuration stabilizing faster and with fewer
oscillations, while the nonminimum phase setting had a much slower response time. Additionally,
High viscosity fluids resulted in increased oscillations and slower responses, with the effect being more
severe in the non-minimum phase setting. The benchmark PI controller generally performed better in
terms of response time and overshoot under minimum phase settings.

One of the main deductions that we saw was that the TS fuzzy controllers, particularly the one with
16 rules, demonstrated superior robustness in the presence of interconnections, outperforming the
4-rule controller and the benchmark PI controller in this regard. The 4-rule TS fuzzy controller offers
quicker response times and less oscillatory behavior under standard conditions. On the other hand,
the 16-rule controller provides better robustness under more challenging scenarios, making it a viable
alternative depending on specific system requirements and operational conditions.
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Chapter 5

Conclusion & Perspectives

The thesis began with an exploration of the benchmark equipment provided by Feedback instruments
available at the LCP laboratory in ENP, specifically the Coupled Tanks process, followed by a detailed
modeling of the plant and its characteristics.

We then dived into the implementation and evaluation of a Particle Swarm Optimization (PSO)
algorithm for optimizing a decentralized PI controller as a benchmark control method for the four tanks
coupled system, used to compare its performance with the performances of other controllers designed
in the thesis. Robustness tests were conducted under varied conditions, including the introduction of
high viscosity fluids and interconnections through variations of the discharge coefficient Cd and the
valve opening ratio γ respectively.

Chapter 2 extensively covered Predictive Control techniques, including the implementation of Linear
and Nonlinear Model Predictive Controllers. We designed these controllers and assessed their feasi-
bility for real-time implementation using different libraries such as CasAdi. The designed controllers
have been tested based on the defined robustness tests. Additionally, we proposed an approach using
Recurrent Neural Networks to predict control inputs to avoid the online optimization problem given
in the classical MPC approach.

Chapter 3 detailed the modelling of nonlinear systems using a multi-model approach, specifically the
T-S model. We derived two different fuzzy models using the nonlinear sector method for the Quadruple
Tank Process: one based on 16 rules and the other based on 4 rules. These models were then used
to apply a PDC stabilization and trajectory tracking for both minimum and Non-minimum phase
settings. The constraint on the input was incorporated in the control law. The resulting controllers
have been approved through the robustness tests, showing a good efficiency.

In summary, our thesis has contributed to the advancement of control techniques for the classical
Quadruple Tank Process exploring mainly classical, Predictive and Fuzzy control design. This being
said, some perspectives could be explored for future project:

- First, the implementation and testing all the designed algorithms must be done on the real
plant. Unfortunately, the material needed a PCI to PCI adapter to link between the laboratory
PC and the Advantech PCI1711 Interface card and it hasn’t been provided during our stay in
the lab. The real time implementation will give additional insight about the performances of
the designed algorithms.

- Explore other techniques to implement MPCs, notably the ones that are based on C++ as they
could be more efficient and faster than classical libraries.

- On the other hand, we could enhance the performance obtained by the Fuzzy TS PDC controllers
by performing a pole placement in LMI regions.

- The work is based on a benchmark equipment that hasn’t been used during the control en-
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gineering course. We could eventually consider using this thesis as a base to create a set of
practical work that must be done by the students to enhance their experiences with real-life
control problems.
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Appendix A

PSO Algorithm

Meta-heuristic algorithms are advanced optimization techniques that seek near-optimal solutions using
sophisticated heuristic methods. These algorithms employ stochastic search and exploration strategies
to intelligently navigate possible solutions, often outperforming traditional optimization algorithms
and iterative methods. The increasing computational power and advancements in hardware interfaces
have made meta-heuristics widely popular for solving optimization problems in recent years.

Meta-heuristics are categorized into several types:

- Search Strategy: Some algorithms focus on enhancing candidate solutions within a local
neighborhood, while others explore broader search spaces to find solutions.

- Nature of the Solution: Certain algorithms work with a single solution, continually improving
it, while others use a particle-based approach to simultaneously refine multiple candidates.

- Inspiration and Origin: Many effective algorithms draw inspiration from nature, mimicking
the behaviors of species or natural phenomena that seem to solve problems optimally.

In 1995, Kennedy and Eberhart introduced the Particle Swarm Optimization (PSO) algorithm, a
particle-based meta-heuristic inspired by swarm intelligence and the social interactions seen in bird
flocking or fish schooling.

PSO can be used independently to find global solutions or in conjunction with other algorithms. It is
based on the principles of social behavior:

- Intrinsic Experience: Each particle’s actions are influenced by its own previous results.

- Social Influence: The actions of each particle are also affected by the results of its neighbors
within the swarm.

A.1 Algorithm structure

In PSO, candidate solutions are represented as particles, denoted by i, where i ∈ {1, . . . , n}. At a
given time step T , each particle has the following attributes:

- Position xi(T ): This is a vector in X ∈ Rm, representing the solution space for each particle.
It constitutes a single solution to the problem, with m variables.

- Velocity vi(T ): This vector, of the same dimension as xi, describes the "movement" of the
particle.
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- Personal Best Pi(T ): This is the best solution xi(t), for t ∈ {1, . . . , T}, according to a given
cost function for each particle.

- Global Best G(T ): This is the best solution among all particles up to time T .

Given these values, the mathematical model of PSO for each particle’s variable xij , where j ∈
{1, . . . ,m}, is defined as follows:{

vij(t+ 1) = w · vij(t) + c1 · r1 · (Pij(t)− xij(t)) + c2 · r2 · (Gj(t)− xij(t)),
xij(t+ 1) = xij(t) + vij(t+ 1)

(A.1)

where r1 and r2 are random numbers between 0 and 1, and w, c1, and c2 are real numbers.

The coefficients w, c1, and c2 are dynamic; as the algorithm progresses, c2 increases and w decreases.
This adjustment aims to give more weight to the global best term, promoting convergence towards it
and reducing exploration of other regions.

Having saying all of this, here is the detailed algorithm:

Algorithm 1 Particle Swarm Optimization (PSO)
1: for each particle i = 1, . . . , S do
2: Initialize the particle’s position with a uniformly distributed random vector: xi ∼

U(blo, bup)
3: Initialize the particle’s best known position to its initial position: pi ← xi

4: if f(pi) < f(g) then
5: Update the swarm’s best known position: g ← pi

6: end if
7: Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|)
8:
9: while a termination criterion is not met do

10: for each particle i = 1, . . . , S do
11: for each dimension d = 1, . . . , n do
12: Pick random numbers: rp, rg ∼ U(0, 1)
13: Update the particle’s velocity: vi,d ← wvi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d)
14: end for
15: Update the particle’s position: xi ← xi + vi

16: if f(xi) < f(pi) then
17: Update the particle’s best known position: pi ← xi

18: if f(pi) < f(g) then
19: Update the swarm’s best known position: g ← pi

20: end if
21: end if
22: end for
23: end while
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Appendix B

Controllers Results

In the following table, we give a resume about all the designed controllers during this thesis.

Controller Phase Response Time (sec) Pseudo Oscillations Remarks
PI Min 14 No Zero/small over-

shoot, U1 is satu-
rated for around 1
second, robust to
high viscosity fluids

Nonmin 330 Yes Overshoot, ro-
bust till a value
of Cd = 0.4, not
robust enough to
interconnections

Fuzzy PDC (16 rules) Min 105 Yes A trough at the
start, robust to high
viscosity fluids and
highly robust against
interconnections

Nonmin 225 Small Big nonmin phase
behavior, robust till
a value of Cd = 0.4,
robust to intercon-
nections till a value
of (γ = 0.3)

Fuzzy PDC (4 rules) Min 38 small oscillations 10% overshoot, ro-
bust to high viscosity
fluids

Nonmin 260 Yes Huge trough ini-
tially, overshoot,
robust till Cd = 0.4,
better interconnec-
tions robustness
than PI (γ = 0.25)

LMPC Min 13 Small pseudo 5% overshoot, sat-
urated control ini-
tially, robust to high
viscosity fluids
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Controller Phase Response Time (sec) Oscillations Remarks
Nonmin 100 Small 5% overshoot, sat-

urated control ini-
tially, robust to high
viscosity fluids, ro-
bust to γ = 0.15 in-
terconnections

NMPC Min 8 No Very small over-
shoot, saturated
control for set time,
robust to high
viscosity fluids

Nonmin 90 Pseudo (5%) Saturated control for
set time, robust to
high viscosity fluids,
not robust to γ = 0.1
interconnections (on-
going oscillations)
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Appendix C

Linear Matrix Inequalities (LMIs)

C.1 Linear Matrix Inequalities (LMIs)

Linear Matrix Inequalities are the control version of the semidefinite programs (SDP) that are convex
problems, allowing the resolution of a great number of problems in relation to uncertain systems. A
powerful and efficient polynomial-time interior-point algorithm was developed for linear programming
by Karmakar in 1984 [38], then extended in 1988 by Nesterov and Nemirovskii, who developed interior-
point methods that apply directly to linear matrix inequalities [48]. It was then recognized that LMIs
can be solved with convex optimization on a computer, and in 1995 Gahinet and Nemirovskii [21]
wrote a commercial Matlab package called the LMI Toolbox for Matlab. The advantage of SDP is
the polynomial time of global minimum computation using the interior point methods [48].

C.1.1 Definition of a Linear Matrix Inequality

A linear matrix inequality is a matrix inequality of the form:

F (x) = F0 +
m∑

i=1
xiFi > 0 (C.1)

where x(t) = [x1(t), . . . , xm(t)]T is the variable vector to find and Fi = F T
i ∈ Rn×n, i = 0, . . . ,m are

given matrices. The inequality implies that F (x) must be positive definite, i.e., all its eigenvalues are
positive. The LMI is a convex constraint on x, i.e., the set {x | F (x) > 0} is convex. It can also gather
several convex constraints F1(x) > 0, F2(x) > 0, . . . , Fm(x) > 0 in a block diagonal matrix:

F1(x) 0 · · · 0
0 F2(x) · · · 0
...

... . . . ...
0 0 · · · Fm(x)

 > 0

C.1.2 Some Standard LMI Problems

Among the most encountered convex optimization LMI problems, we cite:
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C.1.2.1 LMI Problems

Given an LMI F (x) > 0, the LMI problem is to find xfeas such that F (xfeas) > 0 or determine that
the LMI is infeasible. This is a convex feasibility problem that can be solved by convex optimization
algorithms such as interior-point methods. For example, the Lyapunov stability conditions given in
section 3.4 can be expressed as an LMI problem where P is the variable [10], and this is available for
all the stability conditions encountered in this work.

C.1.2.2 Eigenvalue Problem

The eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a matrix that depends
affinely on a variable, subject to an LMI constraint (or determine that the constraint is infeasible), in
other terms:

minλ subject to λI −A(x) > 0, B(x) > 0 (C.2)

C.1.2.3 Generalized Eigenvalue Problem

The generalized eigenvalue problem (GEVP) is to minimize the maximum eigenvalue of a pair of
matrices that depend affinely on a variable, subject to an LMI constraint. The general form of GEVP
is:

minλ subject to λB(x)−A(x) > 0, B(x) > 0, C(x) > 0 (C.3)

All these problems can be solved by different tools such as ellipsoid algorithms, simplex methods, and
interior-point methods. However, there exist some tools that facilitate the passage from a non-convex
formulation to an LMI, that is convex, among them:

C.1.2.4 Schur Complement

Nonlinear (convex) inequalities are converted to LMI form using Schur complements. For the following
LMI:  Q(x) S(x)

S(x)T R(x)

 > 0

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend affinely on x, is equivalent to:

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0 (C.4)

The lemma is also valid when changing the sign of the inequalities.

C.1.2.5 Polytopic Form

A polytopic form is defined as follows: A set of matrices {A1, A2, . . . , An} is said to be polytopic if
there exists a set of positive parameters such that [61]:

∀ 0 ≤ λi ≤ 1,
n∑

i=1
λi = 1, A =

n∑
i=1

λiAi > 0

Hence the matrices form a polytopic Λ = Co{A1, A2, . . . , An}, where Co denotes the convex hull. The
notion of convexity plays an important role since the stability analysis problems are represented in
terms of convex optimization problems, which allows a reasonable computing time and finding a global
minimum.
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C.2 Resolution of LMIs with YALMIP Interface

YALMIP is a modeling language compatible with MATLAB syntax designed to model and solve
optimization problems, invented by Dr. Johan Löfberg in 2004 [43]. Its main motivation is that it
implements a large number of modeling tricks, allowing the user to focus on the high-level model.
YALMIP also implements external algorithms to solve optimization problems (LMIs). In this thesis,
all LMIs have been solved using the YALMIP interface with the SeDuMi method.

C.2.1 YALMIP Overview

YALMIP was initially developed to model SDPs and solve these by interfacing external solvers. The
toolbox makes the development of optimization problems in general, and control-oriented SDP prob-
lems in particular, extremely simple.

Rapid prototyping of an algorithm based on SDP can be done in a matter of minutes using standard
MATLAB commands. In fact, learning three YALMIP-specific commands will be enough for most
users to model and solve their optimization problem.Due to a flexible solver interface and internal
format, adding new solvers, and even new problem classes, can often be done with modest effort.

YALMIP automatically detects what kind of problem the user has defined and selects a suitable solver
based on this analysis. If no suitable solver is available, YALMIP tries to convert the problem to be
able to solve it. As an example, if the user defines second-order cone constraints, but no second-
order cone programming solver is available, YALMIP converts the constraints to LMIs and solves the
problem using any installed SDP solver.

C.2.2 Using YALMIP to Solve LMIs: An Example

The system
ẋ = Ax

is stable (eigenvalues have negative real part) if and only if there exists a P > 0 such that

ATP + PA < 0

YALMIP Code for Stability Analysis:

A = [-1 2 0; -3 -4 1; 0 0 -2];
P = sdpvar(3,3);
F = [P >= eye(3)];
F = [F, A’*P+P*A <= 0];
optimize(F);

If Feasible, YALMIP Code to Retrieve the Solution:

Pfeasible = value(P);

C.3 Gains obtained in PDC Stabilisation for the TS fuzzy
system with 16 rules

The matrices Fi and X are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system,Fi and X are given by:
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X matrix: 
42.5222 −5.4684 −7.4939 −1.0240
−5.4684 41.9596 −0.6015 −7.5939
−7.4939 −0.6015 29.1960 2.4573
−1.0240 −7.5939 2.4573 28.6882


F matrix for rule 1: 0.1638 0.1626 0.1878 0.1868

0.1574 0.1628 0.1746 0.1921


F matrix for rule 2: 0.1646 0.1695 0.1841 0.2160

0.1574 0.1645 0.1728 0.2034


F matrix for rule 3: 0.1655 0.1624 0.2001 0.1848

0.1612 0.1631 0.1917 0.1899


F matrix for rule 4: 0.1649 0.1688 0.1907 0.2131

0.1606 0.1640 0.1877 0.1987


F matrix for rule 5: 0.1661 0.1777 0.1871 0.2012

0.1694 0.2319 0.1717 0.2664


F matrix for rule 6: 0.1646 0.1709 0.1844 0.2129

0.1622 0.1959 0.1726 0.2220


F matrix for rule 7: 0.1669 0.1763 0.1960 0.1985

0.1660 0.2329 0.1566 0.2698


F matrix for rule 8: 0.1649 0.1701 0.1911 0.2099

0.1622 0.1964 0.1723 0.2230


F matrix for rule 9: 0.2345 0.1742 0.2638 0.1844

0.1661 0.1640 0.1827 0.1918


F matrix for rule 10: 0.2368 0.1706 0.2697 0.1663

0.1645 0.1652 0.1797 0.2015


F matrix for rule 11: 0.1976 0.1671 0.2188 0.1848

0.1618 0.1630 0.1890 0.1901
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F matrix for rule 12: 0.1978 0.1695 0.2173 0.1948
0.1607 0.1641 0.1848 0.1993


F matrix for rule 13: 0.2397 0.1007 0.2900 0.1004

0.0981 0.2410 0.0896 0.2961


F matrix for rule 14: 0.2402 0.1335 0.2870 0.1095

0.1352 0.2010 0.1401 0.2455


F matrix for rule 15: 0.2011 0.1434 0.2358 0.1565

0.1290 0.2403 0.1031 0.2915


F matrix for rule 16: 0.2000 0.1576 0.2276 0.1761

0.1495 0.1994 0.1528 0.2353



C.4 Gains obtained in PDC Stabilisation for the TS fuzzy
system with 4 rules

P =


0.0078 −0.0010 −0.0008 −0.0005
−0.0010 0.0077 −0.0005 −0.0007
−0.0008 −0.0005 0.0137 −0.0007
−0.0005 −0.0007 −0.0007 0.0136


F1 =

 0.2552 −0.0242 −0.0086 0.0082
−0.0205 0.2646 −0.0057 −0.0130



F2 =

 0.2211 −0.0253 0.0272 −0.0402
−0.0180 0.2310 0.0038 −0.0150

 F3 =

 0.2558 −0.0204 −0.0222 0.0130
−0.0193 0.2665 −0.0305 −0.0089



F4 =

 0.1295 −0.0232 0.0025 −0.0375
−0.0201 0.1802 −0.0301 −0.0040



C.5 Gains obtained in Trajectory tracking for the TS
fuzzy system with 16 rules

The matrices Fi and Mi are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system,Fi and Mi are given
by:
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C.5.1 Minimum Phase settings

F1 =

0.3127 0.0367 0.3101 0.0364
0.0085 0.3048 0.0025 0.3092

 M1 =

0.0894 0.0062
0.0016 0.0878



F2 =

 0.3054 0.0507 0.2988 0.1472
−0.0058 0.2965 −0.0157 0.4064

 M2 =

 0.0867 0.0050
−0.0042 0.0843



F3 =

0.3015 0.0276 0.3977 0.0231
0.0168 0.3041 0.0449 0.3070

 M3 =

0.0864 0.0022
0.0026 0.0875



F4 =

 0.2988 0.0404 0.4084 0.0748
−0.0049 0.2971 −0.0518 0.4463

 F4 =

 0.0853 0.0049
−0.0007 0.0826



F5 =

 0.3080 0.1195 0.3028 0.0908
−0.0354 0.6247 −0.0501 0.4587

 M5 =

 0.0888 0.0104
−0.0110 0.0657



F6 =

 0.3057 0.0871 0.2995 0.1441
−0.0035 0.5237 −0.0128 0.2955

 M6 =

 0.0868 0.0052
−0.0017 0.0828



F7 =

 0.2980 0.1207 0.3884 0.0872
−0.0418 0.6245 −0.0943 0.4610

 M7 =

 0.0860 0.0097
−0.0093 0.0659



F8 =

 0.2964 0.0782 0.3897 0.1091
−0.0059 0.5266 −0.0387 0.3038

 M8 =

 0.0851 0.0047
−0.0001 0.0829



F9 =

0.6263 −0.0111 0.4544 −0.0272
0.0610 0.3041 0.0402 0.3072

 M9 =

0.0673 −0.0050
0.0075 0.0879



F10 =

0.6258 −0.0174 0.4567 −0.0865
0.0657 0.2999 0.0387 0.4338

 M10 =

0.0674 −0.0031
0.0072 0.0833



F11 =

0.5261 0.0137 0.2936 0.0056
0.0399 0.3038 0.0608 0.3062

 M11 =

0.0843 0.0014
0.0039 0.0873



F12 =

0.5282 0.0146 0.2973 −0.0127
0.0292 0.2986 0.0333 0.4300

 M12 =

0.0844 0.0033
0.0025 0.0831
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F13 =

 0.6280 0.0355 0.4579 0.0082
−0.0152 0.6330 −0.0318 0.4697

 M13 =

 0.0691 0.0009
−0.0031 0.0674



F14 =

0.6291 −0.0156 0.4584 −0.0527
0.0364 0.5305 0.0166 0.3073

 M14 =

0.0679 −0.0009
0.0040 0.0828



F15 =

 0.5257 0.0838 0.2946 0.0537
−0.0494 0.6314 −0.0498 0.4658

 M15 =

 0.0842 0.0072
−0.0059 0.0663



F16 =

0.5279 0.0341 0.2930 0.0054
0.0069 0.5287 −0.0117 0.3021

 M16 =

0.0844 0.0041
0.0017 0.0829



C.5.2 Non-Minimum Phase settings

F1 =

−0.0457 0.2001 −0.0359 0.2223
0.1833 −0.0341 0.2108 −0.0260

 M1 =

−0.0020 0.0359
0.0339 −0.0011



F2 =

−0.0338 0.2591 −0.0246 0.4198
0.1687 −0.0104 0.1961 0.0106

 M2 =

−0.0019 0.0338
0.0335 −0.0004



F3 =

−0.0144 0.1728 0.0007 0.2104
0.2558 −0.0107 0.4408 −0.0095

 M3 =

−0.0009 0.0355
0.0318 −0.0013



F4 =

−0.0252 0.2477 −0.0144 0.4204
0.2568 −0.0090 0.4449 −0.0023

 M4 =

−0.0014 0.0337
0.0319 −0.0009



F5 =

0.0111 0.5674 0.0129 0.4186
0.1736 −0.0188 0.1991 −0.0111

 M5 =

0.0001 0.0118
0.0336 −0.0024



F6 =

−0.0281 0.5043 −0.0167 0.4726
0.1660 0.0003 0.1943 0.0033

 M6 =

−0.0013 0.0293
0.0335 −0.0008



F7 =

−0.0083 0.5716 −0.0050 0.4160
0.2580 −0.0073 0.4404 −0.0044

 M7 =

−0.0004 0.0119
0.0318 −0.0018
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F8 =

−0.0202 0.5102 −0.0020 0.4751
0.2575 0.0029 0.4391 −0.0026

 M8 =

−0.0010 0.0296
0.0318 −0.0013



F9 =

−0.0065 0.1810 −0.0040 0.2048
0.5878 0.0042 0.4345 0.0085

 M9 =

−0.0016 0.0355
0.0107 −0.0003



F10 =

−0.0052 0.2590 −0.0013 0.4214
0.5921 −0.0135 0.4317 −0.0090

 M10 =

−0.0015 0.0339
0.0109 −0.0006



F11 =

−0.0085 0.1742 −0.0025 0.1994
0.5028 −0.0251 0.4901 −0.0149

 M11 =

−0.0008 0.0353
0.0273 −0.0012



F12 =

0.0051 0.2556 −0.0048 0.4191
0.5071 −0.0155 0.4914 0.0018

 M12 =

−0.0014 0.0339
0.0276 −0.0009



F13 =

0.0078 0.5751 −0.0097 0.4066
0.5965 0.0005 0.4212 −0.0146

 M13 =

−0.0003 0.0118
0.0107 −0.0008



F14 =

−0.0041 0.5074 0.0002 0.4757
0.5898 −0.0011 0.4321 −0.0025

 M14 =

−0.0011 0.0295
0.0107 −0.0007



F15 =

−0.0022 0.5704 −0.0044 0.4156
0.5013 −0.0039 0.4907 −0.0019

 M15 =

−0.0007 0.0118
0.0275 −0.0014



F16 =

0.0082 0.5172 −0.0012 0.4737
0.5086 0.0120 0.4895 0.0026

 M16 =

−0.0012 0.0295
0.0275 −0.0011



C.6 gains obtained in Trajectory tracking for the TS
fuzzy system with 4 rules

The matrices Fi and Mi are obtained by solving LMIs using YALMIP. Thus, from the matrices deduced
from the T-S formalization of the nonlinear model of the coupled tanks system,Fi and Mi are given
by:
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C.6.1 Minimum Phase settings

F1 =

 1.0766 −0.2951 0.0334 −0.0110
−0.2876 1.1093 −0.0139 0.0260

 M1 =

 0.2221 −0.0328
−0.0318 0.2203



F2 =

 1.0244 −0.2904 0.1297 −0.0146
−0.2893 1.0722 −0.0202 0.0367

 M2 =

 0.2199 −0.0312
−0.0323 0.2219



F3 =

 1.0736 −0.2962 0.0270 −0.0110
−0.2872 1.1084 −0.0111 0.0281

 M3 =

 0.2225 −0.0328
−0.0318 0.2203



F4 =

 0.9666 −0.3131 0.0824 −0.0225
−0.2683 1.0249 −0.0251 0.0585

 M4 =

 0.2276 −0.0358
−0.0312 0.2235



C.6.2 Non-Minimum Phase settings

F1 =

−0.0629 0.4586 −0.0673 0.8378
0.8045 −0.1310 0.3469 −0.0373

 M1 =

−0.0056 0.0302
0.0696 −0.0091



F2 =

0.0098 0.9072 −0.0137 0.1123
0.8014 −0.1567 0.3533 −0.1808

 M2 =

0.0011 0.0496
0.0707 −0.0154



F3 =

−0.0799 0.6427 −0.0741 1.0342
0.4211 −0.0309 0.3723 0.0159

 M3 =

−0.0153 0.0298
0.0805 0.0024



F4 =

−0.1128 0.2778 −0.1029 0.3495
0.4220 −0.1073 0.3836 −0.1082

 M4 =

−0.0180 0.0505
0.0816 −0.0030
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