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Résumé

Le processus d’osmose inverse revêt une grande importance dans l’industrie du traitement d’eau.
Malgré son utilisation courante, ce processus souffre de l’encrassement des membranes, ce qui
affecte la qualité de l’eau produite et les performances de la membrane elle-même. Jusqu’à
présent, le fonctionnement des systèmes d’osmose inverse repose sur l’expérience des opérateurs,
les activités de maintenance étant réalisées selon des calendriers ou des critères prédéfinis. Ce
travail consiste à développer une estimation de l’encrassement basée sur un observateur en
mode glissant et à utiliser diverses techniques d’apprentissage automatique pour fournir des
prédictions en temps réel et des recommandations de maintenance. Les résultats offrent des
perspectives précieuses sur les performances et la pertinence de ces approches d’estimation.

Mots clés : Dessalement, Osmose Inverse, Modélisation, Encrassement des Membranes, Pré-
diction de l’Encrassement, Apprentissage Automatique, Mémoire à Long et Court Terme, Trans-
formateur, Observateur en Mode Glissant.

Abstract

The reverse osmosis process holds great importance in the water treatment industry. Despite
its common use, this process suffers from membrane fouling, which affects the quality of the
produced water and the performance of the membrane itself. So far, the operation of reverse
osmosis systems relies on the operators’ experience, with maintenance activities carried out
according to predefined schedules or criteria. This work involves developing a sliding mode
observer-based fouling estimation, and using various machine learning techniques to provide
real-time predictions and maintenance recommendations. The results provide valuable insights
into the performance and suitability of these estimation approaches.

Keywords: Desalination, Reverse Osmosis, Modeling, Membrane Fouling, Fouling Prediction,
Machine Learning, Long Short-Term Memory, Transformer, Sliding Mode Observer.
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General Introduction

“We made from water every living thing”

Approximate translation of verse 30, Surah Al-Anbya, the Quran

The demand for clean water is a critical issue in many countries with limited water resources.
According to the United Nations, by 2025, approximately 20% of countries will face severe
water shortages, and 2.7 billion people will require access to clean drinking water. Clean water
is essential for human survival and various industries such as agriculture, energy production,
tourism, recreation, and construction. Additionally, rapid urbanization has led to an increase
in annual water consumption, further exacerbating water pollution and scarcity issues [1].

To meet these essential needs, it is necessary to produce clean water to support human life
and other activities that depend on water. Seawater, which constitutes about 97.5% of the
Earth’s accessible water, represents a significant potential source for potable water. However,
only about 2% of the water exists as polar ice and glaciers, leaving less than 0.5% as freshwater
available for human use [2].

In Algeria, water consumption is characterized by high demand across agricultural, domestic,
and industrial sectors. The country consumes approximately 6 billion cubic meters of water
annually, with the agricultural sector accounting for about 70-75% of total usage, domestic
water use around 15-20%, and the industrial sector about 5-10%.

Efforts are underway to develop and expand alternative water production technologies to ad-
dress the global water crisis. Scientists and government officials are also working to raise
awareness about the importance of water management and conservation.

Desalination has emerged as a viable solution to address the global scarcity of drinkable freshwa-
ter by converting seawater into potable water through the removal of salt. Desalination methods
can be classified into four categories: Thermal, Crystallization, Membrane, and Other.

Thermal-based and membrane-based separation methods are the most commonly used desali-
nation techniques [3]. Multistage flash distillation (MSF), multi-effect distillation (MED), and
vapor compression (VC) are the most utilized thermal desalination processes for large and
medium scales. Except for MVC, all thermal desalination techniques require low-temperature
heat energy to increase the temperature of the saline input and electrical energy to run the
pumps [4].

Among membrane-based desalination techniques, reverse osmosis (RO) and electrodialysis (ED)
are the most prevalent. RO and ED require electrical energy; for example, in RO, electricity
is used for pumping, whereas in ED, a direct current between electrodes is necessary for ionic
membrane separation [5].
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General Introduction

RO technology is widely recognized and extensively researched, being used by some of the
world’s largest desalination plants [6]. In this pressure-driven process, a semipermeable mem-
brane rejects dissolved components in the water through size exclusion and physical-chemical
interactions between the solute, solvent, and membrane.

This work focuses on the reverse osmosis (RO) process for desalination due to its high efficiency
in salt rejection, energy efficiency compared to methods like multi-stage flash (MSF) and multi-
effect distillation (MED), scalability, flexibility for various settings, and enhanced reliability and
lifespan from continuous technological improvements.

Despite the many benefits of membrane technology, membrane fouling remains a significant
challenge during operation. Membrane fouling increases operational costs and shortens mem-
brane life [7]. In extreme cases, uncontrolled fouling can cause membrane failure, severely
impacting plant operations.

The need for effective prediction and management strategies for membrane fouling is critical to
enhance the longevity and reliability of RO systems. This work aims to address this challenge
by developing predictive models to estimate and manage membrane fouling effectively.

This work is organized into several chapters to provide a systematic and comprehensive ex-
ploration of the proposed membrane fouling prediction problem. The following outlines the
organization of the thesis:

This chapter introduces the topic, providing an overview of the motivations, objectives, and
contributions of this work. It also presents the scope of our work and outlines the organization
of the subsequent chapters.

Chapter 1 provides an exploration of the background and state-of-the-art for reverse osmosis
(RO) desalination. It discusses the principles and terminology, compares natural osmosis to
reverse osmosis, and covers osmotic pressure, water recovery, solute rejection and passage,
permeate and salt flux, and concentration polarization. It also examines different RO membrane
modules and their characterization.

The chapter 2 focuses on the mathematical modeling of RO processes. It introduces various
transport models, including phenomenological and mechanistic models, and details the solution-
diffusion model. It also covers the spatial dependence in the solution-diffusion model and
presents a nonlinear state-space model for the RO process. The chapter concludes with model
verification through experimental validation and simulation analysis.

In chapter 3, the modeling macroscale fouling mechanisms in RO membranes takes center stage.
It covers the formation mechanisms of cake layers and surface blockage, and combines different
fouling mechanisms. The impact of fouling on operational variables in RO plants is analyzed,
both with and without membrane discretization, providing insights into long-term performance.

The chapter 4 presents the proposed solution for predicting membrane fouling in RO systems.
It includes the design of a sliding mode observer for online parameter estimation and discusses
multi-step time series forecasting using machine learning techniques, such as LSTM and Trans-
former models.

In chapter 5, we focus on the methods used for data acquisition and preprocessing necessary
for predictive modeling of membrane fouling. It discusses the collection and transformation of
data, the application of sliding mode observers, and the preparation of the dataset for analysis.

The chapter 6 applies the predictive methods discussed earlier to realistic scenarios. It evaluates
the performance of LSTM and Transformer models in predicting membrane fouling, analyzing
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the results through residual analysis and autocorrelation of residuals. The chapter concludes
with a summary of findings and the practical implications of the predictive models.

Finally, the general conclusion presents a summary of the research findings. It provides a
concise overview of the key outcomes obtained throughout this work and explores potential
future directions, paving the way for further investigations and advancements in the field.
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Background & state-of-the-art for reverse osmosis desalination

1.1 Introduction

Water desalination is a primary method for producing clean water from various sources[8].
With advancements in membrane science, membrane-based processes have emerged as the
most promising and practical desalination options due to their high energy efficiency[9].Various
membrane-based processes, such as reverse osmosis (RO), nanofiltration (NF), and membrane
distillation (MD), are widely used for treating seawater and brackish water from different
sources[10].

Reverse osmosis (RO) is currently the most reliable and advanced state-of-the-art technique
for desalinating seawater and brackish water. It has become a crucial alternative for producing
clean water while minimizing associated costs. The use of RO for desalination has seen a sub-
stantial increase since the 1950s[11]. Currently, around 50% of the desalinated water available
globally is produced by using RO.

This chapter aims to provide an overview on the state of the art of various aspects of the RO
desalination process. We will focus on its fundamental principles, components, and challenges.
We explore the theoretical underpinnings of osmosis and reverse osmosis, and the various mem-
brane configurations used in RO systems.

1.2 Principles and Terminology

Osmosis, a well-established physical phenomenon, has been understood by humanity for many
years. It can be succinctly described as the spontaneous movement of water molecules across a
semipermeable membrane from a region of low solute concentration (resulting in low osmotic
pressure) to one of high solute concentration (resulting in high osmotic pressure), as depicted in
Figure 1.1 (a). The semipermeable membrane selectively allows the passage of water molecules
while rejecting solutes[12].

1.2.1 Natural Osmosis Vs Reverse Osmosis

Osmosis persists until osmotic equilibrium is attained, where the chemical potentials across the
membrane become equal, as shown in Figure 1.1 (b). The flow of water molecules can be altered
or reversed by applying external pressure to the solution with higher concentration (known as
the feed solution)[13]. When the applied pressure exceeds the osmotic pressure difference across
the membrane, water molecules are compelled to move in the opposite direction to the natural
osmosis phenomenon. This process, termed reverse osmosis (RO), is illustrated in Figure 1.1(c).

1.2.2 Osmotic Pressure

Osmotic pressure is closely related to the colligative properties of a solution such as freezing
point depression and boiling point elevation. For ideal dilute solutions, the osmotic pressure
(π) can be estimated using the van’t Hoff equation given below[14]

π = CRT (1.1)

where, C is the molar concentration of a non-permeable solute in the solution (mol/L), R is
the universal gas constant (0.08206 L atm/mol K).
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Figure 1.1: Schematic of (a) osmosis (b) osmotic equilibrium (c) RO

For non-ideal concentrated solutions, the following logarithmic equation is valid for the estima-
tion of osmotic pressure [29]:

π = −RT

V 0
1
ln(a1) (1.2)

where, a1 is the activity of the solvent and V 0
1 is the molar volume of pure solvent (L/mol).

1.2.3 Water Recovery

In a continuous RO process, the feed water stream splits into two streams (Figure 1.2). The
first stream, called permeate or product water, consists of water molecules that have passed
through the membrane and has a low solute concentration. The second stream, termed brine,
concentrate, or reject, contains the remaining water molecules and rejected solutes, resulting
in a higher solute concentration than the feed.

Recovery or conversion of an RO process is defined as the volume fraction of feed water that
is recovered as permeate or product water. The percentage recovery (r) can be calculated as
follows [15]:

r = Qp

Qf

× 100% (1.3)

where, Qp and QF are the flow rates of the permeate and feed streams, respectively.

Figure 1.2: Schematic of a continuous RO system
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1.2.4 Solute rejection and passage

Solute or salt rejection (SR) is defined as the percentage of a particular incoming solute that
is rejected by the RO membrane. The apparent (observed) SR is given as follows:

SR = (1 − Cp

Cf

) × 100% (1.4)

where, Cp and Cf represent permeate and feed solute concentrations (mg/L), respectively.
Rejection depends on the type of feed constituents, their characteristics, and the type of RO
membrane.

1.2.5 Permeate and salt flux

Permeate or water flux JW refers to the volumetric flow rate of permeate per unit surface area
of the RO membrane and is generally proportional to the net pressure driving force across the
membrane.
Conversely, salt flux Js represents the amount of salt passing through the membrane per unit
surface area per unit time, and is proportional to the salt concentration difference across the
membrane.

1.2.6 Concentration polarization

During RO desalination, solutes flow from the bulk feed towards the membrane, creating a
high concentration on the membrane surface and forming a boundary layer with elevated solute
concentration [16]. This leads to diffusional back-transport of solutes away from the membrane.
However, due to convection dominating over diffusion, solutes accumulate in the boundary layer
and on the membrane surface, resulting in a higher concentration on the membrane surface Cm

compared to the bulk feed water CF . This buildup of rejected solutes near the membrane is
known as concentration polarization CP [11][13].

Figure 1.3: Concentration polarization and concentration gradient profile across the membrane
surface
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Effects of concentration polarization

Concentration polarization (CP) in RO desalination reduces permeate flux and membrane solute
rejection while increasing fouling and scaling risks[17]. CP effects are intensified by colloidal
particle presence, leading to cake-enhanced concentration polarization (CECP).

1.3 RO membranes modules

There exist four different types of membrane modules for RO desalination,: (1) plate and frame,
(2) tubular, (3) spiral wound, and (4) hollow fiber.
RO membranes were initially designed in tubular and plate-and-frame configurations. However,
due to their inherently low packing density, these designs were phased out and replaced by
hollow fiber and spiral wound modules.[18]

1.3.1 Plate and frame modules

One of the earliest designs of RO membranes is plate and frame modules. In these modules, a
flat sheet RO membrane is attached to both sides of a rigid plate made from materials such as
solid plastic, porous fiberglass, or reinforced porous paper. Multiple plates are stacked within
a pressurized support framework, with grooved channels in the plates providing paths for per-
meate flow. As the feed solution enters from one end, water molecules permeate the membrane
and are collected in a central permeate collection manifold, while the brine or concentrate exits
from the other end as shown in figure 1.4.
Despite their low packing density and high cost due to complex design and construction, plate
and frame modules are easy to clean, making them suitable for feed streams with high sus-
pended solids content. However, they are prone to fouling because of dead zones within the
modules[19][15].

Figure 1.4: Plate and frame membrane module
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1.3.2 Tubular modules

Tubular modules are straightforward in construction, typically consisting of a porous tube with
an inserted or surface-coated RO membrane, as shown in Figure 1.5. These tubes, made from
materials like ceramic, carbon, paper, plastic, or fiberglass, allow pressurized feed water to
enter from one end, permeate radially through the membrane to produce product water, and
discharge the concentrate from the other end[20]. Multiple tubes can be arranged in series or
parallel to enhance system capacity[19] [21].
Despite being easy to clean, tubular membrane modules are considered uneconomical and have
low packing density, making them less common in RO desalination but more frequently used
in microfiltration (MF) and ultrafiltration (UF) applications[22].

Figure 1.5: Tubular module

1.3.3 Hollow fiber modules

A hollow fiber module comprises numerous small-diameter (hair-like) fibers housed within a
pressure vessel. One end of the module features an epoxy tube sheet where the fiber ends are
potted in epoxy but remain open for permeate flow. The other end has an epoxy nub that
seals the fibers to prevent feed from bypassing to the concentrate outlet [23]. The module
also includes a porous feed distributor (core tube) running the length of the module [24]. As
pressurized feed water enters through the core tube, water molecules permeate radially into the
fibers and exit through the open ends in the epoxy tube sheet, while the concentrate exits at
the same end as the feed inlet (Figure 1.6).
Hollow fiber modules are economical and have high packing density and recovery rates. How-
ever, they are difficult to clean and highly susceptible to fouling due to the small spacing
between fibers [25].

Figure 1.6: Hollow fiber modules
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1.3.4 Spiral wound modules

The most common type of module used for RO desalination are currently spiral wound modules.
In a spiral wound module, shown in Figure 1.7, two membrane sheets are placed together with a
permeate spacer (made of nylon or dacron) in between to form a leaf[24]. The membrane sheets
are glued from three sides with the fourth side left open and connected to a central perforated
permeate collector tube [26]. The leaves are then placed together with a feed/concentrate
mesh spacer to induce turbulence and minimize the CP effects. The combination of leaves
and feed/concentrate spacers is wrapped around the permeate collector tube to create a spiral
configuration and finally placed inside a pressure vessel (also known as housing).[15]

Feed water enters the module from one end and travels axially along its length. Water molecules
permeate through the membrane and are collected as permeate in the perforated permeate
collector tube, while the concentrate exits at the opposite end from the feed inlet.

Spiral wound modules are cost-effective, have high packing density, and enable high mass
transfer rates due to the presence of feed spacers. However, they are difficult to clean and
prone to fouling if pre-treatment is inadequate. Additionally, they can result in a high feed side
pressure drop[27].

Figure 1.7: Spilar wound module

1.3.5 Comparison of Module types

Table 1.1 compares the four RO membrane modules in terms of packing density, fouling propen-
sity, ease of cleaning, and manufacturing cost[28].

Module type Packing density (ft2/ft3) Fouling
propensity

Ease of cleaning Manufacturing
cost

Plate and frame 45-150 Moderate Good High

Tubular 6-120 Low Excellent Very high

Spiral wound 150-380 High Poor Moderate

Hollow fiber 150-1500 Very high Poor Low

Table 1.1: Comparison of RO membrane module types
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1.4 Membrane characterization

Characterization of RO membranes is important in understanding the membrane structure,
morphology, chemical composition, and physio-chemical properties.
This process involves measuring pore size, examining surface features, and analyzing chemical
composition. Techniques like microscopy and spectroscopy are used to visualize and study
these aspects. Additionally, methods to assess thermal stability, surface wetting properties,
and electrical characteristics are important. Overall, these characterizations help in selecting
and designing effective RO membranes for various applications.

1.5 Conclusion

In conclusion, this chapter delved into the state-of-the-art research on RO desalination, its
basics and principles, and an overview on membrane technology.

Throughout the chapter, several key aspects were discussed, including the basics of a reverse
osmosis process, the difference between natural osmosis and reverse osmosis, as well as the
performance parameters such as recovery, rejection and flux. An analysis of the different types
of membrane modules was conducted, in addition to the characterization

In the next chapter, the mathematical modeling of a reverse osmosis process is carried out,
establishing a solid understanding of the underlying dynamics of the transport models.
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Mathematical modeling of a reverse osmosis process

2.1 Introduction

The choice of a mathematical model for a given process largely depends on the intended appli-
cation. Regarding reverse osmosis, several modeling approaches are found in the literature. In
this chapter, we will justify our choice of the solution-diffusion (SD) dynamic model, develop
the corresponding equations, and discuss their implementation.

We also present the simulations conducted on the model developed along with the experimental
validation. Also, we will analyze the performance of the RO system and the effect of various
parameters on the system’s behavior.

2.2 Transport models

Membrane transport models are crucial for understanding the movement of solutes and water
through RO membranes. These models play a significant role in predicting membrane perfor-
mance and aid in the design of advanced membranes with enhanced properties. Over the years,
various transport models have been developed, which can broadly be categorized into two main
types: phenomenological and mechanistic models [29].

2.2.1 Phenomenological models

Phenomenological models, grounded in the principles of irreversible thermodynamics, do not
rely on the specifics of the transport mechanism or membrane structure. They treat the mem-
brane as a "black box" near equilibrium, dividing the system into smaller subsystems with local
equilibrium [29].

These models describe membrane performance and flux using measurable quantities such as
water flux and salt rejection. While convenient due to their minimal data requirements and
applicability when membrane structure is unknown, phenomenological models do not offer
insights into the actual transport mechanisms involved [30].

2.2.2 Mechanistic models

The performance of a membrane is related to the physicochemical parameters of both the mem-
brane and the solutes. Mechanistic models assume a certain type of transport mechanism and
relate the membrane performance to to the physicochemical parameters of both the membrane
and the solutes[29].

These models can be classified into non-porous and porous transport models. The non-porous
models assume that the membrane is non-porous or homogeneous. Common non-porous trans-
port models include the solution-diffusion (SD) model, the extended solution-diffusion (ESD)
model, and the solution-diffusion-imperfection (SDI) model. Fig. 2.1 shows the classification
of the membrane transport model.
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Figure 2.1: Classification of mechanistic model in RO.d

2.3 Solution-Diffusion model

The solution-diffusion model is the most used among all models. It is based on the diffusion
of the solvent and the solute trough the membrane. This model assumes that both solute and
solvent dissolve at the membrane surface and then diffuse across it. The solute and solvent
diffusion are separate processes resulting from concentration and pressure differences across the
membrane.[31]

We opted to choose this model due to its ability to describe solute and solvent transport through
membranes, which is crucial for predicting fouling behavior.

2.3.1 Transport equations

The solvent flux of the permeate depends on the hydraulic pressure applied across the mem-
brane, minus the difference in the osmotic pressure of the solutions of the feed and permeates
side of the membrane [32] :

Jw = Aw(∆P − ∆π) (2.1)

Aw is the water permeability constant, ∆π represents the difference in osmotic pressure on both
sides of the membrane. It is expressed as:

∆π = πF − πP (2.2)

where the subscripts F refers to the feed side and the subscript P to the permeate side.
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For moderate solute concentration, the osmotic pressure is approximately a linear function of
solute concentrations:[31]

π = kC (2.3)

where k is a proportionality coefficient. By substituting Eq. 2.3 into Eq. 2.1 we obtain:

Jw = Aw(∆P − k∆C) (2.4)

where ∆C is the difference in solute concentration across the membrane, expressed as:

∆C = CF − CP (2.5)

where CF and CP are the concentration in the feed and the permeate side, respectively.

The volumetric flow rate can be expressed as:

Qw = JwSa

ρw

(2.6)

where Sa is the membrane surface area and ρw is the water density.

For the solute flux, it is assumed that the chemical potential difference due to pressure is
negligible and so the driving force is almost entirely due to concentration differences. From
Fick’s law, the solute mass flux is:

Js = Bs(∆C) (2.7)

where Bs is the solute permeability coefficient which is a function of the solute composition
and membrane structure.

The solute mass flow rate is expressed as:

Q̇s = JsSa = BsSa(CF − Cp) (2.8)

2.4 Spatial Dependence

The spatial dynamics in the solution-diffusion model provide a more comprehensive and detailed
understanding of the system. This enhanced perspective allows for the precise localization of
fouling within the membrane, which is crucial for optimizing membrane performance and main-
tenance.
The primary objective of this model is to distinguish each elemental section from the others
through the use of differential dependency equations. By incorporating spatial variables, the
model accounts for variations and dependencies that occur at different points within the mem-
brane.
This differentiation is achieved by solving a set of differential equations that describe the behav-
ior and interactions of the system’s components across the spatial domain [33]. The following
schematic represents the change in flow rate across a section ∆X
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Figure 2.2: Schematic of the change in flow rate across a section ∆X.

In this flow pattern, the permeate and the feed in the fiber side and the shell, respectively,
flow co-currently [33]. According to the solution-diffusion model, the rate of permeate in an
elemental section length ∆X for water is Qpw:

Qpw = Aw

ρw

(πDm∆x) (∆P − κ(CF − Cp)) (2.9)

where Dm is the membrane mean diameter.

The material balance for water in the shell side can be written as:

Qsw =
(
Qsw + dQsw

dx
∆x

)
+Qpw (2.10)

where Qsw is the water volumetric flow rate in the shell side.
The first subscript indicates the shell or the fiber side, and the second subscript indicates the
solute or the water.

This equation can be written in the following form:

dQsw

dx
= −Qpw

∆x (2.11)

Substituting Qpw for its expression in Eq. 2.9 gives:

dQsw

dx
= −Aw

ρw

(πDm)(∆P − κ(Cf − Cp)) (2.12)

CF can be expressed as:

CF = Q̇ss

Qsw

(2.13)

where Q̇ss is the solute mass flow rate in the shell side and Qsw is the volumetric flow rate.

A similar equation is obtained for the solute concentration Cp in the permeate flow rate (fiber
side):

Cp = Q̇fs

Qfw

(2.14)

where Q̇fs and Qfw are, respectively, the solute mass flow rate and the water volumetric flow
rate in the fiber side.
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Substituting CF and Cp for their expressions in Eq. 2.12 gives:

dQsw

dx
= −Aw

ρw

(πDm)
(

∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
(2.15)

The material balance for water on the fiber side is obtained in the same manner:

dQfw

dx
= Aw

ρw

(πDm)
(

∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
(2.16)

Similarly, the material balance for the solute in the shell side Fig. 2.2 can be written as:

Q̇ss =
(
Q̇ss + dQ̇ss

dx
∆x

)
+ Q̇ps (2.17)

where Q̇ss is the solute mass flow rate in the shell side, and Q̇ps the solute mass flow rate across
the membrane.

Arranging this equation and substituting Q̇ps for its expression Eq. 2.8 gives:

dQ̇ss

dx
= −Bs(πDm)

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
(2.18)

A similar equation is obtained for the fiber side:

dQ̇fs

dx
= Bs(πDm)

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
(2.19)

Finally, the mathematical model obtained is composed of a set of four ordinary differential
equations. To determine the permeate flow rate at the end of the module, equations 2.15, 2.16,
2.18 and 2.19 must be integrated simultaneously.

dQsw

dx
= −πDmAw

ρw

(
∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
dQfw

dx
= πDmAw

ρw

(
∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
dQ̇ss

dx
= −πDmBs

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
dQ̇fs

dx
= πDmBs

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
(2.20)
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2.5 Modeling of a closed-loop reverse osmosis installa-
tion

There are two main modes of an RO system operation:

Continuous mode : the feed characteristics remain the same, and the retentate or concen-
trate is collected separately from the permeate. If an initial feed volume is used, the feed
is run to exhaustion. This mode assumes no mass transfer inhibition, and rejection, flux,
and stream concentrations ideally remain constant over time.

Semi-Batch Mode : We’re adopting this mode which operates in an unsteady state where
the retentate is recycled to the feed tank, and permeate is collected separately as shown
in Fig 2.3 . As the operation progresses, the feed volume decreases, and the concentration
of the feed increases over time. This creates a closed-loop concentrating system where
the feed becomes more concentrated, affecting the flux and recovery rates[32].

Figure 2.3: Schematic of reverse osmosis system with semi-batch mode.

The system material balances, together with the mass transfer models, were used to simulate
system operation. Correlation of flux, solute concentrations and rejection with operating time
and overall system recovery are functions of the model.

This model also predicts operational performance characteristics of the system at various times
and recoveries. The effects of pressure, feed concentration, volume and membrane characteris-
tics on separation efficiency can also be described.

A material balance made on the product tank yields :

QPCP = d(VPCP avg)
dt

(2.21)

QPCP = d(VP )
dt

CP avg + d(CP avg)
dt

VP (2.22)
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The change in the volume of the permeate with time is the production rate of the membrane.

d(VP )
dt

= QP (2.23)

By substitution of this in Eq. (2.7) we get

d(CP avg)
dt

= QP (CP − CP avg)
VP

(2.24)

The material balance around the membrane module is

QPCP = QFCF −QRCR (2.25)

In this balance an assumption is made that in this system the concentration with in the mem-
brane does not change greatly with spatial distribution. A mean permeate concentration from
the membrane module was used.
Similarly the balance around the feed tank becomes

QRCR −QFCF = d(VF tCF t)
dt

(2.26)

In the model it was assumed that the feed tank was well mixed. Thus the concentration of the
feed to the membrane equals the concentration in the feed tank. Therefore,at any instant in
time, t, CF t = CF

The combination of Eqs. (2.25) and (2.26) with substitution of CF t as CF , gives

−QPCP = d(VF t)
dt

CF + d(CF )
dt

VF t (2.27)

The change in the feed volume with time can be take as the production rate, so

−d(VF t)
dt

= QP (2.28)

Integrating with boundary condition at t = 0 with VF = V 0
F

VF = V 0
F +QP t (2.29)

the substitution of these expressions in Eq 2.12 gives :

d(CF )
dt

= QP (CF − CP )
V 0

F +QP t
(2.30)

To get the solution of Eq. (2.30) we need the relationship between QP , and CF with the
expression for CP , in terms of CF . While the solute flux depends on the concentration gradient:

Js = Bs(CF − CP ) (2.31)

the permeate concentration is equal to material balance around the membrane:

Js = JW
CP

CW P

(2.32)
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By combining Eq (2.31), Eq (2.32) and Eq (2.4), we get :

Cf = Aw∆PCP

BsCW P

− AwkCFCP

BsCW P

+ AwkC
2
P

BsCW P

+ CP (2.33)

Approximating the equation through Aw∆P
Bs

≫ Awk
Bs

for high rejection :

CP = Cf

a3 − a4CF

(2.34)

By substitution of the expression for CP , in Eq (2.4) we get the expression for flux in terms of
CF :

Jw = Aw(∆P − kCF + Cf

a3 − a4CF

) (2.35)

Knowing that The flow of solvent through the membrane is defined in terms of flux

JW = Qp

Sa

CW P (2.36)

substitution of Eq. (2.20) into Eq. (2.21):

Qp = a1 − a2CF + a2CF

a3 − a4CF

(2.37)

Putting the expression for CP and QP , into the expression for the concentration change with
time into Eq. 2.30, we get:

d(CF )
dt

=
[a1 − a2CF + a2CF

a3−a4CF
][CF − Cf

a3−a4CF
]

a5 − a1t+ a2CF T − a2CF + a2CF

a3−a4CF

(2.38)

where the model constants are : a1 = SaAw∆P
CW P

, a2 = SaAwk
CW P

, a3 = 1 + Aw∆P
BsCW P

, a4 = Awϕ
BsCw

,
a5 = VF 0, a6 = Cf0, a7 = SaAw

Cw
.

The overall mass balance is :

VF 0CF 0 = (VF 0 − VP )CF + VPCP av (2.39)

CF 0 = [CF (1 − VP

VF 0
+ VP

VF 0
CP av] (2.40)

The equation for total dissolved solid (TDS) concentration in the product tank can be obtained
by substituting Eq. (27) into Eq. (14) :

d(CP av)
dt

=
[a1 − a2CF + a2CF

a3−a4CF
][ Cf

a3−a4CF
− CP av]

a5 − a1t+ a2CF T − a2CF + a2CF

a3−a4CF

(2.41)

37



Mathematical modeling of a reverse osmosis process

2.6 Nonlinear State-Space Model for Reverse Osmosis
Process

We can represent the nonlinear system expressed in equations Eq. (2.23) and Eq. (2.26). Let’s
define the state variables as follows:

• x1 = Cf : feed concentration (kg/m3)

• x2 = Cpavg: permeate concentration (kg/m3)

The outputs are defined as follows:

• y1 = Cf

• y2 = Jw

2.6.1 Differential Equations

The nonlinear state-space representation can be formulated using the given parameters. The
system can be described by the following differential equations:

dX1
dt = (a5− Sa·Aw·u

Cw ·t+ Sa·Aw·ϕ
Cw ·X1·t− Sa·Aw·ϕ

Cw ·X1·t)
(Cw· Sa·Aw·u

Cw ·X1−Cw· Sa·Aw·ϕ
Cw ·X2

1 +1+ Bs·Cw
Aw ·u− Bs·Cw

Aw ·ϕ·X1)·(1−(1+ Bs·Cw
Aw ·u− Bs·Cw

Aw ·ϕ·X1)−1)

dX2
dt = (a5− Sa·Aw·u

Cw ·t+ Sa·Aw·ϕ
Cw ·X1·t− Sa·Aw·ϕ

Cw ·X2·t)
(Cw· Sa·Aw·u

Cw ·X1−Cw· Sa·Aw·ϕ
Cw ·X2

2 +1+ Bs·Cw
Aw ·u− Bs·Cw

Aw ·ϕ·X1)·(1−(1+ Bs·Cw
Aw ·u− Bs·Cw

Aw ·ϕ·X1)−1)

2.7 Model Verification

Experimental data from several studies were used to verify the model, with a simple aqueous
salt (NaCl) solution[34]. The experimental setup comprised three tubular cellulose acetate
membranes with a combined surface area of 0.181 m2. The system’s pH was maintained at 4.5,
and the temperature was kept at 20°C. The feed rate to the membrane modules was 0.063 kg/s.
An operating pressure gradient of 4.02 × 1013kg/mh2 was applied.

2.7.1 Experimental Validation

The first experimental run to which the model was tested utilized a 2.00 kg/m3 NaCl aqueous
solution. The reverse osmosis unit was operated for 30 h to obtain data for comparison to
the model. Experimental results of solute concentration were plotted as functions of time and
recovery. The constants and initial conditions for the simulation are given in Table 2.1. The
variation of recovery with time was linear during the early stages of the experiment, but became
nonlinear toward the end of the experiment.[35]
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Cf0 = 2.00 kg/m3 ∆P = 4.02 × 1013 kg/mh2

Vf0 = 1.50 m3 Aw = 4.20 × 10−13 h/m
Cw = 1.0 × 103 kg/m3 Bs = 1.12 × 10−4 m/h
Sa = 0.181 m2 ψ = 1.02 × 1012 m2/h2

Table 2.1: The constants and initial conditions for the simulation

The experimental data for solute concentration and flux over time were plotted and compared
with the model’s predictions.

The results demonstrated a strong correlation between the experimental data and the model,
with an accuracy of 95%. Specifically, the model accurately predicted the exponential increase
in feed concentration over time and the behavior of flux under the given operating conditions
as shown in Fig. 2.4.

Furthermore, the model’s simulation of flux showed a good fit with the experimental data, as
illustrated in Fig. 2.5. This agreement is critical because it confirms that the model can reliably
predict the system’s performance under different conditions.

This high degree of agreement between the experimental data and the model supports the
validity of the model and its underlying assumptions. Consequently, the model can be used
confidently for predicting the performance of similar systems under various operational scenar-
ios.

(a) The whole time interval. (b) The experimental results zoomed in.

Figure 2.4: Simulation and Experimental results of feed concentration vs. time

2.7.2 Process Analysis

Fig. 2.4a illustrates the simulation results of solute concentration in the feed over time. Accord-
ing to the model, the feed concentration increases linearly but slowly during the initial hours
(up to 400 hours) of operation. After this period, the feed concentration begins to increase
exponentially.

Initially, the system operates with a set feed volume, and the retentate concentration is con-
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(a) The whole time interval. (b) The experimental results zoomed in.

Figure 2.5: Simulation and Experimental results of water flux vs. time.

sistently slightly higher than the feed concentration. The retentate is recycled back into the
feed tank (as depicted in Fig. 2.3). The feed volume decreases over time due to permeate
production, resulting in an increase in feed concentration. If the initial feed volume was larger,
the linear increase in concentration would persist for a longer period.

Fig. 2.5a shows the variation of permeate flux with time. Initially, as operating time increases,
the permeate flux decreases slowly. After around 400 hours, the flux decreases sharply. The
simulation results suggest that while the permeate flux declines gradually at first, it falls more
sharply over time due to the increasing concentration gradient.

(a) (b)

Figure 2.6: Simulation results of permeate concentration and average permeate concentration
vs. time.

Fig. 2.6 shows the simulation results for both permeate and average product concentrations
over time. According to the model, the permeate concentration increases gradually during the
first 400 hours of operation. After this period, it rises rapidly, reaching 1.27 kg/m3 by the end
of the 1000-hour simulation. The average permeate concentration also increases but at a more
gradual pace, reaching 0.178 kg/m3 due to dilution effects in the product tank.
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2.7.3 Effect of Initial Feed Concentration (Vf0)

To understand the influence of different system parameters on the performance of the reverse
osmosis system, we varied two parameters: initial feed volume Vf0 and operating pressure
gradient ∆P .

The influence of varying the initial feed volume (Vf0) on the system’s performance was analyzed
by simulating different Vf0 values while keeping other parameters constant. The selected values
of Vf0 were 1.3, 1.5, 1.8, 2.0, and 2.2 m3.

Feed Concentration (Cf) vs. Time

The rate of increase in Cf over time decreases with higher Vf0. This behavior is attributed
to the dilution effect provided by the larger feed volume, which reduces the concentration of
solutes in the feed stream over time, achieving lower final feed concentrations.

Water Flux (Jw) vs. Time

The water flux decreases more gradually at higher initial feed volumes. This is due to the
higher dilution effect resisting the buildup of osmotic pressure, thus maintaining the driving
force for water flux for a longer period.

(a) Feed Concentration vs. Time (b) Water flux vs. Time

Figure 2.7: Effect of Initial Feed Volume (Vf0)

2.7.4 Effect of Operating Pressure Gradient (dP )

The operating pressure gradient (dP ) was varied to observe its effect on the system’s perfor-
mance. The chosen dP values were 3.7 × 1013, 3.9 × 1013, 4.0 × 1013, 4.3 × 1013, and 4.7 × 1013

kg/m/h2.

Feed Concentration (Cf) vs. Time

Higher operating pressure gradients result in faster increases in feed concentration. This is
because the increased pressure gradient enhances the driving force for water permeation, leading
to quicker diminution of the feed volume.
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Water Flux (Jw) vs. Time

Water flux increases significantly with higher operating pressure gradients. This is expected as
the pressure gradient directly enhances the permeation rate of water through the membrane.

Operating at higher pressure gradients can improve overall system efficiency by increasing
water flux, though it must be balanced against potential increases in permeate concentration
and energy costs.

(a) Feed Concentration vs. Time (b) Water flux vs. Time

Figure 2.8: Effect of Operating Pressure Gradient (dP )
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2.7.5 Simulation of Multivariable Distribution through Membrane
Discretization

In this simulation, the membrane is discretized into six interconnected cells, governed by a
system of four differential equations with respect to space (Eq: 2.20). As a result of this dis-
cretization, each cell is analyzed independently. Consequently, the scalar variables Cf and Cpav

are transformed into vector variables. This multivariable model provides a clearer perspective
and enhanced monitoring capabilities of the membrane, enabling not only the detection and
quantification of fouling but also the localization of fouling within each individual cell and the
determination of the fouling percentage in each cell.

The following figure presents the graphs of the vectorial operational variables over time.

Figure 2.9: Multivariable Feed Concentration and Permeate Average Concentration vs. Time

Based on the results obtained from the model, we can infer that the variation of the feed
concentration and the average permeate concentration is proportional to the spatial position.
Over time, the average permeate concentration converges to a defined value, while the feed
concentration varies exponentially. These results are consistent with observations from real
plant operations, validating the accuracy of the model.
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2.8 Conclusion

In this chapter, we have demonstrated our motivations for the choice of the solutions diffusion
model. We derived the fundamental transport equations for solvent and solute fluxes through
the RO membrane, which are crucial for understanding the system’s behavior under different
operating conditions.

Then, we extended the solution-diffusion model to include spatial dependence provided a more
detailed view of the membrane. We implemented also the model in MATLAB and conducted
simulations to validate it against experimental data, demonstrating the model’s accuracy in
predicting the system’s performance. Finally, we examined the impact of different operational
parameters on the system’s performance, providing insights for optimizing RO efficiency.
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3.1 Introduction to Membrane Fouling

Membrane fouling is a process that occurs when contaminants, such as minerals, organic matter,
and microorganisms, accumulate on the surface of a reverse osmosis (RO) membrane, decreasing
its ability to effectively purify the water. This can occur because of different factors such
as scaling, biofouling, particulate fouling, and chemical fouling. The accumulation of these
impurities leads to a decrease in water flow, increased pressure drops, and decreased water
quality.

It is important to regularly clean and maintain the RO membrane to prevent fouling and
maintain its efficiency in filtering water. Fouling occurs when soluble salts precipitate, adsorb,
form a cake or gel, or clog pores of the membrane[36]. Fig. 3.1 shows that fouling can be
of two types: external fouling on the surface of the membrane and internal fouling inside the
membrane’s pores.

Figure 3.1: Representation of several fouling types

3.2 Modeling Cake Formation Mechanisms

Fouling of membranes has been a constant problem in membrane operations, lowering plant
efficiency and increasing maintenance costs since the membrane business was first developed
[35]. Modeling and simulation for anticipating fouling in RO systems have been the subject
of several kinds of research since this would enable diagnostic and preventative steps to be
implemented, thereby reducing the impacts of fouling [37, 38].

The scale formation mechanism in nanofiltration (NF) reverse osmosis (RO) systems can be
theoretically modeled based on crystallization kinetics and the resistance-in-series model. If no
fouling occurs, the initial water flux of the nanofiltration membrane will be given as:

Jw = ∆P − π

ηRm

(3.1)

where Jw is estimated from the resistance-in-series model, ∆P is the applied pressure, η is
the permeate viscosity, and Rm is the membrane resistance. Scale formation is a complex
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process involving both crystallization and hydrodynamic transport mechanisms. Two path-
ways for crystallization have been identified: surface (heterogeneous) crystallization and bulk
(homogeneous) crystallization [39, 40].

In the cake layer formation mechanism, crystal particles formed in the bulk phase through
either bulk (homogeneous) or secondary crystallization deposit to form a precipitate layer on
the membrane [40]. This accumulation leads to flux decline as described below:

Jc = ∆P − π

η(Rm +Rc)
(3.2)

where Jc is the permeate flux estimated from the cake filtration model and Rc is the resistance
due to the cake layer formation. Rc can be calculated using filtration theory and is given by:

Rc = α
Ac

At

(3.3)

where α is the specific cake resistance per unit weight of cake, Ac is the total accumulated
weight of the precipitated scale, and At is the total membrane area.

3.3 Surface Blockage Mechanism

On the other hand, scale formation may also occur due to surface crystallization on the mem-
brane surface through the surface blockage mechanism. Thus, the membrane surface would be
blocked by the lateral growth of crystals. Assuming the areas occupied by crystals are com-
pletely impermeable, the flux in the absence of cake formation could be expressed as follows:

Js = ∆p− π

η(Rm) × Afree

At

= ∆p− π

η(Rm) × At − Ab

At

(3.4)

where Js is estimated from the surface blockage model, At is the total membrane surface, Ab

is the membrane area occupied by surface crystals, and (At − Ab), Afree is the free membrane
surface, uncovered by surface crystals. If the thickness of the crystal layer formed on the
membrane surface is constant, the Ab could be defined as [41]:

Ab = βms (3.5)

where β is the area occupied per unit mass, and ms is the weight of scale formed directly on
the membrane surface.

3.4 Combined Mechanisms of Fouling

At high operating recoveries, as the bulk phase becomes supersaturated, both cake forma-
tion and surface blockage may occur simultaneously [37]. The resulting permeate flux can be
represented as given below:
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Jt = ∆p− π

η(Rm +Rc)
× At − Ab

At

(3.6)

where Jt is the permeate flux estimated by combining the cake filtration and the surface blockage
models.

One way to interpret the fouling impact on an RO membrane is as an increase in total membrane
resistance (RT ) or a decrease in the water permeability coefficient (A). One approach to
quantifying RO membrane fouling involves figuring out the fouling factor that reduces A, as
indicated in Eq.:

A = A0 × FF (3.7)

The above equation represents A0 as the membrane’s initial water permeability, and FF is
the fouling factor. Notably, concentration polarization (CP) events are connected to the RO
membrane’s feed spacer structure and are often studied using film theory [42, 43]. When
estimating the coefficient A0, membrane makers should consider this essential phenomenon for
RO desalination plants. This coefficient would account for membrane compaction caused by
transmembrane pressure (TMP).

3.5 Long-Term Performance Models

Wilf and Klinko [44] developed a model to predict the decline in permeate flow during extended
operation, validated by experimental data from multiple SWRO desalination plants over three
years, showing a 20–25% decrease in permeate flow. The model is:

An = tm (3.8)

where An is the normalized water permeability coefficient (An = A/A0), t is time, and m is a
parameter between -0.035 and -0.041.

Figure 3.2: Wilf and al. model
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Tolba and Mohamed [45] used this model to study the TFC 2822 Fluid system’s efficiency in
an SWRO plant, achieving 26–33% flux recovery with 6.70 MPa input pressure.

Abbas and Al-Bastaki [46] created an exponential model based on three factors and time, using
five years of data from a BWRO plant with a BW30-400 FilmtecTM membrane. The model is:

An = αe
β

t+γ (3.9)

with parameters α = 0.68, β = 79, and γ = 201.1.

Figure 3.3: Abbas and al. model

An exponential equation-based approach for predicting coefficient ‘A’ was also presented [47],
verified with a Dupont™B-1 hollow fiber membrane. The feed water concentration was constant
at 35,000 mg/L and temperature at 27°C, with feed pressure varying from 6.28 to 7.09 MPa.

Belkacem et al. [48] used this model, focusing on membrane resistance rise rather than permeate
flow decline, in a BWRO plant with a BW30LE-440 Filmtec™ membrane.

Lee et al. [49] proposed a model for quantifying membrane fouling, initially developed for NF
membranes but applicable to RO membranes. The model is:

J = A0 × FF × TMP × St − Sb

St

(3.10)

where St is the total membrane area, Sb is the area occupied by scaling, and J is the permeate
flow per unit area.

Ruiz-García and Nuez [50] proposed a model distinguishing two phases of coefficient ‘A’ de-
crease, explained by:

An = δ1 · e
(

−t
τ1

kfp

)
+ δ2 · e

(
−t
τ2

kfp

)
(3.11)

where δ1 and τ1 relate to the first phase, and δ2 and τ2 to the second.
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Figure 3.4: Ruiz and al. model

3.6 Impact of Fouling on Operational Variables in Re-
verse Osmosis Plant

3.6.1 Analysis Without Membrane Discretization

In reverse osmosis (RO) membrane systems, the water permeability coefficient, Aw, is a cru-
cial parameter representing the membrane’s ability to transmit water under a given pressure
gradient. Fouling, including scaling, biofouling, and particulate fouling, directly affects Aw by
adding resistance to water flow, thereby decreasing the membrane’s permeability over time.

The simulation results for the fouling in membrane filtration systems demonstrate the effect
of different forms of Aw (membrane permeability) on the system’s performance. The three
exponential forms for Aw are given as follows:

Aw1(t) = 4.2 × 10−13 exp(−0.001t)
Aw2(t) = 4.2 × 10−13 exp(−0.002t)
Aw3(t) = 4.2 × 10−13 exp(−0.003t)

The variation of Aw over time for the three different exponential forms is shown in Figure 3.5.
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Figure 3.5: Variation of Aw with Time

Figure 3.6 shows the comparison of water flux Jw over time for the three different Aw functions.

Figure 3.6: Comparison of Water Flux Jw vs. Time
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Variation of Aw

The simulation results provide insights into how different rates of fouling, represented by the
different exponential decays of Aw, impact the performance of the membrane filtration system.

As shown in Figure 3.5, all three exponential forms of Aw indicate a decrease in membrane
permeability over time. The rate of decrease varies, with Aw1 representing Standard pore
blockage, Aw2 Intermediate pore blockage, and Aw3 Complete pore blockage. This suggests
that Aw1 represents a scenario with slower fouling, while Aw3 represents a scenario with more
rapid fouling.

Impact on Water Flux Jw

Figure 3.6 demonstrates the corresponding water flux Jw for the different forms of Aw. The
results show that:

• For Aw1, the water flux decreases gradually over time. This indicates that the system
maintains higher performance for a longer period under slower fouling conditions.

• For Aw2 and Aw3, the water flux decreases more rapidly. Especially in the case of Aw3,
the rapid fouling leads to a significant drop in performance early in the process.

These results highlight the importance of managing fouling in membrane filtration systems.
Slower fouling rates (as in Aw1) allow for more sustained performance, while faster fouling rates
(as in Aw3) can drastically reduce the system’s efficiency.

3.6.2 Analysis With Membrane Discretization

The permeability coefficient Aw represents the mirror of fouling in our model. The localization
of fouling and its level in each cell of the membrane will help us monitor the membrane more
effectively.

After integrating fouling into our model for each cell, the following equations represent the
permeability coefficient with respect to time and space:

Aw(t, x = 0) = 4.2 × 10−13 exp(−0.001t)
Aw(t, x = 0.2) = 4.2 × 10−13 exp(−0.002t)
Aw(t, x = 0.4) = 4.2 × 10−13 exp(−0.003t)
Aw(t, x = 0.6) = 4.2 × 10−13 exp(−0.004t)
Aw(t, x = 0.8) = 4.2 × 10−13 exp(−0.005t)
Aw(t, x = 1) = 4.2 × 10−13 exp(−0.006t)

The following figure represents the simulation of the permeability coefficient with respect to
time and space in the membrane:
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Figure 3.7: Variation of Permeability Coefficient Aw with Time and Space

The following figure represents the simulation of the permeate concentration with respect to
time and space in the membrane:

Figure 3.8: Variation of Permeate Concentration Cp with Time and Space
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The following figure represents the simulation of the feed concentration with respect to time
and space in the membrane:

Figure 3.9: Variation of Feed Concentration Cf with Time and Space

From these two variables, we can observe that membrane fouling directly affects the variation of
the operational variables with respect to space, entirely changing the system’s behavior. Based
on the time-space model that provides the state of the variables, we can localize and estimate
the level of fouling in each cell.

This space-time model is a powerful tool that can help us develop a more advanced predictor for
space and time, and determine solutions to mitigate the membrane fouling problem. Enhanced
visualization leads to better solutions, predictions, and monitoring.

3.7 Conclusion

In conclusion, the simulation findings underscore the profound influence of fouling rate on criti-
cal parameters such as feed concentration, permeate concentration, and water flux in membrane
filtration systems. This understanding underscores the importance of managing fouling rates
effectively to optimize the design and operation of these systems, thereby improving their ef-
ficiency and durability. Leveraging a time-space model enables more accurate prediction and
control of fouling, ensuring the reliability and sustainability of reverse osmosis plants.

Moreover, the detailed analysis provided by membrane fouling discretization offers valuable
insights into localized fouling processes, enabling targeted maintenance and cleaning strategies.
This approach enhances overall system efficiency and longevity by addressing fouling issues at
specific problem areas which will surely reduce downtime and operational costs.
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4.1 Introduction

Membrane fouling in RO systems significantly impacts efficiency, operational costs, and longevity,
leading to performance decline, increased energy consumption, and higher maintenance ex-
penses. Predicting long-term fouling is crucial for implementing proactive measures to mitigate
its effects before they become irreversible.

To effectively tackle the issue of predicting membrane fouling, the problem can be systematically
decomposed into two interrelated sub-problems:

0. Online Membrane Fouling Parameter Estimation for RO Systems: This involves
developing a real-time estimation methodology to continuously monitor and evaluate the
fouling parameters of the membrane. Accurate online estimation allows for immediate
detection of changes in the fouling state, enabling timely intervention to prevent severe
degradation and provide input time series data for prediction.

0. Multi-step Ahead Prediction of Fouling: Building on the real-time estimation data,
this sub-problem focuses on forecasting the future state of membrane fouling over multiple
time steps. The objective is to predict the progression of fouling, providing insights that
facilitate advanced planning and maintenance scheduling to avoid critical performance
losses.

The following figure illustrates the permeability coefficient forecasting architecture for a reverse
osmosis plant using machine learning techniques:

Figure 4.1: Machine Learning-Based Permeability Coefficient Forecasting Architecture for Re-
verse Osmosis Plant

4.2 Online Parameter Estimation Using Sliding Mode
Observer

Accurate parameter variation estimation is critical for maintaining control and ensuring the
performance of the RO system without degradation. The Sliding Mode Observer-Based Online
Parameter Estimation is proposed due to its efficiency in control calculation and finite-time
convergence.
Addressing the multifaceted challenges of membrane fouling prediction in reverse osmosis (RO)
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systems necessitates a robust and efficient approach capable of accommodating the nonlinear,
time-, and parameter-variant characteristics inherent to such systems. In this regard, we advo-
cate for the utilization of the Sliding Mode Observer (SMO) for online parameter estimation,
owing to its array of inherent advantages:

• Reduced Observation Error Dynamics: The SMO is crafted to operate within min-
imized observation error dynamics, ensuring the precise estimation of the system’s states
with unparalleled accuracy.

• Step-by-step Design: Offering a systematic and methodical design process, the SMO
enables practitioners to navigate implementation and fine-tuning procedures with utmost
ease and efficacy.

• Finite Time Convergence: Crucially, the SMO guarantees finite time convergence
for all observable states, facilitating the swift attainment of reliable parameter estimates
without compromise.

• Applicability to Nonsmooth Systems: Under specific conditions, the SMO can be
tailored to accommodate systems characterized by nonsmooth dynamics, thereby enhanc-
ing its versatility and applicability spectrum.

• Robustness Under Parameter Variations: With adherence to the dual of the well-
known matching condition, the SMO exhibits robust performance even in the face of
parameter variations, thereby ensuring operational reliability amidst system uncertainties.

4.2.1 Sliding Mode Observer Design

We consider a nonlinear time- and parameter-variant system described by the following equa-
tions:

X1 = f1(x, t, u, θ) (4.1)
X2 = f2(x, t, u, θ) (4.2)

... (4.3)
Xn = fn(x, t, u, θ) (4.4)
y1 = C1x (4.5)
y2 = C2(θ)x (4.6)

Here, Xi represents the state variables, fi are the nonlinear functions, t is time, u denotes the
control input, θ is the parameter to be estimated, and y is the output.

The sliding mode observer is designed to estimate the state variables and the parameter θ, as
depicted in the following schematic:
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Figure 4.2: Sliding Mode Observer-Based Online Parameter Estimation

The observer equations are:

X̂1 = f̂1(x̂, t, u, θ̂) + L1 sign(y1 − ŷ1) (4.7)
X̂2 = f̂2(x̂, t, u, θ̂) + L2 sign(y1 − ŷ1) (4.8)

... (4.9)
X̂n = f̂n(x̂, t, u, θ̂) + Ln sign(y1 − ŷ1) (4.10)

where X̂i are the estimated state variables, f̂i are the estimated nonlinear functions, θ̂ is the
estimated parameter, and Li are the observer gains.

The output equations of the observer are given by:

ŷ1 = C1X̂ (4.11)
ŷ2 = θ̂C2X̂ (4.12)

Sliding Surface and Error Dynamics

To avoid the accumulation of observation errors in the estimated parameter, the sliding surface
is defined based on y1, the output that is independent of θ: :

S = y1 − ŷ1 (4.13)

Our objective is to drive S to zero, ensuring that the estimated output matches the actual
output.

The parameter θ̂ is determined using the relationship:

θ̂ = y2

C2X̂
(4.14)

The observation errors ei are defined as:
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e1 = X1 − X̂1 (4.15)
e2 = X2 − X̂2 (4.16)

... (4.17)
en = Xn − X̂n (4.18)

The dynamics of the observation errors are described by:

ė1 = ∆f1 − L1 sign(S) (4.19)
ė2 = ∆f2 − L2 sign(S) (4.20)

... (4.21)
ėn = ∆fn − Ln sign(S) (4.22)

where ∆fi represents the modeling uncertainties.

4.2.2 Stability Analysis Using Lyapunov’s Second Theorem

To ensure the stability of the observer, we employ Lyapunov’s second theorem. We define the
Lyapunov function as:

V (e) = 1
2e

T e (4.23)

where e is the vector of observation errors.

The Lyapunov function is positive definite (i.e., V (e) > 0 for all x ̸= 0 and V (0) = 0 for
x = 0), indicating that it is always positive except at the origin where it is zero.

The time derivative of V is defined by:

V̇ =
n∑

k=1
ekėk =

n∑
k=1

ek(∆fk − Lk sign(S)) (4.24)

For the observer to be finite-time stable, the following conditions must be satisfied:

L1 > ∆f1, L2 > ∆f2, . . . , Ln > ∆fn (4.25)

By ensuring that the observer gains Li are greater than the respective modeling uncertainties
∆fi , The time derivative of V is negative definite, indicating that it is always negative except
at the origin where it is zero.

The observer is guaranteed to converge in finite time, thereby providing accurate online es-
timation of the parameters’ variation.
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4.2.3 Tuning the Parameters of a Sliding Mode Observer

Understanding the System Dynamics

Before tuning the parameters, it’s crucial to understand the dynamics of the system you’re
working with. This includes the state variables, the nonlinear functions, and any parameters
involved. You should also identify the modeling uncertainties ∆fi in your system.

Initializing the Observer Gains

The observer gains Li are crucial parameters in a sliding mode observer. They are used to
adjust the estimated state variables X̂i to drive the sliding surface S = y1 − ŷ1 to zero. In
practice, we might start with high values for the observer gains.

Reducing the Observer Gains

Once the observer gains have been initialized, you can start the process of tuning. This typically
involves gradually decreasing the observer gains from their initial high values. The goal is to
reduce the gains to a point where the estimated output matches the actual output, while
preventing excessive chattering or high-frequency oscillations in the estimated states.

Evaluating the Performance

After each adjustment of the observer gains, evaluate the performance of the observer. This
could involve checking the error between the estimated and actual states, observing the behavior
of the sliding surface S, and the behavior of the permeability coefficient estimation error.

The process of tuning the observer gains is typically iterative. After evaluating the performance,
you may need to adjust the gains further and re-evaluate. This process continues until you
achieve the desired performance.

Considerations for Stability

To ensure the stability of the observer, the observer gains Li should be greater than the re-
spective modeling uncertainties ∆fi. This ensures that the dynamics of the observation errors
ėi are stable.
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The data obtained using the Sliding Mode Observer will be used for training, validation, and
prediction with machine learning models. The following section will explain the theoretical
aspects of the machine learning methods employed for prediction: Long Short-Term Memory
(LSTM) and Transformer models.

LSTM is utilized for One-Step-Ahead Forecasting. To ensure continuous forecasting, real-time
data is crucial, as the LSTM model requires the current value to predict the next hour. Con-
versely, the Transformer model is used for Multi-Step-Ahead Forecasting.

4.3 Time Series Prediction

4.3.1 Introduction

Time series forecasting is a critical problem in numerous domains. With the rapid advance-
ment of computational power and the growing popularity of machine learning in recent years,
there has been an increasing application of machine learning models, particularly deep learning
models, to time series forecasting. These models include recurrent neural networks (RNNs) as
the long short-term memory (LSTM) networks. More complex neural network structures are
being used, notably the sequence-to-sequence (seq2seq) models, such as the transformer model.
Seq2seq models are designed to convert sequences from one domain into sequences in another
domain, thereby providing a more robust framework for handling intricate sequence data.

We will explore the application of the aforementioned methods to the problem of predicting
fouling. We will evaluate and compare the performance of all these methods to determine the
most effective approach for multi-step time series forecasting in this context.

4.3.2 Long Short Term Memory (LSTM)

Introduction

Long Short Term Memory networks (LSTMs) are a specialized type of RNN, created to over-
come the issue of long-term dependencies. They were introduced by Sepp Hochreiter and Jurgen
Schmidhuber in their 1997 paper titled "LONG SHORT-TERM MEMORY" [41]. The LSTM
unit incorporates three gates: an input gate, a forget gate, and an output gate. Figure 4.3
illustrates the LSTM cell.
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Figure 4.3: LSTM Cell by Guillaume Chevalier, CC BY-SA 4.0

LSTM Architecture

The state updates in LSTMs follow these operations: The first step in the LSTM is to determine
what information should be discarded from the cell state. This decision is made by a sigmoid
layer called the Forget Gate Layer ft. It examines the previous hidden state of the LSTM cell
ht−1 and the input xt at the current time step t and outputs a number between 0 and 1 for
each component in the cell state Ct−1 [42, 51].

ft = σ(Wf [ht−1, xt] + bf ) (4.26)

where:

• bf : represents the bias term associated with the forget gate.

Next, the LSTM decides what new information to store in the cell state. This consists of
two parts: first, a sigmoid layer called the input gate layer it determines which values will be
updated. Then, a tanh layer creates a vector C ′

t of new candidate values that can be added to
the state. These two parts are then combined to update the state [42, 51].

it = σ(Wi[ht−1, xt] + bi) (4.27)
C ′

t = tanh(Wc[ht−1, xt] + bc) (4.28)

The old cell state Ct−1 is then updated to the new cell state Ct. The old state is multiplied by
ft, forgetting the previous information as decided. Then, itC ′

t is added to the state [42, 51].

Ct = ftCt−1 + itC
′
t (4.29)

The next step is to determine the output. This output will be taken from our cell state but
in a more refined manner. Initially, it is passed through a sigmoid layer, which decides which
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parts of the cell state to output. Then, a tanh transformation is applied to scale the cell state
to the range of -1 to 1, and it is multiplied by the result of the sigmoid gate. This ensures that
the output is based only on the selected components [42, 51].

ot = σ(Wo[ht−1, xt] + bo) (4.30)
ht = ot tanh(Ct) (4.31)

4.3.3 Multi-step time series forcasting using transformer

Introduction

Transformers are a class of machine learning models that use self-attention or the scaled dot-
product operation as their primary learning mechanism. They were initially proposed for
neural machine translation, one of the most challenging natural language processing (NLP)
tasks. Recently, Transformers have been successfully employed to tackle various problems in
machine learning and achieve state-of-the-art performance.

Apart from classical NLP tasks, Transformers have been used in areas like image classification,
object detection and segmentation, image and language generation, sequential decision-making
in reinforcement learning, multi-modal (text, speech, and image) data processing, and analysis
of tabular and time-series forecasting [52]. This section focuses on time series forecasting using
Transformers.

Transformer Architecture

The Transformer architecture discards the need for RNNs by employing attention mechanisms,
which facilitate the alignment of input sequences with output sequences of varying lengths.
Like sequence-to-sequence (seq2seq) architectures, The Transformer follows an encoder-decoder
structure architecture. In brief, the model uses an encoder to process the input data to generate
a sequence of information and a decoder to decode the mapped sequence and output the desired
result [53]. In both the encoder and decoder, using stacked self-attention and point-wise, fully
connected layers, which will be shown in the left and right halves of the figure 4.4. The
expression of the attention function used is as follows:

Attention(Q,K, V ) = softmax(f(Q,K)) · V (4.32)

where Q, K, and V represent the query, key, and value, respectively. This analogy, introduced
by Vaswani et al.[54], mirrors information retrieval systems, where a query searches for the
most similar key to retrieve its corresponding value. Various differentiable similarity functions
(f) can be utilized, with the Scaled Dot Product being a prominent choice:

f(Q,K) = Q ·KT

√
dK

(4.33)

In this equation, dK denotes the length of the key vector K. This scaled version is effec-
tive for comparing sequences of different lengths, as demonstrated in the initial Transformer
publication.
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Figure 4.4: Transformer architecture used to perform time series forecasting. In the diagram,
the || symbol stands for the concatenation operation, and similarly as in Vaswani et al. (2017),
NX represents the number of repetitions of the encoder and decoder blocks.

There are at least three places in the Transformer that use the multi-head attention: in "encoder-
decoder attention" layers; in the self-attentive layer in the encoder; in the decoder to prevent
leftward information flowĠoing a little deeper, a fully connected feedforward network in the
Transformer is used in each layer of the encoder and decoder. This network will be the same
at every position. The activation function here is chosen to be ReLU.

Attention Mechanisms

The Transformer employs three types of attention mechanisms, each serving a distinct purpose
within the architecture:

0. Encoder-Encoder Attention: This form of self-attention is used in the encoder module,
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where the query, key, and value originate from the same time series.

0. Decoder-Decoder Masked Attention: Another form of self-attention, this mechanism
is constrained to be causal, utilizing only past time steps and masking future ones. Here,
the query, key, and value also come from the same time series.

0. Encoder-Decoder Attention: Unlike self-attention, this mechanism compares the de-
coder’s information with that of the encoder. The query is derived from the decoder,
while the key and value are taken from the encoder output.

Positional Encoding in Transformer Models

Positional encoding is a crucial technique employed in Transformer models to incorporate an
understanding of sequence order. Unlike conventional recurrent neural networks (RNNs) or
convolutional neural networks (CNNs), Transformers lack inherent awareness of token order.
Positional encodings provide the model with information about the position of tokens in the
sequence, ensuring that the model can differentiate between tokens based on their position
[55, 56].

The positional encoding for a given position pos in the sequence and a dimension i is computed
as follows:

• For even indices: PE(pos,2i) = sin
(

pos

100002i/dmodel

)
• For odd indices: PE(pos,2i+1) = cos

(
pos

100002i/dmodel

)
These formulas help the model to capture the order of data points in the time series. The
output of the positional encoding layer is a matrix, where each row of the matrix represents an
encoded object of the sequence summed with its positional information [55, 56].

Conclusion

In this chapter, we tackled the prediction of membrane fouling in reverse osmosis (RO) plants
by addressing two key areas: online parameter estimation and multi-step ahead prediction. We
proposed the use of a Sliding Mode Observer (SMO) for real-time estimation.

For forecasting, we explored Long Short Term Memory (LSTM) networks and Transformer
models. Comparing these models helps identify the best approach for predicting membrane
fouling progression.

By combining SMO for real-time estimation with advanced deep learning models for forecasting,
we offer a comprehensive solution for managing membrane fouling in RO systems.
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Data Acquisition and Preprocessing

5.1 Introduction

In this chapter, we focus on the preparation and transformation of the dataset needed for
predictive modeling of membrane fouling.

We discuss methods for data generation, collection, and preprocessing to ensure the data ac-
curately represents real-world conditions. By incorporating random fluctuations, we create a
robust dataset for training and validating predictive models.

5.2 Acquiring Fouling Parameters through Sliding Mode
Observer: A Data Acquisition Approach

The efficiency of our system relies heavily on the real-time monitoring of fouling and the precise
acquisition of relevant data. Accurate data collection is crucial for enhancing the reliability and
consistency of predictive outcomes. This section details the results obtained using the Sliding
Mode Observer (SMO), evaluating its suitability and effectiveness for parameter estimation by
examining its performance in terms of precision, robustness, and reliability.

5.2.1 Results and Discussion

Actual Permeability Coefficient

Figure 5.1 illustrates the actual permeability coefficient of the reverse osmosis membrane. This
parameter is essential for understanding the membrane’s performance and detecting fouling.

Figure 5.1: Actual Permeability Coefficient in Reverse Osmosis Membrane
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Estimated Permeability Coefficient

Figure 5.2 shows the permeability coefficient estimated using the Sliding Mode Observer. The
estimated values closely match the actual values, demonstrating the observer’s accuracy.

Figure 5.2: Estimated Permeability Coefficient using Sliding Mode Observer

Estimation Error Analysis

Figure 5.3 presents the estimation error of the permeability coefficient using the SMO. The
maximum estimation error is ±5 × 10−16, indicating high precision.

Figure 5.3: Estimation Error of the Permeability Coefficient using Sliding Mode Observer
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To evaluate this error, we calculate the maximum possible relative error using equation 5.1:

Maximum Relative Error = Absolute Maximum Error
Minimum True Value = max |Vestimated − Vtrue|

min(Vtrue)
(5.1)

Our calculations reveal that the Maximum Relative Error is:

MRE = 4.9369 × 10−16

1.683 × 10−13 = 2.9292 × 10−3 (5.2)

This result indicates that the parameter estimation using the SMO is precise and reliable for
predictive purposes.

Actual Feed Concentration

Figure 5.4 illustrates the actual Feed Concentration of the reverse osmosis plant.

Figure 5.4: Actual Feed Concentration in Reverse Osmosis Plant
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Observed Feed Concentration

Figure 5.5 shows the Feed Concentration observed using the Sliding Mode Observer.

Figure 5.5: Observed Feed Concentration using Sliding Mode Observer

Feed Concentration Error Analysis

Figure 5.6 shows the error between the actual and observed feed concentration, which is a
critical output of our system. The observed output error ranges between ±0.05, with the
maximum relative error calculated as:

MRE = 5 × 10−2

2 = 2.5 × 10−2 (5.3)

which is within acceptable limits for practical applications.
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Figure 5.6: Error between Actual and Observed Feed Concentration

5.2.2 Generalization for Discretized Membrane Model

To accurately estimate fouling within each of the N cells of the membrane, the method re-
quires the deployment of N sensors instead of a single sensor for output measurement. The
output variables, represented as Cf1(t), Cf2(t), . . . , CfN(t), are used in the analysis. The slid-
ing surface for the sliding mode observer is defined as S(x, t) = Cf(x, t) − Cfpredicted(x, t). By
employing this methodology consistently across each cell, we achieve a localized and detailed
estimation of fouling.

This approach ensures a more granular and precise estimation of fouling, significantly enhancing
the overall accuracy and reliability of the membrane model. The use of multiple sensors allows
for real-time monitoring of spatial variations in fouling.

5.2.3 Data Collection and Transformation

To emulate the dynamic behavior of the permeability coefficient (Aw) in a RO membrane, we
generated data that incorporates both the base permeability and deterministic fluctuations.
It reflects how permeability changes over time due to factors such as fouling and operational
conditions.

The Random Fluctuations were incorporated in order to represent random noise and variability
found in real experimental data, challenging the robustness of predictive models under more
stochastic conditions.
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Figure 5.7: Aw vs. time with Random Fluctuations

Data Transformation and Export

The simulated data was then exported to an Excel file, which was subsequently converted into
a CSV format. This transformation ensures that the data is in a convenient format for further
analysis and predictive modeling. The CSV file contains time-series data of the permeability
coefficient. A sample of this univariate time series is shown in Table 5.1.

Table 5.1: Sample of Permeability Coefficient Data

Hour Aw (h/m)
0.000000 4.200000e-13
1.002506 4.197739e-13
2.005013 4.195020e-13
3.007519 4.191393e-13
4.010025 4.186460e-13
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5.2.4 Data Analysis and Testing

To ensure the robustness and reliability of our predictive models, we performed a series of
tests and analyses on the permeability coefficient data. These tests help us understand the
underlying properties of the data and guide the selection of appropriate modeling techniques.

Stationarity Test

Stationarity is a crucial assumption for many time series forecasting methods. We conducted
the Augmented Dickey-Fuller (ADF) test to check for the presence of a unit root in the time
series.

Table 5.2: ADF Test Results for Random Fluctuations Dataset

Metric Random Fluctuations
ADF Statistic -3.802972620274889

p-value 0.00287704721079618
Critical Value (1%) -3.447585
Critical Value (5%) -2.869136
Critical Value (10%) -2.570816

The ADF statistic is lower (more negative) than the critical values at the 1%, 5%, and 10%
significance levels. Additionally, the p-value is significantly less than 0.05. Therefore, we reject
the null hypothesis and conclude that the time series for the random fluctuations dataset is
stationary.

Autocorrelation Analysis

To analyze the dependencies in the time series data, we examined the ACF. This analysis helps
identify significant lags in the data, which are crucial for building autoregressive models.

Figure 5.8: Autocorrelation Function for Random Fluctuations Dataset
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The ACF plot for the random fluctuations dataset shows high initial autocorrelation, with
values gradually decreasing as the lag increases. Significant autocorrelation at higher lags
indicates strong temporal dependencies.

5.2.5 Data Splitting and Preparation

The dataset was strategically divided into three distinct subsets: training, validation, and test
sets as detailed above :

Training Set : It comprises the portion of data used to train the model. It allows the model
to learn and understand patterns within the data.

Validation Set : It includes the remaining part of data which is used to evaluate the model’s
performance on unseen data, thereby assisting in the fine-tuning of the model parameters for
optimal performance.

Test Set : After the model has been trained and validated, the test set is used. This set is
used to assess the model’s predictive performance on new data that it has never seen before.
It provides the most realistic estimate of how the model will perform when making predictions
in real-world applications.

To ensure a fair comparison among different prediction models, the same dataset was used for
training and evaluating each model. This approach guarantees that any observed differences in
performance are attributable to the models themselves rather than variations in the data.

5.3 Conclusion

This chapter detailed the preparation and transformation of the dataset for predicting mem-
brane fouling in reverse osmosis systems. We emphasized the importance of accurate data
collection and preprocessing, simulating realistic conditions with random fluctuations.

The findings presented underscore the effectiveness of the Sliding Mode Observer (SMO) in
providing high-resolution parameter estimation within complex models that exhibit parameter
variations.

The resulting dataset will be foundational for the predictive techniques explored in subsequent
chapters.
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Application of Predictive Methods for Membrane Fouling in Reverse
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6.1 Introduction

In this chapter, we explore various prediction methods, focusing on Long Short-Term Memory
(LSTM) networks, and Transformer model. We present the simulation results for each model,
evaluating their performance based on specific metrics.

6.2 Evaluation Criteria

To ensure a comprehensive assessment of the prediction models, we will evaluate their perfor-
mance using the following metrics:

• Mean Absolute Error: Measures the average magnitude of the errors in a set of pre-
dictions, without considering their direction.

• Mean Squared Error: Measures the average of the squares of the errors, providing a
sense of how large the errors are.

• R-squared: Indicates the proportion of the variance in the dependent variable that is
predictable from the independent variables.

• Residual Analysis: Examines the differences between the actual and predicted values
to ensure the model has captured the underlying patterns in the data.

• Autocorrelation of Residuals: Analyzes the residuals to ensure there is no significant
autocorrelation, indicating a well-fitted model.

6.3 Long Short-Term Memory (LSTM) Networks

6.3.1 Simulation Setup

The LSTM network was trained and validated using the preprocessed dataset of permeability
coefficient data with random fluctuations. The dataset was divided into training and testing
sets, with 80% of the data used for training and 20% for testing, the dataset consists of 400
sequences of time series data. These sequences are split into a training set of 320 sequences
and a validation set of 80 sequences. The model’s performance was evaluated based on several
metrics, including Mean Absolute Error, Mean Squared Error, and R-squared score.

6.3.2 LSTM Model Implementation

Data Structure and Preprocessing

The model is designed to process time series data with a single feature. The input shape is
‘(32, 400, 1)‘, where ‘32‘ is the batch size and ‘400‘ is the sequence length. The sequence
length represents the number of time steps in our single input sequence, which consists of
400 consecutive data points. The time series data is normalized using Min-Max scaling. This
preprocessing step is crucial for improving the training efficiency and performance of the LSTM
model.
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Network Architecture

The input layer receives time series data organized into sequences with a specified window size
of 3 time steps, where each sequence is a feature vector of past observations. This data is
processed by one or more LSTM layers, which can be stacked to increase the model’s capacity
for learning complex patterns. Each LSTM layer consists of a certain number of units (LSTM
cells), with the option to return either the full sequence of outputs or only the output for the
last time step. In a typical architecture, an initial LSTM layer might return the full sequence to
facilitate stacking another LSTM layer, while subsequent layers may only return the last output.
Following the LSTM layers, a Dense (fully connected) layer is added to map the LSTM outputs
to the desired prediction shape, usually a single value for time series forecasting. This final
output layer provides the prediction for the next time step. The model predicts the next value
in the sequence based on the input sequences, and the predictions are rescaled back to the
original scale using the same scaler applied during training. This architecture is well-suited for
capturing temporal dependencies in the data, enabling accurate one-step-ahead predictions.

Training Process

The model uses the Adam optimizer for training. Adam is an optimization algorithm that
can be used instead of the classical stochastic gradient descent procedure to update network
weights iteratively based on the training data. The learning rate for the Adam optimizer is set
to 0.001. The loss function used is the Mean Squared Error (MSE).

6.3.3 Results

The LSTM model was trained on the training set and tested on the testing set. The following
results were obtained:

Table 6.1: Performance Metrics for LSTM Model

Dataset MAE MS R2

Training 1.435e-2 3.000e-4 0.688
Testing 2.347e-2 8.917e-4 0.996

These results indicate that this model exhibits varying performance for the two different sets.
Here is a context-specific interpretation:

• Both the training and testing datasets show extremely low MAE values, indicating that
the average difference between the predicted and actual values is minimal for both sets.

• The MSE values for both datasets are extremely low, indicating that the model’s predic-
tions are very close to the actual values for both the training and testing sets. The testing
MSE is higher than the training MSE, which further supports the abscence of overfitting.

• The R-squared value for the training data is approximately 0.69, indicating that around
69% of the variance in the permeability coefficient is explained by the model. For the
testing data, the R-squared value is much higher at approximately 0.997, suggesting that
the model explains almost all the variance in the testing dataset.

77



Application of Predictive Methods for Membrane Fouling in Reverse
Osmosis Plant

The following figures illustrate the comparison between the actual and predicted permeability
coefficients for both the training and testing sets.

Figure 6.1: Actual vs Predicted Permeability Coefficient (Training Set)

Figure 6.2: Actual vs Predicted Permeability Coefficient (Testing Set)

6.3.4 Residual Analysis

Analyzing the residuals (the differences between the actual and predicted values) is crucial for
understanding the model’s performance. The residuals for the testing set are shown in the
following figure:
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Figure 6.3: Residuals for Testing Set

The residual plot indicates that the errors are randomly distributed in the range of approxi-
mately zero, suggesting that the LSTM model has captured the underlying patterns in the data
effectively.

6.3.5 Autocorrelation of Residuals

To further validate the model, the ACF of the residuals was analyzed, the plot is shown below:

Figure 6.4: Autocorrelation Function (ACF) of Residuals
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The ACF plot demonstrates that there is no strong autocorrelation in the residuals, indicating
that the LSTM model has adequately modeled the time series data.

6.3.6 Conclusion

The LSTM network demonstrated strong performance in predicting the permeability coefficient
of the reverse osmosis membrane. The model achieved high accuracy with low MAE and MSE
values and a high R-squared score, indicating a good fit to the both training and testing datasets.
The residual analysis and autocorrelation function further confirmed the model’s effectiveness.

These results highlight the potential of LSTM networks for accurate and reliable prediction of
membrane fouling in RO systems.

6.4 Fouling Prediction via Transformer Model

6.4.1 Transformer Model Implementation

Data Structure and Preprocessing

The model processes time series data with a single feature. The input shape is (40, 250, 1),
where 40 is the batch size, 250 is the sequence length, and 1 is the number of features. The
sequence length represents the number of time steps in our input sequence. The time series
data is normalized using Min-Max scaling, which is crucial for improving training efficiency
and model performance. The data is divided into sequences using a sliding window approach,
creating input-output pairs for the model to learn from.

Network Architecture

The core of the model is a Transformer architecture, effective for capturing long-range depen-
dencies in sequential data. The Transformer model includes several key components:

• Positional Encoding:

– The Transformer model does not inherently capture the order of the sequence. There-
fore, positional encoding is added to the input embeddings to incorporate information
about the position of each time step. This is done using sine and cosine functions of
different frequencies.

• Transformer Encoder:

– The model comprises a stack of Transformer encoder layers. Each encoder layer
includes:

∗ Multi-Head Self-Attention Mechanism: This mechanism allows the model
to focus on different parts of the sequence simultaneously. It helps the model
to learn intricate temporal patterns by attending to various positions in the
sequence.
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∗ Feed-Forward Neural Network: Following the self-attention mechanism, a
feed-forward neural network is applied to each position in the sequence indepen-
dently. This consists of two linear transformations with a ReLU activation in
between.

∗ Layer Normalization and Residual Connections: These are used to sta-
bilize and enhance the training process. Layer normalization is applied before
the multi-head attention and feed-forward network, and residual connections are
added to help gradients flow through the network.

• Decoder Layers:

– The decoder is responsible for generating the output sequence. Similar to the en-
coder, the decoder layers include multi-head self-attention mechanisms and feed-
forward neural networks. Additionally, the decoder incorporates an attention mech-
anism to attend to the outputs of the encoder, allowing it to generate contextually
relevant predictions based on the encoded input sequence.

• Output Layer:

– The final layer is a fully connected dense layer with a linear activation function,
producing a single output as it is a regression problem. This layer maps the high-
dimensional representation back to the original feature space.

Training Process

The model uses the AdamW optimizer with a learning rate of 0.005. AdamW is an optimization
algorithm that modifies the typical Adam algorithm by including weight decay to improve
generalization. The learning rate is adjusted using a StepLR scheduler, which decreases the
learning rate by a factor of 0.98 every epoch to allow the model to converge smoothly. The loss
function used is the Mean Squared Error (MSE), which measures the average squared difference
between the predicted and actual values.

Dataset and Evaluation

The dataset consists of time series data split into training and validation sets. The sequences
are divided as follows:

• Training Set: 80% of the data

• Validation Set: 20% of the data

Furthermore, the model’s performance is evaluated by predicting future time steps on the test
data set:

• Prediction for 50 Steps Ahead: This evaluates the model’s ability to predict the next
50 time steps after the last observed data points.

• Prediction for 200 Steps Ahead: This evaluates the model’s performance in predicting
further into the future, 200 time steps ahead.
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The training process involves multiple epochs, where the model’s parameters are updated it-
eratively. During each epoch, the model is trained on the training set, and its performance is
evaluated on the validation set. The model’s effectiveness is measured using various metrics,
including MAE, MSE, and R2, which assess the accuracy and reliability of the predictions. The
predictions are rescaled back to the original scale using the same scaler applied during training.
The best model parameters are selected based on the lowest validation loss achieved during
training.

6.4.2 Univariate Time Series Forecasting

In this analysis, we focus on univariate time series forecasting, focusing on both short-term and
long-term predictive capabilities. Specifically, we will test the model’s efficacy over a 50-step
horizon to gauge its short-term forecasting accuracy, as well as extend our examination to a
200-step horizon to assess its long-term prediction performance.

Short-Term Forecasting (50-Step Horizon)

Analysis of Experimental Results The Transformer model was trained and tested for
short-term forecasting, producing the following results:

Table 6.2: Performance Metrics for Transformer Model (50-Step Horizon)

Dataset MAE MSE R2

Testing 3.2110e-2 1.5406e-3 0.8653

The results suggest:

• Extremely low MAE value for testing dataset, indicating minimal average prediction error.

• Very low MSE values for testing dataset, indicating predictions are very close to actual
values.

• The R2 value for testing, this metric assesses how well the model explains the variance
in the data. An R2 value of 0.8653 means that the model captures about 86.53% of the
variance in the testing dataset. Higher R2 values indicate better explanatory power.

The following figure depict the comparison between actual and predicted permeability coeffi-
cients for testing set.
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Figure 6.5: Actual vs Predicted Permeability Coefficient (Testing Set, 50-Step Horizon)

Residual Analysis for Short-Term Forecasting

The residuals for the testing set are shown below:

Figure 6.6: Residuals for Testing Set (50-Step Horizon)

The residual plot indicates that the errors are randomly distributed around zero, suggesting
the Transformer model effectively captures the underlying data patterns in the short term.
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Autocorrelation of Residuals for Short-Term Forecasting

The ACF of the residuals was also analyzed, as shown below:

Figure 6.7: Autocorrelation Function (ACF) of Residuals (50-Step Horizon)

The ACF plot reveals that there is no significant autocorrelation in the residuals. As the
lag (time gap between residuals) increases, the autocorrelation diminishes—a typical behavior
when modeling intricate time series data. These findings provide strong evidence for the effec-
tiveness of the Transformer model in capturing dependencies, indicating that it has successfully
represented the underlying dynamics of the time series.

Long-Term Prediction (200-Step Horizon)

Analysis of Experimental Results The Transformer model was also trained and tested
for long-term prediction, producing the following results:

Table 6.3: Performance Metrics for Transformer Model (50-Step Horizon)

Dataset MAE MSE R2

Testing 4.1361e-2 2.6712e-3 0.3028

The results suggest:

• Slightly higher MAE values compared to short-term forecasting, indicating more signifi-
cant average prediction errors.

• Higher MSE values, suggesting the long-term predictions are less accurate but still close
to actual values.

• The R2 value for the testing data is approximately 0.3028, indicating that the model
explains about 30.28% of the variance in the permeability coefficient. This suggests that
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while the model captures some of the variance in the testing dataset, there is still a
substantial portion of the variance that remains unexplained.

The following figure depict the comparison between actual and predicted permeability coeffi-
cient for testing set in the long term.

Figure 6.8: Actual vs Predicted Permeability Coefficient (Testing Set, 200-Step Horizon)

Residual Analysis for Long-Term Prediction

The residuals for the testing set are shown below:

Figure 6.9: Residuals for Testing Set (200-Step Horizon)

The residual plot indicates that the errors are randomly distributed around zero, suggesting
the Transformer model effectively captures the underlying data patterns in the long term.
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Autocorrelation of Residuals for Long-Term Prediction

The ACF of the residuals was also analyzed, as shown below:

Figure 6.10: Autocorrelation Function of Residuals (200-Step Horizon)

The ACF plot demonstrates that there is no strong autocorrelation in the residuals. As you
increase the lag (time gap between observations), the autocorrelation decreases. These insights
validate the Transformer model’s effectiveness in capturing both dependencies and modeling
the time series data.

Simulation Analysis and Conclusion

The Transformer model demonstrates strong performance in both short-term and long-term
forecasting. In the short term, the model achieves extremely low error metrics, reflecting its
ability to accurately predict the permeability coefficient over a 50-step horizon. For long-term
predictions, while the errors are slightly higher, the model still maintains a high degree of
accuracy, effectively capturing the overall trends and patterns over a 200-step horizon. These
results underscore the model’s robustness and versatility in different forecasting scenarios.
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6.4.3 Multivariate Time Series Forecasting

For multivariate prediction tasks, we analyzed the permeability coefficient’s variation over time
across multiple cells. The study focused on six cells with short-term prediction horizon (50-
step).

The following figure shows the comparison between actual and predicted permeability coeffi-
cients testing set.

Figure 6.11: Actual vs Predicted Permeability Coefficient (Testing Set) for Multiple Cells
(Short-Term)

Analysis of Experimental Results

The Transformer model was trained on the training dataset and evaluated on the testing
dataset, yielding the following performance metrics across six cells:

Table 6.4: Performance Metrics for Transformer Model Across Six Cells

Metric Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6
Testing MAE 3.4797e-2 2.7082e-2 3.0200e-2 3.4336e-2 3.2344e-2 2.8725e-2
Testing MSE 1.9464e-3 1.3112e-3 1.2797e-3 1.9273e-3 1.6576e-3 1.4289e-3

Testing R2 0.7368 0.8162 0.8296 0.8504 0.6768 0.7015

From the results in Table 6.4, we can make the following observations:
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1. Mean Squared Error:

• The MSE values for the cells span an order of magnitude from approximately 1.28×
10−29 to 1.95 × 10−29.

• Cell 3 exhibits the lowest MSE, signifying superior predictive accuracy.
• Conversely, Cell 1 manifests the highest MSE.

2. Mean Absolute Error:

• The MAE values, ranging from approximately 2.71 × 10−15 to 3.48 × 10−15, provide
further insights.

• Cell 2 consistently outperforms others, boasting the lowest MAE and indicating more
accurate predictions.

• In contrast, Cell 1 displays the highest MAE.

3. R2 Score:

• The R2 values, spanning from 0.68 to 0.85, elucidate the model’s explanatory power.
• Cell 4 achieves the highest R2 value, implying that the model explains most of the

variance in the testing dataset.
• Conversely, Cell 5 exhibits the lowest R2 value, indicating less variance explained by

the model.

In conclusion, the R2 value for Cell 4 is approximately 0.85, indicating that the model explains
about 85% of the variance in the permeability coefficient for this particular cell. This high R2

value suggests that the model effectively captures a significant portion of the variance in the
testing dataset for Cell 4.

However, the performance of the Transformer model varies significantly across different cells.
While Cells 2 and 3 also show strong performance, with lower MAE and MSE values, Cells 1,
5, and 6 exhibit relatively lower R2 values, indicating less explained variance in these datasets.
Therefore, while the Transformer model demonstrates considerable promise, its efficacy is highly
dependent on the specific dataset used for training and testing. This highlights the need for
further refinement and potential customization of the model to ensure consistent performance
across diverse datasets.
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Residual Analysis

Residuals, representing the differences between actual and predicted values, were analyzed to
assess the model’s performance. The residuals for the testing set are illustrated below:

Figure 6.12: Residuals for Multiple Cells (Short-Term)

In our analysis, we observe that the residuals across all prediction cells exhibit random varia-
tion. However, the absolute maximum error varies from one cell to another. This behavior is
closely tied to the input data, specifically the permeability coefficient. When there is significant
variability in the training and testing sets, the predictive performance of the Transformer model
may experience a slight degradation. Nevertheless, the overall error remains consistently low,
and the results from all cells remain both useful and reliable.
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These findings suggest that the Transformer model effectively captures the underlying multi-
variate patterns in the data. Consequently, it provides valuable insights into the future devel-
opment of fouling in reverse osmosis membranes. Leveraging this model can enhance predictive
maintenance strategies, optimizing the performance of the RO plant.

Autocorrelation of Residuals

To further validate the model, the ACF of the residuals was analyzed, as shown below:

Figure 6.13: Autocorrelation Function of Residuals for Multiple Cells (Short-Term)
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When examining the autocorrelation plots for all membrane cells, we find no significant au-
tocorrelation in the residuals. These observations validate the Transformer model’s ability to
capture the dependencies.

6.5 Conclusion

This study comprehensively explored the application of predictive methods, particularly fo-
cusing LSTM networks and Transformer model, for forecasting membrane fouling in reverse
osmosis systems. Through detailed simulations and evaluations, several key findings emerged.

The LSTM network demonstrated robust performance in predicting the permeability coefficient
of the RO membrane. With low MAE and MSE values, alongside high R2 scores, the model
effectively captured the underlying data patterns, validating its efficacy for both short-term
and long-term predictions. Residual analysis and the ACF confirmed the absence of significant
errors and autocorrelations, further underscoring the model’s accuracy.

The Transformer model also exhibited strong predictive capabilities in both univariate and
multivariate contexts. For univariate time series forecasting, the model achieved minimal pre-
diction errors and high R2 values, maintaining its accuracy over different forecast horizons. In
multivariate forecasting, the model efficiently handled multiple variables, providing a compre-
hensive view of permeability variations across different cells. The low prediction errors and
high R2 values across multiple cells indicated the model’s robustness and versatility.

In conclusion, both LSTM and Transformer model are highly effective for predicting membrane
fouling in RO systems. Their ability to provide accurate forecasts based on historical data
suggests significant potential for improving operational efficiency and reducing maintenance
costs in such systems. Future research could enhance these models by incorporating additional
features, optimizing model architectures, and applying them to diverse real-world datasets and
extended prediction horizons. Such advancements would further solidify the role of these pre-
dictive methods in the proactive maintenance and management of membrane filtration systems.
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General conclusion

In this work, we have explored the performance prediction of a desalination system using
machine learning, demonstrating the efficacy of various models and methodologies in optimiz-
ing reverse osmosis processes. The investigation began with a comprehensive analysis of the
solution-diffusion model, which provided a fundamental understanding of solvent and solute
transport through RO membranes under varying operational conditions. The implementation
and validation of this model in MATLAB showcased its accuracy and offered insights for en-
hancing RO efficiency.

Subsequently, the significant impact of fouling rates on critical parameters such as feed concen-
tration, permeate concentration, and water flux was examined. The findings highlighted the
importance of managing fouling to improve system efficiency and longevity, with a time-space
model offering precise prediction capabilities. Detailed analysis of membrane fouling through
discretization enabled targeted maintenance strategies, enhancing operational decision-making
and reducing downtime.

The preparation and transformation of datasets for predicting membrane fouling were also
detailed, emphasizing the role of accurate data collection and preprocessing. The application
of the Sliding Mode Observer demonstrated high-resolution parameter estimation, forming the
foundation for the predictive techniques employed in this study.

Finally, advanced machine learning models, including LSTM networks and Transformer models,
were evaluated for their predictive performance. Both models exhibited strong capabilities in
forecasting membrane permeability and fouling, with low prediction errors. These models
proved effective in both univariate and multivariate contexts, suggesting their potential for
improving operational efficiency and reducing maintenance costs in RO systems.

Overall, this report underscores the significant potential of machine learning in enhancing
the performance prediction and management of desalination systems. Future research should
focus on further refining these models, incorporating additional features, and applying them to
diverse real-world datasets to solidify their role in the proactive maintenance and optimization
of membrane filtration systems.
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