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SCIENTIFIQUE
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Résumé

Ce travail présente une solution pour l’évaluation non invasive de l’hydratation, répondant au be-
soin critique de méthodes conviviales pour remplacer les techniques cliniques invasives et assurer une
hydratation adéquate à travers des populations diverses. Nous proposons d’utiliser la détection capac-
itive, en particulier le module FDC2114 équipé de deux capteurs capacitifs, pour estimer les niveaux
d’hydratation. Inspirés par les changements de capacité lorsque le doigt est placé sur un écran de
téléphone, notre vision est d’intégrer cette technologie dans les smartphones pour un suivi facile de
l’hydratation. La méthodologie implique la collecte de données, le prétraitement, les algorithmes de
classification et l’augmentation des données, suivis de l’analyse et réseau neuronal.

Mots-clés : Évaluation non invasive de l’hydratation - Méthodes conviviales - Capteurs capacitifs -
Niveaux d’hydratation - Surveillance de l’hydratation.

Abstract

This work presents a solution for non-invasive hydration assessment, addressing the critical need for
user-friendly methods to replace invasive clinical techniques and ensure proper hydration across di-
verse populations. We propose using capacitive sensing, specifically the FDC2114 module equipped
with two capacitive sensors, to estimate hydration levels. Inspired by the capacitance changes when a
finger is placed on a phone screen, our future vision aims to integrate this technology into smartphones
for easy hydration monitoring. The methodology involves data collection, preprocessing, classification
algorithms, and data augmentation, followed by neural network analysis.

Keywords: Non-invasive hydration assessment - User-friendly methods - Capacitive sensors - Hydra-
tion levels - Hydration monitoring.
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General Introduction

Non-invasive hydration assessment means evaluating hydration status in the body without requiring
invasive procedures or techniques that penetrate the skin or body tissues.

This work presents a solution for non-invasive hydration assessment, addressing the current need for
such methods. Non-invasive hydration monitoring is a trending issue, with researchers striving to in-
tegrate hydration monitoring into daily life. Some studies suggest new portable sensors, while others
focus on mobile applications, aiming for ease of use and user-friendliness compared to invasive clinical
techniques. This need is also driven by the importance of maintaining proper hydration across various
populations.

-Problem
There is a critical need for non-invasive, user-friendly methods for hydration assessment to replace
invasive clinical techniques and ensure proper hydration across diverse populations.

-Solution proposed
We propose using capacitive sensing to estimate hydration levels within the body using the FDC2114
module equipped with two capacitive sensors.

-Motivation of the proposed solution
The phone screen consists of an array of small capacitance, which induces shifts in values when a finger
is placed on the screen. However, accessing this kind of data in off-the-shelf smartphones is difficult.
We propose using a capacitive sensor to mimic the phone screen based on this principle. Specifically,
we use the FDC2114 module equipped with two capacitive sensors.

-Future Vision of the proposed solution
Our vision is to enable the assessment of hydration states via smartphones, where users place their
fingers on the screen to assess their hydration levels.

-Methodology
The methodology follows a classical approach to machine learning solutions, beginning with data col-
lection, followed by data preprocessing and classification algorithms. Subsequently, data augmentation
techniques are applied, and the augmented data is fed into neural networks for further analysis.

-Outline
This document is structured into six chapters.

Chapter 1: We offer an overview of hydration states, emphasizing the importance of accurate hydration
monitoring.

Chapter 2: Subsequently, we delve into the emerging non-invasive hydration techniques, exploring var-
ious sensing technologies from multiple references.

Chapter 3: Next, we outline the operational principles of the module and describe the experimental
setup utilized in our study. We establish a hypothesis regarding how capacitive sensing can
provide valuable insights into hydration states

12



Chapter 4: Following this, we offer a detailed account of the data collection process, including the
characteristics of the subjects involved.

Chapter 5: We then preprocess the data and investigate different feature combinations to optimize
results.

Chapter 6: Finally, we apply data augmentation to assess the robustness of our data against factors
such as noise. Moreover, we apply neural network models to our augmented data.

13



Chapter 1

Background: A short primer on
dehydration

1.1 Introduction

Dehydration arises from an insufficient intake of fluids relative to fluid loss, posing a significant health
risk with various physiological implications. Adequate hydration enables the body to perform vital
functions, including temperature regulation and nutrient transport. Precise evaluation of hydration
status is a pivotal factor in the early detection and prevention of dehydration-related health issues.
While numerous techniques exist for assessing hydration, the advent of non-invasive and non-contact
methodologies offers distinct advantages over invasive approaches [1].
In this chapter, we explore the significance of hydration levels as a biomarker for health, the physiology
of dehydration, and current gold-standard methods for monitoring dehydration. We also examine
the different hydration levels, associated symptoms, and health risks and identify vulnerable groups.
Furthermore, we highlight the need for innovative, non-invasive hydration monitoring methods due to
the limitations of current techniques and the demand for accessible healthcare solutions.

1.2 Significance of hydration level as a biomarker

Water, essential for life, influences numerous physiological processes within the human body, and
understanding its significance as a biomarker can provide valuable insights into overall health and
well-being.
About 60% of the human body consists of water [2], Figure 1.1 illustrates the proportions of water
in the human body and its distribution across different organs. It is required to drink approximately
1.5 liters of it daily [3] since it is essential for maintaining proper bodily functions. Beyond hydration,
water contributes to weight regulation by boosting metabolic rates [4], supporting brain function [5],
aiding in cell membrane formation [6], and facilitating the transportation of nutrients from food [7, 8].
Furthermore, water is integral to processes such as sweating and urination, essential for toxin removal
[9, 10].

Dehydration, characterized by a negative water balance resulting from inadequate replenishment of
lost fluids, adversely affects physiological parameters and poses numerous health risks [11]. Symptoms
range from minor discomforts like headaches and dizziness [12] to severe complications such as seizures,
renal failure, and myocardial infarction [11]. Even a slight decrease in body water, as little as 1%-2%,
can significantly impair cognitive and motor function [13]. Dehydration affects 17% to 28% of older
adults in the United States and not only causes physical discomfort but also exacerbates conditions
like childhood obesity resulting from electrolyte imbalances [14].
Hydration levels are significant biomarkers because of their multifaceted impact on human health and
well-being. Hydration status is a valuable indicator of overall physiological functioning, reflecting
the balance between fluid intake and output in the body. Good monitoring can provide insights into
various aspects of health, including kidney function, cardiovascular health, cognitive function, and
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Figure 1.1: Proportions of water in the human body.

metabolic processes.

1.3 Physiology of dehydration

Dehydration is a multifaceted process involving physiological responses from both external and inter-
nal factors.
When water loss exceeds intake, specialized brain sensors called osmoreceptors detect declining water
levels and trigger thirst signals. Concurrently, increased secretion of antidiuretic hormone from the
kidneys facilitates water absorption to maintain fluid equilibrium. Additionally, dehydration-induced
low blood pressure prompts the release of renin from the kidneys, initiating a cascade resulting in
Aldosterone release. Aldosterone instructs the kidneys to reabsorb more sodium and water, enhancing
water retention. As dehydration progresses, available water resources shift from external to internal,
leading to dry skin, reduced sweating, and diminished mucous membrane moisture [15].

Conversely, peripheral dehydration involves water loss from peripheral tissues and extremities, often
due to factors like exercise-induced sweating or exposure to hot weather [1]. Sweat glands, particularly
eccrine glands, play a pivotal role in regulating body temperature by facilitating evaporative cooling
and maintaining electrolyte balance through sodium chloride and bicarbonate absorption from the
blood [16]. It is imperative to replenish water losses to prevent dehydration, addressing external and
internal fluid requirements.

Figure 1.2 illustrates the process of dehydration as water travels from the external layers to the internal
organs, while Figure 1.3 depicts dehydration at the peripheral level due to sweating.

1.4 Gold-standard methods for dehydration monitoring

The gold standard techniques for assessing hydration status, such as monitoring body mass changes
and body fluid osmometry, are widely acknowledged in dehydration assessment [17], Figure 1.4 shows
different gold standard techniques used in hospitals to assess hydration.
Blood and urine analyses are commonly employed by clinicians to evaluate hydration status, plasma
osmolality, electrolyte balance, and urinary characteristics like specific gravity and color [18, 19, 20].
While blood remains a trusted fluid for hydration assessment, alternative fluids such as tears or saliva
can also provide valuable insights into hormone and electrolyte concentrations, minimizing the need
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Figure 1.2: Physiology of dehydration.

Figure 1.3: Physiology of dehydration at peripheral level [1].
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for invasive blood sampling [21, 22].
Urine components, including water and other substances, exhibit concentration changes correspond-
ing to variations in water volume, influenced by factors like fluid intake, diet, medications, and health
conditions [23]. Techniques like urine-specific gravity, osmolality, color, and volume contribute to a
comprehensive assessment of hydration status, requiring consideration of past ingestion and medical
history for accurate interpretation [24].
Similarly, changes in body mass serve as an estimate of water loss, accounting for fluid and food in-
take and excretion through urine and feces [25]. However, interpreting body mass changes necessitates
specific circumstances to accurately reflect variations in water weight, with one gram of body mass
typically equating to one milliliter of water loss under controlled conditions [25].

Figure 1.4: Gold-standard techniques to assess dehydration.

In a study focusing on dehydration monitoring methods in soccer players, body mass changes emerged
as the most reliable indicator of dehydration, outperforming metrics like hematocrit and urine-specific
gravity [26].
Despite the accuracy of these techniques, their implementation demands specialized medical personnel,
sophisticated equipment, and thorough laboratory analysis, making them more suitable for intermit-
tent rather than daily monitoring [21]. However, ongoing research and technological advancements
continue to refine these gold-standard methods.

1.5 Levels of hydration

Dehydration manifests in varying degrees of severity, with its consequences escalating as it progresses.
The more severe the dehydration, the greater the risk to one’s life. Furthermore, it is not only dehy-
dration that poses health risks, but overhydration can also lead to significant health complications.
Therefore, understanding hydration levels and associated risks is paramount for safeguarding individ-
ual health and well-being, Figure 1.5 illustrates different levels of hydration along with their symptoms.
At one extreme, over-hydration occurs when the body retains an excessive amount of water [27]. On
the other hand, euhydration denotes a state of optimal hydration where the body’s fluid balance is
maintained. A fluid loss of 1-2% of body weight characterizes mild dehydration. As dehydration
progresses to moderate levels, fluid losses reach 3-5% of body weight. Severe dehydration occurs when
fluid losses exceed 5% of body weight [28, 29, 30].
The diagram below identifies the symptoms associated with different hydration levels.
Monitoring hydration levels closely and recognizing the associated symptoms are essential for timely
intervention to prevent dehydration-related complications.

1.6 Vulnerable groups for dehydration

Dehydration poses a heightened risk to several vulnerable groups, each with unique predisposing fac-
tors and susceptibilities.
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Figure 1.5: Levels of hydration.

• Athletes and individuals engaged in strenuous physical activities and those working outdoors in hot
climates are particularly prone to dehydration due to increased fluid loss through sweating.

• Infants, with their limited ability to regulate body temperature and reliance on caregivers for hydra-
tion, are also vulnerable to dehydration, especially during illnesses such as diarrhea and vomiting[31].

• Older people face challenges maintaining adequate hydration levels due to age-related declines in thirst
sensation and mobility limitations[32, 33].

• Individuals with underlying medical conditions such as cardiovascular diseases, renal disorders, and
metabolic disorders like diabetes are at increased risk of dehydration due to factors such as medication
side effects, fluid imbalance, and compromised physiological functions[34, 35, 36].

• Heat-related conditions, infectious diseases causing fever, medication-induced diuresis, and neuro-
logical/neurodegenerative conditions further exacerbate susceptibility to dehydration in vulnerable
populations [37, 38, 39].

Understanding the specific vulnerabilities of these groups is essential for implementing targeted hy-
dration strategies and preventive measures to mitigate the risk of dehydration-related complications.

1.7 Need for novel non-invasive methods for dehydration monitoring

Gold standard methods for hydration assessment have long been considered the benchmark. However,
they often pose challenges due to their invasiveness and impracticality. Consequently, there is a
growing demand for portable, non-invasive, and contactless solutions. Smartphones have emerged as
promising tools for real-time medical diagnostics, thanks to their widespread accessibility and robust
sensing capabilities [40].
Smartphones and smartwatches offer a quick, convenient, and cost-effective alternative for routine
hydration monitoring compared to traditional laboratory techniques. This necessity for accessible and
user-friendly solutions has driven researchers to explore innovative techniques such as Bio-Impedance
Analysis (BIA) and Electrodermal Activity (EDA), facilitating seamless integration into everyday
devices, and to develop new sensing technologies, enhancing reliability, flexibility, and portability.
Ultimately, integrating hydration monitoring into everyday life is essential for maintaining internal
bodily balance and optimal functionality across various demographics, from infants to older people,
athletes, and individuals with medical conditions.

1.8 Conclusion

This chapter delves into the details of dehydration, highlighting its significance as a health concern
and the multifaceted factors influencing hydration status. From understanding the physiological mech-
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anisms involved in dehydration to exploring the importance of hydration levels as biomarkers, this
chapter provides insights into the critical role of hydration in overall health and well-being. Further-
more, it examines gold standard methods while acknowledging their limitations regarding invasiveness
and practicality for routine use. As we move forward, the need for novel, non-invasive, and non-contact
methods for dehydration monitoring becomes apparent, driven by the limitations of conventional tech-
niques.
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Chapter 2

Emerging Non-invasive Techniques to
assess hydration levels

2.1 Introduction

The emergence of non-invasive techniques for assessing hydration levels marks a significant advance-
ment in healthcare and personal well-being. Unlike invasive methods, these innovative approaches
offer a hassle-free and user-friendly monitoring of hydration status. Their convenience and ease of use
make them suitable for daily application, seamlessly integrating into everyday routines. By providing
quick and non-disruptive assessments, these techniques save valuable time and empower individuals
to take proactive steps toward maintaining optimal hydration levels.
In this chapter, we delve into various state-of-the-art techniques for non-invasive hydration monitoring,
organized by the types of sensing modalities utilized in each approach. From EDA and Electrocar-
diograph (ECG) to BIA analysis and Optical methods, Thermal, Radio-frequency, Acoustic, and
Fluid-Based sensing modalities. By categorizing these techniques based on their sensing principles,
we aim to provide a comprehensive overview of the latest advancements in non-invasive hydration
monitoring. Additionally, we examine some applications in targeted populations and specific organs.
Finally, we outline future perspectives in this field, highlighting potential avenues for further research
and development.
Figure 2.1 allows you to visualize the different techniques discussed in this chapter, each of which is
detailed in a separate section.

Figure 2.1: Visualization of the emerging non-invasive techniques to assess hydration levels.
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2.2 Electrodermal Activity

EDA is a significant marker for assessing hydration levels, reflecting variations in the skin’s electrical
conductance due to sweat gland activity and nervous system responses. Utilizing EDA sensors, re-
searchers have explored diverse methodologies to monitor hydration status effectively.
The BITalino toolkit [41], a versatile platform for bio-signal acquisition and processing, has been in-
strumental in several studies for EDA data collection [42, 43, 44, 45, 46]. Figure 2.2 shows an EDA
sensor placed on the fingers to take measurements.

Figure 2.2: EDA sensing [47].

Several advancements highlight the potential of EDA-based approaches in non-invasive hydration
monitoring:

• In a study by Liaqat et al., EDA data gathered from participants in different postures were analyzed
using Random Forest (RF) algorithm, achieving 91.3% accuracy in predicting hydration status [42].

• Rizwan et al. utilized statistical features extracted from EDA data and the k-Nearest Neighbors
(KNN) algorithm to classify hydration status with an accuracy of 87.78% [43].

• In a study by Kulkarni et al., Convolutional Neural Networks (CNNs) processed EDA data from a
wristband, leading to the development of the ”monitoring my dehydration” mobile application with
an accuracy of 84.5% [48].

• Novel approaches such as utilizing the Short-Time Fourier Transform to convert EDA data into time-
frequency spectrograms for CNN analysis have shown promising results [46].

• Researchers have explored innovative applications of EDA-based hydration monitoring, including
smartphone-based systems utilizing the dynamic time warping algorithm for real-time tracking [49].

• A study leveraged galvanic skin response data alongside Support Vector Machine (SVM) and KNN
to classify hydration status accurately, SVM exhibited superior accuracy, achieving 82%, compared to
KNN’s 64% [50].

Discussion:

EDA has demonstrated effectiveness in assessing hydration status due to its capability for real-time
monitoring and potential integration into everyday devices such as smartwatches. Researchers have
utilized machine learning techniques and tools like the BITalino toolkit to achieve high accuracy in
identifying hydration levels. However, this sensing modality can be influenced by factors such as
sweat and the subject’s posture, stress levels, and sudden movements, posing challenges in accurately
interpreting the data. Therefore, it is essential to adhere to specific protocols when collecting EDA
data, including adopting particular postures and gestures and ensuring proper placement of sensors.
Future studies should focus on mitigating these stimulus effects, aiming to reduce noise and improve
data quality.
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2.3 Electrocardiograph

Figure 2.3: ECG sensing [51].

ECG stands as a valuable non-invasive technique for cardiology, used to diagnose heart rhythm
and detect cardiac conditions. Various research findings underscore the effectiveness of this technique
in offering insights into hydration status within the body. Figure 2.3 illustrates a patient taking ECG
measurements in a medical setting.

• In an innovative study by [52], Electric Potential Sensing (EPS) technology was introduced to gauge
hydration by measuring the body’s electric field. By correlating variations in ECG signal amplitude
with hydration status, EPS demonstrated effectiveness in detecting hydration-related changes in ECG
amplitude, as validated with five healthy subjects.

• Researchers in [53] sought to classify hydration stages during exercise using SVM classifiers based on
12-lead ECG signals. With measurements taken before and after exercise sessions and subsequent
hydration, their SVM classifier achieved a 60% classification accuracy, identifying the RR interval as
a pivotal feature indicative of hydration status.

• An SVM classifier leveraging temporal and spectral information from single-lead ECG signals was
proposed in [54], yielding a specificity of 57.9% and sensitivity of 96.3% upon testing with the MIT-
BIH PhysioNet database [55, 56].

• Researchers analyzed ECG data from 17 male athletes at varying hydration levels, demonstrating
the capability of time-domain, frequency-domain, and non-linear parameters to differentiate between
phases of hydration and dehydration [57].

• Roshan et al. investigated the impact of dehydration and re-hydration on various ECG and echocardio-
graphic parameters. The study involved fourteen fit high school wrestlers subjected to sauna sessions
for controlled body weight loss, with results revealing correlations between measured physiological
markers and hydration levels [58].

• Kamran et al. utilized heart rate responses to postural movements as hydration indicators, employing
ECG data captured via the Polar H10 chest strap heart monitor (Polar Electro Oy, Kempele, Finland).
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Their classification models achieved an overall accuracy of 79%, with specific postural movements
yielding higher accuracies, emphasizing the utility of ECG-based hydration monitoring [59].

Discussion:

The potential of ECG technology for monitoring hydration levels is significant, given its widespread
availability, accessibility, and non-invasive nature, allowing for potentially real-time assessment. Re-
search has highlighted a correlation between various markers derived from ECG signals and hydration
status. However, using ECG signals to extract hydration information poses challenges, as the primary
function of ECG is to monitor heart rate rather than hydration. Hence, despite its advantages, em-
ploying ECG for hydration monitoring may lack sensitivity and specificity.

In [60], an evaluation of basic cardiac electrophysiology was conducted across a spectrum of dehydra-
tion levels (1-7% total body water (TBW) loss), revealing no evidence of impaired cardiac electrophys-
iology. Thus, relying solely on ECG may not offer a comprehensive hydration assessment, potentially
necessitating complementary techniques for more reliable results.

2.4 Bio-impedance Analysis

BIA is the measurement of the characteristic impedance of biological materials. It involves passing a
small electrical current through the body and measuring its conductance, offering insights into various
physiological features.
Figure 2.4 illustrates the principle of bio-impedance analysis, where a small electrical current is passed
through the body to characterize its impedance.

Figure 2.4: Bio-impedance sensing.

Multiple studies showcase the promise of this approach for non-invasive hydration assessment:

• A study by [61] introduced a 3D-printed electrode design to measure Bio-impedance, suggesting rect-
angular and circular shapes. Results indicated the rectangular shape’s superiority due to its larger
effective area, although further clinical validation is warranted.

• Researchers in [62] introduced a novel sensor design using textile-based materials to monitor skin
hydration levels, demonstrating a strong correlation between hydration levels and skin impedance.
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• Another innovative design of a wearable skin hydration sensor was presented in [63], comprising
silver nanowires and a polydimethylsiloxane matrix, offering accurate measurements while remaining
insensitive to external humidity.

• Huang et al. in [64] proposed an ultra-thin, stretchable sensor system containing miniaturized
impedance measurement electrodes to mitigate common-mode interferences, exhibiting excellent pre-
cision and accuracy compared to existing devices.

• Nanomesh electrodes were suggested for bio-impedance assessment in [65], showing a negative corre-
lation between skin impedance measurements and hydration levels.

• De Guzman et al. in [66] introduced a wearable tattoo sensor, and AlDisi et al. in [67] investigated
the use of interdigitated electrodes to measure bio-impedance, both revealing promising results in
correlating bio-impedance with moisture levels.

• In [68], researchers presented an ultra-thin, stretchable device laminated onto the skin’s surface, ex-
hibiting stability and high accuracy in detecting changes in surface strain.

• In [69], researchers evaluated three impedance measurement techniques, revealing a strong correlation
between methods and tests, particularly in observing distinct hydration stages.

• A wearable device for monitoring hydration status in infants was proposed in [31], demonstrating
impedance decrease with increased hydration levels.

• Ring et al. in [70] proposed a technique to address bio-impedance measurement variabilities caused
by temperature effects, employing three distinct models: a linear kernel, a probabilistic model, and a
Gaussian radial basis function kernel. This method effectively mitigated the influence of temperature
on bio-impedance measurements, achieving a correction level of 71%. Finally,

• Researchers in [71] effectively evaluated fat accumulation and hydration levels in the body through
BIA, utilizing ZigBee-based mobile wireless sensor networks integrated into intelligent clothing.

Discussion:

Evaluating characteristic impedance in humans presents a promising avenue for assessing hydration
levels. Its advantages encompass real-time feedback, non-invasiveness, and user-friendly operation,
potentially allowing integration into everyday devices. Numerous innovative studies have explored
advanced sensor designs to improve the efficacy and comfort of this technique.
However, it is crucial to consider the impact of external factors on the readings. Given that this sensing
method relies on electrode-skin contact, the development of stretchable, flexible, and appropriately
designed sensors is paramount. Furthermore, subjects must maintain specific postures and remain
motionless during measurements, posing potential challenges. Additionally, careful sensor placement
in areas with minimal sweat accumulation is essential to avoid erroneous hydration level indications
from sweat interference.

2.5 Optical sensing

Optical sensing utilizes light wave analysis, which can undergo various phenomena like reflection,
scattering, absorption, or refraction, providing crucial insights into the surrounding environment or
targeted objects through changes in wavelength, light intensity, and other parameters. Optical sensors
find extensive applications in diverse fields, such as environmental monitoring, industrial processes,
and medical settings.
Researchers have delved into leveraging optical techniques to evaluate hydration levels:

• In [72], the near-infrared region’s optical response of human skin was explored as an indicator of hy-
dration status through in vivo tests involving 20 volunteers with varying skin types and moisturizer
usage. The results revealed distinct patterns among individuals with differing moisturizing habits.
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However, inter-subject variability due to diverse skin types necessitates larger subject pools and sta-
tistical regression methods for comprehensive analysis in future studies.

• In another endeavor, researchers in [73] proposed spatially resolved diffuse reflectance spectroscopy
(DRS) to evaluate skin hydration, subjecting it to thermal loads, physical activities, and diuretic ther-
apy. The study observed a consistent hydration decrease during thermal loads, indicating dehydration,
with recovery only observed post-heat cessation. Physical activity induced rapid water content changes
and prompt rehydration, highlighting efficient hydration replenishment. Diuretic therapy for edema
syndrome led to decreased hydration levels due to dermal thickness reduction. This underscores DRS’s
efficacy in detecting dehydration, rehydration, and estimating hydration levels.

• An established technique involving skin illumination with a laser, coupled with periodic vibrations
and speckle pattern tracking, was adapted in [74] for skin hydration measurement. Comparative
tests against the Corneometer CM 825 validated this non-contact technique’s capability in assessing
hydration.

• Researchers in [75] evaluated four dehydration markers-capillary refill time, skin recoil time, skin
temperature profile, and skin tissue hydration- via infrared spectrometry. Offline data analysis using
image processing and optimization techniques demonstrated the technique’s effectiveness.

2.5.1 Phone cameras

A phone camera is considered an optical sensor because it functions by capturing and processing
optical information, specifically light, to generate images or videos. This optical sensor, integrated
into smartphones, utilizes light to detect objects, patterns, or environmental changes. Figure 2.5
shows different techniques to use the phone camera to assess hydration: either by capturing the face
or recording the fingers to detect slight changes in skin characteristics due to dehydration.

Figure 2.5: Phone cameras based sensing.

• In [76], the authors utilized a dataset of 2340 face photos and a Siamese neural network model to
develop a smartphone application for non-invasive dehydration diagnosis. They achieved a 76.1%
accuracy rate in distinguishing between different hydration states.

• Researchers in [77] employed texture analysis and skin marking techniques to conduct skin turgor tests
via cellphones. Using image processing algorithms to analyze video frames, they mimicked conventional
medical practices for monitoring skin elasticity and recovery during dehydration assessments, thereby
determining skin mechanical features and hydration status.

• Rose et al. introduced an innovative strategy utilizing an off-the-shelf smartphone camera for non-
invasive dehydration monitoring, categorizing hydration levels on a scale ranging from 1 to 4 [78].
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2.5.2 Photoplethysmography

Photoplethysmography (PPG) is an optical technique for non-invasively monitoring variations in blood
volume within micro-vascular tissue beds.
PPG sensors function by illuminating a section of the skin and detecting the reflected, absorbed, or
scattered light by the network of blood vessels. Alterations in blood flow induce changes in light
absorption.
Figure 2.6 shows two different PPG techniques: on the left, the finger is placed between an emitter
and a receiver where the receiver collects light passing through the finger; on the right, both emitter
and receiver are on the same side where the receiver collects reflected light.

Figure 2.6: PPG sensing.

Multiple research papers highlight the capability of this method in offering insights into physiological
characteristics like heart rate, blood pressure, and stroke volume, thereby indirectly assessing hydration
status.

• An automated, non-invasive approach for detecting dehydration through PPG signals was developed
by Reljin et al. [79]. They collected data from the forehead, ear, and finger of 42 dehydrated patients
and employed SVM with a Radial Basis Function (RBF) kernel to classify dehydration, achieving an
accuracy of 67.91%.

• In another study [80], researchers utilized a multi-modal approach to assess skin hydration by integrat-
ing a novel multi-wavelength optical PPG sensor into a Samsung Galaxy Watch Active 2. Hardware
prototypes with specific LED and photo-diode configurations were fabricated and assessed using Monte
Carlo simulations to ensure precision. Spectral measurements of skin reflectance and ultrasonic mea-
surements of skin thickness were also conducted. Feature analysis and a binary classification model
(LightGBM) were employed to extract insights from PPG signals, achieving accuracy scores exceeding
70%.

• Researchers in [81] investigated a CMOS miniaturized spectrometer’s capabilities for dermal H2O mea-
surement and reflective, medically accurate SpO2. This spectrometer, based on PPG and spectroscopy,
was utilized in the 750-1050 nm range to study 29 volunteers, including four patients with congestive
heart failure and fluid retention in their legs. The spectroscopic model was compared against the gold
standard lymph scanner for localized percentage water content, achieving a 3.3% Root Mean Square
Error prediction accuracy and accurately identifying congestive heart failure patients.

• In [82], children’s dehydration levels were evaluated using two diagnostic variables: capillary refill
time measured via green-light PPG and skin turgor assessed through a Cutometer. Regression anal-
ysis was performed to determine correlations, suggesting that combining local skin temperature with
skin elasticity could aid in evaluating dehydration levels. However, the results were varied, indicat-
ing limitations in the dehydration range, participant age group, and experimental setup, with no
transparent relationships between variables and dehydration degree.
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Discussion:

The optical attributes of human skin offer a non-contact means of monitoring biomarkers, presenting
potential integration into everyday devices. Various techniques have been proposed and evaluated,
including near-infrared spectroscopy, diffuse reflectance spectroscopy, smartphone-based imaging, skin
temperature profiling, and PPG.
Optical sensing has shown rapid responsiveness, providing accurate insights into skin properties. How-
ever, despite these advantages, several challenges need to be addressed. Environmental factors like
dust and ambient lighting can influence results, necessitating meticulous setup and calibration pro-
cedures that may be complex. Furthermore, validation against gold-standard methods is essential.
Inter-subject variability poses another significant challenge, as patterns are influenced by factors such
as age, skin tone, thickness, and temperature.
Consequently, multiple studies have demonstrated that integrating optical sensing with other modal-
ities like ultrasound, electrical, or thermal properties significantly improves estimation quality.

2.6 Thermal sensing

Thermal sensing involves the detection and measurement of temperature fluctuations using temperature-
sensitive devices or sensors. Applied in skin-related contexts, thermal sensing techniques monitor
physiological responses and track changes in skin temperature, which can indicate various biomarkers.
In dermatology, thermography detects localized temperature alterations on the skin surface, signaling
inflammation or infection. Similarly, in sports medicine, monitoring skin temperature aids in evaluat-
ing muscle recovery and hydration levels and detecting signs of overexertion or injury.
Figure 2.7 shows the representation of a thermal map of a human body, created using thermal sensors.

Figure 2.7: Thermal sensing.

The transport properties governing substance transfer into a medium are crucial in thermal sens-
ing. These properties, including thermal conductivity, specific heat capacity, and thermal diffusivity,
describe heat energy transfer through tissues. small

• In [83], a soft array of epidermal thermal sensors and actuators was developed and tested on 25
subjects across six body regions to study skin thermal transport properties. Positive correlations
between thermal properties and skin hydration levels were observed, although factors like local blood
flow dynamics and skin structural features may influence these markers. Thus, understanding the
complexities of skin thermal properties requires careful consideration of these variables.

• A novel technique proposed in [84] involves small skin patches equipped with flexible thermal sensor
modules and wireless Bluetooth platforms, along with Wheatstone bridge circuits, to measure skin
hydration levels. Using bilayer skin models with clinical-grade accuracy, the system demonstrated
high accuracy levels surpassing some clinical methods for evaluating skin hydration conditions.

• In [85], a skin hydration sensor based on the transient plane source method was introduced to determine
skin thermal properties. This method, employing two resistive heaters and temperature sensors,
calculates skin thermal conductivity by comparing temperature differences, providing insights into
skin hydration state while eliminating the effects of fluctuating ambient temperatures. Tested on 200
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patients in dermatology clinics, the device exhibited increased sensitivity and repeatability compared
to previous models.

Discussion:

Thermal sensing encounters various challenges, particularly the influence of interfering heat, which
complicates data interpretation. Overcoming external heat sources or ambient temperature effects
presents significant hurdles. Moreover, solely relying on thermal transport properties may not offer
comprehensive insights into physiological markers, given the complexity of understanding skin proper-
ties. Therefore, integrating thermal sensing with other modalities could enhance skin hydration level
estimation and deepen tissue content understanding. Future endeavors should incorporate more clini-
cal tests to validate technique efficiency and assess the impact of external heat sources on measurement
reliability.

2.7 Radio frequency based methods

Radio frequency techniques, operating within a range of electromagnetic frequencies from 3 kilohertz
(kHz) to 300 gigahertz (GHz), have emerged as valuable tools for assessing hydration levels. These
waves, including microwaves within the R-freq spectrum, offer unique capabilities such as penetrating
obstacles and focusing signals for high-speed communication. In hydration monitoring, microwave-
based methods exploit changes in dielectric properties in human tissues or skin to gauge moisture
levels.Figure 2.8 illustrates some techniques for radiofrequency hydration assessment.

Figure 2.8: Radio frequency based sensing.

• In [86], researchers constructed a broadband antenna using a RO4350 laminate substrate connected to
a network analyzer. This setup emitted microwaves and recorded the signals reflected after interacting
with the skin. By measuring the amplitude of the returning signals and the frequency at which they
occurred, the researchers evaluated the recorded data to assess hydration levels.

• A pioneering wearable device was introduced in [87], leveraging microwave reflectometry and planar
sensing to continuously monitor skin hydration levels in real time. Despite successfully establishing
a relationship between hydration and microwave reflectometry measurements, [87] acknowledges the
need for further improvements, such as enhancing miniaturization and portability.

• Expanding the work done in [87], researchers in [88] investigated the integration of microwave reflec-
tometry with a portable vector network analyzer, aiming for enhanced wearability and accuracy.

• M. Baghelani et al. proposed a novel chipless tag-based approach in [89], utilizing split ring res-
onator transmission responses to estimate hydration levels, particularly monitoring permittivity and
conductivity variations on the earlobe.
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• In an attempt to correlate skin permittivity with weight changes due to dehydration, [90] developed
a custom measurement system to collect data from young adults before and after exercise.

• in [91], researchers delved into assessing hydration levels by transmitting electromagnetic signals
through simulated realistic forearms. The study revealed a promising relationship between water
loss and dielectric permittivity in simulated models. This finding was further proved in [92], where in
vivo tests on athletes before and after exercise confirmed the earlier results.

• The study in [93] aimed to evaluate hydration in fasting individuals during Ramadan using the same
equipment as in [91] and [92]. Researchers recorded changes in permittivity, weight, and urine-specific
gravity, observing weight loss in all volunteers and modest changes in urine-specific gravity, indicat-
ing the dehydration threshold. Linear regression analysis between weight changes and permittivity
revealed a strong correlation, although no clear relationship was found between urine gravity and
permittivity, suggesting limitations in detecting subtle hydration changes.

• L. Peng et al. in [94] employed ultrawideband technology and Elman neural network learning models
to quantitatively estimate hydration levels.

• J. Kilpijärvi et al. in[95] proposed a microwave sensor coupled with a complementary split ring
resonator, demonstrating accurate estimation results on phantoms.

• Innovative approaches such as time-domain reflectometry, as demonstrated in [96], and ultra-high-
frequency sensors integrated into clothing, as introduced by [97], offer promising avenues for dehydra-
tion monitoring. The results achieved a 100% accuracy rate when sweat textile saturation exceeded
58% [97].

• In [98], researchers presented a flexible R-freq sensor detecting moisture changes through electromag-
netic resonance, showcasing distinct trends in hydrated and dehydrated states.

• Utilizing software-defined radios, [99] proposed a non-contact method relying on R-freq signal capture
for hydration assessment, achieving high accuracy (93.8% was achieved for the chest technique and
96.15% for the hand-based technique).

• Wang et al. in [100] validated the BioMindR device for hydration assessment (BioMindR, a non-
invasive R-freq sensor development company), establishing a linear correlation between received signal
strength indicator variations and body water loss percentage.

Discussion:

Researchers have explored numerous innovative approaches to evaluate hydration levels using Radio
frequency based technologies. Methods such as time-domain reflectometry, ultrawideband techniques,
and advanced antenna designs have demonstrated efficacy in assessing hydration, offering rapid and
continuous monitoring suitable for real-time applications. These Radio frequency based techniques
have shown the capability to detect subtle moisture level changes by analyzing tissue dielectric per-
mittivity.
However, employing this sensing modality necessitates specialized and costly equipment, which must
be carefully maintained and calibrated over time, along with expert interpretation of measurements
and analysis of readings. Moreover, integrating Radio frequency based hydration assessment into
everyday devices like smartphones poses challenges, highlighting the need for future efforts to fo-
cus on device miniaturization, enhanced portability, and cost reduction. Addressing environmental
interference is another crucial consideration to improve estimation accuracy.

2.8 Acoustic based methods

Acoustic signals, characterized by pressure oscillations in mediums like air or water, encode data
through changes in frequency and amplitude, enabling message transmission. These signals are utilized
across various domains, including telecommunications and medical applications.
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Leveraging acoustic signals, researchers have explored non-invasive methods for assessing hydration
status by analyzing signals traveling through body tissues or fluids. Ultrasound velocity of muscles
offers direct insights into muscle composition, including moisture content, as it correlates with density,
elasticity, and moisture.
Figure 2.9 illustrates some acoustic-based techniques for hydration monitoring.

Figure 2.9: Acoustic based sensing.

• In a study by researchers in [101], a handheld device applied to the calf radiated ultrasound waves,
measuring their speed through the calf muscles. Preliminary testing on tissue-mimicking phantoms
yielded a measurement error range of ±1m/s, with subsequent tests on subjects demonstrating the
technique’s potential, albeit with noted inter-subject variability.

• In [102] utilized a handheld ultrasonic probe on NCAA wrestlers’ calves (National Collegiate Ath-
letic Association wrestlers), observing changes in ultrasound wave velocity under different hydration
conditions.

• In another innovative approach by Mengistu et al. in [103], the Auto-Hydrate system was proposed,
integrating a throat microphone, smartwatch, and smartphone for monitoring drinking activities with
91.5% accuracy using SVM classifiers.

• Researchers in [104] aimed to identify severe dehydration in children with diarrhea and/or vomiting,
highlighting ultrasound assessment of the inferior vena cava (IVC) to the aorta (AO) ratio as superior
to other techniques, with a sensitivity of 93% and a specificity of 59%.

• El Amrousy et al. in [105] evaluated the IVC/Ao diameter ratio as a predictor of hydration status
in infants with acute clinical signs of significant dehydration, demonstrating a sensitivity of 82%, a
specificity of 91%, and an accuracy of 87% in predicting considerable dehydration.

• measurements of the largest diameters of IVC and AO before and after fluid therapy in pediatric
patients, revealing a higher IVC/AO ratio after fluid administration in [106].

• Researchers in [107] conducted ultrasound examinations of IVC diameter in older patients, revealing
disparities in clinical and ultrasound parameters between dehydrated and hydrated subjects, with
ultrasound markers having lower values in dehydrated patients. Specific cutoff thresholds were deter-
mined to achieve reasonable specificity in diagnosis, highlighting ultrasound technology’s potential in
assessing hydration status.

Discussion:

Acoustic technologies are emerging as pivotal tools in hydration assessment, offering insights into mus-
cle moisture levels by tracking signal propagation through tissues, enabling non-invasive dehydration
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detection.
Additionally, studies employing ultrasound sonography to gauge IVC and AO diameters have shown
superior accuracy in assessing hydration status compared to traditional clinical methods. The IVC/AO
ratio emerges as a particularly effective hydration indicator, as evidenced by multiple studies. However,
challenges persist, including signal variability and interfering factors, necessitating the consideration
of signal variability over direct readings and establishing tailored cutoffs, such as age and weight, for
precise estimations. Furthermore, ultrasound sonography application requires specialized equipment
and trained personnel for result interpretation, limiting its feasibility for routine hydration monitoring.
Therefore, efforts are underway to miniaturize and cost-effectively scale these devices for everyday use
while exploring strategies to mitigate interference from other parameters.

2.9 Bodily fluids analysis

Non-invasive fluid-based techniques involve assessing markers in bodily fluids obtained without tissue
penetration. Parameters like osmolality, ion concentrations, serum creatinine, and specific gravity can
be evaluated from fluids such as urine, saliva, and sweat, offering valuable insights into hydration
levels.
Urine, a product of kidney function for waste removal, comprises water and dissolved solutes. Saliva,
produced by salivary glands to moisturize the mouth, contains water and enzymes. Similarly, sweat,
secreted by sweat glands, comprises water and electrolytes and regulates body temperature.
Due to their high water content, dehydration can directly impact these bodily fluids, making their
analysis crucial for hydration assessment. In this section, we delve into the existing research and
explore methods based on salivary, sweat, and urine analysis. Figure 2.10 illustrates different fluid-
based techniques using blood, urine, and salivary samples.

Figure 2.10: Bodily fluids sampling.

2.9.1 Salivary markers

Different approaches for non-invasive dehydration assessment through saliva analysis have been ex-
amined:

• In their research, Ring et al. delved further into the investigation outlined in [108], exploring salivary
markers as potential indicators of water loss. Their objective was to analyze compounds present
in saliva, including electrolytes and hormones, and utilize machine learning algorithms to estimate
the extent of dehydration following physical exertion. Their findings revealed an estimation error of
around 0.34 liters in TBW loss.

• a non-invasive, portable device developed in [109] aimed to swiftly detect dehydration through saliva
analysis, to improve timely hydration assessments and reduce the risks associated with chronic kidney
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disease. This device, featuring gold electrodes, efficiently processes small saliva volumes (ranging
from 50 to 500 uL). Validation with clinical samples and comparison to serum osmolality standards
confirmed its robust ability to accurately detect varying hydration levels.

• the introduction of embedded piezoresistive microcantilever (EMP) sensors in [110] presents a novel
approach to monitoring hydration levels by measuring changes in osmolality in body fluids such as
urine and saliva. These sensors, comprising a sensing material with a microcantilever embedded within
it, detect volumetric shifts upon contact with analyte molecules, which are then measured as changes
in resistance. Tests using both simulated and real saliva demonstrated the potential effectiveness of
this technique.

• In a related study detailed in [111], 15 male participants engaged in physical activities under different
fluid intake conditions to achieve specific body mass loss targets. Saliva osmolality, total protein
concentration in saliva, blood osmolality, and urine osmolality were measured for statistical analysis.
The results underscored the sensitivity of salivary osmolality and total protein concentration as markers
for hydration status.

2.9.2 Sweat analysis

Various methods for non-invasive dehydration assessment using sweat analysis have been explored:

• Ring et al. in [112] investigated the potential of sweat electrolyte concentrations, particularly chloride,
and osmolality, as estimators of TBW loss. Their findings suggested significant correlations between
sweat chloride concentration, osmolality, and TBW.

• a study by [113] observed elevated sodium, chloride, and potassium concentrations in sweat sam-
ples collected from dehydrated subjects during exercise, reinforcing the utility of sweat electrolyte
measurements in assessing hydration status.

• Manimegala et al.in[114] proposed targeting changes in sodium and potassium concentrations in sweat
for hydration assessment, employing sweat sensor patches based on electrochemistry and ion-selective
sensing components. These patches, incorporating reference electrodes and a temperature sensor,
transmit data to mobile phones for analysis.

• Further advancements include wearable devices capable of measuring skin temperature and pH levels
in sweat [115], real-time colorimetric sensors for tracking sodium concentration variations [116], and
specific sensors sensitive to sodium ions utilizing crown ethers [117].

• Researchers in [118] introduced a wearable ionic selective electrode sensor for tracking sodium ion
concentrations in sweat. In contrast, Liu et al. [119] proposed a real-time dehydration detection
system utilizing artificial sweat and a novel sweat collection device.

• The development of sweat analysis methods based on conductometric sensors integrated with volt-
age divider circuits [120], and the investigation of hydration monitoring through the permittivity of
artificial sweat using R-freq signals [121], further contribute to the field.

• Sahina et al. in [122] explored sweat sensing with nanostructured copper oxide films, revealing signifi-
cant influences of doping on the films’ resistivity, suggesting their potential for hydration monitoring.

• Ria et al. in [123] introduced a novel sweat sensor featuring a capacitive mechanism with an array
of interleaved electrodes optimized for wearables, demonstrating robust performance in hydration
tracking.

2.9.3 Urine anaysis

In their respective studies, researchers have explored various methods for non-invasive dehydration
assessment using urine analysis:
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• In [124], the hydration status of 26 young male soccer players was examined through urine analysis,
focusing on the validation of urine strips for practical field use. Over three days before the competition,
urine color, specific gravity, and osmolality were analyzed, affirming the reliability and convenience
of urine strips for athletes in monitoring hydration levels. These strips exhibited a robust correlation
with laboratory-specific gravity and osmolality measures.

• In [125], a novel approach was undertaken to assess dehydration via urine color analysis, employing an
Arduino Uno integrated with a TCS230 color sensor. This system interprets urine samples, aligning
observed colors with a hydration scale to indicate the hydration level accurately.

• In [126], researchers developed a portable, non-invasive device equipped with a thermal sensor to
evaluate dehydration and glucose levels by examining variations in urine temperature. This innovative
device offers convenience and ease of use for hydration assessment.

• The system proposed in [127] utilizes a wireless standalone chemical sensor platform incorporating
humidity sensors based on a nanostructured TiO2 surface for assessing sweat rate and a sensor for
measuring potassium concentration in urine to gauge hydration levels. This setup is integrated into
a wireless body area network for seamless data transfer among devices and internet connectivity,
facilitating sharing with clinical staff or athletes’ coaches. Real-life tests and calibrations demonstrated
low power consumption and high efficiency in preventing dehydration.

Discussion:

In summary, fluid-based methods offer a means of evaluating hydration status through markers in
bodily fluids like sweat, urine, or saliva. Saliva serves as a rapid indicator of dehydration; analysis of
urine color and specific gravity has shown convenience in determining hydration levels; and sweat can
be utilized for continuous monitoring during physical activities.
These techniques serve as efficient tools for quick dehydration detection, potentially reducing the re-
quirement for costly equipment and facilitating widespread adoption.
However, collecting sweat, saliva, or urine samples may not always be convenient. It can demand time
and effort and necessitate adherence to hygienic practices to prevent contamination. The presence of
other substances in the fluid may lead to erroneous diagnoses. Moreover, some individuals may feel
uncomfortable providing fluid samples, particularly in environments with limited privacy, rendering
the technique unsuitable for daily use. Additionally, as discussed in [128], the utilization of osmometry
for assessing dehydration encounters various limitations.
However, despite these challenges, fluid-based analysis retains its significance in clinical settings, pro-
viding prompt, uncomplicated, and dependable evaluations of hydration status. Practical strategies
and empirical thresholds introduced in [128] aim to enhance the precision of hydration assessment,
thereby augmenting its clinical applicability.

2.10 Multi-modal methods

Table 2.1 summarizes the respective advantages and disadvantages of the sensing technologies dis-
cussed. Combining different advantages and mitigating the inconveniences of individual techniques
can enhance effectiveness. It is possible to achieve this by integrating multiple modalities, as demon-
strated by various studies presented in this section.

2.10.1 PPG & EDA

In [129], researchers investigated dehydration by analyzing EDA and PPG data from 17 participants.
EDA was measured using stainless steel electrodes connected to a skin response module, while PPG
signals were captured with a wearable device worn on the left wrist. Various machine learning al-
gorithms were applied to the data to assess the body’s response to the Stroop test. In this test,
participants are presented with color words printed in different colors and are asked to name the ink
color while ignoring the word’s meaning. Using the SVM technique, they achieved a 91.2% accuracy

33



Modality Pros Cons

EDA
• Non-invasive.
• Can be integrated into daily tools.
• Achieved a high accuracy.

• Susceptibility to external factors such as tempera-
ture, sweat, and emotional stress.

• Vulnerability to postural changes and sudden move-
ments.

ECG
• Widespread technology.
• Non-invasive and can be integrated into daily tools.

• primarily dedicated to monitoring heart rate.
• Limited validation against gold standard methods.

Fluid-Based
• Non-invasive and Affordable.
• More suitable for clinical use.
• Non-invasive.

• Not suitable for daily use and requires hygienic pre-
cautions.

• Vulnerable to external factors.
• Variability in the composition of body fluids among

subjects.

BIA
• Non-invasive. and can be integrated into daily

tools.
• Advancement in sensor design.

• Susceptibility to external factors such as tempera-
ture and sweat.

• Vulnerability to postural changes and movements.

Acoustic
• Non-invasive and can be contactless.
• Achieved a high precision by measuring IVC/AO

ratio.

• Not suitable for daily use nd costly.
• Require specialized equipment
• Requires specific cut-off thresholds tailored, for ex-

ample to weight.

Radio fre-
quency

• Ability to detect subtle changes in hydration levels.
• Non-invasive and can be contactless.

• Costly and require specialized equipment.
• Not suitable for daily use.

Optical
• Can be integrated into daily tools.
• Non-invasive and can be contactless.

• Vulnerable to environmental factors.
• Initial setup and calibration can be complex.
• Limited validation against gold standard methods.

Thermal
• Non-invasive.
• Can detect localized and subtle variations.
• Can be integrated into daily tools.

• Vulnerable to environmental factors like ambient
temperature.

• Initial setup and calibration can be complex.
• Limited validation against gold standard methods.

Table 2.1: Comparison of different sensing modalities for dehydration monitoring.

rate in identifying dehydration. Similarly, [130] collected EDA, skin temperature, PPG readings, and
Body Mass Index (BMI) data from 16 individuals during circuit training sessions, successfully detect-
ing different hydration levels. In [131], a combination of PPG and galvanic biosensors was used to
monitor hydration levels in 240 subjects. The method was evaluated both before and after exercise.
Results closely estimated TBW loss, with a mean root square error of approximately 2%. Bland-
Altman analysis revealed that fewer than 5% of values deviated beyond the 95% confidence interval
limits of agreement, with all observed differences distributed around the line of equality.

2.10.2 Optical & electrical tissue properties

Researchers in [132] combined bio-impedance sensing and optical spectroscopy to monitor skin hy-
dration levels. Optical spectroscopy identifies skin water absorption peaks, while tetra-polar bio-
impedance minimizes measurement errors. The device underwent in vivo and ex vivo testing, with
skin dehydration associated with an increased voltage output from the optical sensor and decreased
bio-impedance. Multiple linear regression models demonstrated a robust correlation between the col-
lected data and hydration states, highlighting the effectiveness of a multi-modal approach for skin
hydration monitoring.
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2.10.3 Thermal & Electrical Properties

Researchers in [133] proposed leveraging the electrical and thermal characteristics of the skin for
hydration monitoring. Extensive in vitro experiments were conducted using porcine skin samples,
followed by in vivo tests on 20 patients, affirming the technique’s ability to estimate hydration levels
with solid alignment with established methods. Additionally, [134] presents an in vitro proof-of-
concept utilizing ink-jet-printed interdigitated electrodes for hydration monitoring. Measurements of
local surface impedance, temperature, and body impedance were obtained, and linear approximations
were employed for data processing. While the results show a correlation between the measurements
and hydration states, researchers note that linear approximations may be inadequate in practical
settings, suggesting adopting suitable machine learning models for future investigations.

2.10.4 +3 Sensing modalities combined

Some studies have integrated three types of sensing techniques into a single solution to estimate
hydration levels:

• Sabry et al. in [135] presented a novel wearable device designed for assessing hydration levels by inte-
grating multiple sensors, including an accelerometer, magnetometer, gyroscope, galvanic skin response
sensor, PPG sensor, temperature sensor, and barometric pressure sensor. The study evaluates ma-
chine learning models, such as Extra Trees, Deep Neural Networks, and RF, based on prediction error,
model size, and training time. Remarkably, the Extra Trees model demonstrates superior performance
with the lowest prediction error, followed by RF and Deep Neural Networks.

• Rosales et al. in [136] introduced a novel system for non-invasive hydration assessment, incorporating
ultrasonic sensors, load cells, and BIA modules to collect crucial data for estimating an individual’s
TBW percentage. The system gathers data on height, weight, body impedance, and gender. It utilizes
an artificial neural network with the scaled conjugate gradient approach to classify hydration status
into under-hydrated, hydrated, or over-hydrated categories based on TBW percentage.

• Solovei et al. in [137] proposed a multifaceted approach for non-invasive, continuous monitoring of
dehydration, integrating measurements of skin-relative humidity, body weight, and potassium ion
concentration in urine. The system utilizes a humidity sensor based on nanostructured titanium
dioxide to quantify transdermal water loss and employs a potassium-ion-selective electrode for detailed
urine analysis.

• Wang et al. in [138] predicted hydration status by leveraging a combination of physiological and
sweat biomarkers. Data collected from a single subject undergoing various exercises under different
conditions include parameters such as heart rate (HR), core temperature, sweat sodium concentration,
and total body sweat rate (TBSR), with sweat patches positioned across five different body regions.
Three machine learning algorithms Logistic Regression (LR), SVM, and RF trained using different
data combinations. The study finds that TBSR and HR achieve the highest accuracy in predicting
hydration status, with patches placed on the arms yielding more accurate results than other body
regions.

Discussion:

Combining various sensing methods enhances our ability to gauge hydration levels accurately. While
individual techniques offer valuable insights, they may fall short individually due to inherent limitations
and measurement variability. By integrating modalities such as bio-impedance, optical spectroscopy,
and thermal monitoring, we can capture a broader spectrum of physiological parameters relevant to
hydration.
Incorporating temperature data, for instance, has been shown to significantly improve the predictive
accuracy of machine learning models in hydration assessment. Employing a multi-parametric approach
helps compensate for the drawbacks of individual methods, thereby enhancing the overall precision
and reliability of hydration prediction.
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2.11 Assessments of hydration in targeted populations or body organs

In light of the significant impact of water accumulation in certain organs and among specific patient
groups, it becomes imperative to devise accurate methodologies and advanced technologies for evaluat-
ing hydration status and fluid retention. This section delves into the assessment of water accumulation
in particular organs, such as the heart and lungs, as well as the hydration levels across diverse patient
groups:

• Hospitalized patients experiencing acute ischemic strokes often face sudden neurological impairments
resulting from focal cerebral ischemia. Assessing hydration levels becomes paramount in such cases,
given that dehydration can exacerbate neurological damage and influence clinical outcomes.[139] ex-
plored the feasibility of utilizing the Non-Invasive Cardiac Output Monitor (NICOM) to assess hydra-
tion status. This study compared NICOM with the blood urea nitrogen/creatinine ratio, an indirect
indicator of volume reduction, demonstrating a 70% agreement between the two methods.

• Researchers in [140] investigated the potential of Electrical Impedance Tomography (EIT) to assess
cerebral fluid content in patients with brain edema. Their custom EIT monitoring system, equipped
with 16 electrodes, allowed for the generation of impedance distribution tomography, offering insights
into brain water content by analyzing variations in impedance.

• For patients with acute heart failure, careful hydration monitoring is essential to mitigate the risk of
fluid overload. Marino et al. in [141] employed bio-impedance vector analysis to evaluate the hydration
status of these patients, demonstrating its effectiveness in tracking fluid reduction during the healing
process post-hospital discharge.

• In the realm of wound healing, Sattar et al. in [142] developed biosensors based on body temperature
and oxygenation levels to monitor wound hydration. These sensors, integrated with a fuzzy infer-
ence system, showed promising results in predicting wound hydration states, although further clinical
validations are warranted.

• A wearable multi-modal sensing system, as described in [143], was utilized to monitor changes in
cardiopulmonary status, mainly focusing on lung fluids and respiratory markers. This system, in-
corporating various components such as multi-channel lung sounds, bio-impedance spectroscopy, and
impedance pneumography, demonstrated its efficacy in detecting variations in lung fluids and respira-
tory rate among both healthy individuals and heart failure patients.

In conclusion, precise monitoring of fluid levels in specific organs and among diverse patient groups is
imperative for timely intervention and improved clinical outcomes. Further research and clinical trials
are needed.

2.12 Perspectives

While many approaches have demonstrated accuracy in indicating hydration levels and have shown
promising results, there is still room for improvement, and further development is crucial to focus on
enhancing instrumentation by exploring new sensing techniques or refining existing ones. Many current
modalities suffer from high noise and low precision, while others necessitate extensive precautions to
obtain reliable measurements. Overcoming these limitations will not only enable the acquisition of
high-quality data but also streamline pre-treatment procedures and facilitate data analysis.
Furthermore, it is essential to categorize the types of dehydration and identify appropriate monitoring
techniques for each. For instance, blood indices may better suit chronic fluid deficits, especially in
older individuals. In contrast, urine analysis may be more sensitive to sudden changes in fluid status,
making it ideal for athletes who frequently experience mild dehydration post-exercise or extreme
temperatures. However, techniques like EDA may pose challenges in urgent situations due to their
sensitivity to cognitive stress and minor movements, rendering them less suitable for rapid hydration
assessment.
Additionally, establishing specific cutoff values and thresholds based on age, height, and weight is
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imperative for specific sensing modalities, such as acoustic techniques, to enhance accuracy. This
necessitates extensive testing on diverse populations encompassing various body types and age groups.
Moreover, integrating multiple sensor types to obtain multi-parametric data proves advantageous in
overcoming the limitations of individual sensing modalities. Relying solely on one technique may
not provide a comprehensive understanding of hydration states, as various physiological factors can
influence hydration. Employing multi-modal methods offers a more holistic and accurate depiction of
hydration status.
Furthermore, monitoring hydration states as an independent biological marker has posed challenges.
Some studies have reported a lack of correlation between measurements and hydration levels, primarily
due to the indirect estimation of moisture levels through other markers, making it challenging to
perform statistical analysis and extract relevant features. In this regard, machine learning has shown
promise, offering solutions to existing challenges.
Properly trained machine learning models, fueled by data obtained from high-precision devices, can
effectively extract pertinent features and accurately estimate hydration stages, thus overcoming current
limitations and enhancing overall efficacy.

2.13 Conclusion

This chapter delves into the advancements made in non-invasive hydration assessment, exploring var-
ious sensing techniques and combinations. It presents the different work done in each field and the
results achieved, along with an overall representation of the advantages and limitations of each tech-
nique. By addressing the limitations of different approaches, several paths for research are opened,
increasing the accuracy of various methods. Additionally, it highlights applications in targeted popu-
lations and specific organs. Finally, it outlines future perspectives in this expansive field, highlighting
potential avenues for further research and development.
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Chapter 3

The Proposed Technique

3.1 Introduction

In our study, we investigate the use of the FDC2114 module by Texas Instruments to estimate hy-
dration levels. The FDC2114 is a high-resolution capacitance-to-digital converter released by Texas
Instruments in 2019. This module is designed to measure capacitance with high precision and accu-
racy, making it suitable for various applications.
In this chapter, we delve into the principle of operation of the FDC2114 module, detailing its un-
derlying technology and functionality. We also describe the experimental setup used in our study,
explaining how the module provides insights into human hydration states.

3.2 Functioning of the FDC2114 module

All the details about the description and functioning of the module, the schematics, and the clocking
diagrams were derived from the datasheet of the module [144].

3.2.1 Description

Capacitive sensing is an efficient, cost-effective, and high-resolution sensing technique applicable to
various fields, including proximity detection, gesture recognition, and remote liquid-level sensing. One
significant challenge with capacitive sensing is its susceptibility to noise. However, the FDC2114 mod-
ule addresses this issue with its innovative Electro Magnetic Interference (EMI) resistant architecture,
ensuring reliable performance even in noisy environments.
The FDC2114 is a versatile, multi-channel family of noise—and EMI-resistant capacitance-to-digital
converters. These high-resolution, high-speed devices are designed for implementing advanced ca-
pacitive sensing solutions. They utilize a cutting-edge narrow-band architecture that provides excel-
lent noise and interference rejection while maintaining high resolution and speed. Additionally, the
FDC2114 supports a broad range of excitation frequencies, offering significant flexibility in system
design. Figure 3.1 shows the FDC2114 module equipped with 2 capacitive sensors.

The devices employ an innovative narrow-band based architecture to offer high rejection of noise and
interferers while providing high resolution at high speed.
Narrow-band means that the devices are designed to operate within a specific, limited range of fre-
quencies. By focusing on a narrow bandwidth, the architecture can effectively filter out unwanted
signals and noise outside of this range.

Features:

• EMI and noise Resistant Architecture.
• Maximum Output Rates for one active channel: 13.3 ksps.
• Maximum Input Capacitance: 250 nF at 10 kHz with 1 mH inductor.
• Sensor Excitation Frequency: 10 kHz to 10 MHz
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Figure 3.1: FDC2114 Module [144].

• Number of channels: 4.
• Resolution: up to 28 bits.
• System Noise Floor: 0.3 fF at 100 sps.
• Supply Voltage: 2.7 V to 3.6 V.
• Power Consumption: Active: 2.1 mA.
• Low-Power Sleep Mode: 35 uA.
• Shutdown: 200 nA.
• Temperature range: -40°C to +125°C.

3.2.2 Schematics

Figure 3.2 represents the simplified schematic of the module and its 2 sensors.

Figure 3.2: FDC2114 Module Simplified Schematic [144].
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• The FDC 2114 module operates based on capacitance sensing, with its primary function being
the measurement of subtle changes in capacitive sensors. The module features four channels
designed to interface with capacitive sensors, with two of these channels already equipped with
sensors.

• At its core, the FDC module comprises a resonant circuit consisting of capacitance and in-
ductance, which possesses a fixed resonance frequency. This resonant circuit is linked to the
capacitive sensors.

• The capacitive sensor equipped with the module comprises a metallic plate where a target object,
such as a human finger, interacts.

• Placing the finger atop the plate forms a capacitance with it. This new capacitance operates
in parallel with the capacitance of the LC resonant circuit, leading to shifts in the resonant
frequency.

• The module itself consists of front-end resonant circuit drivers for each channel, which are
followed by a multiplexer that sequentially switches through the active channels and connects
them to the core responsible for measuring and digitizing the sensor frequency.

• The I2C interface is used to support device configuration and to transmit the digitized frequency
values to a host processor.

• Based on the frequency value, the additional capacitance introduced is computed to characterize
the target object, providing valuable data about its presence and properties.

3.2.3 Possible configuration

The FDC supports two sensor configurations. Both configurations use an LC tank to set the frequency
of oscillation. A typical choice by default is an 18µH shielded SMD inductor in parallel with a 33 pF
capacitor, which results in a 6.53 MHz oscillation frequency.
In the single-ended configuration, a conductive plate is connected to IN0B, as shown in Figure 3.3.
Together with a target object, the conductive plate forms a variable capacitor with the target object.

Figure 3.3: Single-ended sensor configuration.

In the differential sensor configuration, one conductive plate is connected to IN0A, and a second is
connected to IN0B, as shown in Figure 3.4. Together, they form a variable capacitor.

The single-ended configuration allows a higher sensing range than the differential configuration for a
given total sensor plate area. In applications in which high sensitivity at proximity is desired, the
differential configuration performs better than the single-ended configuration.
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Figure 3.4: Differential sensor configuration.

3.2.4 Clocking Architecture

The primary frequencies are fIN, fREF, and fCLK.:

• The fCLK clock can be selected from either an internal or an external clock source CLKIN.

• The frequency measurement reference clock, fREF, is derived from the fCLK source.

• For precision applications, it is recommended to use an external master clock that meets the
stability and accuracy requirements of the application. The internal oscillator is suitable for
applications that are cost-sensitive and do not need high precision.

• The fINx clock for channel x is derived from the sensor frequency, fSENSORx. Both fREFx and
fINx must comply with the requirements listed in Table 3.1, depending on whether fCLK (the
master clock) is internal or external.

Figure 3.5 illustrates the clocking architecture of the module.

Mode CLKIN Valid fREFx range
(MHz)

Valid fINx range

Multi-channel
Internal fREFx < 55 < fREFx / 4
External fREFx < 40 < fREFx / 4

Single-channel Either internal or external fREFx < 35 < fREFx / 4

Table 3.1: Clock Configuration Requirements.

3.2.5 Mathematical model

• The functioning of the FDC2114 is based on measuring the resonance frequency of a circuit
composed of a constant LC resonant circuit (C0 and L0 ) shown in Figure 3.6, along with an
additional capacitance Csen that represents the target object.

• If no target object interacts with the sensor plate, the resonance frequency will remain constant
at f0.

f0 =
1

2π
√
L0C0
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Figure 3.5: Clocking Diagram [144].

Figure 3.6: LC resonant circuit (C0 and L0).

• An important equivalence that we need later is as follows: if we have a capacitance Ceq between
two points A and B, this capacitance is equivalent to two capacitors (C1 and C2), each with a
capacitance of 2C, with a ground (GND) between them, as shown in Figure 3.7.

Figure 3.7: Equivalent capacitance configuration with ground.

Demonstration:

1. Capacitors in Series:
When two capacitors are in series, their equivalent capacitance Ceq is given by:

1

Ceq
=

1

C1
+

1

C2
(3.1)
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For two capacitors of 2C in series:

1

Ceq
=

1

2C
+

1

2C
=

1

2C
+

1

2C
=

2

2C
=

1

C
(3.2)

Therefore, the equivalent capacitance Ceq is:

Ceq = C (3.3)

2. Potential Differences:
The potential difference between point A and ground M is VAG.
The potential difference between ground M and point B is VGB.
Since the capacitors are in series:

VAB = VAM + VMB (3.4)

VAM = VMB =
VAB

2
(3.5)

3. Charge stored:
For capacitors Q=CV, and in our case:
For C1 and C2:

Q = C1 · VAM = C2 · VMB (3.6)

For Ceq:
Qeq = Ceq · VAB (3.7)

From Equation (3.3), we have C1 = C2 = 2Ceq and from Equation (3.5), we have VAM = VMB =
VAB
2 Substituting these into Equation (3.6), we get:

Q = 2Ceq · VAM = 2Ceq · VMB (3.8)

Q = 2Ceq ·
VAB

2
= 2Ceq ·

VAB

2
(3.9)

Simplifying, we obtain:
Qeq = Ceq · VAB (3.10)

4. Conclusion: The configuration with a single capacitance C between points A and B is equivalent
to two capacitors, each with a capacitance of 2C, in series with a ground between them.

• Single-ended sensor configuration

As seen in Section 3 of this chapter, the single-ended sensor configuration is presented below:

Figure 3.8: Circuit 1.

We replace the capacitance C0 with two capacitors, each equal to 2 C0, with a ground in between, as
shown in circuit 2.

By joining the two points labeled M in circuit 2 and arranging the components for better clarity, we
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Figure 3.9: Circuit 2.

Figure 3.10: Circuit 3.

obtain circuit 3.

We have Csen and 2C0 in parallel, both in series with 2C0. Those capacitors can be replaced with Ctot

where:

Ctot =
2C0(2C0 + Csen)

4C0 + Csen
(3.11)

Remark

A ground connection between two capacitors in series does not affect the conventional equivalent
capacitance (3.1). If we introduce a ground connection between C1 and C2, it does not alter the
formula for Ceq, as the ground acts as a reference point and does not affect the voltage across the
capacitors VAB = VAG + VGB

• Differential sensor configuration

As seen in Section 3 of this chapter, differential sensor configuration is presented below:

Figure 3.11: Circuit 4.

We replace the capacitance C0 with two capacitors, each equal to 2 C0,with a ground in between, as
shown in circuit 5.

By joining the two points labeled M in Circuit 5 and arranging the components for better clarity, we
obtain Circuit 6.
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Figure 3.12: Circuit 5.

Figure 3.13: Circuit 6.

We have Csen1 and 2C0 in parallel, both in series with Csen2 and 2C0 that are in parallel. Those
capacitors can be replaced with Ctot where:

Ctot =
(2C0 + Csen1)(2C0 + Csen2)

4C0 + Csen1 + Csen2
(3.12)

.

• Equivalent LC resonant circuit:
When the target object interacts with the sensor, the frequency is no longer equal to the reso-
nance frequency f0, as additional capacitance is introduced.
For both configurations, the equivalent circuits can be represented as in Circuit 7, where each
configuration has its own Ctot.

Figure 3.14: Circuit 7.

Consequently, the frequency becomes:

f =
1

2π
√
L0Ctot

(3.13)

Based on the value of this frequency, the FDC2114 module computes the additional capacitance
introduced Csen that characterizes the target object.

3.3 The Setup used in our experiment

In our experiment, we used the default configuration of the module (LC resonant circuit: 18µH
shielded SMD inductor in parallel with a 33 pF capacitor, which resulted in a 6.5 MHz oscillation
frequency). We used both capacitive sensors equipped with the module. Each sensor is connected to
one channel, and each sensor is in a single-ended configuration, as shown in the Printed circuit board

45



Figure 3.15: Printed circuit board layout [144].

layout in Figure 3.15 .
The clock frequency is 40 MHz. Since we are using 2 channels and multiplexing between them, the
frequency of readings in each channel is 20 MHz.
Each sensor plate is connected to one channel pin, forming a single-ended configuration. The subjects’
fingers are considered the target objects, and measurements from both channels are considered. Sub-
jects simultaneously place the same type of finger (thumb, index, middle, ring, or pinky) from both
hands on the corresponding sensors: the right sensor for the right hand and the left sensor for the left
hand, as shown in Figure 3.16.

Figure 3.16: Subject placing his index fingers atop the two sensors connected to the FDC2114.

3.4 Hypothesis

The electrical properties of the human body and skin change due to fluctuations in moisture content at
different hydration levels. When fingers are placed on the sensors, they induce varying frequency shifts
due to the diverse capacitance created. These differences arise from the varied dielectric properties of
the target objects at different hydration states.
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3.5 Conclusion

It is important to understand the technology behind the module and its electronic model. Our pro-
posed solution for estimating hydration levels relies on variations in the dielectric properties of the
skin due to changes in hydration states, we aim to capitalize on this by characterizing these variations
through capacitance values.
This chapter describes the module along with its electronic representations and mathematical equa-
tions. It also determines the setup used in our experiment to clearly depict the model and aid in
understanding the system’s functioning.
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Chapter 4

Data Collection

4.1 Introduction

The most important aspect of any machine learning system is its data. In our study, we pay close
attention to gathering our data and creating different datasets to train and work with. For this task,
we used the FDC2114 module from Texas Instruments to collect data from 45 subjects, including
people of various ages, heights, and weights.
Our data collection took place at King Abdullah University of Science and Technology during Ramadan
1445 Hijri (2024), focusing on fasting individuals and athletes participating in sports activities within
the university.
In this chapter, we explore the characteristics of the subjects involved and detail the procedure we
follow for data collection.

4.2 Subjects characteristics

The total number of subjects is 45, comprising 21 females and 24 males. None of the subjects have
any specific medical conditions, and their activity during the day of data collection can be considered
normal. Table 4.1 represents subjects’ characteristics, including age, height, and weight.

Age (Y) Height (m) Weight (Kg)
Gender Female Male Female Male Female Male
min 21 21 1.53 1.6 41.72 55.12
max 49 49 1.73 1.88 97.86 117.04
Average 27.18 27.5 1.62 1.75 63.36 75.76
Standard deviation 6.980 6.807 0.066 0.065 9.796 14.409

Table 4.1: Subjects Characteristics

Body Mass Index

BMI is a measure that combines a person’s weight and height to assess their body fatness and overall
health. The BMI is calculated by dividing a person’s weight in kilograms by the square of their height
in meters.

BMI =
weight (kg)

height (m)2

Table 4.2 represents some statistics about the subjects’ BMI.
Figure 4.1 illustrates the BMI scale as follows: if the BMI is less than 18.5, the person is considered
underweight; if it falls between 18.5 and 25, the person is normal; if it ranges from 25 to 30, the person
is overweight; and if it exceeds 30, the person is obese. According to this scale, among all the subjects,
two subjects are obese, one is underweight, and five are slightly overweight, while the rest fall within
the normal weight range.
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Figure 4.1: BMI scale.

Min Max Average Standard Deviation
Gender Female Male Female Male Female Male Female Male
BMI 17.82 18.63 34.11 34.94 24.13 24.56 3.68 3.87

Table 4.2: Subjects BMI.

4.3 Ramadan data collection

Ramadan is the ninth month of the Islamic calendar. It corresponds to one of the five pillars of Islam,
which is Fasting. Muslims must refrain from eating and drinking from sunrise to sunset. The fast
is typically broken with the iftar meal after sunset, and preceded by the suhoor meal before dawn,
ensuring proper hydration with adequate water intake.
Our study involved data collection conducted five times per day from 35 participants. Sessions were
scheduled at 10 a.m., 12:30 p.m., 3 p.m., 5:30 p.m., and 8 p.m., with the final session taking place
after iftar that was around 6:30 p.m. Participants were expected to experience progressive dehydration
from session to session until the fifth session, where they would be adequately hydrated. The timeline
for Ramadan data collection is presented in Figure 4.2.

Figure 4.2: Timeline of Ramadan data collection.

The data collection measured induced capacitance between sensor plates and participants’ fingers.
Participants (17 Females and 18 Males) were instructed to place their fingers on the sensor plate,
swiping each finger from both hands twice. Each finger remained in place for approximately 10 seconds
to ensure accurate data recording, resulting in 20 samples per subject per session, considering each
finger measurement as one sample, totaling 100 samples per subject. With 35 subjects, 3500 samples
were collected across the five sessions, averaging 700 samples per session. Each session represents a
unique hydration level, constituting different classes for multi-classification models.
Subjects were instructed to maintain stillness during measurements, wipe their hands to remove sweat,
and ensure their fingers were centrally positioned on the sensor plates.
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4.4 Sportspeople data collection

For the sports data collection, we compiled data from 10 participants (4 Females, 6 Males) , including
8 members of the frisbee team and 2 from the gym. Frisbee, a sport involving throwing a flying disc
to teammates to score points, demands vigorous physical exertion such as running, throwing a disc,
jumping, and more.
Subjects were directed to participate in a 2-hour training session with restricted water intake. Data
were gathered before and after the sports session, resulting in two distinct categories: pre-exercise,
adequately hydrated, and post-exercise, dehydrated. The dataset thus comprises two distinct classes
suitable for binary classification.
During the data collection, participants were instructed to cleanse their fingers from sweat, maintain
stillness during measurements, and position their fingers centrally on the sensor for 5 seconds to
ensure precise data capture. Each session involved subjects placing their five fingers from both hands
on the sensor plate three times, generating 30 samples per subject per session, considering each finger
measurement as one sample. In total, 60 samples were obtained from each subject, 600 samples in
total, with 300 samples for each class. The timeline for Sportspeople data collection is presented in
Figure 4.3

Figure 4.3: Timeline of sportspeople data collection.

4.5 Conclusion

This chapter describes the subjects involved in our study and the data collection procedure. It
is essential to consider subjects with typical standard body characteristics, along with a balanced
database between males and females, to ensure correct generalization later on. Several measurements
were considered for each subject to ensure accurate readings and a large dataset, investigating both
scenarios: dehydration acquired by fasting individuals due to water intake restrictions, and dehydration
resulting from intense physical activities.
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Chapter 5

Data Analysis and Preprocessing

5.1 Introduction

Data quality is crucial for achieving good results in machine learning, and preprocessing the data,
even with small actions, can significantly improve results. In this chapter, we delve into the details of
our data sets, starting with a visual analysis of the capacitance measurement, addressing the need for
centering and normalizing the data. Additionally, we test different representations of the capacitance
and various combinations of additional features to identify the best setup. We aim also to explain the
trends observed in both datasets.

5.2 Exploratory data analysis

In this section, we are exploring the raw data by analyzing various recordings of fasting subjects and
athletes to understand the readings.

5.2.1 Ramadan dataset

As mentioned in Chapter 4, the data was collected using two sensors, each configured in a single-ended
configuration. The data from the right hand was collected using the sensor connected to CH1, while
the data from the left hand was collected using the sensor connected to CH0. Therefore, readings were
considered from both channels, and all subjects were asked to swipe their fingers from both hands twice.

Figure 5.1 displays the recordings from the left hand of a random subject during a random session,
illustrating the different rounds of measurements. In Figure 5.2, the recording from Figure 5.1 is
segmented into distinct zones, illustrating the different fingers. n represents the index of samples.
The default capacitance represents the value recorded by the module when no finger was placed atop
the sensor. However, this value varied among measurements across subjects, resulting in variations
not centered around the same value.

Figure 5.3 shows two distinct readings where the default values were not identical.

To address this issue, we centered the values around a standard default value by subtracting the de-
fault value from all the readings. This adjustment led to variations centered around zero, facilitating
fair comparisons between measurements from different sessions.

To observe the variation in capacitance throughout the day, Figure 5.4 presents the measurements for
one random subject across five sessions. For clarity, we display only one round of measurements from
the left hand. 1st session is represented in blue, 2nd session in red, 3rd session in green, 4th session
in purple, and 5th session in yellow.
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Figure 5.1: Recordings from the left hand of a random subject.

Figure 5.2: Segmentation of left hand recordings into finger zones.

In Figure 5.4, we observe that the variations are centered around zero for all five sessions. Additionally,
we observe a decreasing trend in the capacitance values for the four fingers represented from Session
1 to Session 4, with a slight increase noted in Session 5 compared to Session 4.
If we associate these variations with hydration levels, we observe a trend, there is a decrease in
capacitance. At the same time, subjects become progressively dehydrated from the first session (blue
graph) to the fourth session (purple graph). With reduced moisture in their bodies, fewer charges are
stored, leading to decreased capacitance.
However, in the fifth session (yellow graph), we observe a change in this trend. Capacitance either
remains the same as in session 4, as we see for the first finger, or increases slightly. This change in the
trend is due to fluid intake during iftar. In the fifth session, the body regains some moisture, although
it may not be as well hydrated as in the first session, the capacitance does not decrease further.
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Figure 5.3: Readings with varying default values.

Figure 5.4: Variation in capacitance across five sessions for a single subject.

Remark

This trend was observed among the majority of the subjects; however, in some cases, it was not
possible to determine whether capacitance was consistently increasing or decreasing throughout the
day. Capacitance values fluctuated, with some sessions showing higher values followed by lower values
in subsequent sessions. In this chapter, section 4, we aim to address these abnormalities and explain
inconsistencies in our data.
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5.2.2 Sportspeople dataset

All subjects were asked to swipe their fingers from both hands three times. Figure 5.5 displays the
recordings from the left hand of a random subject during a random session, illustrating the different
rounds of measurements. In Figure 5.6, the recording from Figure 5.5 is segmented into distinct zones,
illustrating the different fingers.

Figure 5.5: Recordings from the left hand of a random subject.

Figure 5.6: Segmentation of left land recordings into finger zones.

The default capacitance varied among measurements across different subjects, resulting in variations
not centered around the same value. To address this issue, we centered the values around a common
default value by subtracting the default value from all the readings.

To observe the variation in capacitance before and after the exercises, Figure 5.7 presents the mea-
surements for one random subject across the 2 sessions. For clarity, we display only one round of
measurements from the left hand. 1st session is represented in blue and 2nd session in red.

In Figure 5.7, we observe that the variations are centered around zero for both sessions. Additionally,
we observe an increasing trend in the capacitance values for the five fingers from Session 1 to Session 2.

If we associate these variations with hydration levels, there is an increase in capacitance as subjects
become progressively dehydrated from the first session (blue graph) to the second session (red graph).
This trend is the same for all the subjects and is opposite to what we observed in fasting subjects.
We aim to explain this difference in this chapter, section 4.
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Figure 5.7: Variation in capacitance across the two sessions for a single subject.

5.3 Feature selection

In this section, we explore the optimal combination of features to achieve the highest classification
accuracy. To accomplish this, we employ several classifiers with parameters in Table 5.16 while en-
suring that all features are centered and normalized. This helps prevent model divergence caused by
relatively high values.

First, we test different representations of the capacitance data. We explore four configurations: using
one hand’s recording as a single sample, removing the thumb finger from the recording due to its
considerably higher value compared to the other fingers, taking each finger’s data as an individual
sample, and finally removing the thumb sample from the previous configuration.

Second, we explore additional features that could improve classification accuracy when combined with
capacitance data. We test various combinations of features, including subjects’ weight, BMI, gender,
and the specific finger used in each sample.

Finally, we aim to determine the optimal data structure for achieving the best results. This involves
identifying the best representation of the capacitance data and the most effective combination of ad-
ditional features.

Remark

When we consider the complete recording as a sample, it was impossible to compute the LR of degree
4 due to the RAM capacity of the computer.
For RF, we tested several number of estimators (n); however, the results were approximately the same.
Therefore, we present the results for n=3 and n=100.

5.3.1 Ramadan dataset

Representation of the capacitance:

In this part, we test different representations of the capacitance data for the fasting subjects. We ex-
plored four configurations: (1) using one hand’s recording as a single sample, (2) removing the thumb
finger from the recording, (3) treating each finger’s data as an individual sample, and (4) treating
each finger’s data as an individual sample without the thumb fingers.

Table 5.1 presents the accuracy achieved with different classifiers across various data structures.
For the Ramadan dataset, we test binary and multi-class classification (5 classes). In the binary clas-
sification, we consider the recordings from sessions 1, 2, and 5 as hydrated and from sessions 3 and 4
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Table 5.1: Classifiers’ accuracy across varied data structures for fasting subjects.

as dehydrated.

The highest accuracy achieved is using linear LR while considering a complete hand
recording as one sample: 67% for multi-class and 82% for binary classification.

Combination of additional features:

• In this part, We try to combine additional features with the capacitance data. we consider each finger
as a separate sample. Instead of using the complete recording for each finger, we will use the average
value of the recording, representing the capacitance for each finger with a single value.

In Table 5.2, we compare classification accuracy between using the complete recording for each finger
and taking an average value for each finger.

Table 5.2: Comparison of classification accuracy: complete recording vs. average value per finger.

From Table 5.2, we conclude that taking the average value from the complete recording is
approximately the same as considering the complete recording. Indeed, for the majority
of the recordings, the value of the capacitance is consistent. Therefore, no additional
information exists in the complete recording.
The readings were meticulously treated one by one to remove the noisy parts.

• For the Ramadan data collection, we measured the subjects’ weight for each session. Here, We apply
classifiers to the weight changes data alone, as well as to the changes in BMI alone.

Table 5.3 represents the accuracy of classification for the weight changes and the BMI changes.
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Table 5.3: Classifiers’ accuracy across weight and BMI changes.

We can see that relying solely on weight changes throughout the day can achieve high
accuracy: 89% for weight changes and 95% for BMI changes, proving that weight loss is
a reliable indicator of hydration states.

• In this part, we aim to determine whether adding capacitance values to the weight changes, which
already yield good classification results, will improve or deteriorate the accuracy. This help us under-
standing if capacitance data is useful for classifying hydration levels.

In Table 5.4, we compare the classification accuracy of weight changes and BMI combined with ca-
pacitance.

Table 5.4: Classifiers’ accuracy across weight and BMI changes with capacitance values.

We can see that introducing the capacitance data does not deteriorate the results for
weight and BMI changes. We still achieve high classification accuracy, up to 93% for
binary classification. We can conclude that capacitance can be a reliable indicator of
hydration states for fasting subjects

• In this part, we compare the classification accuracy of different features added to the capacitance
data, including finger type, gender, weight, and BMI. In this analysis, weight and BMI are treated as
constant values for each subject to ensure that the results are based on capacitance and not weight
changes.

Table 5.5 presents the classification accuracies for different combinations of features.where (C) refers
for capacitance value, (F-T) for type of finger, (G) for gender, and (w) for weight.

From Table 5.5, we can observe that adding the type of finger as a feature deteriorates the results
instead of enhancing them. Using weight as a feature yields better results than using BMI. Adding
the gender feature slightly enhances the results.

Among all the different configurations, the one that produces the best results is when we
combine capacitance with the weight and gender of each subject, achieving 38% accuracy
for multi class classification and 64% for binary classification.
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Table 5.5: classification accuracy with different feature combinations added to capacitance data.

5.3.2 Sportspeople dataset

Representation of the capacitance:

Similarly, we test different representations of the capacitance data for the sportspeople. We explored
four configurations: (1) using one hand’s recording as a single sample, (2) removing the thumb finger
from the recording, (3) treating each finger’s data as an individual sample, and (4) treating each
finger’s data as an individual sample without the thumb fingers.

Table 5.6 presents the accuracy achieved with different classifiers across various data structures.

Table 5.6: Classifiers’ accuracy across varied data structures for Sportspeople.

The highest accuracy achieved is using linear LR and KNN while keeping or removing
the thumb finger from the complete hand recording: 87% binary classification
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Combination of additional features:

• In this part, we try to combine additional features with the capacitance data. Here, we consider each
finger as a separate sample. Instead of using the complete recording for each finger, we use the average
value of the recording, representing the capacitance for each finger with a single value.

In Table 5.7, we compare the classification accuracy by using the complete recording for each finger
and taking an average value for each finger.

Table 5.7: Comparison of classification accuracy: complete recording vs. average value per finger.

From Table 5.7, we conclude that taking the average value from the complete recording
is approximately the same as considering the complete recording. Indeed for the major-
ity of the recordings, the value of the capacitance is consistent, therefore no additional
information exists in the complete recording.
The readings were meticulously treated one by one to remove the noisy parts.

• In this part, we compare the classification accuracy of different features added to the capacitance data,
including finger type, gender, weight, and BMI. In this analysis, we consider the weight and BMI con-
stant values for each subject to ensure that the results are based on capacitance and not weight changes.

Table 5.8 presents the classification accuracies for different combinations of features.

Table 5.8: classification accuracy with different feature combinations added to capacitance data.
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From the results in Table 5.8, we can observe that adding the finger type does not enhance the results.
Using weight as a feature yields better results than using BMI. Adding the gender feature slightly
enhances the results.

Among all the different configurations, the highest classification accuracy of 75% is
achieved when capacitance is combined with either the weight and gender of each subject,
weight only, or the type of finger, gender, and BMI.

5.4 Final configuration

From the exploration of different data structures and additional features in both fasting subjects and
sportspeople, we found that considering one hand as a sample and adding the weight and subject’s
gender yield the best classification accuracy.

Table 5.9 presents the classification results using this final setup.

Table 5.9: Classification results using final setup: one hand as a sample with weight and gender
features.

Considering the final chosen setup, the classification results can be considered promis-
ing. The capacitance value, along with the additional features, proves to be a reliable
indicator of hydration levels, achieving 72% accuracy for multi-class and 87% for binary
classification in the Ramadan dataset, and 92% for binary classification in sportspeople.
In both datasets, the classifier that performs best is linear LR.

Loss value

To compute the loss, we use sparse categorical cross-entropy, suitable for multi-class tasks where labels
are provided as integers. Sparse categorical cross-entropy saves memory space by considering only the
non-zero elements of the true labels. The formula to compute the loss is as follows:

L = − 1

N

N∑
i=1

log(pi,true)

-N is the number of samples in the test set.
-pi,true is the predicted probability of the true class for sample i.

For the linear LR model (multi-class), the computed loss is :

• L= 1.6 for Ramadan dataset.

• L= 0.44 for sportspeople.

To judge whether the loss values are low or not, it is important to compare it with other values. For
our problems, there are no conventional benchmarks to compare this computed loss with. However,
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given the high accuracy of classification, it suggests that these loss values may indicate good results.
To further assess the significance of this value, we compare it in Table 5.10 with loss values for other
configurations trained on the same LR model and exhibits lower accuracy.

Table 5.10: Comparison of loss values for different configurations for linear LR model.

(1) using one hand’s recording as a single sample,
(2) removing the thumb finger from the recording,
(3) treating each finger’s data as an individual sample, and
(4) treating each finger’s data as a sample without the thumb fingers.

As we can see in the table, the lowest loss achieved in both the Ramadan and Sportsman datasets is
indeed for the final setup, which achieves a high classification accuracy.

Confusion matrix:

Table 5.11 shows the confusion matrix for the 5-class classification among fasting subjects.

Table 5.11: Confusion matrix for 5-class classification among fasting subjects.

For reference, the number of samples from each class in the test set is as follows: class 1 (30 samples),
class 2 (21 samples), class 3 (31 samples), class 4 (30 samples), and class 5 (28 samples). The test set
is unbalanced because the samples were chosen randomly from the dataset.

From the confusion matrix, we can observe that for each class, the majority of samples (more than
60%) are correctly predicted. For the incorrect predictions, class 1 was mostly confused with classes 2
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and 5, representing states where subjects were more hydrated than in classes 3 and 4. Classes 2 and
3 were often confused with each other, as they represent successive levels of hydration. Class 4 was
mainly confused with class 3, as both are considered dehydrated states. Samples from class 5 were
mostly confused with samples from classes 1 and 2 since in session 5, subjects regained some hydration
after Iftar.

Table 5.12 represents the confusion matrix for binary classification, where samples labeled 1, 2, and 5
are considered hydrated (class 1), and samples labeled 3 and 4 are considered dehydrated (class 2).

Table 5.12: Confusion matrix for binary classification among fasting subjects.

The confusion matrix illustrates that the model consistently predicts the hydrated class accurately,
whereas it faces challenges in accurately classifying the dehydrated class, often misclassifying it as
hydrated. This suggests that class 1 has unique features or characteristics that distinguish it from
class 2. However, the model encounters difficulty in predicting some samples from class 2 due to
similarities or overlaps in features with samples from class 1.

Table 5.13 shows the confusion matrix for sportspeople, where measurements from session 1 are con-
sidered hydrated and from session 2 dehydrated.

Table 5.13: Confusion matrix for hydration state classification among sportspeople.

For reference, the number of samples from each class in the test set is as follows: class 1 (12 samples)
and class 2 (12 samples).

Similarly to the findings in fasting subjects, the confusion matrix illustrates that the model consis-
tently predicts the hydrated class accurately. In contrast, it faces challenges in accurately classifying
the dehydrated class. This suggests that class 1 has unique features or characteristics that distinguish
it from class 2. However, the model encounters difficulty in predicting some samples from class 2 due
to similarities or overlaps in features with samples from class 1.

Cross-population tests

In this part, we attempt to reverse the test sets from both datasets (Ramadan and sportspeople) to
evaluate how well the LR models generalize to different populations.

62



Table 5.14 illustrates the classification accuracy of models trained on sportspeople subjects and tested
on fasting subjects, and vice versa.

Table 5.14: Classification accuracy of generalization across Ramadan and sportspeople datasets.

We can observe that reversing the test set in these two datasets does not yield good results. The
model trained on fasting subjects achieves only 41% accuracy when tested on sportspeople, and the
model trained on sportspeople achieves 52% accuracy in classifying fasting subjects.
This aligns with the exploratory data analysis, where we noticed a contradiction between the trend in
fasting subjects and sportspeople. We observed that capacitance was decreasing with reduced hydra-
tion levels in fasting subjects; however, it was increasing in sportspeople.

Computational requirements

For the linear LR model, Table 5.15 presents the memory requirements and the response time needed
to estimate one sample.

Number of parameters = weights + bias = nk + k

n number of features of a single sample.
k number of classes.
Each parameter is a float 64 (8 bytes).

n k Number of pa-
rameters

Memory space
(MB)

Response time
(s)

Fasting subjetcs 3286 5 16435 0.125351 0.100732
Sportspeople 1021 2 2044 0.015579 0.024064

Table 5.15: Memory Requirements and Response Time for LR Models.

• The memory space required for the LR model depends on the number of features and classes within
the dataset. The Ramadan dataset has more classes and features, making the model larger than the
Sportspeople dataset, which is binary.

• The number of features is larger in the Ramadan dataset because the subjects left their fingers on the
sensor for approximately 10 seconds, leading to longer recording, unlike the sportspeople, who left it
for about 5 seconds due to time constraints.

• The time to estimate one sample is 5 times shorter with the sportspeople dataset because the model
is less complex.
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5.5 Trends explanation

After visualizing the recording of the capacitance value in fasting subjects, we notice a decreasing
trend from session 1 to session 4, with a slight increase in session 5. This indicates that capacitance
is proportional to hydration states; the more moisture the body contains, the higher the capacitance.
However, we observe the opposite trend in sportspeople, where capacitance increases as subjects be-
come dehydrated. We confirm this opposition by switching the test set in the linear regression models,
which resulted in poor results.

In fact, dehydration due to fasting and exercising differs. While subjects fast with regular body activ-
ity, internal organs such as the kidneys retain water after detecting dehydration. The more dehydrated
the body becomes, the more water is retained in internal organs, leading to symptoms such as dry
skin and increased thirst, Therefore, the body, and especially the skin, store less charges.

In sportspeople, during exercise, the body sweats profusely to regulate temperature. Sweat, produced
by eccrine glands, as explained in Chapter 1, contains water and electrolytes. These glands release
sweat onto the skin to cool the body and continue to do so even after the exercises until the body
temperature is regulated, meaning that even after we clean the subjects’ fingers to take measurements
right after the training, sweat glands in the skin still retain water, leading to store more charges when
the fingers are atop the sensor.

We noted in a remark in this chapter’s section 1 that the trend in fasting subjects was not present
among all the subjects. Indeed, if we consider the effect of sweat that causes an increase in capaci-
tance, fasting subjects probably also experienced sweating. Some subjects came to take measurements
after running or staying outside in hot weather, which means that abnormalities in the trend can be
due to sweat, causing rises in capacitance instead of the consistent decrease while getting dehydrated.

5.6 Conclusion

In conclusion, capacitance measurements using the FDC2114 module show promise as a tool to assess
hydration states. Achieving high classification accuracies demonstrates the potential of this technique.
Moreover, incorporating information about gender and weight contributed to improving the results.
This is because, in general, males tend to have larger finger sizes than females, and finger size can also
vary depending on a person’s weight. These additional features helped the models mitigate inter-finger
variability, as capacitance is also related to the contact area of the fingers with the plates.
We have also identified a contradiction between the trends observed in fasting subjects and sportspeo-
ple. This disparity is attributed to sweating, which results in the retention of water in sweat glands
present on the skin surface. These glands, filled with water and electrolytes, store more charges,
leading to higher capacitance values.
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Classifier Characteristics Classifier Characteristics

SVM
• Regularization Parameter: 1.0
• Kernel Function: RBF kernel
• Degree of the Polynomial Kernel Func-

tion: 3
• Independent Term in Kernel Function:

0.0
• shrinking: True
• probability: False
• Tolerance: 1e-3
• Verbose Output: False
• Maximum Number of Iterations: none
• Decision Function Shape: One-Vs-Rest
• Shuffling Data: random-state

Decision
tree (DT)

• Criterion: Gini impurity
• Splitter: Best split strategy
• Max Depth: none
• Min Samples Split: 2
• Min Samples Leaf: 1
• Min Weight Fraction Leaf: 0.0
• Max Features: none
• Shuffling Data: random-state
• Max Leaf Nodes: none
• Min Impurity Decrease: none
• Min Impurity Split: 0
• Verbose: 0

RF
• Number of Estimators: 100 or 3
• Criterion: Gini impurity
• Splitter: Best split strategy
• Maximum Depth: none
• Minimum Samples Split: 2
• Minimum Samples Leaf: 1
• Minimum Weight Fraction Leaf: 0.0
• Maximum Features: none
• Maximum Leaf Nodes: none
• Minimum Impurity Decrease: 0.0
• Minimum Impurity Split: none
• Bootstrap: True
• Out-of-Bag Score: False
• Shuffling Data: random-state
• Verbose: 0
• Warm Start: False
• Cost-Complexity Pruning Alpha: 0.0

LR
• Solver: Limited memory Broyden

Fletcher Goldfarb Shanno
• Maximum Number of Iterations: none
• Dual Formulation: False
• Tolerance: 1e-3
• Warm Start: False
• the degree of polynomial features:1 or 4
• Shuffling Data: random-state
• Verbose: 0

KNN
• The number of nearest neighbors: 5
• Distance Metric: Euclidean distance
• Weights: Uniform weights

Table 5.16: Parameter Settings for the Classifiers.
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Chapter 6

Data Augmentation and Neural
Network Models

6.1 Introduction

Data augmentation serves as a virtual means to expand datasets, allowing for more samples derived
from a few originally gathered ones. It not only reduces the effort required to collect more data but
also tests the resilience of datasets against external factors such as noise, shifts, and other variations.
Data augmentation is particularly crucial when dealing with small datasets, as both deep learning and
even simple neural networks demand a considerable amount of data to train effectively.
In this chapter, we aim to apply data augmentation techniques to our datasets and evaluate the
performance of classifiers. Additionally, we explore using augmented data in training neural network
models.

6.2 Data augmentation

6.2.1 Data augmentation techniques

For the data augmentation process, we investigate three types of augmentation techniques that are
suitable for our data:

• Gaussian Noise: noise level = 0.01, mean = 0
Real-world capacitance measurements are often subjected to random noise due to electronic fluctua-
tions or environmental interferences. By adding Gaussian noise, we simulate these realistic variations,
helping the model become more robust to such fluctuations during inference.
Figure 6.1 represents a random sample (1 hand recording) before and after applying Gaussian noise.

Figure 6.1: A random recording before and after adding Gaussian noise.
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• Random Scaling: factor ranging from 0.9 to 1.1.
Scaling the data simulates changes in the sensitivity of the measurement system or variations in the
scale of recording due to different operating conditions. This helps the model to become invariant to
different scaling factors.
Figure 6.2 represents a random sample (1 hand recording) before and after applying random scaling.

Figure 6.2: A random recording before and after scaling (scaling factor=1.1).

• Random Shifting: shift value ranging from -0.1 to 0.1.
Shifts in the data can represent baseline drifts or offsets that may occur due to calibration errors or
changes in the reference levels. Training the model with shifted data helps it learn to identify and
estimate accurately even with shifts’ presence.
Figure 6.3 represents a random sample (1 hand recording) before and after applying random shifting.

Figure 6.3: A random recording before and after shifting (shifting value=0.1).
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After augmentation, we obtain six augmented datasets: three for fasting subjects and three for sports-
people. Each population has a dataset augmented with additional Gaussian noise, random shift, and
random scaling. The size of each augmented dataset is double the original dataset size, as it includes
both the original samples and the augmented samples.
The augmented Ramadan datasets contain 1400 samples each (700 original samples plus 700 aug-
mented samples), while the augmented sportspeople datasets contain 240 samples each (120 original
samples plus 120 augmented samples).
These augmentation techniques are applied to the datasets with the final setup chosen in the previous
chapter.

6.2.2 Classification performance with data augmentation

We apply classifiers to this newly augmented data to evaluate its performance.

Tables 6.1 and 6.2 present the results for the new augmented data. (1) represents the original Ra-
madan dataset with no augmentation, (2) represents the dataset augmented with Gaussian noise,
(3) represents the dataset augmented with a random scaling factor, and (4) represents the dataset
augmented with random shift values.

Table 6.1: Results of data augmentation techniques on the Ramadan dataset.

Table 6.2: Results of data augmentation techniques on the sportspeople dataset.

We observe an improvement in classifier performance across both datasets following data augmenta-
tion. This enhancement underscores the value of data augmentation in expanding datasets, thereby
aiding in better generalization. Moreover, each type of data augmentation reflects specific qualities
inherent in the datasets.

• Gaussian noise augmentation enhances resilience to noise, indicating rich and discernible patterns
within the data.

• Shifting augmentation demonstrates the diversity and well-distributed features, facilitating effective
generalization across various spatial arrangements.
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• Scaling augmentation highlights consistent magnitude characteristics, enabling seamless adaptation
to varying scales.

Overall, these results demonstrate the effectiveness of data augmentation in enhancing dataset quality
and improving classifier performance. They indicate the robustness and adaptability of the involved
datasets, making them well-suited for real-world applications.

Remark

Achieving 100% accuracy is not always a reliable indicator of a model’s performance; it can often
signal overfitting, where the model memorizes the data but fails to generalize well to unseen real-
world data. This problem is evident in the sportspeople dataset since the original dataset comprises
only 120 samples. Even after augmentation, increasing the dataset to 240 samples, the number remains
relatively small. To mitigate this issue, it is essential to gather more real-world data to expand the
dataset and train the model on a more diverse set of examples, ensuring its suitability for real-world
applications.

6.3 Neural Network models

6.3.1 Ramadan dataset

For each augmented dataset, we trained neural networks intending to achieve high classification ac-
curacy while minimizing noise and avoiding overfitting. To accomplish this, we explore several neural
network architectures and iteratively tuned parameters and hyperparameters to optimize performance.
Table 6.4 outlines the architecture of each neural network.

Table 6.3 provides the final classification accuracy and loss values for the training, validation, and test
sets across the three augmented datasets.

Set Train Validation Test
Accuracy
%

loss Accuracy
%

loss Accuracy
%

loss

(1) 90.48 1.12 92.86 1.09 92.14 1.07
(2) 91.87 0.49 94.05 0.51 95.71 0.45
(3) 93.95 0.45 92.06 0.53 94.28 0.5

Table 6.3: Final classification accuracy and loss values across augmented datasets.

(1) dataset augmented with Gaussian noise, (2) dataset augmented with a random scaling factor, and
(3) dataset augmented with random shift values.

Figures 6.4, 6.5, and 6.6 depict the variation in train and validation accuracy and loss throughout the
training process for datasets augmented with Gaussian noise, random scaling, and random shifting,
respectively.

Discussion

• From the three datasets, the one augmented with Gaussian noise required a more complex model to
achieve good results. This is logical since shifting or scaling are simple modifications that do not
significantly alter the main features in the dataset compared to Gaussian noise.

• Similarly, regarding the number of epochs, the dataset augmented with Gaussian noise required up to
1150 epochs to achieve approximately the same results as the other two datasets, which only required
300 epochs. This discrepancy reflects the complexity introduced by the Gaussian noise augmentation.

• While the neural network models presented show no evidence of overfitting and demonstrate the
ability to generalize to the test set, it is worth noting that the validation and training accuracy and
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Figure 6.4: Train and validation accuracy and loss for dataset augmented with Gaussian noise.

Figure 6.5: Train and validation accuracy and loss for dataset augmented with random scaling.

Figure 6.6: Train and validation accuracy and loss for dataset augmented with random shifting.

loss values are closely aligned in the graphs. This suggests that there remains a risk of overfitting,
given the proximity of these metrics.

• The fluctuations in the accuracy plots are attributed to the dataset size, where even small changes
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can have a noticeable impact on the model’s performance. With larger datasets, these fluctuations
tend to be smoothed out due to the increased volume and diversity of data, resulting in a more stable
and reliable performance assessment.

• The loss values are relatively low compared to those achieved previously with the linear LR model
(L=1.6), and indeed, the classification accuracies are higher.

• The loss values for models trained on data augmented with Gaussian noise are higher than the loss
values for models trained on data augmented with shifts and scaling. This difference is attributable to
the type of augmentation applied. Gaussian noise, contrary to shifting and scaling, introduces random
variations to the data, which can make the learning process more challenging for the model, resulting
in higher loss values.

• From Table 6.3, we observe that for data augmented with Gaussian noise, the loss for training is
higher compared to validation and test sets. This discrepancy is a positive sign of avoiding overfitting,
although it remains close to risking overfitting. On the other hand, for the dataset augmented with
shifts and scaling, the loss for training is lower, which is a clear indicator of overfitting.

Remark

The presented models do not exhibit clear signs of overfitting, but there remains a potential risk.
Avoiding overfitting proved challenging across those datasets, requiring extensive testing and hyper-
parameter tuning due to the dataset’s size and nature. This underscores the suitability of classic
classifiers (SVM, KNN, DT, RF, LR), which have yielded accurate results in previous analyses.

6.3.2 Sportspeople dataset

Due to the limited amount of data in the sportspeople dataset, applying neural networks was not
feasible. Indeed, when using classifiers, the accuracy reached 100%, indicating overfitting. Therefore,
even with simple neural network models consisting of 1 or 2 hidden layers with a maximum of 8
neurons, the model exhibits overfitting within the first 5 epochs. This suggests that the dataset is
insufficient to train neural networks effectively. For this dataset, using classifiers is more appropriate
and sufficient.

6.4 Conclusion

This chapter highlights the pivotal role of data augmentation in showcasing the robustness of our
dataset against various factors, including Gaussian noise and random shifts, underscoring the potential
of our proposed technique to excel in real-world scenarios characterized by imperfect data. Our analysis
leads us to the conclusion that classifiers such as SVM, LR, DT, RF, and KNN are better suited to
our dataset than neural networks due to the dataset’s size and the type of its features. To explore
neural networks further, augmenting the dataset by gathering additional data is recommended. This
expansion would enrich the dataset, enabling more effective utilization of neural network architectures.
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model 1 model 2 model 3

• Optimizer:

– Adam with a learning rate
of 0.00001

• Regularization:

– L2 regularization (0.02) on
the second dense layer

• Number of Layers and Neu-
rons:

– Input Layer: Implicit, based
on the input shape of the
data

– First Dense Layer: 100 neu-
rons, ReLU activation

– Dropout Layer: 0.2 dropout
rate

– Second Dense Layer: 50
neurons, ReLU activation,
L2 regularization

– Dropout Layer: 0.2 dropout
rate

– Output Layer: 5 neurons,
Softmax activation

• Callbacks:

– Reduce LR: Monitors the
validation loss, reduces the
learning rate by a factor of
0.02 if the validation loss
does not improve for 10
epochs, with a minimum
learning rate of 0.00001

• Training Parameters:

– Number of Epochs: 1150

– Batch Size: 100

• Number of parameters:
333905

• Memory space required for
the model: 1.27 MB

• Response time: 0.21667 s

• Optimizer:

– Adam with a learning rate
of 0.0001

• Regularization:

– L2 regularization (0.3) on
the second dense layer

• Number of Layers and Neu-
rons:

– Input Layer: Implicit, based
on the input shape of the
data

– First Dense Layer: 50 neu-
rons, ReLU activation

– Dropout Layer: 0.2 dropout
rate

– Second Dense Layer: 25
neurons, ReLU activation,
L2 regularization

– Dropout Layer: 0.2 dropout
rate

– Output Layer: 5 neurons,
Softmax activation

• Callbacks:

– Reduce LR: Monitors the
validation loss and reduces
the learning rate by a fac-
tor of 0.02 if the validation
loss does not improve for
ten epochs, with a minimum
learning rate of 0.000001

• Training Parameters:

– Number of Epochs: 300

– Batch Size: 50

• Number of parameters:
165705

• Memory space required for
the model: 0.63 MB

• Response time: 0.15990 s

• Optimizer:

– Adam with a learning rate
of 0.0001

• Regularization:

– L2 regularization (0.3) on
the second dense layer

• Number of Layers and Neu-
rons:

– Input Layer: Implicit, based
on the input shape of the
data

– First Dense Layer: 50 neu-
rons, ReLU activation

– Dropout Layer: 0.2 dropout
rate

– Second Dense Layer: 25
neurons, ReLU activation,
L2 regularization

– Dropout Layer: 0.2 dropout
rate

– Output Layer: 5 neurons,
Softmax activation

• Callbacks:

– Reduce LR: Monitors the
validation loss and reduces
the learning rate by a fac-
tor of 0.02 if the validation
loss does not improve for
ten epochs, with a minimum
learning rate of 0.000001

• Training Parameters:

– Number of Epochs: 300

– Batch Size: 50

• Number of parameters:
165705

• Memory space required for
the model: 0.63 MB

• Response time: 0.15990 s

Type: Sequential Feedforward neural network, Loss Function: sparse categorical crossentropy, Valida-
tion Split: 0.2. Test split: 0.1

Table 6.4: Characteristics of neural network models trained on augmented data.

Model 1 trained on data augmented with Gaussian noise, Model 2 trained on data augmented with random

scaling, and Model 3 trained on data augmented with random shifting
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Chapter 7

General Conclusion

In conclusion, capacitive sensing has demonstrated strong potential in differentiating between hydrated
and dehydrated subjects. As hypothesized in Chapter 3, The dielectric properties of the body, which
vary with hydration levels, were effectively characterized by the capacitance sensor. This suggests
promising prospects for applying capacitive sensing in hydration monitoring and assessment.

The utilization of complete hand recordings of capacitance, along with additional features such
as weight and gender, has played a crucial role in enhancing performance by reducing inter-finger
variability.

Regarding the choice of classification models, we find that traditional classifiers such as SVM, DT,
RF, KNN, and LR outperform neural networks, given the dataset size and the nature of the data.

Ultimately, our study demonstrates that Linear Logistic Regression yields the best performance
metrics, achieving an accuracy of 72% for the 5-class classification 87% for binary classification for
fasting subjects, and 92% binary classification for sportspeople.

It is important to note that we have identified clear differences in hydration patterns between
fasting subjects and sportspeople. A model trained on one type of dehydration does not effectively
generalize to the other.

It is essential to address the sweat effect for future work and perspectives, as it can potentially
confound the readings. The increased capacitance observed may not necessarily indicate good hydra-
tion but may be attributed to sweat, thus leading to inaccurate assessments. Efforts to mitigate this
effect and refine the methodology are crucial for developing more reliable hydration monitoring tools.

In summary, our exploration underscores the potential of capacitive sensing for hydration mon-
itoring. By discerning nuanced hydration patterns and leveraging appropriate data preprocessing
techniques and classification models, we pave the way for advancing the field of non-invasive hydra-
tion monitoring.
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Appendix

1. SVM:
A Support Vector Machine is a supervised machine learning algorithm that can be used for
classification or regression tasks. It works by finding the hyperplane that best separates the
classes in the feature space. The best hyperplane is the one that maximizes the margin between
the classes, meaning the distance between the hyperplane and the nearest data point from either
class (known as the support vectors) is maximized.[145]

2. DT:
A Decision Tree is a supervised learning algorithm used for both classification and regression
tasks. It splits the data into subsets based on the value of input features. This process is
repeated recursively, forming a tree structure with decision nodes (where the data is split based
on a feature) and leaf nodes (which represent the output or class label). The goal is to create a
model that predicts the value of a target variable by learning simple decision rules inferred from
the data features.[146]

3. RF:
Random Forest is an ensemble learning method used for classification, regression, and other tasks.
It operates by constructing multiple decision trees during training and outputting the class that
is the mode of the classes (classification) or mean prediction (regression) of the individual trees.
The key idea is to reduce the risk of overfitting and improve generalization by averaging multiple
decision trees.[147]

4. KNN: K-Nearest Neighbors (KNN) is a simple, non-parametric, and lazy learning algorithm
used for classification and regression tasks. In classification, the output is a class membership.
An object is classified by a majority vote of its neighbors, with the object being assigned to the
class most common among its k nearest neighbors. The value of k is a positive integer, typically
small. In regression, the output is the average of the values of its k nearest neighbors.[148]

5. LR:
Logistic Regression is a statistical model used for binary classification tasks. It models the
probability that a given input belongs to a particular class using a logistic function. The output
is a probability between 0 and 1, which can be thresholded to make a binary decision. Logistic
regression is based on the logistic function, which maps any real-valued number into the (0, 1)
interval, making it useful for predicting probabilities.[149]
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