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Résumé

Cette étude explore l’utilisation de méthodes d’apprentissage profond, notamment les réseaux
de neurones convolutifs profonds (Deep CNN) et les réseaux adversatifs génératifs cycliques
(Cycle GAN), pour purifier les signaux neurophysiologiques EEG et PPG des artefacts indé-
sirables. Les EEG sont souvent contaminés par des artefacts EOG et EMG, tandis que les
PPG souffrent d’artefacts de mouvement et de dérives de la ligne de base. Nos modèles ont
montré une amélioration significative de la qualité des signaux par rapport aux techniques tra-
ditionnelles, soulignant le potentiel des architectures d’apprentissage profond pour améliorer le
traitement des signaux neurophysiologiques et les applications biomédicales.

Mots clés : électroencéphalogramme, photopléthysmographie, réseaux neuronaux convolutifs
profonds, apprentissage profond, réseaux adverses génératifs cycliques, traitement d’images,
traitement de signaux.

Abstract

This study explores the use of deep learning methods, particularly Deep Convolutional Neural
Networks (Deep CNN) and Cycle Generative Adversarial Networks (Cycle GAN), to purify
neurophysiological signals such as EEG and PPG from unwanted artifacts. EEG signals are
often contaminated by EOG and EMG artifacts, while PPG signals suffer from motion artifacts
and baseline drifts. Our models have shown a significant improvement in signal quality compared
to traditional techniques, highlighting the potential of deep learning architectures to enhance
the processing of neurophysiological signals and biomedical applications.

Keywords : electroencephalogram, photoplethysmogram, deep convolutional neural networks,
deep learning, cycle generative adversarial networks, image processing, signal processing.
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General Introduction

In waves and pulses, life reveals its silent story, Through EEG’s sparks and PPG’s glowing glory.
Electrodes whisper brainwaves’ quiet might, While light and blood dance in PPG’s soft light. A

symphony of signals, a cadence of care, In biomedical fields, their truths lay bare. Unveiling secrets of
the mind and heart, From neural paths to each beat’s start. In the silent dialogue of pulse and brain,

Life’s hidden rhythms softly explain.

Electroencephalography (EEG) and Photoplethysmography (PPG) are pivotal non-invasive techniques
in the biomedical field, used extensively for monitoring and diagnosing various physiological conditions.
EEG captures the electrical activity of the brain through electrodes placed on the scalp, while PPG
measures blood volume changes at the skin’s surface using a light source and a photodetector. Despite
their invaluable contributions to medical diagnostics and research, both EEG and PPG signals are
susceptible to various artifacts that can significantly contaminate the recordings, complicating the
analysis and interpretation of these signals.

Artifacts in EEG and PPG signals can originate from a variety of sources, including physiological
activities (e.g., muscle movements, eye blinks, and heartbeats), environmental interferences (e.g., elec-
tromagnetic noise), and technical issues (e.g., electrode displacement). These artifacts can obscure
the true physiological signals, leading to erroneous conclusions and misdiagnoses if not adequately
addressed. For example, muscle artifacts in EEG can mimic or mask epileptic activity, while motion
artifacts in PPG can distort heart rate and blood oxygen measurements.

Numerous studies have focused on the purification of EEG and PPG signals from these artifacts,
employing various signal processing and machine learning techniques. Some notable works include
the use of Independent Component Analysis (ICA) and Empirical Mode Decomposition (EMD) for
EEG artifact removal, and adaptive filtering methods for PPG signal enhancement. However, recent
advancements in deep learning have opened new avenues for more robust and accurate artifact removal.

This project aims to explore the use of Deep Convolutional Neural Networks (Deep CNN) and Cycle-
Consistent Generative Adversarial Networks (CycleGAN) for the removal of artifacts from EEG and
PPG signals. Our methodology leverages the powerful feature extraction capabilities of Deep CNNs
and the strengths of CycleGAN to enhance the quality of these neurophysiological signals.

Main Contribution

This project makes several significant contributions to the field of biomedical signal processing, par-
ticularly in the removal of artifacts from EEG signals. The main added value of this research lies in
the innovative use of Cycle-Consistent Generative Adversarial Networks (CycleGANs) to remove Elec-
trooculogram (EOG) and Electromyogram (EMG) artifacts from EEG signals—a novel application
that has not been explored before. The contribution relies on several key points :

- Transforming Artifact signals (EOG and EMG) to 2D representation.
- Preparing the proper CycleGAN dataset format.
- Evaluation for the performance.
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- Discussion about future work.

Organization of the Dissertation

The structure of this project report is as follows :

- Chapter 1 : General Background on EEG and PPG Signals This chapter provides a comprehensive
overview of EEG and PPG signals, detailing their physiological basis, common applications, and the
types of artifacts that commonly affect these signals.

- Chapter 2 : State of the Art in Artifact Removal for Neurophysiological Signals This chapter
reviews the current state of research in artifact removal, highlighting significant contributions and
methodologies from recent literature. It includes a discussion of both traditional signal processing
techniques and modern deep learning approaches.

- Chapter 3 : Our Methodology outlines the proposed methodology for artifact removal. It explains
the design and implementation of Deep CNNs and CycleGAN for EEG, and CycleGAN for PPG.
Detailed descriptions of the network architectures, training processes, and evaluation metrics are
provided.

- Chapter 4 : This Chapter presents the experimental results obtained from applying the proposed
methods to real-world EEG and PPG datasets. It includes quantitative and qualitative assessments
of the artifact removal performance, comparisons with existing methods, and discussions on the im-
plications of the findings.

By addressing the challenges posed by artifacts in EEG and PPG signals, this project aims to contri-
bute to the enhancement of signal quality and reliability, thereby improving the accuracy of neuro-
physiological assessments and diagnoses.

Finally, we end this project with a general conclusion and future perspectives.
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Chapitre 1

Artifacts in EEG and PPG signals

1.1 Introduction

Neurophysiological signals are critical in understanding and diagnosing various neurological and car-
diovascular conditions. However, these signals are often contaminated by artifacts. This is particularly
true for EEG and PPG, which have garnered significant interest from the research community due to
the valuable information that can be extracted from them.

Both EEG and PPG signals are prone to artifacts that can arise from numerous sources, including
muscle activity, eye movements, electrical interference, and poor sensor contact. These artifacts can
lead to potential misinterpretations and incorrect diagnoses.

This section will delve into EEG and PPG signals, examine the specific challenges posed by various
artifacts in their recordings, and discuss the techniques employed to minimize these artifacts and
ensure reliable data acquisition.

1.2 Electroencephalography (EEG)

1.2.1 What is EEG ?

EEG is a technique used to monitor the electrical activity of the human brain over time. It plays
a crucial role in studying brain functions and identifying neurological disorders. EEG recordings are
invaluable for diagnosing conditions like epilepsy, brain tumors, head injuries, and dementia, as well
as for managing behavioral issues such as autism and attention disorders. Hans Berger, a neuropsy-
chiatrist from the University of Jena in Germany, introduced the first EEG recording machine in 1929,
marking the beginning of neurophysiology as a distinct medical field.

In an EEG test, electrodes—small disks—are positioned at various points on the scalp using temporary
adhesives. These electrodes are then linked in pairs to an amplifier and an EEG recording device, which
translates the electrical signals into visible wavy lines.

Figure 1.1 showcases the placement of electrodes on the scalp for EEG signal recording, with the
resulting signals displayed on a computer screen. These electrodes capture minute electrical charges
generated by brain cell activity, which are then amplified and visualized on a graph.

There are two main types of EEGs, distinguished by where the signal is captured within the head :
- Scalp EEG : This involves placing small electrodes directly on the scalp, ensuring good me-
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Figure 1.1 – An illustration of EEG recording, [3]

chanical and electrical contact.
- Intracranial EEG : In this method, special electrodes are surgically implanted into the brain.

The amplitude of an EEG signal typically falls within the range of 1 to 100 µV in a normal adult.
However, when measured with subdural needle electrodes, it can be approximately 10 to 20 mV. Due
to the nonuniform architecture of the brain and its functional organization, the EEG readings can
vary depending on the specific location of the recording electrodes.

1.2.2 Electrodes placement

The positioning of electrodes is crucial because different lobes of the cerebral cortex are responsible
for various types of activities. To address this, the international 10-20 electrode system is commonly
used for localizing scalp electrodes.

In this system, the 10 and 20 denote the actual distances between adjacent electrodes, which are either
10% or 20% of the total front-back or right-left distance of the skull. The positions are determined by
two key points :

- nasion : the midpoint between the forehead and the nose.
- inon : which is the bony prominence at the base skull on the midline at the back of the head.

Figure 1.2 – An illustration of the international 10–20 electrode placement system. [44]
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Figure 1.3 – Division of each lobe in the brain hemisphere [44]

Brain region/Cerebral lobe Channel letter
Frontal F
Parietal P
Occipital O
Temporal T
Central C

Front Polar Fp
Auricular A

Each location uses a letter to identify the brain lobes and regions as presented in Fig. 1.3 A number
accompanies the letter in order to identify the hemisphere location. Odd numbers are used to refer
to the electrodes positioned on the left hemisphere while the even numbers are for those on the right
hemisphere. Instead of a number associated with the lobe letter, a “z” refers to an electrode placed
on the midline.

Since an EEG signal measures the voltage difference between two electrodes, the EEG display on the
reading machine can be configured in various arrangements. The arrangement of electrodes is called
a montage.

1.2.3 Common EEG montages

Several EEG montages are available, each based on how the potential difference between two electrodes
is calculated and displayed on the device. Among these montages, we include :

1.2.3.1 Referential montage

Every channel denotes the difference between a specific electrode and a chosen reference electrode.
The reference electrode’s position isn’t standardized (in Fig.1.4, we use electrode A2 as the reference).
Midline positions are commonly utilized as they don’t amplify the signal in one hemisphere versus the
other.

Another common reference is "linked ears," which involves either a physical or mathematical averaging
of electrodes attached to both earlobes and mastoids.
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Figure 1.4 – An illustration for the referential montage [24]

1.2.3.2 Bipolar montage

A single channel is formed by a pair of electrodes, and each channel (or waveform) illustrates the
voltage difference between two adjacent electrodes. The entire montage comprises a sequence of these
channels. In Fig. 1.8, a diagram of a bipolar montage is depicted, where the channel Fp1-F3 represents
the voltage difference between the Fp1 electrode and the F3 electrode. The subsequent channel in
the montage, F3-C3, illustrates the voltage difference between F3 and C3, and so forth, across all
electrodes.

Figure 1.5 – An illustration for the bipolar montage [24]

1.2.3.3 Average reference montage

A different kind of montage which takes the signals from all the amplifiers and combines and amplifies
them, resulting in a signal that serves as the common reference for each channel. see Fig.1.6

Figure 1.6 – An illustration for the average referential montage [24]
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1.2.4 Brain Waves

Neural signals discharge rhythmically and spontaneously, highlighting their inherent spontaneity,
which has opened up new avenues in EEG research. Among EEG features, the rhythmicity of sponta-
neous EEG is paramount, indicating its frequency diversity, alongside spatial characteristics. Currently,
EEG can be categorized based on rhythm frequency into various types [10] :

1.2.4.1 Delta Waves

It includes both the delta 1 rhythm (1-2Hz) and the delta 2 rhythm (2-4Hz), categorized as non-
major rhythms primarily observed during deep sleep, anesthesia, or in the presence of organic brain
lesions. The amplitude typically ranges from 20 to 200 µV.

1.2.4.2 Theta Waves

The frequency within the range of (4 -8 Hz), known as the theta rhythm, is observed bilaterally in
the parietal and temporal lobes of younger individuals’ brains. It manifests during states of drowsiness
or when the central nervous system experiences inhibition.

1.2.4.3 Alpha Waves

The frequency range is between (8 - 12 Hz). The alpha rhythm stands out as the most crucial aspect
of the EEG signal, with its primary frequency typically around 10 Hz. It is prominently observed in
the occipital region of the human brain (refer to Fig. 1.3). The amplitude of alpha waves typically
falls between 20 and 100 µV. The alpha rhythm predominantly reflects cognitive processing in the
human body and is readily detectable, making it a focal point in EEG research.

1.2.4.4 Beta Waves

The frequency range falls between (13 - 30 Hz), with an amplitude range of 5 to 20 µV. This
rhythm, often termed "fast" due to its higher frequency, is most prominent in the frontal and temporal
lobes. It emerges in the brain during states of excitement.

1.2.4.5 Gamma Waves

Gamma waves are rapid oscillations exceeding 30 Hz, typically observed during conscious perception.
However, their small amplitude and susceptibility to contamination by muscle artifacts have led
to them being underestimated and less widely studied compared to slower brain waves. High gamma
activity in temporal regions is linked to memory processes, attention, working memory, and long-term
cognitive functions. Moreover, it is implicated in psychiatric conditions like schizophrenia, Alzheimer’s
disease, and epilepsy.

Despite its significance, exploiting gamma frequency sub-bands using scalp EEG is challenging, and
it is often excluded from EEG research unless invasive electrodes are utilized.
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Figure 1.7 – Brain waves based on different frequency bands [38]

1.2.5 EEG artifacts

While the acquisition of EEG signals are often contaminated with several artifacts, which is going to
make the interpretation and the analysis of the EEG signals to extract useful informations unfeasible.
the following is a presentation for the different kinds of artifacts that occur while recording EEG
signals.

1.2.5.1 Electromyogram (EMG)

Electromyogram (EMG) assesses the muscle’s reaction or electrical activity when stimulated by a
nerve. It is often used to diagnose neuromuscular disorders and to assess muscle function. Recording
EEG is often obscured by EMG and complicate their analysis. [21]

1.2.5.2 Electrooculography (EOG)

Electrooculography (EOG) is a method used to measure the corneo-retinal standing potential present
between the front and back of the human eye. The signal obtained from this measurement is referred
to as the electrooculogram. EOG finds primary use in ophthalmological diagnosis and in tracking
eye movements. thus EOG artifacts often appear as Eye mouvement artifacts in EEG signal, which
corrupts it and makes it unreadable or almost impossible to analyze. [2]

1.2.5.3 Electrocardiogram (ECG)

Electrocardiography (ECG) is a graphical representation of the heart’s electrical activity. This elec-
trical activity is linked to changes in electrical potential of specialized cells responsible for contraction
(myocytes) and cells specialized in generating and conducting impulses. It is collected by electrodes
placed on the skin’s surface. [45]
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Figure 1.8 – Three kinds of artifacts EMG, EOG, and ECG [20]

1.2.6 Ensuring high EEG signal acquisition quality

In this subsection, we are going to present some of the techniques to ensure almost high quality EEG
signals while recording.

1.2.6.1 Evaluation in time-domaine

We formulated two findings according to our anticipated signal quality in the time domain :
- Finding 1 : The gel-based device exhibits a notably reduced prevalence of artifacts compared to

the gel-free devices.
Regarding the finding, the evalutation of the recorded EEG signals was conducted manually. Visual
examination and subsequent removal of contaminated EEG segments by an expert is a widely practiced
and widely accepted approach in both research and clinical environments. [42]

- Finding 2 : The gel-based device demonstrates a notably superior signal-to-noise ratio (SNR)
in comparison to the gel-free devices.

Signal-to-noise ratio (SNR) serves as a standard technique for evaluating signal quality. SNR values
were computed using the following formula 1 :

SNR = 10log10(σ2
x

σ2
s

)[db] (1)

Where, σ2
x is the variance of the signal and σ2

s is the variance of the noise.

1.2.6.2 Evaluation in frequency-domaine

To assess signal quality in the frequency domain. Our anticipation was that if a device exhibited good
signal quality, we would observe significant disparities in the power values across different frequency
bands during various tasks.

- Finding 3 : In devices demonstrating high signal quality, we anticipate a notable Berger effect
when comparing measurements taken with eyes open versus those taken with eyes closed.[15]

This finding indicates that the power of the parietal alpha band is expected to decrease when the eyes
are open compared to when they are closed. This phenomenon is commonly referred to as the alpha
block.
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- Finding 4 : In devices exhibiting strong signal quality, we anticipate a noteworthy rise in frontal
theta power when comparing less demanding cognitive tasks to more challenging ones.

This hypothesis is based mainly on the dependency of the frontal theta band power on the experienced
workload. Based on the results from numerous previous investigations.[41]

1.3 Photoplethysmogram (PPG)

1.3.1 What is PPG

Photoplethysmography (PPG) measures changes in the blood volume of a vascular tissue bed. Pho-
toplethysmogram is a plethysmogram captured optically, useful for identifying fluctuations in blood
volume within tissue microvessels.[11] [4]

Figure 1.9 – Pulse-oximeter device on a person index [5]

Typically, it’s acquired using a pulse oximeter Fig.1.9, which emits light through the skin and gauges
alterations in light absorption. This method allows for monitoring blood perfusion in the skin’s dermis
and subcutaneous tissue. see Fig.1.10

Figure 1.10 – Schematic of two LEDs transmitting light through a finger, which is then
captured by the photodiode [27]

1.3.2 PPG signal acquisition

This subsection showcases the aspects of PPG sensor design required to ensure high-quality PPG
signals.
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Sensors types

Photoplethysmography is commonly conducted using tissue-contact sensors configured either in
transmission (known as ’transillumination’) or reflection (’adjacent’) mode Fig.1.11.[12]. A typical
PPG sensor comprises a light emitter and a highly sensitive photodetector enclosed within a reusable
spring-loaded clip. Light-emitting diodes (LEDs) are the preferred light sources in most cases . The
photodetector commonly employed is a silicon photodiode, although other detectors like photocells
and phototransistors are also utilized.[34]

Figure 1.11 – (a) transmission mode, (b) reflectance mode.

The optoelectronics of the PPG sensor and its attachment mechanism to tissue serve as foundational
elements in a PPG measurement system. Their design significantly affects signal quality, subsequent
analysis of pulse waves, and the necessity for skilled noise reduction. Several other factors play a role in
the design and selection of PPG sensors, such as determining whether reflection or transmission mode
suits the intended application best, minimizing potential artifacts from ambient lighting including
considerations for daylight filtering, positioning the digital interface relative to the sensor, ensuring
safety, and considering aesthetics.

Maintaining adequate pressure at the probe-tissue interface is crucial. It should secure the PPG probe
in place to minimize movement artifacts while avoiding excessive pressure that could distort the
main features of the pulse wave.

1.3.3 PPG Pulse wave

Each PPG pulse wave comprises two discernible phases, as depicted in Fig 1.12 the anacrotic and
catacrotic phases,[34] representing the rising and falling limbs, respectively.

Figure 1.12 – he changes in PPG pulse wave shape which occur in healthy ageing. [34]
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The morphology of the PPG pulse wave is shaped by various factors :

- Heart Characteristics : This includes parameters related to cardiac ejection, such as heart
rate, heart rhythm, and stroke volume.

- Circulatory System : Properties of circulation, including arterial stiffness and blood pressure,
influence the PPG waveform.

- Additional Physiological Processes : Factors like respiration and the autonomic nervous
system, which can be affected by stress, also contribute to PPG waveform variations.

- Disease : Various diseases can impact the morphology of the PPG pulse wave, further adding
complexity to its interpretation.

We should note that PPG pulse wave differs from person to person, age to age. Please see fig.1.13

Figure 1.13 – In younger people (class 1), the pulse wave in PPG usually shows a peak during
the relaxing phase of the heart (diastolic peak). However, as people get older (higher classes),
this peak tends to become less prominent.[34]

1.3.4 PPG Artifacts

Artifacts in photoplethysmography (PPG) signals are unwanted disturbances or anomalies that can
arise during signal acquisition and processing, potentially compromising the accuracy and reliability
of physiological measurements. Here are some common types of artifacts in PPG signals :

1.3.4.1 Baseline Drift

Baseline drift refers to gradual changes in the baseline level of the PPG signal over time, unrelated
to physiological variations. It can result from factors such as sensor displacement, changes in ambient
light, or variations in skin perfusion. Baseline drift can obscure the underlying PPG waveform and
affect the accuracy of measurements, requiring correction methods to restore signal integrity.

1.3.4.2 Motion artifacts

Motion artifacts occur due to movement or motion of the body, such as muscle contractions or limb
motion. This kind of artifacts manifests as irregular fluctuations or distortions in the PPG waveform,
making it challenging to extract accurate physiological information. However these artifacts are often
mitigated using signal processing techniques or by ensuring sensor stability and proper positioning.

In our case of study we propose to investigate removing these artifacts using deep neural networks.
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1.3.4.3 Hypoperfusion artifacts

Hypoperfusion, or reduced blood flow to tissues, affects photoplethysmography (PPG) signals by cau-
sing several distinct changes. In PPG waveforms, hypoperfusion is often marked by decreased signal
amplitude, resulting in weaker and less pronounced pulsatile signals. Additionally, systolic peaks may
be attenuated, and the onset of the pulsatile component may be delayed due to reduced blood flow
dynamics. Hypoperfusion can also distort the shape and morphology of the waveform, leading to flat-
tened or irregular patterns. Finally, increased baseline drift and noise may accompany hypoperfusion,
complicating signal interpretation. Recognizing these changes in PPG signals is vital for accurately
assessing tissue perfusion status in clinical and monitoring contexts.

Figure 1.14 – Examples of representative PPG distortion due to motion artifact, baseline
wandering, and hypoperfusion (from top to bottom).[37]

1.3.5 Ensuring high PPG signal acquisition quality

In this subsection, we present some of the techniques which ensure high quality PPG signals while
recording.

- Proper Sensor Placement : Ensure that the PPG sensor is correctly positioned on the
measurement site, typically a fingertip, earlobe, or other suitable peripheral area. Secure the
sensor snugly but comfortably to minimize motion artifacts and ensure good skin contact for
optimal light transmission.

- Stable Environment : Control environmental factors such as ambient light, temperature, and
humidity to minimize their impact on the PPG signal. Shield the sensor from direct sunlight
and sources of electrical interference to prevent signal distortion.

- Motion Artifact Mitigation : Minimize movement and muscle contractions during signal
acquisition to reduce motion artifacts. Instruct the subject to remain still and relaxed during data
collection, and use motion-resistant sensor designs or signal processing techniques to mitigate
artifact effects.

- Optimal Sensor Configuration : Choose PPG sensor configurations and wavelengths that
are suitable for the intended application and measurement site. Consider factors such as sensor
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type (reflectance or transmittance), light source intensity, and wavelength selection to optimize
signal quality and depth of tissue penetration.

- Signal Processing Techniques : Employ signal processing algorithms and techniques to
enhance signal quality and remove noise and artifacts. This may include filtering methods,
baseline drift correction, artifact detection, and motion artifact removal algorithms tailored to
the specific characteristics of PPG signals.

- Calibration and Validation : Calibrate PPG devices regularly to ensure accurate and consistent
measurements. Validate signal quality and device performance using reference standards or phy-
siological validation methods to confirm the reliability of acquired data.

- Subject Preparation : Prepare subjects adequately before signal acquisition by ensuring pro-
per hydration, minimizing caffeine and nicotine intake, and avoiding factors known to affect
peripheral circulation. These measures can help optimize vascular tone and blood flow for im-
proved signal quality.

- Continuous Monitoring : Continuously monitor signal quality during data acquisition to
identify and address any issues in real-time. Visual inspection of signal waveforms, feedback
from the subject, and automated quality control checks can help ensure the integrity of acquired
PPG data.

1.4 Conclusion

Accurate interpretation of EEG and PPG signals hinges on effectively managing artifacts. By unders-
tanding the different types of artifacts that can contaminate these recordings, researchers can develop
and implement appropriate mitigation strategies.

Fortunately, a vast array of techniques exist already to address these challenges. The next section
delves into the existing literature, exploring the various methods and approaches employed to remove
artifacts from EEG and PPG signals. We also present their advantages and limitations in different
scenarios.
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Chapitre 2

State of the art on artifact removal for
EEG and PPG signals

2.1 Introduction

The quest for accurate and reliable information from Electroencephalogram (EEG) and Photoplethys-
mography (PPG) signals is hampered by artifacts – unwanted distortions that mask the underlying
physiological data. This chapter tackles this challenge head-on by delving into the state-of-the-art in
artifact removal techniques for both EEG and PPG signals.

Our exploration will navigate the existing literature, uncovering the ingenious algorithms that re-
searchers have developed to combat these challenges. This review will equip you with a thorough
understanding of the current landscape in EEG and PPG artifact removal.

2.2 EEG artifact removal

2.2.1 ICA based artifact detection

Independent Component Analysis (ICA) is a computational technique designed to decompose a mul-
tivariate signal into distinct additive subcomponents. Developed by Jeanny Hérault and Christian
Jutten in 1985, ICA operates under the assumption that, at most, one subcomponent exhibits a Gaus-
sian distribution, and all subcomponents are statistically independent of one another. ICA is a specific
instance of blind source separation, with a classic application being the resolution of the "cocktail
party problem," where it is used to isolate one person’s speech amidst background noise in a crowded
room.[22]

Central limit theory

The central limit theorem (CLT) states that, given suitable circumstances, when the sample mean is
standardized, its distribution tends towards a standard normal distribution. This principle remains
valid regardless of whether the initial variables follow a normal distribution or not. Various versions
of the CLT exist, each pertinent to distinct conditions.

EEG components are known to be unique from each other, which means that artifacts have unique
topographies and shapes [23], thus the detection would be the comparison between the components
and the ground truth of the artifical artifacts, please see figure 2.5.
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How ICA works : Let’s imagine a mixture of two signals A, B ’we can generate these two signals
with a simple python code (see figure 2.1)

Figure 2.1 – Python code to generate the two signals

Figure 2.2 – (A), (B) : Blue, Red signals respectively, generated using the python code 2.1,

Now, we mix the signals linearly, first combination is A − B, second one is 1.73 ∗ A + 3.41 ∗ B, (see
figure 2.3)

Now lets apply fastICA to separate the mixtures. and get the following result 2.4
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Figure 2.3 – A − B : blue and linear combination : orange.

Figure 2.4 – independant components ’separated mixtures’.

To put ICA in the context of separating biomedical signals, we imagine n-electrodes recording array
as n-dimensional space. CLT states that the linear mixture of these n-electrodes recordings arrays
converge to a gaussian distribution. We project these signals on each basis axes, ICA rotates these
axes in a way the probability density function is non-gaussian as possible. Thus the independance of
each axis and the minimization of the mutual information. [17]

The separated components of the EEG signal may by generated inside or outside the brain, for instance
eye blinks and muscular activities give unique independant component, with specific activities, Thus
ICA performs the best in separating the sources. [31]

The paper [23] tested other methods such as Second order Blind identification that was developped
by Prof. Adel Belouchrani et al. [14], which exploits the temporal correlations in the sources.They
introduced several artificial artifacts such as Linear trends, high frequency events modelling tempo-
ral muscle artifacts (Figure 2.5) However the results of the paper utilized only Fast-ICA because it
performed the best. (Figure 2.6).

2.2.2 Canonical Correlation Analysis (CCA)

In some studies, a Canonical Correlation Analysis was introduced as a multivariate generalization of
the ordinary Pearson correlation [28]. EEG recordings are often contaminated by muscular artifacts
that could make EEG interpretation unfeasible, or almost impossible [18]. The same study in the issue
of cancelling muscular artifacts for single-channel EEG shown that mobility artifacts tend to have a
low auto-correlation in contrast to clean EEG signals. thus CCA exploits this, and outperforms ICA
in EMG noise cancellation.
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Figure 2.5 – (A) Types of artifcial artifacts introducted into actual EEG data (B) [23]

How CCA works : Let’s Consider two zero mean random vectors X = [x1, x2, ..., xp]T and Y =
[y1, y2, ..., yq]T of dimensions p and q where these two tells the number of channels used. CCA here
aims to find linear combinations of both X and Y channels that have the maximum correlation
coefficient with each other [28]. This leads to the following objective function with constraints :

max
v1,v2

(vT
1 X1XT

2 v2)2

s.t. vT
1 X1XT

1 v1 = 1, vT
2 X2XT

2 v2 = 1

where v′
is (i = 1, 2) are the weight vectors.

Straightforwardly, the solution for this problem is to determine the eigenvectors of the matrices
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2 , respectively. the canoni-

cal variates CV U ′
is (i = 1, 2) can be calculated directly from the original matrices X ′

is as Ui = V T
i Xi.

The corresponding rows of U1 and U2 are highly correlated, while the rows within each individual Ui

are uncorrelated with each other. [18].
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Figure 2.6 – Artifact detection performance with 5 different methods [Thresholding, Joint
Probability, Kurtosis, Freq. Thresholding and Trend rejection].

Black traces : For each form of artifact, the five approaches were first optimally applied to the
best single-channel data.
Grey traces : Infomax ICA computed the best single independent components from the data
using the same procedures.
The vertical error bars display the performance variance over 20 replications, expressed as ±1.
Overall, spectral thresholding methods (right) performed best for artifacts less than 40 dB
below the EEG in power, and all detection methods performed better when applied to the
independent component data. [23]

CCA is further extended to separate artifacts from desired signals in a functional magnetic resonance
imaging (fMRI) study under the assumption of that the source components are maximally auto-
correlated and mutually uncorrelated [25], with that been said let X1 be the observed data matrix
X with P mixtures and T samples, and let X2 be a temporally delayed version of the original data
matrix X2(t) = X(t − 1). Thus, CCA can separate the recorded data into the self-correlated and
mutually uncorrelated sources. As a potential alternative for the most widely used ICA method, CCA
has been previously tested with a number of ICA algorithms. The CCA-based methods were shown
to outperform the ICA-based techniques for EEG/fNIRS artifact removal [43] [36]. To investigate
the performance of this method (CCA) and perform a possible comparison against (ICA). Authors in
[36] have recorded EEG signals for 15 subjects, each subject was asked again to record signals while
doing several activities including chewing, frowning, eye mouvements, and blinking. resulting synthe-
sised signals are made by mixing EEG signals and those when doing activities (EOG) and (EMG),
for this ICA and CCA were applied to asses the performance between the two algorithms. Results are
illustrated in Fig.2.7

Mathematically speaking, we can describe the synthesized signal using the following equation :

Bsyn = Beeg + ϵBemg
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where Beeg ,Bemg are the clean EEG signals and muscle artifacts signals respectivley. and ϵ is the
contribution of muscle artifacts to EEG signal.

To assess the performance Relative Root Mean Squared Error (RRMSE) was used as evaluation
metric between ICA and CCA :

RRMSE = RMS(Beeg − B̂)
RMS(Beeg) ,

where RMS(x) =
√

1
T xxT , and B̂ is the estimated EEG signal after muscular artifact cancellation.

[19]

Figure 2.7 – Comparing the outcomes of EMG artifact removal using both CCA and ICA
methods involved several steps : (A) Beye. (B) Generating Synthesized signal Bsyn (η) where
η=1. (C) Obtaining the reconstructed signal Beye through CCA application. (D) Decomposing
Signal Bsyn (η) into 18 components via ICA. (E) Reconstructing Signal Beye by eliminating
IC2. (F) Evaluating the Relative Root Mean Square Error (RRMSE) of various algorithms at
varying Signal-to-Noise Ratios (SNR). [36]

2.2.3 Independant Vector Analysis

Independant Vector Analysis (IVA) is an extension of (ICA) from one to several Datasets, In [13] IVA
was formulated as general Joint Blind Source Separation (JBSS) framework to ensure that the extrac-
ted sources from each dataset are independant and perfectly correlated across different datasets.[19]

How IVA works : Let’s denote M the number of datasets, each containing P samples. In IVA
there is a concept to be defined which is the concept of Source Component Vector (SCV) across
multiple datasets. therefore the pth SCV, sp = [s[1]

p , s
[2]
p , s

[3]
p , ..., s

[M ]
p ], the symbol s

[M ]
p (m = 1, 2, ...., M)

represents the pth underlying source component in the mth dataset. The goal of IVA is to identify the
independent SCVs from multiple multidimensional datasets. This can be achieved by minimizing the
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mutual information among the estimated SCVs ŝp’s :

IIV A ≜ I[ŝ1; ŝ2; ŝ3; ....; ŝP ] = H[ŝP ] − H[ŝ1; ŝ2; ŝ3; ....; ŝP ],

where H denotes the entropy. By solving the above optimization problem, each estimated SCV ŝp

is independent of all other estimated SCVs, and meanwhile, the components within each SCV are
dependent, e.g., s

[1]
p , and s

[2]
p are highly correlated.

The implementation algorithms involve the selection of specific probability distributions for the SCVs.
The most popular methods include IVA-L [30] and IVA-G [13].

IVA-L assumes that each Source Component Vector (SCV) conforms to a multivariate Laplace distri-
bution, with isotropic properties and no second-order correlation. On the other hand, IVA-G leverages
second-order statistical cues across datasets, assuming a multivariate Gaussian distribution for each
SCV. While certain applications, like frequency domain Blind Source Separation (BSS) for speech re-
cognition, may involve minimal second-order information across datasets, others, such as group fMRI
studies, are anticipated to exhibit substantial correlation. This study employs IVA-G to capitalize
on the significance of second-order information, particularly in capturing the temporal structure of
muscular artifacts. Analogous to Canonical Correlation Analysis (CCA), IVA can segregate recorded
data into self-correlated and mutually independent sources. One potential advantage of IVA over CCA
lies in its ability to extract independent sources rather than merely uncorrelated ones through the uti-
lization of Higher Order Statistics (HOS). However, this comes at the cost of increased computational
complexity. Additionally, IVA assumes specific distributions for the underlying sources, which might
not always hold true in practical scenarios.[19]

2.2.4 Ensemble Empirical Mode Decomposition

Ensemble Empirical Mode Decomposition (EMD) is a technique for analyzing signals with time-varying
characteristics and complex interactions, using only one channel of data.[29]

How EMD works : EMD breaks down a signal into a set of basic building blocks called Intrinsic
Mode Functions (IMFs). These IMFs capture the various oscillatory components within the signal,
ranging from rapid fluctuations to slower trends. Each IMF follows two key principles [29] :

- The number of peaks and dips (extrema) is either very close to, or exactly matches, the number
of times the signal crosses zero.[19]

- the mean value of the envelope defined by the local maxima and the envelope defined by the
local minima is zero.[19]

EMD uses a special process called sifting to extract individual IMFs from the original signal (denoted
by x). This process starts by finding all the peaks and valleys, technically known as extrema, within
the signal.[29]

All local maximum points are connected by a cubic spline line to form the upper envelope eu, Addi-
tionally, all local minimum points are connected similarly to form the lower envelope el the mean of
eu and el, a1 is calculated as :

a1 = eu + el

2 .

The difference between the signal and the mean is defined as the first component h1 as :

h1 = x − a1.

In the second sifting process, h1 is treated as the signal, and the mean a11 of its local maxima and
local minima is found. We then have[19] :

h11 = h1 − a11.
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Subsequently, we can repeat this sifting procedure k times until h1k is an IMF, with :

h1k = h1k-1 − a1k.

Therefore, the first IMF component derived from the original signal is designated as :

c1 = h1k.

EMD relies on a specific rule to determine when the sifting process for an IMF is complete. This rule
involves calculating the standard deviation (SD) of the difference between two successive sifting steps.
The sifting process stops when this standard deviation falls below a certain threshold.

SD =
T∑

t=1

{
[h1k-1(t) − h1k(t)]2

h2
1k-1(t)

}
.

A typical value for SD can be set between 0.2 and 0.3 [29].

To extract the 2nd IMF component, we remove c1 from the original signal x :

r1 = x − c1. (⋆)

The residual r1 is treated as a new signal, and the same sifting process is applied to obtain the 2nd
IMF component c2 and the residual :

r2 = r1 − c2,

his procedure is repeated on the subsequent residuals rj ’s, until the final residual rJ no longer contains
any oscillation information,[19]

rj = rj−1 − cj . (⋆⋆)

By summing up Equations ⋆, ⋆⋆, we obtain :

x =
J∑

j=1
cj + rJ .

Thus, we decompose the original signal x into J empirical modes cj ’s and a residue rJ .

While the standard EMD algorithm struggles with noise, a recent improvement called EEMD offers a
solution. Developed by Huang et al. [50], EEMD tackles noise by averaging the results from multiple
analyses (ensemble). In each analysis, a copy of the original signal is combined with a random white
noise signal of a specific strength. Even though individual analyses might be affected by noise, when the
results are averaged across a sufficient number of trials (typically 10 or more), the random noise cancels
out because it’s assumed to be independent in each analysis. This approach keeps the computational
cost reasonable. The recommended strength for the added noise is empirically set to 20% of the original
signal’s standard deviation.
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2.2.5 EEMD-ICA

The idea of using EEMD with ICA to separate sources from single-channel recordings was introduced
in [35]. This method aimed to remove unwanted signals like muscle activity (EMG) from brain activity
(EEG) recordings. While this approach achieved limited success, it remains the only documented work
on single-channel artifact removal in EEG data that we found.

Here’s how the method works : EEMD is first used to decompose the single-channel recording (x) into
multiple Intrinsic Mode Functions (IMFs), essentially creating a multi-channel signal (matrix X).
This matrix is then fed into an algorithm called FastICA to extract the underlying source signals
(estimated sources denoted by Ŝ). Since some sources might represent artifacts, the corresponding rows
in the Ŝ matrix can be removed. The remaining source matrix is then transformed back using the
original mixing conditions (represented by matrix A) to obtain cleaned multi-channel signals (denoted
by X̂). Finally, by summing the recovered IMFs in X̂ a single-channel recording X̂ free from artifacts
is ideally obtained.

2.2.6 Deep Learning approaches

Various deep learning techniques exists to to remove different kinds of artifacts from EEG signals,
for instance,[32] used the U-Net architecture.Fig 2.8, where their EEG data was contaminated with
EOG artifacts.

Figure 2.8 – U-Net architecture.[52]

Their proprocessing consists of applying a Low-pass filter, then transforming the signals into grayscale
images and training the U-Net model on these images (see figure 2.9).

Authors stated that this method of using U-Net architecture to purify EEG signals from EOG
artifacts, gave precise results of Average Mean Squared Error of 0.0005, thus the accurate results of
the powerfulU-Net architecture.

In another study, Authors in [33] used heuristic-based convolutional neural network for artifact removal,
and a benchmark dataset was used to evaluate the work, Which is ECG-ID dataset that can be found
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Figure 2.9 – U-Net training on gray scale images, evaluation metric is Mean Squared Error
(MSE).[32]

in Physio-net platform [1], The model architecture is pretty straight-forward 2 1D convolutional layers,
followed with a Fully connected layer, by the end the clean EEG is extracted (See figure 2.10). Authors
stated that their model outperformed other state of the art method in SNR, RMSE scores.

Figure 2.10 – Proposed architecture for EEG artifact removal [33]

We looked at how to remove unwanted signals from brain waves (EEG). Techniques like ICA and CCA
are like super sorters, separating the important brain activity from things like muscle movements and
blinks.

Table 2.1 summarizes the state of the art and provides the advantages and limitations for each method.
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Table 2.1 – Comparison between the literature reviews.

Authors Used Me-
thod

Advantages Limitations

Delorme et al. [23]
2006

Independant
Component
Analysis
(ICA)

No prior knowledge of the
artifact’s characteristics,
versatile tool for removing
various types of artifacts,
such as muscle contractions
or eye movements.

Dependence on statisti-
cal assumptions.

J.Zheng et al. [36]
2010

Canonical
Correlation
Analysis
(CCA)

Outperforms ICA in EMG
Cancellation

CCA is based on the
assumption that the
underlying sources are
mutually uncorrelated
while maximally auto-
correlated.

Kim et al. [13] 2016 Independant
Vector Analy-
sis (IVA)

IVA employs both HOS
and the SOS dependence
across multiple data sets
for jointly achieving inde-
pendent decomposition of
multiple data sets.

Dependancy on Data-
sets and statistical as-
sumptions

Huang et al. [50]
2009

Ensemble
Empirical
Mode De-
composition
(EEMD)

data-driven and adaptable,
effective in removing arti-
facts with non-stationary
characteristics, such as
muscle contractions or
eye blinks, which can be
challenging for traditional
filtering methods.

Computationally ex-
pensive, Identifying
which IMFs contain
artifacts and which
contain brain activity
can be subjective and
require some expertise.

Bogdan et al. [35]
2010

EEMD-ICA Statistically separates the
sources and decomposes the
signal into intrinsic compo-
nents which could be robust
to non-stationary signals

Computational Com-
plexity, Parameter
Tuning, Limited Re-
search.

Najmeh et al. [33]
2020

Deep Learning
(DL)

Deep learning models can
automatically learn com-
plex features that differen-
tiate brain signals from ar-
tifacts

Data Dependency,
and computationally
expensive.
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2.3 PPG Artifact removal

2.3.1 Discrete Wavelet Transform (DWT)

A discrete wavelet transform (DWT) is a transform that decomposes a given signal into a number of
sets, where each set is a time series of coefficients describing the time evolution of the signal in the
corresponding frequency band. [6]

Unlike the Fourier Transform which uses sine waves, DWT uses wavelets - brief oscillating functions
that start and end at zero. These wavelets come in various shapes and sizes, allowing for analyzing
various frequency ranges with good time resolution. The signal is passed through filters resembling
scaled and stretched versions of the chosen wavelet .e.g see equation Daubechies wavelet function. This
process decomposes the signal into two parts :

- Approximation Coefficients : Capture the overall low-frequency trend of the signal, repre-
senting the big picture.

- Detail Coefficients : Contain the high-frequency information, capturing rapid changes or
specific features within the signal.
Ψ(t) = (1 +

√
2)

(
(
√

2 + 1) sin(t) − cos(t)
)

, 0 ≤ t ≤ π/2 (Daubechies wavelet function)

This equation defines the shape of the Daubechies wavelet function (Ψ(t)) based on time (t). Dau-
bechies wavelets have a whole familly of different orders based on the Length of the filter Vanishing
moments or Regularity. see Fig 2.11.

Figure 2.11 – Daubechies Wavelet Families based on their order. [7]

Similar to wavelets, scaling functions are used in DWT ater the signal is decomposed the reconstruction
using the the scaling function 1.

Φ(t) =
((

1 +
√

2
)

cos(t) +
(√

2 − 1
)

sin(t)
)2

, 0 ≤ t ≤ π. (1)

A study investigated the use of DWT for denoising PPG signals acquired from the fingertip, speci-
fically to address motion artifact contamination [16]. Clean up PPG signals was collected from 40
healthy volunteers. Authors in [16] created artificial noise by adding motion data to real PPG rea-
dings. This noisy data went through wavelet decomposition to separate different frequencies. Then,
soft thresholding was applied at each frequency level to remove the noise. The authors tested different
approaches within this process (wavelet functions and thresholding methods) to find the best way to
remove the motion interference from the PPG signals. 2.12
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Figure 2.12 – Subjective assessment of denoising performance [16]

2.3.2 Statistical approaches

The simplest approach was done by authors in [26], where they used only statistical parameters of the
PPG signal to detect and cut out signal parts contaminated with Movement Artifacts (MAs) [40] [see
Fig 2.13].

Prior to the analysis, the algorithm performs a filtering step. This step employs a band-pass filter tuned
to capture frequencies within the 0.5 to 6Hz band. This specific range is crucial as it encompasses the
essential frequencies for detecting heart rate. Afterwards it is segmented based on the signal period
and from the segmented signal the standard deviation, skewness, and kurtosis is calculated using the
following equations :(Standard Deviation 2), Kurtosis :3, Skewness : 4)

σ =

√√√√ 1
N

N∑
i=1

(xi − x)2 (2)

K =
1
N

∑N
i=1(xi − x)4

σ4 (3)

Sk =
1
N

∑N
i=1(xi − x)3

σ3 (4)

If there’s no movement while recording, the different calculations we do on the data, like how pointy
or lopsided it is (kurtosis and skewness), and how spread out it is (standard deviation), will be very
similar for each cycle. This means the data is consistent throughout. Movement significantly alters the
PPG signal’s amplitude. This, in turn, causes the calculated statistics (kurtosis, skewness, and stan-
dard deviation) to exceed predefined thresholds, flagging the signal as corrupted. Consequently, these
corrupted segments are removed from the original recording, leaving only the clean data behind.[40].

To assess the performance authors stated that the method was tested with 10 healthy subjects who
had to perform four different tasks : (i) no movement, (ii) finger movement, (iii) wrist movement, and
(iv) elbow movement.(see figure 2.14)
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Figure 2.13 – Proposed methodology for statistical approach [26]

Figure 2.14 – a Original PPG signal, b PPG after pre-processing, c detected movement, d
cut-out algorithm applied [26]

2.3.3 Deep Learning approaches

Recent advancement in the Deep Learning field as mentionned in the last section, were seen in purifying
PPG signals from Mouvements artifacts. For instance authors in [9] used CycleGAN for Artifact
removal on real data merged with generated accelerometer data while putting BIDMC Dataset [39]
as cleaned dataset to asses the perfomance of their algorithm that we will discuss by next.
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Data Description : Authors carried out laboratory-based experiments to gather accelerometer data
for creating noisy PPG signals. Each of these experiments lasted 27 minutes. A total of 33 participants
took part in these experiments, with ages ranging from 20 to 62. Of these participants, 17 were male and
16 were female. During each experiment, participants were instructed to engage in specific activities
while their accelerometer data were recorded using an Empatica E. more details could be found in the
same paper[9].

Flowchart of the artifact removal model :

Figure 2.15 – Flowchart of artifact removal [9]

This Generetaed accelerometer data were added by next to BIDMC PPG signals datasets for the
model training (see figure 2.15). The desciption of the model will be discussed in the depth, as we will
be imlpemeting the same model for different tasks later on.

Raw PPG signals enters a block where the signal is going to be segmented into smaller windows
to process them and detect if the signal is noisy or not using a deep CNN network, if the signal is
noisy and it will be sent to the artifact removal model which is the CycleGAN model to remove the
artifacts, if not the window wil be ignored.

PPG signal purification is an active area with both statistical and deep learning approaches showing
promise. Statistical methods offer a solid foundation for real-time applications, while deep learning
pushes the boundaries of noise removal and feature extraction. The best choice depends on your
needs, with future advancements likely to involve hybrid methods and improved interpretability in
deep learning models.

Table 2.2 summarizes the existing methods with their according papers, stating some of their adva-
tanges and limitations in real world problems.
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Table 2.2 – Comparison between the literature reviews.

Paper Method Advantages Limitations
Biswas et al. [16]
2018

Discrete wave-
let transform

DWT decomposes the
PPG signal into different
frequency bands using
wavelet functions. This
allows for targeted remo-
val of artifacts that re-
side in specific frequency
ranges, such as power line
noise or muscle move-
ment artifacts, while pre-
serving the heart rate in-
formation typically found
in lower frequencies.

DWT might not completely
eliminate all artifacts, espe-
cially if they overlap signifi-
cantly in frequency with the
heart rate signal, computa-
tionally expensive.

Hanyu et al. [26]
2017

Statistical ap-
proaches

remove various noise
sources that corrupt
the PPG signal, such
as motion artifacts,
baseline wander, and
power line interference,
computationally efficient

Statistical methods often
rely on assumptions about
the noise distribution. If
these assumptions are vio-
lated, the filtering perfor-
mance can degrade, Ove-
raggressive noise removal
techniques might inadver-
tently distort the under-
lying PPG signal.

Zargari et al. [9]
2023

Deep Leaning
(CycleGAN)

Deep learning models can
learn complex relation-
ships between the PPG
signal and various noise
sources, and eliminates
the need for manual fea-
ture selection, which can
be a challenge in traditio-
nal approaches.

Deep learning models are
susceptible to overfitting,
where they learn the trai-
ning data too well and per-
form poorly on unseen data,
computationally expensive
and resource-intensive.
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2.4 Conclusion

At the end of this chapter, we have explored the various existing approaches for artifacts removal
while analyzing neuro-physiological signals

We should mention that Methods of purifying EEG signals won’t work on purifying PPG signals and
viceversa due to several points :

Physiological origin of signals :
- EEG (Electroencephalography) : Measures electrical activity in the brain. EEG signals are weak

and susceptible to various electrical interferences from muscles, eyes, and power lines.
- PPG (Photoplethysmography) : Measures changes in blood volume in the microcirculation using

light. PPG signals are affected by motion artifacts, breathing patterns, and ambient light varia-
tions.

Noise characteristics :
- EEG : Prone to high-frequency noise from muscle activity (EMG) and power line interference

(50/60 Hz).
- PPG : Primarily affected by low-frequency noise due to motion artifacts (breathing, body mo-

vement) and baseline wander caused by slow blood volume changes.
Signal processing techniques :

- EEG filtering : Often involves notch filters to remove power line interference and high-pass filters
to eliminate slow baseline wander.

- PPG filtering : Employs low-pass filters to suppress high-frequency noise from muscle activity
and baseline wander correction algorithms to address low-frequency drifts.

Finally, the filtering techniques target specific noise sources based on the signal’s origin and charac-
teristics. EEG methods focus on removing high-frequency electrical interference, while PPG methods
target low-frequency motion artifacts and baseline variations.

While some general signal processing techniques might overlap (e.g., filtering fundamentals), the spe-
cific methods need to be tailored to the unique characteristics and noise sources of each physiological
signal.

In the next chapter we investigate the performance of the algorithms. and propose a new developments
and approaches in this field.
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Chapitre 3

Methodology

3.1 Introduction

This section outlines the methodology employed for artifact removal in biomedical signals, focusing on
the use of CycleGAN and deep Convolutional Neural Networks (CNN). These advanced deep learning
techniques were chosen for their ability to effectively learn and mitigate complex noise patterns inherent
in Electroencephalography (EEG) and Photoplethysmogram (PPG) signals.

3.2 Deep Convolutional neural networks

This section dives into the powerful world of deep convolutional neural networks (CNNs) and explores
their remarkable ability to remove artifacts from biomedical signals. We’ll see how these intelligent
algorithms can learn to distinguish the true signal from unwanted noise, leading to cleaner data and
more accurate diagnoses.

3.2.1 Model Architecture

Our model consists of different CNN residual blocks that will encorporate between each other to
extract the important information and remove all kinds of artifacts. Please see Fig.3.1

The first block which is the blue one, consists of 4 1D CNN layers with different ’Input channels
shape’, ’Output channels shape’, ’kernel size’, ’Padding size’, same as for the second block
which is the green one, it consists of 4 1D CNN layers except for this time the Input Channels
shape is 20, the interesting part about this block is that is a residual block, which keep extracting
features and rotating on it self 3 times to ensure the deep extraction.

The squeezing block which is the rose one, consists of 1 1D CNN layer to compress the 20 channels
into 1 channel. For this time the Blue, Green and red combine and the output is passed 3 times as
a bigger residual block.

Afterwards, the output of these residual blocks, get activated with Sigmoid function, a squeezing
1D CNN layer. As a final touch the output passed by the first 3 blocks ’Blue, Green, Red’ and this
is our final output.
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Figure 3.1 – Proposed Model Architecture consisting of 3 main blocks Blue, Green, Rose

3.2.2 Learning Process

To train the model accurately, we utilize the mean squared error (MSE) function (represented by
the loss function 5) to assess the difference between the restored signal and the original clean one. A
technique called gradient descent is then employed to minimize this error during the training process,
effectively removing noise from the signal.

LMSE = 1
N

N∑
i=1

||x̄i − x̂i||22 (5)
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We will be using Adam optimizer, to optimize models parameters and also to make sure the good
convergence of the model. Also a Learning rate = 0.001 will be applied for the model.

3.3 CycleGAN

While deep convolutional neural networks excel at denoising, let’s explore another intriguing deep
learning technique : CycleGAN. Unlike CNNs trained for specific noise patterns, CycleGAN offers
a unique approach to artifact removal in biomedical signals. This section delves into CycleGAN’s
capabilities and how it could potentially revolutionize biomedical data cleaning.

Figure 3.2 – CycleGAN main architecture, G and F are the mapping functions, Dx and Dy

are the descriminators, X and Y are the spaces.

3.3.1 CycleGAN Architecture

CycleGAN [53], mainly consists of two mapping functions that are basically two generators, let’s name
them for instance G and H, G : X → Y tries to generate similar images to the ones are in space Y ,
then H : Y → X tries to reconstruct back the original image in space X, since there is generation
within spaces, we introduce two discriminators alongside the the mapping function named Dx and
Dy, to determine whether the generated images are Real or Fake. for this there is a cycle between
the two generators, Thus the model was named for this cycle and the two GANs CycleGAN !. (See
figure 3.2)

3.3.1.1 Generators Architecture

Both Mapping function ’Generators’ have the same architecture in CycleGAN architecture 3.3

The Generator architecture begins with a Reflection Pad which is basically a mirror for the image
meaning that the input image will be concatenated with its own image, followed by a Convolution
Layer, Instance Normalization followed by a ReLU Activation. Next there is a Downsampling
block for reducing the input resolution which will be happening for 2 consecutive times, Next is the
Residual block to extract meaningful features which will be occuring for 9 consecutive times. the
Residual block is straightforward, it begins with a Reflection Pad then Convolutional Layer
followed a Instance Normalization activated with a ReLU function, then the first 3 layers occur
again.
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Figure 3.3 – Mapping Function ’Generator architecture’

Finally, a UpSampling block to reconstruct back the generated tensors into an actual image by
passing by a Transpose Convolutional layer, Instance Normalization and a ReLU function,
this will be happening 2 consecutive times. And an Output Block for the generated image using the
Mapping function. 3.3
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3.3.1.2 Discriminators Architecture

Both Discriminators have the same architecture in CycleGAN architecture 3.4

Figure 3.4 – Discriminators Architecture

3.3.2 Learning process

CycleGAN training is somehow special since it utilizes two pairs of networks : generators and discri-
minators. Each generator transforms data from one domain into the other, while the discriminators
assess the realism of these generated images. However, this process doesn’t guarantee perfectly mapped
outputs. To address this, CycleGAN incorporates another loss called cycle consistency loss. Imagine
feeding the output of the first generator back into the second one. Ideally, this should result in an out-
put close to the original input data (and vice versa). By incorporating this loss function that measures
this discrepancy, CycleGAN steers the generation process towards achieving true data translation.

Adversarial Loss is applied for both of the two mapping functions G : X → Y and F : Y → X The
objective of the mapping function G as a generator and its discriminator D is expressed as below :

LGAN (G, D, X, Y ) = E[log(D(y))] + E[log(1 − D(G(x))].
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Where the mapping function G takes a sample from Space X (e.g. Noisy PPG signal) attempting
to generate new data that is similar to Space Y (e.g. clean PPG signal). Whilst that D(y) aims
to determines if the reconstructed image (clean PPG signal) is actually clean and real or not. This
Adversarial Loss is defined for both of the mapping Functions G and F.

Figure 3.5 – Forward and Backward consistency losses, and the descrimination losses.

In this case of study, Adversarial Losses alone cannot guarantee that the learned mapping function
can map an input to the desired output (e.g purifying PPG signal), authors in [53] discovered that the
learned mapping functions (G and F) need to be Cycle-consistent, this means that the translation
cycle should be able to translate back the input from space X to the original image X as X →
G(X) → F (G(X)) ≈ X, this is called Forward cycle consistency. Similarly for Backward cycle
consistency is defined as Y → F (Y ) → G(F (X)) ≈ Y (See figure 3.5), thus Cycle Consistency
loss function is defined as :

LCycle(G, F ) = ||F (G(X)) − X||1 + ||G(F (X)) − Y ||1.

Therefore the final objective of CycleGAN (Loss function) is defined as :

L(G, F, DX , DY ) = LGAN (G, DY , X, Y ) + LGAN (F, DX , Y, X) + λLCycle(G, F ).

Where λ controls the relative importance of the Cycle consistency loss, whilst mapping function
G tries to minimize the Loss, and an adversary D attempts to maximize it, therefore our model aims
to solve :

G∗, F ∗ = argminL(G, F, DX , DY ).

3.4 Evaluation metrics

Various metrics are employed to qualitatively assess network performance, encompassing aspects such
as network convergence, relative root mean squared error, and correlation coefficient.

Network Convergence measurement in training a network can be initially judged by how well it
converges. Convergence tells us a lot about how the network learns and its ability to perform well on
unseen data (generalization ability).
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RMSE, or Root Mean Squared Error, is a metric used to assess how accurate a predictive model
is. It calculates the average magnitude of the difference between the predicted values and the actual
values. By squaring these differences, giving more weight to larger errors, then averaging and taking
the square root, RMSE provides a single score.

Generally, a lower RMSE indicates a better fit between the model’s predictions and the real data.

Signal-to-noise ration (SNR) Signal-to-noise ratio (SNR or S/N) is a measure used in science
and engineering that compares the level of a desired signal to the level of background noise. SNR is
defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than
1 : 1 (greater than 0 dB) indicates more signal than noise.

SNR = PSignal

PNoise
,

where P is the average power. Both signal and noise powers must be measured at the same or equivalent
points in the system, and within the same system bandwidth. [49]

3.5 Conclusion

In this chapter, we meticulously detailed the framework employed for purifying neurophysiological
signals using advanced algorithms. We introduced the architecture and mechanisms of deep convolu-
tional neural networks (CNNs) and discussed their application in signal processing. Additionally, we
presented CycleGAN, emphasizing its role in generating high-quality signal transformations. We also
outlined the evaluation metrics, including root mean squared error, model convergence, and signal-to-
noise ratio (SNR), essential for assessing the performance of the proposed methods.

Transitioning to the next phase of the project, the upcoming chapter will delve into the experimental
results. We will analyze the performance of the discussed algorithms, providing comprehensive insights
into their effectiveness in EEG and PPG signals purification. and propose a new contribution in
removing artifacts from EEG signals using CycleGANs, and asses its performance in contrast to the
state of the art algorithms.

Conclusion Page 52



Chapitre 4

Purifying EEG and PPG signals

4.1 Introduction

Getting clear readings from our bodies is crucial for doctors to understand our health. This chapter
explores how deep learning can help remove unwanted "noise" from two important signals : brain waves
(EEG) and heart rate/oxygen levels (PPG).

The following sections we will explore two innovative approaches, each tailored to address artifacts in
a specific type of biomedical signal.

4.2 Deep CNN for EEG artifact removal

Electroencephalogram (EEG) signals offer a window into brain activity. However, artifacts like muscle
movements and eye blinks can contaminate these signals. This section will introduce the application
of Deep CNNs for EEG artifact removal. These powerful networks can learn complex patterns within
the EEG data, effectively separating the true brain signal from the artifactual noise.

Traditional methods for removing artifacts from EEG signals often fall short when dealing with the
complexity of real-world data. Deep CNNs emerge as a powerful alternative motivated by this very
need. EEG recordings are susceptible to various interferences, making it difficult to isolate the brain’s
electrical activity. Deep CNNs aim to surpass existing techniques by learning intricate patterns within
the data. This allows them to distinguish true brain signals from artifacts with greater precision. The
ultimate goal is to develop CNN models that work across diverse datasets and potentially even process
data in real-time. This would significantly streamline EEG analysis and pave the way for cleaner, more
reliable data for applications like epilepsy diagnosis and brain research.

CNNs have the potential to be optimized for real-time processing, enabling artifact removal during
data acquisition. This would be particularly valuable in applications like Brain-Computer Interfaces
(BCIs) where immediate signal processing is crucial. For that we will be using the model presented in
section 3.2.

4.2.1 EEGdenoiseNet Dataset

EEGdenoiseNet Dataset is a publicly available benchmark dataset used to assess different algorithms
performance on EEG dataset.
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4.2.1.1 Data Collection

The creators of this dataset [51] that consists of 3 different types of signals EEG, EOG, EMG
stated that it was mainly constructed using available datasets. Then this dataset was preprocessed
and segmented into epochs of 2 seconds. Afterwards the epochs are scaled to have the same variance
then a visual checking is performed to ensure the quality of this epochs and if its clean and ready to
test.

This data was collected and acquired from open access archives and was used in previous studies.
Those studies were revised and approved by respective local ethical committees and followed the Helsinki
Declaration 1975, revised in 2000.

For the EEG epochs (Figure 4.1a), They used an EEG dataset for motor imaginary brain computer
interface. The EEG dataset consists of 64-channel (with international 10-10 system, and sampled at
512 Hz) EEG both for imaginary and real movement conditions of left and right hand. The data were
band-pass filtered between 1 to 80 Hz and notched at powerline frequency, followed by re-sampling to
256 Hz ; then the 64-channel signals were processed using ICLabel to attenuate artefacts. Then the
EEG signals were segmented into epochs of 2 seconds.

For the ocular artifact epochs (Figure 4.1b), multiple datasets were collected from open-access EEG
data. The horizontal and vertical electroculagraphy (EOG) signals of the datasets were band-pass
filtered between 0.3 and 10 Hz, followed by re-sampling to 256 Hz ; then the signals were segmented
into epochs of 2 seconds.

For the myogenic artifact epochs (Figure 4.1c), a facial surface electromyography (EMG) dataset was
used.They chose facial EMG because they are the main sources of myogenic artifacts. The EMG
signals were band-pass filtered between 1 to 120 Hz and notched at powerline frequency, followed by
re-sampling to 512 Hz ; then the signals were segmented into epochs of 2 seconds.

Figure 4.1 – The pipeline for obtaining clean EEG, EOG and MEG. [51]

or all the categories, the epochs were standardized by subtracting their mean and dividing by their
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standard deviation, and then were visually checked by an expert. Finally they acquired 4514 EEG
epochs, 3400 ocular artifact epochs and 5598 myogenic artifact epochs. The epochs for each category
were saved separately as Matlab matrix files and Python numpy matrix files to a public data repository.

4.2.1.2 Data Usage

One way to create simulated signals with noise is to combine segments of EEG data (epochs) with
segments of EOG or EMG data using the linear Mixing formula 6 :

y = x + λ.n (6)

Where y denotes the mixed signals between EEG and EOG, or EEG and EMG. x denotes the
clean EEG signal, n denotes the artifacts EMG or EOG, and lastly λ denotes the relative artifact’s
contribution [51]. Further exampels on the signals EEG and it’s mixture with both artifacts separately
4.2, 4.3 , 4.4, 4.5

Figure 4.2 – examples of EEG signals.

Figure 4.3 – Artifacts (EMG, EOG) and their mixtures with EEG.
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Figure 4.4 – EEG mixed with EOG artifacts.

Figure 4.5 – EEG mixed with EMG artifacts.

4.2.1.3 Data preparation

The studied dataset consists of 3400 paired segments of EEG data and data containing eye movement
artifacts (EOG). The dataset was divided for training and testing purposes, with 3000 pairs used to
train the model and 400 pairs kept separate for evaluation. To create the training data, 3000 EEG-
EOG pairs were randomly mixed together ten times with 10 different SNR levels (-7dB, -6dB, -5dB,
-4dB, -3dB, -2dB, -1dB, 0dB, 1dB, 2dB). according to the following SNR formula.

SNR = 10.log
RMS(x)

RMS(λ.n) .
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In which the Root Mean Squared (RMS) value is defines as :

RMS(x) =

√√√√ 1
N

N∑
i=1

||gi||22,

where N denotes the samples count of an epoch gi and gi denotes the ith sample of an epoch g.
furthermore see Table 4.1 to know more about Training/Test distribution sets.

Table 4.1 – Train/Test distribution

Signal type Number of signals Signal length
EEG + EMG 60000 Train / 4000 Test 512
EEG + EOG 60000 Train / 4000 Test 512

Training (EEG+EMG | EEG+EOG) 120000 Train / 8000 Test 512

4.2.2 Experimental Results

After applying and following the defined learning process in the previous subsection, the model training
and testing loss were as follows 4.6 :

Figure 4.6 – Training and Testing loss for the defined model in 3.1.

Training and testing loss are evaluated using the Mean Squared Error as defined in 5, Thus both
graphs converge to very low error rate which is approximatley 0.09 for the training Loss, and 0.08
for the testing Loss.

Due to computational issues, the model was trained only for 10 epochs as mentionned before in the
section 3.2.2.

After saving best model parameters, the model was put again for testing to visualize some noisy signals
and an estimation for the cleaned signal.
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Figure 4.7 – Model testing on a contaminated EEG signal with EOG artifacts with, Blue is
the Raw EEG to be cleaned, Orange : The estimated signal, Green : Ground truth signal.

Figure 4.8 – Model testing on a contaminated EEG signal with EMG artifacts with, Blue is
the Raw EEG to be cleaned, Orange : The estimated signal, Green : Ground truth signal.

4.2.3 Conclusion

This study has demonstrated the effectiveness of a deep convolutional neural network (Deep CNN)
model for purifying EEG signals from EOG and EMG artifacts. The model achieved impressive per-
formance, resulting in significantly improved signal quality. This was evidenced by the graphs showing
the convergence of the model 4.6, and the model testing on various EEG signals contaminated with
different artifacts 4.7, 4.8. Furthermore, the low mean squared error (MSE) rate of approximatley
0.08 underlines the model’s strong capability to accurately reconstruct the underlying brain activity
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from raw EEG data. These findings suggest that deep learning approaches like Deep CNNs hold great
promise for advancing EEG signal processing and enabling more reliable analysis of brain functions
in various applications.
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4.3 CycleGAN for EEG artifact Removal

Cycle-Consistent Generative Adversarial Networks (CycleGANs). Originally developed for image-to-
image translation tasks, CycleGANs can learn to transform data from one domain to another without
the need for paired examples. This capability makes CycleGAN a powerful tool for denoising EEG
signals by effectively separating the artifact components from the neural signals, thereby improving
the signal quality for subsequent analysis.

In this section, we will use the CycleGAN Architecture presented in 3.3, and perform a data preparation
for our image dataset, to train the model and finally investigate the overall performance for our Method.

4.3.1 Dataset Preparation

For the studied dataset, we will be using the previous signals dataset EEGDenoise Dataset 4.2.1, select
a batch for training and testing. then translating these signals into images to train our models.

Original Signals from the previous dataset are divided into 3 different sets for the signals, EEG, EOG,
EMG sets. The following algorithm will explain how the data preparation workflow process will occur :
def translate_images (EEG , EOG , EMG):

# Load the signals
EEG_with_EMG = EEG + X * EMG # where X is the relative contribution of

the artifact to EEG
EEG_with_EOG = EEG + X * EOG
for i in range(1900): #1900 is the number of the training examples we

will generate for our model to
train on

for i in range(2): # to divide the signal into two chunks of 1x256
samples

EMG_window = EEG_with_EMG [i][j*256: (j+1)*256]
EMG_window = EEG_with_EOG [i][j*256: (j+1)*256]

EMG_Image = Sig_To_image ( EMG_window )
EOG_Image = Sig_To_image ( EOG_window )
# Then we save the images into our local directory
Save( EMG_Image ), Save( EOG_Image )

# Now for the testing Set we generate 200 images
for i in range(100): #100 is the number of the testing examples we will

generate for our model to test on
for both spacces (Clean and Noisy)

for i in range(2): # to divide the signal into two chunks of 1x256
samples

EMG_window = EEG_with_EMG [i][j*256: (j+1)*256]
EMG_window = EEG_with_EOG [i][j*256: (j+1)*256]

EMG_Image = Sig_To_image ( EMG_window )
EOG_Image = Sig_To_image ( EOG_window )
# Then we save the images into our local directory
Save( EMG_Image ), Save( EOG_Image )

the function Sigtoimage is :

SigToimage[i, j] = floor((Sig[i] + Sig[j]) ∗ 128).

The following tables resumes the dataset distribution for training CycleGAN on removing EMG and
EOG separatley :
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Figure 4.9 – Signal translation to image example using the previous algorithm.

Table 4.2 – Train/Test distribution for training and testing cyclegan in removing EOG arti-
facts.

Space Train Test
EEG + EOG 1575 125
Clean EEG 1575 125

Table 4.3 – Train/Test distribution for training and testing cyclegan in removing EMG arti-
facts.

Space Train Test
EEG + EMG 450 100
Clean EEG 450 100

4.3.2 Experimental results

We trained CycleGAN for 125 epochs on dataset consisting of EEG with EOG artifacts images, the
following figures describe the overall loss over the epochs. 4.21 We also tried the trained model

Figure 4.10 – Generators, and Descriminators losses.

in testing to see if there is any results, we also introduce numerical results to discuss the model
performance for EOG artifacts removal (See figure 4.12) :
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Figure 4.11 – Cycle Consistency loss.

Figure 4.12 – Model performance over three samples of the testing test.
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However, we trained another model for removing EMG artifacts for about 100 epochs and the overall
losses were as follows : We also tried the trained model in testing to see if there is any results, we also

Figure 4.13 – Generators, and Descriminators losses.

Figure 4.14 – Cycle Consistency loss.

introduce numerical results to discuss the model performance for EMG artifacts removal (See figure
4.15) :

4.3.3 Discussion

In this section, we explored the application of CycleGANs to the challenging problem of artifact
removal in biomedical signals, specifically targeting electrooculogram (EOG) and electromyogram
(EMG) interferences. The experimental results demonstrate that CycleGAN has substantial potential
in effectively mitigating these artifacts, leading to cleaner and more interpretable signals.

The preliminary results are indeed promising, indicating that CycleGAN can outperform traditional
artifact removal methods in several key aspects, including preserving the underlying physiological
signal and minimizing distortion. The neural network’s ability to learn intricate patterns and adapt
to the complexities inherent in EOG and EMG artifacts showcases its robustness and versatility.

However, the investigation also revealed several areas where further improvements can significantly
enhance the efficacy of the method. One primary area of enhancement is the tuning of hyperparameters.
The current settings, while functional, suggest that optimal configurations could yield even better
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Figure 4.15 – Model performance over three samples of the testing test for EMG sets.

performance. Systematic experimentation with hyperparameter values, including learning rates, batch
sizes, and network architectures, could provide deeper insights into the ideal operational parameters
for artifact removal.

Moreover, the computational power available during this study limited the extent of our exploration.
Access to more advanced computational resources would allow for the training of larger and more
complex models, potentially capturing more nuanced relationships within the data. This, in turn,
would likely lead to even more precise artifact removal and a better understanding of the underlying
signal dynamics.

In conclusion, while our findings affirm the capability of CycleGANs in reducing EOG and EMG
artifacts, the journey towards optimal implementation is ongoing. Future work should focus on fine-
tuning the model parameters and leveraging greater computational power to fully realize the potential
of this method. With these advancements, the application of CycleGAN in biomedical signal processing
could become a significant tool in enhancing signal quality for various clinical and research purposes.
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4.4 CycleGAN for PPG Motion artifacts removal

Motion can corrupt PPG signals, hindering health monitoring. This section investigates using Cycle-
GAN, a deep learning approach, to remove these artifacts. CycleGAN can learn the essence of clean
PPG data and remove distortions from motion, potentially offering a sensor-free method for acquiring
accurate PPG readings.

Accurately extracting health information from photoplethysmogram (PPG) signals is crucial for wea-
rable health monitoring devices. However, motion artifacts can significantly distort these signals, hin-
dering reliable data acquisition. This section explores the application of CycleGAN, a deep learning
technique based on generative adversarial networks (GANs). CycleGAN utilizes two GANs working in
tandem to translate PPG signals between two domains : clean and noisy. By learning the underlying
characteristics of both clean and motion-corrupted PPG data, CycleGAN can effectively translate
noisy signals into their clean counterparts [9], and vice versa. This approach offers a promising avenue
for robust PPG signal processing, potentially leading to more accurate health data and improved
performance of wearable devices. Thus we will be using the architecture stated in section 3.3

4.4.1 BID-MC Dataset

This study utilizes the BIDMC dataset, a collection of physiological signals and annotations extrac-
ted from the MIMIC-II waveform database. The data originates from critically ill patients at Beth
Deaconess Medical Center (Boston, MA, USA).

4.4.1.1 Data Collection

The dataset is particularly valuable for researchers developing and evaluating algorithms for respiratory
rate estimation. It includes :

- Physiological signals : Electrocardiogram (ECG), pulse oximetry (PPG), and impedance respi-
ratory signals (sampled at 125 Hz).

- Physiological parameters : Heart rate, respiratory rate, and blood oxygen saturation level (sam-
pled at 1 Hz).

- Fixed patient information : Age and gender.
- Manual breath annotations : Provided by two independent annotators for each recording.

The dataset is available in three user-friendly formats : WFDB (standard PhysioNet format), CSV
(comma-separated values), and MATLAB (compatible with RRest toolbox).

4.4.1.2 Data Usage

The study case will be mixing motions artifacts with clean PPG segments, the BID-MC dataset has
53 clean PPG signals. Motion artifacts will be acquired from real accelerometer data from existing
dataset which is Pulse Transit Time PPG Dataset [8]. Where three axis (x, y, z) sensor data are
available (see figure 4.16)

In our case of study, the three axis data will be summed together using a summing Formula (7) then
averaged into one signal to represent the motion artifact using the averaging Formula(8)

Sum = max(|Currx − Prevx|, |Curry − Prevy|, |Currz − Prevz|) (7)

Avg = 0.9 ∗ Avg + 0.1 ∗ Sum

32 (8)
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Figure 4.16 – PPG Pulse-time transit accelerometer sample signals [8]

Figure 4.17 – Average summing of the 3 axis accelerometer data using 8

Thus, the averaged summing of the three axis accelerometer data should look as follows 4.17 :

Next, clean PPG signals from BID-MC dataset will be segmented into 256 windows and resampled
to the same frequency as the accelerometer data to ensure the synchronization between the PPG
signals and the accelerometer data, then the Averaged accelerometer data will be added to clean PPG
data linearly using the following formula :

CorruptedSig = X + y.

where X is the clean resampled PPG windows, and y is the averaged accelerometer data. and finally
the corrupted PPG windowed will be normalized and we shall pass to data preparation section.4.18
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Figure 4.18 – The result of adding clean PPG signal with motion artifacts using a linear
formula.

4.4.1.3 Data Preparation

The preprocessed signals now will be translated to 2D representation using the translation formula
(9)

img[i, j] = floor((Sig[i] + Sig[j]) ∗ 128) (9)

Where Sig is the normalized window of the signal. thus it will result in a 2D representation for the
signals both clean and corrupted ones in a gray scale images. 4.19

Final dataset can be resumed using the following table 4.4

Table 4.4 – Train/Test distribution

Space Train Test
A (Clean PPG) 900 Images 399 Images
B (Noisy PPG) 900 Images 399 Images
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Figure 4.19 – Clean and corrupted signal windows with their respctive image representations
using the previous formula.

4.4.2 Experimental results

After training the model for 100 epochs, the CycleGAN losses are as follows,

Figure 4.20 – Generators, and Descriminators losses.

We also tried the trained model in testing to see if there is any results, we also introduce numerical
results to discuss the model performance for motion artifact removal where the improvements are
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Figure 4.21 – Cycle Consistency loss.

measured using SNR metric with the unit of Decibel (db) and the RMSE to measure the standard
deviation between the ground truth signal and the estimated signal, (See figure 4.22) :

Figure 4.22 – Model performance for 3 testing samples for PPG motion artifact removal.
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4.4.3 Conclusion

In conclusion, CycleGAN has demonstrated remarkable efficacy for PPG motion artifact removal. By
leveraging the power of adversarial training and cycle consistency, CycleGAN effectively learns to map
the distorted PPG signals with artifacts to clean signals without the need for paired training data. This
ability not only showcases its adaptability but also underscores its potential for real-world applications
where acquiring large-scale paired datasets is often impractical or impossible. The consistent reduction
in artifacts across diverse datasets and scenarios substantiates CycleGAN’s robustness and reliability.

Moving forward, further optimizations and refinements could enhance its performance even more,
making CycleGAN a promising tool in biomedical signal processing for improving the accuracy and
reliability of physiological measurements.
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General Conclusion

One of the main challenges in the field of biomedical signal processing is the elimination of artifacts
from PPG and EEG signals. These signals can be severely contaminated by artifacts originating
from many sources, making correct analysis and interpretation difficult. While somewhat successful,
traditional techniques for removing artifacts from data frequently cannot handle the complexity and
variety of real-world data.

To tackle this problem, Deep Convolutional Neural Networks (Deep CNNs) and Cycle-Consistent
Generative Adversarial Network (CycleGAN) have become effective tools. By taking advantage of
these deep learning approaches’ strong feature extraction and data augmentation capabilities, EEG
and PPG signals have demonstrated impressive promise in being cleaned up from artifacts.

Deep CNNs, with their hierarchical structure, excel at capturing intricate patterns in data. They have
been successfully applied to EEG artifact removal, demonstrating superior performance compared to
traditional methods. By learning to distinguish between true neural signals and artifacts, Deep CNNs
can significantly enhance the quality of EEG recordings, facilitating more accurate diagnostics and
research.

CycleGANs offer a novel approach to artifact removal by learning to translate contaminated signals
into clean versions without requiring paired datasets. This makes them particularly useful for biome-
dical applications where obtaining perfectly clean signals is challenging. CycleGANs have shown great
potential in purifying EEG signals, achieving results that outperform many state-of-the-art methods.
The ability of CycleGANs to maintain the integrity of the original signal while removing artifacts is
a significant advancement, paving the way for more reliable neurophysiological assessments.

Nonetheless, CycleGAN training is a difficult and resource-intensive procedure. Large quantities of
memory and high-performance GPUs are among the computing resources needed for it. In addition,
precise hyperparameter tweaking and a substantial amount of data are required for the training pro-
cedure. Although these demands present difficulties, they are warranted by the improved performance
and possible advantages of clearer, more precise messages.

CycleGANs have also shown outstanding performance in the context of PPG signals. CycleGANs have
outperformed other cutting-edge approaches as well as conventional methods by efficiently eliminating
motion artifacts and other interferences. The accuracy of cardiovascular parameter monitoring may
increase as a result of this improvement in signal quality, strengthening the validity of PPG-based
health assessments.

The research behind CycleGANs is particularly promising, with ongoing advancements continually im-
proving their efficacy and applicability. Their success in artifact removal for both EEG and PPG signals
highlights their potential to revolutionize biomedical signal processing. As these methods continue to
evolve, they hold the promise of setting new standards in the accuracy and reliability of neurophysio-
logical signal analysis.

Future Perspectives :

Looking ahead, several exciting avenues exist for the continued development and application of deep
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learning techniques in artifact removal for EEG and PPG signals. Future research can explore the
following directions :

- Improved Computational Efficiency : Developing more efficient training algorithms and leve-
raging advancements in hardware can help mitigate the high computational costs associated
with training CycleGANs and Deep CNNs. This could make these methods more accessible for
widespread use.

- Real-Time Processing : Enhancing these models to operate in real-time can significantly benefit
applications such as continuous health monitoring and real-time neurofeedback. Achieving this
will require further optimization of model architectures and processing pipelines.

- Multi-Modal Integration : Combining EEG and PPG signals with other physiological data (e.g.,
ECG, EMG) using multi-modal deep learning approaches can provide a more comprehensive
understanding of physiological states and improve artifact removal performance.

- Personalized Models : Developing personalized artifact removal models tailored to individual
characteristics can enhance the accuracy and effectiveness of these techniques. This could involve
incorporating personalized calibration data during the training phase.

- Clinical Validation : Conducting extensive clinical trials and validations to ensure the robustness
and reliability of these methods in diverse real-world settings. This will help in gaining regulatory
approvals and fostering adoption in clinical practice.

In conclusion, a major advancement in biomedical signal processing has been made with the use of Deep
CNNs and CycleGANs in the artifact removal for EEG and PPG signals. These deep learning methods
improve the quality and interpretability of these crucial signals by providing strong answers to the
long-standing problem of artifact contamination. These techniques are anticipated to lead to future
breakthroughs in the field of biomedical research and diagnostics, despite the significant computer
resources needed for training. As such, they are crucial tools.
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Appendix A

Materials, Tools, and Libraries

1.1 Libraries

1.1.1 Python

Python is an interpreted, multi-paradigm, and cross-platform program-
ming language. It promotes structured imperative, functional, and
object-oriented programming. It features strong dynamic typing, auto-
matic memory management via garbage collection, and an exception
handling system.

Python was created in 1989 by Guido van Rossum, in the Netherlands.
The name Python comes from a tribute to the television series Monty
Python’s Flying Circus, of which G. van Rossum is a fan. The first public version of this language was
released in 1991.

1.1.2 Scikit-learn

Scikit-learn is a free Python library designed for machine lear-
ning. It is developed by numerous contributors, especially in the
academic world.

Within its framework, it offers many pre-implemented algorithm
libraries ready to use. These libraries are available particularly
to data scientists.

It notably includes functions for estimating random forests, logistic regressions, classification algo-
rithms, and support vector machines (SVM). It is designed to integrate well with other free Python
libraries, notably NumPy and Pandas.

1.1.3 PyTorch

PyTorch is a machine learning library based on the Torch library, used for applications such as com-
puter vision and natural language processing, originally developed by Meta AI and now part of the
Linux Foundation umbrella. It is recognized as one of the two most popular machine learning libraries
alongside TensorFlow, offering free and open-source software released under the modified BSD license.
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Although the Python interface is more polished and the primary focus of development, PyTorch also
has a C++ interface. [48]

A number of pieces of deep learning software are built on top of
PyTorch, including Tesla Autopilot,[13] Uber’s Pyro Hugging Face’s
Transformers, PyTorch Lightning, and Catalyst.

- Tensor computing (like NumPy) with strong acceleration via
graphics processing units (GPU)

- Deep neural networks built on a tape-based automatic differen-
tiation system

1.1.4 The incredible pandas

Pandas (styled as pandas) is a software library written for the Py-
thon programming language for data manipulation and analysis. In
particular, it offers data structures and operations for manipulating
numerical tables and time series. It is free software released under the
three-clause BSD license. The name is derived from the term "panel
data", an econometrics term for data sets that include observations
over multiple time periods for the same individuals, as well as a play on the phrase "Python data
analysis". Wes McKinney started building what would become Pandas at AQR Capital while he was a
researcher there from 2007 to 2010.

The development of Pandas introduced into Python many comparable features of working with Da-
taFrames that were established in the R programming language. The library is built upon another
library, NumPy. [47]

1.1.5 NumPy

NumPy is a library for the Python programming language, adding
support for large, multi-dimensional arrays and matrices, along with
a large collection of high-level mathematical functions to operate on
these arrays. The predecessor of NumPy, Numeric, was originally crea-
ted by Jim Hugunin with contributions from several other developers.
In 2005, Travis Oliphant created NumPy by incorporating features of
the competing Numarray into Numeric, with extensive modifications. NumPy is open-source software
and has many contributors. [46]

1.2 Materials (Hardware)

Given the relatively complex nature of our problem, we employed deep neural networks (DNN) for
signal reconstruction, some of which had millions of parameters to calibrate during model training.
This task thus demands hardware configuration that meets several criteria :

- Sufficient computational power (via CPUs or GPUs).
- Hardware robustness (to prevent interruptions during tasks).
- Adequate storage capacity.

In our project, as with any project involving DNNs, the most resource-intensive task is training the
various models. To address this, we utilized several solutions, which are described below :
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1.3 Tools (Google Colaboratory)

Colaboratory, often abbreviated as "Colab," is a product of Google
Research. Colab allows anyone to write and execute Python code of
their choice through the browser. It’s a particularly suitable envi-
ronment for machine learning, data analysis, and education. In more
technical terms, Colab is a hosted service for Jupyter notebooks that
requires no setup and provides free access to computing resources,
including GPUs.

We primarily used Google Colab for relatively simple and short training sessions for several reasons :
- The resources provided by Google are not defined and are fluctuating (thus unstable).
- The quality of the GPUs offered is often relatively low.
- The tool is designed for training sessions lasting no longer than 30 minutes ; the kernel stops

after 30 minutes of user inactivity.
For these reasons, we opted for other platforms for larger training sessions.

1.3.0.1 Personal setup

We trained our models on our personal computer which is mainly suitable for Neural networks training
and already settled with Cuda technology, the following are the computer features :

- Processor : Intel I7 10th generation.
- Graphical card : RTX 2060 and Tesla V100.
- RAM : 42 GB.
- OS : Ubuntu 22.02.
- Storage : 1TB SSD.
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