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تؤثر تغيرات المناخ بشكل كبير على بيئتنا، مما يؤدي إلى زيادة الجفاف، وتزايد حرائق الغابات بشكل أكثر تواتراً، وأنماط غير   :  الملخص 
راءات  متوقعة في التساقطات المطرية. تؤدي هذه التغييرات إلى اضطراب النظم البيئية وسبل العيش للإنسان، مما يبرز الحاجة الملحة لاتخاذ إج

فورية. فهم هذه التأثيرات أمر بالغ الأهمية لتطوير استراتيجيات فعالة للتكيف. في مشروعنا، نركز بشكل خاص على مشكلة   مناخية
ضد  الجفاف في الجزائر وتأثيراته العميقة على الزراعة. لذا، هدف هذا المشروع هو تطوير نموذج تنبؤي لتلبية الحاجة إلى نظام تحذير مبكر  

الجفاف في حالتنا، في   تعرف علىال ومؤشرات الجفاف، مثل مؤشر  نماط حركة الجوار. وذلك باستخدام منهجية ربط بين الجفاف في الجزائ 
منطقة شمال غرب الجزائر. هذا العمل لا يتناول فقط مخاوف السلامة الفورية، بل يضع أيضًا الأسس لمختلف النظريات المحتملة، مما قد  

 .يسهم في التقدم في تقليل الآثار السلبية للجفاف

 . ، الزراعة نماط حركة الجو ا، الجفاف تعرف علىالالجفاف، توقع الجفاف، مؤشر  :  الكلمات الرئيسية 

 

Résumé : Le changement climatique a un impact significatif sur notre 

environnement, entraînant une augmentation des sécheresses, des incendies de 

forêt plus fréquents et des schémas de précipitations imprévisibles. Ces 

changements perturbent les écosystèmes et les moyens de subsistance des 

populations, soulignant l'urgence d'une action climatique. Comprendre ces effets est 

crucial pour développer des stratégies efficaces d'atténuation et d'adaptation. Dans 

notre projet, nous nous concentrons spécifiquement sur le problème de la sécheresse 

en Algérie et ses effets profonds sur l'agriculture. Par conséquent, l'objectif de ce 

projet est le développement d'un modèle de prévision pour répondre au besoin d'un 

système d'alerte précoce contre la sécheresse en Algérie. Utilisant l'approche de 

liaison entre les indices de circulation atmosphérique et les indices de sécheresse, 

l'indice de reconnaissance de sécheresse dans notre cas, dans la région nord-ouest 

de l'Algérie. Ce travail ne répond pas seulement aux préoccupations immédiates de 

sécurité, mais jette également les bases de diverses perspectives, contribuant 

potentiellement aux avancées dans l'atténuation de la sécheresse. 

Mots-clés : Sécheresse, Prévision de la sécheresse, l'indice de reconnaissance de 

sécheresse, Indices de circulation atmosphérique, Agriculture. 

 

Abstract: Climate change significantly impacts our environment, leading to increase 

drought, more frequent wildfires, and unpredictable rainfall patterns. These changes 

disrupt ecosystems and human livelihoods, highlighting the urgent need for climate 

action. Understanding these effects is crucial for developing effective mitigation and 

adaptation strategies. In our project, we focus specifically on the issue of drought in 

Algeria and its profound effects on agriculture. Therefore, the objective of this project is 

the development of a forecasting model to address the need for an early warning 

system against drought in Algeria. Utilizing the approach of linking between 

atmospheric circulation indices and drought indices, the reconnaissance drought index 

in our case, in the northwest region of Algeria. This work not only addresses immediate 

safety concerns but also lays the groundwork for various perspectives, potentially 

contributing to advancements in drought mitigations. 

Keywords: Drought, Drought forecasting, Reconnaissance drought index, Atmospheric 

circulation indices, Agriculture . 
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GENERAL INTRODUCTION

Climate change poses one of the most pressing global challenges, primarily driven by hu-

man activities, leading to profound and long-term shifts in Earth’s climate patterns. These

changes manifest in rising global temperatures, increased occurrences of extreme weather

events, and alterations in precipitation patterns. Dry and semi-arid regions, covering over

25 percent of the Earth’s land area, confront severe water scarcity issues, necessitating

proactive measures to mitigate the impacts of drought [1].

Drought emerges when extended periods of insufficient precipitation disrupt the balance

considered normal or expected, resulting in inadequate water supply for human activities

and ecological sustenance. Notably, drought, while not inherently a disaster, escalates

to a crisis when its effects on local communities and ecosystems become severe [2, 3].

With intensifying climate change and human interventions, natural disasters occur more

frequently, with drought emerging as the foremost disaster type in terms of total human

impact in 2022, surpassing floods in both casualties and economic losses [4, 5].

Drought, characterized by water deficits ranging from weeks to years, span vast areas

and often evolve into destructive events due to their gradual onset compared to rapid-

onset disasters like floods, wildfires, and earthquakes. They result in water shortages, crop

yield reductions, economic downturns, ecological degradation, and social unrest [6, 7, 8, 5].

Our project focuses on utilizing Artificial Intelligence techniques and the Reconnais-

sance Drought Index for meteorological drought forecasting in northwestern Algeria, re-

presenting a vital step in drought management. By harnessing advanced technologies and

innovative methodologies, we aim to enhance early warning systems and decision-making

processes, thereby reducing vulnerability to drought impacts. This forecasting approach

has proven its validity in several studies conducted worldwide, but unfortunately, it has

never been used in Algeria. Therefore, this work represents the first attempt to apply it

in the country.

Motivation and contribution

The use of artificial intelligence techniques and drought recognition indices for

meteorological drought forecasting is an inspiring project, as it addresses a crucial need

in our country, drought mitigation and water management through preventive measures

for the northwestern region of Algeria. This region, renowned for its agriculture and

livestock, is particularly known for the production of durum and soft wheat, barley, as

well as various fruits and vegetables. It is a vital resource for Algeria in its pursuit of

self-sufficiency and food security.
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Our project makes a significant contribution by integrating a thorough analysis of cur-

rent drought indices, focusing particularly on the Reconnaissance Drought Index (RDI),

and examining the interactions between drought and atmospheric indices. This work is ba-

sed on a comprehensive literature review that facilitated a comprehensive understanding

of all aspects of this domain. Subsequently, a detailed characterization of the northwestern

region of Algeria was conducted, encompassing geographical features, land use patterns,

and climate conditions. Following this, a methodology was proposed that begins with data

processing and extends to the modeling of this phenomenon. This approach was applied to

assess drought conditions in northwestern Algeria across various temporal scales, using the

Random Forest model to classify drought severity. Additionally, through a detailed ana-

lysis of variable importance, we identified critical atmospheric and environmental factors

influencing drought variability, thereby providing actionable insights for effective drought

management strategies in the region, such as the development of an early warning system

tailored to this area.

Organization of the manuscript :

• Our exploration began with a comprehensive analysis of the current state of the art,

encompassing various drought indices, with a specific focus on the Reconnaissance

Drought Index, and the relationship between drought and atmospheric indices. This

literature review provided the essential foundation for understanding the complexi-

ties and challenges within the field.

• The second phase focused on representing the study area, the northwestern region

of Algeria. This involved exploring various aspects, including geographical location,

boundaries, geological features, land use and land cover patterns, elevation, slope

characteristics, stream network, and climate conditions.

• The third phase laid the groundwork for our research methodologies, including an

in-depth analysis of foundational datasets, exploration of the reconnaissance drought

index, examination of atmospheric circulation indices, and an exploration of Artifi-

cial Intelligence techniques for predictive modeling.

• In the final phase, we delved into the analysis and interpretation of the Recon-

naissance Drought Index and its application to drought assessment in northwestern

Algeria. This analysis included an evaluation of drought conditions across various

temporal scales and an assessment of the Random Forest model’s performance in

classifying drought conditions. Additionally, a detailed variable importance analysis

identified key atmospheric and environmental factors influencing drought variability.
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Introduction

In this chapter, we investigate the current understanding of drought through a

comprehensive exploration of the state of the art. Initially, we provide an introductory

overview of the phenomenon of drought, shedding light on its multifaceted nature and

the implications it holds for regions worldwide. We emphasize its far-reaching impacts

on ecosystems, agriculture, water resources, and socio-economic systems.

We then turn our attention to investigate a range of forecasting techniques that

are required for prediction. We explore three main areas : physical-based models, machine

learning approaches, and statistical methodologies. Every approach has unique benefits

and predicting difficulties.

Following this, we turn our attention to the various indices employed to assess

and quantify drought conditions in different geographical contexts. These indices serve

as crucial tools in understanding the complex dynamics of drought, offering insights into

its intensity, duration, and spatial extent.

Our focus then shifts to the Reconnaissance Drought Index (RDI), a pivotal tool

we will utilize in our research. We delve into its conceptual framework and operational

characteristics, highlighting its significance in drought monitoring and early warning

systems. Additionally, we review existing studies that have utilized the RDI, offering

insights into its applicability and effectiveness in assessing drought severity.

Furthermore, we investigate the emerging frontier of research that seeks to inte-

grate atmospheric circulation indices with the Reconnaissance Drought Index. By

exploring this novel approach, we aim to enhance our understanding of drought dynamics

and develop more accurate forecasting models. This integration enables us to explore

potential correlations between atmospheric circulation patterns and meteorological

drought indices, providing valuable insights into the underlying mechanisms driving

drought events.

Finally, we broaden our scope to identify agricultural drought utilizing meteorolo-

gical drought indices. By linking meteorological drought to its agricultural impacts, we

aim to provide valuable insights for agricultural planning, resource management, and

drought mitigation strategies.
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Through a synthesis of literature and current research trends, this chapter sets the

stage for our subsequent methodology and contributes to the broader discourse on

drought assessment and prediction.

I.1 Drought

I.1.1 Definition of drought

Drought occurs when there is a prolonged lack of precipitation compared to what is

considered normal or expected. This leads to an insufficient supply of water to meet the

needs of both human activities and the environment. Drought itself is not necessarily a

disaster ; instead, it becomes a disaster when its impacts on local communities and the

environment are severe [2, 3].

I.1.2 Categories of drought

Droughts are typically classified into four categories to aid in their understanding,

description, monitoring, and mitigation : meteorological drought, agricultural drought,

hydrological drought, and socioeconomic drought [9, 10, 11]. Rainfall deficits are the root

cause of meteorological droughts. An extended meteorological drought causes a drop in soil

water content, which causes an agricultural drought [12]. When levels in streams, lakes,

groundwater, or reservoirs are much below average, it is referred to as a hydrological

drought. This kind of drought typically lasts for a while after the end of a meteorological

drought [10, 11, 13, 12]. A socioeconomic drought occurs when water resources systems are

significantly unable to supply people with the water needs for their daily activities. This

can have a negative influence on people’s lifestyles and income, among other socioeconomic

effects [14].

I.2 Forecasting methods

Given the profound impacts of droughts on both the environment and human societies,

accurate forecasting has become an essential tool for mitigation and preparedness. Over

the years, numerous methods have been developed to predict drought occurrences, each le-

veraging different approaches and technologies. These methods can be broadly categorized

into statistical methods, machine learning techniques, and physical-based methods.
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I.2.1 Statistical methods for forecasting

I.2.1.1 Definition and importance

Statistical methods for forecasting involve the use of historical data and mathematical

models to predict future trends or outcomes. These methods rely on statistical techniques

such as time series analysis, regression analysis, and probabilistic models to identify pat-

terns and relationships within the data and extrapolate them into the future.

Statistical methods provide a systematic and rigorous framework for forecasting, allo-

wing analysts to quantify uncertainty and assess the reliability of predictions. They are

widely used in various industries, including finance, economics, and operations manage-

ment, for short-term and long-term forecasting tasks [15].

I.2.1.2 Examples

• Time series analysis : Analyzing historical data to identify patterns, trends, and

seasonality.

• Regression analysis : Modeling the relationship between a dependent variable

and one or more independent variables to make predictions.

• ARIMA (Autoregressive integrated moving average) : A popular method

for modeling time series data by incorporating autoregressive and moving average

components.

I.2.2 Machine learning techniques for forecasting

I.2.2.1 Definition and importance

Machine learning techniques for forecasting leverage algorithms that learn patterns and

relationships directly from data without being explicitly programmed[16]. These tech-

niques aim to discover complex patterns in large datasets and make predictions based on

these learned patterns.

Machine learning offers flexibility and scalability, allowing for the analysis of diverse

types of data and the handling of non-linear relationships. It excels in scenarios where

traditional statistical methods may struggle, such as handling high-dimensional data or

capturing intricate patterns [17].
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I.2.2.2 Examples

• Supervised learning : Training models on labeled historical data to predict future

outcomes. This includes regression for continuous variables and classification for

categorical variables.

• Unsupervised learning : Discovering hidden structures and patterns in data wi-

thout labeled outcomes. Clustering, for instance, groups similar data points.

• Deep learning : Utilizing neural networks with multiple layers to learn hierarchical

representations of data. Deep learning is particularly effective for tasks involving

images, text, and time series data.

I.2.3 Physical-based methods for forecasting

I.2.3.1 Definition and importance

Physical-based methods for forecasting rely on mathematical models that describe

the underlying physical processes governing the system being forecasted. These methods

incorporate knowledge of the system’s dynamics, principles, and laws to simulate future

behavior.

Physical-based methods are valuable when there is a deep understanding of the under-

lying processes and when data availability is limited. They provide insights into causal

relationships and can be used for scenario analysis and sensitivity testing [18].

I.2.3.2 Examples

• Numerical weather prediction : Simulating atmospheric dynamics using com-

plex physical models to forecast weather conditions.

• Hydrological modeling : Predicting River flow, groundwater levels, and water

quality based on knowledge of hydrological processes and inputs such as precipita-

tion and temperature.

• Economic models : Forecasting economic indicators such as GDP, inflation, and

unemployment rates using mathematical models based on economic theories and

principles.

I.3 Drought indices

For drought forecasting, a widely accepted strategy for identifying and tracking it

involves the specification of drought indicators [19, 20]. Comparing drought measurements

21



ENP I. State of the art and literature review

across regions and comparing previous drought occurrences require a numerical standard.

Still, the Creating a global drought index is unfeasible due to the significant dispute on

the definition of drought. Furthermore, it is challenging to assess the effects of drought

due to its features and the broad range of economic sectors it affects. The complexity of

drought has made it impossible for a single measure to fully represent its intensity, severity,

and its effects on such a wide range of users [10]. According to [21], the two fundamental

processes that are to be taken into account when defining drought objectively and creating

a drought index are the time and spatial processes of supply and demand. According to

[22], four fundamental requirements should be met by any drought index :

• A long accurate past record of the index should be available or computable.

• The timescale should be appropriate for the problem at hand.

• The index should be applicable to the problem being studied.

• The index should be a quantitative measure of large-scale, long-continuing drought

conditions.

[23] gives a deep dive into indices :

I.3.1 Aridity anomaly index (AAI)

A real-time drought measure that considers water balance. Each week or two, the

Aridity Index (AI) is determined. The actual and typical levels of aridity for each epoch

are contrasted. Negative numbers indicate an excess of moisture, whereas positive values

indicate moisture stress [23].

I.3.2 Deciles

The entire record of precipitation data for a given location is used to rank the frequency

and distribution of precipitation. First decile rainfall levels that do not surpass the lowest

10% of the values are found here ; the fifth decile contains the median. A wet scale is also

provided. If the current data is compared to the historical record for a specific period, the

approach can be adjusted to account for values that are daily, weekly, monthly, seasonal,

and annual [24].

I.3.3 Keetch–Byram drought index (KBDI)

Designed to use a consistent method appropriate for the local climate to identify dry-

ness in its early stages. The amount of water needed to completely saturate the soil
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and eliminate drought stress is indicated by the combination of evapotranspiration and

precipitation, which results in a moisture deficit in the upper soil layers [25].

I.3.4 Percent of normal precipitation

Simple formula that may be used for comparison in any place and at any time. Com-

puting on a daily, weekly, monthly, seasonal, and annual timeline can satisfy a number of

user demands. calculated by dividing the actual precipitation by the average precipitation

for the time under consideration and multiplying the result by 100 [26].

I.3.5 Standardized precipitation index (SPI)

Uses historical precipitation records for any location to develop a likelihood of precipi-

tation that may be calculated at any number of timescales, from one month to 48 months

or beyond. Unlike other meteorological indicators, the time series of data used to generate

SPI does not have to be of a specific length. Wet and dry events are directly correlated

with positive and negative scores on the SPI intensity scale [27, 28, 29, 30, 31, 32].

I.3.6 Weighted anomaly standardized precipitation (WASP)

Computed using gridded monthly precipitation data at 0.5° × 0.5° resolution ; based

on 12-month overlapping sums of weighted, standardized monthly precipitation anomalies

[33].

I.3.7 Aridity index (AI)

Can be utilized to classify the climates of various locations since it provides a way to

determine the climate regime of a certain area based on the precipitation to temperature

ratio. It is feasible to use the monthly AI computation to forecast the start of a drought

because the index takes temperature and precipitation effects into account [34, 35].

I.3.8 China Z Index (CZI)

CZI and SPI are equivalent because precipitation is used to determine wet and dry

periods (assuming that the precipitation follows a Pearson type III distribution). Because

it uses monthly time steps spanning from one to seventy-two months, it can discern

between different drought lengths [36, 37].
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I.3.9 Crop moisture index (CMI)

Palmer created CMI in reaction to some of the PDSI’s shortcomings when they surfa-

ced. Its capacity to respond fast to rapidly changing conditions makes it a drought index

that is especially well-suited to the effects of drought on agriculture. The difference bet-

ween potential evapotranspiration and moisture is deducted to calculate any deficiencies

[38].

I.3.10 Drought area index (DAI)

Developed as a method to improve understanding of India’s monsoon rainfall, monthly

precipitation is used to pinpoint seasons of floods and drought. Monthly precipitation

throughout the crucial monsoon period can be compared to estimate the intensity of the

wet and dry periods. It is possible to assess the significance of the dryness by looking at

how much precipitation each month contributed to the entire monsoon season [39].

I.3.11 Reconnaissance drought index (RDI)

Includes an equation for the simplified water balance that accounts for precipitation

and potential evapotranspiration, as well as a drought indicator. Its three outputs are

the original value, the normalized value, and the standardized value. Standardized DRI

readings are similar in nature and directly comparable to SPI. DRI, however, is more

representative than SPI since it considers the whole water balance instead of only preci-

pitation [40].

I.3.12 Effective drought index (EDI)

Uses daily precipitation data to create and calculate several parameters, such as ef-

fective precipitation (EP), daily mean EP, deviation of EP (DEP), and the standardized

value of DEP. These criteria can be used to determine when periods of water deficit begin

and conclude. By conducting EDI calculations with input parameters for any area in the

world and standardizing the results for comparison, it is possible to determine the exact

start, end, and length of a drought. Since most drought indices were created using monthly

data at the time the EDI was developed, the translation to daily data was special and

essential to the index’s usefulness [41].
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I.3.13 Hydro-thermal coefficient of selyaninov (HTC)

Makes use of temperature and precipitation data, and it is sensitive to dry conditions

specific to the climate regime being observed. It’s flexible enough to be used with both

monthly and decadal timetables [42].

I.3.14 NOAA drought index (NDI)

A precipitation-based measure that compares recorded actual precipitation with typical

amounts for the growing season. The mean precipitation for each week is calculated by

adding up and comparing the measured average precipitation over a period of eight weeks.

If the actual precipitation for the current week surpasses 60% of the average precipitation

for the eight-week period, then there is considered to be little to no water stress. Once

stress has been diagnosed, it doesn’t go away until precipitation is at least 60% of the

typical level [43].

I.3.15 Palmer drought severity index (PDSI)

Calculated using monthly data on soil water-holding capacity, temperature, and pre-

cipitation. It takes into consideration the potential for moisture loss due to temperature

effects in addition to accounting for moisture that is absorbed (precipitation) and main-

tained in the soil [44, 45].

I.3.16 Palmer Z Index

Referred to as the "Moisture Anomaly Index" occasionally, the computed values provide

a comparable method for comparing the relative anomalies of wetness and dryness in a

location to the overall record for that area [45]

I.3.17 Rainfall anomaly index (RAI)

Utilize normalized precipitation values obtained from the station history of a particular

place. It provides a historical perspective by comparing the result with the present [46, 47].

I.3.18 Self-calibrated Palmer drought severity index (sc-PDSI)

Considers each and every PDSI constant, using an approach where the constants are

dynamically determined based on the features of each station. Every station has a unique

self-adjusting characteristic of sc-PDSI, which changes based on the local climate regime.

It has both wet and dry scales [48].
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I.3.19 Standardized anomaly index (SAI)

Based on the results of the RAI, it was developed to help identify droughts in susceptible

regions, such as northeastern Brazil and the Sahel region of West Africa. RAI considers

station-based precipitation in a region and normalizes annual amounts. The variances are

then averaged over all local stations to obtain a single SAI result [47, 49].

I.3.20 Standardized precipitation evapotranspiration index (SPEI)

SPEI is a relatively new drought index that uses a simple water balance calculation to

account for the influence of temperature on the development of droughts. It does this by

incorporating a temperature component into its basis. SPEI has an intensity scale that

computes both positive and negative values, allowing it to differentiate between wet and

dry events. One month to at least 48 months of time intervals can be used to compute

it. Monthly updates allow for operational use, and the longer the available time series of

data, the more consistent the outcomes will be [50].

I.3.21 Agricultural reference index for drought (ARID)

Estimates the amount of moisture that is currently available in the soil. Using a com-

bination of crop models and water stress approximations, it assesses the impact of water

stress on plant growth, development, and productivity for specific crops [51].

I.3.22 Crop-specific drought index (CSDI)

By calculating a basic soil water balance, it accounts for the effects of drought and

establishes when the crop was under drought stress as well as how much it will ultimately

affect the final yield. Although PDSI and CMI are able to identify drought conditions in

a crop, they are not able to forecast the potential effects of these circumstances on yields

[52, 53].

I.3.23 Reclamation drought index (RDI)

Created to indicate the length and severity of droughts, as well as their beginning and

ending dates. It contains both wet and dry scales and is calculated at the river basin level,

much like the Surface Water Supply Index (SWSI). Evaporation can be included in the

index because of the temperature and water demand components of the RDI [54].

For more information consult [23, 10].
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I.4 Reconnaissance drought index

For our study we are going to be focusing on the Reconnaissance Drought Index (RDI).

This index was given during the MEDROPLAN coordinating meeting [55]. The precipita-

tion to potential evapotranspiration ratio is the basis for this indicator. This index’s PET

(potential evapotranspiration) factor was determined using the FAO Penman-Monteith

equation [56]. [57] updated the RDI index to effective RDI (eRDI). The RDI index gains

foundation because of its small dataset needs, high sensitivity, flexibility, and appropria-

teness for weather unsteadiness [58, 20, 59, 60].

I.5 Literature review

I.5.1 Rationale for choosing the reconnaissance drought index (RDI)

The vast majority of studies in the water resources discipline have recently taken the

RDI into consideration when estimating the severity of droughts :

H. Vangelis et al [61] ; mentioned that in many different geographic locations, a num-

ber of drought indices of differing complexity have been employed. The Reconnaissance

Drought Index (RDI), a potent drought index, has recently gained widespread adoption,

mostly in the arid and semiarid climatic zones. And where the goal was to compare the

RDI results over different reference periods utilizing a few widely used empirical potential

evapotranspiration methods that require the least amount of data.

A. Zarch et al [58] ; examined the variations in the characteristics of drought in va-

rious aridity zones, both with and without taking potential evapotranspiration (PET)

into account, in order to more accurately evaluate drought in a warming climate. The

Standardized Precipitation Index (SPI), which is based just on precipitation, and the

Reconnaissance Drought Index (RDI), which considers PET in addition to precipitation,

are the two drought indices used. The findings showed that, despite both upward and

downward drought trends occurring in every aridity zone, there is no discernible trend

over a substantial portion of the zones. On the other hand, as one approaches the humid

zone from the hyper-arid zone on the extreme left, the agreement between SPI and RDI

decreases.

A Memon and N Shah [62] ; Used RDI and SPI to monitor and compare the drought.

The findings demonstrated that the RDI is more weather-sensitive than the SPI, indicating

that evapotranspiration plays a crucial role in drought assessments. The findings also

demonstrated that while both indices exhibit similar behavior, RDI is more sensitive

since it makes use of potential evapotranspiration under comparable climatic conditions.
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The RDI index is recommended as the suitable drought index for water resource planning

and management in drought surveillance programs based on the study’s findings.

R Mohammed and M Scholz [20] ; stated that in several climate locations, a variety of

intricate drought indexes have been employed. Currently, the semi-arid and dry climato-

logic regions are the main places where the reconnaissance drought index (RDI), which is

thought to be a potent indicator of meteorological drought, is gaining favor. Since evapo-

transpiration (ET) and precipitation (P) are the foundations of the drought severity index

(RDI), the ET estimation impacts the RDI-computed drought severity characterization.

This study uses three of the most popular experimental ET estimations with minimal

data requirements to illuminate how the ET methods, elevation, and climate affect the

RDI annual results.

R Mohammed and M Scholz [63] ; where the goals were set to compute the likely

relative change in the annual streamflow availability of the downstream country under

the combined impacts of climate change ; estimate the expected consequences of climate

change on runoff ; estimate the values of the streamflow drought index (SDI) and the stan-

dardised reconnaissance drought index (RDIst) in relation to the overall effects of climate

change ; determine the expected correlations between the probable future fluctuations in

precipitation (P) and potential evapotranspiration (PET) and the RDIst and SDI ; Assess

the operational probability of failure (OPOF) of reservoirs in light of the overall effects

of climate change and establish correlations that take capacity, yield, and reliability into

account.

R Mohammed and M Scholz [64] ; expressed that it is crucial to assess the effects

of climate variability and provide adequate adaptation strategies by looking into the

spatiotemporal distribution of climate data and their influence on the distribution of

regional aridity and meteorological dryness. The climate variability was assessed using

the coefficient of variation, precipitation concentration index, and anomaly index. The

trend analysis was conducted using Sen’s slope, Mann-Kendall, and homogeneity tests.

The reconnaissance drought index’s alpha form was used to assess the degree of aridity.

On the other hand, three widely used meteorological drought indices—the standardized

reconnaissance drought index, the standardized precipitation index, and the standardized

precipitation evapotranspiration index—were applied to forecast drought occurrences. The

long-term study of climate data revealed that the number of dry years has increased over

time, and the basin has seen consecutive years of drought.

Y Mohammed and A Yimam [60] ; Used monthly rainfall and maximum and minimum

temperature records, to examine the meteorological drought’s intensity, trend, and spa-
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tiotemporal variability. The intensity of the drought at three and twelve-month intervals

was calculated using the Reconnaissance Drought Index (RDI). The trend of the RDI

time series’ changes was ascertained using the Mann-Kendall trend test. Using ArcGIS’s

spatial analyst tool, the inverse distance weighted (IDW) method was used to interpolate

the spatial extent of droughts. The research area’s results showed that various intensity

and trend signals occurred throughout the year and in different places. All stations recor-

ded 33 extreme drought months in the summer and 168 extreme drought months in the

year.

N Arain et al [59] ; assessed past droughts in Pakistan’s Sindh region’s Tharparkar

district. To evaluate the drought, two methods were used : the Standardized Precipita-

tion Index and the Reconnaissance Drought Index (RDI). SPI and RDI were computed

using monthly precipitation (mm) and temperature data spanning 35 years. Based on

the findings, it is suggested that RDI and SPI be used for planning water resources and

mitigation as well as for monitoring the region’s drought.

I.5.2 Investigating the relationship between atmospheric circulation indices

and drought indices

However, while previous studies primarily focused on drought indices, our approach

extends beyond this scope. In our research, we not only emphasize the significance of

drought indices but also prioritize the identification and understanding of atmospheric cir-

culation patterns that lead to drought events. Leveraging artificial intelligence techniques,

we integrate atmospheric circulation data to enhance drought prediction accuracy. Our

methodology incorporates the reconnaissance drought index to pinpoint specific atmos-

pheric circulation patterns influencing drought occurrences. This comprehensive approach

not only improves prediction accuracy but also enhances adaptability, flexibility, and the

ability to recognize complex patterns in drought dynamics. While similar studies have

been conducted worldwide and we enumerate the following :

I.5.2.1 Changes in meteorological drought in the Huai river basin, China

Y Yin et al [65] explore the relationship between circulation patterns and recent varia-

tions in meteorological drought in the Huai River basin (HRB), China. Despite extensive

research, the link between these patterns and drought changes remains underexplored.

The study examines summer drought changes in HRB and uses a self-organizing map

neural network (SOM) to identify dry and wet circulation patterns (CPs), analyzing the

thermodynamic and dynamic effects. Key findings include :
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• Summer drought in HRB has significantly decreased.

• Changes in historical drought data align with the Standardized Precipitation Eva-

potranspiration Index (SPEI).

• Among twelve CPs identified by SOM, three are categorized as dry and nine as wet.

• The average and longest duration of dry CPs show a significant downward trend,

while wet CPs show an upward trend.

• Wet CPs have recently had longer durations than dry CPs, which have shorter

lifespans.

• Transitions between CPs require a transitional CP, with higher internal transfer

rates within dry and wet CPs.

• Summer drought change is mainly driven by thermodynamic effects (over half of the

total), with dynamic (circulation-related) effects accounting for about one-fourth.

This study highlights the crucial role of thermodynamic effects in summer drought changes

and provides a detailed understanding of circulation patterns influencing drought in the

HRB.

I.5.2.2 Linking SPEI and atmospheric circulation patterns

K Migala et al [66] analyzed the long-term trends and variability of the drought index

SPEI (Standardized Precipitation Evapotranspiration Index) and related meteorological

patterns during extreme wet and dry periods on West Spitsbergen Island (Svalbard) from

1979 to 2019. The study also examined correlations between SPEI values and various

atmospheric circulation indices. Key findings include :

• Positive SPEI values : Linked with 500 hPa geopotential height and precipitable

water anomalies across the North Atlantic, impacting extreme precipitation and wet

conditions.

• Negative SPEI values : Associated with extreme dryness due to high-pressure

systems over Greenland and the central Arctic or high-pressure ridges over Spits-

bergen, preventing moisture from leaving the SW sector.

• Dry summer weather : Related to high-pressure ridges or elevated pressure bet-

ween the Greenland Sea and the Barents Sea, anticyclonic conditions (Ka type), air

advection from the NE–E–SE sector, and negative precipitable water anomalies.

• Wet weather : Caused by positive precipitable water anomalies and cyclonic condi-

tions with atmospheric advection from the SW sector.
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• Climate model predictions : Indicate increased precipitation across all seasons,

with the largest increases in the northeast and the least in the southwest. Changes

in atmospheric circulation and baric fields will alter the regional distribution of the

drought index.

This study emphasizes the influence of atmospheric circulation patterns on drought and

wet conditions in Svalbard, highlighting the complexity of climate dynamics in polar

regions.

I.5.2.3 Investigating anthropogenic and natural influences

E Cherenkova [67] examined the influence of anthropogenic (results from the influence

of human beings on nature) factors and natural climate variability on atmospheric circu-

lation restructuring and the changes in summer drought features from the mid-20th to

early 21st centuries, particularly their connection to large-scale atmospheric circulation.

Key findings include :

• Repeating drought patterns : Summer droughts affecting more than 20% of

land have occurred almost yearly since the mid-2000s, similar to patterns seen in

the 1950s and 1960s. Since 2006, widespread droughts covering more than 50% of

land have become more frequent, occurring almost annually from 2014 to 2021.

• Circulation patterns and drought occurrence : Large-scale droughts predo-

minantly occurred during severely negative phases of the West Pacific (WP) and

Eastern Atlantic/Western Russia (EAWR) circulation patterns. Statistically signifi-

cant increases in drought frequency were noted during negative stages of the EAWR

and WP patterns across consecutive summer months.

• Increased stability and causes : The increased stability of atmospheric condi-

tions conducive to drought development is indicated by the simultaneous negative

phases of both EAWR and WP during successive summer months. The positive

phase of the Atlantic Multidecadal Oscillation (AMO), enhanced summertime heat,

and decreased zonal atmospheric circulation in the Northern Hemisphere correlate

with more frequent widespread droughts.

• Link to AMO and anthropogenic warming : There is a high correlation bet-

ween EAWR, North Atlantic multidecadal variability, and the increased frequency

of significant summer droughts in southern European Russia during the positive

AMO phase. This linkage is due to known changes in atmospheric circulation and

anthropogenic warming.
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This study highlights the complex interplay between anthropogenic influences, natural cli-

mate variability, and large-scale atmospheric circulation patterns in shaping the frequency

and severity of summer droughts.

I.5.2.4 Characterization and trends in drought patterns

H Bouguerra et al [68] utilized the Standardized Precipitation Index (SPI) to characte-

rize meteorological droughts in northern Algeria from 1948 to 2005 at both seasonal and

annual time scales. Principal Component Analysis (PCA) was employed to identify sub-

regions affected by droughts, evaluate long-term temporal trends, and explore potential

connections between large-scale atmospheric circulation patterns and drought variability.

Key findings include :

• Identification of sub-regions : Four distinct drought sub-regions (RPCs) were

identified in northern Algeria : central and eastern coastal, western, eastern, and

west-central southern regions. These sub-regions exhibited different patterns of

drought variability, determined through PCA and SPI analysis.

• Temporal variability : RPC1 and RPC3 sub-regions showed significant temporal

variability, indicating seasonal variations in rainfall.

• Association with atmospheric circulation patterns : Drought variability was

linked to atmospheric circulation patterns, particularly the North Sea Caspian Pat-

tern (NCP) and Eastern Mediterranean Pattern (EMP), which influence drought

prevalence in various sub-regions.

• Correlation with atmospheric indices : At both seasonal and annual time

scales, several atmospheric indices (e.g., SOI, NAO, MOI1, MOI2, TPI, WI) demons-

trated significant correlations with drought variability across different sub-regions.

• Implications for drought forecasting and Water resource planning : The

study highlighted the importance of improved drought forecasting and water re-

source planning to enhance resilience against severe drought events, especially in

regions with increasing drought trends like northwest Algeria. Understanding the

spatial and temporal patterns of drought and their relationship with atmospheric

circulation is crucial for effective management and planning.

This comprehensive analysis provides valuable insights into the spatiotemporal dynamics

of drought in northern Algeria and underscores the critical role of atmospheric circulation

patterns in influencing drought variability.
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I.5.2.5 Long-term precipitation forecasting using artificial neural networks

and multi-regression analysis for Maharloo lake, Iran

K Sigaroodi et al [1] investigated long-term precipitation forecasting for Maharloo Lake

in Iran, focusing on improving drought risk management using multi-regression analysis

and artificial neural network (ANN) approaches.Key findings include :

• Methodology :

• Climatic indices selection : Out of forty indices, the most relevant were

selected using cross-correlation and stepwise regression.

• Prediction models : Two models were utilized : Multi-Regression Stepwise

Method and ANN. The performance of these models was compared using ob-

served rainfall data.

• Important climatic indices : El Niño, Pacific North America (PNA), and North

Atlantic Oscillation (NAO) were identified as significant influencers of precipitation

in the region.

• Model Performance :

• ANN superiority : The ANN model outperformed the multi-regression model

in precipitation forecasting, confirmed by metrics such as root mean square

error (RMSE), Nash-Sutcliffe efficiency, and R² (coefficient of determination).

• Seasonal accuracy : ANN showed higher accuracy in predicting rare rainfall

occurrences during dry months (June to October), with the highest accuracy

in September and the lowest in March.

• Correlation findings : A significant correlation was found between monthly pre-

cipitation anomalies and meteorological indices for the ten months prior.

• Recommendations :

• The study highlighted the need for further research to understand better the

relationship between climatic indices and precipitation, acknowledging some

uncertainties due to coarse data and system complexity.

• Incorporating additional climatic and physiographic factors, such as wind pat-

terns and physiography, could enhance model accuracy.

These insights contribute to more accurate long-term precipitation forecasting and im-

proved drought risk management for Maharloo Lake.
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I.5.2.6 Investigating large-scale heavy precipitation events and circulation

types

In their 2024 study, R Bernova and J Kysely [69] propose a criterion for identifying

large-scale heavy precipitation events (LHPEs) that considers both precipitation amounts

and the affected area’s extent, aiming for easy application to model simulations. They exa-

mined the characteristics of LHPEs across the Czech Republic and their connection to

circulation indices, highlighting differences between the western and eastern regions in-

fluenced by Atlantic and Mediterranean factors, respectively. The research aims to shed

light on the primary factors driving LHPE occurrences in the area. Furthermore, the study

assesses the capability of CORDEX RCMs in capturing the fundamental links between

circulation patterns and precipitation, identifying potential discrepancies in simulated

relationships and paving the way for model enhancements. This work serves as a foun-

dational step towards developing future climate scenarios for LHPEs, with a focus on

addressing limitations and uncertainties inherent in climate model simulations.

I.5.2.7 Understanding extreme weather events in the Yangtze river valley

In their study, Z Qian et al [70] investigated the profound impacts of heat waves,

droughts, and compound drought and heat waves (CDHWs) on various sectors, emphasi-

zing agriculture, ecosystems, human health, and societal well-being. key findings :

• Indexes computation : The authors computed the heat wave magnitude index

(HWMI), drought magnitude index (DMI), and compound drought and heat wave

magnitude index (CDHMI) for the Yangtze River Valley (YRV) from July to August

between 1961 and 2022.

• Atmospheric circulation characteristics : They compared the large-scale at-

mospheric circulation characteristics during different extreme events using the com-

puted indexes.

• Heat wave events : Heat wave events were found to be favored by a positive center

with sinking motion in East Asia.

• Drought events : Droughts were mainly influenced by a zonal wave train cha-

racterized by a significant negative anomaly in Siberia, along with a high-pressure

anomaly upstream and anticyclonic water vapor with strong divergence over the

Yangtze River basin.

• Compound drought and heat wave events : During CDHW events, both ano-

malous systems affecting heat waves and droughts were observed to occur and streng-
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then simultaneously.

• Interaction of circulation patterns : The positive anomaly and water vapor ano-

maly brought by two circulation patterns at different latitudes were superimposed

over the YRV, leading to severe CDHWs.

• Stable pressure features : Warm positive eddy (a swirling motion of fluid) cen-

ters and cold negative eddy centers in high latitudes exhibited more stable positive

pressure features, contributing to the persistent development and strengthening of

CDHWs.

• Sea surface temperature influence : Anomalous warm sea surface temperatures

in the western Pacific, moderating favorable circulation patterns, were found to

potentially promote the occurrence of CDHWs in the YRV during the same period.

These findings provide insights into the complex dynamics of extreme events in the YRV,

shedding light on the interconnectedness of atmospheric circulation patterns and the oc-

currence of heat waves, droughts, and CDHWs.

I.5.2.8 Investigating Interdecadal Variability of Summer Precipitation in

Northwest China

T Xue et al [71] delved into the interdecadal variability of summer precipitation in

Northwest China, utilizing daily precipitation data from 149 rain gauge sites in China

and NCEP–NCAR reanalysis data spanning from 1961 to 2018. key findings include :

• Shift to rainy period : Northwest China experienced a shift to a rainy period on

the interdecadal timescale starting in 1987, characterized by an increase in precipi-

tation intensity and quantity.

• Rainfall patterns : There was a notable increase in the likelihood of moderate,

heavy, torrential, and extremely heavy rain, coupled with a decrease in the likelihood

of light rain. Heavy rainfall events contributed significantly to the overall increase

in precipitation.

• Atmospheric circulation features : Interdecadal variability in atmospheric cir-

culations over midlatitude Eurasia during summer revealed the prominence of the

Silk Road pattern (SRP), featuring enhanced ascending motion and atmospheric

instability in Northwest China. Strengthened easterly winds due to the Mongolian

anticyclonic anomaly and circulation anomalies over central Asia and Mongolia were

also noted.
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• Water vapor transport : The rise in summer precipitation was attributed to

increased water vapor transported by easterly winds from the Pacific, Indian, and

South China Sea to Northwest China, particularly on the south side of the Mongolian

anticyclone.

• Role of atlantic multidecadal oscillation (AMO) : The study highlighted the

transition of the AMO to a positive phase as a major factor influencing the rise

in precipitation. This transition impacted the SRP, contributing to the observed

interdecadal variability.

Through their comprehensive analysis, [71] shed light on the complex interplay of atmos-

pheric circulation patterns and oceanic oscillations in driving interdecadal variations in

summer precipitation over Northwest China.

I.5.2.9 Impact of atmospheric circulation on dry and wet periods in Kujawy

region, Poland

The impact of atmospheric circulation on the occurrence of dry and wet periods in

the Kujawy region of central Poland was presented by [72]. Monthly totals of precipita-

tion from 10 meteorological stations between 1954 and 2018 were used. The Standardized

Precipitation Index (SPI) monthly measurements were used to identify both dry and wet

seasons. In addition, the atmospheric circulation indices—western (W), southern (S), and

cyclonicity (C)—were calculated using the calendar of circulation types over Central Po-

land. According to the data that was provided, the area receives less precipitation overall

than the rest of Poland. The circulation indices W, S, and C show that air mass advection

from the West outweighs that from the East in Central Poland. Furthermore, there was a

noticeable increase in the frequency of air entry from the South compared to the North. In

this region of Europe, anticyclonic conditions were shown to occur more frequently than

cyclonic ones. In the research region, anticyclonic circulation—which mostly involved air

influx from the North and enhanced westerly circulation—was clearly dominant during

dry spells. On the other hand, cyclonic circulation during the advection of air masses from

the South and West was the primary factor influencing the occurrence of wet spells. 28

percent and 27 percent of the study period, respectively, were made up of dry and wet

periods.

I.5.2.10 Understanding hydroclimate variability in the Nile river basin

H Mahmoud et al [73] investigated the causes of periodic droughts and hydroclimate

fluctuations in the Nile River Basin (NRB), which remain poorly understood. Notable
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hydroclimatic changes since the 1970s have led to increased aridity in the basin, influenced

by global warming and changes in the strength of ENSO and the Indian Ocean Dipole

(IOD). Key Findings :

• Hydroclimate variability in the NRB has been significantly influenced by warming,

El Niño, and IOD, with IOD having a greater effect over longer timeframes.

• Positive phases of ENSO and IOD lead to stronger impacts on the NRB hydroclimate

than negative phases.

• Changes in regional atmospheric circulations during persistent and stronger El Niño

events contribute to a drier NRB, evidenced by anomalies in stream function, geo-

potential height, and U-wind.

• Increased frequency and severity of El Niño and IOD events since the 1970s have

resulted in more severe droughts in the NRB.

• Nile flow is better predicted by IOD and the western pole of the Indian Ocean Dipole

(WIO) than by El Niño, with a significant decline in flow after 1964.

• Future droughts in the NRB are predicted to worsen due to the combined effects of

warming, higher IOD, and El Niño.

The study provides insights into the complex interactions driving hydroclimate variability

in the NRB, highlighting the importance of understanding and mitigating the impacts of

climate change on water resources in the region.

I.6 Linking meteorological drought to agricultural drought

Furthermore, we expand on the domain of agricultural drought using one- and three-

month time frames. This emphasis stems from the knowledge that agricultural drought

repeatedly precedes meteorological drought, which affects crop output and food security.

Our goal is to give the agricultural community more quick and useful insights by utilizing

shorter time spans. [74] assert that understanding the relationship between agricultural

dryness and climatic conditions is essential for managing resources and intervening in

time. Our research thus provides a comprehensive strategy to drought management and

mitigation by addressing not only the climatic causes to drought but also extending its

applicability to agricultural environments.

Y Zhang et al [74] examined the ideal time-scale for the Standardized Precipitation

Index (SPI) to be used in the Huang-Huai-Hai (HHH) region for early drought identifica-

tion, focusing on summer maize. Previous studies typically computed SPI across various
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time intervals, but longer time-scales were deemed inappropriate for maize due to its shor-

ter growth phase. Early detection of meteorological drought is crucial as it often precedes

agricultural drought, impacting crop production.

Key Findings :

• The 10-day SPI (SPI10) was identified as the best index for drought identification,

exhibiting the highest sensitivity (77.72%) and accuracy (95.8%).

• SPI10 detected dryness 0–16 days before the observed onset date, enabling almost

real-time monitoring and early warning for summer maize drought disasters in the

HHH region.

• Sensitivity and accuracy of drought identification were evaluated across SPI time-

scales ranging from 5 to 180 days, with SPI10 outperforming other intervals.

• The study underscores the need to tailor SPI time-scales to the growth phases of

crops like maize and emphasizes the importance of meteorological drought signals

in mitigating agricultural drought effects.

By focusing on shorter SPI time-scales and early drought detection, this research pro-

vides valuable insights for strengthening agricultural resilience and implementing early

warning systems in the HHH region, ultimately contributing to better crop production

management and disaster prevention.

Conclusion

In conclusion, this chapter has provided a comprehensive overview of the current un-

derstanding of drought, emphasizing its multifaceted nature and far-reaching impacts

on ecosystems, agriculture, water resources, and socio-economic systems worldwide. We

have explored various forecasting techniques, including physical-based models, machine

learning approaches, and statistical methodologies, each with its unique benefits and chal-

lenges.

Furthermore, we have searched for the importance of drought indices in assessing and

quantifying drought conditions, with a particular focus on the Reconnaissance Drought

Index (RDI). Through reviewing existing studies and emerging research, we have high-

lighted the significance of integrating atmospheric circulation indices with the RDI to

enhance our understanding of drought dynamics and improve forecasting accuracy.

Our research aims to fill the gap in meteorological drought forecasting in Algeria by

utilizing artificial intelligence techniques and the RDI. By identifying the atmospheric

circulation indices responsible for drought in the region, we seek to tailor our approach
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to the unique environmental and climatic conditions of Algeria. Additionally, our study

extends its scope to agricultural drought, recognizing the importance of early warning

systems and resilience-building measures for agricultural sustainability.

By synthesizing literature and current research trends, our chapter contributes to the

broader discourse on drought assessment and prediction, while also laying the groundwork

for our subsequent methodology. Through collaboration and innovation, we aim to develop

more accurate forecasting models and enhance drought mitigation strategies, ultimately

fostering resilience in the face of this critical global challenge.
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Introduction

Algeria’s northwest region is a vibrant and diverse region distinguished by its distinct

climate, geology, and geography. This chapter offers an overview of the research region,

exploring its location, boundaries, geological features, land use and cover, elevation, slope,

stream network, and climate. Gaining a comprehensive grasp of the environmental dy-

namics of the area requires a comprehension of these essential concepts. We highlight

the complexity of the region using detailed maps and analyses created using Geographic

Information Systems (GIS) and several data sources.

II.1 Geographical location and delimitation

In this study, we focus on the northwest region of Algeria, The study area covers ap-

proximately 132,100 km². It is located between 2°10’10" West and 3°10’11" East longitude,

and between 33°18’54" and 36°4812" North latitude Figure II.1. It stretches over 250 km

from south to north and about 500 km from west to east [75, 76]. The region is delimited

by the Mediterranean Sea to the north, the Algerian Sahara to the south, Morocco to the

west, and Algiers, Bouira, Bou Saâda, and Biskra to the east. As shown in Figure II.1,

this map was created using GIS software. The northwest of Algeria includes the following

watersheds : Coastal West Oran, Tafna, Coastal Center Oran, Coastal East Oran, Macta,

Oran Highlands, and Chélif. Additionally, this region partially contains the watersheds of

Isser, Chott el Hodna, Coastal West Algiers, Zahrez, and Chott Melrhir.

Figure II.1 — Northwest of Algeria (m)
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II.2 General Characteristics of the northwest of Algeria

II.2.1 Geology

Geology, the study of Earth’s physical structure and substance, serves as a fundamental

pillar in understanding the landscape and natural resources of a region. It provides insights

into the formation of rocks, minerals, and landforms, offering critical information for

resource management, environmental conservation, and hazard assessment.

The geologie of the northwest region of Algeria is summarized in the Table II.1, which

presents the area percentage for each class :

Table II.1 — Area percentage of different geological classes

Class Area percentage

Sea 0.46

Tertiary Igneous 0.03

Tertiary 46.99

Cretaceous 11.85

Holocene 1.80

Lower Cretaceous 10.60

Precambrian 0.13

Lower Jurassic 0.52

Carboniferous-Devonian 0.04

Jurassic 11.91

Triassic 0.70

Quaternary (undivided) 11.45

Paleozoic Igneous 0.06

Cretaceous-Jurassic 0.17

Quaternary Igneous 0.41

Carboniferous 0.04

Pleistocene 2.58

Jurassic-Triassic 0.01

Devonian 0.13

Mesozoic Igneous 0.02

Silurian 0.009

The geological composition of the northwest region of Algeria, derived from GIS-based

mapping, reveals a diverse and complex geological history. The region is predominantly
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covered by Tertiary formations, accounting for approximately 47% of the area, highlighting

the significance of this period. Significant contributions from the Cretaceous (11.85%)

and Jurassic (11.91%) periods also play a crucial role. Additionally, the region features

various other geological classes, such as Holocene, Precambrian, Carboniferous-Devonian,

and Quaternary formations, indicating a dynamic geological past with multiple eras of

sedimentation, erosion, and tectonic activity.

Minor contributions from igneous formations and sparse representations of certain

classes like Silurian and Devonian add to the region’s geological diversity. This varied

geological composition has significant implications for the region’s hydrology, soil types,

and potential natural resources. Understanding these formations is essential for effective

resource management and environmental conservation.

The Figure II.2 presents a geological map of the region, offering a visual representation

of its diverse geological characteristics, was created utilizing GIS software.

Figure II.2 — Geology map of the northwest of Algeria

II.2.2 Land use and land cover

Understanding the land use and land cover of a region is crucial for comprehending its

environmental dynamics and human interactions. Land use refers to the human activities

that take place on the land, such as agriculture, urbanization, and industrial development,

while land cover describes the physical material covering the Earth’s surface, including

vegetation, water bodies, and built-up areas.

The land use and land cover of the northwest of Algeria are summarized in the Table

II.2, which presents the area percentage for each class :
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Table II.2 — Land use and land cover area percentages

Class Area percentage

Water 0.13

Trees 4.08

Flooded vegetation 0.005

Crops 13.18

Built Area 3.02

Bare ground 4.45

Rangeland 75.10

From the table, it is evident that the largest land cover is rangeland, accounting for

approximately 75% of the area. This is followed by crops at around 13%, and built-up

areas at 3%. Bare ground and trees each cover about 4% of the region, while water and

flooded vegetation cover very small portions.

The Figure II.3 is a land use and land cover map that provides a visual representation

of the data presented in the table, was created utilizing GIS software from Sentinel 2

Land-use/Land-cover (10m). [77].

Figure II.3 — Land use, land cover map of the northwest of Algeria

II.2.3 Elevation

Elevation data is fundamental in understanding the topography and landscape of a

region. It affects climate, vegetation, and human activities, influencing everything from

agricultural suitability to urban planning and infrastructure development. Higher eleva-

tions typically experience cooler temperatures and different precipitation patterns com-

pared to lower areas. Understanding the elevation variations within a region can provide
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valuable insights into its environmental and developmental characteristics.

The elevation of the northwest region of Algeria ranges from 2112 meters above sea

level to -13 meters below sea level. The Figure II.4 is an elevation map, providing a visual

representation of the region’s topography. This map was created using data from the

United States Geological Survey (USGS), utilizing GIS software.

Figure II.4 — Elevation map (m) of the northwest of Algeria

II.2.4 Slope

The slope of a region is a crucial factor in understanding its topography and landscape.

It influences various environmental and geological processes, including water runoff, soil

erosion, and vegetation distribution. Analyzing the slope can provide insights into the

region’s potential for agriculture, construction, and land management. The following figure

presents a slope map of the northwest region of Algeria, illustrating the gradient and

steepness of the terrain.

In the northwest region of Algeria, significant variations in slope are observed, generally

in the north and particularly in the northeastern and northwestern parts of the region

where steep inclines prevail. The Figure II.5 visually illustrates the gradient and steepness

of terrain across the northwest region, providing valuable insights into the topographical

characteristics that influence the region’s environmental and socio-economic dynamics,

was created utilizing GIS software.
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Figure II.5 — Slope map (◦) of the northwest of Algeria

II.2.5 Stream network

The Figure II.6 provides a visual representation of the stream network within the

northwest region of Algeria, was created utilizing GIS software.

Figure II.6 — Stream network map of the northwest of Algeria (m)

The stream network of a region serves as a vital component of its hydrological cycle,

shaping the landscape and influencing ecological processes, water availability, and human

activities. Streams, rivers, and watercourses form interconnected networks that channel

surface water runoff, transporting sediments, nutrients, and pollutants across the land-

scape. Understanding the stream network of a region provides valuable insights into its
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hydrological dynamics, watershed boundaries, and freshwater ecosystems.

II.2.6 Climatology

A temperate climate, comparatively high humidity, and an annual precipitation range

of 400 mm in the west to 900 mm in the east define the coastal region [76]. Algeria’s

northwest is latitude-wise, protected by Morocco’s Middle Atlas-Rif mountain range. Nu-

merous shelters from marine effects are provided by the study area’s difficult topography

[76, 78]. These two elements have a direct impact on the geographical variability of rainfall

and help to lower the local precipitation levels. The east winds, which bring heavy rains,

are uncommon in the winter and mostly originate from the west-northwest. Summertime

brings regular northeastern winds that provide mild rain. The Azores High and the Sa-

haran High have an impact on atmospheric circulation [76, 78]. Algeria’s northern region

experiences hot, dry summers and comparatively cold, rainy winters due to its Mediter-

ranean climate. Along the shore, annual rainfall amounts to 400 mm in the west, 700 mm

in the center, and 1,000 mm in the east. The Tell Atlas mountain ranges are similarly

impacted by this climate ; in the eastern summits, total rainfall ranges from 800 to 1,600

mm, while values decrease towards the middle (700 to 1,000 mm) and the west (600 mm).

The Tell Atlas plains experience 500 mm of rainfall in the west, 450 mm in the center, and

700 mm in the east. Because to its distance from the sea, the Saharan Atlas has milder

winters with less rainfall than the north and extremely hot and dry summers [79, 80, 76].

Conclusion

In conclusion, the northwest region of Algeria is a multifaceted area with a rich geolo-

gical composition, varied land use patterns, diverse topography, and complex hydrological

networks. The region’s Mediterranean climate, influenced by its proximity to the Mediter-

ranean Sea and the Middle Atlas-Rif mountain range, results in significant spatial varia-

bility in precipitation and weather patterns. These factors collectively shape the region’s

environmental and socio-economic landscape, impacting everything from agriculture and

urban development to natural resource management and environmental conservation. By

understanding these characteristics, we can better appreciate the challenges and oppor-

tunities faced by the northwest region of Algeria, laying the groundwork for informed

decision-making and sustainable development initiatives.
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Introduction

We undertake an in-depth look of the research procedures that serve as the foundation

for our work in this chapter. We begin with an in-depth analysis of our foundational da-

tasets, which include atmospheric circulation indicators, average minimum and maximum

temperatures, and rainfall records. We identify the complex patterns and trends contai-

ned in these datasets through rigorous statistical analysis and graphical representations,

offering a strong basis for additional study.

The reconnaissance drought index (RDI) is then discussed, along with its definition, the

reasons it was created, and the methods used to calculate it. By clarifying the role of

the RDI in drought assessment, we also set the foundation for our efforts in predictive

modeling.

Next, we shift our focus to a summary of atmospheric circulation indices, delving into the

computation techniques and definitions of the used indices. This chapter contributes to

our understanding of meteorological processes by providing insightful information about

the complex relationships between atmospheric events and drought occurrences.

We follow-up on to the topic of artificial intelligence (AI), covering both basic ideas and

cutting-edge techniques with an emphasis on machine learning. Highlight its advantages,

disadvantages, and special applications.

In the context of machine learning, we focus on the Random Forest method, which is

well-known for its adaptability and ability to make accurate predictions. By clarifying its

theoretical foundations and useful benefits, we give ourselves an effective tool for modeling

drought prediction.

Finally, we combine all of the approaches mentioned into a unified modeling framework.

By using a methodical procedure that includes preprocessing data, training models, and

evaluating them, we want to create prediction models that can identify meteorological

drought and how it affects agricultural sustainability.

III.1 Data processing

In this section, we cover the intricacies of data processing, a pivotal step in our metho-

dology aimed at extracting meaningful insights. Firstly, the meteorological observations

collected at four key stations : Chlef, Maghnia, Oran, and Saida. These stations have been

strategically selected to represent the climatic diversity of the northwest region of Algeria,

each contributing valuable data to our study, the data was collected from the National Me-

teorological Office Algeria (Office National de Météorologie Algérie). And where the gaps
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were filled using the methods and datasets [81, 82, 83]. Secondly, regarding atmospheric

circulation indices : Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO),

Paris-London Westerly Index (WI), Mediterranean Oscillation Indices (MOI),North Sea

Caspian Pattern (NCP) and Trans Polar Index (TPI), the data was collected from [84].

These indices going to be defined later on.

III.1.1 Meteorological data

Figure III.1 — Rainfall in mm for stations : Chlef, Maghnia, Oran and Saida

Our analysis begins with a comprehensive statistical analysis of the rainfall and tem-

perature data recorded at each station. And a representation of the data for 45years from

1960 to 2005. These statistics and representation offer critical insights into the climatic
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characteristics of the region, including average precipitation levels, temperature fluctua-

tions, and seasonal variations.

Furthermore, providing a precise locational information within the study area. By un-

derstanding the spatial distribution of our data collection points, we ensure comprehensive

coverage of the region’s climatic variability.

The Graphs in Figure III.1, Figure III.2 and Figure III.3 gives an overview of the data

for the period from 1960 to 2005. Firstly, the rainfall graphs. Secondly, average, minimum

and maximum temperature graphs. Finally, a map that gives a visual representation on

the region for rainfall.

Figure III.2 — Average, minimum and maximum temperature for stations : Chlef,

Maghnia, Oran and Saida
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Figure III.3 — Rainfall map in (mm) of the northwest of Algeria

The histograms shown in Figure III.4, Figure III.5, Figure III.6 and Figure III.7 gives

a representation of average annual rainfall (1960-2005) for each station. The histograms

shown in Figure III.8, Figure III.9, Figure III.10 and Figure III.11 gives a representation

of average monthly temperatures (1960-2005) for each station.

Figure III.4 — Average annual rainfall in (mm) of Chlef
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Figure III.5 — Average annual rainfall in (mm) of Maghnia

Figure III.6 — Average annual rainfall in (mm) of Oran

Figure III.7 — Average annual rainfall in (mm) of Saida
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Figure III.8 — Average monthly temperature in °C of Chlef

Figure III.9 — Average monthly temperature in °C of Maghnia

Figure III.10 — Average monthly temperature in °C of Oran
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Figure III.11 — Average monthly temperature in °C of Saida

The average monthly temperature histograms shown in Figure III.8, Figure III.9,

Figure III.10 and Figure III.11, display distinct seasonal patterns. Winter temperatures

(December to February) are mild for Chlef, Maghnia, and Oran, ranging from about 10°C

to 12°C, while Saida is cooler, ranging from 8°C to 10°C. Spring (March to May) sees a

steady increase in temperatures, peaking in May at around 18°C to 20°C for Chlef and

Maghnia, and slightly lower for Oran and Saida. The summer months (June to August)

are the hottest, with Chlef and Saida experiencing the highest temperatures, around

29°C and 27°C, respectively. Autumn (September to November) shows a gradual decline

in temperatures, from around 23°C in September to 13°C to 15°C in November. Overall,

Chlef and Maghnia have higher summer temperatures, while Saida remains the coolest

station year-round. The histograms illustrate these seasonal trends, with noticeable peaks

in summer and troughs in winter.

For the average annual rainfall histograms shown in Figure III.4, Figure III.5, Figure

III.6 and Figure III.7, reveal distinct patterns and variations over the 45-year period

from 1960 to 2005. Chlef experiences considerable fluctuations, with notable peaks in

years like 1963 (569 mm) and 1969 (600.1 mm), while also having lower precipitation

years like 1970 (261 mm) and 1994 (229 mm). Maghnia shows similar variability, with

the highest precipitation in 1973 (668.2 mm) and the lowest in 1983 (160.1 mm). Oran

generally receives less precipitation, with significant highs in 1969 (632.8 mm) and

lows in 1983 (171 mm). Saida tends to have a moderate to high range of precipitation,

peaking in 1976 (705.7 mm) and dropping to its lowest in 1983 (96.7 mm). Across all

stations, there are evident periods of increased precipitation in the late 1960s and early

1970s, contrasted by drier periods in the early 1980s and mid-1990s. These histograms

highlight the inter-annual variability and distinct precipitation patterns experienced by
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each station.

Next, geographical coordinates of each station are presented in the Table III.1

Table III.1 — Geographical coordinates and altitudes for each station

/ Chlef Maghnia Oran Saida

Latitude 36.22 34.81 35.63 34.88

Longitude 1.32 -1.78 -0.61 0.16

Altitude 150 428 90 751

III.1.2 Statistics of atmospheric indices

Understanding atmospheric indices is crucial for comprehending climate dynamics and

predicting future climatic conditions. These indices serve as key indicators of various

atmospheric phenomena, such as temperature anomalies, precipitation patterns, and at-

mospheric circulation. By analyzing these indices over time, we can discern long-term

trends and fluctuations in the Earth’s climate system.

In this subsection, we explore nine significant atmospheric indices and their historical

trends from 1960 to 2005. Through graphical representations and statistical analysis, we

aim to provide insights into the changing dynamics of these indices and their implications

for global climate patterns. The Figure III.12 offers a visual narrative of how these indices

have evolved over the decades.

The Table III.2 gives a statistical representation of each atmospheric circulation index.

Table III.2 — Statistics of atmospheric circulation indices

/ NAO SOI TPI WeMOi NCP WeI EMP MOI1

Count 552 552 552 552 552 552 552 552

Mean 0.024 -0.206 0.119 0.245 0.020 -0.009 -182.921 -0.008

Std 1.730 1.107 1.480 1.080 0.932 0.383 74.321 0.467

Min -4.704 -3.463 -4.380 -3.210 -2.520 -1.256 -395.300 -1.389

25% -1.126 -0.883 -0.845 -0.480 -0.573 -0.251 -230.875 -0.325

50% 0.043 -0.165 0.295 0.265 0.030 0.013 -183.470 0.002

75% 1.202 0.555 1.093 0.952 0.650 0.251 -130.975 0.342

Max 5.258 2.847 4.200 3.960 2.420 1.077 76.419 1.243
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Figure III.12 — Atmospheric circulation indices

III.2 Reconnaissance drought index

III.2.1 Development and motivation behind the reconnaissance drought in-

dex (RDI)

The development of the reconnaissance drought index (RDI) stems from the necessity

to address the complexities of characterizing meteorological droughts accurately. While

the standardized precipitation index (SPI) has gained popularity due to its minimal data
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requirements and established drought thresholds, it primarily focuses on precipitation

data alone, overlooking the intricate balance between input and output factors in drought

assessment [55, 40, 85].

Recognizing the fundamental importance of considering both precipitation (input) and

potential evapotranspiration (PET) (output), the RDI seeks to provide a more compre-

hensive approach to drought evaluation. By assessing the equilibrium between these key

meteorological parameters, the RDI acknowledges the essential role of PET in representing

the atmosphere’s intensity in extracting water from the environment [55, 40, 85].

Moreover, the RDI acknowledges that the effectiveness of precipitation varies across

different systems and environments. Instead of relying solely on recorded precipitation

data, the RDI accounts for the portion of precipitation that is truly beneficial and utilized

by the system under study, such as infiltrated precipitation in rainfed agricultural areas

[55, 40, 85].

For practicality and simplicity, the RDI primarily considers recorded precipitation and

potential evapotranspiration, calculated preferably through established methods such as

the Thornthwaite formula or evaporation from a class A pan. This streamlined approach

ensures that only readily available precipitation and temperature data are essential for the

analysis, facilitating widespread applicability and accessibility of the index [55, 40, 85].

In summary, the motivation behind the creation of the RDI lies in the recognition of

the inherent complexities of meteorological drought assessment and the necessity for a

comprehensive index that accounts for both input and output factors in drought charac-

terization. This motivation, as articulated by [55, 40, 85] underscores the importance of

developing innovative approaches to address the challenges of drought monitoring and

management.

III.2.2 Reconnaissance drought index advantages

• Physically sound calculation : The RDI calculates the aggregated deficit between

precipitation and the evaporative demand of the atmosphere, ensuring a physically

sound assessment of drought conditions.

• Flexible time periods : It can be calculated for any period of time, such as

monthly, bi-monthly, or seasonal intervals, allowing for customized analyses based

on specific needs and data availability.

• Meaningful results : The calculation always leads to a meaningful figure, providing

clear and interpretable indicators of drought severity.

• Effectiveness in agricultural context : The RDI can be effectively associated
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with agricultural drought, making it a valuable tool for assessing the impact of

drought on agricultural systems and informing related management decisions.

• Link to climatic conditions : It is directly linked to the climatic conditions of

the region, allowing for comparisons with established indices such as the FAO Ari-

dity Index. This linkage enhances its relevance and applicability to specific climatic

contexts.

• Utility in examining climate instability : The RDI can be used under "climate

instability" conditions to examine the significance of various changes in climatic

factors related to water scarcity, providing insights into evolving drought patterns

and trends.

Based on these advantages, the RDI emerges as an ideal index for the reconnaissance

assessment of drought severity, particularly in large geographical areas like the Mediter-

ranean region. Its comprehensive approach, flexibility in calculation, and direct relevance

to agricultural and climatic conditions make it a valuable tool for drought monitoring and

management.

Moreover, in regions like the Mediterranean where droughts are often accompanied by

high temperatures and increased evapotranspiration rates, the RDI’s sensitivity to both

precipitation and evaporative demand makes it more effective than indices solely based on

precipitation, such as the SPI. This heightened sensitivity enhances its ability to accurately

capture and assess drought conditions, providing valuable insights for decision-makers and

stakeholders [86].

III.2.3 Reconnaissance drought index calculations

The Reconnaissance Drought Index (RDI) is calculated in three stages : Initial value

of RDI (a0), normalized RDI (RDIn), and standardized RDI (RDIst). Initial value may be

calculated for each month, seasons (3-month, 4-month, etc.), or hydrological year. The a0

is calculated by using the Equation (III.1) [85, 87] :

a
(i)
0 =

∑12
j=1 Pij∑12

j=1 PETij

, i = 1, . . . , N and j = 1, . . . , 12 (III.1)

Where Pij and PETij are the precipitation and potential evapotranspiration of the jth

month of the ith hydrological year. The hydrological year starts from October. N is the

total number of years of the available data.

A second step, the Normalized RDI (RDIn), is computed using the Equation (III.2) for
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each year, in which it is evident that the parameter a0 is the arithmetic mean of a0 values

[85, 87] :

RDI(i)n =
a
(i)
0

ā0
− 1 (III.2)

The third step, the Standardized RDI (RDIst), is given by the Equation (III.3) :

RDI(i)st(k) =
y
(i)
k − ȳk
σ̂yk

(III.3)

Where yk is ln(a0), ȳk is its arithmetic mean, and σ̂yk is its standard deviation.

The RDI is based on the ratio of two aggregated quantities, which are precipitation and

potential evapotranspiration. It can be estimated for all time scales. However, 3, 6, 9,

and 12 months are suggested since they are more useful for comparing different locations

[40, 88].

III.3 Atmospheric indices

An atmospheric circulation index is a quantitative measure used to describe the pat-

terns and behaviors of large-scale air movement within the Earth’s atmosphere. These in-

dices help in understanding and predicting climatic phenomena by summarizing complex

atmospheric data into more manageable and interpretable forms. Key aspects include :

Definition : Atmospheric circulation indices are numerical representations of atmosphe-

ric patterns, such as pressure systems, jet streams, and wind patterns. They often relate

to specific modes of variability in the atmosphere, like the El Niño-Southern Oscillation

(ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO) [89].

Purpose : These indices are used for predicting weather and climate conditions. By ana-

lyzing past and present values, scientists can forecast atmospheric behavior and its impact

on global weather patterns, such as droughts, storms, and temperature anomalies [90].

Calculation : They are typically derived from various atmospheric parameters, including

air pressure, temperature, wind speed, and precipitation, averaged over specific periods

and geographical areas [91].

Understanding atmospheric circulation indices is crucial for climate science as they

encapsulate the dynamic interactions within the atmosphere that drive weather systems

globally.
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III.3.1 Southern oscillation index (SOI)

The normalized pressure differential between Tahiti and Darwin is known as the SOI.

The SOI values determined at different centers differ slightly in multiple instances. In

this case, we compute the SOI using the technique described by [92]. It was the standard

procedure used by the Climate Analysis Centre in 1987 and involved a second normalizing

phase. Consult [93, 94] for information on the early pressure sources and the procedures

used in the compilation of the series starting in 1866. [92] also conclude that the early

Tahiti data quality is enough for use as a SO index. The pre-1935 data are perhaps a little

less trustworthy than the post-1935 data.

III.3.2 North atlantic oscillation (NAO)

NAO is measured by the difference between the normalized sea level pressure over Gi-

braltar and the normalized sea level pressure over Southwest Iceland. NAO is one of the

main forms of atmospheric variability in the Northern Hemisphere [95]. It is especially

significant during the winter months since it has a significant influence on the Northern

Hemisphere’s climate [96]. According to [97], there is also a significant interdecadal variabi-

lity throughout this season. [98] extended this index back to 1823 using early instrumental

data. The normalized pressure difference between an Icelandic and Azorean station is the

standard definition of the NAO. Using a station in the southwest of the Iberian Peninsula,

an expanded version of the index can be calculated for the winter half of the year [95].

NAO modifications

The NAO modifications by [99] are pivotal in refining historical NAO data. By com-

paring the Gibraltar pressure record with digitized measurements from Cadiz and San

Fernando, they identified discrepancies, particularly between 1821 and 1856. This analy-

sis led to the development of a revised NAO index, incorporating data from Cadiz and

San Fernando for the aforementioned period. Consequently, future NAO reconstructions

benefit from a more robust dataset, offering a stronger foundation for understanding

the NAO’s impact on Northern Hemisphere climate in the 19th century. This enhanced

dataset, which combines measurements from Cadiz, San Fernando, Gibraltar, and Sou-

thwest Iceland, forms the basis of the Iberia/Iceland Monthly NAO Index for the years

1821-1999. Specifically, data from Cadiz and San Fernando are utilized for the period

1821-1856, while later observations are based on measurements from Gibraltar and Sou-

thwest Iceland. Additionally, [100] contribute to the understanding of historical NAO
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variability by reconstructing monthly NAO indices dating back to December 1658. Their

reconstructions, which extend to seasonal estimates from 1500–1658, utilize a standardi-

zed methodology based on pressure differences between grid points over the Azores and

Iceland. This approach, grounded in Principal Component Regression Analysis, provides

valuable insights into the long-term behavior of the NAO and its implications for historical

climate patterns.

III.3.3 Paris-London westerly index (WI)

For the city of London (1692-2007), [101] recovered, quality checked, and homogenized

a >300-year daily series of sea-level pressure (SLP). For Paris (1670-2007), [102] created

another extremely lengthy daily series of SLP by digitizing and correcting several records.

There are some data gaps in both sets, especially for Paris (1726–1747). Additionally,

[102, 101] evaluated the final series homogeneity. [103] created a monthly Paris-London

Westerly index from 1692 onwards using the monthly means of the Paris and London SLP

series.

III.3.4 Mediterranean oscillation indices (MOI)

The normalized pressure differential between Cairo (30.1°N, 31.4°E) and Algiers

(36.4°N, 3.1°E) is the definition of the MOI, according to [104, 105]. From the Northern

Frontier of Gibraltar (36.1°N, 5.3°W) and Palestine (32.0°N, 34.5°E), a second version of

the index can be computed [106]. MOI1 covers Algiers/Cairo, MOI2 covers Gibraltar/Pa-

lestine, and WeMOi covers Padua/Cadiz (starts 1821).

III.3.5 North sea caspian pattern (NCP)

The normalized 500 hPa pressure difference between the averages of the North Sea

(0°E, 55°N and 10°E, 55°N) and North Caspian (50°E, 45°N and 60°E, 45°N) centers of

action is used to compute the NCP dataset. This formulation is identical to that used by

[107], who employed a GIS technique and linear correlation between pressure grid points

to identify these places.

III.3.6 Trans polar index (TPI)

The normalized pressure differential between Stanley and Hobart is known as the TPI.

The index was first proposed by [108, 109, 110] updated and further analyzed it. The

Trans Polar Indicator (TPI), which is based on the normalized pressure difference bet-

ween Stanley, Falklands (51°41'27" S, 57°51'55" W) and Hobart, Tasmania (42°53'09" S,
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147°19'53" E), is the only large-scale station pressure-based extratropical SH indicator

that has been presented.

III.3.7 Eastern mediterranean pattern (EMP)

The Eastern Mediterranean Pattern index is defined as the normalized geopotential

height difference at 500 hPa level between the north-eastern Atlantic (25°W, 52.5°N) and

the eastern Mediterranean (22.5°E, 32.5°N) poles [111].

III.4 Artificial intelligence

This section delves into the foundational aspects and advanced methodologies within

AI, specifically focusing on machine learning and deep learning.

In this section, we explore the differences between machine learning and deep learning,

highlighting their unique applications, strengths, and challenges. We also discuss criti-

cal concepts such as over-fitting and under-fitting, which are pivotal in ensuring model

accuracy and generalization.

Furthermore, we examine a specific machine learning techniques, Random Forest its

definition, theory and advantages.

Through this exploration, we aim to provide a comprehensive understanding of how

artificial intelligence, through its various methodologies and techniques, is shaping the

future of technology and its applications across diverse industries.

III.4.1 Definition

The ability of technology, especially computer systems, to mimic human intelligence

processes is known as artificial intelligence (AI). It includes a range of technologies, in-

cluding machine learning, deep learning, natural language processing, and others that

allow computers and other digital devices to learn, analyze, create, and interact. Artificial

intelligence (AI) gives computers the ability to do tasks that are normally performed by in-

telligent beings, like sensing, reasoning, learning, and problem-solving. Decision-making,

speech recognition, and picture analysis are among the activities that this technology

makes easier [112]. According to [113], artificial intelligence (AI) had its start in the

middle of the 1950s around the US.
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III.4.2 Machine Learning

A branch of artificial intelligence called machine learning (ML) focuses on creating

methods and algorithms that let computers learn from data and make judgment calls or

predictions without needing to be explicitly programmed for every task [114].

Definition : Machine learning is the process of building models from data that can iden-

tify patterns and relationships, enabling them to generalize and forecast on previously

unknown data [114].

Learning process : As ML algorithms process data, they iteratively learn from it. Over

time, they modify their internal representations and parameters to increase performance

[114].

Learning types : Machine Learning (ML) includes several learning types, such as reinfor-

cement learning, unsupervised learning, semi-supervised learning, and supervised learning.

These types of learning are appropriate for diverse tasks and data sets [114].

Applications : There are many different fields in which machine learning is used, such

as computer vision, e-commerce, healthcare, finance, and autonomous vehicles [114].

Impact : By enabling automation, tailored suggestions, fraud detection, predictive main-

tenance, and other data-driven solutions, machine learning has revolutionized several sec-

tors. Because of improvements in data availability, processing power, and algorithmic

creativity, machine learning algorithms are always changing. This results in more com-

plex models with more applications and a bigger social impact [114]

III.4.3 Learning types

Supervised learning : The algorithm gains knowledge from labeled data in which

every input is matched with the appropriate output. To enable the model to forecast on

data that hasn’t been seen yet, the objective is to develop a mapping function from input

to output [115]. Regression and classification tasks are two examples.

Unsupervised learning : In unsupervised learning, models are trained on unlabeled

data with the goal of uncovering hidden patterns or structures in the data. The technique

uses dimensionality reduction or clustering related data points to simplify data represen-

tation while exploring the data on its own [116]. Clustering, dimensionality reduction, and

generative modeling are a few examples.

Semi-supervised learning : Training with a combination of labeled and unlabeled data

is the basis of semi-supervised learning. It makes use of a smaller pool of labeled data

in conjunction with a larger one of unlabeled data, enhancing model performance by ad-

ding details from unlabeled instances [117]. Semi-supervised learning comes in particularly

64



ENP III. Methodology

handy when getting labeled data requires a lot of money or effort.

Reinforcement learning : In this sort of learning, an agent picks up skills to inter-

act with its surroundings by acting and then getting feedback in the form of rewards

or penalties. The agent’s goal is to eventually figure out the best course of action that

maximizes cumulative rewards [118]. It is frequently utilized in situations like controlling

autonomous vehicles, robotics, and gaming.

Machine learning approaches are diverse due to the specific characteristics, applications,

and obstacles of each form of learning. In our case, a supervised technique will be em-

ployed.

III.4.3.1 Supervised techniques

Classification : Sorting incoming data into predetermined classes or categories is the

aim of this supervised learning activity. The system predicts the class labels of cases that

have not yet been encountered by learning from labeled training data. It is frequently

used for applications like image recognition, sentiment analysis, and spam detection It

works with discrete output values [119].

Regression : Regression is also a supervised learning task but focuses on predicting

continuous output values rather than discrete classes. The algorithm learns the relation-

ship between the input features and the continuous target variable. It’s used for tasks

like predicting house prices, stock prices, and temperature forecasting. Regression aims to

find the best-fit line or curve that represents the relationship between input and output

variables [120].

Both classification and regression are fundamental techniques in machine learning, each

suited to different types of problems and data. They play crucial roles in various domains,

including finance, healthcare, marketing, and more.

In our case, we are going to implement classification, utilizing the following model :

III.4.3.2 Random Forest

Random Forest is an ensemble learning algorithm that leverages the power of decision

trees to make predictions [121].

Ensemble learning : To increase prediction accuracy and robustness, Random Forest

combines several decision trees in an ensemble learning technique [121].

Decision tree integration : To lower the danger of overfitting, it combines several de-

cision trees into a "forest" structure. Each tree is trained using a different subset of the

training data and characteristics [121].
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Voting mechanism : During prediction, each tree in the forest makes an independent

forecast about the event. The predictions are then combined, usually using a majority

voting system, to decide the ultimate conclusion [121].

Simpleness and adaptability : Random Forest is renowned for its simplicity and adap-

tability. It works well with a variety of data types and jobs and maintains performance

even in the absence of considerable hyperparameter adjustment [121].

Versatility : It is an adaptable option for a variety of fields due to its broad applicability

for both regression and classification problems [121].

Figure III.13 provides a visual representation of a random forest model.

Figure III.13 — Visual representation of a Random Forest model [122]

As shown in Figure III.13, a random forest is an ensemble of decision trees, which is

used to improve the performance and accuracy of predictions [122].

III.4.3.3 Model evaluation metrics

III.4.3.4 Accuracy metric

Accuracy is a classification metric that measures the proportion of correctly classified

instances out of the total instances evaluated [123, 124]. It provides an overall assessment

of a model’s predictive capability [125, 124]. The formula for accuracy is Equation (III.4) :

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(III.4)
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Accuracy ranges from 0 to 1, where 1 represents perfect accuracy. It is intuitive and easy

to understand, making it a popular metric for evaluating classification models. However,

accuracy may not be the best metric for imbalanced datasets, where one class dominates

the others. Additionally, accuracy alone may not provide a complete picture of model

performance, especially when classes have unequal importance or misclassification costs

[124].

III.4.3.5 AUC-ROC Metric

The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC-ROC) is

a metric used to evaluate the performance of binary classification models [126, 124].

• The ROC curve : is a graphical plot that illustrates the trade-off between the

true positive rate (sensitivity) and the false positive rate (1-specificity) for various

threshold values of the classification model [127, 124].

• AUC-ROC : quantifies the overall performance of the model by calculating the

area under the ROC curve, which ranges from 0 to 1 [128, 124].

A higher AUC-ROC score indicates better discrimination capability of the model in dis-

tinguishing between the positive and negative classes. An AUC-ROC score of 0.5 suggests

random guessing, while a score of 1 indicates perfect classification [126, 124]. AUC-ROC

is widely used because it is threshold-independent and provides a single scalar value to

assess the model’s overall performance [127, 124]. However, AUC-ROC may not be the

most suitable metric for imbalanced datasets where the class distribution is skewed, as it

may not adequately reflect the model’s performance [127, 124].

III.4.3.6 Using AUC-ROC in multi-class classification

In multi-class classification scenarios, the Area Under the Receiver Operating Cha-

racteristic (ROC) Curve (AUC-ROC) can still be useful, albeit with some adaptations

[129, 124].

• One-vs-Rest (OvR) approach : Convert the multi-class problem into multiple

binary classification problems using the One-vs-Rest approach. For each class, consi-

der it as the positive class, while the other classes are combined as the negative class.

Compute the ROC curve and AUC separately for each class.

• Macro-average and micro-average AUC-ROC :

• Macro-average AUC-ROC : Calculate the AUC-ROC for each class sepa-

rately and then take the average. This treats all classes equally.
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• Micro-average AUC-ROC : Aggregate the true positive and false positive

rates across all classes before computing the AUC. This method weighs each

class by its number of instances.

• Class imbalance handling : Assign weights to each class based on their impor-

tance or sample size to account for the imbalance.

• Averaging methods : Apart from macro and micro averaging, it is also possible to

explore other averaging methods such as weighted averaging, geometric averaging,

or harmonic averaging, depending on the specific requirements of the problem.

in our case we adopted the techniques One-vs-Rest (OvR) approach.

III.5 Variable importance for Random Forest

Variable importance, or feature importance, is a technique used in machine learning to

quantify the relevance of each feature (input variable) in predicting the target variable.

It helps in understanding which features are contributing the most to the model’s pre-

dictions and can guide feature selection, model interpretation, and understanding data

relationships [130].

Random Forest, an ensemble learning method, assesses feature importance by evaluating

how each feature contributes to reducing the impurity in decision trees [131]. The process

involves :

Mean decrease in impurity (MDI) : This method calculates the feature importance

by measuring the total decrease in node impurity (Gini impurity or entropy) brought by

that feature across all trees in the forest. Features causing larger decreases are considered

more important.

Mean decrease accuracy (MDA) : Involves shuffling each feature and measuring the

decrease in model accuracy. Features causing larger drops in accuracy are deemed more

important.

Permutation importance : This method calculates the drop in model performance (e.g.,

accuracy) when the values of a feature are randomly shuffled, breaking the relationship

between the feature and the target.

In our study Mean decrease in impurity (MDI) was used for feature importance.

68



ENP III. Methodology

III.6 Used approach

III.6.1 Calculation of the reconnaissance drought index (RDI)

The Reconnaissance Drought Index (RDI) was calculated using the DrinC software,

which requires precipitation and potential evapotranspiration data. Our dataset ranges

from January 1962 to December 2005 and includes data from four meteorological stations :

Chlef, Maghnia, Oran, and Saida.

To focus on agricultural impacts, we calculated the RDI for two time scales : 1-month

and 3-month periods. The RDI calculation process involves the following :

First, providing precipitation data, it was gathered from the aforementioned meteoro-

logical stations.

Second, providing potential evapotranspiration data, was calculated using DrinC. This

calculation requires maximum, minimum, and average temperature data. DrinC offers

several methods for this calculation, including Hargreaves, Thornthwaite, and Blaney-

Criddle. We selected the Hargreaves formula because it provides results closest to those

from the Agence Nationale des Ressources Hydriques (ANRH).

Finaly, calculation of the reconnaissance drought index, for each station for the two

time scales.

III.6.2 Classification of RDI values

After calculating the RDI for 1-month and 3-month time scales (RDI1 and RDI3),

classify the values into seven categories based on the Table III.3 :

Table III.3 — Classification of reconnaissance drought index [132]

Name Range Number of Class

Extremely Wet 2+ 1

Very Wet 1.5 to 1.99 2

Moderately Wet 1 to 1.49 3

Near Normal -0.99 to 0.99 4

Moderately Dry -1 to -1.49 5

Severely Dry -1.5 to -1.99 6

Extremely Dry -2 and less 7
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III.6.3 Calculation of atmospheric circulation indices (ACI)

The ACI1 is the data from [84]. The ACI3 is to be calculated : For a given month, the

ACI3 value is the average of the current month and the two preceding months.

III.6.4 Normalization of ACI Data

Normalize the ACI3 and ACI1 data using the Min-Max Scaler to ensure they are on a

comparable scale.

III.6.5 Normalization using Min-Max scaler

Normalization is a crucial step in data preprocessing for machine learning algorithms.

It transforms the data into a format that improves the performance and training stability

of the models. One commonly used normalization technique is the MinMax Scaler [133].

III.6.5.1 Definition of Min-Max scaler

The MinMax Scaler is a normalization technique that scales the data to a fixed range,

usually [0, 1] or [-1, 1]. It is particularly useful when the data needs to be bounded within

a specific range, ensuring that each feature contributes equally to the analysis [134].

III.6.5.2 Functioning of Min-Max scaler

The MinMax Scaler operates by transforming each feature individually according to

the Equation (III.5) :

Xscaled =
X −Xmin

Xmax −Xmin
(III.5)

Where : X is the original value. Xmin is the minimum value of the feature. Xmax is the

maximum value of the feature. Xscaled is the normalized value.

The transformed data, Xscaled, is rescaled to the range [0, 1]. The process can be

extended to any desired range [a, b] using the Equation (III.6) :

Xscaled = a+
(X −Xmin) · (b− a)

Xmax −Xmin
(III.6)

Where : a is the lower bound of the desired range. b is the upper bound of the desired

range.
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III.6.5.3 Modeling with Random Forest

After scaling the ACI1 and ACI3, we proceed with modeling using the Random Forest

algorithm. The input variables for the model are ACI1 for the first series, ACI3 for the

second series, and RDI1 as the output for the first series, and RDI3 as the output for the

second series. The modeling process involves the following steps :

• Data splitting : We divide our dataset into training and testing sets. The training

data comprises 70% of the series, while the testing data comprises the remaining

30%. This split allows us to evaluate the model’s performance on unseen data.

• Modeling for each station : For each station, we perform the modeling process

using Random Forest. This involves training the model on the training data and

evaluating its performance on the testing data.

• Model evaluation : We assess the performance of the model using various metrics,

including accuracy and Area Under the Receiver Operating Characteristic Curve

(AUC-ROC). Accuracy measures the proportion of correctly classified instances,

while AUC-ROC evaluates the model’s ability to discriminate between positive and

negative instances.

By following these steps, we aim to develop robust models that accurately predict

meteorological drought conditions which lead to the agricultural drought based on At-

mospheric Circulation Indices (ACI) and Reconnaissance Drought Index (RDI) data for

two different short term time scales.

Conclusion

In conclusion, the methodology chapter serves as a comprehensive roadmap for our re-

search endeavors in understanding and predicting meteorological drought and its impacts

on agricultural sustainability. We have meticulously detailed the foundational datasets we

utilize, the reconnaissance drought index (RDI) and its significance in drought assessment,

and the complexities of atmospheric circulation indices.

Furthermore, we have delved into the field of artificial intelligence, distinguishing bet-

ween basic concepts and cutting-edge techniques, with a particular emphasis on deep

learning and machine learning. Through our exploration of the Random Forest method

and its application in accurate prediction. we have armed ourselves with a powerful tool

for modeling drought dynamics.

Crucially, we have not only outlined each component individually but also integrated

them into a cohesive modelization framework. This systematic approach, encompassing
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data preprocessing, model training, and evaluation, is pivotal in our mission to develop ro-

bust prediction models capable of identifying meteorological drought and its ramifications

for agricultural sustainability.

As we move forward with our research, the methodologies elucidated in this chapter will

serve as the bedrock upon which we build our analyses and interpretations. By adhering to

rigorous statistical analysis, leveraging advanced AI techniques, and continuously refining

our models, we endeavor to contribute meaningfully to the understanding and mitigation

of drought-related challenges in agricultural ecosystems.
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Introduction

In this chapter, we analyze and interpret the Reconnaissance Drought Index (RDI)

and its application to drought assessment in northwestern Algeria, focusing on four key

meteorological stations : Chlef, Maghnia, Oran, and Saida. The RDI analysis is conducted

on both a monthly (RDI1) and seasonal (RDI3) basis, providing a comprehensive view of

drought conditions over different temporal scales. This analysis is complemented by an

evaluation of the performance of a Random Forest model in classifying drought conditions,

and a detailed feature importance analysis to identify key atmospheric and environmental

factors influencing drought variability.

IV.1 Reconnaissance drought index results and interpretation

This section presents the results and interpretation of the Reconnaissance Drought

Index (RDI) analysis. The analysis is divided into two parts : RDI1 and RDI3.

Table IV.1 represents how the seasons are defined and classified

Table IV.1 — Seasons classification
Season Months of the season

1 Sep, Oct and Nov

2 Dec, Jan and Feb

3 Mar, Apr and May

4 Jun, Jul and Aug

Table IV.2 shows the classification of reconnaissance drought index (RDI1 and RDI3)

conditions based on the defined ranges. Each classification is color-coded and abbreviated.

Table IV.2 — RDI1 and RDI3 classification scheme
Name Range Number Color Abbreviation

Extremely Wet 2+ 1 Dark Blue EW

Very Wet 1.5 to 1.99 2 Blue VW

Moderately Wet 1 to 1.49 3 Light Blue MW

Near Normal (−0.99 to 0.99) 4 color White NM

Moderately Dry (−1 to −1.49) 5 Yellow MD

Severely Dry (−1.5 to −1.99) 6 Orange SD

Extremely Dry (−2 and less) 7 Red ED
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IV.1.1 RDI1 analysis

RDI1 is evaluated on a monthly basis for each station. Four tables, each corresponding

to a different station, present the RDI1 values. These tables include the year and month,

along with the corresponding RDI1 values. The values are color-coded and abbreviated

according to their classifications, as shown in IV.2. Each station’s RDI1 data is also repre-

sented by a percentage circle, which illustrates the proportion of each classification within

the data. This visual representation aids in understanding the distribution of drought

conditions over time.

IV.1.1.1 RDI1 results and interpretation

The tables : Table IV.2, Table IV.5, Table IV.8 and Table IV.11 present the monthly

RDI1 values for each station. These tables include the year and month, along with the

corresponding RDI1 values. The values are color-coded and abbreviated according to

their classifications, as shown in Table IV.2. Additionally, percentage circles are included

to visually represent the proportion of each classification within the data, providing a

clearer understanding of the distribution of drought conditions over time.

Figure IV.1, represents a graph for the monthly RDI1 values of Chlef station.

Figure IV.1 — Graph for the monthly RDI1 values for Chlef station

Table IV.2, represent monthly RDI1 values of Chlef station.
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Figure IV.2 — Monthly RDI1 values for Chlef station

IV.1.1.2 The Chlef station

The calculation of the ’RDI’ index on a monthly scale (1 month) for the Chlef meteo-

rological station during the period (January 1962 to December 2005) indicates that the

high values detected, representing extremely wet months, range between : 2.04 and 2.58,

with June 1963 being the wettest month. The low values detected, representing extremely

dry months, range between : -2.56 and -2.06, with December 1991 being the driest month

detected.
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The Figure IV.3 gives a visual representation to the frequency of monthly RDI1 classes

for the Chlef meteorological station

Figure IV.3 — Frequency of monthly RDI1 classes for the Chlef meteorological

station

Figure IV.4, represents a graph for the monthly RDI1 values of Maghnia station.

Figure IV.4 — Graph for the monthly RDI1 values for Maghnia station

Table IV.5, represent monthly RDI1 values of Maghnia station.
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Figure IV.5 — Monthly RDI1 values for Maghnia station

IV.1.1.3 The Maghnia station

The calculation of the ’RDI’ index on a monthly scale (1 month) for the Maghnia

meteorological station during the period (January 1962 to December 2005) indicates that

the high values detected, representing extremely wet months, range between : 2.11 and

2.74, with August 1977 being the wettest month. The low values detected, representing

extremely dry months, range between : -2.14 and -2.07, with November 1981 and December

1974 being the two driests months detected.
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The Figure IV.6 gives a visual representation to the frequency of monthly RDI1 classes

for the Maghnia meteorological station

Figure IV.6 — Frequency of monthly RDI1 classes for the Maghnia meteorological

station

Figure IV.7, represents a graph for the monthly RDI1 values of Oran station.

Figure IV.7 — Graph for the monthly RDI1 values for Oran station

Table IV.8, represent monthly RDI1 values of Oran station.
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Figure IV.8 — Monthly RDI1 values for Oran station

IV.1.1.4 The Oran station

The calculation of the ’RDI’ index on a monthly scale (1 month) for the Oran me-

teorological station during the period (January 1962 to December 2005) indicates that

the high values detected, representing extremely wet months, range between : 2.24 and

2.95, with October 1969 being the wettest month. The low values detected, representing

extremely dry months, are two months with same value : -2.14, November 1981 and April

2000 being the two driests months detected.
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The Figure IV.9 gives a visual representation to the frequency of monthly RDI1 classes

for the Oran meteorological station

Figure IV.9 — Frequency of monthly RDI1 classes for the Oran meteorological

station

Figure IV.10, represents a graph for the monthly RDI1 values of Saida station.

Figure IV.10 — Graph for the monthly RDI1 values for Saida station

Table IV.11, represent monthly RDI1 values of Saida station.
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Figure IV.11 — Monthly RDI1 values for Saida station

IV.1.1.5 The Saida station

The calculation of the ’RDI’ index on a monthly scale (1 month) for the Saida me-

teorological station during the period (January 1962 to December 2005) indicates that

the high values detected, representing extremely wet months, range between : 2.07 and

2.41, with August 1977 being the wettest month. The low values detected, representing

extremely dry months, range between : -2.64 and -2.08, with March 1998 being the driest

month detected.
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The Figure IV.12 gives a visual representation to the frequency of monthly RDI1 classes

for the Saida meteorological station

Figure IV.12 — Frequency of monthly RDI1 classes for the Saida meteorological

station

IV.1.2 RDI3 analysis

RDI3 is assessed on a seasonal basis. A single table presents the RDI3 values for

each year and season. The seasons are defined and classified in Table IV.1, with color

codes and abbreviations indicating the RDI3 values for each season, as shown in Table

A. Each station’s RDI3 data is also represented by a percentage circle, which illustrates

the proportion of each classification within the data. This visual representation aids in

understanding the distribution of drought conditions over time. The seasonal RDI3 table

provides a comprehensive view of drought conditions over the longer term, complementing

the monthly analysis provided by RDI1.

IV.1.2.1 RDI3 results and interpretation

The Table IV.13 presents the seasonal RDI3 values for each year and season. The values

are color-coded and abbreviated according to their classifications, as shown in Table IV.2.

Percentage circles are also included to provide a visual representation of the proportion

of each classification within the data, enhancing the understanding of drought conditions

over time.

Additionally, graphs representing the RDI3 values for each month are included. These

graphs display the RDI3 value for each month over time and include a trend line to
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illustrate any tendencies towards dry or wet weather. Similar to RDI1, the slope of the

trend line indicates whether there is a tendency towards drier or wetter conditions over

time.

Table IV.13, represent seasonal RDI3 values of Chlef, Maghnia, Oran and Saida sta-

tions.

Figure IV.13 — Seasoned RDI3 values for stations : Chlef, Maghnia, Oran and

Saida

Figure IV.14, represents a graph for the monthly RDI3 values of Chlef station.
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Figure IV.14 — Monthly RDI3 values for Chlef station

Figure IV.15, represents a graph for the monthly RDI3 values of Maghnia station.

Figure IV.15 — Monthly RDI3 values for Maghnia station

Figure IV.16, represents a graph for the monthly RDI3 values of Oran station.
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Figure IV.16 — Monthly RDI3 values for Oran station

Figure IV.17, represents a graph for the monthly RDI3 values of Saida station.

Figure IV.17 — Monthly RDI3 values for Saida station

IV.1.2.2 RDI3 of Chlef, Maghnia, Oran and Saida stations

The computation of the ’RDI’ index on a seasonal scale (3 months) spanning from

January 1962 to December 2005 for each meteorological station reveals distinct patterns.

For the Chlef station, the analysis indicates that the range of high values, representing

extremely wet seasons, falls between 2 and 2.22. The wettest season was observed in

second season, 1964. Conversely, the range of low values, indicative of extremely dry

seasons, varies from -2.06 to -2.64, with second season, 2001 being identified as the driest
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season.

Similarly, for the Maghnia station, the analysis indicates that the range of high values,

representing extremely wet seasons, falls between 2.07 and 2.4. The wettest season was

observed in fourth season, 1982. Conversely, the range of low values, indicative of extremely

dry seasons, varies from -2.4 to -2.77, with second season, 1967 being identified as the driest

season.

Likewise, for the Oran station, the analysis indicates that the range of high values,

representing extremely wet seasons, falls between 2 and 2.48. The wettest season was

observed in third season, 1976. Conversely, the range of low values, indicative of extremely

dry seasons, varies from -2.04 to -3.84, with second season, 2003 being identified as the

driest season.

Lastly, for the Saida station, the analysis indicates that the high value, representing

extremely wet season, is 2.04. This wettest season was observed in second season, 1974.

Conversely, the range of low values, indicative of extremely dry seasons, varies from -2.04

to -3, with first season, 1981 being identified as the driest season.

These findings provide valuable insights into the variability of wet and dry seasons

across the different meteorological stations.

The Figure IV.18 gives a visual representation to the frequency of seasonal RDI3 classes

for the Chlef meteorological station

Figure IV.18 — Frequency of seasonal RDI3 classes for the Chlef meteorological

station

The Figure IV.19 gives a visual representation to the frequency of seasonal RDI3 classes

for the Maghnia meteorological station
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Figure IV.19 — Frequency of seasonal RDI3 classes for the Maghnia meteorolo-

gical station

The Figure IV.20 gives a visual representation to the frequency of seasonal RDI3 classes

for the Saida meteorological station

Figure IV.20 — Frequency of seasonal RDI3 classes for the Oran meteorological

station

The Figure IV.21 gives a visual representation to the frequency of seasonal RDI3 classes

for the Oran meteorological station

88



ENP IV. Results and discussion

Figure IV.21 — Frequency of seasonal RDI3 classes for the Saida meteorological

station

IV.2 Atmospheric Circulation Indices analysis

In this section, we delve into the analysis of atmospheric circulation indices (ACIs) and

their relationship with drought indices, aiming to gain deeper insights into the dynamics

of drought occurrence and its potential atmospheric drivers. The analysis focuses on two

series : ACI1 and ACI3, examining their correlations with the corresponding drought

indices, RDI1 and RDI3.

IV.2.1 Correlation analysis between atmospheric and drought indices

The correlation analysis serves as a pivotal component in understanding the inter-

play between atmospheric circulation patterns and drought occurrence. By quantifying

the relationship between atmospheric circulation indices and drought indices, we gain va-

luable insights into the potential influence of large-scale atmospheric processes on regional

drought conditions.

Figure IV.22, represent the correlation between ACI1 and RDI1

89



ENP IV. Results and discussion

Figure IV.22 — Correlation between ACI1 and RDI1

Figure IV.23, represent the correlation between ACI3 and RDI3

Figure IV.23 — Correlation between ACI3 and RDI3
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The absence of a significant correlation between ACI1 and RDI1 suggests that the

atmospheric circulation patterns represented by ACI1 may not directly influence the

monthly variations in drought severity captured by RDI1. This finding indicates that

other factors or local-scale dynamics may play a more dominant role in driving monthly

drought conditions at the study area.

Similarly, the lack of a significant correlation between ACI3 and RDI3 implies that

the seasonal atmospheric circulation patterns characterized by ACI3 may not be strongly

associated with the longer-term drought conditions captured by RDI3. This suggests that

broader climatic factors or regional-scale processes might be more influential in shaping

the multi-seasonal variability of drought occurrences.

In both cases, it’s essential to acknowledge the complexity of drought dynamics and

recognize that the absence of correlation does not necessarily negate the potential influence

of atmospheric circulation patterns on drought. Other factors, such as local geography,

land surface characteristics, and anthropogenic influences, could also contribute to the

observed drought variability. Further investigation into these factors may provide a more

comprehensive understanding of drought dynamics in the study area.

IV.3 Model performance : Random Forest performance

In this section, we present the performance evaluation of the Random Forest model for

each meteorological station. The evaluation is based on key performance metrics, including

accuracy and ROC-AUC values, providing insights into the model’s ability to accurately

classify drought conditions.

IV.3.1 Model performance by station

For each meteorological station (Saida, Chlef, Maghnia, and Oran), the Random Forest

model’s performance is evaluated based on accuracy and ROC-AUC values. The results

are summarized in Table IV.3 and Table IV.4.

Table IV.3 — Accuracy scores for Random Forest model for the stations : Chlef,

Maghnia, Oran and Saida

Model/Station CHLEF MAGHNIA ORAN SAIDA

RDI1 accuracy

Random forest 0.7 0.77 0.67 0.7

RDI3 accuracy

Random forest 0.69 0.67 0.69 0.74
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Table IV.4 — AUC-ROC scores for Random Forest model for the stations : Chlef,

Maghnia, Oran and Saida

Model/Station CHLEF MAGHNIA ORAN SAIDA

RDI1 AUC-ROC

Random forest 0.65 0.56 0.51 0.55

RDI3 AUC-ROC

Random forest 0.55 0.55 0.5 0.53

These metrics provide insights into the model’s performance across different stations,

aiding in the assessment of its effectiveness in classifying drought conditions in north west

of Algeria.

IV.4 Variable importance

In this section, we present the variable importance analysis for each station based on

the models developed using the two series : ACI1, RDI1 and ACI3, RDI3. Understanding

the importance of each variable helps in identifying which factors contribute the most to

the model’s predictions, providing insights into the underlying mechanisms driving the

observed phenomena.

IV.4.1 ACI1 and RDI1 series

Figure IV.24 — Feature importance for series 1 at Chlef station
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The first set of models was developed using the ACI1 and RDI1 series. Feature impor-

tance scores were computed to evaluate the contribution of each variable to the model’s

performance. Figures IV.24, IV.25, IV.26, and IV.27 illustrate the feature importance for

Chlef, Maghnia, Oran, and Saida, respectively.

Figure IV.25 — Feature importance for series 1 at Maghnia station

Figure IV.26 — Feature importance for series 1 at Oran station
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Figure IV.27 — Feature importance for series 1 at Saida station

IV.4.2 ACI3 and RDI3 series

Similarly, the second set of models was developed using the ACI3 and RDI3 series.

Feature importance scores for this series were also computed to identify the key variables

influencing the model’s predictions. Figures IV.28, IV.29, IV.30, and IV.31 display the

feature importance for Chlef, Maghnia, Oran, and Saida, respectively.

Figure IV.28 — Feature importance for series 2 at Chlef station
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Figure IV.29 — Feature importance for series 2 at Maghnia station

Figure IV.30 — Feature importance for series 2 at Oran station
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Figure IV.31 — Feature importance for series 2 at Saida station

IV.4.3 Interpretation

The feature importance results reveal which variables are most influential in predic-

ting drought conditions at each station. High importance scores indicate that a variable

significantly contributes to the model’s predictive power. By examining these scores, we

can gain a deeper understanding of the factors driving drought variability and improve

our predictive models.

• For Chlef, the most important features in the ACI1 and RDI1 model are MOI1, TPI,

and EMP (refer to Figure IV.24). In the ACI3 and RDI3 model, the key features

are SOI, NAO, and WeI (refer to Figure IV.28).

• For Maghnia, the top contributing variables in the ACI1 and RDI1 model are TPI,

EMP, and NAO (refer to Figure IV.25). In the ACI3 and RDI3 model, significant

features include WeI, EMP, and WeMOi (refer to Figure IV.29).

• For Oran, important features in the ACI1 and RDI1 model are SOI, TPI, and EMP

(refer to Figure IV.26). In the ACI3 and RDI3 model, the influential variables are

SOI, WeMOi, and WeI (refer to Figure IV.30).

• For Saida, the most impactful variables in the ACI1 and RDI1 model are MOI1, TPI,

and EMP (refer to Figure IV.27). In the ACI3 and RDI3 model, the top features

are WeI, SOI, and TPI (refer to Figure IV.31).

Overall, the feature importance analysis provides valuable insights into the relative

contribution of each variable in predicting drought conditions across different stations.
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These findings can guide future research and model development, helping to enhance our

understanding and management of drought risks.

Conclusion

The results of our analysis reveal significant patterns and insights into drought condi-

tions across the four meteorological stations in northwestern Algeria. The monthly and

seasonal RDI assessments highlight distinct wet and dry periods, with notable variabi-

lity across different seasons and years. The Random Forest model demonstrates varying

levels of accuracy and discrimination performance across the stations, with generally mo-

derate accuracy but lower ROC-AUC scores, indicating room for improvement in model

performance.

The feature importance analysis further elucidates the key variables influencing drought

conditions, with notable differences observed between the stations. Variables such as TPI,

EMP, SOI, NAO, and WeI consistently emerge as significant contributors, underscoring

the complex interplay of atmospheric and environmental factors driving drought variabi-

lity.

Overall, this comprehensive analysis enhances our understanding of drought dynamics

in the region, providing valuable insights for improving drought prediction models and in-

forming effective drought management strategies. Further research integrating additional

variables and refining model algorithms could yield even more robust predictive capabili-

ties, ultimately aiding in the mitigation of drought impacts in northwestern Algeria.
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Conclusion and perspectives

In conclusion, our project addresses the critical challenge of drought mitigation

through the innovative application of Artificial Intelligence techniques, the Recon-

naissance Drought Index, and atmospheric circulation patterns to find relationship

between atmospheric and drought indices. Droughts, exacerbated by climate change,

pose severe threats to communities worldwide, underscoring the urgency of effective

forecasting and management strategies. By integrating advanced technological solutions

with comprehensive meteorological indices, we aim to enhance early warning systems and

bolster decision-making processes in drought-prone regions like northwestern Algeria.

Reflecting on the state-of-the-art, our review highlighted the evolving landscape of

drought indices and their complex interplay with atmospheric variables. Understanding

these relationships is pivotal for improving the accuracy and reliability of drought

predictions, thereby minimizing their socio-economic impacts.

Moreover, characterizing the study area provided essential insights into the geogra-

phical, geological, and climatic factors influencing drought vulnerability in northwestern

Algeria. This contextual understanding informed the development of tailored methodolo-

gies for our research, emphasizing the integration of diverse data sources and cutting-edge

AI algorithms.

Our methodology centered on leveraging the Reconnaissance Drought Index and

exploring atmospheric circulation indices, demonstrating their efficacy in predicting and

assessing drought conditions over various temporal scales. The application of the Random

Forest model underscored significant advancements in drought classification accuracy,

facilitated by robust feature importance analysis that elucidated key environmental

drivers of drought variability.

The results and discussions presented herein not only validate our approach but also

contribute valuable insights into enhancing drought resilience strategies. By bridging the

gap between theoretical research and practical application, our findings lay a foundation

for future advancements in drought monitoring and response frameworks. This project

exemplifies a proactive step towards sustainable water resource management, offering

tangible benefits for local communities and ecosystems alike.

99



ENP Conclusion and perspectives

In essence, our endeavor exemplifies the transformative potential of interdisciplinary

research and technological innovation in safeguarding against the adverse impacts of

climate change. Moving forward, continued collaboration and refinement of methodologies

will be essential to further fortify our defenses against the escalating challenges posed by

droughts globally.

We hope that this project will serve as a solid foundation for future research and

contribute to advancing drought resilience. There is still much to explore and improve

upon, but we are confident in our ability to meet these challenges and continue making

progress in this field.

Perspectives

Based on our work, we propose the following points for further development :

• Utilize longer time scales to enhance resource management.

• Implement advanced artificial intelligence models and techniques to further improve

prediction accuracy.

• Expand the network of monitoring stations and extend the data collection timeframe

to enhance accuracy.

• Explore additional drought indices, particularly those integrating atmospheric cir-

culation indices, to better understand and predict drought dynamics.
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