
�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire

ù

ÒÊªË@

�
IjJ. Ë @ð ú

ÍAªË@ Õæ

Êª
�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche

Scientifique
�
HAJ

	
J
�
®
�
JË @

�
èXYª

�
JÖÏ @

�
éJ

	
J£ñË@

�
é�PYÖÏ @

Ecole Nationale Polytechnique

Génie Industriel

End of study Project Dissertation for Obtaining State Engineer’s Degree in

Industrial Engineering.

Option : Data Science & Artificial Intelligence

Reliable, fully local RAG agents with
LLaMA3

Presented by:

Ghribi Ouassim Abdelmalek

Presented and publicly defended on (02/07/2024)

Composition of the jury:

President:

Dr. Hakim Fourar Laidi MCA ENP

Examiner:

Mr. Ayoub Abbaci MCA ENP

Supervisors:

Mr. Oussama Arki MCA ENP

Mr. Hachem Betrouni AI Engineer BIGmama Technology

ENP 2024

�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire

ù

ÒÊªË@

�
IjJ. Ë @ð ú

ÍAªË@ Õæ

Êª
�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche

Scientifique
�
HAJ

	
J
�
®
�
JË @

�
èXYª

�
JÖÏ @

�
éJ

	
J£ñË@

�
é�PYÖÏ @

Ecole Nationale Polytechnique

Génie Industriel

End of study Project Dissertation for Obtaining State Engineer’s Degree in

Industrial Engineering.

Option : Data Science & Artificial Intelligence

Reliable, fully local RAG agents with
LLaMA3

Presented by:

Ghribi Ouassim Abdelmalek

Presented and publicly defended on (02/07/2024)

Composition of the jury:

President:

Dr. Hakim Fourar Laidi MCA ENP

Examiner:

Mr. Ayoub Abbaci MCA ENP

Supervisors:

Mr. Oussama Arki MCA ENP

Mr. Hachem Betrouni AI Engineer BIGmama Technology

ENP 2024

�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire

ù

ÒÊªË@

�
IjJ. Ë @ð ú

ÍAªË@ Õæ

Êª
�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche

Scientifique
�
HAJ

	
J
�
®
�
JË @

�
èXYª

�
JÖÏ @

�
éJ

	
J£ñË@

�
é�PYÖÏ @

Ecole Nationale Polytechnique

Génie Industriel

Mémoire de Projet de fin d’Etudes pour l’obtention du Diplôme d’Ingénieur d’Etat

en Génie Industriel

Option : Data Science & Intelligence Artificielle

Agents RAG fiables et entièrement
locaux avec LLaMA3

Présenté par:

Ghribi Ouassim Abdelmalek

Présenté(e) et soutenue publiquement le (02/07/2024)

Composition du jury:

Président:

Dr. Hakim Fourar Laidi MCA ENP

Examinateur:

Mr. Ayoub Abbaci MCA ENP

Encadreurs:

Mr. Oussama Arki MCA ENP

Mr. Hachem Betrouni AI Engineer BIGmama Technology

ENP 2024

In the Name of God, Most Gracious, Most Merciful

Acknowledgments

I extend my deepest gratitude to my thesis supervisors, Mr. Arki Oussama and Mr.

Betrouni Hachem, for their indispensable guidance and unwavering support through-

out this project. Their expertise and continuous encouragement have been pivotal in

shaping its direction. I am sincerely thankful for their patience, insightful feedback,

and generous investment of time, all of which have been crucial in refining this work.

On a personal level, I am profoundly grateful to my family for their unwavering sup-

port and encouragement throughout this demanding yet rewarding journey. Their

unwavering belief in my abilities has been a constant source of motivation, particu-

larly during challenging times.

Moreover, I would like to express my appreciation to all individuals who directly

or indirectly contributed to the completion of this thesis. Your support and encour-

agement have been invaluable and deeply cherished.

Special recognition goes to Mr. Hadj Khelil for his belief in me over the past two

years. Progressing from a junior front-end developer to a team lead, overseeing an ex-

ceptional team of ambitious individuals, has been an enriching experience. Together,

we have strived to develop software with the potential to make a positive impact on

the world.

�
	
jÊÓ

Aî
	
DºÖß

�
éÒ

	
¢
	
�

@ úÍ@

�
ék. Am

Ì'@ úÎ« Zñ
	
�Ë@

�
I¢Ê�

�
éJ
ªJ
J.¢Ë@

�
é
	
ªÊË @

�
ém.
Ì'AªÓ ú

	
¯

�
èQ�

	
g

B@

�
H@Pñ¢

�
JË @

	
à@

. YK
 @

	Q��Ó É¾
�
��.

�
èY

�
®ªÖÏ @

�
H@PA�

	
®
�
J�B@ ©Ó ÉÓAª

�
JÊË ÈAª

	
¯ É¾

�
��.

�
HAÓñÊªÖÏ @ YJ
Ëñ

�
Kð ¨Ag.

Q���@

úÍ@

ø

X

ñK
 AÜØ ,

�
èYg úÎ« AÒî

	
DÓ É¾Ë XñJ

�
®Ë @ l .

Ì'AªK
 YJ
Ëñ
�
JË @ð ¨Ag.

Q���B@ ú

�
æJ
ÊÔ

« 	á�
K. ©Òm.
Ì'@

.
�
é
�
¯Xð

�
BñÖÞ

�
� Q��»

@

�
HAK. Aj.

�
J�@

Llama3 Ð@Y
	
j
�
J�AK. (RAG) ¨Ag.

Q���BAK.
	P 	QªÓ YJ
Ëñ

�
K ÉJ
»ð

	
YJ

	
®
	
J
�
K

�
ékðQ£

B@ è

	
Yë ÐY

�
®
�
K

l .
×X ñë ú

æ�A�

B@ ø

Yj

�
JË @ .

�
èY

�
®ªÖÏ @

�
H@PA�

	
®
�
J�B@

�
HA

J�
K. ú

	
¯

�
HAK. Aj.

�
J�B@

�
éÓZCÓð

�
é
�
¯X 	QK

	Qª
�
JË

A
	
Jj. î

	
E .

�
é
�
¯ñ
�
KñÓð

�
é
�
®J

�
¯X

�
HAK. Ag. @

Q�

	
¯ñ
�
JË

�
éÓY

�
®
�
JÖÏ @

�
éK
YJ
Ëñ

�
JË @

�
H@PY

�
®Ë@ ©Ó ÈAª

	
®Ë @

�
HAÓñÊªÖÏ @ ¨Ag.

Q���@

�
H@PA�

	
®
�
J�B@ Õæ

J

�
®
�
K Õ

�
æK
 . ÉÓA¾

�
JÓ ÐA

	
¢
	
� É

	
g@X AëYJ
Ëñ

�
Kð AêÒJ
J

�
®
�
Kð

�
�

KA
�
KñË@ ¨Ag.

Q���@
	á�
K. ©Òm.

�'

Õ
�
æK
 .

�
ék. Am

Ì'@ I. �k I. K
ñË@
Q�.«

�
Im�'.

�
HAJ
ÊÔ

« Z@Qk. @
ð

@
�
éÊ�Ë@

�
H@

	
X

�
�

KA
�
KñË@ ¨Ag.

Q���@ð ,
�
éÓZCÒÊË

�
éJ

	
K A¾ÓB

@

	
YJ

	
®
	
J
�
JË @ @

	
Yë l�

	
�ñK
 .

�
é
�
¯YÊË

�
éJ
ËAªË @

Q�
K
AªÖÏ @
�
éJ
J. Ê

�
K

	
àAÒ

	
�Ë

�
é
�
¯YK.

�
èYËñ�ÜÏ @

�
HAK. Ag. B

@ Õæ

J

�
®
�
K

�
HA

	
J�
�m�

�
' úÍ@

ø

X

ñK
 AÜØ ,

�
éK
ñ

�
®Ë@

�
éK
YJ
Ëñ

�
JË @ h.

	
XAÒ

	
JË @ ©Ó

�
èPñ¢

�
JÖÏ @ ¨Ag.

Q���B@
�
HAJ
Ë

�
@ l .

×YË
�
èQ�
J.ºË@

.
�
HAK. Aj.

�
J�B@

�
éJ

�
¯ñ
�
KñÓð

�
èXñk. ú

	
¯
�
èQ�
J.»

,3 ÕÎK ,
�
HAÓñÊªÖÏ @ YJ
Ëñ

�
K ,

�
HAÓñÊªÖÏ @ ¨Ag.

Q���@ ,
�
éJ
ªJ
J.¢Ë@

�
é
	
ªÊË @

�
ém.
Ì'AªÓ :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

.
�
èY

�
®ªÓ

�
H@PA�

	
®
�
J�@

Résumé

Les récents progrès en traitement du langage naturel ont mis en évidence la nécessité

de systèmes capables de récupérer et de générer des informations pour traiter des

requêtes de plus en plus complexes. La combinaison des processus de récupération

et de génération permet de pallier les limitations de chaque approche prise individu-

ellement, aboutissant à des réponses plus complètes et précises.

Cette thèse présente la mise en œuvre d’un agent de génération augmentée par

récupération (RAG) utilisant Llama3 pour améliorer la précision et la pertinence

des réponses dans des environnements de requêtes complexes. Le défi principal

réside dans l’intégration d’une récupération d’informations efficace avec des capacités

génératives avancées pour fournir des réponses précises et fiables. Notre approche

combine récupération de documents, évaluation et génération au sein d’un système

cohérent. Les requêtes sont évaluées en termes de pertinence, récupérant des docu-

ments pertinents ou effectuant des recherches sur le web si nécessaire. Les réponses

générées sont rigoureusement évaluées pour garantir qu’elles répondent à des normes

élevées de précision. Cette mise en œuvre démontre le potentiel de la fusion de

mécanismes de récupération sophistiqués avec des modèles génératifs puissants, aboutis-

sant à des améliorations significatives de la qualité et de la fiabilité des réponses.

Mots-clés: traitement du langage naturel, récupération d’informations, génération

d’informations, Llama3, requêtes complexes.

Abstract

Recent advancements in natural language processing have highlighted the need for

systems that can effectively retrieve and generate information to handle increasingly

complex queries. Combining retrieval and generation processes addresses the limi-

tations of each approach individually, leading to more comprehensive and accurate

responses.

This thesis presents the implementation of a Retrieval-Augmented Generation

(RAG) agent utilizing Llama3 to enhance the accuracy and relevance of responses

in complex query environments. The primary challenge is integrating effective infor-

mation retrieval with advanced generative capabilities to provide precise and reliable

answers. Our approach combines document retrieval, grading, and generation within

a cohesive system. Queries are assessed for relevance, retrieving pertinent docu-

ments or conducting web searches as needed. The generated answers are rigorously

evaluated to ensure they meet high standards of accuracy. This implementation

demonstrates the potential of merging sophisticated retrieval mechanisms with pow-

erful generative models, resulting in significant improvements in response quality and

reliability.

Keywords: natural language processing, information retrieval, information genera-

tion, Llama3, complex queries.

Table of Contents

Abbreviations .

List of Figures .

1 General Introduction 14

2 State of Play 15

2.1 Presenting BIGmama Technology . 15

2.1.1 Mission . 16

2.1.2 Vision . 16

2.1.3 BIGmama Specificities . 17

2.1.4 Products . 17

2.1.5 Hyko . 18

2.2 Problem Definition . 19

2.3 RAG: Enhancing LLMs with External Knowledge 20

2.4 Conclusion . 21

3 State of the Art 22

3.1 Machine Learning . 23

3.1.1 Definition . 23

3.1.2 Relationships to other fields . 23

3.1.3 Types of Machine Learning . 24

3.1.4 Limitations of Machine Learning: Challenges and Considerations 25

3.2 Deep Learning . 26

3.2.1 Definition . 26

3.2.2 Deep Learning vs. Machine Learning 26

3.2.3 Deep Learning Applications . 26

3.3 Natural Language Processing (NLP) 28

3.3.1 What is Natural Language Processing? 28

3.3.2 How Does NLP Work? . 28

3.4 Neural networks . 31

3.4.1 Feedforward networks . 31

3.4.2 Recurrent Neural Networks . 34

3.4.3 Long Short-Term Memory . 35

3.5 Transformers . 37

3.5.1 Transformer Architecture . 37

3.5.2 Components of the Transformer Architecture 37

3.5.3 Self-Attention Mechanism . 38

Table of Contents

3.5.4 Variants of Transformer Architecture 39

3.6 Large language models (LLMs) . 40

3.6.1 Introduction . 40

3.6.2 Large Language Model Families 41

3.6.3 Tokenizations . 43

3.6.4 Positional Encoding . 43

3.6.5 Model Pre-training . 45

3.6.6 Fine-tuning and Instruction Tuning 47

3.6.7 Reinforcement Learning from Human Feedback (RLHF) 48

3.6.8 How LLMs are used and augmented 49

3.7 Retrieval Augmented Generation (RAG) 59

3.7.1 Introduction . 59

3.7.2 Retrieval Augmented Generation (RAG) Categories 60

3.7.3 Retrieval Models for Document Search 63

3.7.4 Embeddings and Vector Databases for Retrieval in RAG 64

3.7.5 Challenges of Retrieval-Augmented Generation 66

4 Proposed Solution 68

4.1 Problem Definition . 68

4.2 Solution Overview . 69

4.2.1 High-Level Architecture . 69

4.2.2 Key Technologies and Frameworks 70

4.2.3 Data Flow . 71

4.3 Detailed Workflow . 71

4.3.1 User Input . 71

4.3.2 Document Processing . 72

4.3.3 Question Routing . 72

4.3.4 Document Retrieval and Grading 73

4.3.5 Answer Validation and Correction 74

4.3.6 Final Answer Delivery . 74

4.3.7 Logging and Monitoring with LangSmith 75

4.3.8 Model Interaction with Ollama 75

4.4 Challenges and Solutions . 76

4.4.1 Integration of Diverse Technologies 76

4.4.2 Efficient Document Retrieval 76

4.4.3 Document Grading Accuracy 77

4.4.4 Monitoring and Logging . 77

4.5 Conclusion . 79

5 General Conclusion 80

Acronyms

Bibliography 81

Apendix 87

5.1 Prompts used . 87

5.1.1 Retrieval Grader . 87

5.1.2 Answer Generation . 87

5.1.3 Hallucination Grader . 88

5.1.4 Answer Grader . 88

5.1.5 Router . 89

Abbreviations

Here are the main acronyms used in this document. The meaning of an acronym is

usually indicated once, when it first appears in the text.

ABC Asset Based Consulting

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

NLP Natural Language Processing

LLM Large Language model

GPT Generative Pre-trained Transformer

BERT Bidirectional Encoder Representations from Trans-

formers

RAG Retrieval-Augmented Generation

NN Neural Networks

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

LSTM Recurrent Neural Networks

AGI Artificial General Intelligence

SLM Statistical Language Model

NLM Neural Language Model

PLM Pre-trained Language Model

RLHF Reinforcement Learning from Human Feedback

RLAIF Reinforcement Learning from AI Feedback

List of Figures

2.1 Hyko’s Landing page . 19

2.2 Retrieval Augmented Generation. 21

3.1 Machine learning as subfield of AI [6]. 24

3.2 Types of machine Learning. 24

3.3 Example of a feedforward neural network architecture [13]. 31

3.4 Example of computation within a single neuron [13]. 32

3.5 Visualization of the sigmoid, tanh and ReLU activation function out-

puts. 33

3.6 Visualization of an RNN [13]. 34

3.7 Visualization of the vanishing gradient problem [13]. 35

3.8 Visualization of an LSTM memory cell [16]. 36

3.9 Transformer architecture model [19]. 37

3.10 Multi-Head attention network [19]. 38

3.11 LLM capabilities [45] . 41

3.12 Popular LLM families [45] . 42

3.13 Various positional encodings employed in LLMs 45

3.14 Illustration of a Switch Transformer encoder block [52]. 47

3.15 How LLMs Are Used and Augmented [45]. 51

3.16 Chain-of-Thought (CoT) Prompting [43] 53

3.17 Tree-of-Thought (ToT) Framework [64] 54

3.18 Diagram of Reflection [66]. 55

3.19 The PromptChainer interface. 56

3.20 Automatic Prompt Engineer framework [68]. 56

3.21 An example of synthesizing RAG with LLMs for question answering

application. 57

3.22 Technology tree of RAG research [2] 60

3.23 Comparison between the three paradigms of RAG [2]. 61

3.24 Naive RAG . 62

3.25 Advanced RAG . 62

3.26 Word Embeddings . 65

4.1 Proposed solution architecture. 69

4.2 User Input . 72

4.3 Question Routing . 72

4.4 Document Retrieval and Grading . 73

4.5 Answer validation and correction. 74

List of Figures

4.6 Logging and Monitoring with LangSmith. 75

4.7 Llama3’s page on ollama website. 76

4.8 ’What is Coolify?’ question results. 78

4.9 ’What was the score of Portugal vs Georgia?’ question results. 79

Chapter 1

General Introduction

Recent advancements in natural language processing emphasize the need for systems

that efficiently retrieve and generate information for complex queries. Traditional

question-answering systems often struggle due to their reliance on single methods

like keyword retrieval or language model generation, which can yield suboptimal out-

comes. Many current systems are limited by predefined knowledge bases, hindering

their adaptability and access to current internet data.

In today’s era of rapid information growth and intricate queries, traditional sys-

tems face challenges such as hallucinations and incomplete query resolution. There

is a pressing demand for advanced systems that integrate diverse retrieval and gen-

eration techniques effectively.

Our project aims to develop a Local Retrieval-Augmented Generation (RAG)

agent using LLaMA3 and other open-source models. This agent will enhance answer

accuracy and completeness through intelligent query routing, fallback strategies, and

self-correction capabilities. It will leverage large language models and retrieval tech-

niques to ground answers in relevant information sources, with the flexibility to resort

to web searches and correct errors.

Our approach focuses on creating a sophisticated RAG agent that seamlessly in-

tegrates document retrieval, evaluation, and generative processes. Queries undergo

relevance assessment, utilizing document retrieval or web searches as necessary, fol-

lowed by rigorous evaluation of generated answers for accuracy and relevance. This

integration combines advanced retrieval methods with powerful generative models to

enhance response quality and reliability, overcoming traditional system limitations.

The document structure includes: the State of Play introduces BIGmama Technol-

ogy, covering its mission, vision and products. The State of the Art section explores

machine learning topics like deep learning, natural language processing, neural net-

works, transformers, large language models, and Retrieval-Augmented Generation

(RAG). The Proposed Solution section defines the problem, outlines our approach

and workflow, and discusses challenges and solutions. Finally, the General Conclusion

summarizes key findings and implications.

14

Chapter 2

State of Play

“The true power of AI lies in its ability to augment human intelligence, not replace it.”

Andrew Ng, Co-founder of Coursera and former Chief Scientist at Baidu

This chapter delves into the multifaceted aspects of BIGmama Technology, ex-

ploring its mission, vision, and specific methodologies that differentiate it from other

players in the field. The company’s commitment to integrating AI with human in-

telligence, its approach to problematization, and the emphasis on hybridization are

examined to provide a comprehensive understanding of its operational ethos. Ad-

ditionally, the chapter highlights BIGmama’s proprietary tools, such as the Hyko

platform, showcasing their role in democratizing AI technology and fostering collab-

oration within the broader technological ecosystem.

2.1 Presenting BIGmama Technology

BIGmama Technology is an innovative startup founded in France with a subsidiary

in Algeria, specializing in data science and artificial intelligence solutions. With over

9 years of experience as of 2024, the company has established itself as a leading

provider of bespoke predictive applications tailored to meet the unique needs of its

clients.

Guided by a distinguished board of directors comprising former CEOs of global

conglomerates such as Danone and Safran, BIGmama boasts a team of highly skilled

data scientists and software engineers. This multidisciplinary team, consisting of

more than a dozen experts in their respective fields, brings a wealth of knowledge

and expertise to the company’s endeavors.

BIGmama’s commitment to innovation and cutting-edge technologies has allowed

them to deliver state-of-the-art solutions that leverage the power of data science and

artificial intelligence. With a strong focus on providing customized solutions, the

company has consistently exceeded its clients’ expectations, enabling them to gain

valuable insights and make data-driven decisions.

Through its strategic partnerships and collaborations, BIGmama continues to

push the boundaries of what is possible in the realms of data science and AI (Artificial

Intelligence), positioning itself as a driving force in the ever-evolving technological

landscape.

15

Chapter 2. State of Play

2.1.1 Mission

Beyond speeches, BIGmama’s mission is to propose effective methodologies, action

plans, and tools to:

� Solve problems with artificial intelligence tools.

� Put people at the heart of technology, i.e., the hybridization of AI.

� Make technology a common good, shareable, and accessible to the maximum

number of people who can participate and contribute.

The company’s commitment extends far beyond mere rhetoric; it is dedicated

to developing practical solutions, methodologies, and actionable plans to leverage

the power of artificial intelligence for problem-solving. BIGmama places a strong

emphasis on ensuring that technology remains human-centric, fostering a harmonious

integration and hybridization of AI with human intelligence.

Moreover, BIGmama recognizes the importance of democratizing access to tech-

nology, ensuring that it becomes a shared resource that can benefit society as a

whole. The company aims to create an environment where the maximum number of

individuals can actively participate and contribute to the advancement of technology.

Ultimately, BIGmama’s mission is to position technology as a catalyst for freedom,

empowering individuals and communities to unlock new possibilities and overcome

barriers through innovative solutions.

2.1.2 Vision

”Standing on the Shoulders of Giants”

We find ourselves at a pivotal moment in human history, where the rapid advance-

ments in artificial intelligence are poised to reshape our world in unprecedented ways.

Groundbreaking technologies like ChatGPT, developed by industry giants, are at the

forefront of this transformative wave, mobilizing vast resources to redefine the bound-

aries of what is possible.

However, BIGmama’s approach is not to compete directly with these titans but

rather to harness their innovations as a springboard for its own technological endeav-

ors. By building upon the foundations laid by these industry leaders, BIGmama aims

to leverage their advancements as a catalyst for its own visionary project.

Rather than reinventing the wheel, BIGmama recognizes the value in standing on

the shoulders of giants, capitalizing on their groundbreaking work to propel its own

unique solutions forward. This strategic approach not only allows for more efficient

progress but also fosters an environment of collaboration and synergy within the

broader technological ecosystem.

16

Chapter 2. State of Play

With a keen understanding of the rapidly evolving landscape, BIGmama remains

agile and adaptable, poised to seize opportunities presented by the advancements of

industry giants. By embracing a collaborative mindset and harnessing the collective

wisdom of the technological community, BIGmama is well-positioned to contribute its

own innovative solutions, shaping the future in alignment with its vision and mission.

2.1.3 BIGmama Specificities

One of the valuable heritages that BIGmama acquired during the 9 years of actively

developing bespoke AI applications to its clients is its unique methodology of work.

This methodology is centered around the following ideas :

� Data science starts with problematization:

At BIGmama, the approach to data science does not begin with data science

itself but rather with reframing and problematization. The company’s clients

often arrive with a subject or topic rather than a clearly defined problem. BIG-

mama has developed a methodology to convert these topics into well-defined

problems that data scientists can effectively tackle.

� The data scientist is a ”maverick”:

BIGmama recognizes that the data scientist is a ”maverick” who cannot be

restrained. The company understands that it cannot impose specific tools or

methods on data scientists when it comes to solving problems.

� Data science a tool to solve problems:

BIGmama views data science not as an end in itself but as a means to solve

problems. Often, the solution to their clients’ problems lies outside the realm

of data science tools.

� Hybridization:

BIGmama believes that the future of AI lies in what is commonly referred to as

Hybrid AI (Hybrid Artificial Intelligence). This approach encompasses a set of

methodologies and techniques aimed at combining the potential of models with

purely human knowledge. The company believes that this hybridization allows

for putting humans at the heart of technological development and producing

tools that are more efficient, easier to maintain, and less expensive.

2.1.4 Products

Historically, BIGmama is a startup specialized in the development of predictive ap-

plications for third parties. The company’s approach is specific and based on the

17

Chapter 2. State of Play

principles of hybridization between human and model capabilities. These specifici-

ties have led BIGmama to develop its own internal tools. These tools have evolved

as the company’s needs have changed, transitioning from Iko1 to Hyko2. BIGmama

is now willing to make these tools available to the broader technology ecosystem.

As a startup with a rich history in predictive application development, BIGmama

has cultivated a unique approach that emphasizes the seamless integration of human

expertise and model capabilities. This distinctive methodology, rooted in the princi-

ples of hybridization, has driven the company to develop its own suite of proprietary

internal tools.

Over time, as BIGmama’s requirements have evolved, these tools have undergone

continuous refinement and adaptation. The company has transitioned from its initial

Iko platform to the more advanced Hyko solution, ensuring that its tools remain

aligned with its ever-changing needs and the dynamic technological landscape.

In recognition of the value these tools hold for the broader tech community, BIG-

mama has made the strategic decision to make them available to the larger ecosystem.

By sharing its internally developed tools, the company aims to foster collaboration,

knowledge exchange, and the collective advancement of technological solutions.

2.1.5 Hyko

Hyko is a platform that empowers you to become an AI toolmaker. It can be thought

of as using ”Lego” pieces from its vast toolkit, filled with AI models (over 130,000),

APIs (such as Stability.ai, OpenAI, Cohere), web scraping tools, utility functions,

and more.

Hyko is a powerful platform that puts the tools and resources necessary for build-

ing AI applications at your fingertips. By offering a comprehensive toolkit and

streamlined workflow, Hyko empowers users to unleash their creativity and bring

their AI-powered visions to life.

Many companies grapple with numerous manual tasks performed repetitively by

employees, often numbering in the hundreds or thousands each month. Traditional

automation tools struggled to automate these tasks fully due to their reliance on

human reasoning. However, LLMs have revolutionized automation by exposing rea-

soning capabilities through an API.

In response to this advancement, Hyko emerged as an AI-first platform, designed

not merely to streamline employee workflows but to entirely replace them from start

to finish. The platform’s automation builder offers unparalleled flexibility, enabling

the automation of highly complex workflows with ease.

1https://big-mama.io/en/iko
2https://www.hyko.ai

18

https://big-mama.io/en/iko
https://www.hyko.ai

Chapter 2. State of Play

Figure 2.1: Hyko’s Landing page

2.2 Problem Definition

The future value of AI is anticipated to derive not solely from AI engineers or data

scientists, but also from field experts who possess the capability to integrate their

domain knowledge with AI technologies to address everyday challenges. This shift

underscores the growing importance of domain-specific expertise in harnessing the

potential of AI for practical applications.

This imperative is frequently encountered among Hyko users, who often find them-

selves in need of extracting vital insights from their diverse data repositories, which

encompass web sources, PDF documents, and email archives. In response to this

demand, Rag systems emerge as key facilitators, particularly when coupled with

open-source LLMs such as Llama3, Phi3, and mixtral7B. Rag systems excel in the

retrieval, aggregation, and generation of pertinent information, empowering users

to distill valuable insights from their data reservoirs efficiently and effectively. This

seamless integration enhances the capacity for nuanced understanding and actionable

intelligence extraction, thereby augmenting the utility and versatility of Hyko across

19

Chapter 2. State of Play

diverse information retrieval and analysis endeavors.

2.3 RAG: Enhancing LLMs with External Knowledge

LLMs showcase impressive capabilities but encounter challenges like hallucination [1],

outdated knowledge, and non-transparent, untraceable reasoning processes. RAG has

emerged as a promising solution by incorporating knowledge from external databases.

This enhances the accuracy and credibility of the generation, particularly for knowledge-

intensive tasks, and allows for continuous knowledge updates and integration of do-

main specific information. RAG synergistically merges LLMs’ intrinsic knowledge

with the vast, dynamic repositories of external databases [2].

General-purpose language models can be fine-tuned to achieve several common

tasks such as sentiment analysis and named entity recognition. These tasks generally

don’t require additional background knowledge.

For more complex and knowledge-intensive tasks, it’s possible to build a language

model-based system that accesses external knowledge sources to complete tasks. This

enables more factual consistency, improves reliability of the generated responses, and

helps to mitigate the problem of ”hallucination”.

Meta AI researchers introduced a method called Retrieval Augmented Generation

(RAG) [3] to address such knowledge-intensive tasks. RAG combines an informa-

tion retrieval component with a text generator model. RAG can be fine-tuned and

its internal knowledge can be modified in an efficient manner and without needing

retraining of the entire model.

RAG takes an input and retrieves a set of relevant/supporting documents given

a source (e.g., Wikipedia). The documents are concatenated as context with the

original input prompt and fed to the text generator which produces the final output.

This makes RAG adaptive for situations where facts could evolve over time. This is

very useful as LLMs’s parametric knowledge is static. RAG allows language models

to bypass retraining, enabling access to the latest information for generating reliable

outputs via retrieval-based generation.

20

Chapter 2. State of Play

Figure 2.2: Retrieval Augmented Generation.

In short, the retrieved evidence obtained in RAG can serve as a way to enhance

the accuracy, controllability, and relevancy of the LLM’s response. This is why RAG

can help reduce issues of hallucination or performance when addressing problems in

a highly evolving environment.

2.4 Conclusion

In this chapter, we lay the foundation for the subsequent sections of this thesis. We

introduce fundamental concepts in Retrieval-Augmented Generation (RAG) systems

and Large Language Models (LLMs), along with a basic overview of the host company,

BIGmama Technology.

21

Chapter 3

State of the Art

In recent years, the remarkable advancements in Natural Language Processing (NLP)

have been primarily driven by the development of LLMs. These LLMs, such as GPT

(Generative Pretrained Transformer)[4] and BERT (Bidirectional Encoder Represen-

tations from Transformers)[5], have demonstrated remarkable capabilities in under-

standing and generating human-like text. However, despite their impressive perfor-

mance, LLMs still face challenges in effectively retrieving and incorporating relevant

context for generating accurate and coherent responses.

Enter RAG systems, a novel approach that seeks to overcome the limitations of

traditional LLMs by integrating retrieval mechanisms with generation models. RAG

systems combine the strengths of both retrieval and generation techniques to enhance

the quality and relevance of generated text.

This chapter provides a comprehensive exploration of RAG systems, delving into

their architecture, components, training processes, applications, advantages, and

challenges. We begin by establishing a foundational understanding of LLMs and

their evolution, laying the groundwork for understanding the need for RAG systems.

We then proceed to dissect the intricacies of RAG systems, discussing the role of re-

trieval in providing context and the role of generation in producing fluent responses.

Through detailed examination and analysis, we uncover the inner workings of

RAG systems, exploring how retrieval and generation components interact within the

architecture. Real-world applications and use cases of RAG systems across various

domains are elucidated, demonstrating their potential to revolutionize tasks such

as question answering, dialogue generation, and content creation. Furthermore, we

evaluate the advantages and limitations of RAG systems compared to traditional

LLMs and other approaches in NLP.

In summary, this chapter serves as a comprehensive guide to RAG systems, offering

readers a deep dive into one of the most promising advancements in NLP. As we

navigate through the complexities and potentials of RAG systems, we pave the way

for understanding their role in shaping the future of human-computer interaction and

language understanding.

22

Chapter 3. State of the Art

3.1 Machine Learning

3.1.1 Definition

Machine Learning, often abbreviated as ML, is a subset of artificial intelligence (AI)

that focuses on the development of computer algorithms that improve automatically

through experience and by the use of data. In simpler terms, machine learning

enables computers to learn from data and make decisions or predictions without

being explicitly programmed to do so [6].

At its core, machine learning is all about creating and implementing algorithms

that facilitate these decisions and predictions. These algorithms are designed to

improve their performance over time, becoming more accurate and effective as they

process more data.

In traditional programming, a computer follows a set of predefined instructions

to perform a task. However, in machine learning, the computer is given a set of

examples (data) and a task to perform, but it’s up to the computer to figure out how

to accomplish the task based on the examples it’s given.

For instance, if we want a computer to recognize images of cats, we don’t provide

it with specific instructions on what a cat looks like. Instead, we give it thousands of

images of cats and let the machine learning algorithm figure out the common patterns

and features that define a cat. Over time, as the algorithm processes more images,

it gets better at recognizing cats, even when presented with images it has never seen

before.

This ability to learn from data and improve over time makes machine learning in-

credibly powerful and versatile. It’s the driving force behind many of the technological

advancements we see today, from voice assistants and recommendation systems to

self-driving cars and predictive analytics.

3.1.2 Relationships to other fields

Artificial Intelligence (AI) encompasses the field of computer science dedicated to

creating systems capable of emulating human-like intelligence, problem-solving, and

decision-making. Machine Learning (ML) is a subset of AI focused on enabling

computers to learn from data without being explicitly programmed. Within ML,

Deep Learning stands out as a subfield that employs neural networks with multiple

layers to learn complex representations of data, particularly effective in tasks like

image and speech recognition. ML and Deep Learning are integral components of

AI, providing the framework for developing intelligent systems capable of learning,

reasoning, and adapting to new information, thereby advancing the capabilities of AI

across various domains.

23

Chapter 3. State of the Art

Figure 3.1: Machine learning as subfield of AI [6].

3.1.3 Types of Machine Learning

Machine Learning can be broadly categorized into several types based on the learning

approach, the availability of labeled data, and the feedback mechanism. The main

types of machine learning are:

Figure 3.2: Types of machine Learning.

Supervised Learning

Supervised machine learning learns patterns and relationships between input and

output data. It is defined by its use of labeled data. A labeled data is a dataset

that contains a lot of examples of Features and Target. Supervised learning uses

algorithms that learn the relationship of Features and Target from the dataset. This

process is referred to as Training or Fitting [7].

24

Chapter 3. State of the Art

Unsupervised Learning:

Unsupervised learning, also known as unsupervised machine learning, uses machine

learning algorithms to analyze and cluster unlabeled data sets. These algorithms

discover hidden patterns or data groupings without the need for human interven-

tion. Unsupervised learning models are utilized for three main tasks—clustering,

association, and dimensionality reduction [8].

Semi-Supervised Learning:

Semi-supervised learning is a relatively new and less popular type of machine learning

that, during training, blends a sizable amount of unlabeled data with a small amount

of labeled data. Semi-supervised learning is between supervised learning (with labeled

training data) and unsupervised learning (unlabeled training data).

Semi-supervised learning offers a lot of real-world applications. There is a dearth

of labeled data in many fields. Because they involve human annotators, specialized

equipment, or expensive, time-consuming studies, the labels (target variable) could

be challenging to get [7].

Reinforcement Learning:

Reinforcement learning (RL) is a machine learning technique that trains software to

make decisions to achieve the most optimal results. It mimics the trial-and-error

learning process that humans use to achieve their goals [9].

3.1.4 Limitations of Machine Learning: Challenges and Considera-

tions

Although machine learning is a powerful technique for extracting knowledge from

data, it also has certain limitations that are important to consider:

� Data dependency: Machine learning heavily relies on the quality and quan-

tity of training data. If the data is poorly labeled or unrepresentative, it can

lead to errors in predictions.

� Overfitting: When the model is too complex compared to the training data,

it can overfit and not generalize well to test data. This can also result in poor

performance for new data.

� Explainability: Machine learning models can be very complex and difficult to

understand. It can be challenging to understand how the model makes decisions

and to explain these decisions to users.

25

Chapter 3. State of the Art

� Biased data: Training data can be biased due to factors such as data selection,

human biases, or measurement errors. This can lead to biased predictions for

test data.

� Lack of diversity: Machine learning models may lack diversity in the types

of data they can handle. For example, machine learning models may struggle

to process unstructured data such as images, sounds, and texts.

� Computational cost: Machine learning algorithms may require high com-

putational power and significant storage resources to process large amounts of

data. This can be costly and time-consuming to train and implement models.

3.2 Deep Learning

3.2.1 Definition

Deep learning is a type of machine learning that teaches computers to perform tasks

by learning from examples, much like humans do. Imagine teaching a computer to

recognize cats: instead of telling it to look for whiskers, ears, and a tail, you show it

thousands of pictures of cats. The computer finds the common patterns all by itself

and learns how to identify a cat. This is the essence of deep learning.

In technical terms, deep learning uses something called ”neural networks,” which

are inspired by the human brain. These networks consist of layers of interconnected

nodes that process information. The more layers, the ”deeper” the network, allowing

it to learn more complex features and perform more sophisticated tasks [10].

3.2.2 Deep Learning vs. Machine Learning

Deep learning stands apart from traditional machine learning in its approach to data

and learning methods. Machine learning algorithms typically rely on structured,

labeled data for predictions, where specific features are defined and organized into

tables. While machine learning can handle unstructured data, it often requires pre-

processing to structure it. In contrast, deep learning streamlines this process by

directly processing unstructured data such as text and images. It automates fea-

ture extraction, reducing reliance on human experts. For instance, in categorizing

pet photos, deep learning algorithms autonomously identify key features, like ears,

crucial for distinguishing between animals. In contrast, machine learning requires

manual feature hierarchy establishment by human experts.

3.2.3 Deep Learning Applications

Deep learning has a wide range of applications across various domains due to its

ability to learn complex patterns from large volumes of data. Some of the different

26

Chapter 3. State of the Art

types of applications for deep learning include:

Image Recognition and Computer Vision:

� Deep learning is extensively used for tasks such as image classification, object

detection, facial recognition, and image segmentation.

� Applications include self-driving cars, medical image analysis, surveillance sys-

tems, and augmented reality.

Natural Language Processing (NLP):

� Deep learning is employed for understanding and generating human language,

enabling tasks such as sentiment analysis, machine translation, text summa-

rization, and chatbots.

� Applications include virtual assistants, language translation services, social me-

dia sentiment analysis, and customer support chatbots.

These are just a few examples of the diverse applications of deep learning, demon-

strating its versatility and impact across various industries and fields.

27

Chapter 3. State of the Art

3.3 Natural Language Processing (NLP)

Natural Language Processing (NLP) serves as a crucial technology within artificial in-

telligence, facilitating communication between humans and computers. It represents

a multidisciplinary field empowering machines to comprehend, analyze, and produce

human language, thus facilitating seamless human-machine interaction. The impor-

tance of NLP manifests in its diverse applications, spanning automated customer

support to instantaneous language translation, showcasing its pivotal role in modern

computing.

3.3.1 What is Natural Language Processing?

Natural Language Processing (NLP) is a sub-discipline of computer science providing

a bridge between natural languages and computers. It helps empower machines to

understand, process, and analyze human language. NLP’s significance as a tool aiding

comprehension of human-generated data is a logical consequence of the context-

dependency of data. Data becomes more meaningful through a deeper understanding

of its context, which in turn facilitates text analysis and mining. NLP enables this

with the communication structures and patterns of humans [11].

NLP encompasses the task of enabling machines to comprehend, interpret, and

generate human language in a manner that is not only valuable but also meaningful.

OpenAI1, renowned for pioneering sophisticated language models such as ChatGPT2,

underscores the significance of NLP in fostering the development of intelligent sys-

tems capable of comprehending, responding to, and generating text. This advance-

ment in technology serves to enhance user-friendliness and accessibility across various

applications.

3.3.2 How Does NLP Work?

NLP is a fascinating field that delves into the intricate mechanisms underlying human

language comprehension and generation by machines. This section aims to unravel

the complexities of NLP, shedding light on the fundamental principles and techniques

that drive its functionality. By exploring the inner workings of NLP, we gain insight

into how machines process and analyze natural language data, paving the way for

groundbreaking applications in artificial intelligence and human-computer interac-

tion. Through this exploration, we embark on a journey to discover the algorithms,

models, and methodologies that empower machines to navigate the vast landscape of

human language with precision and sophistication.

1https://openai.com/
2https://chat.openai.com

28

https://openai.com/
https://chat.openai.com

Chapter 3. State of the Art

Components of NLP

Natural Language Processing is not a monolithic, singular approach, but rather, it

is composed of several components, each contributing to the overall understanding

of language. The main components that NLP strives to understand are Syntax,

Semantics, Pragmatics, and Discourse.

Syntax: Syntax pertains to the arrangement of words and phrases to create well-

structured sentences in a language.

Semantics: Semantics is concerned with understanding the meaning of words

and how they create meaning when combined in sentences.

Pragmatics: Pragmatics deals with understanding language in various contexts,

ensuring that the intended meaning is derived based on the situation, speaker’s intent,

and shared knowledge.

Discourse: Discourse focuses on the analysis and interpretation of language be-

yond the sentence level, considering how sentences relate to each other in texts and

conversations.

NLP techniques and methods

NLP employs a diverse array of techniques and methodologies to analyze and com-

prehend human language. Below are some foundational techniques utilized in NLP:

Tokenization: This process involves segmenting text into individual units, such

as words, phrases, or symbols, known as tokens.

Parsing: Parsing entails examining the grammatical structure of a sentence to

extract its meaning and syntactic relationships.

Lemmatization: This technique involves reducing words to their base or root

form, facilitating the grouping of different word forms with the same meaning.

Named Entity Recognition (NER): NER is utilized to identify and classify

entities within text, such as persons, organizations, locations, and other named items.

Sentiment Analysis: This method enables the assessment of the sentiment or

emotion expressed in a piece of text, aiding in understanding the underlying mood

or opinion.

What is NLP Used For?

With some of the basic concepts now defined, one can explore how natural language

processing is applied in the modern world.

Automatic Translation: Automatic translation systems use NLP techniques to

translate texts from one language to another.

Chatbots and Virtual Assistants: Chatbots and virtual assistants use NLP

to understand user’s natural language and provide appropriate responses.

29

Chapter 3. State of the Art

Automatic Summarization: NLP algorithms can be employed to summarize

lengthy documents into a few sentences.

Sentiment Analysis: NLP is utilized to analyze sentiments expressed in text,

which can be beneficial for businesses in assessing customer satisfaction.

Information Extraction: NLP systems can extract important information such

as names, locations, and dates from texts.

Speech Recognition: Speech recognition systems utilize NLP techniques to

convert speech into text.

Autocorrection: NLP algorithms are utilized in autocorrection programs to

suggest grammatical and spelling corrections.

Text Analysis: NLP is used to analyze large volumes of text to detect trends,

themes, and patterns.

Automatic Text Generation: NLP enables the automatic generation of text

for various applications, such as report writing or content creation.

30

Chapter 3. State of the Art

3.4 Neural networks

Neural Networks (NNs) are computational models composed of layers of neurons that

can learn from data [12]. They are versatile and robust models capable of learning

directly from raw data, without the need for manually selected features [13]. NNs

employ a training algorithm known as backpropagation, which adjusts the model’s

parameters based on a loss function [13].

3.4.1 Feedforward networks

A feedforward neural network is characterized by its architecture, devoid of cycles,

where the output of layer i can be computed using the outputs from layer i− 1 [13].

The architecture of a neural network encompasses its structure, including the number

of hidden layers and neurons, as well as the functions employed for computations.

These selections, known as hyperparameters, are parameters whose values are not

determined by the learning algorithm [14]. Figure 3.3 shows a typical feedforward

network architecture.

Figure 3.3: Example of a feedforward neural network architecture. The network has
an input layer with four neurons, one hidden layer with three neurons and an output
layer with a single neuron [13].

As depicted in Figure 3.3, neural networks comprise an input layer, n hidden

layers, and an output layer. The input layer receives the data that the network needs

to process, which then traverses through the hidden layers before reaching the output

layer. The output layer provides the model’s result for the given input data. When a

neural network contains multiple hidden layers, it qualifies as a deep neural network

(DNN) and falls within the domain of deep learning [12]. Each layer consists of i

neurons, with connections between each neuron in a layer and every neuron in the

previous layer, except for the input layer.

31

Chapter 3. State of the Art

Neurons serve as fundamental computational units and, as previously indicated,

establish connections with all neurons in the preceding layer. Each connection is

characterized by a numerical parameter referred to as a weight [13].

Figure 3.4: Example of computation within a single neuron, where the weighted sum
of inputs is passed through an activation function to get the output of the neuron [13].

As show in Figure 3.4, the neuron receives inputs from neurons of the preced-

ing layer, denoted as x1, x2, ..., xn. Each neuron-to-neuron connection is assigned

a weight, representing the strength of the connection. The output from a preced-

ing neuron is multiplied by the weight of the connection and then summed for each

connected neuron, yielding the weighted sum of values.

Although not visually represented in Figure 3.4, a bias parameter is introduced

to the weighted sum, thereby altering aj to

aj =
∑
j′

wjj′xj′ + b (3.1)

The bias serves to adjust the neuron’s output independently of the input. This

capability enables the model to alter the neuron’s output during the learning process

without necessitating adjustments to the weights, thereby facilitating finer control

[14].

The weighted sum is subsequently forwarded to an activation function, which

determines the neuron’s output or its degree of ”activation.” An illustration of such

an activation function is the sigmoid function denoted as σ, as depicted in Figure

3.4. The mathematical expression for the sigmoid function is:

σ(aj) =
1

1 + e−aj
(3.2)

According to Nielsen [14], two other common activation functions include tanhϕ,

32

Chapter 3. State of the Art

which is defined as

ϕ(aj) = tanh(aj) =
eaj − e−aj

eaj + e−aj
(3.3)

and Rectified Linear Unit (ReLU), which is defined by equation

R(aj) = max(0, aj) (3.4)

Symbol aj refers to the result of adding together the weighted sum and bias. The

outputs of these functions are visualized in Figure 3.5.

Figure 3.5: Visualization of the sigmoid, tanh and ReLU activation function outputs.

The outputs produced by these activation functions exhibit non-linearity, signify-

ing that the input parameter does not linearly determine the output value, as evident

from Figure 3.5. This concept holds significance in neural networks, enabling them

to learn non-linear systems [15]. While several activation functions are commonly

employed, ReLU has gained prominence in deep learning due to its demonstrated

efficacy in enhancing the performance of numerous neural networks [13]. Typically,

the same activation function is applied across all neurons, except for those in the

output layer.

The choice of activation function for the output layer hinges on the specific task

assigned to the neural network. In regression-based tasks, a linear activation function

is employed to obtain the summed weighted output of the preceding neurons. Con-

versely, for classification problems involving k output neurons, a softmax function is

often utilized. The softmax function is defined as:

ŷ =
eak∑J
j=1 e

aj
(3.5)

and ensures that all neuron outputs sum to one on the output layer [13].

33

Chapter 3. State of the Art

3.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are specialized neural networks designed for pro-

cessing sequential data. They operate by incorporating iterations that retain past

states, enabling the network to leverage previous inputs as context for the current

input [16]. Text serves as a prime example of sequential data, where individual words

can be viewed as singular data points within the sequence. Consequently, RNNs can

effectively process textual input by utilizing preceding words to predict the subse-

quent ones. Figure 3.6 provides an illustration of a basic RNN architecture.

Figure 3.6: Visualization of an RNN with one input neuron, one hidden neuron and
one output neuron [13].

The neuron on the hidden layer stores the hidden state, as visualized by the dashed

line. The activation of the hidden state can be defined as

Ht = ϕh(XtWxh +Ht−1Whh + bh) (3.6)

where Ht is the hidden state at time step t, ϕh is the activation function of the

neuron, Xt is the neuron input at time step t, Wxh is a weight matrix, Whh is the

weight matrix of the hidden state and bh is bias [16].

RNNs are trained utilizing the backpropagation through time (BPTT) algorithm,

which is an adaptation of the standard backpropagation algorithm tailored for net-

works with a sequential order of computations. In this setup, the output at time

step t depends on the states from preceding steps [17]. During training, the forward

pass computes through all time steps, and the resultant loss is utilized to update the

parameters across all time steps. One way to conceptualize this process is by envi-

sioning an unrolled RNN, where the recurrent loops are eliminated, resulting in a

network structure akin to a feedforward neural network. However, due to the nature

of the hidden state dynamics, RNNs are notorious for encountering gradient-related

34

Chapter 3. State of the Art

issues during training. As illustrated in Figure 3.7, if the weight associated with

the dotted line is less than one, future values may decrease exponentially [13]. Con-

versely, weights that start to grow can lead to the exploding gradient problem [16].

When gradients become too small or too large, it can impede the training process of

the model.

Figure 3.7: Visualization of the vanishing gradient problem, which is indicated by the
hidden neuron color fading away [13].

Despite offering a robust framework for sequential learning, RNNs are hindered by

significant limitations arising from the aforementioned issues. One critical limitation

stems from the gradient problem encountered during training, which can constrain

the effective handling of lengthy sequences. Consequently, RNNs may struggle to

capture dependencies between inputs across extended sequences. To address these

challenges, numerous techniques and alternative architectures have been proposed.

Among these, the Long Short-Term Memory (LSTM) architecture stands out as one

of the most prominent examples, and its discussion follows.

3.4.3 Long Short-Term Memory

The Long Short-Term Memory (LSTM) [18] architecture addresses the gradient-

related challenges inherent in RNNs by incorporating constant error, memory cells,

and gate units. This design enables the network to effectively handle sequences span-

ning over 1000 time steps. The memory cells employ three gate units: an input gate

It, an output gate Ot, and a forget gate Ft, which regulate the flow of information.

Specifically, the input gate facilitates the addition of information to the memory cell,

the output gate facilitates information retrieval from the cell, and the forget gate

facilitates cell resetting [16]. Moreover, the memory cells possess an internal state

with a self-connected recurrent edge featuring a constant weight, ensuring consistent

error propagation across time steps and mitigating previously discussed gradient-

35

Chapter 3. State of the Art

related issues [13]. Additionally, a candidate memory cell C̃, utilized for proposing

new information, is integrated with the old memory content Ct−1 through the gates

to govern the preservation of old memory in the new memory Ct [16]. Figure 3.8

illustrates the complete architecture of the LSTM memory cell.

Figure 3.8: Visualization of an LSTM memory cell [16].

Although the LSTM architecture enhances performance compared to the RNN

architecture discussed in subsection 3.4.2, it still possesses limitations. Like the

RNN architecture, models utilizing LSTM must process the previous time step be-

fore computing the next, rendering them computationally intensive and impeding

parallelization. Additionally, LSTM typically lacks an explicit attention mechanism

and tends to prioritize the most recent words. These constraints are addressed by

the Transformer model, which will be introduced next.

36

Chapter 3. State of the Art

3.5 Transformers

LLMs are primarily based on the Transformer architecture, which has become the

foundation for various state-of-the-art NLP models. In this section, we will discuss

the main components of the Transformer architecture.

3.5.1 Transformer Architecture

The transformer architecture is a groundbreaking neural network architecture de-

signed for NLP tasks. It was introduced by Vaswani et al. in the paper ”Attention is

All You Need”[19] The architecture relies on the self-attention mechanism to process

and generate sequences, making it highly efficient and scalable compared to tradi-

tional RNNs and LSTM models. The problem in RNNs and LSTMs is that their

network sequence makes it hard to process long sentences and the ability to perform

tasks in parallel is affected by sequential computation. Transformer approaches these

problems by using encoders, decoders, and self-attention.

The transformer model is shown in Figure 3.9 below.

Figure 3.9: Transformer architecture model [19].

3.5.2 Components of the Transformer Architecture

Figure 3.9 depicts the sequence flow beginning at the base of the embedding block,

where input and output tokens undergo conversion into fixed-size vectors represented

by numerical values corresponding to the tokens. Subsequently, positional encoding

is applied to the tokens, assigning them position-specific values to track their sequen-

tial order. This step compensates for the absence of recursion and convolution within

the network [19]. Progressing along the input pathway, the encoder stack follows,

comprised of N identical layer structures, each containing two sub-layers: a multi-

head attention network and a feedforward network. The output from the encoder

37

Chapter 3. State of the Art

is then forwarded to the subsequent encoder. On the output side of the sequence,

a decoder stack is present, also composed of N layers. Each decoder layer features

a masked multi-head attention network for outputs, followed by multi-head atten-

tion incorporating encoder stack outputs. Analogous to the encoder, a feedforward

network concludes the decoder. Normalization is performed between all sub-layers.

Subsequently, the decoder output is linearized, and the softmax activation function

is applied to transform output token values into a probability distribution. The re-

sulting sequence yields a list of token probabilities, representing the transformer’s

predictions for suitable tokens given the input sequence.

3.5.3 Self-Attention Mechanism

In the article ”Attention is all you need” the self-attention network is called Multi-

Head Attention and consists of linearly projecting inputs, Scaled Dot-Product At-

tention layers, output concatenation, and finally, projecting the output values [19].

The self-attention network is introduced in Figure 3.10 below.

Figure 3.10: Multi-Head attention network [19].

The network’s inputs comprise matrices containing query, key, and value vectors

for each token. The matrix Q represents query vectors, K corresponds to keys, and

V represents values. To simplify these terms, envision the query as akin to a search

engine query initiated by a user, where the key value signifies the title of the search

results, and the value encapsulates the content within the titles. These matrices cor-

respond to sentences composed of tokens. Utilizing the scaled dot-product attention

mechanism, the network produces tokens with associated attention scores. Multi-

ple self-attention layers, denoted by h, operate concurrently, a process referred to as

multi-head attention. This mechanism enables the model to track token positions

effectively. The attention scores generated by self-attention can be expressed using

38

Chapter 3. State of the Art

Equation 3.7.

Attention(Q,K, V) = softmax(
QKT

2
√
dk

)V (3.7)

The dot product, performed on matrices Q and K, is divided by the square root

of dk, representing the dimensionality of the key vectors [19]. This division serves

as a scaling factor. Subsequently, the softmax activation function is applied to this

result, which is then multiplied by V to obtain the attention matrix. This process is

repeated h times to generate multiple multi-head attention matrices. These matrices

are subsequently concatenated into a single linearized matrix, which is then fed into

the feedforward network.

The feedforward network employed within the transformer architecture shares

similarities with the network outlined in Figure 3.9, but with variations in the num-

ber of layers, input and output dimensions, activation function, and other parameters

across different models. In the ”Attention is all you need” article, two linear transfor-

mations with ReLU activation were utilized, featuring output and input dimensions

of dmodel = 512, and an inner-layer dimensionality of 2048 [19]. Within the realm

of LLMs, some of these parameters can be regarded as hyperparameters, exhibiting

variability across models. For instance, in the Chinchilla model, the dimensionality is

dmodel = 8192, with the feedforward network size consistently four times the former

value [20].

3.5.4 Variants of Transformer Architecture

Various LLMs are built on top of the Transformer architecture with slight modifica-

tions or adaptations. Some popular variants include:

GPT: The Generative Pre-trained Transformer (GPT) is an autoregressive model

that utilizes only the decoder part of the Transformer architecture to generate text

[4].

BERT: Bidirectional Encoder Representations from Transformers (BERT) is based

on the encoder part of the Transformer architecture and is pre-trained using masked

language modeling and next sentence prediction tasks [5].

T5: The Text-to-Text Transfer Transformer (T5) adapts the original Transformer

architecture to a unified text-to-text format, enabling it to be used for various NLP

tasks with minimal task-specific modifications [21].

39

Chapter 3. State of the Art

3.6 Large language models (LLMs)

3.6.1 Introduction

Language modeling is a long-standing research topic, dating back to the 1950s with

Shnnon’s application of information theory to human language, where he measures

how well simple n-gram language models predict or compress natural language text

[22]. Since then, statistical language modeling became fundamental to many natu-

ral language understanding and generation tasks, ranging from speech recognition,

machine translation, to information retrieval [23] [24].

Recent advances in transformer-based large language models (LLMs), pretrained

on web-scale text corpora, have significantly enhanced the capabilities of these mod-

els. For instance, OpenAI’s ChatGPT and GPT-4 are now used not only for natural

language processing but also as general task solvers, exemplified by their integration

into Microsoft’s Co-Pilot systems. These models can follow complex human instruc-

tions and perform multi-step reasoning when necessary. Consequently, LLMs are

becoming fundamental building blocks for the development of general-purpose AI

agents or artificial general intelligence (AGI).

LLMs are large-scale, pre-trained, statistical language models based on neural

networks. Their recent success is the result of decades of research and development

in language modeling, which can be divided into four distinct waves, each with its

own starting points and progression: statistical language models, neural language

models, pre-trained language models, and LLMs.

Early neural language models (NLMs) [25], [26], [27], [28] address data sparsity by

mapping words to low-dimensional continuous vectors, known as embedding vectors,

and predicting the next word based on the aggregation of these vectors using neural

networks. The embedding vectors learned by NLMs create a hidden space where the

semantic similarity between vectors can be easily computed as their distance. This

enables the computation of semantic similarity between any two inputs, regardless

of their forms (e.g., queries versus documents in web search [29], [30], sentences in

different languages in machine translation [31], [32]) or modalities (e.g., image and

text in image captioning [32], [33]). However, early NLMs are task-specific models,

as they are trained on task-specific data, resulting in a hidden space that is also

task-specific.

Pre-trained language models (PLMs), unlike early neural language models (NLMs),

are task-agnostic. This generality also extends to the learned hidden embedding

space. The training and inference of PLMs follow the pre-training and fine-tuning

paradigm, where language models utilizing recurrent neural networks [34] or trans-

formers [5], [35], [36] are pre-trained on web-scale unlabeled text corpora for general

tasks such as word prediction. They are then fine-tuned for specific tasks using small

amounts of labeled, task-specific data. Recent surveys on PLMs include [37], [38],

40

Chapter 3. State of the Art

[39].

Large language models (LLMs) mainly refer to transformer-based neural language

models that contain tens to hundreds of billions of parameters. These models, such

as PaLM [40], LLaMA [41], and GPT-4 [42], are pre-trained on massive text datasets.

Compared to pre-trained language models (PLMs), LLMs are not only significantly

larger in model size but also exhibit stronger language understanding and genera-

tion abilities. More importantly, they demonstrate emergent abilities not present in

smaller-scale language models. As illustrated in Figure 3.11, these emergent abilities

include:

In-context learning: LLMs can learn a new task from a small set of examples

presented in the prompt at inference time.

Instruction following: After instruction tuning, LLMs can follow instructions

for new types of tasks without explicit examples.

Multi-step reasoning: LLMs can solve complex tasks by breaking them down

into intermediate reasoning steps, as demonstrated in the chain-of-thought prompting

[43].

LLMs can also be augmented with external knowledge and tools [44], [44], enabling

them to effectively interact with users and the environment [44], and continually

improve using feedback data collected through interactions, such as via reinforcement

learning with human feedback (RLHF).

Figure 3.11: LLM capabilities [45]

3.6.2 Large Language Model Families

Large language models (LLMs) primarily refer to transformer-based pre-trained lan-

guage models (PLMs) that encompass tens to hundreds of billions of parameters.

Compared to the previously discussed PLMs, LLMs are significantly larger in size

and demonstrate enhanced capabilities in language understanding, generation, and

41

Chapter 3. State of the Art

emergent phenomena that are absent in smaller models. This section will examine

three prominent LLM families: GPT, LLaMA, and PaLM, as illustrated in Figure

3.12.

Figure 3.12: Popular LLM families [45]

The GPT Family: Generative Pre-trained Transformers (GPT) are a series of

decoder-only Transformer-based language models developed by OpenAI. This series

includes models such as GPT-1, GPT-2, GPT-3, InstrucGPT, ChatGPT, GPT-4,

CODEX, and WebGPT. While the earlier models, such as GPT-1 and GPT-2, are

open-source, the more recent models, including GPT-3 and GPT-4, are proprietary

and accessible only through APIs.

The LLaMA Family: LLaMA is a series of foundational language models re-

leased by Meta. In contrast to GPT models, LLaMA models are open-source, with

model weights made available to the research community under a noncommercial

license. Consequently, the LLaMA family has expanded rapidly, as these models are

widely utilized by numerous research groups to develop improved open-source lan-

guage models to compete with proprietary models or to create task-specific models

for mission-critical applications.

The PaLM Family: The PaLM (Pathways Language Model) family, devel-

oped by Google, includes the first PaLM model [40] announced in April 2022 and

kept private until March 2023. This transformer-based LLM features 540 billion

parameters and is pre-trained on a high-quality text corpus containing 780 billion

tokens, covering a broad spectrum of natural language tasks and applications. The

model’s pre-training utilized 6144 TPU v4 chips within the Pathways system, fa-

cilitating highly efficient training across multiple TPU Pods. PaLM showcases the

ongoing advantages of scaling, achieving state-of-the-art few-shot learning results on

hundreds of language understanding and generation benchmarks. The PaLM-540B

model not only surpasses state-of-the-art fine-tuned models on various multi-step

reasoning tasks but also performs comparably to humans on the newly introduced

BIG-bench benchmark.

42

Chapter 3. State of the Art

3.6.3 Tokenizations

Tokenization refers to the process of converting a sequence of text into smaller units

known as tokens. While the simplest tokenization tools split text based on whites-

pace, most rely on a word dictionary. However, this approach faces the out-of-

vocabulary (OOV) problem, as the tokenizer can only recognize words present in its

dictionary. To address this, popular tokenizers for LLMs are based on sub-words,

which can be combined to form a vast array of words, including those not seen in

the training data or from different languages. The following sections describe three

popular tokenizers [45].

BytePairEncoding

BytePairEncoding (BPE) is originally a data compression algorithm that leverages

frequent patterns at the byte level to compress data. The algorithm primarily aims

to retain frequent words in their original form while breaking down less common

words. This approach ensures that the vocabulary remains manageable in size while

adequately representing common words. Additionally, BPE effectively represents

morphological variations of frequent words if their suffixes or prefixes are commonly

found in the training data.

WordPieceEncoding

This algorithm is predominantly used in well-known models such as BERT and Elec-

tra. At the beginning of training, it incorporates the entire alphabet from the training

data to ensure that no characters are left as UNK (unknown). This scenario occurs

when the model encounters input that cannot be tokenized, typically involving unto-

kenizable characters. Similar to BytePairEncoding, this approach aims to maximize

the likelihood of including all tokens in the vocabulary based on their frequency.

SentencePieceEncoding

Although the previously described tokenizers offer significant advantages over white-

space tokenization, they still assume that words are always separated by white spaces.

This assumption does not hold true for all languages, where words can be disrupted

by various noisy elements such as unwanted spaces or invented words. Sentence-

PieceEncoding aims to address this issue.

3.6.4 Positional Encoding

Positional encoding is a technique used in transformer models to provide the model

with information about the position of tokens in a sequence. This is crucial because

transformer models process tokens in parallel, lacking inherent knowledge of token

43

Chapter 3. State of the Art

order. Positional encoding ensures that the model can differentiate between tokens

based on their position, which is essential for tasks where word order matters, such

as language translation and text generation

Absolute Positional Embeddings

Absolute Positional Embeddings (APE) [19] has been used in the original Trans-

former model to preserve the sequence order information. Consequently, positional

information of words is added to the input embeddings at the base of both the en-

coder and decoder stacks. Various options exist for positional encodings, including

learned or fixed methods. In the vanilla Transformer, sine and cosine functions are

utilized for this purpose. However, the main drawback of using APE in Transformers

is its limitation to a fixed number of tokens. Moreover, APE does not account for

the relative distances between tokens.

Relative Positional Embeddings

Relative Positional Embeddings(RPE) [46] extend self-attention to consider the pair-

wise connections between input elements. RPE is integrated into the model at

two levels: first, as an additional component to the keys, and subsequently, as a

sub-component of the values matrix. This methodology views the input as a fully-

connected graph with labels and directed edges. In the context of linear sequences,

edges can encode information about the relative positional disparities between input

elements. A clipping distance, denoted as k2 ≤ k ≤ n−4, specifies the maximum limit

on relative locations. This mechanism enables the model to make sensible predictions

for sequence lengths not present in the training data.

Rotary Position Embeddings

Rotary Positional Embedding (RoPE) [47] addresses limitations inherent in exist-

ing approaches. Learned absolute positional encodings may lack generalizability and

significance, particularly in the context of short sentences. Additionally, current

methods such as T5’s positional embedding struggle with constructing a complete

attention matrix between positions. RoPE employs a rotation matrix to encode the

absolute position of words while concurrently incorporating explicit relative position

details in self-attention. This approach offers several advantageous features, includ-

ing flexibility with varying sentence lengths, reduced word dependency as relative

distances increase, and enhancement of linear self-attention through relative position

encoding. Notably, models like GPT-NeoX-20B, PaLM, CODEGEN, and LLaMA

leverage RoPE within their architectures.

44

Chapter 3. State of the Art

Relative Positional Bias

The rationale behind this form of positional embedding is to enable extrapolation

during inference for sequences longer than those encountered during training. In

their work [48], Press et al. introduced Attention with Linear Biases (ALiBi). Rather

than solely adding positional embeddings to word embeddings, they introduced a bias

to the attention scores of query-key pairs, imposing a penalty proportional to their

distance. The BLOOM [49] model leverages ALiBi as part of its architecture.

(a) Absolute positional encoding [50] (b) Relative Positional Embeddings

(c) Relative Positional Bias [48] (d) Rotary Positional Embedding [47]

Figure 3.13: Various positional encodings employed in LLMs

3.6.5 Model Pre-training

Pre-training is the very first step in the large language model training pipeline, help-

ing LLMs acquire fundamental language understanding capabilities, which can be

useful in a wide range of language-related tasks. During pre-training, the LLM is

trained on a massive amount of (usually) unlabeled texts, typically in a self-supervised

manner. There are different approaches used for pre-training, such as next sentence

prediction [5]. The two most common techniques include next token prediction (au-

45

Chapter 3. State of the Art

toregressive language modeling) and masked language modeling.

In the Autoregressive Language Modeling framework, given a sequence of n

tokens x1, . . . , xn, the model aims to predict the next token xn+1 (and occasionally the

subsequent sequence of tokens) in an autoregressive manner. A commonly used loss

function in this context is the log-likelihood of the predicted tokens, as demonstrated

in Equation 3.8.

LALM (x) =
N∑
i=1

p(xi+n|xi, . . . , xi+n−1) (3.8)

Given the autoregressive nature of this framework, decoder-only models are in-

herently better suited to learn and perform these tasks.

In Masked Language Modeling, certain words in a sequence are masked, and

the model is trained to predict these masked words based on the surrounding context.

This approach is sometimes referred to as denoising autoencoding. If we denote the

masked or corrupted samples in the sequence x as x̃, the training objective can be

expressed as:

LMLM (x) =
N∑
i=1

p(x̃|x\x̃) (3.9)

More recently, Mixture of Experts (MoE) [51], [52] have gained significant

popularity in the LLM space. MoEs allow models to be pre-trained with substan-

tially less compute, enabling a dramatic increase in model or dataset size within the

same compute budget as a dense model. An MoE architecture consists of two main

components: Sparse MoE layers, which replace dense feed-forward network (FFN)

layers, and contain several ”experts” (e.g., 8), each of which is a neural network.

Typically, these experts are FFNs, but they can also be more complex networks. A

gate network, or router, determines which tokens are sent to which expert. Notably,

a token can be routed to multiple experts. Routing tokens to experts is a critical

decision in MoE design; the router consists of learned parameters and is trained con-

currently with the rest of the network. Figure 29 illustrates a Switch Transformer

encoder block, commonly used in MoEs.

46

Chapter 3. State of the Art

Figure 3.14: Illustration of a Switch Transformer encoder block. They replaced the
dense feed forward network (FFN) layer present in the Transformer with a sparse
Switch FFN layer (light blue) [52].

3.6.6 Fine-tuning and Instruction Tuning

Early language models, such as BERT, trained using self-supervision, were not able

to perform specific tasks directly. To make the foundation model useful, it needed

to be fine-tuned for a specific task using labeled data, a process known as supervised

fine-tuning (SFT). For instance, in the original BERT paper [5], the model was

fine-tuned for 11 different tasks. While more recent LLMs no longer require fine-

tuning to be functional, they can still benefit from task-specific or data-specific fine-

tuning. For example, OpenAI reports that the much smaller GPT-3.5 Turbo model

can outperform GPT-4 when fine-tuned with task-specific data3.

Fine-tuning does not have to be limited to a single task; various approaches to

multi-task fine-tuning exist (see, e.g., Mahabi et al. [53]). Fine-tuning on one or more

tasks is known to improve results and reduce the complexity of prompt engineering,

offering an alternative to retrieval-augmented generation. Additionally, there are

other compelling reasons to fine-tune a model. For instance, fine-tuning can expose

the model to new or proprietary data that it did not encounter during pre-training.

An essential motivation for fine-tuning LLMs is to ensure that their responses align

with the expectations humans have when providing instructions through prompts.

This process is referred to as instruction tuning [54]. While we delve into the specifics

of designing and engineering prompts in later sections, it’s crucial to grasp that in

the context of instruction tuning, the instruction acts as a prompt that outlines the

task the LLM is expected to perform. Instruction tuning datasets, such as Natu-

ral Instructions [55], encompass not only the task definition but also include other

components such as positive and negative examples or instructions on what to avoid.

3https://platform.openai.com/docs/guides/fine-tuning

47

https://platform.openai.com/docs/guides/fine-tuning

Chapter 3. State of the Art

The specific methodology and instruction datasets utilized for instruction tuning

an LLM may vary; however, as a general trend, instruction-tuned models tend to sur-

pass the performance of their original foundation models upon which they are built.

For instance, InstructGPT [56] exhibits superior performance to GPT-3 across most

benchmarks. Similarly, Alpaca [57] outperforms LLaMA in comparative evaluations.

Self-Instruct [58], introduced by Wang et al., is another prominent method

in this domain. They proposed a framework aimed at enhancing the instruction-

following abilities of pre-trained language models by leveraging their own generated

outputs. Their pipeline involves generating instructions, input, and output samples

from a language model, followed by filtering out invalid or redundant ones before

employing them to fine-tune the original model.

3.6.7 Reinforcement Learning from Human Feedback (RLHF)

AI Alignment is the process of steering AI systems towards human goals, preferences,

and principles. LLMs, pre-trained for word prediction, often exhibit unintended be-

haviors. For example, they might generate contents that are toxic, harmful, mislead-

ing and biased.

Instruction tuning, discussed above, gets LLMs a step closer to being aligned.

However, in many cases, it is important to include further steps to improve the

alignment of the model and avoid unintended behaviors.

Reinforcement Learning from Human Feedback (RLHF) is a powerful technique

used to fine-tune large language models (LLMs) by leveraging human-generated feed-

back. This approach helps address limitations of supervised fine-tuning, such as over-

fitting to the training data, and enables LLMs to better align with human preferences

and values. This section explores the key components and process of RLHF [59].

Collecting Human Feedback

The first step in RLHF involves collecting human feedback on model-generated out-

puts. This can be achieved through several methods, such as:

� Providing demonstrations of correct behavior.

� Comparing different model-generated outputs and ranking them based on qual-

ity.

� Assigning explicit rewards or scores to model outputs.

The collected feedback serves as a valuable source of information for the model to

learn from, helping it better understand human preferences and expectations.

48

Chapter 3. State of the Art

Reward Modeling

Once human feedback is collected, a reward model is trained to predict the quality of

the model-generated outputs. This reward model acts as a proxy for human judgment

and is used to guide the reinforcement learning process. By training the reward model

on human-generated feedback, it learns to approximate human preferences and assign

rewards accordingly.

Reinforcement Learning

With a reward model in place, the LLM is fine-tuned using reinforcement learning

algorithms such as Proximal Policy Optimization (PPO) [60] or REINFORCE [61].

The goal is to generate outputs that maximize the predicted rewards, which are a

proxy for human preferences. By optimizing the model’s behavior to align with the

reward model, LLMs can learn to generate outputs that are more desirable and useful

to human users.

Iterative Improvement

The RLHF process is iterative. As the model improves, additional human feedback

can be collected to further refine the reward model. This updated reward model is

then used to guide another round of reinforcement learning, resulting in continued

performance improvements.

Through these iterations, LLMs can learn to better align with human values and

preferences, which can lead to higher-quality outputs and improved performance on

specific tasks. RLHF has been successfully applied to fine-tune models like OpenAI’s

ChatGPT [56], demonstrating its effectiveness in enhancing the capabilities of LLMs.

3.6.8 How LLMs are used and augmented

Once LLMs are trained, they become capable of generating desired outputs for various

tasks. While LLMs can be directly utilized through basic prompting, fully exploiting

their potential or overcoming some of their limitations often requires augmentation

through external means. In this section, we initially provide a concise overview of the

primary shortcomings of LLMs, with a particular focus on the issue of hallucination.

We then discuss how prompting and certain augmentation strategies can not only

mitigate these limitations but also enhance the capabilities of LLMs, potentially

transforming them into comprehensive AI agents with the capacity to interact with

the external world.

49

Chapter 3. State of the Art

LLM limitations

It’s crucial to acknowledge that LLMs are trained to predict tokens. Despite the

enhancements brought about by fine-tuning and alignment, they still exhibit signifi-

cant limitations, especially if used in a simplistic manner. Some notable constraints

include:

� Lack of state/memory: LLMs inherently lack the ability to retain information

from previous prompts, which poses a challenge for tasks requiring some form

of state management.

� Stochastic/probabilistic nature: Repeatedly sending the same prompt to an

LLM may result in different responses due to its probabilistic nature. Although

parameters like temperature can mitigate variability, this trait stems from their

training process and can lead to inconsistent outputs.

� Limited access to external data: LLMs operate in isolation and lack real-time

information or access to data beyond their training set.

� Large resource requirements: Given their substantial size, training and serving

LLMs often necessitate expensive GPU resources. Larger models may also

exhibit poor service level agreements (SLAs), particularly concerning latency.

� Hallucinatory tendencies: LLMs lack a definitive concept of ”truth” and have

been trained on diverse content, leading to the generation of plausible yet in-

accurate responses.

While all these limitations are pertinent to various applications, it’s particularly

insightful to delve deeper into the issue of hallucinations. This phenomenon has

garnered significant attention in recent months and has catalyzed the development of

numerous prompting approaches and LLM augmentation techniques, as we’ll explore

further.

In the domain of Large Language Models (LLMs), the concept of ”hallucina-

tions” has become a focal point of discussion. Defined in the literature, particularly

in the paper ”Survey of Hallucination in Natural Language Generation” [62], hallu-

cination within an LLM refers to ”the generation of content that is nonsensical or

deviates from the provided source.” Although the term originates from psychological

discourse, it has been adopted and adapted within the realm of artificial intelligence.

Hallucinations in LLMs can be broadly categorized into two types:

1. Intrinsic Hallucinations: These directly conflict with the source material,

introducing factual inaccuracies or logical inconsistencies.

50

Chapter 3. State of the Art

2. Extrinsic Hallucinations: These, while not contradicting, are unverifiable

against the source, encompassing speculative or unconfirmable elements.

In LLM contexts, the definition of ’source’ varies depending on the task at hand.

In dialogue-based tasks, ’source’ typically refers to ’world knowledge,’ encompassing

a broad range of factual and contextual information. Conversely, in tasks like text

summarization, the ’source’ is more narrowly defined as the input text itself. This

distinction holds significance in assessing and understanding hallucinations within

LLM-generated content. Furthermore, the implications of hallucinations are highly

context-dependent. For instance, in creative endeavors such as poem writing, hallu-

cinations may be considered acceptable or even advantageous, as they can contribute

to artistic expression and innovation.

LLMs, trained on diverse datasets sourced from the internet, books, andWikipedia,

generate text based on probabilistic models, lacking an intrinsic understanding of

truth or falsehood. Despite recent advancements such as instruct tuning and Rein-

forcement Learning from Human Feedback (RLHF), which aim to guide LLMs toward

producing more factually accurate outputs, the fundamental probabilistic nature and

associated limitations persist. A recent study titled ”Sources of Hallucination by

Large Language Models on Inference Tasks” [63] sheds light on two critical factors

contributing to hallucinations in LLMs: the veracity prior and the relative frequency

heuristic. This underscores the intricate challenges involved in LLM training and

output generation.

Figure 3.15: How LLMs Are Used and Augmented [45].

51

Chapter 3. State of the Art

Prompt Design and Engineering

In generative AI models, a prompt refers to the textual input provided by users to

steer the model’s output. This input can vary from straightforward questions to

detailed descriptions or specific tasks. Typically, prompts encompass instructions,

questions, input data, and examples. In practice, to prompt a desired response from

an AI model, a prompt must include either instructions or questions, although other

elements are optional. Advanced prompts may involve more intricate structures,

such as ”chain of thought” prompting, where the model is directed to follow a logical

reasoning process to generate an answer.

Prompt engineering is a rapidly evolving discipline that shapes the interactions

and outputs of LLMs and other generative AI models. At its core, prompt engi-

neering involves crafting optimal prompts to achieve specific goals with a generative

model. This process goes beyond merely instructing the model; it also requires a

deep understanding of the model’s capabilities and limitations, as well as the context

in which it operates.

Researchers employ prompt engineering to enhance the performance of LLMs

across a broad spectrum of tasks, including question answering and arithmetic reason-

ing. Developers utilize prompt engineering to create robust and effective prompting

techniques that interface seamlessly with LLMs and other tools.

Prompt engineering extends beyond the design and development of prompts. It

encompasses a wide array of skills and techniques essential for interacting with and

developing LLMs. This discipline is crucial for interfacing with LLMs, building ap-

plications with them, and understanding their capabilities. Through prompt engi-

neering, one can enhance the safety of LLMs and develop new functionalities, such

as augmenting LLMs with domain knowledge and integrating external tools.

In the following paragraphs we detail some of the most interesting and popular

prompt engineering approaches.

1) Chain of Thought (CoT): The Chain of Thought (CoT) technique, first de-

scribed in the paper ”Chain-of-Thought Prompting Elicits Reasoning in Large Lan-

guage Models” [43] by Google researchers, marks a significant advancement in prompt

engineering for Large Language Models (LLMs). This method is based on the un-

derstanding that although LLMs excel in token prediction, they are not inherently

designed for explicit reasoning. CoT mitigates this limitation by guiding the model

through essential reasoning steps.

52

Chapter 3. State of the Art

Figure 3.16: Chain-of-Thought (CoT) Prompting [43]

CoT is designed to make the implicit reasoning process of LLMs explicit. By

outlining the necessary reasoning steps, this technique guides the model towards

producing more logical and reasoned outputs, particularly in scenarios that demand

more than simple information retrieval or pattern recognition.

2) Tree of Thought (ToT): The Tree of Thought (ToT) prompting technique

[64] draws inspiration from the concept of exploring various alternative solutions

or thought processes before settling on the most plausible one. ToT involves branch-

ing out into multiple ”thought trees,” with each branch representing a different line

of reasoning. This method enables the LLM to investigate various possibilities and

hypotheses, mirroring human cognitive processes where multiple scenarios are con-

sidered before determining the most likely outcome.

A critical aspect of ToT is the evaluation of these reasoning paths. As the LLM

generates different branches of thought, each branch is assessed for its validity and

relevance to the query. This process involves real-time analysis and comparison of

the branches, ultimately leading to the selection of the most coherent and logical

outcome.

ToT is particularly useful in complex problem-solving scenarios where a single line

of reasoning might not suffice. It enables LLMs to mimic a more human-like problem-

solving approach by considering a range of possibilities before arriving at a conclusion.

This technique enhances the model’s ability to handle ambiguity, complexity, and

nuanced tasks, making it a valuable tool in advanced AI applications.

53

Chapter 3. State of the Art

Figure 3.17: Tree-of-Thought (ToT) Framework [64]

3) Self-Consistency: Self-Consistency [65] employs an ensemble-based method,

prompting the LLM to generate multiple responses to the same query. The consis-

tency among these responses acts as an indicator of their accuracy and reliability.

The Self-Consistency approach is based on the principle that if an LLM generates

multiple similar responses to the same prompt, the response is more likely to be

accurate. This method involves prompting the LLM to address a query multiple

times and then analyzing the responses for consistency. This technique is particularly

useful in scenarios where factual accuracy and precision are critical.

The consistency of responses can be measured using various methods. One com-

mon approach is to analyze the overlap in the content of the responses. Other meth-

ods include comparing the semantic similarity of responses or employing more so-

phisticated techniques like BERT-scores or n-gram overlaps. These measures help

quantify the level of agreement among the responses generated by the LLM.

4) Reflexion: Reflexion [66] involves prompting LLMs to assess and potentially

revise their own outputs by reasoning about the correctness and coherence of their

responses. The concept of Reflexion centers on the ability of LLMs to engage in a

form of self-evaluation. After generating an initial response, the model is prompted

to reflect on its own output, considering factors such as factual accuracy, logical

consistency, and relevance. This introspective process can lead to the generation of

revised or improved responses.

54

Chapter 3. State of the Art

Figure 3.18: Diagram of Reflection [66].

A crucial component of Reflexion is the LLM’s ability to self-edit. By assessing its

initial response, the model can detect potential errors or areas that need improvement.

This iterative process of generating, reflecting, and revising enables the LLM to

enhance its output, improving the overall quality and reliability of its responses.

5) Chains: Chains refer to the method of linking multiple components in a se-

quence to manage complex tasks with Large Language Models (LLMs). This ap-

proach involves creating a series of interconnected steps or processes, each contribut-

ing to the final outcome. The concept of Chains is based on constructing a workflow

where different stages or components are sequentially arranged. Each component in a

Chain performs a specific function, with the output of one serving as the input for the

next. This end-to-end arrangement allows for more intricate and nuanced processing,

as each stage can be customized to handle a specific aspect of the task. The complex-

ity and structure of Chains can vary based on the requirements. In ”PromptChainer:

Chaining Large Language Model Prompts through Visual Programming” [67], the

authors discuss the main challenges in designing chains and introduce a visual tool

to support these tasks.

55

Chapter 3. State of the Art

Figure 3.19: The PromptChainer interface. (A) The Chain View visualizes the chain
structure with node-edge diagrams (enlarged in Figure 2), and allows users to edit
the chain by adding, removing, or reconnecting nodes. (B) The Node View supports
implementing, improving, and testing each individual node, e.g., editing prompts for
LLM nodes. PromptChainer also supports running the chain end-to-end (C) [67].

6) Automatic Prompt Engineering (APE): Automatic Prompt Engineering (APE)

[68] aims to automate the creation of prompts for Large Language Models (LLMs).

APE seeks to streamline and optimize the prompt design process by leveraging the

capabilities of LLMs themselves to generate and evaluate prompts. This approach

involves using LLMs in a self-referential manner, where the model generates, scores,

and refines prompts. By recursively utilizing LLMs in this way, APE facilitates the

creation of high-quality prompts that are more likely to elicit the desired response or

outcome.

Figure 3.20: Automatic Prompt Engineer framework [68].

56

Chapter 3. State of the Art

Augmenting LLMs through external knowledge - RAG

One of the primary limitations of pre-trained Large Language Models (LLMs) is their

lack of up-to-date knowledge or access to private or use case-specific information. This

is where Retrieval Augmented Generation (RAG) comes into the picture [69]. As

illustrated in Figure 3.21, RAG involves extracting a query from the input prompt

and using that query to retrieve relevant information from an external knowledge

source (e.g., a search engine or a knowledge graph.). The relevant information is

then added to the original prompt and fed to the LLM to generate the final response.

A RAG system includes three important components: Retrieval, Generation, and

Augmentation [2].

Figure 3.21: An example of synthesizing RAG with LLMs for question answering
application.

Due to the significance of RAG in the development of advanced LLM systems,

several RAG-aware prompting techniques have been developed recently. One such

technique is Forward-looking Active Retrieval Augmented Generation (FLARE).

Forward-looking Active Retrieval Augmented Generation (FLARE) [70] enhances

the capabilities of Large Language Models (LLMs) by iteratively integrating pre-

diction and information retrieval. FLARE represents an advancement in retrieval-

augmented generation, aimed at improving the accuracy and relevance of LLM re-

sponses.

FLARE involves an iterative process where the LLM actively predicts upcom-

ing content and uses these predictions as queries to retrieve relevant information.

This method differs from traditional retrieval-augmented models, which typically re-

57

Chapter 3. State of the Art

trieve information once before proceeding with generation. In FLARE, the process

is dynamic and ongoing throughout the generation phase. Each sentence or segment

generated by the LLM is evaluated for confidence. If the confidence level falls below a

certain threshold, the model uses the generated content as a query to retrieve relevant

information, which is then used to regenerate or refine the sentence. This iterative

process ensures that each part of the response is informed by the most relevant and

current information available.

Augmenting LLMs through external tools

Retrieving information from an external knowledge source, as previously described,

is just one way to enhance an LLM. More broadly, an LLM can interface with various

external tools (e.g., an API to a service) to extend its capabilities. In this context,

RAG (Retrieval-Augmented Generation) can be viewed as a specific example within

the broader category of these ”tools.”

In this context, tools refer to external functions or services that LLMs can utilize.

These tools enhance the capabilities of LLMs, enabling them to perform a broader

range of tasks, from basic information retrieval to complex interactions with external

databases or APIs.

In the paper ”Toolformer: Language Models Can Teach Themselves to Use Tools”

[71], the authors advance beyond basic tool usage by training an LLM to determine

which tool to use and what parameters the API requires. These tools include two

different search engines and a calculator. In the examples provided, the LLM au-

tonomously decides to use an external Q&A tool, a calculator, and a Wikipedia search

engine. More recently, researchers at Berkeley developed a new LLM called Gorilla

[72], which surpasses GPT-4 in API utilization, a specific but broadly applicable

tool.

58

Chapter 3. State of the Art

3.7 Retrieval Augmented Generation (RAG)

3.7.1 Introduction

Large language models (LLMs) have demonstrated significant success, yet they con-

tinue to encounter substantial limitations, particularly in tasks that are domain-

specific or knowledge-intensive [73]. A prominent issue is the generation of ”hallu-

cinations” [1], where LLMs produce responses to queries that exceed their training

data or necessitate up-to-date information. To mitigate these challenges, Retrieval-

Augmented Generation (RAG) improves LLM performance by retrieving pertinent

document chunks from an external knowledge base through semantic similarity cal-

culations. By incorporating external knowledge, RAG substantially reduces the like-

lihood of generating factually incorrect content. The integration of RAG into LLMs

has become widespread, establishing it as a crucial technology for advancing chatbots

and enhancing the practical applicability of LLMs in real-world scenarios.

To address the limitations of generative AI, researchers and engineers have devel-

oped innovative methods, including the Retrieval-Augmented Generation (RAG) ap-

proach. RAG gained significant attention among generative AI developers following

the release of the seminal paper ”Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks” by Lewis et al. (2020) at Facebook AI Research [69]. RAG

enhances the quality and relevance of generated text by combining the strengths of

generative AI with retrieval techniques. Unlike traditional generative models that

depend solely on their internal knowledge, RAG incorporates an additional step of

retrieving information from external sources, such as databases, documents, or the

web, before generating a response. This integration enables RAG to access up-to-

date information and context, making it especially valuable for applications requiring

accurate and current information.

RAG technology has seen rapid development in recent years, as illustrated by

the technology tree summarizing related research in Figure 3.22. The evolution of

RAG within the era of large models can be divided into several distinct stages.

Initially, the inception of RAG coincided with the rise of the Transformer architecture,

focusing on improving language models by integrating additional knowledge through

Pre-Training Models (PTM). This early phase was marked by foundational efforts

to refine pre-training techniques [74]-[75]. The subsequent emergence of ChatGPT

[56] represented a pivotal moment, showcasing powerful in-context learning (ICL)

capabilities. Following this, RAG research shifted towards enhancing LLMs’ ability

to address more complex and knowledge-intensive tasks during the inference stage,

spurring rapid advancements in RAG studies. Over time, the focus expanded beyond

the inference stage to include fine-tuning techniques for LLMs, further enhancing

RAG’s capabilities.

59

Chapter 3. State of the Art

Figure 3.22: Technology tree of RAG research [2]

3.7.2 Retrieval Augmented Generation (RAG) Categories

The RAG research paradigm is continuously evolving and can be categorized into

three stages: Naive RAG, Advanced RAG, and Modular RAG, as shown in Figure

3.23. Although RAG methods are cost-effective and outperform native LLMs, they

also present several limitations. The development of Advanced RAG and Modular

RAG addresses these specific shortcomings found in Naive RAG.

Naive RAG

The Naive RAG research paradigm represents the earliest methodology, gaining

prominence soon after the widespread adoption of ChatGPT. Naive RAG follows a

traditional process encompassing indexing, retrieval, and generation, often described

as a ”Retrieve-Read” framework [76].

60

Chapter 3. State of the Art

Figure 3.23: Comparison between the three paradigms of RAG [2].

Indexing starts with cleaning and extracting raw data from diverse formats like

PDF, HTML, Word, and Markdown, converting it into a uniform plain text format.

To address the context limitations of language models, the text is broken down into

smaller, manageable chunks. These chunks are then encoded into vector representa-

tions using an embedding model and stored in a vector database. This step is critical

for enabling efficient similarity searches in the next retrieval phase.

Upon receiving a user query, the RAG system employs the same encoding model

used during the indexing phase to convert the query into a vector representation.

It then calculates similarity scores between the query vector and the vectors of the

chunks in the indexed corpus. The system prioritizes and retrieves the top K chunks

that show the highest similarity to the query. These chunks are then used as the

expanded context in the prompt for the generation phase.

During the generation phase, the posed query and the selected documents are

combined into a coherent prompt. A large language model then formulates a response

based on this prompt. The model’s approach to answering can vary depending on

task-specific criteria, allowing it to either utilize its inherent parametric knowledge or

restrict its responses to the information within the provided documents. In cases of

ongoing dialogues, any existing conversational history can be incorporated into the

prompt, enabling the model to effectively engage in multi-turn interactions.

61

Chapter 3. State of the Art

Figure 3.24: Naive RAG

Advanced RAG

Advanced RAG introduces specific enhancements to address the limitations of Naive

RAG. It focuses on improving retrieval quality through both pre-retrieval and post-

retrieval strategies. To resolve indexing issues, Advanced RAG employs refined index-

ing techniques such as a sliding window approach, fine-grained segmentation, and the

integration of metadata. Additionally, it incorporates various optimization methods

to streamline the retrieval process.

Figure 3.25: Advanced RAG

Pre-retrieval process. In this stage, the primary focus is on optimizing both the

indexing structure and the original query. The objective of indexing optimization is

to enhance the quality of the content being indexed. This involves several strate-

gies: increasing data granularity, optimizing index structures, incorporating meta-

data, alignment optimization, and mixed retrieval. The goal of query optimization is

62

Chapter 3. State of the Art

to make the user’s original question clearer and more suitable for retrieval. Common

methods include query rewriting, query transformation, query expansion, and other

techniques [76], [77] [78].

Post-Retrieval Process. Once relevant context is retrieved, it is crucial to integrate

it effectively with the query. The main methods in the post-retrieval process include

reranking chunks and compressing the context. Re-ranking involves adjusting the

order of the retrieved information to ensure the most relevant content is positioned

at the forefront of the prompt. This strategy is implemented in frameworks such as

LlamaIndex4, LangChain5, and HayStack6. Directly feeding all relevant documents

into LLMs can cause information overload, diluting the focus on key details with

irrelevant content. To mitigate this, post-retrieval efforts concentrate on selecting

essential information, highlighting critical sections, and reducing the context to a

manageable size for processing.

Modular RAG

The modular RAG architecture advances beyond the earlier RAG paradigms, pro-

viding enhanced adaptability and versatility. It incorporates various strategies to

improve its components, such as adding a search module for similarity searches and

fine-tuning the retriever. Innovations like restructured RAG modules [79] and rear-

ranged RAG pipelines [80] have been developed to address specific challenges. The

trend towards a modular RAG approach is becoming increasingly common, support-

ing both sequential processing and integrated end-to-end training across its compo-

nents. Despite its distinctiveness, Modular RAG builds on the foundational principles

of Advanced and Naive RAG, demonstrating a progression and refinement within the

RAG family.

3.7.3 Retrieval Models for Document Search

Selecting the appropriate retrieval model is critical for ensuring efficient and accurate

document search and ranking in response to user queries. Here are some key retrieval

models and considerations:

TF-IDF (Term Frequency-Inverse Document Frequency): TF-IDF is a

classical retrieval model that calculates the importance of terms within a document

relative to a corpus. It is straightforward to implement and particularly effective

for certain tasks, especially within smaller or less complex datasets. This model is

suitable for straightforward keyword-based search tasks, offering a simple yet effective

approach for basic retrieval needs.

4https://www.llamaindex.ai/
5https://www.langchain.com/
6https://haystack.deepset.ai/

63

https://www.llamaindex.ai/
https://www.langchain.com/
https://haystack.deepset.ai/

Chapter 3. State of the Art

BM25: BM25 builds upon TF-IDF by accounting for document length and term

saturation, making it an improved version of its predecessor. It handles term fre-

quency variations and document length normalization better, often resulting in more

effective retrieval for modern tasks. BM25 is ideal for general-purpose search engines

and more sophisticated retrieval needs, providing a robust solution for a variety of

applications.

Vector Space Models: These models represent documents and queries as vec-

tors in a high-dimensional space, using metrics like cosine similarity for ranking. Im-

plementations such as Latent Semantic Analysis (LSA) and Word Embeddings (e.g.,

Word2Vec) can capture semantic similarities and relationships between terms. This

makes vector space models effective for tasks that require understanding nuanced

meanings and context within documents.

Neural Ranking Models: Modern neural models, such as those based on BERT,

capture complex semantic relationships and provide deep understanding of context

and nuances. These models can be fine-tuned for specific tasks and domains, making

them highly effective for advanced retrieval needs. Neural ranking models are partic-

ularly suitable for tasks requiring sophisticated semantic comprehension and detailed

query resolution.

Hybrid Models: Hybrid models combine multiple retrieval approaches, such as

TF-IDF with neural models, leveraging the strengths of each method. By balancing

simplicity and effectiveness, hybrid models offer robustness across various scenarios,

making them useful for comprehensive retrieval systems that need to perform well in

a range of conditions.

3.7.4 Embeddings and Vector Databases for Retrieval in RAG

In addition to selecting an appropriate retrieval model, leveraging embeddings and

vector databases can significantly enhance the performance and efficiency of the re-

trieval component. Vector embeddings are a fundamental concept in modern in-

formation retrieval and natural language processing. They transform textual data

into numerical vectors, enabling computers to understand and manipulate text data

within a mathematical, geometric space. These embeddings capture semantic and

contextual relationships between words, documents, and other textual entities, mak-

ing them highly valuable in various applications, including the retrieval component

of Retrieval-Augmented Generation (RAG). By employing embeddings and vector

databases, the retrieval process becomes more efficient and effective, providing more

accurate and contextually relevant results.

64

Chapter 3. State of the Art

Vector Embeddings

Vector embeddings represent words, phrases, sentences, or even entire documents as

points in a high-dimensional vector space. The key idea is to map each textual ele-

ment into a vector in such a way that semantically similar elements are located close

to each other in this space, while dissimilar elements are further apart. This geomet-

ric representation facilitates similarity calculations, clustering, and other operations

[81].

Figure 3.26: Words plotted in 3-dimensional space. Embeddings can have hundreds
or thousands of dimensions-too many for humans to visualize [82].

Examples of Vector Embeddings:

� Word Embeddings (Word2Vec, GloVe): Word embeddings represent indi-

vidual words as vectors. For example, “king” and “queen” may be represented

as vectors that are close together in the vector space because they share similar

semantic properties.

� Document Embeddings (Doc2Vec, BERT): Document embeddings map

entire documents (such as PDFs) into vectors. Two documents discussing sim-

ilar topics will have embeddings that are close in the vector space.

Vector Databases and Their Role in Enhancing Retrieval

Vector databases, also known as similarity search engines or vector index databases,

play a crucial role in the retrieval component of RAG by efficiently storing and

retrieving these vector embeddings. They are specialized databases designed for

retrieving vectors based on similarity, making them well-suited for scenarios where

similarity between data points needs to be calculated quickly and accurately.

How Vector Databases Enhance Retrieval in RAG:

65

Chapter 3. State of the Art

Fast Retrieval: Vector databases utilize indexing structures specifically opti-

mized for similarity searches. They employ algorithms such as approximate nearest

neighbor (ANN) search to quickly identify the most similar vectors, even within large

datasets containing numerous documents.

Scalability: Vector databases are designed to efficiently scale as the document

corpus expands. This ensures that retrieval performance remains consistent, regard-

less of the dataset’s size, maintaining high efficiency and speed.

Advanced Similarity Scoring: These databases provide a variety of similarity

metrics, including cosine similarity and the Jaccard index. This allows for fine-

tuning the relevance ranking of retrieved documents based on specific requirements,

enhancing the precision of search results.

Integration with Retrieval Models: Vector databases can be seamlessly in-

tegrated into existing retrieval systems. They complement retrieval models like TF-

IDF, BM25, and neural ranking models by offering an efficient method for selecting

candidate documents based on vector similarity, thereby improving the overall re-

trieval process.

These factors have led to the emergence of numerous new vector databases. Choos-

ing one of these databases can create long-term dependencies and have significant

impacts on your system. Ideally, a vector database should exhibit strong scalabil-

ity while maintaining cost-efficiency and minimizing latency. Some of these vec-

tor databases include Qdrant7, Weaviate8, Pinecone9, pgvector10, Milvus11, and

Chroma12.

3.7.5 Challenges of Retrieval-Augmented Generation

The adoption of Retrieval-Augmented Generation (RAG) marks a significant ad-

vancement in natural language processing and information retrieval. However, like

any complex AI system, RAG presents a set of challenges that must be addressed to

fully harness its potential. This section explores some of the key challenges associated

with RAG.

Data Quality and Relevance

RAG heavily relies on the availability of high-quality and relevant data for both

retrieval and generation tasks. Challenges in this area include:

7https://qdrant.tech/
8https://weaviate.io/
9https://www.pinecone.io/

10https://github.com/pgvector/pgvector
11https://milvus.io/
12https://www.trychroma.com/

66

https://qdrant.tech/
https://weaviate.io/
https://www.pinecone.io/
https://github.com/pgvector/pgvector
https://milvus.io/
https://www.trychroma.com/

Chapter 3. State of the Art

� Noisy Data: Incomplete, outdated, or inaccurate data sources can lead to the

retrieval of irrelevant information, negatively impacting the quality of generated

responses.

� Bias and Fairness: Biases present in training data may result in biased re-

trieval and generation, perpetuating stereotypes or misinformation.

Integration Complexity

Integrating retrieval and generation components seamlessly is a complex task, as it

involves bridging different architectures and models. Challenges include:

� Model Compatibility: Ensuring that the retrieval and generation models

work harmoniously, particularly when combining traditional methods (e.g., TF-

IDF) with neural models (e.g., GPT-3).

� Latency and Efficiency: Balancing the need for real-time responsiveness

with the computational resources required for both retrieval and generation.

Scalability

Scaling RAG systems to handle large volumes of data and user requests presents

several challenges:

� Indexing Efficiency: As the document corpus grows, maintaining an efficient

and up-to-date index becomes crucial for ensuring retrieval speed.

� Model Scaling: Deploying large-scale neural models for both retrieval and

generation demands substantial computational resources.

Domain Adaptation

Adapting RAG systems to specific domains or industries can be complex:

� Domain-Specific Knowledge: Incorporating industry-specific knowledge and

terminology into retrieval and generation.

� Training Data Availability: Ensuring the availability of domain-specific

training data for fine-tuning models.

67

Chapter 4

Proposed Solution

In this chapter, we delve into the implementation details of our proposed solution,

designed to enhance the efficiency and accuracy of information retrieval through

a Local Retrieval-Augmented Generation (RAG) agent. Our solution leverages a

variety of advanced technologies, including FastAPI, Langchain, Langraph, Ollama,

Docker, Docker Compose, and LangSmith, our aim is to create a robust, scalable,

and efficient system capable of serving both local and web-based information needs.

Our implementation focuses exclusively on using LLaMA3 for the language model

component. This approach ensures that we can thoroughly evaluate and optimize

the performance of LLaMA3 in the context of our application.

We will begin by discussing the high-level architecture of our solution, highlighting

the key components and their interactions. This will be followed by an overview of

the backend implementation, which leverages FastAPI, Langchain, and Langraph

for efficient document retrieval and model serving, complemented by Ollama for

local model serving. We will also cover the use of Docker and Docker Compose

for containerization and deployment, ensuring the scalability and reliability of our

backend services. Additionally, we will discuss the integration of LangSmith for

tracing and logging LLM outputs to monitor and improve system performance.

Throughout this chapter, we will provide a comprehensive overview of the data

flow, from the initial user query to the final generated answer, elucidating the intri-

cacies of our system’s workflow. Finally, we will address the challenges encountered

and the solutions devised to overcome them.

4.1 Problem Definition

In the era of rapid information growth and increasing complexity of queries, tradi-

tional question-answering systems often struggle to provide comprehensive and accu-

rate responses. These systems frequently rely on a single approach, such as keyword-

based retrieval or language model generation, which can lead to suboptimal results.

Furthermore, many existing systems are limited to a predefined knowledge base or

corpus, restricting their ability to adapt and incorporate the latest information from

the vast expanse of the internet.

Traditional question-answering approaches may also suffer from issues such as

hallucinations [1] or failing to address the core aspects of a query. There is a need

68

Chapter 4. Proposed Solution

for a more advanced and adaptive question-answering system that can leverage the

strengths of various retrieval and generation techniques, while also accounting for

potential limitations or errors.

The goal of our project is to develop a Local RAG (Retrieval-Augmented Gener-

ation) agent with LLaMA3 and other open source LLMs that combines ideas from

several state-of-the-art RAG papers. This agent aims to provide more accurate and

comprehensive answers to a wide range of queries by intelligently routing queries,

utilizing fallback mechanisms, and incorporating self-correction capabilities. The Lo-

cal RAG agent will leverage the power of large language models like LLaMA3, while

also incorporating retrieval techniques to ground the responses in relevant informa-

tion sources. Additionally, the agent will have the ability to fall back to web search

when the available information is insufficient, and self-correct its responses to address

potential hallucinations or incomplete answers.

By combining these different approaches, the Local RAG agent aims to overcome

the limitations of traditional question-answering systems, providing users with more

reliable, up-to-date, and context-aware responses.

4.2 Solution Overview

In this section, we will thoroughly examine the overall architecture of the solution,

detailing its various components and fundamental elements, and emphasizing the

function of each. Figure 4.1 presents an illustration of the solution’s architecture.

Figure 4.1: Proposed solution architecture.

4.2.1 High-Level Architecture

Our solution aims to develop a Local Retrieval-Augmented Generation (RAG) agent

using LLaMA3. The architecture is designed to efficiently manage the entire pro-

cess of information retrieval and answer generation. Below, we outline the primary

components and their interactions:

69

Chapter 4. Proposed Solution

1. User Query Input: Users submit queries to the system through an API

endpoint.

2. Routing: The system routes the incoming queries to appropriate retrieval

approaches using a routing mechanism. Queries that are relevant to the indexed

documents are processed through the local retrieval system. Queries that are

not relevant to the indexed documents are routed to a fallback mechanism for

web search.

3. Document Retrieval and Grading: The retrieval system fetches relevant

documents from the index. Retrieved documents are graded based on relevance

and quality using Langchain and Langraph.

4. Model Serving with Ollama: LLaMA3 models are served locally using Ol-

lama. The system uses these models to generate answers based on the retrieved

and graded documents.

5. Answer Generation and Validation: Generated answers are validated for

relevance and accuracy. The system checks for hallucinations and ensures the

answer addresses the user’s query.

6. Fallback to Web Search: If the retrieved documents are not relevant, the

system falls back to a web search. This ensures that users receive comprehensive

answers even if the local index does not have relevant information.

7. Self-Correction and Final Answer: The system self-corrects any answers

with hallucinations or that do not address the question properly. The final

validated answer is returned to the user.

8. Logging and Monitoring with LangSmith: LangSmith is integrated to

trace and log the outputs of the LLM. This allows monitoring and improving

the performance of the system.

4.2.2 Key Technologies and Frameworks

� FastAPI: Chosen for its high performance and ease of use in building robust

APIs. Facilitates the development of a scalable and efficient backend system.

� Langchain and Langraph: Used for document retrieval and grading. These

frameworks help in efficiently managing and processing large volumes of text

data.

� ChromaDB: Utilized as the vector database for efficient document retrieval.

Enhances the retrieval process by providing fast and accurate vector search

capabilities.

70

Chapter 4. Proposed Solution

� Ollama: Responsible for serving LLaMA3 models locally. Ensures efficient

model management and minimizes latency.

� Docker and Docker Compose: Used for containerizing backend services.

Ensures consistency across different environments and simplifies deployment.

� LangSmith: Integrated for tracing and logging LLM outputs. Enhances mon-

itoring capabilities and aids in performance optimization.

4.2.3 Data Flow

1. Query Reception: The user submits a query to the FastAPI endpoint. The

query is routed based on its relevance to the indexed documents.

2. Document Processing: Relevant documents are retrieved from ChromaDB

and graded. Irrelevant queries are redirected to a fallback web search.

3. Model Interaction: The system interacts with LLaMA3 models through Ol-

lama to generate answers. LangSmith monitors and logs these interactions for

performance tracking.

4. Answer Validation: Generated answers are validated and corrected if neces-

sary. The final answer is then delivered to the user.

4.3 Detailed Workflow

The workflow of our Local Retrieval-Augmented Generation (RAG) agent involves

several key steps, from the initial query submission to the final generation and vali-

dation of answers. Here, we delve into each step to provide a comprehensive under-

standing of the process.

4.3.1 User Input

The user begins by initiating a chat session, creating a space where they can interact

with the system. During this session, the user is prompted to input a list of URLs

and optional PDFs. These documents can come from a variety of sources, such as

documentation websites, blog posts, or research papers. The inclusion of diverse

document types ensures a comprehensive set of data for the system to work with.

By submitting these documents, the user sets the stage for the system to ingest and

process the information, converting it into a format that can be efficiently queried

later.

71

Chapter 4. Proposed Solution

Figure 4.2: User Input

4.3.2 Document Processing

Once the user has submitted the URLs and PDFs, the system moves on to the

document processing stage. Each document is converted into embeddings, which

are dense vector representations of the text content. These embeddings capture

the semantic meaning of the documents, enabling the system to perform efficient

similarity searches. After conversion, the embeddings are stored in a vector database.

This database serves as a repository that allows the system to quickly retrieve relevant

documents in response to user queries, facilitating a streamlined and efficient search

process.

4.3.3 Question Routing

Figure 4.3: Question Routing

The workflow begins with the user submitting a query via a FastAPI endpoint. This

endpoint is designed to handle incoming requests efficiently and forward them to

the appropriate processing unit. Upon receiving a query, the system evaluates its

72

Chapter 4. Proposed Solution

relevance to the indexed documents. This evaluation determines whether the query

can be answered using the locally stored documents or if it needs to be redirected to

a fallback mechanism that utilizes web search.

For queries that are relevant to the indexed content, the system routes them to

the local retrieval system. If the query is deemed unrelated to the indexed con-

tent, the system redirects it to the fallback mechanism, ensuring that users receive

comprehensive answers even if the local index does not contain relevant information.

4.3.4 Document Retrieval and Grading

Figure 4.4: Document Retrieval and Grading

For queries routed to the local retrieval system, the next step is to fetch relevant

documents from the ChromaDB vector database. ChromaDB employs vector search

techniques to find the most relevant documents based on the query vector. This

process involves converting the query into a vector representation and searching the

database for documents with similar vector representations.

Once the relevant documents are retrieved, they undergo a grading process using

the LLaMA3 model. The model evaluates the relevance and quality of the retrieved

documents, ensuring that only the most pertinent documents are used for answer

generation. This grading process is essential to maintain the quality and relevance

of the information provided to the user.

If any document is found irrelevant during the grading process, the system flags

it and prepares to use the fallback web search mechanism. This step is crucial to

maintain the quality and relevance of the information provided to the user.

73

Chapter 4. Proposed Solution

4.3.5 Answer Validation and Correction

Figure 4.5: Answer validation and correction.

Once an answer is generated, it undergoes an initial validation process to check

for relevance and accuracy. The system evaluates whether the answer sufficiently

addresses the user’s query and ensures it is free from hallucinations—instances where

the model generates incorrect or nonsensical information.

If hallucinations or other issues are detected, the answer is flagged for further

correction. The system includes a self-correction mechanism that refines answers

with detected issues. This mechanism leverages additional passes through the model

and grading processes to improve the answer quality. If the initial validation fails

or if the retrieved documents were not relevant, the system employs the fallback

mechanism to perform a web search. The results from the web search are then

processed and used to generate a new answer.

After any necessary corrections, the answer undergoes a final validation step to

ensure it is accurate, relevant, and free from hallucinations. This step is crucial to

maintain the integrity and reliability of the system’s responses.

4.3.6 Final Answer Delivery

Once the answer has been validated and corrected, it is ready for delivery. The

final validated answer is sent back to the user through the FastAPI endpoint. This

endpoint handles the response and ensures that the user receives a comprehensive

and accurate answer to their query.

The user interaction ends here, but the system continues to monitor and log

the entire process to improve future responses. By maintaining a high standard of

validation and correction, the system ensures that users consistently receive high-

quality information.

74

Chapter 4. Proposed Solution

4.3.7 Logging and Monitoring with LangSmith

Throughout the entire workflow, LangSmith is used to trace and log the outputs

of the LLM. This includes logging the initial query, the retrieved documents, the

generated answers, and any corrections made. LangSmith provides tools to monitor

the performance of the system, identifying bottlenecks and areas for improvement.

This continuous monitoring and logging are crucial for maintaining the system’s

performance and reliability. By analyzing the logs, we can pinpoint issues and op-

timize the system to handle future queries more efficiently. LangSmith’s integration

enhances the system’s ability to provide accurate and relevant responses while also

allowing for continuous improvement.

Figure 4.6: Logging and Monitoring with LangSmith.

4.3.8 Model Interaction with Ollama

With the relevant and graded documents in hand, the system then interacts with

the LLaMA3 models served locally using Ollama. Ollama ensures low-latency and

efficient model interaction by managing the lifecycle of the models and ensuring they

are readily available for processing incoming queries.

The LLaMA3 model takes the query and the graded documents as input to gener-

ate a coherent and relevant answer. This model interaction is critical as it synthesizes

the information from the documents and produces a response tailored to the user’s

query. By using locally served models, the system minimizes latency and enhances

performance, providing users with quick and accurate responses.

75

Chapter 4. Proposed Solution

Figure 4.7: Llama3’s page on ollama website.

4.4 Challenges and Solutions

Developing and implementing a Local Retrieval-Augmented Generation (RAG) agent

using LLaMA3 involves several challenges, from integrating various technologies to

ensuring the system’s performance and reliability. Below, we discuss some of the

key challenges encountered during the development process and the solutions imple-

mented to address them.

4.4.1 Integration of Diverse Technologies

Challenge: Integrating multiple technologies such as FastAPI, Langchain, Chro-

maDB, Ollama, and LangSmith can be complex and time-consuming. Ensuring that

these components work seamlessly together is critical for the overall performance of

the system.

Solution: To address this challenge, a modular architecture was adopted, where

each component is designed as an independent module with well-defined interfaces.

Docker and Docker Compose were used to containerize each service, ensuring consis-

tency across different environments. This modular approach simplifies the integra-

tion process and makes it easier to isolate and troubleshoot issues. Comprehensive

integration testing was conducted to ensure that all components work together as

expected.

4.4.2 Efficient Document Retrieval

Challenge: Efficiently retrieving relevant documents from a large dataset using vec-

tor search can be computationally intensive and time-consuming, potentially leading

to latency issues.

76

Chapter 4. Proposed Solution

Solution: ChromaDB was chosen as the vector database due to its optimized

vector search capabilities. The system leverages advanced indexing and search algo-

rithms to quickly retrieve the most relevant documents.

4.4.3 Document Grading Accuracy

Challenge: Ensuring the accuracy of document grading is crucial for generating

high-quality answers. Incorrectly graded documents can lead to irrelevant or inaccu-

rate answers.

Solution: The LLaMA3 model was utilized for both document grading and an-

swer generation. By employing prompting techniques, the LLaMA3 model evaluates

the relevance and quality of the retrieved documents, ensuring that only the most

pertinent documents are used for answer generation. This approach maintains consis-

tency and leverages the model’s inherent capabilities without the need for fine-tuning.

4.4.4 Monitoring and Logging

Challenge: Monitoring the performance and behavior of the system in real-time, and

logging all interactions to identify and troubleshoot issues, is crucial for maintaining

reliability.

Solution: LangSmith was integrated into the system to provide comprehensive

logging and monitoring capabilities. LangSmith traces and logs every interaction,

from the initial query to the final answer delivery. These logs are analyzed to

identify performance bottlenecks and areas for improvement. Real-time monitor-

ing dashboards were set up to track key performance metrics, allowing for proactive

maintenance and optimization of the system.

Example queries

The user has initiated a chat session and inputted four links to the Coolify documen-

tation website. These links cover various aspects of Coolify, including its features,

installation, usage, and FAQs.

Query Routed to Vector Store

User Query: ”What is Coolify?”

� Routing: The system determines that the query is related to the indexed doc-

uments about Coolify.

� Retrieve Documents: The system retrieves relevant documents from the vector

store. These documents include sections of the Coolify documentation that

provide an overview of the platform.

77

Chapter 4. Proposed Solution

� Grade Documents: The retrieved documents are graded for their relevance to

the query, ensuring that the most pertinent information is selected.

� Generate Answer: An answer is generated based on the graded documents. The

system synthesizes information from the relevant sections to provide a coherent

and informative response.

� Check for Hallucinations: The generated answer is checked for any inaccuracies

or fabricated information.

� Provide Answer: The system responds that Coolify is a self-hostable, open-

source platform designed to simplify the deployment and management of ap-

plications.

Figure 4.8: ’What is Coolify?’ question results.

Query Routed to Web Search

User Query: ”What was the score of Portugal vs Georgia?”

� Routing: The system identifies that this query is unrelated to the Coolify

documentation.

� Web Search: The system performs a web search to find the latest and most

accurate information about the match between Portugal and Georgia.

� Retrieve and Grade: The search results are retrieved and graded for their rele-

vance to the query, ensuring that the most reliable sources are prioritized.

� Generate Final Answer: A final answer is generated based on the web search

results, synthesizing the information to provide an accurate match score.

78

Chapter 4. Proposed Solution

� Provide Answer: The system provides the match score, ensuring the user re-

ceives up-to-date and accurate information about the Portugal vs Georgia game.

Figure 4.9: ’What was the score of Portugal vs Georgia?’ question results.

4.5 Conclusion

In conclusion, the implementation of this Local Retrieval-Augmented Generation

agent demonstrates a comprehensive approach to leveraging state-of-the-art technolo-

gies for efficient and accurate information retrieval and generation. By addressing key

challenges with targeted solutions, we created a scalable and robust system capable

of providing high-quality responses to user queries. The continuous monitoring and

logging with LangSmith ensure that the system can be maintained and optimized

over time, ensuring sustained performance and reliability.

79

Chapter 5

General Conclusion

Throughout this project, we have embarked on a journey to develop and deploy a

Local Retrieval-Augmented Generation (RAG) system, amalgamating a spectrum of

cutting-edge technologies including LLaMA3, FastAPI, Langchain, ChromaDB, Ol-

lama, Docker, and LangSmith. Our overarching aim has been to construct a versatile

and efficient platform capable of retrieving relevant documents and generating precise

answers to user inquiries.

The inception of our exploration involved an in-depth examination of the system’s

architecture, delineating the pivotal roles of each constituent component. Through

meticulous scrutiny, we elucidated the sequential procedures underlying the system’s

operation, underscoring the significance of each stage in ensuring the fidelity and

pertinence of the generated responses.

The integration of disparate technologies presented formidable challenges, encom-

passing facets such as streamlined document retrieval, precise document evaluation,

model deployment, and system performance optimization. Through the adoption of

a modular design ethos, harnessing advanced retrieval algorithms, strategic applica-

tion of prompting techniques with LLaMA3, and establishment of robust monitoring

and logging mechanisms, we navigated these challenges with finesse.

By incorporating prompting techniques with LLaMA3, we ensured the precision

and relevance of document evaluation and answer generation, without necessitating

fine-tuning of the model. This approach not only bolstered performance but also

streamlined implementation efforts.

The iterative validation and refinement of answers by the LLaMA3 model culmi-

nated in the elimination of hallucinations and the accurate addressing of user queries,

thereby augmenting the overall reliability and quality of the system’s outputs.

In summation, the development and deployment of this Local Retrieval-Augmented

Generation agent epitomize a holistic approach to leveraging state-of-the-art tech-

nologies for efficient and accurate information retrieval and generation. By adeptly

addressing key challenges with tailored solutions, we have birthed a scalable and re-

silient platform capable of delivering high-quality responses to user inquiries. The

continuous monitoring and logging facilitated by LangSmith ensure that the system

remains maintainable and optimizable over time, thereby guaranteeing sustained per-

formance and reliability.

80

Bibliography

[1] Yue Zhang et al. Siren’s Song in the AI Ocean: A Survey on Hallucination in

Large Language Models. 2023. arXiv: 2309.01219 [cs.CL].

[2] Yunfan Gao et al. Retrieval-Augmented Generation for Large Language Models:

A Survey. 2024. arXiv: 2312.10997 [cs.CL].

[3] Sebastian Riedel et al. Retrieval Augmented Generation: Streamlining the cre-

ation of intelligent natural language processing models. https://ai.meta.

com / blog / retrieval - augmented - generation - streamlining -

the-creation-of-intelligent-natural-language-processing-

models/. 2020.

[4] Alec Radford. Improving language understanding with unsupervised learning.

https://openai.com/index/language-unsupervised. 2018.

[5] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[6] Matt Crabtree. What is Machine Learning? Definition, Types, Tools & More.

https://www.datacamp.com/blog/what-is-machine-learning.

2023.

[7] Moez Ali. Supervised Machine Learning. https://www.datacamp.com/blog/supervised-

machine-learning. 2022.

[8] IBM. Supervised Machine Learning. url: https://www.ibm.com/topics/

unsupervised-learning.

[9] AWS. What is Reinforcement Learning? url: https://aws.amazon.com/

what-is/reinforcement-learning/..

[10] Abid Ali Awan. What is Deep Learning? A Tutorial for Beginners. https://

www.datacamp.com/tutorial/tutorial-deep-learning-tutorial.

2023.

[11] Amirsina Torfi et al. Natural Language Processing Advancements By Deep

Learning: A Survey. 2021. arXiv: 2003.01200 [cs.CL].

[12] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-

works. 2015. arXiv: 1511.08458 [cs.NE].

[13] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A Critical Review of

Recurrent Neural Networks for Sequence Learning. 2015. arXiv: 1506.00019

[cs.LG].

81

https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2312.10997
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/
https://ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/
https://openai.com/index/language-unsupervised
https://arxiv.org/abs/1810.04805
https://www.datacamp.com/blog/what-is-machine-learning
https://www.ibm.com/topics/unsupervised-learning
https://www.ibm.com/topics/unsupervised-learning
https://aws.amazon.com/what-is/reinforcement-learning/.
https://aws.amazon.com/what-is/reinforcement-learning/.
https://www.datacamp.com/tutorial/tutorial-deep-learning-tutorial
https://www.datacamp.com/tutorial/tutorial-deep-learning-tutorial
https://arxiv.org/abs/2003.01200
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019

Bibliography

[14] Michael Nielsen. Neural Networks and Deep Learning. 2015. url: https://

www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/

9/2022/08/neuralnetworksanddeeplearning.pdf.

[15] S. A. BILLINGS S. CHEN and P. M. GRANT. “Non-linear system identifi-

cation using neural networks”. In: International Journal of Control (). url:

https://doi.org/10.1080/00207179008934126.

[16] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction

and Overview. 2019. arXiv: 1912.05911 [cs.LG].

[17] P.J. Werbos. “Backpropagation through time: what it does and how to do it”.

In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. doi: 10.1109/5.

58337.

[18] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:

10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/

neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

url: https://doi.org/10.1162/neco.1997.9.8.1735.

[19] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762

[cs.CL].

[20] Jordan Hoffmann et al. Training Compute-Optimal Large Language Models.

2022. arXiv: 2203.15556 [cs.CL].

[21] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified

Text-to-Text Transformer. 2023. arXiv: 1910.10683 [cs.LG].

[22] C. E. Shannon. “Prediction and entropy of printed English”. In: The Bell Sys-

tem Technical Journal 30.1 (1951), pp. 50–64. doi: 10.1002/j.1538-7305.

1951.tb01366.x.

[23] Frederick Jelinek. “Statistical methods for speech recognition”. In: 1997. url:

%5Curl%7Bhttps://api.semanticscholar.org/CorpusID:12495425%

7D.

[24] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-

tion to Information Retrieval. Cambridge University Press, 2008.

[25] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A Neural Probabilistic

Language Model”. In: Advances in Neural Information Processing Systems.

Ed. by T. Leen, T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000. url:

https://proceedings.neurips.cc/paper_files/paper/2000/

file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

82

https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2022/08/neuralnetworksanddeeplearning.pdf
https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2022/08/neuralnetworksanddeeplearning.pdf
https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2022/08/neuralnetworksanddeeplearning.pdf
https://doi.org/10.1080/00207179008934126
https://arxiv.org/abs/1912.05911
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/1910.10683
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
%5Curl%7Bhttps://api.semanticscholar.org/CorpusID:12495425%7D
%5Curl%7Bhttps://api.semanticscholar.org/CorpusID:12495425%7D
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf

Bibliography

[26] Holger Schwenk, Daniel Dechelotte, and Jean-Luc Gauvain. “Continuous Space

Language Models for Statistical Machine Translation”. In: Proceedings of the

COLING/ACL 2006 Main Conference Poster Sessions. Sydney, Australia: As-

sociation for Computational Linguistics, July 2006, pp. 723–730. url: https:

//aclanthology.org/P06-2093.

[27] Tomáš Mikolov et al. “Recurrent neural network based language model”. In:

Proc. Interspeech 2010. 2010, pp. 1045–1048. doi: 10.21437/Interspeech.

2010-343.

[28] Alex Graves. Generating Sequences With Recurrent Neural Networks. 2014.

arXiv: 1308.0850 [cs.NE].

[29] Po-Sen Huang et al. “Learning deep structured semantic models for web search

using clickthrough data”. In: Proceedings of the 22nd ACM International Con-

ference on Information & Knowledge Management. CIKM ’13. San Francisco,

California, USA: Association for Computing Machinery, 2013, pp. 2333–2338.

isbn: 9781450322638. doi: 10.1145/2505515.2505665. url: %5Curl%

7Bhttps://doi.org/10.1145/2505515.2505665%7D.

[30] Jianfeng Gao et al. Neural Approaches to Conversational Information Retrieval.

2022. arXiv: 2201.05176 [cs.IR].

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning

with Neural Networks. 2014. arXiv: 1409.3215 [cs.CL].

[32] Kyunghyun Cho et al.On the Properties of Neural Machine Translation: Encoder-

Decoder Approaches. 2014. arXiv: 1409.1259 [cs.CL].

[33] Oriol Vinyals et al. Show and Tell: A Neural Image Caption Generator. 2015.

arXiv: 1411.4555 [cs.CV].

[34] Matthew E. Peters et al. Deep contextualized word representations. 2018. arXiv:

1802.05365 [cs.CL].

[35] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Ap-

proach. 2019. arXiv: 1907.11692 [cs.CL].

[36] Pengcheng He et al. DeBERTa: Decoding-enhanced BERT with Disentangled

Attention. 2021. arXiv: 2006.03654 [cs.CL].

[37] Ce Zhou et al. A Comprehensive Survey on Pretrained Foundation Models: A

History from BERT to ChatGPT. 2023. arXiv: 2302.09419 [cs.AI].

[38] Xu Han et al. Pre-Trained Models: Past, Present and Future. 2021. arXiv:

2106.07139 [cs.AI].

83

https://aclanthology.org/P06-2093
https://aclanthology.org/P06-2093
https://doi.org/10.21437/Interspeech.2010-343
https://doi.org/10.21437/Interspeech.2010-343
https://arxiv.org/abs/1308.0850
https://doi.org/10.1145/2505515.2505665
%5Curl%7Bhttps://doi.org/10.1145/2505515.2505665%7D
%5Curl%7Bhttps://doi.org/10.1145/2505515.2505665%7D
https://arxiv.org/abs/2201.05176
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2302.09419
https://arxiv.org/abs/2106.07139

Bibliography

[39] XiPeng Qiu et al. “Pre-trained models for natural language processing: A sur-

vey”. In: Science China Technological Sciences 63.10 (Sept. 2020), pp. 1872–

1897. issn: 1869-1900. doi: 10.1007/s11431-020-1647-3. url: http:

//dx.doi.org/10.1007/s11431-020-1647-3.

[40] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling with Pathways.

2022. arXiv: 2204.02311 [cs.CL].

[41] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.

2023. arXiv: 2302.13971 [cs.CL].

[42] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].

[43] Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Lan-

guage Models. 2023. arXiv: 2201.11903 [cs.CL].

[44] Grégoire Mialon et al. Augmented Language Models: a Survey. 2023. arXiv:

2302.07842 [cs.CL].

[45] Shervin Minaee et al. Large Language Models: A Survey. 2024. arXiv: 2402.

06196 [cs.CL].

[46] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative

Position Representations. 2018. arXiv: 1803.02155 [cs.CL].

[47] Jianlin Su et al. RoFormer: Enhanced Transformer with Rotary Position Em-

bedding. 2023. arXiv: 2104.09864 [cs.CL].

[48] Ofir Press, Noah A. Smith, and Mike Lewis. Train Short, Test Long: Attention

with Linear Biases Enables Input Length Extrapolation. 2022. arXiv: 2108.

12409 [cs.CL].

[49] BigScience Workshop et al. BLOOM: A 176B-Parameter Open-Access Multi-

lingual Language Model. 2023. arXiv: 2211.05100 [cs.CL].

[50] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking Positional Encoding in Lan-

guage Pre-training. 2021. arXiv: 2006.15595 [cs.CL].

[51] Noam Shazeer et al. Outrageously Large Neural Networks: The Sparsely-Gated

Mixture-of-Experts Layer. 2017. arXiv: 1701.06538 [cs.LG].

[52] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling

to Trillion Parameter Models with Simple and Efficient Sparsity. 2022. arXiv:

2101.03961 [cs.LG].

[53] Rabeeh Karimi Mahabadi et al. Parameter-efficient Multi-task Fine-tuning for

Transformers via Shared Hypernetworks. 2021. arXiv: 2106.04489 [cs.CL].

[54] Shengyu Zhang et al. Instruction Tuning for Large Language Models: A Survey.

2024. arXiv: 2308.10792 [cs.CL].

84

https://doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2006.15595
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2106.04489
https://arxiv.org/abs/2308.10792

Bibliography

[55] Swaroop Mishra et al. Cross-Task Generalization via Natural Language Crowd-

sourcing Instructions. 2022. arXiv: 2104.08773 [cs.CL].

[56] Long Ouyang et al. Training language models to follow instructions with human

feedback. 2022. arXiv: 2203.02155 [cs.CL].

[57] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA model.

https://github.com/tatsu-lab/stanford_alpaca. 2023.

[58] YizhongWang et al. Self-Instruct: Aligning Language Models with Self-Generated

Instructions. 2023. arXiv: 2212.10560 [cs.CL].

[59] Paul Christiano et al. Deep reinforcement learning from human preferences.

2023. arXiv: 1706.03741 [stat.ML].

[60] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv:

1707.06347 [cs.LG].

[61] Arash Ahmadian et al. Back to Basics: Revisiting REINFORCE Style Opti-

mization for Learning from Human Feedback in LLMs. 2024. arXiv: 2402.

14740 [cs.LG].

[62] Ziwei Ji et al. “Survey of Hallucination in Natural Language Generation”. In:

ACM Computing Surveys 55.12 (Mar. 2023), pp. 1–38. issn: 1557-7341. doi:

10.1145/3571730. url: http://dx.doi.org/10.1145/3571730.

[63] Nick McKenna et al. Sources of Hallucination by Large Language Models on

Inference Tasks. 2023. arXiv: 2305.14552 [cs.CL].

[64] Shunyu Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large

Language Models. 2023. arXiv: 2305.10601 [cs.CL].

[65] Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. SelfCheckGPT: Zero-

Resource Black-Box Hallucination Detection for Generative Large Language

Models. 2023. arXiv: 2303.08896 [cs.CL].

[66] Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learn-

ing. 2023. arXiv: 2303.11366 [cs.AI].

[67] TongshuangWu et al. PromptChainer: Chaining Large Language Model Prompts

through Visual Programming. 2022. arXiv: 2203.06566 [cs.HC].

[68] Yongchao Zhou et al. Large Language Models Are Human-Level Prompt Engi-

neers. 2023. arXiv: 2211.01910 [cs.LG].

[69] Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-Intensive

NLP Tasks. 2021. arXiv: 2005.11401 [cs.CL].

[70] Zhengbao Jiang et al. Active Retrieval Augmented Generation. 2023. arXiv:

2305.06983 [cs.CL].

85

https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2203.02155
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
https://arxiv.org/abs/2305.14552
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2203.06566
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.06983

Bibliography

[71] Timo Schick et al. Toolformer: Language Models Can Teach Themselves to Use

Tools. 2023. arXiv: 2302.04761 [cs.CL].

[72] Shishir G. Patil et al. Gorilla: Large Language Model Connected with Massive

APIs. 2023. arXiv: 2305.15334 [cs.CL].

[73] Nikhil Kandpal et al. Large Language Models Struggle to Learn Long-Tail

Knowledge. 2023. arXiv: 2211.08411 [cs.CL].

[74] Daman Arora et al. GAR-meets-RAG Paradigm for Zero-Shot Information Re-

trieval. 2023. arXiv: 2310.20158 [cs.CL].

[75] Sebastian Borgeaud et al. Improving language models by retrieving from tril-

lions of tokens. 2022. arXiv: 2112.04426 [cs.CL].

[76] Xinbei Ma et al. Query Rewriting for Retrieval-Augmented Large Language

Models. 2023. arXiv: 2305.14283 [cs.CL].

[77] Wenjun Peng et al. Large Language Model based Long-tail Query Rewriting in

Taobao Search. 2024. arXiv: 2311.03758 [cs.IR].

[78] Luyu Gao et al. Precise Zero-Shot Dense Retrieval without Relevance Labels.

2022. arXiv: 2212.10496 [cs.IR].

[79] Wenhao Yu et al. Generate rather than Retrieve: Large Language Models are

Strong Context Generators. 2023. arXiv: 2209.10063 [cs.CL].

[80] Zhihong Shao et al. Enhancing Retrieval-Augmented Large Language Mod-

els with Iterative Retrieval-Generation Synergy. 2023. arXiv: 2305.15294

[cs.CL].

[81] Angelina Yang Mehdi Allahyari. A Practical Approach to Retrieval Augmented

Generation Systems. https://mallahyari.github.io/rag-ebook/.

2023.

[82] Dale Markowitz. Meet AI’s multitool: Vector embeddings. https://cloud.

google.com/blog/topics/developers- practitioners/meet-

ais-multitool-vector-embeddings. 2022.

86

https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/2310.20158
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/2311.03758
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2209.10063
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://mallahyari.github.io/rag-ebook/
https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings
https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings
https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

Apendix

5.1 Prompts used

5.1.1 Retrieval Grader

This prompt is used to assess the relevance of a retrieved document in response to

a user’s question. The grader determines if the document contains keywords related

to the question and provides a binary score (’yes’ or ’no’) as a JSON output.

1 prompt = PromptTemplate(

2 template="""<|begin_of_text|><|start_header_id|>system<|

end_header_id|> You are a grader assessing relevance

3 of a retrieved document to a user question. If the document

contains keywords related to the user question,

4 grade it as relevant. It does not need to be a stringent test. The

goal is to filter out erroneous retrievals. \n

5 Give a binary score ’yes’ or ’no’ score to indicate whether the

document is relevant to the question. \n

6 Provide the binary score as a JSON with a single key ’score’ and

no premable or explanation.

7 <|eot_id|><|start_header_id|>user<|end_header_id|>

8 Here is the retrieved document: \n\n {document} \n\n

9 Here is the user question: {question} \n <|eot_id|><|

start_header_id|>assistant<|end_header_id|>""",

10 input_variables=["question", "document"],

11)

Listing 5.1: Prompt used for the retrieval grader.

5.1.2 Answer Generation

This prompt is designed to generate answers to user questions using retrieved context.

The assistant uses the provided context to form a response, and if the answer is

unknown, it states that clearly.

1 prompt = PromptTemplate(

2 template="""<|begin_of_text|><|start_header_id|>system<|

end_header_id|> You are an assistant for question-answering tasks.

3 Use the following pieces of retrieved context to answer the

question. If you don’t know the answer, just say that you don’t know.

<|eot_id|><|start_header_id|>user<|end_header_id|>

4 Question: {question}

5 Context: {context}

6 Answer: <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""

,

87

Bibliography

7 input_variables=["question", "document"],

8)

Listing 5.2: Prompt used for answer generation.

5.1.3 Hallucination Grader

This prompt is used to evaluate whether an answer is grounded in a set of provided

facts. The grader gives a binary score (’yes’ or ’no’) indicating if the answer is

supported by the facts, with the output formatted as a JSON.

1 prompt = PromptTemplate(

2 template=""" <|begin_of_text|><|start_header_id|>system<|

end_header_id|> You are a grader assessing whether an answer is

grounded in / supported by a set of facts. Give a binary ’yes’ or ’no’

score to indicate whether the answer is grounded in / supported by a

set of facts. Provide the binary score as a JSON with a single key ’

score’ and no preamble or explanation. Make sure to exactly output a

json with one key ’score’ <|eot_id|><|start_header_id|>user<|

end_header_id|>

3 Here are the facts:

4 \n ------- \n

5 {documents}

6 \n ------- \n

7 Here is the answer you need to grade and don’t forget, the output

needs to be in json format with one and only one key called score (yes

if the answer is grouned to the facts else no): {generation} <|

eot_id|><|start_header_id|>assistant<|end_header_id|>""",

8 input_variables=["generation", "documents"],

9)

Listing 5.3: Prompt used for the hallucination grader.

5.1.4 Answer Grader

This prompt assesses the usefulness of an answer in resolving a user’s question. The

grader provides a binary score (’yes’ or ’no’) based on the utility of the answer,

formatted as a JSON output.

1 prompt = PromptTemplate(

2 template="""<|begin_of_text|><|start_header_id|>system<|

end_header_id|> You are a grader assessing whether an answer is useful

to resolve a question. Give a binary score ’yes’ or ’no’ to indicate

whether the answer is useful to resolve a question. Provide the binary

score as a JSON with a single key ’score’ and no preamble or

explanation. <|eot_id|><|start_header_id|>user<|end_header_id|> Here

is the answer:

3 \n ------- \n

4 {generation}

88

Bibliography

5 \n ------- \n

6 Here is the question: {question} <|eot_id|><|start_header_id|>

assistant<|end_header_id|>""",

7 input_variables=["generation", "question"],

8)

Listing 5.4: Prompt used for the hallucination grader.

5.1.5 Router

This prompt is used to determine the appropriate data source for a user question, ei-

ther a vector store or web search. It provides a binary choice ′websearch
′or′vectorstore′

based on the keywords in the question, with the output formatted as a JSON.

1 prompt = PromptTemplate(

2 template="""<|begin_of_text|><|start_header_id|>system<|

end_header_id|> You are an expert at routing a

3 user question to a vectorstore or web search. Use the vectorstore

for questions on LLM agents,

4 {summary}. You do not need to be stringent with the keywords

5 in the question related to these topics. Otherwise, use web-search

. Give a binary choice ’web_search’

6 or ’vectorstore’ based on the question. Return the a JSON with a

single key ’datasource’ and

7 no premable or explanation. Question to route: {question} <|eot_id

|><|start_header_id|>assistant<|end_header_id|>""",

8 input_variables=["summary", "question"],

9)

Listing 5.5: Prompt used for the hallucination grader.

89

	Abbreviations
	List of Figures
	General Introduction
	State of Play
	Presenting BIGmama Technology
	Mission
	Vision
	BIGmama Specificities
	Products
	Hyko

	Problem Definition
	RAG: Enhancing LLMs with External Knowledge
	Conclusion

	State of the Art
	Machine Learning
	Definition
	Relationships to other fields
	Types of Machine Learning
	Limitations of Machine Learning: Challenges and Considerations

	Deep Learning
	Definition
	Deep Learning vs. Machine Learning
	Deep Learning Applications

	Natural Language Processing (NLP)
	What is Natural Language Processing?
	How Does NLP Work?

	Neural networks
	Feedforward networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Transformers
	Transformer Architecture
	Components of the Transformer Architecture
	Self-Attention Mechanism
	Variants of Transformer Architecture

	Large language models (LLMs)
	Introduction
	Large Language Model Families
	Tokenizations
	Positional Encoding
	Model Pre-training
	Fine-tuning and Instruction Tuning
	Reinforcement Learning from Human Feedback (RLHF)
	How LLMs are used and augmented

	Retrieval Augmented Generation (RAG)
	Introduction
	Retrieval Augmented Generation (RAG) Categories
	Retrieval Models for Document Search
	Embeddings and Vector Databases for Retrieval in RAG
	Challenges of Retrieval-Augmented Generation

	Proposed Solution
	Problem Definition
	Solution Overview
	High-Level Architecture
	Key Technologies and Frameworks
	Data Flow

	Detailed Workflow
	User Input
	Document Processing
	Question Routing
	Document Retrieval and Grading
	Answer Validation and Correction
	Final Answer Delivery
	Logging and Monitoring with LangSmith
	Model Interaction with Ollama

	Challenges and Solutions
	Integration of Diverse Technologies
	Efficient Document Retrieval
	Document Grading Accuracy
	Monitoring and Logging

	Conclusion

	General Conclusion
	Bibliography
	Apendix
	Prompts used
	Retrieval Grader
	Answer Generation
	Hallucination Grader
	Answer Grader
	Router

