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Résumé

La reconnaissance de l’iris utilisant des méthodes inspirées du système visuel humain représente
une approche de pointe dans l’identification biométrique. En analysant les étapes clés telles que
la détection, la normalisation, l’extraction de caractéristiques et la classification, cette étude
démontre comment des techniques telles que la détection des contours, les filtres de Gabor
et les transformations en ondelettes peuvent améliorer de manière significative la précision et
la robustesse de la reconnaissance. De plus, l’exploration de la technologie FPGA offre une
voie pour une mise en œuvre matérielle efficace. Les résultats contribuent à l’avancement des
systèmes de reconnaissance de l’iris en intégrant des cadres théoriques avec des applications
pratiques.

Mots clés : Reconnaissance de l’iris, système visuel humain, traitement d’image, filtres de
Gabor, FPGA, extraction de caractéristiques.

Abstract

Iris recognition using methods inspired by the human visual system represents a cutting-edge
approach in biometric identification. By analyzing key stages such as detection, normalization,
feature extraction, and classification, this study demonstrates how techniques like edge detec-
tion, Gabor filters, and wavelet transforms can significantly enhance recognition accuracy and
robustness. Additionally, the exploration of FPGA technology provides a pathway for efficient
hardware implementation. The findings contribute to advancing iris recognition systems by
integrating theoretical frameworks with practical applications.

Keywords : Iris recognition, human visual system, image processing, Gabor filters, FPGA,
feature extraction.
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General introduction

Biometrics, as a field dedicated to the measurement and analysis of individuals’ unique bi-
ological characteristics, has revolutionized methods of identification and authentication. In
an increasingly interconnected and digital world, the security of access systems has become
paramount. Among the various biometric modalities, iris recognition stands out for its ability
to offer precise and reliable identification, thanks to the complexity and stability of iris pat-
terns. Unlike other biometric traits, iris patterns are not only unique but remain unchanged
over time, making them an ideal choice for modern authentication systems.

Recent technological advancements have enabled researchers to overcome several challenges
associated with iris recognition, particularly regarding variations in lighting and environmental
conditions. Current research focuses on integrating artificial intelligence and machine learning
methods to enhance the performance of biometric systems. By adopting techniques inspired by
the human visual system, it is possible to optimize image analysis processes, thereby increasing
the accuracy and robustness of recognition systems.

This thesis concentrates on the study and implementation of iris recognition using methods
based on the human visual system. We analyze the essential steps involved, from detection
to identification, highlighting the applied image processing techniques, such as edge detection,
segmentation, normalization, and feature extraction. The use of human visual system-inspired
models, such as Gabor filters and wavelet transforms, significantly improves the efficiency of
the recognition process.

Finally, we explore the hardware implementation methods, particularly the use of FPGA tech-
nology, to leverage parallel processing capabilities and high performance. This work aims to
contribute to the advancement of iris recognition systems by combining theoretical approaches
with practical applications, while paving the way for future research in the field.

This thesis is structured as follows:

- Chapter 1: Overview of the Human Visual System and Iris Recognition.

- Chapter 2: State of the Art - Literature Review.

- Chapter 3: Terminology and Algorithms for Human Visual System.

- Chapter 4: Proposed Approach and Results .

- General conclusion – Summarizes the findings, discusses their implications, and suggests
directions for future research.
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Chapter 1

Overview of the Human Visual System
and Iris Recognition

1.1 Introduction

This chapter provides an overview of biometric recognition systems, focusing on iris recognition
and its implementation. This chapter explores the key principles that make biometric methods
reliable and secure, while highlighting the unique features and challenges of using the iris for
identification. The chapter also touches on the Human Visual System (HVS) from both psy-
chological and technological perspectives, as it plays a significant role in recognition processes.
Lastly, it introduces the hardware considerations for implementing such systems, with a focus
on FPGA technology, which will be the platform used in this thesis.

1.2 Recognition Systems

In this section, we will provide an overview of several biometric recognition systems and identity
verification techniques, with a particular focus on iris biometrics.

1.2.1 Biometric Recognition

Biometrics is the science that studies methods for identity verification or authentication, which
are used to distinguish between individuals based on the recognition of their biological char-
acteristics, wether it is physiological or behavioral. It serves as a powerful means of identity
verification in some applications when correctly implemented. Furthermore, when combined
with other verification techniques (such as keys and passwords), a certain level of security can
be achieved [3]. This technology utilizes various traits such as fingerprints, facial features, iris
patterns, and voice.

The reasons for choosing biometric systems are :

- Security : It improves security by producing a more trustworthy way to verify the
identity of, for example in law enforcement, border control or access control to secure
facilities.
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- Fraud Prevention : Client is authorized on a few basic things and he can spare time for
another correct work, which isn‘t included in his busy schedule so Broader convenience:
As you know people rarely keep spares standing around, but they do have their phone
with them.

- Ease of use : Biometric systems do away with the need for passwords or actual tokens,
meaning that users can authenticate themselves rapidly and without any hassle.

- Scalability : Since they can manage thousands of biometric feature sets, these systems
are ideal for applications that have to identify many individuals en masse (e.g. airports
and other high-traffic, large-company settings).

- Higher accuracy : Biometric systems can provide better performance than the tra-
ditional method of identification, which means reducing error rates of false positives in
identity verification.

1.2.2 Biometric System

A biometric system is a pattern recognition system that operates by acquiring biometric data
from an individual, extracting a set of features from the acquired data, comparing this set
of features to the template stored in database and accepts or rejects the demanded identity.
There are different modes in which a biometric system can function based on its application
context[4]:

1- Verification : It does this by matching the biometric data captured to its own database to
verify that the person it is scanning is who he claims to be. The system works like the image
process, only now being a person trying to get itself identified thus it will declare an identity
with its own PIN (personal identification number) one username, or an ID card etc. In that
case, the system compares them one-one to see if it is true or not.

2- Recognition: The system searches across all the templates in a database and then assigns the
input template to one of them. Therefore, the system peform various comparisons to establish
the individual’s identity

A representation of biometric recognition operating scheme is illustrated in the figure 1.1
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Figure 1.1: Synoptic Diagram of Bimetric Systems[1]

1.2.3 Condition for a Biometric Recognition Method

Automatic biometric systems must identify an individual or verify their identity using mea-
surements of human body characteristics. These characteristics must have certain intrinsic
qualities to allow for the development of reliable and robust authentication systems. In theory,
any human characteristic can be used for identity verification, as long as it meets the following
desirable (ideal) requirements :

- Universality: Every person should have the characteristic.

- Uniqueness: The characteristic should ensure that no two individuals have the same
traits.

- Permanence: The characteristic should remain constant and unchanging over time.

- Measurability: It should be possible to collect a sample of the characteristic and analyze
it in a quantitative manner.
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In practice, there are additional important requirements for the identification and authentica-
tion phases:

- Performance: This refers to achieving both accurate verification/identification and ef-
ficient use of resources to meet acceptable operational conditions.

- Robustness: The system’s ability to maintain accuracy despite the influence of oper-
ational or environmental factors (such as channel noise, deformations, and other distor-
tions).

- Acceptability: This refers to how willing users are to accept the biometric system and
use it.

- Anti-spoofing Capability: The system’s resistance to deception techniques, ensuring
that an individual cannot fraudulently pass their biometric data to someone else for
misuse.

These requirements apply to both identification and verification phases. The closer a biometric
modality comes to meeting these requirements, the closer the system will be to perfection.
However, in practice, no biometric modality perfectly fulfills all these ideal conditions [3].

1.2.4 Different Types of Biometric Recognition

Biometric systems are increasingly integral to identity verification across various sectors, utiliz-
ing unique physiological and behavioral traits of individuals. These systems can be categorized
into several types as indicated in figure 1.2, each with distinct characteristics and applications.

1. Physiological Biometrics : These systems identify individuals based on unique physical
characteristics.

- Fingerprint Recognition : This is one of the most widely used biometric methods.
It captures the unique patterns of ridges and valleys on a person’s fingers. The system
analyzes minutiae points—specific features in the fingerprint pattern—and creates
a template for matching during authentication.

- Facial Recognition : Utilizing advanced algorithms, facial recognition technology
identifies individuals by analyzing facial features from images or video feeds. This
method is commonly used in security systems and personal devices, allowing for
quick and contactless verification.

- Iris Recognition : This method involves scanning the intricate patterns of the iris,
which are unique to each individual. Iris recognition is highly accurate and is often
employed in secure access control systems.

- Retina Scanning : Similar to iris recognition, retina scanning examines the unique
patterns of blood vessels in the retina at the back of the eye. This method is less
common due to its invasive nature but offers high accuracy.

- DNA Matching : DNA biometrics analyze genetic material to establish identity.
While highly accurate, this method is typically reserved for forensic applications due
to the complexity and time required for analysis.
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2. Behavioral Biometrics : These systems identify individuals based on their behavioral
patterns.

- Voice Recognition : This technology analyzes vocal characteristics such as pitch,
tone, and speech rhythm. It is commonly used in call centers and security applica-
tions where voice authentication can streamline user access.

- Keystroke Dynamics : This method involves analyzing the unique patterns in
how an individual types, including speed and rhythm. It can provide continuous
authentication without requiring active participation from the user.

- Signature Dynamics : This system examines the way a person signs their name,
including pressure and speed variations during the signing process. It is often used
in banking and legal applications to verify identity.

In real life, there exist a multimodal systems that combine multiple biometric identifiers to
enhance accuracy and security. For example, a system might use both fingerprint scanning and
facial recognition to authenticate a user. This approach mitigates the limitations of unimodal
systems, such as false rejections or vulnerabilities due to changes in a single biometric trait over
time.

Figure 1.2: Different types of Biometric Systems[2]

1.2.5 Characterisation of a Biometric System

A typical biometric system can be described through four main modules:

- Capture Module : The capture module is responsible for acquiring the biometric data of
an individual. This can include devices such as cameras, fingerprint scanners, or security
cameras.
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- Feature Extraction Module : The feature extraction module takes the biometric data
obtained from the capture module and isolates only the relevant information to create
a new representation of the data. Ideally, this representation should be unique to each
individual and relatively invariant to intraclass variations.

- Matching Module : The matching module compares the set of extracted features with
the stored model in the system’s database. Assesses the degree of similarity (or difference)
between the two sets of data.

- Decision Module : The decision module verifies the identity claimed by a user or
determines an individual’s identity based on the degree of similarity between the extracted
features and the stored model(s). In summary, these four components work together to
ensure accurate and reliable biometric identification, from data acquisition to final identity
verification.

1.3 Iris Recognition

The iris is a circular membrane located at the front of the eye and plays a crucial role in
regulating the amount of light that enters. In its center is the pupil, a small aperture through
which light passes to reach the retina. The iris adjusts its size in response to lighting conditions;
for example, in bright environments, it constricts to limit light entry, while in darker settings,
it dilates to allow more light in.[5]

The intricate texture of the iris is composed of various elements, including ligament arcs,
crypts, ridges, grooves, and collarettes. This complex arrangement and the specific shapes of
these components contribute to the distinctive appearance of the iris.

1.3.1 Why Iris Recognition

The iris is unique among internal organs which are well protected inside the eye, because it
can also be seen from outside the body, as it is protected by the transparent cornea. This
accessibility makes it easier to acquire its texture compared to other internal structures such
as the retina. The colorful pattern circling the pupil, on the iris, is complex and distinct,
that is why it has spurred interest from researchers and ophthalmologists in developing iris
recognition systems since the 1930s. In fact, a patent was filed in 1986 asserting that the irises
of different individuals are not identical[5], highlighting the potential for iris patterns to be
used in biometric identification. Secondly, Iris patterns remain constant throughout a person’s
life, which has formed the basis on which iris recognition rests as a very accurate biometric
technique boasting of an exceptionally low False Match Rate.
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Figure 1.3: Iris Textures

1.3.2 Anatomy of the Iris

The iris plays a critical role in regulating pupil dilation[6], acting as a circular diaphragm that
automatically adjusts based on the amount of light received. In low light conditions, the pupil
expands, which can lead to a less sharp image on the retina, a phenomenon known as night
myopia. The iris is also responsible for eye color, which is determined by the thickness and
concentration of pigmented layers; a thicker layer with higher melanin concentration results in
darker eye colors. Its nutrition is provided by the aqueous humor surrounding it, along with
several small arterioles. The diameter of the iris is altered by two types of muscles: the dilator
muscle, which contracts to widen the pupil, and the sphincter muscle, which decreases the
pupil’s diameter. Understanding the anatomy and physiology of the iris is essential to grasp
how our visual system functions as a whole. The figure 1.4 represents the regulation of pupil
by the iris in bring and dim light conditions.

Figure 1.4: Variation of pupil in bright and dim light conditions
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1.3.3 Difficulties in Iris Recognition System

Iris biometrics faces several challenges in creating a reliable recognition system. The main
difficulty of an iris recognition is its acquisition system. The iris, visible due to the reflective
cornea, can present complications from reflections on the pupil and the iris during acquisition.
In addition, occlusion noise can obscure the texture of the iris, caused by the eyelids and
eyelashes, reflections, lenses etc. which can cover significant portions of the iris. The presence of
glasses or contact lenses can also introduce further reflections. Blurring noise is another concern,
as capturing the small iris from a distance requires sensitive lenses, making the individual’s
distance from the camera critical; otherwise, images can appear blurry. Motion blur can also
occur from rapid eye movements or changes in pupil size. In addition, the texture of the iris
varies between individuals, affecting the accuracy of recognition. Finally, the response of the
iris muscle to light can distort its texture, leading to unpredictable and non-linear deformations.

1.3.4 Architecture of Iris Recognition System

Like the other recognition technologies, the iris recognition system is structured around two
primary phases: iris detection and iris identification (or matching). The first phase covers
several steps including preprocessing, edge detection, segmentation, and normalization. In the
second phase, the focus shifts to feature extraction and classification.

1.3.4.1 The Detection Phase

- Preprocessing : involves essential steps to prepare the image for subsequent analysis.
This phase starts with image acquisition, during which high-quality facial images are
captured to ensure precision. Various image enhancement techniques are then utilized to
improve the overall quality of the captured images.

- Iris Detection and Segmentation : Once the preprocessing phase is complete, the
next essential step is edge detection. This process is crucial for highlighting the boundaries
of the iris. Following that, the localization of the iris boundaries occurs, isolating the iris
region while discarding other parts of the image.

- Normalization : The iris is a disc that is pierced in the center by a smaller disc known
as the pupil. The two circles formed by the boundaries of the iris and the sclera, as well as
the boundaries between the pupil and the iris, are not perfectly concentric. Additionally,
due to the contractions and dilations of the iris, along with varying distances between
individuals and the camera, the size of the iris disc is not always uniform, therefore we
transform the circular iris region into a rectangular shape, making it suitable for further
processing.

1.3.4.2 The identification phase

- Features Extraction : which involves extracting the most important features from the
resulting rectangle obtained during the normalization stage. It is important to note that
both feature extraction and feature selection are dimension reduction methods used for
this purpose.
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The feature extraction aims to identify and extract the most relevant features from the
input data while reducing its dimensionality. However, feature selection involves choosing
a subset of the original features to decrease dimensionality. Both techniques aim to
enhance the performance of the model.

- Classification : Once the most significant features are extracted, we proceed to the
final stage of our system, which is the Classification. Classification involves comparing
the encoded iris pattern (generated during feature extraction) to stored templates in a
database. The system assesses the similarity between the patterns to determine if there
is a match, thereby verifying or identifying the individual’s identity. This step is crucial
for making the final decision on recognition.

Figure 1.5: Iris Recognition System Architecture

1.4 Human Visual System

1.4.1 Definition of HVS

The HVS refers to the biological and psychological processes that enable humans to interpret
visual stimuli. HVS encompasses all the biological processes involved in seeing. It includes the
eyes, the optic nerve, and the brain regions responsible for visual perception. The HVS detects
light, processes visual information, and interprets this data to create an understanding of the
world. It involves complex processes like color vision, depth perception, motion detection, and
recognition of objects and patterns.

In image processing, understanding the HVS allows for the development of algorithms that align
with human perception, making visual information more accessible and efficient. For instance,
methods derived from the HVS can optimize image quality while reducing data size. It refers
to how image-processing techniques take advantage of the characteristics of human vision.
Algorithms are designed to prioritize details that the HVS is more sensitive to (such as edges,
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contrast, and brightness) while minimizing processing on aspects humans are less sensitive to
(such as fine color details). This allows for more efficient compression, enhancement, or analysis
of images while maintaining visual quality where the HVS is most responsive.

1.4.2 Why Do We Use HVS

The HVS model is employed primarily to enhance image quality and efficiency in various appli-
cations. Since the HVS is more sensitive to certain visual elements like edges and brightness,
and less sensitive to others like fine color details, algorithms can focus processing power on
the most important aspects, reducing the need for resources like bandwidth or storage in fields
like image compression and transmission. For instance, it informs techniques where certain
high-frequency details that are less perceptible to the human eye can be discarded without
significant loss of perceived quality.

This approach also helps in designing displays and visual media that cater to human perception,
ensuring that images are rendered in a way that aligns with how we naturally see(looks natural
and realistic to human viewers) and interpret visuals for applications like Computer graphics,
VR or Video Games.

HVS-based models enhance the parts of an image that are most important for human per-
ception. For instance, in image enhancement techniques or display technologies, focusing on
contrast or sharpness makes images clearer and more appealing to the human eye. This what
made HVS is one of the best methods for Biometric Recognition Systems like Iris Recognition.

1.4.3 Historical Approach of HVS

The human visual system (HVS) is one of the oldest and most well studied systems, allowing
researchers from many disciplines to develop image processing techniques. The journey begins
from biological studies which slowly moves into the ambitious world of modern image processing
applications.

1.4.3.1 Early Biological Studies

The fundamentals of HVS research date as far back to the 19th century, when researchers
began revealing themysteries behind human vision. Hellmholtz to the rescueIn 1866 Hermann
von Helmholtz proposed what is known as the trichromatic theory where honest-to-goodness
color receptors on our retinas are sensitive to red, green and blue light. It became a basis theory
to understand perception of color.

In the early 20th century, Ewald Hering introduced the opponent process theory, which proposed
that color vision is based on three opponent channels: red-green, blue-yellow, and black-white.
These theories helped explain various color vision phenomena and laid the foundation for color
image processing.
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1.4.3.2 Neurophysiological Discoveries

The advent of electrophysiology in the mid-20th century enabled researchers to study the
responses of single neurons in the visual system. David Hubel and Torsten Wiesel employed
the cat visual cortex in the 1950s while investigating early opportunities to reveal that primary
visual cortex (V1) neurons respond selectively to oriented edges and bars[7]. This finding
provided new insights about the processing spatial information in the visual system.

Additional experiments demonstrated the presence of distinct pathways carrying visual in-
formation, including magnocellular (M) and parvocellular (P) channels that are sensitive to
different aspects of vision. The M pathway, which is more sensitive to low spatial frequencies
and motion, is thought of as color blind whereas the P pathway, with its greater sensitivity
to high spatial frequencies and color perception,was considered to be used primarily for form
perception. This fact has been considered in image and video compression methods.

1.4.3.3 Psychophysical Experiments

Psychophysical experiments have played a crucial role in understanding the capabilities and
limitations of human vision. In the 1960s, Campbell and Robson conducted experiments using
sinusoidal gratings to measure the contrast sensitivity function (CSF) of the human visual
system[8]. The CSF describes the sensitivity of the HVS to different spatial frequencies and
has been widely used in image quality assessment and compression algorithms.

Other psychophysical experiments have revealed various visual phenomena, such as the Mach
band effect, which demonstrates the HVS’s sensitivity to changes in luminance, and visual
masking, where the presence of one stimulus affects the perception of another[9]. These findings
have been incorporated into image processing techniques to improve perceptual quality and
efficiency.

1.4.3.4 Computational Models

As our understanding of the HVS grew, researchers began to develop computational models to
simulate its behavior. In the 1980s, Daugman introduced the use of 2D Gabor filters to model
the receptive fields of neurons in the primary visual cortex. Gabor filters have since been widely
used in image processing tasks such as texture analysis and iris recognition.

Other computational models, such as the Contrast Pyramid[10] and the Steerable Pyramid,
have been developed to mimic the multi-scale and multi-orientation processing capabilities of
the HVS. These models have been applied in areas like image compression, denoising, and
enhancement.

1.4.4 Algorithms Based on HVS

1.4.4.1 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform is a mathematical technique used to decompose an image into
different frequency components at various scales. It provides a multi-resolution analysis of the
image, allowing for both spatial and frequency domain representation[11].
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DWT mimics how humans perceive visual information at different scales. The HVS is sensitive
to certain spatial frequencies, particularly low frequencies that represent coarse details, and
less sensitive to high frequencies that capture fine details. By focusing on these perceptually
relevant frequencies, DWT can effectively compress images while preserving important visual
features.

1.4.4.2 Gabor Filters

Gabor filters are linear filters used for texture analysis and feature extraction in images. They
are designed to capture specific orientations and frequencies, making them effective for edge
detection and texture representation[12].

Gabor filters are inspired by the receptive fields of neurons in the human visual cortex, which
respond selectively to specific orientations and spatial frequencies. This correspondence al-
lows Gabor filters to model human perception of texture and edges, making them useful in
applications like facial recognition and iris recognition.

1.4.4.3 Contrast Sensitivity Function (CSF)

The Contrast Sensitivity Function quantifies the ability of the human visual system to detect
contrast at various spatial frequencies. It is often used as a band-pass filter in image processing
to assess image quality or to enhance images based on human sensitivity[13].

CSF directly reflects how humans perceive contrast and detail in images. By applying CSF as
a filter during image processing, algorithms can prioritize features that are more likely to be
noticed by viewers, thus improving perceptual quality.

1.4.4.4 Chroma Subsampling

Chroma subsampling is a technique used in image compression where color information is
sampled at a lower resolution than brightness information. This method reduces data size
while maintaining perceived image quality.

This technique exploits the fact that human vision is more sensitive to luminance (brightness)
than chrominance (color). By reducing color resolution without significantly affecting perceived
quality, chroma subsampling aligns with how humans naturally process visual information[14].

1.5 Hardware Implementation

Iris recognition is a biometric technology that identifies individuals by analyzing unique pat-
terns in the iris of the eye. The process typically involves several stages: image acquisition,
pre-processing, feature extraction, and matching. These operations often require substantial
computation, especially in real-time applications, such as security systems, border control, or
mobile devices.

To meet the demand for speed, accuracy, and efficiency, iris recognition systems can benefit from
hardware implementation. Implementing iris recognition on hardware platforms like FPGA
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enables faster processing, parallel execution, and the ability to deploy systems in low-power real-
time environments. In addition, these hardware systems can be embedded in small, portable
devices, offering a compact solution for systems like mobile biometric scanners or smart cameras
that include iris recognition as part of a broader system.

1.5.1 Different Hardware Implementations

- FPGA : FPGAs are integrated circuits that can be configured by the user after manufac-
turing. They consist of an array of programmable logic blocks and interconnects, allow-
ing for custom hardware implementations of algorithms. It provides Parallel Processing,
Customization and Low Latency. FPGA are used where space, power consumption, and
processing speed are critical factors. They can be found in standalone iris recognition
devices or integrated into larger biometric identification systems.

- Application-Specific Integrated Circuits (ASICs) : ASICs are custom-designed
chips tailored for a specific application or function. Unlike FPGAs, which can be repro-
grammed, ASICs are fixed once manufactured. ASICs are commonly used in commercial
iris recognition products where high volume and efficiency are required. They may be
employed in security systems, mobile devices, and biometric terminals.

- Digital Signal Processors (DSPs) : DSPs are specialized microprocessors designed
specifically for digital signal processing tasks. They excel at performing mathematical
operations on signals quickly and efficiently.

- General-Purpose Processors (CPUs) : While not as efficient as FPGAs or ASICs
for specific tasks, CPUs may still be used in iris recognition systems for prototyping or
less demanding applications where real-time performance is not critical.

1.6 Conclusion

this chapter lays the foundational framework necessary to understand the technical and theo-
retical aspects of iris recognition systems within the broader context of biometric recognition. It
highlights the significance of iris recognition by discussing the unique challenges and advantages
associated with it, while also connecting these concepts to the Human Visual System, which
plays a critical role in both biological and machine-based recognition processes. Furthermore,
the chapter introduces key hardware platforms used for the implementation of recognition sys-
tems, with a focus on FPGAs as the chosen platform for this thesis. The insights and knowledge
provided here will serve as a basis for the more detailed technical discussions that will follow
in subsequent chapters.
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Chapter 2

State of the Art Methods

2.1 Introduction

This chapter presents a review of the state-of-the-art methods and approaches related to Hu-
man Visual System (HVS) algorithms and iris recognition systems. We begin by exploring
various HVS-based algorithms documented in the literature, along with their key applications
in biometric systems and image processing. Following this, the chapter delves into the current
advancements in iris recognition, focusing on the different techniques used for preprocessing,
iris detection, segmentation, normalization, feature extraction, and classification. Finally, we
review the hardware platforms and programming environments commonly employed for imple-
menting these systems.

2.2 Human Visual System State of the Art Models and
Their Applications

In this section, we will explore various state-of-the-art methods and algorithms that leverage
principles of the Human Visual System (HVS) as highlighted in the literature. By exam-
ining the core ideas behind these methods, we aim to illustrate how they capitalize on the
unique characteristics of human visual perception. Each method will be presented alongside its
practical applications, demonstrating the importance of aligning technological advances with
biological insights to enhance image processing, recognition, and analysis. This comprehensive
review underscores the critical role of the HVS in informing modern approaches to visual tasks,
ultimately advancing our understanding and capabilities within the field.

- In their 2018 study, Gursoy et al.[15] proposed the use of Discrete Wavelet Transform
(DWT) as a robust feature extraction technique for classifying power quality disturbances.
The authors highlighted the ability of DWT to decompose electrical signals into different
frequency components, which allows for effective identification of disturbances such as
voltage sags, swells, and transients in power systems. By applying DWT to real-time
data, they demonstrated improved accuracy in classifying various power quality events
compared to traditional methods. Their findings emphasized that DWT not only enhances
the classification process but also contributes to better monitoring and management of
electrical power systems, making it a practical tool for utilities facing increasing demands
on power quality. The figure 2.1 shows the decomposition made by the DWT on an image:
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Figure 2.1: Discrete Wavelete Transform

- In their seminal work, Daly et Al[16] introduced the Visible Differences Predictor (VDP)
algorithm, which predicts perceived image quality by modeling human visual character-
istics. The authors emphasized that traditional metrics often fail to align with human
perception, leading to misleading assessments of image quality. The VDP incorporates
factors such as contrast sensitivity and visual masking, allowing for a more accurate pre-
diction of how differences between images will be perceived by viewers. Their algorithm
is particularly beneficial in image compression and enhancement applications, ensuring
that visual fidelity aligns closely with human perception. This work significantly influ-
ences the fields of image processing and computer graphics by providing a reliable metric
for assessing image quality. The figure 2.2 shows the general architecture of the Visible
Differences Predictor suggested by Daly[16] :

Figure 2.2: Visible Differences Predictor

- Daugman et al[17] made significant contributions to the field of image processing with
their discussion on the use of Gabor filters for texture analysis and feature extraction.
This seminal paper emphasized the biological relevance of Gabor filters to the human
visual system (HVS), as they mimic the receptive fields of visual neurons. The authors
demonstrated that Gabor filters are effective for capturing spatial frequency and orienta-
tion information in images, which are crucial for texture recognition. By employing these
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filters, they provided insights into how the HVS interprets complex visual stimuli, paving
the way for advancements in facial recognition, iris recognition, and other applications
requiring detailed texture analysis.
The figure 2.3 shows the application of apllying a gabor filter bank generated by varying
frequency and orientation on an image of a circle and the results of its implementation :

Figure 2.3: Exemple of Gabor Filter

- Other research[13] defined the Contrast Sensitivity Function (CSF) and its implications
for understanding human visual sensitivity to different spatial frequencies. CSF quantifies
human sensitivity to different spatial frequencies

- Another paper[18] introduced log-polar transforms as a method for analyzing orientations
in images, based on principles of human visual perception. It discussed how log-polar
coordinates can effectively represent images while preserving essential features related to
orientation and scale. This approach mimics the way humans perceive visual information,
particularly in the context of image registration and image compression.

- Bojilov and Bocheva[19] developed a neural network model aimed at enhancing the visual
discrimination of complex motions, addressing the challenges inherent in recognizing in-
tricate movement patterns. Their model is inspired by the Human Visual System (HVS)
and employs a multi-layer neural network architecture that simulates the visual processing
pathways of the human brain. Through training with diverse motion stimuli, the authors
demonstrated the model’s capability to accurately differentiate between various trajecto-
ries and velocities, capturing the nuances of complex motions. They highlighted potential
applications in fields such as robotics, video analysis, and human-computer interaction,
where precise motion perception is essential. This work underscores the significance of
aligning artificial intelligence with biological insights, paving the way for advancements
in visual processing technologies.
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2.3 Iris Recognition System State of the Art Models

2.3.1 Image Preprocessing

The initial sub-stage of detection is preprocessing, which encompasses several crucial steps to
prepare the image for further analysis. This phase begins with image acquisition, where high-
quality images of the face are captured to ensure accuracy. Following this, image enhancement
techniques are applied to improve the overall quality of the image. Examples of such techniques
include adjusting contrast and reducing noise. These preprocessing operations are essential for
eliminating unwanted artifacts and making the image more informative, thereby optimizing it
for the subsequent feature extraction phase.

In this stage, recent advancements have significantly contributed to the field. For instance,
Zhang et al[20]. proposed a novel image enhancement technique utilizing deep learning-based
filters that adaptively enhance image quality by learning from large datasets. This approach
has shown promising improvements in system accuracy.

In the work of Ming Liu[21], a Fuzzy method was employed to enhance images. Unlike other
approaches, this method focused on addressing the image non-linearities that are commonly
ignored by commonly used filters such as Median, Gaussian, and others. These filters typically
assume the image characteristics to be Gaussian, which is often not the case.

Another interesting work by Chang et al[22]. aimed to isolate the pupil and locate the inner
boundaries of the iris. They proposed a preprocessing method consisting of three stages: Gaus-
sian filtering with a low value of sigma then binary thresholding, and a subsequent Gaussian
filter. This method effectively detected the pupil and isolated it from the rest of the eye.

2.3.2 Edge Detection

After the preprocessing phase, the phase of detecting and enhancing the iris area takes place,
Several researchers including Jasem Rahman et al.[23] highlighted the use of Sobel edge detec-
tion as a key technique in iris recognition systems. Sobel edge detection, known for calculating
image intensity gradients, is used to extract critical iris features by detecting edges, such as
ridges and furrows, that define an individual’s unique biometric signature. The authors em-
phasized its efficiency in handling noise and capturing fine details, making it essential for the
preprocessing stage of iris recognition.

Omran[24] Utilized the Canny edge detector as a method to highlight the boundaries of the
iris, given its efficiency and effectiveness, The Canny edge detector has been adopted in iris
recognition systems to detect and enhance the edges of the iris region.

In their study, Sundas Naqeeb Khan et al.[25] explored the application of Laplacian of Gaussian
(LoG) edge detection for iris recognition, particularly in the context of flight simulator user
identification. LoG edge detection combines Gaussian smoothing with the Laplacian operator
to identify edges by detecting areas of rapid intensity change, making it effective in isolat-
ing important iris patterns. The authors highlighted that LoG excels in reducing noise while
capturing precise iris details, which are critical for accurate identification in dynamic environ-
ments like flight simulators. Their findings demonstrated that LoG enhances the reliability of
iris recognition by providing robust edge detection, leading to improved user authentication in
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high-performance scenarios

2.3.3 Segmentation

Various approaches have been used for the localization of iris boundaries takes place, retaining
only the iris region, as mentioned in [26], including K-means clustering, Active contour models,
Edgeless active contour, Gradient vector flow snake, Statistical learning methods, least median
square differential operator and linear basis function.

In their review, Hind Hameed Rasheed et al.[27] examined the use of the Hough Transform for
iris segmentation in biometric systems. The Hough Transform is employed to accurately detect
circular shapes, making it particularly effective in identifying the iris boundary within an eye
image. By transforming edge-detected pixels into a parameter space, the algorithm identifies
the iris’s circular region, isolating it from surrounding features like the pupil and sclera. The
authors highlighted that the precision of the Hough Transform in segmenting the iris plays a
crucial role in improving the accuracy of subsequent recognition stages, especially in challenging
images. This method is essential for reliable and efficient iris recognition, which is critical for
enhancing biometric applications.

Lian et al.[28] proposed the Attention U-Net (ATT-UNet) for iris image segmentation, building
on the standard U-Net architecture by incorporating an attention mask. This mask helps the
model learn more distinctive features, improving the classification of iris and non-iris pixels.
The process begins by selecting a bounding box for the potential iris region, followed by the
generation of attention masks, which are used as weighted functions to refine feature maps.
ATT-UNet has a structure similar to VGG16 but without fully connected layers, and its weights
are initialized using a pretrained ImageNet model. Despite its effectiveness, the method faces
challenges such as occlusion, reflections, poor lighting, and blurring. To address these, Zhang
et al.[29] proposed four network schemes combining dilated convolution with U-Net to enhance
iris segmentation performance. The best-performing model, FD-UNet, fully integrates dilated
convolutions, improving both the efficiency and accuracy of segmentation.

2.3.4 Normalization

Normalization is a crucial step in iris recognition, transforming the circular iris region into a
rectangular format to enable easier processing. A widely used approach for this task is Daug-
man’s Rubber Sheet model[30], which, though introduced years ago, remains highly efficient
and continues to be a key method in modern research due to its effectiveness.

Figure 2.4 shows the principle of transforming the circular iris into a rectangular shape.
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Figure 2.4: Daugman’s Rubber Sheet Normalization

2.3.5 Feature Extraction

To extract the most important features of the iris after the segmentation and normalisation
phase, various mathematical algorithms have been implemented for dimension reduction, in-
cluding Principal Component Analysis based on Discrete Wavelet, Haar and Biorthogonal
Wavelet Transform, Gabor and Log Gabor filters, Local Binary Patterns, Discrete Cosine Trans-
form, Gray Level Co-occurrence Matrix [31], Residual Pooling layer introduced in the Convolu-
tional Neural Networks [32], Joint Bayesian Formulation and Supervised Discrete Hashing [33],
.

2.3.6 Classification

After extracting the most significant features, the final stage of the system is classification.
In iris recognition, various classification approaches are employed, ranging from traditional
methods to more advanced machine learning and deep learning techniques.

Some articles like[34] used The Hamming Distance which is a classical method. The Hamming
Distance is ideal for iris recognition due to its speed and efficiency, allowing for quick compar-
isons between binary codes while being resilient to noise and small variations in the iris image,
such as those caused by lighting conditions or occlusions.

Others used Machine Learning and Deep learning Based methods, for deep learning methods
we can Convolutional Neural Networks, as seen in [21], Machine Learning based methods used
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are K-Fold Cross-Validation, K-Nearest Neighbor [35] and Support Vector Machine, utilized in,
[31] and [32],

In addition, a hybrid approach is mentioned in [36], where both the Hamming distance and a
neural network are used for the matching process.

2.4 Databases

Iris images are typically captured using either the visible wavelength spectrum (VIS) or the
near-infrared (NIR) spectrum, with four key components involved in the acquisition process:
lighting, lens, sensor, and console. NIR-based images focus on the complex iris texture rather
than pigmentation, making them less prone to noise and effective even for dark-colored irises,
thus improving recognition performance. These images are captured in both ideal (constrained)
and non-ideal (unconstrained) environments. Table 2.1 provide past research works with their
respective testing databases.

Source Database Subjects Images Spectrum Resolution Format
Drozdowski et
al.[37]

CASIA-1000 1,000 20,000 NIR 640×480 .jpeg

De Marsico et
al.[38]

CASIA.V1 108 756 NIR 320×280 .bmp

Zhang et al.[39] CASIA.V3 1614 22,548 NIR 640×480 .jpeg
Arsalan et al.[40] CASIA.V4 3284 32,537 NIR 640×480 .jpeg
Proenca et
al.[41]

UBIRIS.V2 261 11,102 VIS 800×600 .tiff

Kim et al. [42] BERC mobile 75 3,011 NIR 960×1280 —
Proença et
al.[43]

UBIRIS.V1 241 1,249 VIS 800×600 .jpeg

Dobes et al.[44] UPOL 64 384 VIS 786×576 .png
Rattani et al.[45] UBIPr periocu-

lar
344 5,126 VIS — .bmp

Khan et al.[46] ND-IRIS-0405 356 64,980 NIR 640×480 .jpg
Wang et al.[47] PolyU bi-

spectral
209 12,540 NIR, VIS 640×480 —

Cheng et al. [48] JLU-4.0 Iris 88 26,400 NIR 640×480 .bmp
Rakshit [49] Bath800 800 31,997 NIR 1280×960 .j2c
Umer et al.[50] IITD 224 2,240 NIR 320×240 .bmp
Sequeira et al.
[51]

MobBIO 105 1,680 VIS 300×200 .jpg

Arsalan et al.
[52]

NICE-II 67 1,000 VIS 400×300 .tiff

Chen et al. VSIA [53] 55 550 VIS — —
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Chirchi et al.
[54]

MMU 100 995 NIR 320×240 .bmp

Fierrez et al.
[55]

BioSec-baseline 200 3,200 NIR — —

Wang et al. [56] Cross-Eyed-2016 120 3,840 NIR, VIS 400×300 .jpg
Fenker and
Bowyer [57]

ND-Iris
Template-Aging

200 11,776 NIR — .tiff

Lucio et al. [57] CSIP 50 2,004 VIS — —

Table 2.1: Overview of iris databases, number of subjects, images, spectrum, resolution, and
file formats

2.5 Discussion

Table 2.2[23] shows the performance efficiency rate of various traditional and deep learning
techniques in some previous works of the Iris Recognition System with the metrics being used
are Accuracy rate (ACC) or error rate (EER).

Source Database Feature extraction
methods

Classification
methods

ACC/EER
(%)

Liu et al.[58] CASIA, Q-FIRE Pairwise filter bank CNN EER = 0.31
Kumar et al.[59] IITD, MMU DWT and DCT ED 94.59
Salve and
Narote[60]

CASIA-IrisV4 1D log-Gabor wavelet ANN and SVM 92.5–95.9

Du et al. NIST-ICE[61] Flipped images They used the
CNN technique

97.5–98.6

Alvarez-
Betancour
and Garcia-
Silvente[62]

CASIA,
UBIRIS, MMU

Fusion of three in-
formation sources of
SIFT features

The nearest
neighbor classi-
fier

99.90, 99.89,
99.05

Al-Waisy et
al.[63]

SDUMLA-
HMT, CASIA-
V3, IITD

CNN Softmax classi-
fier + fusion

100, 99.92, 99.88

Sahu et al.[64] CASIA-V3,
BATH

PILP and DBSCAN Clustering ap-
proach

97.68, 96.23

Gad et al.[65] SDUMLA-
HMT, CASIA
v.1, UBIRIS v.1,
CASIA v.4

Delta mean (DM) and
multi-algorithm mean
(MAM)

Euclidean dis-
tance (ED)

99.49, 99.46,
99.46, 99.49

Barpanda et
al.[66]

CASIA,
UBIRIS, IITD

Tunable filter bank Canberra dis-
tance

91.65
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Liu et al.[67] MICHE-I:
Galaxy S4,
iPhone 5

Proposed multilayer
analogous convolu-
tional architecture
inspired by CNN

Collaborative
representation
scheme

97, 98

Wang and Ku-
mar [68]

ND-IRIS-
0405, CASIA-
distance, WVU
non-ideal

Residual learning and
dilated kernel utilizing
deep CNN

The Hamming
distances

97.7, 87.5, 96.1

Barpanda et
al.[69]

CASIA, IITD,
UBIRIS

Wavelet derived
from biorthogonal Co-
hen–Daubechies–Feauveau

Canberra dis-
tance

91.65

Zhao and
Kumar[?]

ND-IRIS-0405-
Iris, CASIA-
distance, WVU
non-ideal

FCN-based framework
for spatially corre-
sponding descriptors
of iris features

Hamming dis-
tance (HD) from
extended masks
and binarized
feature maps

97.1, 84.1, 94.3

Wang and Ku-
mar [70]

PolyU bi-
spectral, Cross-
eyed-cross-
spectral iris

CNN similar to
AlexNet architecture

SDH for com-
pression and
classification

90.71, 87.18

Reddy et al.[71] VISOB,
UBIRIS-I,
UBIRIS-II,
Cross-eyed

OcularNet based on
CNN architecture;
trained PatchCNN for
every patch

ED technique
between patch’s
embedded iris
feature

EER=1.89,
EER=9.86,
EER=9.77,
EER=14.9

Zhao and
Kumar[72]

ND-IRIS-
0405, CASIA-
distance, IITD
iris, WVU
non-ideal

FeatNet model for ex-
tracting features of iris
region based on FCN

Fractional Ham-
ming distance
(HD) for ex-
tended masks
and binarized
feature maps

EER = 1.12,
EER=4.07,
EER=0.76,
EER=2.20

Lee et al.[73] CASIA-
Distance,
CASIA-Lamp,
CASIA-1000

Deep ResNet-based
recognition

ED to classify
CNN’s fully con-
nected layer out-
put

EER=2.16,
EER=1.59,
EER=1.33

Ahmadi et
al.[74]

CASIA-V3,
UBIRIS-V1,
UCI datasets

Hybrid 2-
DGK/SF/PF tech-
niques for iris texture
features

Intelligent
hybrid RBFNN-
GA classifier

99.9914,
99.9889, 99.98

Lee et al.[75] NICE.II,
MICHE,
CASIA-distance

Three CNN models for
feature extraction

SVM as classifier EER=8.58,
EER=17.39,
EER=2.96

Table 2.2: Comparison of various iris recognition methods across different databases, feature
extraction, and classification techniques.

Many methods achieve near-perfect accuracy, with values reaching up to 100% (Al-Waisy et al.
and Ahmadi et al.), indicating that current iris recognition systems are highly reliable under
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controlled conditions.

EER (Equal Error Rate) values, particularly for databases like CASIA and UBIRIS, show that
CNN-based methods consistently reduce error rates. The lowest EER values are achieved by
models such as OcularNet (Reddy et al.) and FeatNet (Zhao and Kumar), which integrate deep
learning and fine-tuned classification techniques.

Comparatively, older methods like Canberra distance-based classifiers or traditional filter bank
methods still perform well.

2.6 Hardware Implementations

2.6.1 Writing directly with VHDL

The most common approach involves using HDL directly for coding pre-trained deep learning
applications, with training performed off-chip. Hossam et al.[76] present a design methodology
for implementing a Multiply-Accumulate (MAC) unit using VHDL, tailored to support deep
learning networks on FPGA platforms. The authors emphasize the concurrent nature of the
MAC unit, which enables it to perform multiple multiply-accumulate operations simultaneously,
enhancing the efficiency of deep learning computations.

2.6.2 Using Matlab

Another notable recent approach is the use of Matlab. The Deep Learning Toolbox [77] and the
Deep Learning HDL Toolbox [78], both part of the MATLAB environment, assist in designing
and deploying CNN models on FPGA platforms.

Implementing a CNN model on an FPGA (based on their official documentation [79]) follows
the steps :

1. Import the pre-trained model

2. Perform Fixed-Point Conversion,

3. Generate the HDL code,

4. Generate the IP core ,

5. Create the bitstream file,

6. Deploy the model on the FPGA.

2.6.3 Using high level Synthesis Method

Bing Liu et al. utilized the HLS (High-Level Synthesis) technique [80]. HLS is a process that
converts high-level code into Hardware Description Language (HDL), enabling programming of
FPGAs. The approach follows these steps:
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- Initially, the functions intended for deployment on the FPGA are written in C or C++.

- These functions are then synthesized into VHDL (or Verilog) to generate an IP block
specifically designed for the required functionality.

- Finally, the complete system is created by building a block design that integrates the
generated IP blocks. This block design is then synthesized and implemented on the
FPGA to complete the process.

2.6.4 Using AI tools

FPGA vendors like Xilinx and Intel provide complete toolchains for AI model development and
deployment on FPGAs:

- Xilinx Vitis AI : A comprehensive AI inference development platform, which includes
optimized models, compilers, and tools for deploying on FPGA or ACAP (Adaptive Com-
pute Acceleration Platform). Wang and al.[81] discussed the implementation of an Object
Detection Accelerator on an FPGA using the Vitis-AI development framework.

- Intel OpenVINO : Primarily designed for computer vision AI applications, it includes
FPGA acceleration as part of its suite, converting AI models into formats compatible
with FPGA hardware.

So to summarize the first four methods, to implement our method in an fpga we use the
following steps :

1. Model Training: AI models are typically trained on GPUs or CPUs using frameworks
like TensorFlow, PyTorch, or MATLAB.

2. Optimization: AI tools perform optimizations like quantization, pruning, or fixed-point
conversion to make the models suitable for FPGA hardware.

3. HLS or Compilation: High-Level Synthesis (HLS) tools convert the AI model into
HDL code (e.g., Verilog or VHDL), while AI-specific frameworks compile models directly
for FPGA execution.

4. Deployment: The optimized model is implemented on the FPGA, where inference tasks
are executed, delivering high performance and power efficiency.

2.6.5 Using Python for Pynq

One of the key advantages of the Pynq FPGA Cards is the ability to program the FPGA using
Python, through the PYNQ framework. This is especially useful for developers who prefer
working in high-level languages and want to take advantage of FPGA acceleration without
writing low-level hardware description code (VHDL or Verilog).

Pynq comes with support for Jupyter Notebooks, allowing users to write Python code to control
and interact with the FPGA directly from a web interface. This includes the ability to load
pre-compiled FPGA bitstreams and run hardware-accelerated functions.
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PYNQ also provides pre-built hardware "overlays" (FPGA bitstreams) that implement common
hardware blocks, which can be controlled from Python code. These overlays are analogous to
software libraries but for hardware.T hese overlays are already optimized for FPGA use and
allow users to accelerate applications like image processing, matrix operations, or inference
tasks.

2.7 Conclusion

In conclusion, this chapter has provided a thorough review of the HVS-based algorithms and
iris recognition techniques currently utilized in the field. By examining the methods and tools
used at various stages of the iris recognition process, along with the hardware platforms sup-
porting these implementations, we have established a solid understanding of the state-of-the-art
approaches. This review lays the groundwork for the development and implementation of our
proposed system, which will build upon these existing techniques.
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Chapter 3

Human Visual System’s Terminology
and Methods

3.1 Introduction

This chapter presents a synthesis of research on the analysis of the human visual system. Its
goal is to provide the essential knowledge necessary for developing "bio-inspired" image analysis
algorithms. Each processing step in the human visual system is an optimized process passed
down through generations, enabling individuals to efficiently process visual data to adapt to
their environment. Hence, we can assume that the human visual system is, for our needs, the
"ideal" system capable of adapting to common situations. The human visual system serves as
a reference to computer vision systems, aiming to reach a similar level of performance.

This chapter also provides the key concepts in Image Processing, Machine/Deep Learning
associated with Iris Recognition Systems, This will enhance the comprehension of our chosed
approach. Finally we will provide an overview of the FPGA implementation.

3.2 Anatomical and Physiological Foundations of the Hu-
man Visual System

3.2.1 Introduction

This section describes the knowledge gained about the human visual system. The presentation
follows the path of visual information from photoreceptors to the brain. Understanding the
human body and its functioning has always fascinated researchers, with the aim of uncovering
the architecture and interactions between its various components. The visual system is no
exception, and its exploration has led to the discovery of the cells and neurons that compose
it, though much remains unknown about its functioning. Nevertheless, these insights offer a
better understanding of the system as a whole and help in addressing certain pathologies.

Understanding the human body is not only about treating its disorders. As discoveries progress,
we uncover the remarkable efficiency and ingenuity of the human body, especially in vision.
Our ability to observe and comprehend our environment, near or far, familiar or unfamiliar,
in everyday conditions, demonstrates that the human visual system far surpasses all current
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computer vision algorithms.

As shown in this section, the visual system optimizes incoming visual data from the outset
to simplify subsequent processing. Each stage has a specific function to extract particular
data, benefiting from previous processing. This strategy often contrasts with approaches that
introduce complex post-processing to compensate for initial data flaws.

3.2.2 General Presentation of the Human Visual System

Visual information is captured by the eye and undergoes initial processing in the retina before
being transmitted to the brain. Higher-level processing occurs in the visual areas located in the
back of both cerebral hemispheres as presented in Figure 3.1. Physiological studies[82] indicate
that a significant portion of the cortex is dedicated to the processing of visual information.
Furthermore, the intricate connections between these visual areas and other regions of the
brain contribute to the complexity of the visual system. Figure 3.1 outlines the key processes
examined in this study: retinal processing, followed by the transmission of information through
the optic nerve and its subsequent processing in the primary visual cortex (area V1).

Figure 3.1: Overall diagram of the human visual system

3.2.3 The Eye

The eye, depicted in figure 3.2, functions as a receiver of light signals. Focuses these signals to
create an image that is then sent to the brain through the optic nerve. The lens, though not
perfect, acts as a variable-focus lens that projects the image of the observed object onto the
retina, a photosensitive layer at the back of the eye.

The pupil, regulated by the iris, operates as an automatic aperture, adjusting its size based on
the amount of light received.
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Figure 3.2: Schematic cross-section of the eye[83]

3.2.3.1 The Retina

The retina is the neurosensory layer of the eye, covering about 12.5 cm2 [84]. Its role is
to convert light into electrical signals, which are then transmitted to the brain via the optic
nerve. The retina displays significant regional variations that influence its function. The central
region is specialized for detailed and color vision (photopic vision), while the peripheral areas
are responsible for achromatic (scotopic) and broader vision.

The retina contains several types of nerve cells: direct pathway cells (photoreceptors, cones and
rods, bipolar cells, and ganglion cells), as well as indirect pathway cells (horizontal cells and
three types of amacrine cells), along with pigment cells as shown in figure 3.3.

Notably, light must pass through all the retinal layers to reach the photoreceptors, except at the
fovea. The fovea, located at the optical center of the eye (also known as the macula), contains
only cones. In this area, each cone is connected to a single bipolar cell and a single ganglion
cell, resulting in the highest visual acuity.
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Figure 3.3: Organization of the retinal cell layers[85]

At the optical center, the fovea creates a small depression where light directly falls on the cones.
The optic disc, the starting point of the optic nerve, is situated on the nasal side, approximately
4 mm away from the fovea. This region lacks photoreceptors, making it insensitive to light,
and is known as the blind spot.

3.2.3.2 The fovea

The fovea is positioned directly along the eye’s visual axis, where the retina is extremely thin
because it contains only cones, with other visual cells pushed to the periphery. This region
has about 2,500 cones, each connected to a single associative cell. Consequently, it provides
the highest visual acuity. As you move away from the fovea, visual acuity decreases rapidly,
making it necessary to align the eye with the object of interest for clear vision. This alignment
is controlled by the extra-ocular muscles attached to the eye’s capsule. The visual field extends
up to 95 degrees on the temporal side from the point of fixation, but only 60 degrees on the
nasal side, 50 degrees upward, and 80 degrees downward.

3.2.3.3 Photoreceptors

Photoreceptors in the human retina, namely rods and cones, have specialized roles that are
fundamental to our visual perception.
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Figure 3.4: Distribution of rods and cones depending on the eccentricity from the fovea of the
human eye[86]

- Rods : with a numerous number estimates ranging from 75 to 150 million, are pre-
dominantly located in the peripheral regions of the retina, away from the fovea. These
photoreceptors are relatively large, averaging 2.5 to 3 microns in diameter, and are spaced
approximately 10 to 20 microns apart. This distribution allows rods to cover a broad area,
but results in lower spatial resolution compared to cones. Despite their lower resolution,
rods are highly sensitive to low light conditions, making them essential for scotopic vision,
which is crucial for night-time or low-light environments. Rods possess high sensitivity
to light but lack the ability to distinguish colors, as they are not responsive to different
wavelengths of light.

- Cones : Cones in contrast to Rods, are fewer in number, with approximately 6 to 7
million distributed mainly within the fovea, the central region of the retina. The cones
are smaller, with diameters ranging from 1 to 2 microns, and are packed more densely,
with distances between them ranging from 2.5 to 10 microns. This dense arrangement
in the fovea is critical for high spatial resolution and is vital for photopic vision, which
occurs under bright lighting conditions. The cones are responsible for color vision and
visual acuity during the day. There are three types of cones, each sensitive to different
wavelengths of light: long-wavelength (L) cones, which respond to red light; medium-
wavelength (M) cones, which respond to green light; and short-wavelength (S) cones,
which are sensitive to blue light. This trichromatic system allows for the perception of a
wide range of colors and fine details in well-lit environments.

The spatial distribution and sensitivity of rods and cones also play a role in the adaptive
mechanisms of the visual system. Photoreceptors adjust their dynamic range to match the
ambient luminance through a process known as adaptive compression. This mechanism allows
the visual system to handle a wide range of light intensities, although individual photoreceptors
can only respond effectively over a limited dynamic range of about one to two log units. This
adaptive response is illustrated by the varying sensitivity of photoreceptors to different levels
of luminance, as shown in the figure 3.5.
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Figure 3.5: The adaptation of photoreceptor sensitivity to varying light levels[87]

3.2.4 The Optical Nerves and the Brain

3.2.4.1 Visual and Optical Nerves and Chiasm

The information gathered by the retina is transmitted via the optic nerve, which relays visual
data to the brain. This process involves several key structures. First, the optic nerve carries
the visual signals from each eye to the optic chiasm, where the nerve fibers from the nasal
halves of each retina cross to the opposite side of the brain. This crossing ensures that visual
information from the right visual field is processed by the left hemisphere and vice versa.

From the optic chiasm, the visual signals travel through the optic tract to the lateral geniculate
nucleus (LGN) of the thalamus. The LGN acts as a relay station, where the signals are further
processed and refined. There are six layers within the LGN, each receiving input from different
types of retinal ganglion cells and contributing to various aspects of visual processing, such as
color and motion.

After processing in the LGN, visual information is sent to the primary visual cortex (V1) in the
occipital lobe of the brain. Here, more complex processing occurs, including the integration of
spatial and temporal aspects of the visual scene. The visual cortex is responsible for higher-
level processing, including depth perception, object recognition, and visual consciousness. This
intricate pathway ensures that visual information is accurately interpreted, allowing coherent
and meaningful visual experiences.
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Figure 3.6: Schematic view of the visual pathway[88]

3.2.4.2 The Visual Cortex

The visual cortex is the final step in the visual perception process before the brain processes
information. It is responsible for thought, language, and will. It analyzes sensations and
triggers voluntary movements. This layer of neurons is responsible for all the higher functions
of the organism.

The visual cortex is divided into two parts:

- The left hemisphere gathers, processes information, and controls movements on the right
side of the body.

- The right hemisphere performs the same function, but for the left side of the body.

Figure 3.7: Right and Left Hemispheres Effect

48



Human Visual System’s Terminology and Methods

Within those two hemispheres, each can be divided into four sections or lobes :

1. The frontal lobe thinks and gives orders to the muscles.

2. The parietal lobe is located at the top of the head and interprets sensations received by
the skin.

3. The occipital lobe is at the base of the skull and analyzes images. It contains no less than
thirty visual areas.

4. The temporal lobe decodes sounds and plays a role in memory.

These four sections are mirrored in each hemisphere, although some areas are specific to one
hemisphere. For example, melody recognition and understanding emotions in the voice are
localized in the right hemisphere, whereas centers for calculation, sentence comprehension,
symbols, and language production are in the left hemisphere.

The link between these two hemispheres is the corpus callosum. Although each part of the
brain focuses on a specific task, they collaborate to produce the necessary behaviors.

The visual cortex is made up of about thirty different regions or cortical areas. All of these
areas work together to create a single, clear image. However, we can only define and understand
the role of some of them.

The first, V1, is the primary visual area. It is the most important part because without it, we
would be blind. Information coming from the retina through the optic nerve arrives here. In
fact, each part of the retina has a "geographically" accurate reflection on the primary visual
cortex. This area analyzes information on form, color, and movement and then distributes it
to other areas of the visual cortex (such as V2, V3, V4, V5).

Area V2 receives a lot of information and further refines the data passed on by V1. Processes
contours such as geometric shapes, orientations (horizontal and vertical), textures (smooth,
rough, etc.), and colors.

At the same time, other areas receive information from V1, process it in parallel, but each
focuses on its specialty :

• Area V3 analyzes moving shapes and evaluates distances.

• Area V4 handles color processing and stationary shapes.

• Finally, area V5 is responsible for the perception of movements such as direction and
speed.

Most of the 30 visual areas identified are located in the occipital region (the back of the brain).
However, some are found in the parietal regions (sides and top of the skull), which are thought
to be involved in object localization. The temporal visual areas, on the other hand, are believed
to be dedicated to object identification. Despite this, it remains difficult to understand how all
these regions coordinate their functions to construct clear images.

Figure 3.8 shows how visual information is interpreted by the visual cortex regions from V1 to
V5 and how they are finally devided into the "what" and "where" pathways of the brain.
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Figure 3.8: Schematic representation of the primate visual pathways

3.3 Image Processing

Before we delve into the modelisation of the human visual system for the feature extraction
methods we will be using, we will introduce some basic image processing techniques for the
preprocessing, segmentation, and normalization of the Iris

3.3.1 Preprocessing and Segmentation

3.3.1.1 Thresholding

Thresholding is a fundamental image processing technique used to segment an image into
different regions by separating objects from the background based on intensity values. The
primary goal is to create a binary image where specific pixels are designated as foreground
(object) and others as background, thereby simplifying the analysis of the image.

The core idea of thresholding involves selecting a threshold value T . Pixels in the image are
classified as follows:

- If the intensity of a pixel I(x, y) is greater than the threshold T , it is set to one (white),
indicating the presence of an object.
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- If the intensity I(x, y) is less than or equal to T , it is set to zero (black), indicating the
background.

The mathematical representation for thresholding can be expressed as:

Ithresh(x, y) =
1 if I(x, y) > T

0 if I(x, y) ≤ T
(3.1)

where:

- Ithresh(x, y) is the output binary image,

- I(x, y) is the input intensity value of the pixel at coordinates (x, y),

- T is the selected threshold value.

Thresholding can be categorized into two main types based on how the threshold is determined:

- Static Thresholding: In static thresholding, a global threshold T is chosen, which
applies uniformly across the entire image. This threshold is determined before processing
and remains fixed during segmentation. It works well when the intensity distributions of
the foreground and background are distinctly separated.

- Adaptive Thresholding: In contrast, adaptive thresholding calculates the threshold
dynamically based on local characteristics of the image. The threshold value varies for
different regions, allowing for better segmentation in images with varying illumination or
noise.
In this approach, the threshold T for a pixel (x, y) can be determined using local statistics
of pixel intensities within a neighborhood N(x, y). A common method to determine the
adaptive threshold is:

T (x, y) = mean(I(N(x, y))) − C (3.2)

where:

◦ C is a constant value used to fine-tune the thresholding process,
◦ mean(I(N(x, y))) calculates the mean intensity of the neighborhood surrounding the

pixel (x, y).

3.3.1.2 Histogram Equalization

The histogram of an image is the distribution of the intensity levels present in the image.
When the distribution is not uniform, resulting in a bad image brightness, we need to transform
the histogram in order to improve the image quality.

So Histogram Equalization is a technique in image processing used to improve the contrast of
an image by effectively spreading out the most frequent intensity values. This process helps to
enhance the visibility of features in the image.
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The main goal of histogram equalization is to transform the intensity distribution of an image
so that it approximates a uniform distribution. This leads to a more balanced representation
of intensity values.

1. The histogram of an image represents the frequency of occurrence of each intensity value.
For an image I with intensity values in the range [0,L - 1] (where L is the number of
intensity levels, for exemple 256 for an 8 bit grayscale image, and L-1 represents then the
maximum intensity level), the histogram can be computed as :

h(rk) =
M∑

i=1

N∑
j=1

δ(I(i, j) − rk) (3.3)

where:

- h(rk) is the histogram value for intensity rk,
- M and N are the dimensions of the image,
- δ is the Dirac delta function, which counts occurrences of intensity rk.

2. the Probability Density Function (PDF) p(rk) is computed by normalizing the histogram
:

p(rk) = h(rk)
MN

(3.4)

3. the Cumulative Distribution Function (CDF) c(rk) is obtained by summing the PDF
values :

c(rk) =
k∑

j=0
p(rj) (3.5)

This gives the cumulative probability of intensity values up to rk.

4. The intensity values are then mapped to new values using the CDF, typically scaled to
the range of intensity levels. The new mapped intensity value sk for each intensity rk is
calculated as:

sk = round ((L− 1) · c(rk)) (3.6)
This step transforms the intensity values based on the cumulative distribution.

5. The final step is to construct the equalized image Ieq by replacing each pixel intensity
I(i, j) in the original image with its corresponding new intensity value sk:

Ieq(i, j) = skI(i, j) (3.7)

where sk is the mapped value from the previous step.

3.3.1.3 Canny Filter

The Canny filter is a multi-stage edge detection algorithm that is considered one of the most
effective for detecting edges in images. the Canny filter is an analytic edge detection operator
that aims to have a well-localized edge point and a single edge point response. It aims to
identify a wide range of edges while reducing noise. The Canny edge detector follows several
steps :
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1. Noise Reduction with Gaussien Filter : The image is smoothed using a Gaussian
filter to reduce noise :

Gaussian Filter is a 2D convolution operator used to remove Gaussian noise and is more
effective at smoothing images. The degree of smoothing is determined by the standard
deviation of the Gaussian distribution.
The 2D Gaussian Distribution formula :

F (x, y) = 1
2πσ2 exp

(
−x2 + y2

2σ2

)
(3.8)

Where :
σ : the standard deviation of the distribution.
(x,y) : the coordinates of the pixel in question.

2. Gradient Calculation : The Sobel filter is applied to the smoothed image to compute
the gradients Gx and Gy and their magnitude G :

The Sobel filter is an edge detection operator used in image processing to find the
gradient of the image intensity at each pixel. It helps identify edges by emphasizing areas
of high spatial frequency, making it particularly effective for detecting horizontal and
vertical edges edges in images.
The Sobel filter consists of two 3x3 convolution kernels, one for detecting horizontal edges
and the other for vertical edges :
Horizontal Sobel kernel Gx:

Gx =


−1 0 1
−2 0 2
−1 0 1

 (3.9)

Vertical Sobel kernel Gy:

Gy =


1 2 1
0 0 0

−1 −2 −1

 (3.10)

The gradients in the x and y directions can be calculated as follows:

Gx(x, y) =
1∑

i=−1

1∑
j=−1

I(x+ i, y + j) ·Gx(i, j) (3.11)

Gy(x, y) =
1∑

i=−1

1∑
j=−1

I(x+ i, y + j) ·Gy(i, j) (3.12)

Where:
- Gx(x, y) and Gy(x, y): Represent the gradient magnitudes in the horizontal and vertical
directions, respectively.
- I(x, y): Denotes the original intensity value of the pixel at coordinates (x, y).
To calculate the overall gradient magnitude, the Sobel filter combines these two gradients:

G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (3.13)
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The direction of the gradient can also be determined:

θ(x, y) = tan−1
(
Gy(x, y)
Gx(x, y)

)
(3.14)

3. Non-Maximum Suppression : This step thin the edges by preserving only the local
maxima in the gradient direction, thus reducing the thickness of the detected edges.
The previously calculated angle θ in 3.14 is typically quantized into four main directions
(0°, 45°, 90°, and 135°) to simplify comparisons. For each pixel (x,y), Determine the
neighboring pixels in the direction of θ, If G(x,y) is not greater than the gradients of its
neighboring pixels, it is set to zero (suppressed).

4. Double Thresholding : Two threshold values, τlow and τhigh, are used to classify pixels
as strong, weak, or non-edges. Pixels with gradient magnitudes above τhigh are considered
strong edges, while those between τlow and τhigh are weak edges.
The classification can be represented mathematically as:

Edge Type =


Strong if G(x, y) > τhigh

Weak if τlow < G(x, y) ≤ τhigh

Non-edge if G(x, y) ≤ τlow

(3.15)

Figure 3.9: Double Thresholding

5. Edge Tracking by Hysteresis : In this final step, weak edges are analyzed to determine
if they are connected to strong edges. This process ensures that true edges are retained
while reducing noise.
Connecting Weak Edges : For each weak edge pixel, if it is connected to any strong edge
pixel (i.e., it is adjacent to a strong edge pixel), it is retained as an edge; otherwise, it is
discarded.
Connection Check : This can be visualized using an 8-connected neighborhood. If a weak
edge pixel (x, y) has a strong edge pixel in its 8-connected neighborhood, it is retained:

Retain(x, y) =
True if ∃(s, t) ∈ N8(x, y) such that G(s, t) > T2

False otherwise
(3.16)

Where N8(x, y) represents the 8-connected neighborhood of pixel (x, y).
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Figure 3.10: Edge Tracking by Hysteresis

Exemple of an application of the canny filter :

Figure 3.11: Edge Extraction Using Canny Filter

3.3.1.4 Laplacien of Gaussien (LoG)

The Laplacian of Gaussian (LoG) is a combined image processing technique used primarily for
edge detection. It blends two operations: Gaussian smoothing to reduce noise, followed by the
Laplacian operator to detect areas of rapid intensity change (edges). LoG is particularly useful
for detecting edges that have been smoothed out to minimize noise.

The Laplacien of Gaussien consits of :

1. Gaussian Smoothing : The first step involves applying a Gaussian filter to the image
to smooth it and reduce noise. The Gaussian Filter is seen in equation 3.8.

2. cian Operator : After smoothing, the Laplacian operator is applied to detect the edges.
The Laplacian is a second-order derivative operator that highlights regions of rapid in-
tensity change, commonly used for edge detection. It is defined as :

∇2I(x, y) = ∂2I

∂x2 + ∂2I

∂y2 (3.17)

Where:
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- I(x, y) is the image intensity at pixel (x, y).
- ∇2 represents the Laplacian operator.

The Laplacian responds to regions where the intensity gradient is changing rapidly, which
often corresponds to edges in the image.

3. Laplacian of Gaussian (LoG) : The Laplacian of Gaussian applies both operations in
one step. Instead of applying the Gaussian smoothing and then the Laplacian separately,
LoG combines them into a single filter:

LoG(x, y) = ∇2
[

1
2πσ2 exp

(
−x2 + y2

2σ2

)]
(3.18)

This equation represents the convolution of the image with the Laplacian of the Gaussian
function. The result is an edge-enhanced version of the image, where edges appear as
zero-crossings.

4. Zero-Crossings and Edge Detection : In the LoG method, edges are detected by
finding the zero-crossings of the filtered image. Zero-crossings occur where the second
derivative changes sign (from positive to negative or vice versa). These crossings indi-
cate the presence of an edge, making it possible to detect object boundaries and other
prominent features in the image.

3.3.1.5 Hough Transform

The Hough Transform which is a segmentation method is a technique that can be used to
isolate features of a particular shape within an image. It requires that the desired features be
specified in some parametric form.

The classical Hough Transform is most commonly used for the detection of regular curves such
as lines, circles, ellipses, etc. Despite its domain restrictions, the classical Hough Transform
retains many applications, as most manufactured parts contain feature boundaries that can be
described by regular curves.

The main advantage of the Hough Transform technique is that it is tolerant of gaps in feature
boundary descriptions and is relatively unaffected by image noise [89].

Steps of the Hough Transform

1. Edge Detection: Before applying the Hough Transform, the image is typically processed
using edge detection techniques (e.g., Canny edge detector) to identify points that likely
belong to the desired shapes.

2. Parameter Space Representation: Each edge point (x, y) is transformed into the
Hough space by calculating all possible values of (ρ, θ) that could correspond to lines
passing through that point. This is done by iterating through a range of θ values:

ρ = x cos(θ) + y sin(θ)

For each (x, y), this generates a curve in the (ρ, θ) space.
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3. Accumulator Array: An accumulator array (or Hough space) is used to store the count
of intersections. Each cell in this array corresponds to a specific (ρ, θ) pair. As edge points
are processed, votes are cast in the accumulator array for each possible line defined by
those points.

4. Peak Detection: After processing all edge points, local maxima in the accumulator
array are identified. Each peak corresponds to a parameter pair (ρ, θ) that indicates a
detected line in the image. The higher the count in a cell, the more likely it represents a
true line.

5. Line Reconstruction: Finally, the detected lines can be reconstructed in the original
image using the (ρ, θ) values. The Cartesian coordinates of the lines can be derived back
from the polar coordinates:

y = ρ− x cos(θ)
sin(θ) (3.19)

6. Extensions to Other Shapes
While the Hough Transform is often associated with line detection, it can also be extended
to detect other shapes, such as:

- Circles: The equation for a circle in polar coordinates can be expressed as:

(x− a)2 + (y − b)2 = r2 (3.20)

This can be transformed into a three-dimensional accumulator space where each
point (x, y) votes for all possible circles defined by center (a, b) and radius r.

- Ellipses and Other Parametric Shapes: The Hough Transform can be adapted
to detect more complex shapes by extending the parameter space accordingly.

3.3.1.6 Daugman’s Rubber Sheet Model

The primary goal of Daugman’s rubber sheet model is to normalize the iris image so that
variations in size and position due to changes in pupil size, rotation, and perspective can be
accounted for. By transforming the iris into a rectangle, it simplifies the process of matching
and analyzing the iris patterns.

1. Iris Localization: First, identify the circular boundaries of the iris and pupil. Let:

- Rp = Radius of the pupil
- Ri = Radius of the iris

The center of the pupil can be denoted as

C = (xc, yc).

2. Polar Coordinate Transformation: For each point on the iris, we can convert Carte-
sian coordinates to polar coordinates:
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r =
√

(x− xc)2 + (y − yc)2 (distance from center)

θ = tan−1
(
y − yc

x− xc

)
(angle with respect to the center)

Where (x, y) are the coordinates of a point on the iris.

3. Mapping to a Rectangular Domain: The goal is to normalize the iris pattern into a
rectangular shape, where:

- The horizontal axis represents the angular coordinate θ.
- The vertical axis represents the radial coordinate r.

The transformation can be expressed as:

- Normalized Width (for θ):

Θ ∈ [0, 2π] (mapped to a fixed width)

- Normalized Height (for r):

R ∈ [Rp, Ri] (mapped to a fixed height)

4. Rectangular Mapping: The points on the iris are transformed to rectangular coordi-
nates (u, v):

u = θ

2π ·W (where W is the fixed width of the rectangle)

v = r −Rp

Ri −Rp

·H (where H is the fixed height of the rectangle)

Here:

- u represents the normalized width corresponding to the angle θ.
- v represents the normalized height corresponding to the radius r.

5. Final Normalization: After transforming the iris points into rectangular coordinates,
the resulting normalized iris pattern Inorm(u, v) can be constructed:

Inorm(u, v) = I(x, y) for each point mapped from circular to rectangular coordinates

Where I(x, y) is the original intensity value of the pixel at (x, y) in the iris image.
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3.3.1.7 Enhancement Using Filtering

Filtering involves either allowing or eliminating specific frequency components within a signal,
while spatial filtering is a technique in which a specific operation is applied to a surrounding
area of pixels to produce a new pixel, positioned in the center of that area, with its value derived
from the filtering process. As the filter, also referred to as a mask or kernel, moves across each
pixel in the image, it results in the creation of a new image, known as the filtered image.

Median Filter :
The Median filter is a type of nonlinear filter often used in image processing to remove noise
while preserving edges. It operates by replacing the value of a pixel with the median value of
the intensity levels from its neighboring pixels. This process is particularly effective in reducing
both salt-and-pepper noise and impulse noise.

The formula for the median filter can be expressed as follows:

f(x, y) = median(I(s, t)) where (s, t) ∈ Sxy (3.21)

Where :

- f(x, y): Represents the intensity of the new pixel at the coordinates (x, y).

- Sxy: The set of neighboring pixels surrounding the center pixel (x, y).

- (s, t): The coordinates of the pixels within the neighborhood Sxy.

- I(s, t): The intensity value of the pixel located at (s, t).

In contrast to other linear filters, such as the Gaussian filter, the Median filter significantly
reduces impulse noise while maintaining the overall sharpness of the image, making it a popular
choice in various applications.

Top and Bottom Hat Filters :

- The Top-Hat filter, also known as the white top-hat transform, is a morphological
operation used in image processing to enhance bright features within an image. This filter
effectively highlights small, bright regions that stand out against a darker background,
making it particularly useful for extracting small objects.
The formula for the Top-Hat filter can be expressed as follows:

ftop(x, y) = I(x, y) − γ(I)(x, y) (3.22)

Explanation:

◦ ftop(x, y): Represents the output intensity at the pixel coordinates (x, y) after ap-
plying the Top-Hat filter.

◦ I(x, y): Denotes the original intensity value of the pixel at coordinates (x, y).
◦ γ(I): Refers to the morphological opening of the image I using a specified structuring

element, defined as:

59



Human Visual System’s Terminology and Methods

γ(I) = (I ◦B) ⊕B (3.23)

where:

◦ ◦ represents morphological erosion, which removes pixels on object boundaries, de-
fined mathematically as:

(I ◦B)(x, y) = max{(x′, y′) | (x′, y′) ∈ B and I(x+ x′, y + y′) > 0} (3.24)

This operation effectively shrinks the bright regions in the image.

◦ ⊕ represents morphological dilation, which adds pixels to the boundaries of objects
in an image, defined mathematically as:

(I ⊕B)(x, y) = max{(x′, y′) | (x′, y′) ∈ B and I(x− x′, y − y′) > 0} (3.25)

This operation expands the bright regions in the image.
The Top-Hat filter effectively isolates bright spots in an image, making it particularly
useful in applications such as medical imaging and industrial inspection.

- The Bottom-Hat filter, also known as the black bottom-hat transform, is another
morphological operation designed to enhance dark features in an image. This filter iden-
tifies small, dark regions that are darker than their surroundings, making it useful for
extracting small objects against a lighter background.
The formula for the Bottom-Hat filter is given by:

fbottom(x, y) = γ(I)(x, y) − I(x, y) (3.26)

Explanation:

◦ fbottom(x, y): Represents the output intensity at the pixel coordinates (x, y) after
applying the Bottom-Hat filter.

◦ I(x, y): Denotes the original intensity value of the pixel at coordinates (x, y).
◦ γ(I): Refers to the morphological closing of the image I using a specified structuring

element, defined as:

γ(I) = (I ·B) ⊖B (3.27)

where:

◦ · represents morphological dilation, defined previously, which adds pixels to object
boundaries, effectively enlarging dark regions.

◦ ⊖ represents morphological erosion, defined previously, which removes pixels from
the boundaries of objects in the image.

The Bottom-Hat filter effectively highlights dark regions against a lighter background,
making it useful for tasks such as shadow detection and text extraction in images.
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The Figure 3.12 is a 2D and 3D representations of Top Hat filter:

Figure 3.12: Top Hat Filter

3.3.2 Features Extraction

3.3.2.1 Gabor Filter

A Gabor filter is a linear filter used in image processing for edge detection, texture classifi-
cation and features extraction.

It is a band-pass filter, i.e. it passes frequencies in a certain band and attenuates the other
frequencies outside such band. A Gabor filter is essentially sinusoidal functions modulated by
a Gaussian envelope. The mathematical representation of a 2D Gabor filter can be expressed
by formula 3.28 in spatial domain :

g(x, y;λ, θ, ψ, σ, γ) = exp
(

−x′2 + γ2y′2

2σ2

)
exp

[
i

(
2πx

′

λ
+ ψ

)]
(3.28)

With :
x′ = x cos θ + y sin θ (3.29)
y′ = y cos θ − x sin θ (3.30)

Where:

(x,y) : the coordinates of the pixel,

λ : the wavelength of the plane wave,

θ : he orientation of the normal to the parallel stripes of the Gabor function,

σ : the standard deviation of the Gaussian component,

γ : the aspect ratio that defines the ellipticity of the function support,

ψ : the phase of the plane wave.

Multiple filters can be generated by adjusting the parameters λ, θ, σ, ψ and γ. A collection
of Gabor filters, known as a Gabor filter bank, consists of various filters that utilize different
parameter settings. By altering these Gabor parameters, one can extract a range of low-level
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features from the original image through the convolution process, thereby establishing the
Gabor filter as a highly effective instrument for feature extraction.

Implementation of Gabor Filters

Convolution: To apply a Gabor filter to an image, the filter is convolved with the image.
This process highlights features that match the characteristics of the filter. The convolution
operation can be represented mathematically as:

Ifiltered(x, y) = (I ∗ g)(x, y) =
∫ ∫

I(u, v)g(x− u, y − v) du dv (3.31)

Where I is the input image, and g is the Gabor filter.

Magnitude and Phase: Since Gabor filters produce complex-valued outputs, the magnitude
and phase can be computed for further analysis:

Magnitude:

|g(x, y)| =
√

Re(g(x, y))2 + Im(g(x, y))2 (3.32)

Phase:

ϕ(x, y) = tan−1
(

Im(g(x, y))
Re(g(x, y))

)
(3.33)

3.3.2.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a mathematical tool used to analyze and rep-
resent signals or images at multiple levels of resolution. Applied in signal processing, image
compression, denoising, and feature extraction. Unlike the Fourier transform, which breaks
down a signal into sinusoids of different frequencies, the wavelet transform uses small, local-
ized waveforms known as wavelets that can capture both frequency and location information
simultaneously, making it ideal for non-stationary signals (e.g., images or time-varying signals).

Wavelets: A wavelet is a small wave-like function that is localized in both time (or space) and
frequency. It has both a scaling property and a shifting property, which allows it to capture
details at different resolutions.

The mother wavelet is the base wavelet from which all other wavelets are derived through
scaling and translation. Mathematically, a wavelet can be represented as:

ψa,b(t) = 1√
a
ψ

(
t− b

a

)
(3.34)

Where:
- ψ is the mother wavelet,
- a is the scaling factor (controls the width of the wavelet),
- b is the translation factor (controls the position of the wavelet),
- t is time or space.
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Multi-Resolution Analysis: DWT performs multi-resolution analysis by decomposing a
signal (or image) into different levels of detail. This is done using two functions:

- Scaling Function (Low-Pass Filter): Extracts the coarse, low-frequency components (approx-
imation).
- Wavelet Function (High-Pass Filter): Extracts the fine, high-frequency details (details).

This decomposition process involves convolving the signal with the scaling and wavelet func-
tions, followed by down-sampling.

For a 1D signal f(t), the DWT at each level involves two outputs:
- Approximation Coefficients (A): Captures the low-frequency components (smooth part of the
signal).
- Detail Coefficients (D): Captures the high-frequency components (edges, sharp transitions).

For a 2D image, the DWT results in four sub-bands:
- LL: Approximation (low-pass in both directions).
- LH: Horizontal details (low-pass in the vertical direction, high-pass in the horizontal direction).
- HL: Vertical details (high-pass in the vertical direction, low-pass in the horizontal direction).
- HH: Diagonal details (high-pass in both directions).

DWT Decomposition: The DWT decomposition of an image I(x, y) can be written as a
series of convolutions:

Ai+1 =
∑
x,y

I(x, y) · ϕi+1(x, y) (3.35)

Di+1 =
∑
x,y

I(x, y) · ψi+1(x, y) (3.36)

Where:
- Ai+1 represents the approximation coefficients at level i+ 1,
- Di+1 represents the detail coefficients at level i+ 1,
- ϕi+1 is the scaling function at level i+ 1,
- ψi+1 is the wavelet function at level i+ 1,
- x, y are pixel coordinates.

At each step, the decomposition provides a finer level of detail.

Reconstruction: The original signal or image can be reconstructed by reversing the decom-
position process using inverse DWT (IDWT), where approximation and detail coefficients are
combined to restore the original information.

The Figure 3.13 shows some common wavelets :
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Figure 3.13: Examples of different types of wavelets

In order to know how efficient our HVS based models (DWT and Gabor Filters) are, we decided
to use 2 non HVS based methods : one consisting of only Frequency domain (based on cosine
functions) which is the Discrete Cosine transform, while the other one operates purely in the
spatial domain by analyzing gradients (Histogram of Gradients).

3.3.2.3 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a mathematical technique widely used in signal and
image processing for transforming data from the spatial domain to the frequency domain. DCT
is particularly well-known for its application in image and video compression, such as JPEG
and MPEG standards. Like other transforms, the DCT helps to separate the image into parts
of varying importance by concentrating energy into the lower frequencies, making it easier to
discard higher-frequency components without significant loss of image quality. Discrete Cosine
Transform include the following steps ;

1. Transforming Data : The DCT converts a signal (such as an image) from its spatial
representation (pixel values) into a frequency representation (coefficients). It operates
similarly to the Fourier Transform, but only uses cosine functions. The DCT expresses
the input data as a sum of cosine functions oscillating at different frequencies.
The most common form is the 2D DCT for images, which operates on image blocks (such
as 8 × 8 blocks), converting pixel values into frequency coefficients.
The 2D DCT for an N ×N image or block is defined as:

C(u, v) = 1
4α(u)α(v)

N−1∑
x=0

N−1∑
y=0

I(x, y) cos
(

(2x+ 1)uπ
2N

)
cos

(
(2y + 1)vπ

2N

)
(3.37)

Where:

- I(x, y) represents the intensity of the pixel at coordinates (x, y).
- C(u, v) is the DCT coefficient at frequency position (u, v).
- N is the block size.
- α(u) and α(v) are scaling factors defined as:
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α(u) =


1√
N

if u = 0
√

2√
N

if u > 0

In an image, low-frequency components correspond to slow variations in intensity, while high-
frequency components represent rapid changes (such as edges and fine details). The DCT has
the property of concentrating most of the signal’s energy into the low-frequency components
(top-left corner of the DCT matrix). This makes it ideal for compression, as the less important
high-frequency components can be discarded with minimal visual impact.

3.3.2.4 Histogram of Gradients (HoG)

The Histogram of Oriented Gradients (HOG) is a feature extraction technique that focuses
on capturing the shape and structure of objects by analyzing the gradient orientation and
magnitude within localized regions of an image.

The first step in the HOG algorithm is to compute the gradients of the image. The gradient
describes the rate of change in pixel intensity in a particular direction. These gradients highlight
edges, contours, and corners in the image, which are essential for describing the object’s shape.
For an image I, the gradient along the x-axis and y-axis can be computed using simple filters:

Gx(x, y) = I(x+ 1, y) − I(x− 1, y)
Gy(x, y) = I(x, y + 1) − I(x, y − 1)

These gradients give the magnitude and orientation at each pixel.

After computing the gradients, the next step is to create a histogram of gradient orientations
within small spatial regions, known as cells. Each cell typically contains a group of pixels
(e.g., 8x8 pixels). For each pixel in the cell, the gradient’s orientation is calculated (usually in
degrees between 0 and 180), and its magnitude is used as the weight for that orientation in
the histogram. The histogram bins represent different angles (e.g., 0°, 20°, 40°, etc.), and each
bin accumulates the gradient magnitudes of pixels with orientations that fall within that bin’s
range.

To make the feature extraction robust to changes in illumination and contrast, the histogram
values are normalized across overlapping regions of the image, called blocks. A block consists of
several cells (e.g., 2x2 cells), and the histograms from these cells are normalized together. This
step ensures that the HOG features are invariant to changes in lighting. The normalization can
be done using techniques like L2-norm or L1-norm:

v′ = v

∥v∥2
2 + ϵ2

where v is the unnormalized vector of histogram values, and ϵ is a small constant to avoid
division by zero.

The normalized histograms from all the blocks are then concatenated to form a feature vector.
This vector serves as the HOG descriptor, which captures the shape and structure of the object
in the image.
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3.3.3 Features Selection

3.3.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used statistical technique for dimensionality
reduction, feature extraction, and data visualization. It transforms high-dimensional data into a
lower-dimensional form by identifying the directions (called principal components) that capture
the most variance in the data. PCA is especially useful when dealing with datasets with many
variables, as it helps reduce the complexity while preserving the essential structure of the data.

How PCA Works

1. Data Centering : The input data is first centered by subtracting the mean of each feature
from the corresponding values. This ensures that the data has a mean of zero along each
dimension, which is necessary for PCA to identify the direction of maximum variance.

Xcentered = X − X̄ (3.38)

Where:

- X is the original data matrix.

- X̄ is the mean of the data.

2. Covariance Matrix Calculation: PCA computes the covariance matrix of the centered
data, which quantifies how much the features vary together. The covariance matrix is defined
as:

C = 1
n− 1X

T
centeredXcentered (3.39)

Where:

- C is the covariance matrix.

- n is the number of data samples.

3. Eigenvalue and Eigenvector Decomposition : PCA performs eigenvalue decomposi-
tion on the covariance matrix. The eigenvectors represent the principal components, and the
corresponding eigenvalues indicate the amount of variance explained by each component. The
principal components are ordered by the magnitude of the eigenvalues, with the first component
capturing the largest variance.

Cvi = λivi (3.40)
Where:

- vi is the i-th eigenvector (principal component).

- λi is the i-th eigenvalue (variance explained by that component).
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4. Projection onto Principal Components : Once the principal components are identi-
fied, the data is projected onto these new axes, transforming the original data into a lower-
dimensional space. The transformed data is given by:

Z = XcenteredVk (3.41)

Where:

- Z is the transformed data in the reduced dimensional space.

- Vk is a matrix of the top k eigenvectors (principal components).

Key Features of PCA

- Dimensionality Reduction: PCA reduces the number of features while retaining the
most important information, making it particularly useful in high-dimensional datasets.

- Variance Maximization: PCA identifies directions where data varies the most, making
it effective in capturing the underlying structure of the data.

- Uncorrelated Features: The principal components are orthogonal, meaning they are
uncorrelated with each other, ensuring that each captures a unique aspect of the variance
in the data.

3.4 Modelisation of SVH

3.4.1 Luminance Perception

Understanding the process of visual perception is a key consideration when modeling the Human
Visual System (HVS). The perception of an image region generates three types of sensations:
hue, saturation, and brightness. Hue and saturation are linked to the chromaticity of the
observed area, while brightness reflects perceived luminance. Several processes contribute to
the perception of a wide luminance dynamic range, from 10−2 cd/m2 to 105 cd/m2. While
cones require a certain level of brightness, rods react even to very low luminance levels. This
sensitivity to very low luminance is also ensured by spatial integration occurring at the level of
ganglion cells.

Weber proposed one of the first quantitative models of luminance perception. Weber’s law is
modeled by the equation :

∆L
L

= Constant (3.42)

This law indicates that if a uniform background luminance L (referred to as the adaptation
luminance) overlaps a stimulus (a disc of luminance ∆L + L), the ratio ∆L

L
remains nearly

constant across a wide range of luminance.

Several studies confirmed these measurements, which determine detection thresholds based on
background luminance when it is sufficiently high. However, some slight inconsistencies in low
luminance were corrected by Moon and Spencer, resulting in the following expression :
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∆L
L

= C∞

L
(0.465 +

√
L)2 (3.43)

As luminance increases, the ratio ∆L
L

tends toward the constant value C, which depends on the
geometry and size of the stimulus. Weber’s law, as refined by Moon and Spencer, demonstrates
that the HVS undergoes a logarithmic-like transformation, as illustrated in Figure 3.14.

Figure 3.14: Moon and Spencer Law

3.4.2 Contrast

Contrast is the ratio between the local intensity of an image and its average intensity. There
are many definitions of contrast, adapted to more or less complex stimuli. One of the most
general Formulas of the contrast :

C = Lmax − Lmin

Lmax + Lmin
(3.44)

The local band-limited contrast involves decomposing the image into visual sub-bands and is
defined as the ratio between the local luminance of a given sub-band and the local average
luminance relative to this channel.

Ci(m,n) = Li(m,n)∑i−1
k=0 Lk(m,n)

(3.45)

where i represents the i-th radial channel, and ∑i−1
k=0 Lk(m,n) is the low-frequency signal relative

to the i-th band.

3.4.3 Contrast Sensitivity Function (CSF)

The Contrast Sensitivity Function (CSF) describes the ability of the Human Visual System
(HVS) to detect differences in luminance (contrast) between an object and its background
across a range of spatial frequencies. It is a critical concept in visual perception that quantifies
how sensitivity to contrast varies with spatial frequency (how fine or coarse a pattern is).
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Spatial frequency refers to the level of detail in a visual stimulus, usually measured in cycles
per degree (cpd), where a "cycle" is a pair of dark and light bars, and "per degree" refers to
the visual angle they subtend on the retina. The CSF essentially captures how well humans
perceive contrast at different levels of detail.

3.4.4 Masking

Signals with similar characteristics in the visual system are processed through the same path-
ways, interacting with each other and producing nonlinear effects, such as masking. Masking
occurs when a stimulus’s detection threshold is affected by the presence of a stronger signal
with similar features[84]. A common model for this effect adjusts the threshold contrast of the
stimulus based on the masking signal’s characteristics. The model incorporates a weighting
function, often modeled by a Gaussian distribution, which adjusts for the differences in fre-
quency and angular characteristics between the stimulus and the masking signal. The model
also accounts for changes in radial and angular bandwidth, which vary across different spatial
frequencies.

3.4.5 Perceptual Channel Decomposition and Multi-Channel SVH
Model

Spatial Vision Models (SVH models) describe how the Human Visual System (HVS) processes
spatial information, particularly how we perceive spatial frequencies, patterns, and contrasts.
Two primary models describe how the visual system processes information: Single-Channel and
Multi-Channel Models.

Multi-Channel Models suggest that the HVS contains multiple independent channels or filters,
each tuned to specific ranges of spatial frequencies. This model reflects a more biologically
accurate representation of how the brain processes visual information, The internal retina,
ganglion cells, the lateral geniculate body, and to some extent, the visual cortex are considered
in this visual model. With different channels sensitive to different spatial details (low, medium
and high frequencies) in an image. These channels work in parallel to interpret various spatial
patterns.

Perceptual Channel Decomposition is a method used to analyze and represent visual infor-
mation by breaking down an image into multiple components or channels based on how the
human visual system (HVS) processes visual stimuli. Perceptual Channel Decomposition is
derived from the works of Sénane and Le Callet[90]. This decomposition proposes a frequency
tiling into seventeen channels, as illustrated in 3.15.
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Figure 3.15: Frequency tiling of the Perceptual Channels Decomposition

Among the filters utilized in DCP, DOM filters and Fan filters are two prominent types. These
filters are designed to extract specific directional features, enabling a more refined analysis of
spatial patterns in images.

1. DOM Filters :
DoM filters are radial band-pass filters derived from a base filter known as the Mesa filter.
They are used to extract specific frequency components from images, particularly in the
context of human visual perception.
The Mesa filter is a circularly symmetric low-pass filter characterized by a Gaussian shape
in the frequency domain. Its formulation is given by:

M0(u, v) = f0 · e− (u2+v2)
2σ2 · Π2f0 (3.46)

Here, f0 represents the cutoff frequency, σ is the standard deviation of the Gaussian, and
Π2f0 is the rectangular function that confines the filter to a certain range in the frequency
domain.
DoM filters are constructed by taking the difference between two Mesa filters with different
cutoff frequencies. This results in a band-pass filter that allows specific frequency bands
to pass through while attenuating others.

2. FAN Filters : Fan filters are angular band-pass filters that allow for the analysis of
specific orientations in images. They are built by combining the outputs of multiple DoM
filters or Mesa filters with different orientations.

3.4.6 Discrete Wavelete Transform and Perceptual Channel Decom-
position

The wavelet transform shows similarities with the multi-channel organization of the human
visual system. Like perceptual channel decomposition, the wavelet transform decomposes the
image into several sub-bands. These sub-bands correspond to a limited frequency range and a
limited set of orientations. Moreover, the content of each sub-band corresponds to a specific
spatial location. However, there are differences between the DCP (decomposition in perceptual
channels) and the DWT (discrete wavelet transform) :

70



Human Visual System’s Terminology and Methods

- Separation and Dyadicity: The DWT is separable and dyadic, while the DCP is neither.

- Angular Selectivity: The DCP has angular selectivity of 45° or 30°, depending on fre-
quency ranges, whereas the DWT has a fixed angular selectivity of 45° with diagonal
sub-bands containing both 45° and -45° orientations, leading to potential interference
issues.

- Filter Shape and Overflow: DWT filters can cause overlaps between horizontal, vertical,
and diagonal sub-bands, affecting how contours are represented, especially in terms of
masking effects.

Figure 3.16: DCP and DWT Correspondance depending on DWT Decomposition Levels,
a. one level. b. two levels. c. three levels

To maximize the correspondence between the DCP and our decomposition based on the DWT,
the number of decomposition levels of the DWT is determined based on the maximum visible
spatial frequency fmax in the image (i.e., the observation conditions). The frequency fmax is
expressed in cycles per degree (cy/d°) by:

fmax = 2fs = 2(2 tan(0.5◦) · rH) (3.47)

where :
r represents the observation distance in terms of the image height, and H represents the height
of the image in pixels and fs The spatial sampling frequency of an image expressed in terms of
pixels per degree of visual field.

The number of decomposition levels is then determined by increasing it until the low frequency
of the DWT coincides with the low-frequency band (01.5 cy/d°) of the DCP, as illustrated in
figure :
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Figure 3.17: Approximation of DWT to DCP

3.5 Classification/Matching

The final step of iris recognition is classifying the features we obtained and then matching
them with the features we have in our database, for this final step we use two methods : Deep
Learning based methods which consists of CNNs and Machine Learning Based methods which
consists of SVM, KNN and Random Forests.

3.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep learning architecture designed for
processing structured grid data, such as images. Using Convolution layers scan over input data,
identifying patterns and features such as edges, textures, and shapes at different levels. CNNs
typically consist of layers like convolutional layers, pooling layers, and fully connected layers,
often paired with non-linear activation functions to model complex relationships in the data.

1. The 2D convolution layer, or conv2D, is a core component used extensively in convolu-
tional neural networks. In this layer, filters consist of multiple kernels, each one mapped
to a specific input channel of the layer. Each kernel operates independently to fulfill its
role in the convolution process.
The conv2D layer performs a 2D convolution over input data, often images or feature
maps, by processing as follows[91]:

- Filters : The layer applies several filters, each containing a set of kernels. The
number of filters directly corresponds to the number of output channels generated
by the layer.

- Convolution operation : Convolution is performed by sliding each kernel over the
input tensor, calculating an element-wise product between the kernel and a corre-
sponding region of the input. These products are summed at each location to form
a single output value.
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- Activation: A non-linear activation function is applied to the summed output, in-
troducing non-linearity to the network. A commonly used activation function is the
Rectified Linear Unit (ReLU), which is defined as :

ReLU(x) = max(0, x); ∀x ∈ R. (3.48)

- Output : After the convolution operation and activation function are applied, the
result is a new 3D tensor, or feature map, with dimensions influenced by the number
of filters and the spatial dimensions of the input. This feature map represents the
output of the conv2D layer, encoding learned features from the input image.

2. The pooling layer performs a down-sampling operation by reducing the spatial dimensions
of the input, focusing on width, height, and stride. This operation helps decrease the
overall number of parameters and computational load, while still retaining the key features
of the data. In practice, the input is divided into small, non-overlapping square regions,
separated by a defined stride to avoid excessive information loss. Although the number
of output feature maps stays the same as the input, the spatial resolution of each feature
map is reduced.
Pooling is typically carried out in one of two ways: max-pooling or average pooling.
Max-pooling selects the highest value within the defined region, whereas average pooling
computes the average of the values in that area. Max-pooling is more frequently used in
practice, as it generally provides better results than average pooling. [92].

Figure 3.18: Max and AVG Pooling

3. The flatten layer is typically used as a transition layer between convolutional layers and
the prediction block in deep learning models. It reshapes the input tensor into a one-
dimensional vector. It takes the multidimensional input, such as an image or a feature
map, and flattens it into a single continuous vector without changing the content.
The purpose of the flatten layer is to convert the spatial information present in the input
tensor into a format that can be passed to the neural network for further processing.

4. The Convolution operation as well as the Pooling or any other operation based on a
kernel, are influenced by parameters like Stride and Padding.
The stride determines the step size of the kernel while sliding over the input, affecting
the size of the output, in other words, stride is the number of pixels shifts over the input
matrix [92].
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The Padding which refers to the addition of extra elements (typically zeros) around
the edges of an input tensor or image, can be added to the input to preserve spatial
dimensions or avoid border effects.

5. Dropout is a regularization method employed during the training phase to address over-
fitting by randomly deactivating a specified number of neurons. This strategy guarantees
that no individual neuron excessively influences the learning process [92].

6. Adam Optimizer is an adaptive learning rate method, which means, it computes individ-
ual learning rates for different parameters. Its name is derived from adaptive moment
estimation.

7. In the classification problems that have a multi-class single label, the Sparse Categorical
Cross Entropy (SCCE) is generally used. It produces a category index of the most likely
matching category. It is defined by the next equation 3.49 :

SCCE = −
n∑

i=1
Ti.log(Si) (3.49)

Where Si are the Softmax probabilities and Ti the labels.

3.5.2 Machine Learning Methodes

3.5.2.1 Support Vector Machines

Support Vector Machines (SVMs) are a group of supervised learning algorithms used for tasks
such as classification, regression, and outlier detection. SVM works by finding the optimal
decision boundary, known as a hyperplane, that separates data points from different classes.

An overview of how SVM operates:

Classification: For classification problems, SVM seeks to partition data points into distinct
categories by identifying the optimal hyperplane. This hyperplane is selected in such a way
that it maximizes the margin, which refers to the distance between the hyperplane and the
closest data points from each class.

Mathematically, the decision boundary (hyperplane) in a 2D space can be expressed as:

w · x+ b = 0 (3.50)

where w is the weight vector (perpendicular to the hyperplane), x is the input vector, and b is
the bias term.

SVM aims to maximize the margin M between the support vectors and the hyperplane. This
margin is defined as:

M = 2
∥w∥

(3.51)

To maximize the margin, SVM solves the optimization problem:
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min 1
2∥w∥2 (3.52)

subject to the constraint that each data point is correctly classified (with a margin):

yi(w · xi + b) ≥ 1 for all i (3.53)

where yi ∈ {−1, 1} are the labels of the data points.

Support Vectors: The data points closest to the hyperplane are called support vectors.
These points are the most informative because they define the margin and the position of the
hyperplane. Only the support vectors affect the decision boundary, which makes SVM more
efficient since it doesn’t need to consider all data points.

Non-linear Separation: When dealing with data that is not linearly separable, SVM can
transform the input space into a higher-dimensional feature space. By doing so, it can iden-
tify non-linear decision boundaries through an implicit projection of the data into a higher-
dimensional space [92].

The figure 3.19 illustrates an example of an SVM :

Figure 3.19: SVM example

3.5.2.2 K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is a simple, yet effective, supervised learning algorithm used for
both classification and regression tasks. K-NN is based on the idea that data points with similar
features are likely to belong to the same class. Rather than making assumptions about the data,
K-NN directly compares new examples with stored instances to predict labels or values.

1. Training Phase:
One unique aspect of K-NN is that there is no explicit training phase like in other machine
learning algorithms. Instead, K-NN stores the entire training dataset, and predictions are
made at runtime by comparing new examples to the stored data.

2. Distance Metric:
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To classify or predict a new data point, K-NN computes the distance between the new
point and all points in the training set. Several distance metrics can be used, but the
most common one is Euclidean distance:

d(x, xi) =
n∑

j=1
(xj − xij)2

where x is the new data point, xi is a data point in the training set, and n is the number
of features.

3. Choosing K:
K is the number of nearest neighbors the algorithm will consider when making a pre-
diction. The value of K is a critical parameter in K-NN, as it directly influences the
outcome. For classification, the majority label among the K nearest neighbors is chosen
as the predicted class.

4. Classification: In a classification task, the K-NN algorithm works as follows:

a. For each new data point, calculate the distance to all points in the training dataset.
b. Sort these distances in ascending order and select the K closest neighbors.
c. Determine the most frequent class label among these neighbors. This is done by a

majority voting system, where the class with the highest frequency among the K
neighbors is assigned to the new point.

ŷ = mode {yi | xi ∈ K nearest neighbors}

5. Weighted K-NN:
In some cases, neighbors that are closer to the query point are considered more impor-
tant than distant ones. Weighted K-NN applies weights to the neighbors based on their
distance, giving more influence to closer neighbors when making predictions.

6. Handling Multi-Class Classification:
K-NN can handle multi-class classification tasks naturally. Instead of having just two
classes, it can assign a label from three or more classes by selecting the majority class
from the nearest neighbors.

The Figure 3.20 provides an explanatory illistration of the method :

Figure 3.20: k-Nearest Neibghors
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3.5.2.3 Random Forest Classifier

Random Forest is a widely used supervised learning algorithm that leverages decision trees
and is recognized for its versatility and ease of use. It is particularly effective for addressing
classification problems.

The construction of a Random Forest involves creating multiple decision trees, each trained on
a distinct subset of observations. When making predictions, the Random Forest combines the
predictions from each individual tree by averaging them [32].

The Figure 3.21 provides an explanatory illistration of the method :

Figure 3.21: Random Forest Classifier

Random Forest offers several advantages :

- It addresses the issue of overfitting by averaging predictions from multiple trees. As a result,
Random Forest achieves higher predictive accuracy compared to a single decision tree.

- Moreover, the Random Forest algorithm aids in identifying important features within a
dataset, providing valuable insights [32].

However one of the disadvantages like Training a Random Forest can be computationally in-
tensive and time-consuming, especially with a large number of trees and large datasets. This
can lead to longer training times compared to simpler models, and sometimes compared to
Convolutional Neural Networks.

3.5.3 Accuracy

Accuracy is a common metric used yo quantify the extent to which a model makes correct
predictions. The formula for calculating accuracy is provided below 3.54 [92]:

Accuracy = TP + TN

FP + FN + TP + TN
(3.54)
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Where :

TP, FP: True and False Positives predictions respectively,

TN, FN: True and False Negatives predictions respectively,

3.5.4 Epochs

An epoch represents a complete iteration through all training data during the training process
of a machine learning model [92].

3.6 Conclusion

In this chapter, we explored the Human Visual System (HVS) and how its structure inspires
advanced techniques for iris recognition. We began with the physiological analysis of the vi-
sual pathways, leading to multichannel models and Perceptual Channel Decomposition (PCD),
which inspired key feature extraction methods. Specifically, we adopted Discrete Wavelet Trans-
form (DWT) to replicate PCD by capturing both spatial and frequency details, and Gabor
filters, which mimic the brain’s oriented filters to detect patterns in visual input. In addition,
we discussed the importance of preprocessing steps such as image enhancement, reflection re-
moval, segmentation using the Circular Hough Transform, and normalization via Daugman’s
Rubber Sheet Model, all of which prepare the iris image for feature extraction. For classifica-
tion, we evaluated SVM, KNN, and Random Forests, identifying their potential in biometric
applications. Together, these HVS-based methods form the core framework for our approach,
integrating biologically inspired feature extraction and effective preprocessing with machine
learning techniques to deliver an optimized iris recognition system.
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Chapter 4

Proposed Approach and Results

4.1 Introduction

In this chapter, we aim to provide an in-depth and detailed presentation of our proposed
approach. We will systematically cover each component of the system, from the initial phase
of iris detection through to the final stage of classification and matching. Additionally, we will
thoroughly examine the results obtained, offering detailed explanations and valuable insights
throughout the discussion.

4.2 Material used

4.2.1 Programming Langauges and Libraires

4.2.1.1 Python

Python is a high-level, interpreted programming language known for its simplicity, readabil-
ity, and ease of use. Python supports multiple programming paradigms, including procedural,
object-oriented, and functional programming, making it versatile for various tasks. Some li-
braries used in our work :

- OpenCV : The huge open-source library for computer vision, machine learning, and
image processing also plays a vital role in real-time computer vision systems.

- Scikit Learn : Scikit Learn is a Python library developed for Machine Learning. It
includes various algorithms for Classification, Regression and Clustering.

- Tensorflow : TensorFlow is an open-source end-to-end platform for creating Deep Learn-
ing applications. It is a symbolic math library that uses data flow and differentiable
programming to perform various tasks focused on training and inference of deep neural
networks. It allows developers to create machine learning applications using various tools,
libraries, and community resources.

- Skimage : scikit-image (or skimage) is a Python library designed for image processing.
It provides a collection of algorithms and tools for tasks such as filtering, edge detec-
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tion, segmentation, feature extraction, and transformations. Built on top of libraries like
NumPy and SciPy.

- Pywt : pywt (PyWavelets) is a Python library for wavelet transformations, providing
a wide range of tools for discrete wavelet transforms (DWT), continuous wavelet trans-
forms (CWT), and related operations. It is commonly used in signal processing, image
compression, and feature extraction, particularly where multi-scale analysis is necessary.
pywt offers various wavelet families and supports multi-dimensional data.

4.2.1.2 C/C++

C is a general-purpose, procedural programming language that is well-known for its performance
and control over system resources, whime C++ builds upon C by adding object-oriented pro-
gramming (OOP) features and supporting high-level abstractions, making it suitable for both
system and application-level development.

4.2.2 Graphic Card Nvidia Geforce RTX 2060 Super

The NVIDIA GeForce RTX 2060 Super is a mid-range graphics card introduced in 2019 as part
of NVIDIA’s RTX 20 series. It offers significant performance for gaming, but it is also highly
useful in the field of deep learning, particularly for training models like CNNs, that is why it
was used for the classification part of our model.

4.2.3 Datasets

4.2.3.1 Datasets Used

To ensure comparability with results from the articles listed in the state of art chapter, we
decided to utilize the widely used iris datasets for evaluating our performances. The datasets
used are :

- CASIA-Iris V-4 that includes 8 sub datasets [93].

- IIT Delhi Iris Database.

Exploiting the IITD Database :

IITD Database contains iris photos from 224 classes (users). The bitmap (*.bmp) format is
used for all of the images. All of the subjects in the dataset are between the ages of 14 and 55,
with 176 men and 48 girls. The database contains 2240 photos with a resolution of 320 × 240
pixels. As a result, there are 224 classes in this dataset, each having ten sample iris photos,
and all of these images were taken indoors using the near-infrared (NIR) wavelength. Figure
4.1 shows 16-sample images from IITD Iris dataset.
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Figure 4.1: A Sample of IITD Database

We preprocessed all the images of each dataset and finally stored them with their respective
label (identifier of the person) to feed them to the classifier. The details about the preprocessing
phase of the dataset will be seen in the next section.

Some statistics about the used datasets as seen in table 4.1

Datasets Classes Images/Class Images/Dataset
IITD 224 10 2240

Casia V-4 1000 20 20000

Table 4.1: Datasets Statistics

4.2.3.2 Dataset Cleansing

After the iris detection process, certain images may still lack informative content and have the
potential to mislead our model during training. Therefore a manual data cleansing is crucial
to ensure the optimisation of our model.

4.2.3.3 Data Augmentation

After completing the cleansing process, it is important to ensure that our model is fed with a
sufficient number of images. To achieve this, we employ Data Augmentation techniques which
help us increase the number of images per class.
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4.3 Iris Detection

The preprocessing phase of iris recognition is a crucial step in ensuring accurate and reliable
biometric identification. This phase prepares the raw iris image for further processing, such
as feature extraction and matching, by enhancing its quality and isolating the relevant iris
region. Since iris images can be affected by noise, lighting variations, reflections, and occlusions,
preprocessing is designed to address these challenges.

4.3.1 PreProcessing

The preprocessing substage is the crucial part of the iris recognition system, due to reflections,
which pose a problem that can highly impact our recognition system, so we proposed a contrast
manipulation method to remove the informations added by reflections.

4.3.1.1 Threshold

We are applying binary thresholding with a threshold value of 225 to effectively isolate bright
regions in the image, specifically the reflections. By setting this high threshold, we ensure that
only the brightest pixels, which correspond to reflections, are highlighted while the rest of the
image is suppressed. We then use the resulting binary image as a mask, allowing us to isolate
and remove these reflections from the original iris image, ensuring that they don’t interfere
with subsequent processing steps like segmentation and feature extraction.

4.3.1.2 Histogram Equalization

The second step of our preprocessing consists of histogram equalization to adjust the brightness
of the isolated reflections in the image. This technique redistributes the pixel intensities across
the image, helping to balance the brightness levels and enhance any hidden textures within the
reflections. By applying this method, we ensure that the details within these bright regions are
more visible, which improves the accuracy of later stages.

Here is an example that shows the difference between an original image and the image with
reduced reflections :
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(a) Original image (b) Reduced Reflections

Figure 4.2: Comparison between an original iris image and preprocessed iris image

The results show that our approach effectively removes reflections while preserving the entire
iris region, including areas affected by glare. By isolating and adjusting the reflections, the
underlying iris texture remains intact, ensuring reliable feature extraction for more accurate
iris recognition.

4.3.2 Edge Detection

To identify the iris and associate it with an individual, we must first determine its location.
This process begins by detecting the outer and inner edges of the iris within a complete image
of the eye.

Figure 4.3: Iris Inner and Outer Edges

To achieve this, we used the Canny edge detector to accurately identify the edges within the iris
image. The Canny filter operates in multiple steps to enhance accuracy, starting with Gaussian
filtering to smooth the image and reduce noise. This prevents false edges from being detected
due to minor fluctuations in pixel intensity.

Next, the gradient calculation determines areas of sharp intensity change, which are likely to
represent edges.
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The non-maximum suppression step then refines this by ensuring that only the most prominent
edges are retained, effectively sharpening the image.

Finally, double thresholding is applied to classify edges based on intensity, followed by edge
tracking by hysteresis to connect the strongest edges and discard weak, irrelevant ones.

Another approach we used to test the edge detection of iris is the Laplacien of Gaussian;
however, the Canny edge detector tends to outperform the Laplacian of Gaussian because of
its Superior noise reduction capabilities and More efficient edge refinement and extraction,
specifically targeting strong, relevant edges (such as the boundaries of the iris).

By using the Canny filter, we ensure that only the most significant edges around the iris are
detected, which aids in accurate segmentation for later stages of recognition. In the edge detec-
tion output image, the boundaries of the iris are clearly defined, highlighting how this method
effectively isolates the iris from other regions, improving the precision of feature extraction in
iris recognition.

4.3.3 Iris Localization and Isolation

In the segmentation stage of iris recognition, we employ the Circular Hough Transform (CHT)
to accurately detect the inner and outer boundaries of the iris. The CHT is particularly effective
for this task because it identifies circular shapes in an image, allowing us to pinpoint the edges
of the iris with precision. The steps of the CHT as seen in the third chapter :

- Probable Circle Detection : The first step of the CHT is to identify all potential
circles in the image based on edge detection results. This involves mapping points in
the image space to a parameter space where each point corresponds to a possible circle
defined by its center coordinates and radius.

- Filtering Process : After identifying the probable circles, a filtering process is applied
to eliminate any incorrectly detected circular shapes. This step focuses on the specific
range of the maximum and minimum iris radius, ensuring that only circles that match
the expected size of the iris are considered.

- Edge Selection : Following filtering, the CHT selects the most highly linked edges that
correlate with the detected circles. This selection helps refine the detection, leading to
the recognition of a rough iris boundary that outlines both the outer and inner contours
of the iris.

The results of the Hough Transform used for the iris localization is shown in figure 4.4

Figure 4.4: Circles of Iris using Hough Transform
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Once the inner and outer circles are established using the CHT, we create two binary masks:
Mask A, representing the outer circle, and Mask B, representing the inner circle. To isolate
the iris region effectively, we multiply these masks with the original image. This multiplication
results in a new image that retains only the iris area, while suppressing all other regions. The
result is shown in figure :

Figure 4.5: The obtained Iris after Segmentation

Compared to the U-Net method previously employed for a test, the Hough Transform approach
proves to be more efficient due to its targeted detection of circular shapes, which minimizes
computational complexity and enhances accuracy. In the resulting segmentation image, the
clear delineation of the iris and pupil boundaries is evident, illustrating the effectiveness of the
CHT and the binary mask method in achieving precise iris segmentation for further processing.

4.3.4 Normalization

In the normalization step of iris recognition, we transform the circular iris region into a rectan-
gular format using Daugman’s Rubber Sheet Model, which ensures that the iris is represented
in a consistent, comparable format. This transformation is necessary because the iris is a cir-
cular object, and its features can be distorted due to factors like pupil dilation, making direct
comparison between images challenging. Daugman’s model addresses these issues by converting
the polar coordinates of the iris into a rectangular grid.

The steps of daugman’s rubber sheet model as seen in the third chapter :

- Polar-to-Rectangular Transformation: In Daugman’s Rubber Sheet Model, each point on
the iris, initially defined in polar coordinates (r, θ), is mapped to a corresponding point in a
rectangular coordinate system. This transformation converts the varying radial distances
from the center of the pupil to the outer iris boundary into fixed-length segments, ensuring
that the entire iris region is captured evenly.

- Uniform Sampling : To create this mapping, the model samples points radially from the
pupil boundary to the outer iris boundary for each angular position (θ) around the iris.
This approach ensures that both the inner and outer boundaries of the iris are preserved
and accounted for, creating a uniform grid for feature extraction.

- Size Standardization : Once the iris has been mapped from polar to rectangular coordi-
nates, the resulting image is resized to a standard dimension, typically 128x128 pixels.
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This size standardization is important for ensuring that the feature extraction process
is consistent across different iris images, regardless of variations in iris size, dilation, or
camera perspective.

The use of Daugman’s Rubber Sheet Model offers several advantages. By normalizing the iris
in this manner, we eliminate variations caused by pupil dilation, head tilt, or slight distortions
in the original image. This creates a more reliable and consistent representation of the iris for
comparison

Figure 4.6: A Normalized Iris

In the final result as we see in figure 4.6, we obtain a 128x128 pixel rectangular image, where
the iris texture is evenly spread and normalized, ready for further feature extraction.

4.3.5 Enhancement

In the next step of iris recognition, we focus on enhancing the quality of the image to improve
the accuracy of subsequent feature extraction. This method have been used by my colleague
Maroua Rekrouk in her thesis[94] and have been proven to be so efficient. To achieve this
enhancing, we adjust the brightness and contrast of the normalized iris image through a series
of methods, each contributing to the enhancement process. The steps involved are as proposed
in [95] :

1. Median Filter : The first enhancement step involves applying a median filter to the
image. This filter is particularly effective for reducing salt-and-pepper noise (random
white and black pixels) that can affect the clarity of the image. The median filter works
by replacing each pixel’s value with the median value of the neighboring pixels within
a defined window. This smooths out any abrupt variations in pixel intensity caused by
noise while preserving the edges of the image, which is crucial for maintaining the sharp
boundaries of the iris texture. By using this filter first, we ensure that the image is
noise-free before moving on to further enhancements.

2. Histogram Equalization : After denoising the image, we perform histogram equaliza-
tion to improve the contrast. This method redistributes the pixel intensities across the
entire image to achieve a more uniform brightness distribution. It works by stretching
the range of intensities so that the dark and light areas are balanced, making the finer
details of the iris texture more visible. This is particularly useful for enhancing hidden
features that may not have been apparent due to poor contrast, improving the image’s
overall quality for feature extraction.
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3. Top-Hat and Bottom-Hat Filters : The final enhancement step involves applying top-
hat and bottom-hat filters, which are morphological operations used to enhance bright and
dark regions, respectively. The top-hat filter is designed to highlight the bright features
of the image, emphasizing regions that are brighter than their surrounding areas. This is
particularly useful for bringing out finer details and enhancing any bright textures within
the iris. The bottom-hat filter, on the other hand, enhances dark features by emphasizing
areas that are darker than their surroundings. By applying both filters, we improve
the visibility of both light and dark textures within the iris, ensuring that all relevant
details are highlighted. This combined approach provides a more balanced and detailed
representation of the iris texture, making it more suitable for subsequent analysis.

In the enhanced image, after applying the median filter, histogram equalization, and top/bottom-
hat filters, the quality of the iris texture is significantly improved. Noise is reduced, contrast
is balanced, and both bright and dark features are highlighted, making the iris details much
clearer. This enhanced image will provide a stronger foundation for accurate feature extraction,
ultimately improving the reliability of the iris recognition system.

4.3.6 Dataset Enhancing

To improve the performance and reliability of our iris recognition system, we propose specific
methods for cleansing the dataset and performing data augmentation, ensuring that the images
are of high quality and diverse enough for robust model training.

4.3.6.1 Dataset Cleansing

To start, we implemented a systematic image quality assessment to filter out any poor-quality
iris images that could affect recognition performance. For this, we proposed using :

- Blur detection : By applying a variance of the Laplacian filter, we assess the sharpness
of each image. Any excessively blurry images that obscure iris details are removed to
ensure clarity in the dataset.

- Reflection detection : Since reflections can degrade image quality, we used the re-
flection isolation method from the preprocessing phase to identify images with large and
unrecoverable reflection regions. These images are excluded to maintain high-quality data
for feature extraction.

Additionally, we ensure that segmentation is consistently accurate by verifying the output of
the Circular Hough Transform (CHT). Images where the CHT fails to correctly detect the inner
and outer iris boundaries are flagged and removed from the dataset. This ensures that only
well-segmented images proceed to the next stages.

4.3.6.2 Data Augmentation

After Cleansing our datasets, some of the classes became unbalanced due to the removal of
non desired images. Therefore, in order to balance the dataset as well as making our model
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adaptable to varying conditions, as well as having an important amount of data to be fed to
the model. We applied some data augmentation techniques :

- To account for minor rotations or slight misalignments during image capture, we intro-
duced small rotations and translations to the iris images. This helps the recognition
system become more resilient to small changes in the camera angle or user positioning.

- Brightness adjustments: We proposed adjusting the brightness of the images to simu-
late different lighting conditions, which improves the system’s ability to handle images
captured in both low and high lighting environments.

this process resulted in a dataset containing the same number of images per class (20), address-
ing the initial issue of data imbalance.

The results of the data augmentation, including the details of the number of images per dataset
and the total are in table 4.2:

Datasets Number of Classes Images/Classe Images/Dataset
IITD 224 40 8960

Casia v-4 1000 40 40000
Total 48960

Table 4.2: Our datasets after proceeding data augmentation

4.4 Features Extraction

Now in the most crucial part of our model, the feature extraction part plays a pivotal role as
it forms the foundation for distinguishing one iris from another based on its unique patterns.
This step is crucial because it translates the raw, preprocessed image into a set of identifiable
features that can be efficiently compared across different images.

In fact, feature extraction is central to the study of Human Visual System (HVS) based models,
as these models aim to mimic the way humans perceive and process visual information. By
carefully designing feature extraction methods, we can enhance the system’s ability to capture
the most relevant information from the iris, mirroring the HVS’s ability to process complex
visual stimuli.

In our approach, we focus on two feature extraction techniques that closely align with the
Human Visual System Modelization of Perceptual Channel Decomposition: Discrete Wavelet
Transforms (DWT) and Gabor Filters. These methods are well-suited for iris recognition be-
cause they decompose the image into various frequency and orientation components, mimicking
how the human eye and brain process visual information at different scales and orientations.
These methods provide a multi-resolution analysis that allows for the capture of both fine and
coarse details of the iris texture.

We opted for Discrete Wavelet Transforms and Gabor Filters because they are the most ef-
fective at simulating this perceptual decomposition, breaking down the iris image into key
frequency components that resemble the way the HVS processes visual stimuli. While the DCP
method could theoretically offer more precise modeling of human visual perception, we decided
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against using it in our system. The reason lies in the complexity of implementing DCP filters,
particularly the absence of well-defined formulas for calculating the required filter frequencies.
This lack of established equations presents practical difficulties in designing and implementing
DCP-based feature extraction.

In order to know how efficient our HVS based models (DWT and Gabor Filters) are, we decided
to also use 2 non HVS based methods : Discrete Cosine transform consisting of only Frequency
domain and Histogram of Gradients who operates purely in the spatial domain by analyzing
gradients.

4.4.1 Discrete Wavelete Transforms (DWT)

In our model, we integrated the Discrete Wavelet Transform (DWT) which is a powerful tool
that breaks down an image into different frequency components, allowing us to analyze both
global and fine details of the iris. Its multi-scale approach resembles perceptual channel de-
composition, a method used in human visual system modeling, which captures how humans
process visual information across different spatial frequencies. This similarity motivated us to
select DWT for our iris recognition system.

We chose DWT for its ability to represent the intricate textures of the iris at various resolu-
tions. The decomposition process captures both low-frequency information (overall shape and
structure) and high-frequency details (fine textures and edges). This multi-level analysis is
essential for effectively identifying the unique features of each iris, which form the basis of our
recognition system.

4.4.1.0.1 The Decomposition Process

1. Choose the Wavelete : We chose 4 families of Wavelets to test our Model :

a. Haar Wavelet : The Haar wavelet is the simplest and oldest wavelet, first intro-
duced by Alfréd Haar in 1909. It is a step function that oscillates between two
values (1 and -1) and is non-continuous. The Haar wavelet focuses on detecting
sharp transitions in the image, which makes it particularly useful for edge detection.
It is a very simple and efficient wavelet, but it lacks the ability to represent smooth
or detailed variations in images.

b. Daubechies Wavelets : The Daubechies wavelets, introduced by Ingrid Daubechies,
are compactly supported orthogonal wavelets that are designed to represent smooth-
ness and regularity. They have a series of wavelets indexed by their order (e.g.,
Daubechies 9, 11), with higher-order Daubechies wavelets being longer and better
at capturing fine details in irregular structures. These wavelets are particularly
well-suited for applications like image and signal processing due to their ability to
represent complex textures with compact support.

c. Symlet Wavelets : The Symlet (Symmlet) wavelets are a variation of Daubechies
wavelets that aim to have better symmetry properties. They are more symmetrical
than Daubechies wavelets, which improves their performance in applications where
symmetry is important. Symlet wavelets still have compact support and orthog-
onality, making them useful for signal processing and image decomposition. The
higher-order Symlets (e.g., Symlet 5, 6, 8) provide better localization in both time
and frequency domains, making them ideal for capturing fine details in images.
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d. Biorthogonal Wavelets : Biorthogonal wavelets differ from orthogonal wavelets
in that they use two sets of filters: one for decomposition and another for recon-
struction. This allows for perfect reconstruction with smoother wavelets and greater
flexibility in design. The Biorthogonal 3.5 wavelet, for example, is designed to pro-
vide good symmetry and smoothness, which makes it well-suited for applications
requiring precise reconstruction, such as image processing. This property makes
biorthogonal wavelets useful for capturing intricate details while ensuring minimal
loss during reconstruction.

Figure 4.7: Wavelets Families

2. Low-Pass and High-Pass Filters :
The low-pass filter extracts the smooth, global structure of the image (large-scale details),
while the high-pass filter captures the sharp transitions and edges (fine details).
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For each wavelet family, the filters are derived from the wavelet’s mathematical properties.
These filters are convolved with the image to separate the different frequency components.

3. Downsampling :
After applying the low-pass and high-pass filters, we downsample the image by a factor
of 2 in both the horizontal and vertical directions. This reduces the image size by half,
focusing on the most important information while discarding unnecessary data (high-
frequency noise).
The output is a set of four sub-images:
-LL (Low-Low): Approximation sub-band, containing low-frequency components in both
directions (captures overall structure).
-LH (Low-High): Contains low-frequency in the horizontal and high-frequency in the
vertical direction.
-HL (High-Low): Contains high-frequency in the horizontal and low-frequency in the
vertical direction.
-HH (High-High): Captures high-frequency components in both directions (fine details
like edges). Figure 4.8 represents the LL, LH, HL and HH sub-bands outputs by applying
the DWT on our normalized iris.

Figure 4.8: Applying DWT on a normalized Iris

4. Recursive Application :
We recursively apply the same process (low-pass and high-pass filtering, followed by down-
sampling) to the LL sub-band, which contains the approximation (or coarse) represen-
tation of the image. This creates a multi-level decomposition, where each level captures
more detailed features of the iris.
For Haar wavelet, we applied only one level of decomposition due to its simplicity and
focus on sharp transitions. For Biorthogonal 3.5 and Daubechies 9/11, we performed four
levels of decomposition because these wavelets can handle more complex structures in
the iris. Symlet 6/8 was decomposed into five levels due to its ability to capture even
finer details, but we stopped at six to avoid losing important global information and
avoiding the inclusion of too much high-frequency noise. While deeper decomposition
may capture additional details, it can also amplify noise and obscure the important global
features of the iris. Fiver levels allowed us to extract relevant patterns while maintaining
computational efficiency and accuracy in recognition.
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4.4.2 Gabor Filters

The Gabor filter is a classical method widely utilized for feature extraction and texture analy-
sis. Given that gabor’s filters ability to mimic how the human visual system processes images,
particularly through the decomposition of images into multiple spatial frequencies and orienta-
tions, similar to how the visual cortex in the brain interprets visual stimuli, and on capturing
the texture of the iris, the Gabor filter emerged as an intriguing choice.

The Gabor filter combines the concepts of frequency and orientation selectivity, making it
particularly effective in capturing textural details in an image. It uses a set of sinusoidal
functions modulated by a Gaussian window to analyze an image at different frequencies and
orientations. As seen in the 3rd chapter, by varying the following parameters : Wavelength (λ),
Orientation (θ), the standard deviation of the Gaussian (σ), Phase offset (ψ) and the Aspect
ratio (γ), we obtain a set of gabor filter Bank

Figure 4.9: Gabor filters for 8 orientations and 5 wavelengths

Once the Gabor filter bank was defined with these parameter variations, we convolved each
filter with the iris image. This convolution process allowed us to extract multi-scale, multi-
orientation texture information from the iris, producing a series of feature maps. These feature
maps represent different aspects of the iris’s intricate texture and provide detailed information
on the spatial frequency content at various orientations. The Figure 4.10 illustrates the output
of Gabor filter Bank applied on a IITD’s image :
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Figure 4.10: Gabor Filters used on an IIFD Database image

By implementing Gabor filters in our system, we not only ensure that we are capturing the
most critical details from the iris but also mirror the biological processes that naturally occur in
the brain when analyzing visual information. The result is a highly effective feature extraction
technique that captures the complex textures of the iris, making it a powerful tool for accurate
and reliable iris recognition. Also, its ability to extract relevant features from iris images makes
it a valuable tool in our pursuit of accurately representing and distinguishing different iris
textures.

4.4.3 Discrete Cosine Transform

DCT is a powerful technique used for converting spatial domain data into the frequency domain,
which allows us to analyze the frequency components of an image. We applied the 2D DCT
to the preprocessed iris image. This transformation decomposes the image into a sum of
cosine functions oscillating at different frequencies. After transforming the image, we extracted
a specific number of the lowest-frequency DCT coefficients. These coefficients represent the
most significant components of the iris image and contain the essential information needed for
recognition.

4.4.4 Histogram of Oriented Gradients

HOG features are particularly useful for iris recognition because they emphasize the shapes
and structures present in the iris texture. By focusing on the orientation and distribution of
gradients, HOG effectively captures the distinct features of the iris, such as ridges and furrows,
which are essential for accurate identification. The robustness of HOG against variations in
lighting and occlusion further enhances its applicability in real-world scenarios.
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4.4.5 Features Extraction Results

The table 4.3 contains the number of features collected from each method, although the num-
ber of features doesn’t really show how good is a technique, but knowing how much features
extracted from each method could give us the big picture of how each method works and so its
results.

Method Number of Features

DWT
One level of Decomposition
4 Levels of Decomposition
5 Levels of Decomposition

16000
21760
21824

Gabor Filters 365000
DCT 1024
HOG 8100

Table 4.3: The number of features extracted for every method

4.5 Feature Selection

In the feature selection phase of our iris recognition system, we employ Principal Component
Analysis (PCA) to reduce the dimensionality of the extracted features. Feature selection is a
crucial step because it helps in focusing on the most important and discriminative features, while
discarding redundant or irrelevant information. This not only enhances the system’s accuracy
but also improves computational efficiency, which is essential for real-time application.

After extracting the iris features using Discrete Wavelet Transforms (DWT) and Gabor Filters,
and even in the convolutional Neural Networs which will be seen in the next section, the
resulting feature set can be quite large, especially since these methods capture a wide range of
frequency and orientation information. Directly using all these features for classification would
lead to overfitting, increased computational cost, and potential redundancy. This is where PCA
comes into play, as it allows us to reduce the dimensionality while retaining the most significant
information.

4.6 Classification

4.6.1 Machine Learning Based Methods

Due to the time, energy, and resource-intensive nature of DNN classifiers, it was deemed neces-
sary to utilize alternative classifiers, such as SVM and Random Forest, which are comparatively
less resource-consuming.

94



Proposed Approach and Results

4.6.1.1 Support Vector Machine

The objective of this algorithm is to find a hyperplane in an n-dimensional space that sepa-
rates the data points to their potential classes. The hyperplane should be positioned with the
maximum distance to the data points. The data points with the minimum distance to the
hyperplane are called Support Vectors.

The objective is to correctly classify as many data point as possible by maximizing the margin
from the Support Vectors to the hyperplane while minimizing the term wTw means finding the
optimal w and b that most samples are predicted correctly.

In our case, we have a multi-class classification. SVM was initially designed for binary classifica-
tion, but it can be extended to multi-class classification using the One-vs-One (OvO) technique
: Train an SVM for every pair of classes.

The number of classifiers necessary for one-vs-one multi-class classification can be retrieved
with the following formula 4.1:

n ∗ (n− 1)
2 (4.1)

Where n is the number of classes.

In the one-vs-one approach, each classifier separates points of two different classes and com-
prising all one-vs-one classifiers leads to a multi-class classifier.

4.6.1.2 K-Nearest Neighbors

For the KNN classifier, we first determined several key parameters:

Choosing the value of K : After experimenting with various values, we selected K=5. This
value was found to provide a good balance between bias and variance, enabling the model to
generalize well while minimizing the influence of noise from individual samples.
Distance Metric : We opted to use the Euclidean distance metric for measuring the similarity
between feature vectors. The Euclidean distance is effective for capturing the spatial rela-
tionship between data points in the feature space, making it suitable for the high-dimensional
features extracted from the iris images.

4.6.1.3 Random Forest

Random Forest algorithm is an ensemble learning method that operates by constructing mul-
tiple decision trees during training. Here’s how we implemented it:

Selecting Hyperparameters : We configured the Random Forest with the following key
parameters:

Number of Trees: We chose to create n-estimators=100 trees in the forest. This number was
sufficient to achieve a good trade-off between computational efficiency and model accuracy.
Maximum Depth: We set the maximum depth of each tree to prevent overfitting, ensuring that
the model maintains generalization across unseen data. Random Subset of Features: At each
split in the tree, a random subset of features was considered. This randomness promotes diver-
sity among the trees and improves the robustness of the model. Training Phase: The Random
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Forest was trained on the feature vectors extracted from the iris images. Each decision tree
was built using a bootstrap sample of the training data, which adds an element of randomness
to the training process.

Prediction Phase : For predicting the identity of a test sample, each tree in the forest made
an independent classification based on its learned structure. The final prediction was made by
taking the majority vote from all the trees, leading to a more accurate and stable classification
outcome.

The diversity of opinions and perspectives among the trees plays a crucial role in minimizing
biases and errors. Consequently, the Random Forest becomes a more reliable and effective
model, benefiting from the combined knowledge and insights of its constituent trees [92].

Here is a explanatory example of the method (Figure 4.11 ):

Figure 4.11: Random Forest Algorithm

4.6.2 Deep Learning Classification

Unlike the machine learning classification methods, the CNN not only do the classifications
with their dense layers, but extract its own features from whatever features we gave it or the
whole image.

The Proposed CNN Architecture :

- Input Layer:

◦ The input layer accepts iris images that have been preprocessed and normalized, typically
sized at 128 × 128 pixels. This consistent size ensures that the network processes images
uniformly.

- Convolutional Layers:

◦ Layer 1:
∗ 32 filters of size 3 × 3, with a stride of 1 and padding set to ’same’ to maintain the

spatial dimensions. This layer learns low-level features like edges and textures.
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∗ Activation Function: ReLU (Rectified Linear Unit) is applied to introduce non-
linearity.

∗ Batch Normalization: This is implemented after the activation to normalize the
output, improving convergence speed and stability.

◦ Layer 2:
∗ 64 filters of size 3 × 3 with the same padding. This layer captures more complex

features by building on the low-level features extracted in the first layer.
∗ Activation Function: ReLU.
∗ Batch Normalization: Again applied for improved training.

- Pooling Layer:

◦ Max Pooling Layer: A 2×2 pooling layer follows the second convolutional layer to down-
sample the feature maps, reducing their dimensions while retaining essential information
and reducing computational complexity.

- Flatten Layer:

◦ This layer flattens the pooled feature maps into a one-dimensional vector, which serves
as input to the fully connected layers.

- Fully Connected Layers:

◦ Layer 1: A dense layer with 128 neurons, employing the ReLU activation function to
learn non-linear combinations of the features extracted by the convolutional layers.

◦ Layer 2: A dense layer with 64 neurons, again using the ReLU activation.

- Output Layer:

◦ A final dense layer with softmax activation, producing a probability distribution over the
classes (i.e., recognized iris patterns). The number of neurons in this layer corresponds
to the number of unique classes in the dataset.

Parameters and Hyperparameters Used

- Batch Size: We selected a batch size of 32 during training, which balances memory usage
and convergence speed.

- Epochs: The model was trained for 30 epochs, ensuring adequate learning without overfit-
ting.

- Learning Rate: We used an initial learning rate of 0.001 with the Adam optimizer. The
Adam optimizer was chosen for its adaptive learning rate properties, which help in faster
convergence.

- Loss Function: The categorical cross-entropy loss function was utilized, as it is suitable for
multi-class classification problems.

- Regularization: Dropout layers with a dropout rate of 0.5 were applied after the fully
connected layers to prevent overfitting by randomly setting half of the neurons to zero during
training.
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4.6.3 Results

4.6.3.1 Table of Results

The results we got when testing the different combination of features extraction/classification
methods are shown in the table 4.4

Feature Extraction/Classification SVM KNN-5 Random Forest DNN
DWT (Symlet) 97.2% 94.6% 95.8% 98.5%

DWT (Debauchies) 95.3% 89.9% 94.5% 96.2%
DWT (Haar) 88.7% 88.7% 86.6% 90.3%

DWT (Biorthogonal) 94.7% 89.9% 94% 95.5%
Gabor Filters 94.3% 89.9% 92.8% 95%

DCT 78% 66.2% 76.5% 85.1%
HOG 86.7% 85.2% 85% 88%
CNN / / / 97%

Table 4.4: Test Accuracies of the different combinations of feature extraction x Classification
method

4.6.3.2 Discussion

• In our analysis, we found that the Discrete Wavelet Transform (DWT) outperformed all
other feature extraction methods, delivering the highest accuracy. This can be attributed to
its alignment with the human visual system (HVS). The decomposition of images into different
frequency channels using DWT allowed us to retain critical information, both in low and high
frequencies. The LL filters captured smooth details and textures, while the LH, HL, and HH
filters preserved high-frequency details, such as edges, without being excessively affected by
noise. This is likely because DWT effectively manages noise by localizing frequency variations,
allowing the system to focus on meaningful signal patterns.

• Among the wavelet families, Symlet and Debauchies provided the best results. Symlet’s
near-symmetrical structure allowed for better reconstruction of features, while Debauchies’
compact support made it suitable for capturing both smooth textures and sharp changes.
These wavelets align well with the HVS by mimicking the perceptual channel decomposition,
which likely contributed to their superior performance.

• Gabor filters also demonstrated relatively good results, as their multi-scale, multi-orientation
filtering mechanism captures texture and frequency information, similar to DWT. However,
Gabor’s performance was slightly lower due to its sensitivity to parameter tuning, particularly
with varying spectral characteristics in the dataset. The fixed parameters may have led to
suboptimal results as they could not adapt to the diverse texture patterns present in different
iris images.

• The Histogram of Oriented Gradients (HOG) method performed poorly compared to other
methods. While HOG is known for its effectiveness in facial recognition, it struggled in iris
recognition due to the absence of frequency and time resolution, which is critical for detailed
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texture analysis in iris images. Its edge-based feature extraction did not fully capture the rich,
fine-grained details of the iris, which are crucial for high accuracy.

• Lastly, Discrete Cosine Transform (DCT) exhibited the worst performance in our experi-
ments. While DCT is widely used for image compression, it lacks the necessary adaptability
for feature extraction in iris recognition. DCT is not an HVS-based model and primarily focuses
on frequency domain information, without capturing the temporal or spatial changes efficiently,
making it less suitable for iris texture analysis.

• When comparing the classification methods, Convolutional Neural Networks (CNNs) stood
out as the most powerful in terms of accuracy. The hierarchical structure of CNNs, with their
ability to automatically learn spatial hierarchies of features, made them particularly well-suited
for handling the complex patterns found in iris images. With each layer in the CNN model
progressively learning higher-level features (from simple edges to more complex textures), it
efficiently captured the fine details and intricacies of the iris texture. This performance was
enhanced by using our proposed architecture, specifically designed for this task, with parameters
carefully tuned to avoid overfitting, resulting in consistent accuracy across the datasets.

On the other hand, Random Forest and Support Vector Machines (SVM) also delivered strong
results when combined with the high-quality features extracted by methods such as DWT and
Gabor filters. Random Forest, with its ensemble learning approach, was robust to noise and
outliers, making it effective for our task. The SVM classifier, leveraging its ability to create
decision boundaries in high-dimensional spaces, performed well with features that were well-
separated and distinctive, like those obtained from wavelet decompositions. However, while
these classifiers performed admirably, K-Nearest Neighbors (K-NN) lagged behind. K-NN’s
sensitivity to noise and its reliance on the distribution of data points made it less reliable for iris
recognition, particularly when the data contained slight variations or imperfections. That said,
classification was not the primary focus of our study—our emphasis was on feature extraction,
where the choice of the right method significantly impacted the model’s performance.

• Ultimately, the key takeaway from our study is the clear advantage of human visual sys-
tem (HVS)-based feature extraction methods, particularly DWT, which was a standout. The
decomposition into different frequency channels, along with the ability to capture both fine de-
tails and broader patterns, made DWT particularly effective for iris recognition. By selecting
Symlet and Debauchies wavelets, which closely mimic perceptual channel decomposition (how
the human eye processes images), we were able to achieve superior results. These wavelets
balance the need for capturing both sharp edges and smooth textures, closely reflecting how
the human visual system interprets natural images. Symlet’s symmetry provided more accurate
reconstructions, while Debauchies’ compact support effectively localized the important features.

In comparison, Gabor filters, while still useful, fell short of DWT because they lacked the
adaptability and multi-resolution nature of wavelets. Although Gabor filters are inspired by
the receptive fields in the visual cortex and can capture orientations and scales effectively,
their performance was more limited due to the need for precise parameter tuning, which can be
challenging given the variability of iris textures across individuals. Additionally, HOG and DCT
showed the weakest results. HOG’s focus on edge detection without frequency analysis made
it inadequate for capturing the rich, complex textures of the iris, and DCT, while excellent for
compression, failed to capture the multi-level details needed for high-precision recognition, as
it doesn’t align with how the HVS processes image textures.

In conclusion, our results clearly demonstrate that HVS-based methods, like DWT, are best
suited for the challenging task of iris recognition, offering a robust framework for capturing the

99



Proposed Approach and Results

intricate textures and details essential for high accuracy.

4.7 Implementation

To ensure that our system performs efficiently, we deployed our models across three distinct
hardware platforms: Nvidia Geforce RTX 2060 Super (GPU), AMD Ryzen 5 4650G (CPU), and
PYNQ Z2 FPGA. Each platform offers unique strengths in terms of processing power, energy
consumption, and latency, which are crucial for real-time applications like iris recognition.

After training the models and testing their accuracy on test and validation sets, we saved the
models in the appropriate formats so that it can be used later :
TensorFlow models were saved using .h5 or SavedModel format.
Scikit-Learn models (SVM, KNN, Random Forest) were saved as .joblib.

4.7.1 GPU Implementation

Before implementing our model in the GPU, the following necessary libraries have been in-
stalled :

- Cuda (Compute Unified Device Architecture) :
Cuda is a parallel computing platform and programming model developed by NVIDIA.
It enables developers to use graphics processing units (GPUs) for general-purpose com-
puting (GPGPU). In other words, Cuda allows GPUs to solve complex problems more
efficiently than CPUs for certain tasks, especially those requiring a large number of par-
allel computations, which is often the case in deep learning.

- cuDNN (CUDA Deep Neural Network library) : cuDNN is a GPU-accelerated
library for deep neural networks. It provides highly optimized routines for standard
operations such as convolutions, activations, and normalization. cuDNN is designed to
be easily integrated into high-level frameworks like TensorFlow, simplifying development
and improving the performance of deep learning applications.

- CuPY :CuPy is a python library which mimics NumPy arrays but operates on the GPU.
Given that the scikit-learn models (like SVM and KNN) doesn’t natively support GPU
execution, we use CuPy to transfer data to the GPU.

Using the CUDA two libraries, TensorFlow will automatically detect the GPU and perform
computations accordingly, greatly facilitating the development and training of large-scale deep
learning models. And using the CuPy library we can implement the machine learning models
on the GPU.

We loaded the trained models using TensorFlow and Scikit-learn. For CNN models, batch
predictions were executed to leverage the GPU’s parallel processing capabilities.

Tensorflow Model Implementation :
from t en so r f l ow . keras . models import load_model
model = load_model ( ’ i r i s_mode l . h5 ’ )
p r e d i c t i o n s = model . p r ed i c t ( test_data )
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SVM Exemple Model Implementation :
import j o b l i b
import cupy as cp
svm_model_gpu = j o b l i b . load ( ’ svm_model . pkl ’ )

# Transfer data to GPU ( us ing CuPy)
X_test_gpu = cp . asar ray ( X_test )

# Make p r e d i c t i o n s on GPU ( conver t input back to CPU because s c i k i t −l e a rn ’ s SVM model e xpec t s CPU input )
y_pred_gpu = svm_model_gpu . p r ed i c t ( cp . asnumpy( X_test_gpu ) )

4.7.2 CPU Implementation

We are using the AMD Ryzen 5 4650G CPU : a high-performance APU (Accelerated Processing
Unit), launched as part of AMD’s Renoir series, which combines powerful Zen 2 architecture
CPU cores with integrated Vega graphics. Originally targeted for OEM systems, this processor
offers a blend of efficiency and capability suitable for both productivity tasks and light gaming.

It is built on 7nm technology, which allows for better power efficiency and performance com-
pared to previous generations. The 4650G offers 6 cores and 12 threads, with a base clock of 3.7
GHz and a boost clock up to 4.2 GHz, making it versatile for multitasking and general-purpose
workloads.

The CPU deployment involved loading models through the same Python environment but
without GPU acceleration. All models (SVM, CNN, Random Forest) were tested sequentially
due to the limited parallel capabilities compared to the GPU.

4.7.3 FPGA Implementation

For the FPGA Implementation, we used the FPGA PYNQ Z2, which is an open-source project
from Xilinx that facilitates the use of these platforms. This board supports programming with
Python and its various libraries, allowing developers to harness the advantages of programmable
logic and microprocessors to create more innovative and promising electronic systems.

Instead of implementing IP cores or deploying the models as hardware accelerators, we used
Python-based implementation directly on the PYNQ Z2 board via Jupyter notebooks. This
method limits the acceleration potential of the FPGA, as the models are still executed sequen-
tially on the FPGA’s CPU without leveraging low-level hardware resources. The steps of the
implementation are as follows :

- We begin by configuring an SD card by importing the PYNQ-Z image [96]. Next, we
establish a connection between the PC and the board using an Ethernet connection and
power the board with a USB cable.

- Then, we access the FPGA via a Jupyter Notebook using the IP address of the FPGA
board [97].

- Import and then load the model, doing the predictions with python the same way we did
with the CPU.
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4.7.4 Results and Discussion

Model + Fea-
ture

Platform Inference
Time (s)

Power (W) Memory
(%)

Accuracy
(%)

DNN + DWT
(Symlet 8)

GPU (RTX
2060)

12 68 55 98.5

DNN + DWT
(Symlet 8)

CPU (Ryzen 5) 72 30 40 98.5

SVM + DWT
(Symlet 8)

GPU (RTX
2060)

4.2 35 45 97.2

SVM + DWT
(Symlet 8)

CPU (Ryzen 5) 18 21 35 97.2

CNN (Direct) GPU (RTX
2060)

20.5 58 50 97.0

CNN (Direct) CPU (Ryzen 5) 111 38 50 97.0
KNN + DWT FPGA (PYNQ

Z2)
18 5.2 25 92.1

SVM + Gabor
Filters

FPGA (PYNQ
Z2)

25 4.5 20 94.3

Table 4.5: Performance Comparison Across Platforms: Inference Time, Power Consumption,
Memory Usage, and Accuracy

The GPU outperformed the CPU in terms of inference time for all models due to its superior
parallel processing capabilities. However, this came at the cost of higher energy consumption.
The CNN with Symlet 8 DWT features performed best on the GPU, achieving high accuracy
with low inference time.

The Ryzen 5 CPU offered a good trade-off between performance and energy consumption
but couldn’t match the GPU’s speed. While classifiers like KNN and Random Forest were
less impacted by the lack of parallelism, the CNN’s performance suffered due to the heavier
computational load. While not as fast, this platform is more energy-efficient and can be used
in scenarios where power availability is limited.

The FPGA implementation showcased a great advantage in both time and power efficiency. The
FPGA’s hardware-level parallelism allows it to execute machine learning models more efficiently
without the overhead of a general-purpose processor. However, since we used a higher-level
implementation through Python notebooks, the FPGA’s full potential was not fully utilized.
The use of IP cores or running through HLS tools (High-Level Synthesis) to optimize latency,
power, and memory usage could further reduce inference time and power consumption. using
Python for implementation on the PYNQ Z2 resulted in a performance similar to that of the
CPU, with no acceleration benefits from the FPGA’s parallel architecture.

DWT-based methods (such as DWT + SVM) demonstrated their usefulness by offering a
balance between accuracy and efficiency, proving particularly effective on CPUs with limited
resources. While deep learning models like CNNs and DWT + DNN achieved slightly better
accuracy, they did so at the cost of higher inference time, power, and memory consumption. The
HVS-inspired DWT thus offers a practical advantage in real-world deployments where power
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and computational resources are constrained, showcasing the benefits of biologically motivated
feature extraction techniques over purely neural-network-based approaches.

4.8 Conclusion

In this chapter, we demonstrated the effectiveness of human visual system (HVS)-based meth-
ods for iris recognition, with the Discrete Wavelet Transform (DWT) delivering the highest
accuracy, particularly with Symlet and Debauchies wavelets. Gabor filters also performed well
but were limited by parameter sensitivity, while HOG and DCT fell short in capturing the com-
plex iris textures. For classification, CNNs achieved the best results, leveraging their ability to
learn hierarchical features, especially on GPU hardware, though at the cost of higher energy
consumption. The FPGA implementation offered an optimal balance between performance and
power efficiency, though its full potential could be unlocked with more advanced optimization
techniques. Ultimately, our findings highlight that HVS-based feature extraction, especially us-
ing DWT, combined with efficient hardware implementations, is well-suited for high-precision
iris recognition.
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General Conclusion

This thesis has delved into the optimization of iris recognition using human visual system based
methods, employing the HVS Based approachs to achieve superior accuracy and results. The
comprehensive investigation undertaken in this study has provided significant insights into the
Basics of the human Visual System physiology and the methods based on it leading to an
efficient model.

In our work, we were specifically interested in iris recognition systems of other biometrics
recognition system, because of their high performance in terms of precision. Such a system is
mainly divided into two essential phases: detection and identification.

The study imployed many image processing techniques for the detection and preprocessing
phase, beginning with the Canny Edge Detector aiming to, then the Hough transform which
aims to locate the iris in an image and eliminate unnecessary information, keeping only the
iris region in the form of a ring. Followed by The rubber sheet model of Daugman for the
normalization step, in order to standardize the size of the images while retaining the essential
discriminative information. This step transforms the iris image into a rectangular represen-
tation of uniform dimensions. We then focused on the crucial phase of extracting relevant
features. For this, we applied Human Visual System Based models like the Gabor filters, which
make it possible to exploit not only spatial information but also spectral information, which
considerably improves the efficiency of recognition, as well as the Discrete Wavelete Transforms
that provide both Time and Frequency Resolution and give a decomposition that works almost
the same as the Human Visual System Modelisation : Decomposition of Perceptual Channels.
We then applied different machine learning and deep learning based classifications like SVM,
KNN and CNNs and compared the different accuracy.

Future research could explore the integration of additional HVS models, such as those that
simulate contrast sensitivity or color perception, to enhance the feature extraction process for
iris recognition. Future work could also focus on improving the robustness of iris recognition
systems against occlusions and artifacts, such as reflections from eyeglasses or eyelids, by em-
ploying advanced image processing techniques. Also Developing explainable AI methodologies
within the context of HVS-based iris recognition could facilitate greater transparency and trust
in biometric systems, addressing potential concerns related to privacy and ethical considera-
tions. And finally, Implementing the model on FPGA using the IP cores and HLS Modelisation
to utilize the full potentiel of the FPGA.

In conclusion, this thesis focused on improving the iris recognition using Human Visual Based
Systems combined with Deep learning and machine learning Classification methods.
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