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Résumé

Ce mémoire présente une chaîne de traitement pour la navigation sans carte de robots
mobiles, où la prise de décision et le contrôle sont gérés de manière distincte. Un agent
d’apprentissage par renforcement profond (DRL), entraîné avec l’algorithme TD3 et des réseaux
de neurones, génère des commandes de vitesse permettant au robot d’atteindre un objectif tout
en évitant les obstacles, en se basant uniquement sur les données des capteurs embarqués.
Ces commandes sont ensuite transmises à un contrôleur flou de type Takagi-Sugeno (T-S), qui
assure un suivi de trajectoire précis et robuste. Dans le cas mono-agent, la navigation basée
sur le DRL est comparée à une approche de navigation classique. Le cadre proposé est en-
suite étendu à un scénario multi-robots, démontrant une coordination décentralisée dans des
environnements partagés. Les résultats de simulation valident l’efficacité et l’adaptabilité de la
solution proposée.

Mots-clés : navigation sans carte, DRL, réseaux de neurones, contrôleur flou T-S, suivi de
trajectoire, robots mobiles, navigation classique, TD3.

Abstract

This thesis presents a pipeline for mapless navigation of mobile robots, where decision-
making and control are handled in separate stages. A Deep Reinforcement Learning (DRL)
agent, trained with artificial neural networks, generates velocity commands that allow the robot
to reach a goal while avoiding obstacles, using only onboard sensor data. These commands are
then passed to a fuzzy Takagi-Sugeno (T-S) controller, which ensures accurate and robust
trajectory tracking. In the single-agent case, the DRL-based navigation is compared with
a classical navigation approach. The framework is further extended to a multi-robot setup,
demonstrating decentralized coordination in shared environments. Simulation results validate
the effectiveness and adaptability of the proposed pipeline.

Keywords: mapless navigation, Deep Reinforcement Learning, artificial neural networks, fuzzy
T-S controller, trajectory tracking, mobile robots, classical navigation, TD3.
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General Introduction

Mobile robot navigation is a crucial capability for a wide range of applications, including
autonomous delivery, surveillance, rescue, and service robotics. It consists of guiding a robot
from an initial position to a target location while avoiding static and dynamic obstacles. As
robotic systems are increasingly deployed in real world settings, the demand for reliable, safe,
and intelligent navigation strategies becomes more critical than ever.

Traditionally, robot navigation has been tackled using a modular approach that includes map-
ping, localization, path planning. and control. Classical method such as A*, Dijkstra and
Rapidly-exploring Random Trees (RRT) have been widely used for global path planing [2]. For
local path execution and obstacle avoidance, algorithms like the Dynamic Window Approach
(DWA) [3] or vector field histograms have proven effective in structured environments. These
pipelines are often complemented by low-level control laws, including PID or MPC, to ensure
accurate trajectory following.

While classical navigation methods offer interpretability and robustness in known environments,
they rely heavily on accurate maps. Their performance typically degrades in the presence of
dynamic scenarios where full knowledge is unavailable or where uncertainties and sensor noise
are present. Moreover, the sequential computation of these pipelines can create bottlenecks
that make real-time decision-making and adaptability difficult.

Recent advances in machine learning, particularly in reinforcement learning (RL), have opened
new possibilities for learning end-to-end navigation policies directly from interaction with the
environment. RL allows an agent to learn optimal actions by maximizing cumulative reward
signal over time. In the context of robot navigation, RL enables policies that enables the robot
to goal-seeking behavior while learning to avoid collisions. Algorithms such as Deep Q-Networks
(DQN) [4] and actor critic methods like DDPG [5], TD3 [6], and SAC [7] have shown promising
results in various problems other than robot navigation.

In this project, we focus on applying deep reinforcement learning techniques—specifically the
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm—to enable autonomous
navigation of a mobile robot in indoor environments. The agent will be trained using a cur-
riculum learning approach, gradually progressing from simple tasks to more complex ones. To
better evaluate generalization capabilities at a certain stage, an agent trained in environment
A will be tested in environment B. Its performance in unseen scenarios will then be compared
to that of a classical navigation pipeline using the Nav2 stack from the ROS2 framework.

Beyond single-robot navigation, we extend our approach to a collaborative setup involving two
robots navigating simultaneously toward individual or shared goals. This two-robot system in-
troduces additional challenges, such as coordination and collision avoidance between the robots.
To address this, each robot will communicate its pose to the other, laying the groundwork for
potential generalization to multi-robot systems.

Moreover, to enhance control robustness and ensure better interpretability, we incorporate a
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fuzzy logic controller, which effectively handles imprecise inputs and system nonlinearities. In
our setup, the velocity commands generated by the deep reinforcement learning agent serve
as reference inputs to a trajectory tracking system based on fuzzy control logic. To further
mitigate the effects of sensor noise, we design a fuzzy observer-based control system, which
functions as a filter and contributes to robust and reliable decision-making.

This work aims to contribute a scalable, flexible, and intelligent navigation framework that
leverages the learning capabilities of deep reinforcement learning while enhancing robustness
and interoperability through fuzzy logic and observer-based control strategies. In this archi-
tecture, the velocity commands generated by the DRL agent are used as reference inputs for a
fuzzy logic-based trajectory tracking system. The inclusion of a fuzzy observer further improves
noise resilience and decision stability. The proposed framework is validated through extensive
simulations, with performance assessed using metrics such as success rate, distance traveled,
time to goal, and safety.

The First chapter explores how a fuzzy controller, built using a Takagi-Sugeno modeling ap-
proach, can serve as a trajectory tracking controller, providing stability and noise rejection to
complement the DRL-based decision-making framework.

Building upon these considerations, Chapter 2 provides a comprehensive overview of deep
reinforcement learning (DRL), from its foundations, classification, and the most widely used
agents in DRL research.

Chapter 3 focuses on the application of DRL in the context of mapless navigation for mobile
robots. It explores the design of training environments, the development of custom reward
functions, and the progression through various experiments aimed at building a robust single
agent navigation policy capable of obstacle avoidance and goal-reaching behaviors.

Based on the approach taken in chapter 3, chapter 4 extends the single agent setup to a double
agent scenario, where a double agent architecture is introduced. The logic and insights gained
from the initial experiments are reused and adapted to the double agent setup.

Finally, the conclusion offers an overview of the key results obtained throughout the project.
It highlights the advantages and limitations of using deep reinforcement learning for mapless
navigation, including its adaptability and learning capabilities versus challenges like training
time and generalization. The chapter also outlines potential future directions to improve the
current framework.
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Chapter 1

Fuzzy modeling and control

A fuzzy controller or model employs fuzzy rules, which consist of linguistic if-then statements
involving fuzzy sets, fuzzy logic, and fuzzy inference. These rules serve as a crucial representa-
tion of expert control and modeling knowledge, connecting input variables of fuzzy controllers
or models to output variables. The two primary types of fuzzy rules are Mamdani fuzzy rules
and Takagi-Sugeno (TS) fuzzy rules.

In this chapter, we are mainly interested in the TS fuzzy modeling and will explore the con-
struction of a T-S fuzzy model via sector non-linearity method and its stabilization using a
fuzzy controller as well.

In other hand, this approach consists, more precisely, in reducing the complexity of the system
by decomposing its operating space into a finite number of operating regions. Since the system
behavior is less complex in each region, a simple-structure sub-model can be used. Thus,
depending on the region in which the system operates, the output of each sub-model is more
or less utilized to approximate the overall behavior of the system. The contribution of each
sub-model is quantified by a weighting function associated with each operating region.

1.1 State representation of a nonlinear model

Any physical system with continuous evolution can be written in the form of a state represen-
tation. This allows describing the input-output relationships of a system through modeling in
the form of ordinary differential equations. The general form of a representation is given by [8]:g(ẋ(t), x(t), u(t)) = 0

y(t) = k(x(t), u(t))
(1.1)

where x(t) is the state vector of the system, u(t) is the input vector, and y(t) is the output
vector. The first equation is called the state equation, and the second one is the output equation.
Note that the system 1.1 is given in a general form and includes the class of models written in
the form of a state-space representation, known as affine in control, given by [8]:ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t)) + m(x(t))u(t)
(1.2)

where f(x(t)) is the state function, g(x(t)) is the input function, h(x(t)) is the output function,
and m(x(t)) is the input-output coupling matrix. This type of system, commonly encountered
in control problems, will constitute the main subject of this study.
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1.2 T-S Fuzzy modeling

A TS-type fuzzy model consists of a set of linear models (sub-models) linked by an interpolation
structure represented by nonlinear membership functions. Indeed, in 1985, based on the fuzzy
logic formalism, Takagi and Sugeno proposed an approach to modeling nonlinear systems based
on a set of fuzzy rules of the type "If...Then" whose conclusions represent a set of linear dynamics.
Thus, if r is the number of rules describing a TS model, the i-th rule Ri is given by [8]:

If z1(t) is Ki
1(z1(t)), z2(t) is Ki

2(z2(t)), . . . , zp(t) is Ki
p(zp(t)) then

 ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(1.3)

Where, for j = 1, . . . , p, Ki
j(zj(t)) are fuzzy subsets that partition the discourse universe,

zj(t) are the premise variables dependent on the inputs, outputs and/or state of the system,
x(t) ∈ Rn is the state vector of the system, u ∈ Rm is the input vector and y(t) ∈ Rs is the
output vector. Ai, Bi, and Ci are matrices describing the dynamics of the system .

For each fuzzy rule Ri, a weight function wi(z(t)) can be attributed, determining the contri-
bution of each linear dynamic composing the multi-model as a whole. This weight function
depends on the degree of membership of the premise variables zj(t) to the fuzzy subsets Ki

j(zj(t))
and the choice of the AND operator. Such that:

wi(z(t)) =
p∏

j=1
Ki

j(zj(t)) for i = 1, . . . , r (1.4)

With: ∀t, wi(z(t)) ≥ 0. We define:

µi(z(t)) = wi(z(t))∑r
i=1 wi(z(t)) (1.5)

The activation function µi(z(t)) of the i-th rule of the fuzzy model verifies the convex sum
properties:

0 < µi(z(t)) < 1 (1.6)
r∑

i=1
µi(z(t)) = 1 (1.7)

Thus, after defuzzification, the state representation of a TS multi-model, in its entirety, can be
written as follows:

ẋ(t) =
r∑

i=1
µi(z(t))(Aix(t) + Biu(t)) (1.8)

y(t) =
r∑

i=1
µi(z(t))(Cix(t) + Diu(t)) (1.9)

1.2.1 Construction of T-S Fuzzy Models

We need a T-S fuzzy model for a nonlinear system to design a fuzzy T-S controller. Therefore,
constructing a fuzzy model represents a crucial and basic procedure in this method. In general,
there are three approaches to constructing fuzzy models [9]:
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1. Identification (Fuzzy modeling) using input-output data.

2. Linearization around multiple operating points.

3. The third approach is based on the formalism of nonlinear sectors. This technique di-
rectly relies on the analytical knowledge of the nonlinear model. Unlike the two previous
approaches, which provide an approximation of the nonlinear model, this third method
offers a TS model that exactly represents the initial nonlinear model.

Fuzzy modeling based on input-output data has been widely explored since the works of Tak-
agi, Sugeno and Kange [7]. This approach involves two steps, identifying the structure and
identifiying the parameters. It is useful for systems that are hard to model using analytical or
pysical models[8].

On the other hand, nonlinear models for mechanical systems can be readily obtained by, for ex-
ample, the Lagrange method and the Newton-Euler method. In such cases, the third approach,
which derives a fuzzy model from given nonlinear dynamical models, is more appropriate.

This chapter focuses on the third approach that utilizes the idea of ”sector nonlinearity”.

1.2.2 Sector non-linearity

Sector nonlinearity is based on the idea that a simple nonlinear system ẋ = f(x(t)), where
f(0) = 0 aiming to find the global sector such that ẋ = f(x) ∈ [a1a2]x(t), where a1 and a2 are
real constants.

Figure 1.1a [8] illustrates the global sector nonlinearity idea.

This approach guarantees an exact fuzzy model construction. However, finding a global sector
for general nonlinear systems is sometimes difficult. In such cases, we consider local sector
nonlinearity, which is reasonable since the variables of physical systems are always bounded.

Figure 1.1b [8] illustrates the local sector nonlinearity, where two lines define the local sectors
under the condition −d < x(t) < d.
The fuzzy model exactly represents the behavior within this local region, i.e., −d < x(t) < d.

Figure 1.1: (a) Global sector nonlinearity. (b) Local sector nonlinearity.

The advantage of such a method is that it does not generate approximation errors and reduces
the number of models compared to the linearization method.
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Let’s consider the continuous nonlinear system :

ẋ = f(x(t)) + g(x(t)) · u(t) (1.10)

Where: x(.) ∈ Rn, u(.) ∈ Rm, f((x).) ∈ Rp, g ∈ Rp×m

Based on the following lemma, we can get the T-S model starting from a non-linear model.

Lemma 1.1[9]. Let z(x(t)) be a bounded function from [a, b] → R for all x ∈ [a, b] with
[a, b] ∈ R2

+. Then there exist two functions F1(x(t)) and F2(x(t)) as well as two scalars α and
β such that:

z(x(t)) = α · F 1(x(t)) + β · F 2(x(t)) (1.11)

With: F1(x(t)) + F2(x(t)) = 1, F1(x(t)) ≥ 0 and F2(x(t)) ≥ 0. A decomposition of z(x(t)) is
considered on [a, b] as follows: 

β = minx∈[a,b] z(t)
α = maxx∈[a,b] z(t)
F1(x(t)) = z(t)−β

α−β

F2(x(t)) = α−z(t)
α−β

(1.12)

Under the assumptions of continuity and boundedness of the functions f(x(t)) and g(x(t)) in
the model 1.8 and the output 1.9 with f(0) = 0 and g(0) = 0, they can be rewritten as follows:

f(x(t)) = ∑r
i=1 µi(z(t))Aix(t)

g(x(t)) = ∑r
i=1 µi(z(t))Bix(t)

h(x(t)) = ∑r
i=1 µi(z(t))Cix(t)

m(x(t)) = ∑r
i=1 µi(z(t))Dix(t)

(1.13)

The model 1.8 and the output 1.9 become:ẋ(t) = ∑r
i=1 µi(z(t))(Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi(z(t))(Cix(t) + Diu(t))

(1.14)

In this case, the obtained multi-model representation corresponds exactly to the nonlinear
model over the considered compact interval.

Figure 1.2 [8] shows the detailed diagram of a standard T-S model, also designed as coupled T-S
structure in the literature. Indeed, they allow reducing the complexity of a nonlinear problem
to be addressed (stability, stabilization, observation, diagnosis, etc.) by decomposing it into a
set of local linear issues. The set of local solutions corresponding to these latter then constitutes
the global solution of the initial nonlinear problem.
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Figure 1.2: Coupled T-S structure

Example:

We consider a nonlinear system given by the following equation:

ẋ1

ẋ2

 =
 1 sin(x1)
f(x1, x2) 0

 x1

x2

+
 0
− sin(x1)

u (1.15)

This system includes two nonlinearities: f(x1, x2) and sin(x1). By applying the previously
defined lemma to each of these two nonlinear functions, a TS fuzzy model with four rules is
obtained (2nl = 4, where nl is the number of nonlinearities).

Suppose the function f(x1, x2) takes values in the interval [f, f ] when x = (x1, x2) belongs to
a subset Ω of R2. By applying Lemma 1.1, the membership functions of the two nonlinearities
are given by the following equations:

For f(x1, x2):

ω1
0 = f − f(x1, x2)

f − f
, ω1

1 =
f(x1, x2)− f

f − f
(1.16)

For sin(x1):

ω2
0 = 1− sin(x1)

2 , ω2
1 = sin(x1) + 1

2 (1.17)

The four rules (or sub-models) that represent the TS fuzzy model of the nonlinear model (1.15)
are given as follows:

- R1: If x1(t) is ω2
0 and f(x1(t), x2(t)) is ω1

0, then
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ẋ1

ẋ2

 =
1 1
f 0

 x1

x2

+
0
1

u (1.18)

- R2: If x1(t) is ω2
0 and f(x1(t), x2(t)) is ω1

1, then

ẋ1

ẋ2

 =
1 1
f 0

 x1

x2

+
 0
−1

u (1.19)

- R3: If x1(t) is ω2
1 and f(x1(t), x2(t)) is ω1

0, then

ẋ1

ẋ2

 =
1 1
f 0

 x1

x2

+
0
1

u (1.20)

- R4: If x1(t) is ω2
1 and f(x1(t), x2(t)) is ω1

1, then

ẋ1

ẋ2

 =
1 1
f 0

 x1

x2

+
 0
−1

u (1.21)

The main interest of this method is that the obtained TS fuzzy model exactly represents the
nonlinear model in the subset Ω of the state space.

1.3 Control and observation of TS models

In order to stabilize the T-S fuzzy model in 1.14, the PDC (Parallel Distributed Compensation)
control is utilized and given by the following formula :

u(t) = −
r∑

i=1
µi(z(t)Kix(t) (1.22)

Mainly, when the complete state of the model is not measurable, or for filtering conditions, a
state observer is added to the control scheme. In this case, the state observer has the following
form :

ẋ(t) = ∑r
i=1 µi(ẑ(t))(Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t)))

y(t) = ∑r
i=1 µi(ẑ(t))(Cix̂(t))

(1.23)

With x̂(t) the state estimate, ẑ(t) the premise estimate and Li, i ∈ {1, .., r}, the observation
gains. In this work we consider the premise variables are measurable, ẑ(t) = z(t). In this
case to compute the control law 1.22 and the observer 1.23, the same µi() as the model’s are
used. This approach allows for the development of various relaxation methods to determine
the stabilization conditions of the state of the model and the observation error, which will be
addressed in the following paragraph.
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1.3.1 Relaxation to resolve LMI Constraints

The stabilization of the T-S model and the observation error is based on Lyapunov theory. Suit-
able quadratic Lyapunov functions are used and conduct to LMI ( Linear Matrix Inequalities)
that are resolved using LMI TOOLBOX on Matlab.

The stabilization problem conducts to double sum µi as follows :

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))Υij (1.24)

Where Υij are constant matrices to find.

The goal is to find an LMI problem that verifies the conditions in 1.24. Many relaxations are
proposed in literature, only Tanaka’s and Tuan’s are considered in this chapter. Relaxations
are based on the fact that the functions µi(z(t)), i ∈ {1, ..., r} and the products µi(z(t))µj(z(t))
and µj(z(t))µi(z(t)) are equal, so we impose that all matrices Υij are negative defined.

Lemma 1.2 (Tanaka, 1994):
Let Υij be matrices of appropriate size. Inequality 1.24 is satisfied if: Υii < 0 ∀i ∈ {1, . . . , r}

Υij + Υji < 0 ∀(i, j) ∈ {1, . . . , r}2, i < j

Lemma 1.3 (Tuan, 2001):
Let Υij be matrices of appropriate size. Inequality (2.11) is satisfied if: Υii < 0 ∀i ∈ {1, . . . , r}

2
r−1Υii + Υij + Υji < 0 ∀(i, j) ∈ {1, . . . , r}2, i ̸= j

In this work, we are only interested in Tuan’s relaxation, that ensures the same number of
unkown variables as Tanaka’s with more relaxed LMI conditions.

1.4 Fuzzy T-S model of the mobile robot and trajectory
tracking

1.4.1 Kenimatic model of the robot

The kinematic model of a non-holonomic unicycle mobile robot in the X-Y plane (Figure 1.3)
can be represented by formula 1.25 in the case of rolling without slipping [10]:

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = ω

(1.25)

where v and ω are the control inputs of the mobile robot, representing the linear and angular
velocities, respectively. The output variables are x and y (the coordinates of the robot’s center
of gravity) and θ which represent the orientation of the robot (angle between the X-axis and the
velocity vector of the robot). While r is the radius of the wheel and l is the distance between
the wheel and the center of the robot.
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Figure 1.3: Uni-cycle mobile robot

The angular velocities of left wheel ωg and right wheel ωd are given by :ωd

ωg

 = 1
r

1 l

l −1

v

ω



1.4.2 Trajectory tracking error model

Tracking error e = [ex, ey, eθ] is defined as the difference between the pose of the real robot R
and the reference robot model Rr. The tracking error is generally expressed in the robot frame
as follows : 

ex

ey

eθ

 =


cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (qr − q) (1.26)

While q =
[
x y θ

]T
is the actual pose of the robot, and qR =

[
xr yr θr

]T
is the pose of

reference.

Using both 1.25 and 1.26 equations, supposing that the kinematic model of the real robot and
the virtual one are identical give the follow tracking error dynamics :


ėx

ėy

ėθ

 =


cos(eθ) 0
sin(eθ) 0

0 1


vr

ωr

+


−1 ey

0 −ex

0 −1


v

ω

 (1.27)

Where vr and ωr are the reference velocities. The control law of the mobile robot is given by

u =
u

ω

T

. In order to be able to obtain a T-S model for the error dynamics, Kanayama in

1990 first proposed an anticipatory action uf that would be applied as uf =
[
vrcos(eθ) ωr

]T
.

Let u = uf + uB, we replace u by its value and simplify so the model in 1.27 will be rewritten
as follows :
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
ėx

ėy

ėθ

 =


0 ωr 0
−ωr 0 vrsinc(eθ)

0 0 0


vr

ωr

+


−1 ey

0 −ex

0 −1

uB (1.28)

Where uB is of dimension 2 as same as u and uf .

This non-linear model is the start point to compute the fuzzy control law without and with
observer. The main interest of this method is to prove the stability of the global system with
or without observer in a predefined state space [10].

Figure 1.4 illustrate the error on pose.

Figure 1.4: Pose error.

1.4.3 T-S fuzzy model of pose error

Considering the model in 1.27, four borned nonlinearities are η1 = ωr,η2 = vrsinc(eθ),η3 = ey

and η4 = ex if we consider the following inequalities :

|ex| ≤ emax, |ey| ≤ emax, |eθ| ≤
π

2 rad.

Based on the nonlinear sector method that contains 24 rules (i.e 24 fuzzy sub-models)

Applying the lemma 1.1 we obtain the following global model, the sixteen sub-models and the
membership functions :

ė(t) =
16∑

i=1
µi(z(t)) (Aie(t) + BiuB(t)) (1.29)

with the state and control matrices for i ∈ {1, . . . , 16} :

Ai =


0 −ε1

i wr,max 0
ε1

i vr,max 0 κi

0 0 0

 , Bi =


−1 ε2

i emax

0 ε3
i emax

0 −1


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such that:

emax = 0.1 (m), ε1
i =

+1 for 1 ≤ i ≤ 8
−1 otherwise

, ε2
i =

+1 for i ∈ {3, 4, 7, 8, 11, 12, 15, 16}
−1 otherwise

ε3
i = (−1)i+1, κi =


2
π
vr,min for 1 ≤ i ≤ 4 and 9 ≤ i ≤ 12

vr,max otherwise



µ1 = ω01ω02ω03ω04, µ2 = ω01ω02ω03ω14, µ3 = ω01ω02ω13ω04, fraµ4 = ω01ω02ω13ω14,

µ5 = ω01ω12ω03ω04, µ6 = ω01ω12ω03ω14, µ7 = ω01ω12ω13ω04, µ8 = ω01ω12ω13ω14,

µ9 = ω11ω02ω03ω04, µ10 = ω11ω02ω03ω14, µ11 = ω11ω02ω13ω04, µ12 = ω11ω02ω13ω14,

µ13 = ω11ω12ω03ω04, µ14 = ω11ω12ω03ω14, µ15 = ω11ω12ω13ω04, µ16 = ω11ω12ω13ω14

with:



ω01 = wr,max − wr

wr,max − wr,min
, ω11 = 1− ω01

ω02 = vr,max − vr sinc(eθ)
vr,max − vr,min sinc

(
π
2

) , ω12 = 1− ω02

ω03 = emax − ex

2emax
, ω13 = 1− ω03

ω04 = emax − ey

2emax
, ω14 = 1− ω04

1.4.4 PDC Control law

To stabilize our error dynamics in 1.29, the following PDC control law is synthesized :

uB(t) = −
16∑

i=1
µi(z(t))Kie(t) (1.30)

The stability of the closed loop system is proven choosing a quadratic Lyapunov function
V (e(t)) = e(t)T Pe(t), where P is a (n× n) symmetrical and positive defined matrix.

The solution e = 0 of the system 1.29 is asymptotically stable if the derivative of the chosen
Lyapunov function is negative defined all along the trajectory of the model :

V̇ (e(t)) = ė(t)T Pe(t) + e(t)T P ė(t) < 0 (1.31)

i.e

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))
[
(Ai −BiKj)T P + P (Ai −BiKj)

]
< 0 (1.32)
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Multiplying 1.32 on the right and on the left by X, we obtain the equivalent condition:

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))
[
XAT

i −MT
j BT

i + AiX −BiMj

]
< 0 (1.33)

where Mj = KjX.

Let us define:
Υij = XAT

i −MT
j BT

i + AiX −BiMj (1.34)

According to Lemma 1.3, if there exist matrices X > 0, Mj (for j = 1, . . . , r) satisfying the
following linear matrix inequalities:

Υii < 0 ∀i ∈ {1, . . . , r}
2

r−1Υii + Υij + Υji < 0 ∀(i, j) ∈ {1, . . . , r}2, i ̸= j
(1.35)

then, for the gain values
Kj = X−1Mj, j = 1, . . . , r (1.36)

the solution e = 0 of system 1.29 is asymptotically stable.

To ensure more rapid convergence, the inequality in 1.31 is modified by adding an exponential
term as follows :

V̇ (e(t)) ≤ −γV (e(t)) (1.37)

so that now the solution e = 0 of the system 1.29 converges and it is asymptotically stable with
a convergence rate of γ if :

Υij = XAT
i −MT

j BT
i + AiX −BiMj + γX (1.38)

1.4.5 Synthesis of a T-S observer

In practice, most of the time, the states are not fully measurable or are affected by environmental
noise. Therefore, a state observer is typically added to the control scheme.

In our case, all the states are measurable, however, they are influenced by noise. To address
this, a T–S state observer is introduced.

The estimated error dynamics is given by:

˙̂e(t) =
16∑

i=1
hi(z(t)) (Aiê(t) + BiuB(t) + Li (e(t)− ê(t))) (1.39)

with ê =
[
êx, êy, êθ

]T
, where Li (for i ∈ {1, . . . , 16}) are the observer gain matrices to be

determined.

The PDC (Parallel Distributed Compensation) control law is thus modified as:

uB(t) = −
16∑

i=1
hi(z(t))Kiê(t) (1.40)

Page 27



Fuzzy modeling and control

The estimation error dynamics ẽ(t) = e(t)− ê(t) becomes:

˙̃e(t) =
16∑

i=1
hi(z(t))(Ai − Li)ẽ(t) (1.41)

The global closed-loop system dynamics with the observer is given by:ė

˙̃e

 =
16∑

i=1

16∑
j=1

hi(z(t))hj(z(t))
Ai −BiKj BiKj

0 Ai − Lj

e

ẽ

 (1.42)

The observer gain computation is performed using a procedure similar to that used for com-
puting the control gains. The Lyapunov function chosen in this case is

V (ẽ(t)) = ẽ(t)T Pobsẽ(t) (1.43)

where Pobs is a symmetric and positive definite matrix of dimension n× n.

Using Lemma 1.3, the estimation error dynamics 1.41 is stable if there exist matrices Ni,
i ∈ {1, . . . , 16}, and Pobs > 0, such that the following LMI conditions are satisfied:

Υi < 0 (1.44)

with
Υi = AT

i Pobs + PobsAi −Ni −NT
i (1.45)

The gains of the fuzzy TS observer in equation 1.41 are then given by:

Li = P −1
obsNi (1.46)

1.4.6 Simulation result for trajectory tracking

In order to validate the PDC control law, a circular reference trajectory is generated with a
velocity reference of vr = 0.2m/s and ωr = 1rad/s. The goal is to join the circular trajectory
and maintain it with and without noises on measurement.

Based on LMI 1.37, the stabilization gains Ki, i ∈ {1, ..., 16} with γ = 0.1.

K1 =
−2.3664 0.3278 −0.3953

0.2172 −2.0620 −1.1002

 K2 =
−2.3327 0.4102 −0.3825

0.1517 −1.9008 −1.0098



K3 =
−2.2669 0.1142 −0.5047

0.2579 −2.0330 −1.0839

 K4 =
−2.2383 0.2390 −0.4783

0.1696 −1.8729 −0.9956



K5 =
−2.4291 0.5181 −0.3215

0.2877 −3.1678 −1.4806

 K6 =
−2.4304 0.5427 −0.3023

0.1611 −3.1616 −1.4506



K7 =
−2.3004 0.4526 −0.4049

0.4167 −3.1629 −1.4693

 K8 =
−2.3289 0.4905 −0.3687

0.2361 −3.1674 −1.4437


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K9 =
−2.2669 −0.1142 0.5047
−0.2580 −2.0330 −1.0839

 K10 =
−2.2383 −0.2390 0.4783
−0.1696 −1.8729 −0.9956



K11 =
−2.3664 −0.3278 0.3953
−0.2172 −2.0620 −1.1002

 K12 =
−2.3327 −0.4102 0.3825
−0.1517 −1.9008 −1.0098



K13 =
−2.3004 −0.4526 0.4049
−0.4167 −3.1630 −1.4693

 K14 =
−2.3289 −0.4905 0.3687
−0.2361 −3.1674 −1.4437



K15 =
−2.4291 −0.5181 0.3215
−0.2877 −3.1678 −1.4806

 K16 =
−2.4304 −0.5427 0.3023
−0.1611 −3.1616 −1.4506



1.4.6.1 Non-noisy measurement case

The following simulation results are obtained based on initial pose of the robot
[
x y θ

]
=[

0 0 π
3

]
and initial conditions of the reference model

[
xr yr θr

]
=
[
0.1 −0.3 0

]
knowing

that the velocities of reference are defined as constants, vr = 0.2m/s and ωr = 1rad/s

Figure 1.5 shows the trajectory tracking with exactitude.

Figure 1.5: Trajectory tracking based on PDC control

The linear and angular velocities both converge to the velocities of reference as shown in figure
1.6

Figure 1.7 illustrates that the error dynamics is stabilized around the origin.
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Figure 1.6: Real velocity convergence to reference velocity

Figure 1.7: Error dynamics stabilization using PDC control

To validate the fuzzy controller, simulations were conducted using Gazebo, which provides
realistic conditions that closely mimic real-world environments.
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(a) Tracking on x position for linear trajectory (b) Tracking on y position for linear trajectory.

(c) Heading tracking for linear trajectory. (d) Tracking error for linear trajectory.

Figure 1.8: Linear trajectory tracking using fuzzy controller.

(a) Tracking on x position for circular trajec-
tory

(b) Tracking on y position for circular trajec-
tory.

(c) Heading tracking for circular trajectory. (d) Tracking error for circular trajectory.

Figure 1.9: Circular trajectory tracking using fuzzy controller

Comments :

- In both trajectories, the errors in x, y, and θ stabilize around zero, with some negligible
fluctuations in the x component for the linear trajectory.

- The fuzzy controller demonstrated satisfactory tracking performance, even on wavy or
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curved paths.

- The discontinuity observed in the heading error in the circular trajectory (Figure 1.9 (d))
is due to keeping the angle within the [−π, π] range.

1.4.6.2 Noisy measurement

In a real environment, noises affect sensors measurement and lead to errors in control and
navigation if it is not well addressed. As a solution, a T-S observer is added in order to filter
these noises. Relying on the stabilization gains obtained in 1.4.6.1, and the observed model in
1.39, the following gains are obtained :

L1 = L3 = L4 = L9 = L10 = L11 = L12 =


1.0000 0.0000 0.0000
0.0000 1.0000 0.0159
0.0000 0.0159 1.0000



L2 = L5 = L6 = L7 = L8 = L13 = L14 = L15 = L16 =


1.0000 0.0000 0.0000
0.0000 1.0000 0.2250
0.0000 0.2250 1.0000


Figure 1.10 represents the trajectory tracking while keeping the same initial conditions on
1.4.6.1 in addition to error dynamics observer initial conditions defined as

[
êx êy êθ

]
=[

0.2 −0.2 π
]

and adding white noise signals of 0.1 amplitude to the states.

Figure 1.10: Trajectory tracking based on PDC control and T-S state observer.

Control signals, error dynamics stabilization ,and observation error are shown in figures 1.11,
1.12, and 1.13.
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Figure 1.11: Control signal in presence of noise.

Figure 1.12: Error dynamics stabilization using PDC control and filter.

Figure 1.13: Observation error in presence of noises using PDC control and filter.
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Comments

In the previous section, a Takagi-Sugeno (T-S) fuzzy controller was employed for trajectory
tracking of the mobile robot. Two simulation scenarios were studied:

1. Non-noisy case : The T-S fuzzy controller was applied directly without any filtering.
The simulation results demonstrated accurate trajectory tracking, with the robot success-
fully following the reference trajectory and stabilizing the error dynamics.

2. Noisy case : To simulate a more realistic environment, a white noise of amplitude 0.1
was added to the sensor measurements. To mitigate the effect of noise, a T-S observer was
integrated with the controller to act as a filter. This observer estimated the system states
accurately as the observation error tends to converge to the origin as shown in figure
1.13, leading to improved control performance. The results showed that the combined
controller and observer maintained stable error dynamics and effective trajectory tracking
despite the presence of noise.

To further support the choice of the T-S fuzzy controller, a kinematic trajectory tracking
controller from [1] was tested on the system described in 1.27, under conditions where the
initial yaw error exceeded π

2 . The controller failed to stabilize the yaw error around the origin,
as illustrated in 1.14. In contrast, the fuzzy controller successfully handled larger initial errors,
demonstrating its superior robustness in such scenarios.

Figure 1.14: Error dynamics using controller in [1]

These simulations validate the robustness of the T-S fuzzy control approach, particularly when
enhanced with a state observer for real-world scenarios involving sensor uncertainty.

1.5 Conclusion

In this chapter, a trajectory tracking controller is designed to allow mobile robots to navigate
effectively in their environment. In order to ensure the desired performances, a fuzzy controller
based on Takagi-Sugeno fuzzy models is considered. In this context, the method of T-S fuzzy
modeling and control are well established. The controller demonstrated good tracking perfor-
mance in simulation, making it a suitable component for the mapless navigation pipeline that
will be addressed in the next chapters.
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Chapter 2

Deep Reinforcement learning

2.1 Introduction

Reinforcement learning (RL) represents the third paradigm of machine learning in conjunction
with supervised and unsupervised learning. RL is a field of machine learning (ML) that is
experiencing a period of great success in the world of research applied to robotics, video games,
recommendation systems, multi-agent systems..., enhanced by the advances in deep learning
that allowed function approximation developing what we call now days Deep Reinforcement
Learning (DRL).Figure 2.1 illustrates the paradigm of ML and where RL stands in this. Both
RL and DRL consist of solving a decision-making problem passing by a sequence of trial and
error where the RL or DRL agent could discover and recognize valuable decisions by penalizing
the agent for taking bad actions and reinforcing it for taking good actions given by a reward
signal. This interaction is similar to what humans and animals do in the real world to correct
their behavior.

Figure 2.1: Paradigm of ML

Before diving into the discussion of the results of this thesis, we will focus on the exploration of
the field of reinforcement learning. The first section begins with the definition of the notation
used and with the theoretical foundations behind traditional RL. In the second it goes progres-
sively towards DRL through an introduction to the fundamentals of DL paying more attention
to algorithms used in this project.
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2.2 Reinforcement Learning Framework and Example

The framework behind RL explains that problems of related learning can be reduced to three
signals passing between an agent and the environment it interacts with. There are :

1. A signal to represent the choices made by the agent (actions).

2. Another signal to represent the basis on which choices are made (states).

3. A scalar signal to define the agent’s goals (rewards).

States, actions, and associated rewards depend on each RL problem, while the framework
associated remains the same. The goal of the RL agent is to maximize the rewards it obtains
over a predefined period of time when doing the experiment. Most RL tasks can be broken down
into sequences of agent-environment interactions between initial and terminal states where each
sub-sequence between initial and terminal state is called an episode. The environment resets
to the initial state upon reaching a terminal state.

We use the cart pole balancing problem described by Barto, Sutton, and Anderson in “Neuron-
like Adaptive Elements That Can Solve Difficult Learning Control Problem”. A pole is attached
by an un-actuated joint to a cart, which moves along a frictionless track. The pendulum is
placed upright on the cart and the goal is to balance the pole by applying forces in the left and
right direction on the cart.

States are summarized by four parameters: the position of the cart from the center, the velocity
of the cart, the pole angle, and the angular velocity of the pole. The system is controlled by
applying one of two discrete actions: a force of +1 to push the cart to the right, or -1 to push
it to the left. The pendulum starts upright, and the goal is to prevent it from falling over.
A reward of +1 is given at every timestep the pole remains upright, encouraging the agent to
keep the pendulum balanced as long as possible. An episode ends when the pole deviates more
than 15 degrees from vertical, or the cart moves more than 2.4 units from the center. Thus,
the longer the cart-pole remains upright within the defined limits, the more rewards the agent
collects.

Figure 2.2: Screen capture of the OpenAI Gym CartPole problem with annotations showing
the cart position, cart velocity, pole angle, and pole angular velocity

The goal of the RL agent is therefore to maximize the cumulative rewards it obtains over time.
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2.3 Fundamentals of Reinforcement Learning

In a reinforcement learning (RL) problem, the decision maker is the learner and is referred to
as the agent. Everything outside the agent that it interacts with constitutes the environment.
The interaction occurs in discrete time steps t = 0, 1, 2, ... where at each time step the agent
receives a representation of the environment state st ∈ S, where S is a set of all possible states.
On this basis the agent selects an action, at ∈ A(st) where A(st) is the set of actions that
can be taken when in state st. As a consequence of the execution of this selected action, that
agent transitions into a new state st+1 for which it receives a reward Rt+1. The RL framework
is shown in figure2.3 .

Figure 2.3: Diagram of Reinforcement Learning (RL) with main elements

Following are a number of elements that make up RL algorithms. Understanding these elements
is crucial to understand the nature of the problem addressed, as well as to understand the
solutions to the problem.

1. Policy : The policy, noted π, is a mapping from perceived states of the environment to
the actions taken in those states. A policy may be a lookup table or a stochastic process.
A policy is an analogous to stimulus response in psychology [11].

2. Reward function : A reward function, Rt(st, at) defines the goal in the RL problem. It
gathers each state, or state-action pair to a single number that indicates the desirability of
reaching a certain state. Depending on the task, the rewards can also be spare, means that
the agent receives a large reward once it reaches the terminal state, and zero elsewhere.
[11].

3. Markov Decision Process (MDP) : MDP formally describes an environment for RL
where the environment is fully observable, i.e. the current state completely characterizes
the process. Almost all RL problems can be formalized as MDPs even partially observable
problems can be converted into MDPs[12].
It is ideal to have a state signal that summarizes past operations compactly while retaining
all the relevant information. A state st is said Markov if and only if :

P [st+1|st] = P [st+1|s1, ..., st] (2.1)

Where P denotes the probability operator.
If the Markov property holds, then given state s and action a, the probability of each
possible pair of next state and reward, s′, r is given by :

P [st+1 = s′,Rt+1 = r|s0, a0, R1, ..., st, at, Rt] = P [st+1 = s′,Rt+1 = r|st, at, Rt] (2.2)
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If the Markov property holds true, then the environment and task as a whole is said
Markov Decision Process (MDP). Taking one step in such a problem enables us to predict
the next state and expected reward from the next state just by knowing the current state
and action [11].
An MDP can be defined as a 5-tuple < S,A,Pa,Ra, γ > with :

- S is the set of possible states.
- A is the set of actions.
- Pa(s, s′) is the probability of transition from state s to state s′ taking action a.
- Ra(s, s′) is the immediate reward obtained after transitioning from state s to s′

taking action a.
- γ is a discount factor that prioritizes the importance of immediate reward and future

rewards [13].
- Rt+1 is the reward taken from taking one step from t to t + 1

4. Value function : The value of a state represents the expected cumulative discounted
reward that an agent can achieve in the future by following a specific policy starting
from that state. It reflects how desirable a state is in the long term by considering both
immediate rewards and the likely future states that will be encountered. Value func-
tions, therefore, guide the agent in prioritizing actions that maximize long-term reward.
Formally, the value function for a state s under a policy π is defined as [13]:

Vπ(s) = Eπ

[ ∞∑
t=0

γtRt+1 | st = s

]
(2.3)

where γ is the discount factor (0 ≤ γ ≤ 1), a discount factor near to zero consider
maximizing one step ahead reward, on the other hand, a discount rate close to one
signifies that further future rewards are also taken into consideration. Rt+1 is the reward
received at time step t + 1, and Eπ[·] refers to the expected value of a random variable
given a policy π with t being the time step.

5. Action-Value function : Also named Q-value, it estimates the expected return for each
taken action given a state s following a policy π. It is represented as [13] :

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt+1 | st = s, at = a

]
(2.4)

Where a is the action sampled from the policy π to satisfy the reward goal.

6. Bellman equations : Both equations. 2.3 and 2.4 satisfy recursive relationship between
value of a state (pair of state-action) and the values of its successor states (pair of states-
actions). These relationships are shown in 2.5 and 2.6 where a′ from A is the next action
sampled from the policy π.

Vπ(s) = Eπ [Gt | st = s]

= Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ st = s

]

= Eπ

[(
Rt+1 + γ

∞∑
k=0

γkRt+k+2

) ∣∣∣∣∣ st = s

]
=
∑

a

π(a | s)
∑
s′,r

P (s′, r|s, a) [R + γVπ(s′)]

(2.5)
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Qπ(s, a) = Eπ [Gt | st = s, at = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ st = s, at = a

]

= Eπ

[(
Rt+1 + γ

∞∑
k=0

γkRt+k+2

) ∣∣∣∣∣ st = s, at = a

]
=
∑

a

π(a | s)
∑
s′,r

Pa(s′, r|s, a) [R + γQπ(s′, a′)]

(2.6)

The goal is to find the optimal policy π∗ to exploit. It can be done using Bellman
optimality equations defined in 2.7 and 2.8.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s, At = a]

= max
a

E [Rt+1 + γv∗(St+1) | St = s, At = a]

= max
a

∑
s′,r

p(s′, r | s, a) [Rt+1 + γv∗(s′)]

(2.7)

Q∗(st, at) = Est+1

[
Rt+1 + γ max

a′
Q∗(s′, a′)

]
=

∑
s′∈S, r∈R

P (s′, r | s, a)
[
r + γ max

a′
Q∗(s′, a′)

] (2.8)

2.4 Classifying RL methods

Reinforcement Learning algorithms can be categorized in various ways depending on the un-
derlying learning strategy and the components they rely on. The most common categorizations
include:

2.4.1 Model-based vs Model-free

It is based on whether the algorithm relies on an environment model during learning.

- Model-based involves constructing a model of the environment’s dynamics by collecting
transition data through interaction. This model, which estimates the outcomes of actions
in different states, is then used to plan future actions. The primary strength of model-
based approaches lies in the agent’s ability to perform virtual simulations within the
state-action space, enabling it to select an optimal action based on the current state
before executing it in the real environment. However, this approach comes with several
limitations. Firstly, it is computationally intensive due to the overhead introduced by the
planning process. Secondly, learning an accurate model can be particularly challenging
in complex or stochastic environments. Inaccuracies in the learned model can lead to
suboptimal decision-making and significantly degrade overall performance.

- Model-free approaches do not require learning a model of the environment to generate
experiences. Their primary objective is to learn an optimal policy that maximizes a
numerical reward signal. These methods are generally less computationally demanding,
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as they bypass the need for simulating virtual experiences. Model-free techniques such as
Monte Carlo learning and Temporal-Difference learning learn directly from interactions
with the environment.

◦ Monte-Carlo learning
Monte-Carlo based methods learn directly from complete episodes of experiences.
They can only be applied to episodic tasks in which there exist a clearly defined
terminal state, which would initiate a reset like board games. MC methods typically
have high variances, zero bias and theoretically assured convergence properties.
◦ Temporal-Difference learning

TD learning is a formulation of RL algorithms. Contrary to MC learning, it schemes
learn from incomplete episodes by bootstrapping existing estimates, updating a guess
towards a guess[12]. It allows learning online from incomplete sequences after every
step without knowing the final outcome. TD methods work for non-terminating
environments. They also have low-variance and some bias, and are statically more
efficient than MC methods, and sensitive to initial values. TD(0) is the simplest
of TD algorithms, which updates the current estimate of the value function Vt(st)
towards the sum of the observed return Rt+1 and the discounted estimated value
function at the next step Vt+1(st) respecting the following rule.

Vt+1(st)← Vt(st) + α (Rt+1 + γVt(st+1)− Vt(st)) (2.9)

The quantity G
(1)
t = Rt+1 + γVt(st+1) represents the one-step target, while the cor-

responding one-step TD error is given by: δ(t) = Rt+1 + γV (st+1)− V (st).
Since this update is directed towards the target derived from a single step, the ap-
proach is classified as a one-step TD method. Extending the temporal difference
learning to n steps leads to n-step TD methods, where updates are performed to-
wards a target representing the discounted return over n steps. The n-step returns
serve as approximations of the total return over an experiment and are mathemati-
cally expressed as:

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVt+n−1(st+n), n ≥ 1, 0 ≤ t < T − n

[14].
Algorithms such like DQN that relies on Q-learning [15] is an example of TD learning
algorithms in literature.
NB : It is often easier to learn a good policy than a good model [16], that is why model
free learning is chosen in practice. Moreover TD learning methods are preferred over
MC methods for their applicability to continuing tasks.

2.4.2 On and off-policy learning

RL algorithms are also categorized on the basis whether they are on-policy or off policy learning
methods.

- On-policy learning - An on-policy method requires learning the policy π from the expe-
rience sampled from the policy itself. This means that the exploration need to be built
into the policy and determine the speed of the policy improvements. [14]

- Off-policy learning - An off-policy learning method learns the desired target policy from
experience sampled from experience sampled from a behavioral policy that the agent can
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Figure 2.4: Temporal Difference Learning in Reinforcement Learning

follow. This enables a powerful exploration-exploitation balance because the agent is
utilizing one policy for exploration and the another for learning.
Off-policy algorithms relying on function approximators as a representation of value func-
tions or policy have no prove or guarantees of convergence. [13]
Experience Replay buffer
The main concept in RL is that the agent can learn form its past experiences. Past
experiences include how the environment change to agent’s action and are stored in from
of a tuple et = (st, at, rt, st+1) in Dt = {e1, ..., et} where et contains all the steps of
an episode and Dt is the data structure storing the tuples. These experiences will be
accessed later with a low computational cost. During the training, samples are randomly
chosen from Dt in a mini-batch and are used in off-policy learning. This breaks the
correlation due to sequential observations. It also reduces simulation time and improve
sample efficiency by sampling experiences from the memory instead of simulation.

2.4.3 Classifying RL - Actor/Critic

RL algorithms can also be categorized based on them being a critic-only approach where they
optimize a value function, an actor-only approach which memorizes and optimizes a policy, or
whether they are an actor-critic based approach, optimizing both the value and policy.

2.4.3.1 Critic-Based RL

The value function for a particular state s, when following a policy π is defined in 2.3. The
state-action value function which gives information in taking a particular action being in a state
s is defined in 2.4.
Value or action-value based approaches rely on optimizing for specific value function that de-
pends on the environment’s state for a better value function iteratively and implicitly producing
a better policy for the agent to follow.
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2.4.3.2 Actor-Based RL

Actor-only methods aim to optimize the policy function directly by adjusting its parameters
to maximize expected cumulative rewards. This is typically achieved through gradient ascent
on the policy’s performance measure. Unlike critic-only methods, which derive policies from
value functions, actor-only methods do not estimate value functions and instead focus solely
on policy optimization.

2.4.3.3 Actor-Critic RL

The Actor-Critic algorithm is a reinforcement learning method that combines two approaches:
the Actor, which chooses actions, and the Critic, which evaluates them. This combination helps
overcome the weaknesses of using each method alone.
At the same time, the Critic checks how good the chosen actions are by estimating their value.
This teamwork helps the algorithm balance trying new actions (exploration) and using what it
already knows (exploitation), taking advantage of both policy and value methods.

The actor makes decisions by selecting actions based on the current policy. Its responsibility
lies in exploring the action space to maximize expected cumulative rewards. By continuously
refining the policy, the actor adapts to the dynamic nature of the environment.

The critic evaluates the actions taken by the actor. It estimates the value or quality of these
actions by providing feedback on their performance. The critic’s role is pivotal in guiding
the actor towards actions that lead to higher expected returns, contributing to the overall
improvement of the learning process.

Figure 2.5 illustrates the architecture of the actor-critic algorithms.

Figure 2.5: Actor-critic architecture
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2.5 Deep Reinforcement Learning - DRL

The easiest way to represent a value (action-value) function is by using a lookup table that stores
each state ( state-action pair) along side with its entry V (s) (Q(s, a)). A problem of storage
occurs when the state-action spaces are large as it requires heavy computational resources. To
solve this problem, function approximators can be used instead of lookup tables to represent
values functions, thus reducing memory usage and accelerating the learning process and also
generalize from seen states to unseen states[12] and [11].

Both value and action-value function can be represented as follows in equation 2.10.

v̂(s, w) ≈ Vπ(s)
q̂(s, a, w) ≈ Qπ(s, a)

(2.10)

Where w is a parameter vector for the function approximators given by v̂ and q̂. The extra
parameter w is updated by a learning algorithm such as the Monte-Carlo method or the Tem-
poral Difference Learning both disccussed in the next section. The function approximator can
be linear or neural networks.

The linearly approximated value function is defined as:

v̂(s, w) = x(s)⊤w =
n∑

j=1
xj(s)wj (2.11)

where x(s) =
(
x1(s), . . . , xn(s)

)⊤
is the feature vector representing state s.

The goal of training is to find a parameter vector w that minimizes the mean squared error
between the true value Vπ(s) and the approximated value v̂(s, w). This can be formulated as
the following objective function:

J(s, w) = Eπ

[
(Vπ(s)− v̂(s, w))2

]
(2.12)

To minimize J(s, w), we apply gradient descent. The update rule for the parameters is:

∆w = −1
2α∇wJ(w) (2.13)

Expanding the gradient, the update becomes:

∆w = αEπ [(Vπ(s)− v̂(s, w))∇wv̂(s, w)] (2.14)

Using a single sample estimate, the update simplifies to:

∆w = α (Vπ(s)− v̂(s, w))∇wv̂(s, w) (2.15)

In practice, the expected value is estimated using Monte-Carlo or T-D learning methods.

Nowdays, since they are widely used in research, neural networks are the most intuitive option
to take as function approximator. It reduces training time for large MDPs and requires less
computations and memory usage. Thanks to the advancement in deep learning, neural networks
become the fundamental tool to exploit as function approximator to develop what we call today
DRL which achieved remarkable results.
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2.5.1 Fundamentals of Deep Learning - DL

Artificial neural networks

DL is an approach to learning based of a function f : x −→ y parametrised with w ∈ Rn| n ∈ N
such that y = f(x, w).
The neuron elaborates the inputs by taking the weighted sum, adding a bais b and applying
an activation function f following the relation y = f(∑n wxi + b). The set of parameters w and
b need to be adjusted to find a good parameter set, this is learning.
Figure 2.6 describes the best what a deep neural network is with one fully-connected hidden
layer.

Figure 2.6: An example representation of a deep neural network with one fully-connected hidden
layer

h = g(W1 · i + B1)
o = W2 · h + B2

(2.16)

The input layer receives as input a column vector of input features i of size n ∈ N. Each value in
the hidden layer, represented by a vector h of size m ∈ N, is obtained through a transformation
of the input values as described by equation 2.16 where, W1 is a weight matrix of size m × n
and b1 is a bias vector of size m. The function g denotes a non-linear parametric activation
function, which forms the core of neural network computations. Subsequently, the hidden layer
output h undergoes a second transformation to produce the output layer values, as described
in equation 2.16 using weights W2 ∈ Rno×nh and bias b2 ∈ Rno , where no denotes the size of the
output layer and nh the size of the hidden layer.
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Activation functions

Activation functions play a key role in training deep neural networks by deciding whether a
neuron should be activated based on its input. They are mathematical functions applied to
each neuron’s output. In deep networks, non-linear activation functions are commonly used
to enable the model to learn complex, non-linear relationships between inputs and outputs.
This is especially important when dealing with data like images, video, or audio, where such
relationships are not simple or linear [17].
There exists several activation functions in literature, only those used in this project will be
listed :

- Sigmoid function known as logistic function maps any input value to a value between
0 and 1. It has the advantage of leading to clear divisions, as it tends to produce results
near the limits of its range. Its output can be directly interpreted as a probability. The
sigmoid function is given by :

s(x) = 1
1 + e−x

where x is the output value of the neuron.

- Hyperbolic tangent function (tanh) maps any input value to a value between -1 and
1. It is used in problems where the output can be negative. It is given by :

tanh(x) = ex − e−x

ex + e−x

The advantages mentioned for the sigmoid function also apply to this one, as it is a scaled
and shifted version of the former.

tanh(x) = 2s(2x)− 1

Figure 2.7 illustrates both sigmoid and tanh plots and the likeness between the two
functions.

Figure 2.7: Sigmoid and Hyperbolic tangent functions plot
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Learning process

The learning process of a neural network is an iterative process in which the computations
are performed forward and backward through the network’s layers until the loss function is
minimized in order to get the best parameters Wi and Bi.
The learning process has three main steps illustrated in figure 2.8 :

- Forward propagation.

- Loss function calculation.

- Backward propagation.

Figure 2.8: Learning process of a neural network

Forward Propagation
In forward pass, input data is fed into the neural network, calculations are performed layer by
layer until the output is computed. Each neuron recieves input signals, applies an activation
function, and passes the result to neurons in the next layer. This continues to the last layer
that generates the final output. This step is responsible for predictions based on the current
parameters (weights w and bias b).

Loss function calculation
Once the output is computed, the next step is to evaluate the performance of the model by
comparing its predictions with the actual target values from training data. This is not possible
without a loss function also known as a cost function, which quantifies the predicted action and
the truth. Most used loss function is mean squared error (MSE). Minimizing the loss function
is the goal during the training, hence improving the model accuracy.

Backward propagation
After computing the loss function, the network needs to adjust its parameters to minimize the
loss and improve performance. Backward propagation, also known as backpropagation, is the
process of these updates by calculating the gradient of the loss with respect to each parameter.
This propagates the error backward through the network, layer by layer. The gradients are
then used to update the parameters using optimization algorithms like gradient descent or its
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variants. By iterating this process, the network progressively learn to make more accurate
predictions and minimize errors.

Overall, the three crucial steps together enable the network to learn from data, optimize its pa-
rameters, and improve its performance overtime, making the model capable of solving complex
problems.

2.5.2 DRL Agents

There are two main types of reinforcement learning agents: those designed for discrete action
spaces and those for continuous action spaces. In discrete tasks, the agent chooses from a fixed
set of actions. But in continuous tasks, the agent must select actions from a range of values,
which makes the problem more complex because the number of possible actions is infinite.

This project focuses mainly on agents that handle continuous control tasks, special algorithms
are used, such as Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3),
Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO). These agents combine neu-
ral networks with value functions or/and policy optimization to learn how to act in continuous
environments.The DQN algorithm, which is made for discrete action spaces, will also be tested.
It uses a deep neural network to learn the action-value function, helping the agent choose the
best action from a fixed set.

Deep Q-Network Agent

The Deep Q-Network (DQN) algorithm is an off-policy reinforcement learning method designed
for environments with discrete action spaces. It learns a Q-value function that estimates the
expected long-term reward for each action when following the optimal policy [18]. DQN im-
proves standard Q-learning by using a target network for stability learning and an experience
buffer to store past transitions [4]. During training, the agent performs the following actions:

- Updates the critic network parameters at every time step.

- Explores the action space using an epsilon-greedy strategy: with probability ϵ, it selects
a random action; otherwise, it chooses the action with the highest estimated value.

- Stores past experiences in a circular buffer and learns from random mini-batches sampled
from it to update the critic.

To estimate the value of the optimal policy, a DQN agent uses two action-value functions, each
represented by a neural network:

- Critic Q(S, A; ϕ): This network takes the current state S and action A, and estimates
the expected cumulative future reward. It represents the value of the optimal policy.

- Target Critic Qt(S, A; ϕt): To make training more stable, a second network is used. It
is periodically updated with the latest parameters from the main critic network.

Both networks have the same architecture and are trained using function approximation.

DQN Algorithm [4] is detailed in algorithm 1.
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Deep Deterministic Policy Gradient Agent

The Deep Deterministic Policy Gradient (DDPG) algorithm is an off-policy actor-critic method
used in environments with continuous action spaces. It learns a deterministic policy with the
help of a Critic that estimates the value of actions. As an actor-critic method, it trains two
networks: one for choosing actions (actor) and one for evaluating them (critic)[18].

During training, a DDPG agent performs the following steps:

- Updates the actor and critic learnable parameters at each time step during learning.

- Stores past experiences using a circular experience buffer. The agent updates the actor
and critic using a mini-batch of experiences randomly sampled from the buffer.

- Perturbs the action chosen by the policy using a stochastic noise N at each training step.

To learn the policy and value function, a DDPG agent uses four neural networks:

- Actor µ(s|θµ): This network takes the current observation S and returns the best action
to take, aiming to maximize long-term reward. Here, π is a deterministic policy (not a
probability distribution).

- Target Actor µ′(s|θµ′): A copy of the actor network, updated slowly to improve training
stability by using the latest actor parameters.

- Critic Q(s, a|θQ): This network estimates how good a given action A is in a given state
S, using parameters ϕ.

- Target Critic Q′(s, a|θQ′): A copy of the critic network, also updated gradually to
stabilize the training.

Both the actor and target actor networks have the same structure. The same applies to the
critic and target critic networks. DDPG algorithm [5] is detailed in algorithm 2.

Twin Delayed DDPG

The Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm is an off-policy actor-
critic method designed for environments with continuous action spaces. A TD3 agent learns
a deterministic policy through an actor network and uses two critic networks to estimate the
value of the optimal policy more accurately. To improve stability, it also includes target net-
works for both the actor and critics. Past experiences are stored in a replay buffer and used for
training. Additionally, TD3 supports offline learning from previously collected data without
needing real-time interaction with the environment [18].
The TD3 algorithm is an improved version of the DDPG algorithm. DDPG agents can some-
times overestimate the value function, which can lead to poor policies. To address this, TD3
introduces several changes. First, it uses two Q-value networks and takes the smaller of the two
estimates to reduce overestimation during updates. Second, TD3 updates the policy and target
networks less often than the Q-value networks, which helps stabilize learning. Finally, when
updating the policy, TD3 adds noise to the target action to prevent the policy from exploiting
overly optimistic value estimates [18].

A TD3 agent maintains the following function approximators to estimate the policy and value
functions:
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- Actor network π(S; θ): A deterministic policy network parameterized by θ, which maps
the current state S to an action A. This policy does not represent a distribution, but a
function that outputs the action that maximizes the expected return.

- Target actor network πt(S; θt): A copy of the actor network used to stabilize training.
Its parameters θt are periodically or softly updated using the main actor’s parameters.

- Critic networks Qk(S, A; ϕk): One or two critic networks (e.g., Q1, Q2) parameterized
by ϕk, which estimate the expected return for a given state-action pair (S, A). Each critic
may have a different structure, though TD3 performs best when they are structurally
identical but initialized with different weights.

- Target critic networks Qt,k(S, A; ϕt,k): Corresponding target networks for each critic,
updated from the main critic parameters ϕk to reduce variance and improve stability.
The number of target critics matches the number of main critics.

Both the actor and target actor share the same architecture and parameterization. Similarly,
each critic and its target have the same structure. When two critics are used, they should have
different initial parameters even if their architectures match, to avoid overestimation bias.

TD3 algorithm [6] is detailed in algorithm 4.

2.5.2.1 Soft Actor-Critic

The Soft Actor-Critic (SAC) algorithm is an off-policy actor-critic method that works with dis-
crete, continuous, and hybrid action spaces. It learns a stochastic policy that aims to maximize
both the expected long-term reward and the policy entropy. Entropy measures how uncertain
or random the policy is; higher entropy encourages more exploration. By maximizing both
reward and entropy, SAC balances exploration and exploitation. The agent uses two critic
networks to estimate the value of the optimal policy, along with target critics and a replay
buffer [18].
During training, a Soft Actor-Critic (SAC) agent performs several steps.

- The SAC agent regularly updates the actor and critic network parameters during training.

- It models a probability distribution over actions and selects actions randomly from this
distribution to encourage exploration.

- The agent adjusts an entropy temperature parameter to keep the policy entropy close to
a target value, maintaining a balance between exploration and exploitation.

- Past experiences are stored in a circular replay buffer.

- The agent uses mini-batches randomly sampled from this buffer to update the actor and
critic networks, improving learning stability.

To estimate the policy and value function, a DDPG agent maintains four function approxima-
tors:

- Actor π(S; θ) — The actor, with parameters θ, takes observation S and returns the
corresponding action that maximizes the long-term reward. Note that π here does not
represent a probability distribution, but a function that returns an action.
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- Target actor πt(S; θt) — To improve the stability of the optimization, the agent period-
ically updates the target actor learnable parameters θt using the latest actor parameter
values.

- Critic Q(S, A; ϕ) — The critic, with parameters ϕ, takes observation S and action A as
inputs and returns the corresponding expectation of the long-term reward.

- Target critic Qt(S, A; ϕt) — To improve the stability of the optimization, the agent peri-
odically updates the target critic learnable parameters ϕt using the latest critic parameter
values.

Both Q(S, A; ϕ) and Qt(S, A; ϕt) have the same structure and parameterization, and both
π(S; θ) and πt(S; θt) have the same structure and parameterization.

SAC algorithm [7] is detailed in algorithm 3.

Figure 2.9 illustrates the classification of DRL algorithms and provides representative examples
for each category.

Figure 2.9: DRL Algorithms classification
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2.5.2.2 DRL Agents algorithms

Algorithm 1 Deep Q-learning with experience replay
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1 to M do
5: Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 = ϕ(s1)
6: for t = 1 to T do
7: With probability ϵ select a random action at

8: otherwise select at = arg maxa Q(ϕ(st), a; θ)
9: Execute action at in emulator and observe reward rt and image xt+1

10: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
11: Store transition (ϕt, at, rt, ϕt+1) in D
12: Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D
13: Set

yj =

rj if episode terminates at step j + 1
rj + γ maxa′ Q̂(ϕj+1, a′; θ−) otherwise

14: Perform a gradient descent step on (yj −Q(ϕj, aj; θ))2 with respect to the network
parameters θ

15: Every C steps reset Q̂ = Q
16: end for
17: end for
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Algorithm 2 Deep Deterministic Policy Gradient (DDPG)
1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

2: Initialize target networks Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

3: Initialize replay buffer R
4: for episode = 1 to M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1 to T do
8: Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise
9: Execute action at, observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′)
13: Update critic by minimizing the loss:

L = 1
N

∑
i

(yi −Q(si, ai|θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

15: Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

16: end for
17: end for

Algorithm 3 Soft Actor-Critic
1: Input: θ1, θ2, ϕ
2: θ̂1 ← θ1, θ̂2 ← θ2
3: D ← ∅
4: for each iteration do
5: for each environment step do
6: at ∼ πϕ(at|st)
7: st+1 ∼ p(st+1|st, at)
8: D ← D ∪ {(st, at, r(st, at), st+1)}
9: end for

10: for each gradient step do
11: θi ← θi − λQ∇θi

JQ(θi) for i ∈ {1, 2}
12: ϕ← ϕ− λπ∇ϕJπ(ϕ)
13: α← α− λα∇αJ(α)
14: θ̂i ← τθi + (1− τ)θ̂i for i ∈ {1, 2}
15: end for
16: end for
17: Output: θ1, θ2, ϕ
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Algorithm 4 TD3
1: Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters θ1, θ2, ϕ
2: Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

3: Initialize replay buffer B
4: for t = 1 to T do
5: Select action with exploration noise a ∼ πϕ(s) + ϵ
6: ϵ ∼ N (0, σ) and observe reward r and new state s′

7: Store transition tuple (s, a, r, s′) in B
8: Sample mini-batch of N transitions (s, a, r, s′) from B
9: ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)

10: y ← r + γ mini=1,2 Qθ′
i
(s′, ã)

11: Update critics θi ← arg minθi
N−1∑(y −Qθi

(s, a))2

12: if t mod d = 0 then
13: Update ϕ by the deterministic policy gradient:

∇ϕJ(ϕ) = N−1∑∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

14: Update target networks:

θ′
i ← τθi + (1− τ)θ′

i, ϕ′ ← τϕ + (1− τ)ϕ′

15: end if
16: end for

2.6 Conclusion

This chapter introduced the theoretical basis of Deep Reinforcement Learning (DRL), summa-
rizing its core components, such as the agent- environment interaction, reward, and the use of
deep neural networks to approximate value functions and policies. We classified the main cat-
egories of reinforcement learning algorithms and provided a quick overview of the most widely
used DRL agents. These concepts will serve later as a prerequisite for implementing DRL in
mapless navigation which will be addressed in the following chapters.
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Chapter 3

Deep Reinforcement Learning Based
Mapless Navigation

3.1 Intoduction

Deep Reinforcement Learning (DRL) is a powerful learning paradigm that merges the principles
of reinforcement learning with deep neural networks, enabling agents to learn complex decision-
making tasks in high-dimensional, continuous, and unstructured environments. In DRL, an
agent interacts with the environment by perceiving a state, selecting an action, and receiving a
reward based on the consequences of its actions. Over time, through trial and error, the agent
learns a policy that maximizes cumulative rewards. The training process involves foundational
concepts such as value functions, policy gradients, and experience replay buffers, which together
enable efficient learning and generalization [13].

As discussed in the previous chapter, DRL algorithms such as Deep Deterministic Policy Gra-
dient (DDPG), Twin Delayed DDPG (TD3), and Soft Actor-Critic (SAC) have emerged as
state-of-the-art tools for learning control policies directly from raw sensory inputs. These al-
gorithms are particularly effective in continuous control tasks often encountered in robotics,
where actions must be selected in real time and under uncertainty or partial observability [5].
The ability of DRL to operate directly on noisy sensor data and adapt to dynamic environ-
ments makes it a suitable choice for autonomous mobile robots.[19] One particularly challenging
and increasingly relevant application of DRL in robotics is mapless navigation. In contrast to
traditional methods that rely on a pre-built map of the environment—such as those using
Simultaneous Localization and Mapping (SLAM)—mapless navigation requires the robot to
make decisions solely based on current sensor readings and a goal position, without any prior
knowledge of the environment. This is critical in scenarios such as search and rescue missions
or dynamic public spaces, where the environment is either unknown, constantly changing, or
too complex to model in advance.

Traditional path planning methods—such as A*, D*, or sampling-based planners—have been
widely used for robotic navigation. However, these methods often depend on hand-crafted
heuristics or constraint functions that need to be tuned for specific scenarios. While effective in
well-structured environments, such engineered pipelines tend to lack the adaptability required
for diverse, unpredictable conditions. Excessive reliance on hand-engineered rules can severely
limit a robot’s ability to generalize and perform reliably in unseen environments.

To address these limitations, learning-based navigation methods have emerged as a promising
alternative. Supervised learning approaches, which train models from expert demonstrations,
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have shown some success but require extensive labeled datasets, which are often impractical to
collect. In contrast, reinforcement learning allows a robot to autonomously learn navigation
strategies by interacting directly with the environment. Through reward feedback, the agent
gradually improves its behavior, learning to reach its target while avoiding collisions and unsafe
paths.

Recent research in DRL-based mapless navigation demonstrates that agents can learn to nav-
igate efficiently in unknown environments without relying on global maps. By learning end-
to-end policies from sensor data such as sparse LiDAR readings or monocular images—robots
can develop behaviors that generalize across different environments and obstacle configurations,
eliminating the need for extensive hand-coded logic or rule sets.

3.2 Related works

In recent years, significant progress has been made in the application of Deep Reinforcement
Learning (DRL) to mapless navigation tasks. Various research efforts have explored how DRL
can be utilized to enable mobile robots to autonomously navigate in unknown environments
without relying on a global map.

In the context of mobile robotics, autonomous navigation through unknown environments re-
mains a challenging and critical task. The robot must be capable of identifying a collision-free
path without prior knowledge of the environment. Traditionally, classical navigation pipelines
rely on three main components: localization, map construction, and path planning. These
systems typically depend on dense and precise laser range sensors, such as LiDAR, for accurate
localization and Simultaneous Localization and Mapping (SLAM). However, such approaches
are not only computationally intensive but also rely on expensive hardware and precise sensory
data, which can limit their scalability and deployment in resource-constrained settings.

Current reinforcement learning (RL) methods are often computationally intensive and time-
consuming, as they typically require millions of interactions with the environment to learn
complex tasks effectively. Conducting such extensive training directly in the real world is
generally infeasible due to practical constraints, safety risks, and hardware wear. As a result,
RL agents are commonly trained in simulated environments where the training process can
be automated, parallelized, and executed safely. Simulation not only accelerates the learning
process but also prevents physical damage to robotic platforms that might otherwise occur
during trial-and-error interactions, such as collisions with obstacles.[20]

In the following discussion, we review laser sensor-based reinforcement learning approaches for
mapless autonomous navigation of mobile robots. These methods leverage sparse or dense laser
range data to enable real-time perception and decision-making without the need for an explicit
map of the environment.

Authors in [21] used Advantage Actor Critic (A2C) RL method, and 30 values from laser ranging
sensors along with target relative distance and angle to target as observation input to directly
map actions commands from a set of discrete actions space. The RL agent is trained using
PyGames and Chipmunk 2D simulator that lacks of real physical properties. A lack of stability
is noticed while training for autonomous mobile robots using DRL methods. Authors in [22]
use efficient policy gradient method, Proximal Policy Optimization (PPO) to learn navigation
policy. A convolution deep neural network was used to point 720 laser scan data and relative
pose to target to discrete actions to reduce. However the learning was not stable hence the
learnt policy will not generalize in outdoor environments.
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In the study by Taheri et al.[23], the authors propose a mapless navigation strategy for mobile
robots using an enhanced Proximal Policy Optimization (PPO) algorithm. The agent receives
a poor observation space compared to the study in [22].Tahari et al composed their state
observation of laser scan data, previous velocity commands, and the relative position of the
goal. Training is performed in the Gazebo simulation environment, integrated with ROS,
and the authors design a task-specific reward function to encourage safe and efficient goal-
reaching behavior. The policy directly outputs continuous velocity commands without relying
on global maps. While the approach demonstrates strong performance in avoiding collisions
and navigating in cluttered static environments, the learned policy generalizes only to static
obstacles and does not handle dynamic environments effectively.

Although recent studies have shown promising results using deep reinforcement learning for
mapless navigation, most approaches still face generalization limitations, particularly in dy-
namic environments. These limitations form the core motivation of our work: to develop a
more adaptable and robust navigation strategy capable of operating effectively in dynamic set-
tings. The objective, consistent with previous works, is to learn a policy that maps real-time
sensor observations to motion commands, allowing the robot to navigate safely and efficiently
toward a target location in the presence of both static and dynamic obstacles. To this end, a
formal problem formulation is presented in the following section.

3.3 Problem formulation

In this work, we address the problem of autonomous mapless navigation for a mobile robot using
DRL. The goal is to enable the robot to navigate safely and efficiently in unknown environments
toward a defined target location using LiDAR sensor observations assuming that localization
system is accurate without relying on any pre-existing map or global localization system. This
problem is formalized as a Markov Decision Process (MDP), where the agent interacts with its
environment through decision making based on partial observations.

3.3.1 Simulation environment

The robot used in this study is a differetial drive mobile robot equipped with a 2D LiDAR
sensor from turtlebot serie shown in figure 3.1. TurtleBot was chosen as it is widely used in

Figure 3.1: Turtle bot 3 burger gazebo model

the research which helps in comparing the findings. The LiDAR provides laser scan data for
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obstacle perception. The robot can only move forward and rotate, and its motion is controlled
through linear and angular velocity commands. Odemetry data is supposed ideal but not used
to build a map.

Before diving into environment definition, we will first justify the choice of the couple Gazebo-
ROS2. Gazebo offers a high-fidelity physics engine and realistic sensor simulation which are
essential for accurately modeling robot-environment interactions such as collision dynamics,
motion constraints, and sensor noise. This is particularly important for RL, where the success
of the approach using real robot depends on the accuracy of simulated interactions.
Before diving into the environment definition, we first justify the choice of the Gazebo–ROS 2
combination.

Gazebo offers a high-fidelity physics engine and realistic sensor simulation, which are essential
for accurately modeling robot–environment interactions such as collision dynamics, motion
constraints, and sensor noise. This level of realism is particularly important in reinforcement
learning, where the success of transferring a trained agent to a real robot depends heavily on
the accuracy of the simulated interactions [24].

ROS 2 provides robust tools for robot control, sensor data handling, and modular system in-
tegration, making it easier to build, test, and transition navigation systems from simulation
to real-world deployment. Compared to its predecessor, ROS 2 improves communication reli-
ability, supports real-time constraints, and offers a scalable architecture suitable for complex
robotic applications [25].

Together, Gazebo and ROS 2 form a powerful simulation and control stack that supports
seamless interaction between the trained agent and future real-world robot applications.

Since training can not be conducted using a real robot platform, training and evaluation will
be conducted entirely in simulation using Gazebo simulator integrated with ROS2. To ensure
scalability and generalization of the learned navigation policy, a multi stage environments are
designed from the simplest to the more complex.

- Stage 1: Indoor environment with no obstacles.

- Stage 2: Indoor environment with static cylinders as obstacles.

- Stage 3: Indoor environment with the cylinders from stage 2 moving in a circular tra-
jectory.

- Stage 4: Indoor environment with statical walls placed arbitrary in the square area.

- Stage 5: Indoor environment with the statical walls from stage 4 in addition to moving
cylinders with a random trajectory.

Each stage is chosen to increase difficulty incrementally to enable curriculum-style learning.

figure 3.2 shows the environments chosen for training.

The architecture of our mapless navigation system using DRL, illustrated in figure 3.3, serves as
the foundation for the experiments conducted in this study. The system is based on a simulated
environment integrated with OpenAi Gym und utilizes Stable Baselines for the implementation
of the DRL algorithms. All tools, libraries, and frameworks used in this project are open-source.
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

(e) Stage 5

Figure 3.2: Illustration of the five training environments used in the study. The red disk denotes
the random target location.
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Figure 3.3: System architecture for training the mobile robot

3.3.1.1 OpenAi GYM and Stable-Baselines

The OpenAI Gym python3 framework offers standardized APIs that facilitate interaction be-
tween reinforcement learning environments and algorithms. In our work, we utilize the Stable-
Baselines3 (SB3) library alongside OpenAI Gym to train a mobile robot using deep reinforce-
ment learning (DRL) techniques. SB3 is an open-source library that delivers robust, PyTorch-
based implementations of advanced DRL algorithms.

3.4 Learning experience and agent setup

The main goal of the mapless navigation robot is to navigate to a given goal while avoiding
obstacles and taking an optimal path. To achieve this goal, the robot must take the appropriate
actions give a state.

3.4.1 State and action spaces

The agent receives observation data from sensor (LiDAR in our case), relative distance and
orientation to goal and robot’s last timestep velocity as input.

The goal then is to find a function to map raw input data to velocity command as follows :

vt = f(dt, gt, vt−1)

Where dt is a 20-dimensional information vector from the Li-DAR, and covers a 360 degree field
of view unlike common works that limit the field of view only to the robot’s forward direction
only, thereby missing obstacles approaching from behind. Value from Li-DAR are normalized
between 0 and 1 before passing the to the agent.

The vector gt represents the two-dimensional normalized relative position of the goal, where the
distance to the target is scaled by the radius of the map, and the angular component included
in [−π, π] is normalized to the range [−1, +1], this information helps the robot to move closer
to the target [20]

The term vt−1 refers to the robot’s velocity at the previous time step. It represents the last
action taken and helps the robot decide the next move by considering its current motion and
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inertia [26].

As for the current action, the agent determines the appropriate control command vt at each
time step based on the current state, with the objective of reaching the target efficiently. The
action space can be defined as either discrete or continuous, specifying the allowable range for
each control parameter.
In this project, we adopt a continuous action space, where the agent outputs real-valued com-
mands for both linear and angular velocity. Specifically, the action space is defined as follows:

Linear velocity ∈ [0.0, 0.45] m/s, Angular velocity ∈ [−2.0, 2.0] rad/s

This configuration allows the agent to select any value within these ranges at each time step,
enabling smoother and more precise motion control compared to discrete action settings.

3.5 Experiments and reward function design summary

In this section, we describe the training experiments and the design of the reward function,
which is tailored to each training stage. The aim is to enable the agent to learn the navigation
task progressively, starting from simple environments and advancing toward more complex
scenarios.

Experiment 1 For this initial experiment, we evaluated several state-of-the-art Deep Rein-
forcement Learning (DRL) algorithms, including PPO, DQN, SAC, TD3, and DDPG. These
algorithms were selected based on their adoption and demonstrated success in the DRL litera-
ture. Each model was trained using the observation space described previously, which includes
laser scan data, the relative position of the goal, and the robot’s previous velocity.

Training was conducted in Stage 1, a simplified environment containing no dynamic or static ob-
stacles, aside from the fixed indoor walls that define the environment’s boundaries. The purpose
of this setup was to assess the basic learning capabilities of each algorithm in a low-complexity
setting and to establish a baseline for performance comparison in later, more challenging stages
in order to chose a single algorithm to train in very complex environment.

The reward function used in this stage was designed to encourage progress toward the goal and
penalize undesirable outcomes. It is defined as follows:

r =


+100, if the goal is reached (rg)
−100, if a collision occurs (rc)
−100, if the episode times out (rt)

Otherwise, r = 10 · (dt−1 − dt)−
|ωt|
2

Where dt is the current distance to the goal, dt−1 is the previous distance to the goal, and ωt is
the angular velocity at time step t. The term 10 ·(dt−1−dt) rewards the agent for moving closer
to the goal and penalizes it if the distance increases. The second term, |ωt|

2 , promotes smooth
rotational movements by discouraging excessive turning, while the overall reward formulation
still applies strong penalties for collisions and timeouts.

Page 60



Deep Reinforcement Learning Based Mapless Navigation

Experiment 2 In this stage, a set of static cylindrical obstacles was introduced into the
environment, as defined in Stage 2. The same set of pretrained DRL algorithms from Exper-
iment 1 were retrained in this new setting. The objective was to assess the agents’ ability to
extend their learned goal-reaching behavior by incorporating obstacle avoidance skills. While
the agents were already proficient at navigating toward the goal, they had not yet learned to
avoid obstacles.

The reward function from Stage 1 was retained but augmented with an additional penalty term
to discourage the agent from approaching obstacles too closely. This term is defined as:

ra =

−3 · e−dt , if min(dt) < 0.4
0, otherwise

where min(dt) represents the minimum distance to the nearest obstacle at time step t. This
exponential penalty increases as the robot gets closer to an obstacle, thereby encouraging safer
navigation paths and improved collision avoidance.

At the end of this stage, the performance of all algorithms was compared. The best-performing
model—based on success rate, collision rate, and learning stability—was selected to proceed to
the more advanced training stages.

Experiment 3 In this stage, the environment complexity was further increased by introduc-
ing dynamic obstacles. The same cylindrical objects from Stage 2 were now programmed to
move along predefined circular trajectories, simulating real-world scenarios such as pedestrians
or moving machinery. This posed a greater challenge, as the agent not only had to reach the
goal and avoid static obstacles but also anticipate and react to moving ones.

The reward structure from Stage 2 was maintained, with a modification to the obstacle-
avoidance penalty to reflect the increased risk posed by dynamic obstacles. Specifically, the
avoidance penalty term was scaled as follows:

r′
a = 2 · ra =

−6 · e−dt , if min(dt) < 0.4
0, otherwise

By doubling the penalty when approaching moving obstacles, the agent is strongly discouraged
from unsafe proximity to dynamic entities, promoting anticipatory and cautious behavior.

Following the evaluation of all algorithms, the best-performing one, selected based on its success
rate, and safety in statical environment, was chosen to continue from this experiment.

Experiment 4 In this experiment, exploring stage 4, we shift to an environment with complex
static structures. Multiple wall segments are placed randomly varying in length and orientation,
creating irregular navigation routes.
The goal is to train the previous model from experiment 2 so the robot can overcome obstacles
that require more than simple sidestepping, letting the agent learn how to avoid large continuous
barriers.

Experiment 5 In this experiment, we test how well the trained model can work in a com-
pletely new environment that it has never seen before. We take the best model from the
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previous experiments and run it in a different map with a new layout and different obstacle
placements.

The goal is to check if the model can still reach the target and avoid obstacles without being
trained again. To measure this, we compare its performance with a classical navigation method
that also does not have any prior knowledge of the map.

We compare both methods based on their success rate, number of collisions, and how efficiently
they reach the goal. This helps us understand whether the trained DRL model can generalize
to new environments.

Experiment 6 In stage 5, we build on the model trained in Stage 4 by introducing dynamic
elements into the environment. Specifically, cylindrical obstacles are reintroduced and pro-
grammed to move along random trajectories. These moving obstacles are placed among the
static walls already present in the environment.

The goal of this experiment is to train the agent to navigate in mixed environments that contain
both static and dynamic obstacles. The agent must now not only plan around fixed structures
like walls but also react to the unpredictable movement of dynamical obstacles.

Training continues using the same reward function as in previous stage, which penalizes prox-
imity to obstacles and rewards progress toward the goal. This stage serves to further enhance
the agent’s ability to operate in realistic scenarios that resemble complex, populated indoor
environments.

3.6 Training and results

This section presents both training dynamics and performance evaluation of the DRL-based
navigation models, as defined in the experimental stages of the previous section. Each exper-
iment was designed to evaluate specific aspects of the agent’s learning capabilities, including
goal reaching, obstacle avoidance, and policy generalization.

The training process was conducted using the Stable-Baselines3 implementations of selected
DRL algorithms. All training was performed in simulation using the Gazebo–ROS 2 framework,
ensuring realistic physics and reliable system integration.

The first part focuses on training metrics such as actor loss, critic loss, average episode reward,
and convergence behavior over time. These metrics provide insights into the learning stability
and efficiency of the selected DRL algorithms.

The second part presents the evaluation results for each experimental stage.
The following evaluation metrics were used to assess the performance of the trained models:

- Success rate: Percentage of episodes in which the agent successfully reaches the goal
without any collision.

- Collision rate: Percentage of episodes that end due to collision with an obstacle or wall.

- Average reward: Mean cumulative reward obtained per episode, reflecting overall learn-
ing efficiency.
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3.6.1 Summary of Algorithms hyper-parameters

Before presenting the training dynamics and results, the hyperparameters selected for each
algorithm are summarized in the following tables.

Hyperparameter Value

Learning Rate 1× 10−4

Buffer Size 100,000
Learning Starts 1,000
Batch Size 64
Gamma (γ)1 0.99
Train Frequency 1 step
Gradient Steps 1
Target Update Interval 1,000
Action Noise –
Network Architecture [256, 256]
Activation Function ReLU

Table 3.1: DQN Hyperparameters

Hyperparameter Value

Learning Rate 1× 10−4

Buffer Size 1,000,000
Learning Starts 1,000
Batch Size 64
Gamma (γ) 0.99
Tau (τ)2 0.001
Train Frequency 1 step
Gradient Steps 1
Action Noise Yes
Network Architecture [400, 300]
Activation Function ReLU

Table 3.2: DDPG Hyperparameters

Hyperparameter Value

Learning Rate 3× 10−4

Buffer Size 1,000,000
Learning Starts 10,000
Batch Size 256
Gamma (γ) 0.99
Tau (τ) 0.005
Train Frequency 1 step
Gradient Steps 1
Target Update Interval 1
Entropy Coefficient start 1
Network Architecture [256, 256]
Activation Function ReLU

Table 3.3: SAC Hyperparameters

Hyperparameter Value

Learning Rate 1× 10−4

Buffer Size 500,000
Learning Starts 10,000
Batch Size 64
Gamma (γ) 0.99
Tau (τ) 0.005
Train Frequency 1 step
Gradient Steps 1
Policy Delay 2
Action Noise Yes
Network Architecture [400, 300]
Activation Function ReLU

Table 3.4: TD3 Hyperparameters

1The discount factor γ determines how much future rewards are valued compared to immediate rewards.
2The soft update parameter τ controls the rate at which the target network is updated towards the main

network.
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3.6.2 Experiment 1 training dynamics and results

Training dynamics

As stated earlier, DQN, DDPG, SAC, and TD3 algorithms are trained in Experiment 1 and
evaluated to determine the most suitable candidate for adaptation to more complex environ-
ments.

All training dynamics—including reward, overall mean reward, actor and critic loss for ac-
tor–critic methods, and loss for the DQN algorithm—are plotted and discussed.

DQN

Figure 3.4: DQN Stage 1 – Episode Reward and moving average over last 50 episodes

Figure 3.5: DQN Stage 1 – Mean Reward overtime

Figure 3.6: DQN Stage 1 – Training Loss
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- The episodic reward shown in Figure 3.5 indicates unstable learning, with consistently
high negative values across episodes.

- A smoothing trend begins to appear after approximately 100 episodes, but the training
remains unstable overall.

- The loss curve in Figure 3.6 is highly irregular, which is a known issue associated with
the DQN algorithm.

- This instability is attributed to poor learning performance, primarily caused by an inad-
equate balance between exploration and exploitation.

DDPG

Figure 3.7: DDPG Stage 1 – Mean Reward

Figure 3.8: DDPG Stage 1 – Actor Loss

Figure 3.9: DDPG Stage 1 – Critic Loss
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- Figure 3.7 shows a clear and steady improvement in the mean reward, indicating progres-
sive convergence.

- Actor loss in figure 3.8decreases smoothly and tend to stabilize. Critic loss is showing
stability in figure 3.9 reflecting stable learning.

SAC

Figure 3.10: SAC Stage 1 – Episode Reward per Episode

Figure 3.11: SAC Stage 1 – Mean Reward (Smoothed)

Figure 3.12: SAC Stage 1 – Actor Loss
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Figure 3.13: SAC Stage 1 – entropy coefficient dynamics

- Figures 3.10 and 3.11 show a smooth and consistent reward increase, indicating effective
learning.

- The entropy term in SAC ensures a balanced exploration-exploitation trade-off, leading
to stable policy improvement.

- The actor loss remains stable post-convergence, with no major spikes, suggesting robust
learning due to entropy regularization [7].

- Figure 3.13 shows a smooth entropy coefficient decay from 1.0 to 0.05, marking a proper
transition from exploration to exploitation.

TD3

Figure 3.14: TD3 Stage 1 – Episode Reward per Episode
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Figure 3.15: TD3 Stage 1 – Mean Reward (Smoothed)

Figure 3.16: TD3 Stage 1 – Actor Loss

Figure 3.17: TD3 Stage 1 – Critic Loss

- TD3 shows the highest reward among all algorithms, with a consistent progression toward
convergence.

- The stability mechanisms of TD3 are reflected in the smooth actor and critic loss curves.

- The critic loss stabilizes after around 40,000 timesteps, with only minor noise-related
spikes that do not affect overall training.

Results

Each trained model is tested over 30 goal-reaching trials. During these tests, the success rate
and the collision rate are computed to evaluate the agent’s performance.
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The summary of the testing experiment is presented in table 3.5

Algorithm Success Rate Collision Rate Mean Reward
TD3 100% 0% 98.68
SAC 96.97% 3.03% 84.016
DDPG 100% 0% 82.35
DQN 76.67% 23.33% 60.47

Table 3.5: Comparison of DRL algorithms on success rate, collision rate, and mean reward in
experiment 1.

Conclusion

As a conclusion of this first experiment, DQN demonstrates limited performance and unstable
learning behavior, as reflected in its higher collision rate and lower average reward compared to
the other algorithms. This instability makes it less suitable for more complex navigation tasks.

In contrast, DDPG, SAC, and TD3 show significantly better performance in terms of reward
progression, learning stability, and success rate. Their ability to learn efficient policies and
adapt to the environment makes them strong candidates for future experiments involving more
complex scenarios and generalization tasks. These algorithms will therefore be retained for the
next stages of evaluation.

3.6.3 Experiment 2 training dynamics and results

In this experiment, DDPG, SAC, and TD3 from experiment 1 that learned how to reach a gaol
are retrained in stage 2 in presence of obstacles. The task now it to reach a goal while avoiding
obstacle in an optimal way.

The following section will illustrate both training dynamics and experiment results so we can
chose the best algorithm for generalization.

Training dynamics

DDPG
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Figure 3.18: DDPG Stage 2 - Mean Reward

Figure 3.19: DDPG Stage 2 - Actor Loss

Figure 3.20: DDPG Stage 2 - Critic Loss

- The mean reward in figure 3.18 increases toward a low level reward with some oscillations,
indicating limited learning.

- Actor and critic losses shows some stability after a certain number of training time steps.
The reward fluctuation in addition to stability suggests that the model converged to a
sub optimal policy and is no longer improving its policy.

SAC

Page 70



Deep Reinforcement Learning Based Mapless Navigation

Figure 3.21: SAC Stage 2 - Mean Reward

Figure 3.22: SAC Stage 2 - Actor Loss

Figure 3.23: SAC Stage 2 - Critic Loss

- The mean reward in figure 3.21 increases well but with no smoothness and converges to
a low reward.

- Actor and critic losses in figures 3.22 and 3.23 are relatively stable, though the critic loss
shows small irregularities due to SAC’s stochastic behavior.

TD3

- The mean reward in figure 3.24 shows a steady and stable increas, indication smooth
learning and efficient policy improvement. The few fluctuations and due to the closeness
of sone of the targets to obstacles so the agent will collect some negative reward for
approaching the obstacle but prioritize reaching the goal.
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Figure 3.24: TD3 Stage 2 - Mean Reward

Figure 3.25: TD3 Stage 2 - Actor Loss

Figure 3.26: TD3 Stage 2 - Critic Loss

- The actor loss in figure 3.25 remains low and stable, a sign of effective policy updates.

- The critic loss in figure 3.26 fluctuates slightly but remains within a reasonable range,
showing robustness against noise. After 40k steps, it tends to stabilize with only minor
spikes due to noises.
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Algorithm Success Rate Collision Rate Mean Reward
SAC 96.67% 3.33% 85.41
TD3 100% 0% 99.19
DDPG 70.00% 30.00% 34.25

Table 3.6: Comparison of SAC, TD3, and DDPG algorithms in experiment 2

Results

Conclusion

Among the three algorithms, DDPG shows the weakest performance, with a low success rate,
and poor mean reward compared to TD3. DDPG’s training curves, including reward and loss
functions, shows that the agent converged to a sub-optimal policy. In addition to that, it
showed a low performance in the testing phase that make him out of the discussion for later
experiments.

SAC performs better than DDPG, achieving higher mean reward and a very strong success
rate, although its training dynamics shows some fluctuations, its stochastic nature made him
a promising candidate for the next experiments.

TD3 is ultimately selected for the next stages, as it offers both high performance and the most
stable learning behavior, with smooth reward progression and stable actor and critic losses.

3.6.4 Experiment 3 training dynamics and results

As stated before, in this experiment, the agent will be trained on stage 3 environment where
the obstacles are now dynamic.

Training dynamics

The TD3 pretrained agent from experiment 2 is now trained for additional 90k time steps to
enhace its capability to devlop a navigation strategy in presence of dynamic obstacles.

Training curves are shown bellow.
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Figure 3.27: TD3 Mean reward in stage3

Figure 3.28: TD3 Actor loss in stage3

Figure 3.29: TD3 Critic loss in stage 3

In stage 3, the TD3 agent continues to show consistent and stable training behavior. As
shown in figure 3.27, the mean reward increases progressively, with minimal fluctuation, due
to unexpected positions of the obstacles and the randomness of the spawning position of the
robot. The reward shows a steady improvement of the learned policy.
The actor loss curve in figure 3.28 remains smooth an relatively flath with minor variations,
this suggests that the policy updates are well controlled and do not suffer from instability. In
figure 3.29, the critic loss is initially high but stabilizes after around 40k time steps with some
visible fluctuations due to noises. However these fluctuations are not disruptive and do not
impact the training performance as confirmed in the experiment results.
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Results

In this experiment, 30 goal positions were randomly generated in an environment containing
dynamic obstacles. The agent successfully reached all target positions, achieving a success
rate of 100% with no collisions. The average reward obtained across all episodes was 100.49,
demonstrating the robustness and effectiveness of the proposed navigation strategy.

Conclusion

To conclude this stage, TD3 confirms its status as the most reliable and stable algorithm
among those tested. It consistently achieves a high average reward, a high success rate, and
demonstrates effective adaptation to more complex scenarios introduced in this phase. These
results reinforce the selection of TD3 as a reference algorithm for tackling more advanced robotic
navigation tasks in future experiments.

3.6.5 Experiment 4 training dynamics and results

Training dynamics

In this fourth experiment, the reward function was modified to encourage the robot to overcome
walls. Specifically, the agent now receives a double penalty for collisions and a triple penalty
for proximity to obstacles, compared to experiment 2. These adjustments are reflected in the
little observed fluctuations of the training curve, as shown in figure 3.30, as the robot receives
more negative reward but still achieves the overall goal.

Figure 3.30: Experiment 4 mean reward

Despite the increased penalties, the agent successfully learned a stable policy. The mean reward
tends to coverage to a high value, indicating the effective learning. Furthermore, the actor loss
remains stable without significant spikes, as illustrated in Figure 3.31, which confirms the
policy’s stability during training.
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Figure 3.31: Experiment 4 actor loss

Results

As in the previous experiments, the TD3 agent continued to yield promising results. In this
test, 30 goal positions were randomly generated behind and between walls to evaluate the
agent’s ability to navigate challenging environments. The agent successfully reached all targets,
achieving a 100% success rate once again.

Conclusion

This experiment demonstrated the robustness and adaptability of the TD3 agent in more con-
strained and penalized environments. Despite the harsher reward conditions designed for safer
navigation near walls, the agent maintained a strong learning capability. This experiment
confirms once more the effectiveness of the modified reward function for curriculum learning
strategy.

3.6.6 Experiment 5 results and conclusion

Generalization Test in a New Environment

In this fifth experiment, we evaluate the generalization capability of the trained TD3 agent from
Experiment 4 in a completely new environment that it has never encountered during training.
The goal is to assess whether the learned policy can achieve safe and efficient navigation in
unseen scenarios.

To visualize the test setup, the new environment is shown in Figure 3.32. To support our
analysis, we also compare the agent’s performance with a classical navigation method based on
the ROS 2 Nav2 stack, which uses the Dijkstra algorithm for global planning and the Dynamic
Window Approach (DWA) for local planning. The classical method is provided with the same
static map used in Experiment 4 to ensure fair comparison conditions.

In the classical approach, a map of the environment is first constructed using SLAM techniques.
This map, along with the target goal pose, is then provided to the navigation algorithm,
which computes a global path and continuously adjusts it during execution based on detected
obstacles.

To assess which method, DRL or classical navigation, performs better under unknown condi-
tions, we compare their performance based on the total distance covered and the time required
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to reach the goal. These metrics are particularly relevant in scenarios where speed and energy
efficiency are critical, such as in emergency rescue missions or hospital environments.

Figure 3.32: Unknown environment for the agent

Results

For the first part of this evaluation, the TD3 agent was tested on 30 randomly generated goal
positions within the new environment. All target positions were selected such that the path to
reach them require navigating around obstacles. Impressively, the agent successfully reached
all of 30 goals, demonstrating strong generalization capability and robust obstacle avoidance,
even in an environment it had never encountered before.

For the second part, the robot with classical navigation approach also demonstrated a strong
robust navigation within all goals generated.

The table below summarizes the average distance traveled and average time required to reach
the goal over 9 trials for each method. The exact same 9 goals are generated in both approach.

Method Average Distance (m) Average Time (s)
DRL Agent Appraoch 3.47 11.48

Classical Approach 3.52 24.38

Table 3.7: Average distance and time to reach the goal over 9 trials

The summary of this experiment is found in the following table
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Trial
DRL Agent Classical Approach

Distance (m) Time (s) Distance (m) Time (s)
1 2.91 9.53 3.13 19.81
2 2.84 8.26 3.49 28.87
3 3.15 10.49 3.15 22.34
4 3.16 9.66 3.21 22.72
5 3.25 10.11 3.07 19.52
6 2.97 8.80 3.21 20.76
7 4.62 13.98 4.45 28.12
8 4.82 15.06 4.29 29.84
9 4.45 13.40 4.46 29.40

Mean 3.47 11.48 3.52 24.38

Table 3.8: Performance comparison of DRL and Classical navigation over 9 trials

Conclusion

The evaluation demonstrated that both the DRL agent and the classical navigation approach
were capable of successfully reaching al target goals in an unfamiliar environment, indicating
robust obstacle avoidance and reliable navigation. While both methods showed comparable
performance in terms of distance optimization, the DRL agent significantly outperformed the
classical approach in terms of time efficiency.

This difference is attributed to the mechanisms of each method. The classical navigation
stack relies on constructing a global path using the Dijkstra algorithm and then continuously
adjusting it using the local planner (DWA) as new obstacles are detected. This process involves
constant re-evaluation and can introduce computational delays.

In conclusion, the DRL agent, trained to maximize reward based on reaching the goal quickly
and safely, reacts more directly towards the goal. It doesn’t not require a prior map or global
planning and instead makes real-time decisions that balance goal reaching and collision avoid-
ance. As a result, it achieves faster navigation, making it more suitable for time-critical appli-
cations such as emergency response or hospital devilry tasks.

3.6.7 Experiment 6 Training dynamics and results

Training dynamics

Results

The agent trained in Experiment 6, which involved both static walls and dynamic cylinders in
the indoor environment, demonstrated its ability to navigate in the presence of both static and
dynamic obstacles. However, it occasionally struggled with dynamic obstacles, succeeding in
22 out of 30 trials and failing in the remaining 8.
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Figure 3.33: Experiment 6 mean reward

Figure 3.34: Experiment 6 actor loss

Conclusion

Experiment 6 demonstrated stable learning, as evidenced by the reward progression and the
stability of the actor loss shown in Figures 3.33 and 3.34. The agent exhibited effective navi-
gation capabilities; however, further refinement is needed to handle situations where dynamic
obstacles approach rapidly. This could potentially be addressed by designing a more suitable
reward function.

3.6.8 Training time

The training was performed on a machine equipped with an Intel Core i9 14th generation
processor and an NVIDIA RTX 3060 GPU to accelerate computation.

The table below summarizes the training duration for each stage and algorithm.
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Algorithm Stage Training Time

DQN Stage1 4h 57min

DDPG
Stage 1 57min
Stage 2 4h 58min

SAC
Stage 1 5h 28min
Stage 2 4h 16min

TD3

Stage 1 3h 55min
Stage 2 10h 31min
Stage 3 7h 34min
Stage 4 7h 41min
Stage 5 5h 01min

Table 3.9: Summary of Training Time per Algorithm and Stage

3.7 Conclusion

This chapter presented a series of six experiments designed to evaluate and compare, then
choose the best-performing algorithm in mapless navigation from a set of DRL algorithms —
namely, DQN, DDPG, SAC, and TD3 — to continue for later increasingly complex navigation
tasks.

The results highlighted the limitations of DQN, which showed unstable learning and poor
navigation performance, making it unsuitable for complex tasks. DDPG showed moderate
capabilities but failed in maintaining consistent success, particularly in the presence of obsta-
cles. Contrary to DDPG, SAC showed better and more consistent success even though some
fluctuations appeared in its losses due to its stochastic nature.

Among all the tested algorithms, TD3 consistently outperformed the others, showing robust
and stable learning behavior across all stages. Its smooth reward progression, high success
rate, and adaptability to curriculum-based difficulty made it the most reliable candidate for
real-world navigation challenges.

Comparing the DRL approach with a classical navigation method, where both achieved sim-
ilar success rates, the DRL agent significantly outperformed the classical stack in terms of
time efficiency, showing the benefits of learning-based decision making in real-time mapless
navigation.

Overall, this chapter validates the suitability of DRL, and particularly the TD3 agent, for au-
tonomous navigation in environments with increasing complexity. It also shows the importance
of reward shaping and curriculum design in achieving efficient and generalizable policies.
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Demonstrating videos

To facilitate access to the demonstration videos, a set of QR codes has been generated. These
QR codes can be scanned to view the corresponding demonstrations. They are provided below.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 5

(e) Experiment 6

Figure 3.35: QR codes to demonstration videos.
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Chapter 4

Multi Robot System

4.1 Introduction

In recent years, single-robot navigation systems have found widespread applications in real-
world scenarios such as home cleaning robots, autonomous delivery, and self-driving cars. While
effective in isolated use cases, these systems often face limitations in complex indoor environ-
ments, where the presence of multiple agents is increasingly common. Modern industrial and
service settings frequently require coordinated efforts between multiple robots to accomplish
tasks efficiently and safely.

Industry leaders like Amazon, FedEx, and Tesla have adopted multi-robot systems in their
warehouses and manufacturing facilities to automate transport, cleaning, and pick-and-place
operations, achieving significant gains in productivity and operational robustness.

In this work, we extend our initial research on single-robot mapless navigation by developing
a multi-robot system using Deep Reinforcement Learning (DRL). Specifically, we consider a
two-robot setup in which both agents must reach their respective goals without colliding with
walls, obstacles, or each other. This setup reflects real-world challenges in shared, dynamic
spaces and aims to promote safe and efficient autonomous cooperation.

4.2 Centrelized and Decentrelized Multi Robot System

When it comes to choosing between centralized and decentralized architectures, it usually
depends on the specific task, the environment, how big the system is, and any limits on com-
munication or processing power. Centralized systems have the benefit of a global view, which
can lead to more optimal decisions since everything is handled in one place. This can make co-
ordination and planning easier, but it also creates potential problems like bottlenecks, a single
point of failure, and trouble scaling up especially in complex or changing environments.

On the other hand, decentralized systems spread out the decision-making across the robots
themselves. This makes the system more scalable and resilient, since each robot can work
independently using local data or limited shared info. That said, it can be tricky to get the
group to act in a coordinated way, especially when local actions are supposed to lead to a global
goal.
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4.2.1 Centralized MRS

A centralized multi-robot system is characterized by a single control entity, typically referred
to as a central coordinator or master controller, that maintains global knowledge of the system
state and makes all critical decisions for the robot team [27]. In this architecture, individual
robots act primarily as executors of commands issued by the central authority. The central
controller collects sensor data from all robots, processes this information to maintain a com-
prehensive world model, plans coordinated actions, and distributes specific task assignments to
each robot in the team.

This hierarchical structure ensures that all robots operate under a unified control strategy,
with the central controller serving as the sole decision-making authority. Communication flows
predominantly from the periphery to the center for data collection and from the center to the
periphery for command distribution.

Figure 4.1: Centrelized MRS

4.2.2 Decentralized MRS

In contrast, decentralized multi-robot systems distribute decision-making authority across mul-
tiple robots, with each agent possessing some degree of autonomy and local intelligence. These
systems rely on peer-to-peer communication and distributed consensus mechanisms to achieve
coordination without a single point of control. Each robot maintains its own local perception
of the environment, makes independent decisions based on local information and communica-
tion with neighboring robots, and contributes to the overall system behavior through emergent
collective intelligence.

Decentralized architectures can range from fully distributed systems where all robots have equal
authority, to hybrid approaches that incorporate multiple levels of hierarchy while maintaining
distributed decision-making capabilities. communication.
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Figure 4.2: Decentrelized MRS

4.2.3 Comparative Analysis

According to [27], [28] and [29] following table provides a systematic comparison between cen-
tralized and decentralized multi-robot systems across key performance dimensions:

Characteristic Centralized Systems Decentralized Systems
Decision Mak-
ing

Single central authority
makes all major decisions

Distributed decision making
across multiple agents

Scalability Poor scalability due to cen-
tral bottleneck

Good scalability with dis-
tributed processing

Fault Toler-
ance

Single point of failure vul-
nerability

Robust to individual robot
failures

Optimality Can achieve globally opti-
mal solutions

Local optimization may
lead to suboptimal global
performance

Communication Hub-and-spoke topology
with high central traffic

Peer-to-peer communica-
tion with distributed load

Implementation Simpler design and debug-
ging process

Complex coordination algo-
rithms required

Real-time
Performance

Limited by central process-
ing delays

Better real-time response
through local processing

Predictability Highly predictable system
behavior

Emergent behaviors can be
unpredictable

Table 4.1: Comparison of Centralized and Decentralized Multi-Robot Systems
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4.3 Problem formulation

This chapter presents an extension of the previously developed single-robot navigation frame-
work to a multi-robot system comprising two autonomous agents. Building upon the established
deep reinforcement learning (DRL) methodology for mapless navigation, the system architec-
ture incorporates inter-robot communication protocols that enable real-time data exchange,
particularly goal position information, to facilitate coordinated task execution. Each robot
within the system operates under a multi-objective optimization framework that simultaneously
addresses three critical navigation constraints: obstacle avoidance with respect to static environ-
mental features such as walls and dynamic obstacles, collision avoidance between the two robotic
agents, and successful path planning to achieve the individually assigned target destinations.
The distributed control strategy ensures that both robots can navigate autonomously while
maintaining situational awareness of their counterpart’s intentions and trajectories, thereby
enabling safe and efficient multi-agent coordination in unknown environments without reliance
on prior environmental mapping.

Chosen Approach
Building on the initial experience with the single-robot system developed in Chapter 3, and
informed by the five experimental stages that followed, we explored both centralized and de-
centralized control strategies. Through this comparative experimentation, it became clear that
centralized control was not well-suited to the specific nature of our tasks and system constraints.
Consequently, we transitioned to a decentralized multi-robot system, which better aligned with
the functional requirements and research objectives of this thesis.

4.4 Environment Setup

For this multi-robot navigation study, we adopted the same simulation environment described
in Section 3.3.1, with the key modification of incorporating a second robot into the system.
Both robots share identical physical characteristics and sensor configurations, maintaining the
same differential drive kinematics and 2D LiDAR specifications as the single-robot setup. For
gazebo environement, same ones used in 3.3.1 are used for the 2 robot system with both robots
spawn at the initial poses {[2, 2], [-2, -2]}

Figure 4.3: stage1 MRS
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4.4.1 Robot-Robot Detection Challenge

A critical challenge emerged from the physical configuration of the robots: since both Turtle-
Bot3 platforms are equipped with LiDAR sensors mounted at identical heights (approximately
0.18m above ground), the laser beams pass over each robot without detecting them. This geo-
metric limitation means that robots can not perceive each other through their primary sensing
modality, creating a significant obstacle detection blind spot that would inevitably lead to
robot-robot collisions during close encounters. To address this fundamental sensing limitation,
we implemented a simple yet effective communication protocol that enables explicit coordi-
nation between the robots. The solution leverages the ROS 2 communication infrastructure
already present in our simulation environment.

Solution

To address this fundamental sensing limitation, we implemented a simple yet effective commu-
nication protocol that enables explicit coordination between the robots as shown in figure 4.4.

Figure 4.4: Robots communication diagram.

The solution leverages the ROS 2 communication infrastructure already present in our simula-
tion environment. the communication architecture is seated-up as follows:

- Each robot publishes its current pose (position and orientation) to its own dedicated ROS
2 topic

- A communication node is implemented for each robot that subscribes to the other robot’s
pose topic

- This creates a unidirectional subscription pattern where each robot can access the other’s
pose information

- Real-time pose data is processed locally by each robot to compute relative distances and
positions using following equation :

∆x = xbot1 − xbot0

∆y = ybot1 − ybot0

relative_d =
√

(∆x)2 + (∆y)2

θ = arctan 2(∆y, ∆x)

(4.1)
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4.4.2 Reward Desing

In this experiment, the same reward used in 3.5 is sophisticated to fulfill the needs we are
imposing. A term is added to the reward which penalizes the robots if they approach each
other:

rrelative_d =

−3 · exp(−relative_d), if relative_d < 0.7
0, otherwise

where relative_d is the distance between robots defined in 4.1.

Overall, the basic reward function used in the first stage for each robot is now defined as:

r =


+100, if the goal is reached (rg)
−100, if a collision occurs (rc)
−100, if the episode times out (rt)

Otherwise, r = 10 · (dt−1 − dt)−
|ωt|
2 + rrelative_d

As the complexity of the environment incrementally increases with each progressive stage of our
experimental framework, we introduce a sophisticated negative reward mechanism designed
to penalize robots for approaching dangerous zones, obstacles, and environmental boundaries.
This penalty-based approach serves as a crucial safety measure that actively discourages the
autonomous agents from venturing too close to potential collision sources, including static
obstacles, dynamic barriers, and the perimeter walls of the operational environment.

The implementation of this negative reward system ensures that robots develop risk-averse
navigation strategies while simultaneously pursuing their primary objectives. The negative re-
ward signal becomes progressively stronger as robots approach danger zones, creating a natural
repulsive force that guides them toward safer trajectories. This collision avoidance strategy is
particularly effective in multi-robot scenarios where coordination between multiple autonomous
agents becomes critical, as each robot learns to maintain safe operating distances from both
environmental hazards and other robots in the shared workspace. More comprehensive details
and experimental validation of this approach are thoroughly discussed in Section 3.5.

4.4.3 Networks and Learning

Given the development of a two-robot system and the specific objectives and requirements
outlined in the Problem Formulation section, we analyzed the performance results from our
single-agent experiments presented in Tables 3.5, 3.6, and 3.7. Based on these findings, we
adopted a decentralized control approach utilizing two independent Twin Delayed Deep De-
terministic Policy Gradient (TD3) network architectures to control each robot autonomously.
Both networks share the same hyper parameters displayed in 3.4 and the actions space in 3.4.1,
although each one have its own input tensor formed as shown in figure 4.5.
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Figure 4.5: MRS Networks

4.5 Simulation and Results

The training process was strategically divided into four distinct stages, each progressively in-
creasing in complexity and environmental challenges. To effectively manage this hierarchical
learning structure and ensure optimal knowledge transfer, we adopted a comprehensive transfer
learning approach that leverages the accumulated experience from simpler scenarios to tackle
more complex navigation tasks.

Training commenced with Stage 1, which presented the most basic navigation scenario with
minimal obstacles and straightforward path planning requirements. Upon successful comple-
tion of each stage, we carefully preserved the learned model parameters and utilized them as
initialization weights for the subsequent, more challenging stage. This methodical approach
to knowledge transfer ensured that the agent could build upon previously acquired navigation
skills rather than starting from scratch at each new complexity level.

This transfer learning strategy provided several significant advantages throughout the training
process. First, it enabled continuous and cumulative learning, allowing the agent to retain
valuable navigation behaviors and decision-making patterns learned in simpler environments.
Second, it substantially reduced the overall training time required for each stage, as the model
could leverage pre-existing knowledge rather than exploring the entire action space from random
initialization. Third, it improved training stability by providing a solid foundation of learned
behaviors that could be refined and adapted to new challenges.

The progressive complexity structure was designed to systematically introduce new challenges
while maintaining learning stability. Stage 1 focused on basic obstacle avoidance and goal-
reaching in sparse environments. Stage 2 introduced additional static obstacles and more
complex spatial arrangements. Stage 3 incorporated dynamic elements and increased environ-
mental variability. Finally, Stage 4 presented the most challenging scenarios with dense obstacle
configurations and complex navigation requirements.

In the following sections, we provide a comprehensive discussion and interpretation of the sim-
ulation results obtained across all four training stages. Our evaluation focuses on several key
performance metrics that collectively provide insight into the learning dynamics and model
behavior. These metrics include the cumulative reward progression, which indicates the agent’s
improving ability to successfully navigate and reach goals; the actor loss evolution, which re-
flects the stability and convergence of the policy network; and the critic loss patterns, which
demonstrate the accuracy of value function estimation throughout the learning process. Ad-
ditionally, we analyze convergence rates, training stability, and the effectiveness of knowledge
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transfer between stages. These comprehensive indicators provide valuable insight into the
learning behavior, adaptation capabilities, and overall stability of the model throughout the
entire training process, enabling us to assess both the individual stage performance and the
cumulative benefits of our progressive learning approach.

4.5.1 Stage 1

Figure 4.6: Robot 0 reward Figure 4.7: Robot 1 reward

Figure 4.8: Robot 0 actor loss Figure 4.9: Robot 1 actor loss

Figure 4.10: Robot 0 critic loss Figure 4.11: Robot 1 critic loss

Figure 4.12: Stage 1 results: Rewards, actor losses, and critic losses for both robots

Comments

Reward : Both robots follow nearly identical learning curves in Stage 1, improving from 125
to 420+ within 350 episodes, then stabilizing around 420–450. The synchronized progress and
consistent rewards reflect effective decentralized training and solid early-stage performance.

Actor Loss Actor losses for both robots show similar high-variance patterns, dropping from
-50 to fluctuating between -70 and -105. This lack of convergence indicates active exploration
and incomplete policy learning, typical in early training stages.

Critic Loss Critic loss is highly variable, spiking past 4000 with baseline around 500–1000.
These fluctuations reflect early-stage TD learning and large prediction errors as critics adapt
to fast-changing policies.
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4.5.2 Stage 2

Figure 4.13: Robot 0 reward Figure 4.14: Robot 1 reward

Figure 4.15: Robot 0 actor loss Figure 4.16: Robot 1 actor loss

Figure 4.17: Robot 0 critic loss Figure 4.18: Robot 1 critic loss

Figure 4.19: Stage 2 results: Rewards, actor losses, and critic losses for both robots

Comments :
Reward : Robot 0 improves from -60 to 4̃70, while Robot 1 reaches 4̃20. Both follow three
phases: exploration, rapid learning (0.4–0.6M), and stable performance. Robot 0 slightly out-
performs, likely due to better interaction or initialization. Unlike other stages strong fluctua-
tions can be remarked.

Actor Loss : Actor loss steadily decreases for both. Robot 0 converges to -70, Robot 1 to
-50. The trends are smooth, showing stable policy updates. Robot 1’s lower loss suggests more
efficient policy learning.

Critic Loss : Critic loss is variable, with spikes over 2500 and baseline around 200–500. This
reflects active learning and proper value updates. Both critics adapt well without signs of
instability.

Page 90



Multi Robot System

4.5.3 Stage 3

Figure 4.20: Robot 0 reward Figure 4.21: Robot 1 reward

Figure 4.22: Robot 0 actor loss Figure 4.23: Robot 1 actor loss

Figure 4.24: Robot 0 critic loss Figure 4.25: Robot 1 critic loss

Figure 4.26: Stage 3 results: Rewards, actor losses, and critic losses for both robots

Comments :
Reward : Both robots had continuous increment in their average reward although robot 1 had
faster increase comparing its counterpart.

Actor Loss : Similar behavior is remarked though, robot 0 converges rapidly where robot 1
took more time to get to its convergence.

Critic Loss High strikes are seen in both plots, despite that it decreases over time for robot1
unlike robot 0 which sometimes had large strikes that exceeded the 4000 limit.
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4.5.4 Stage 4

Figure 4.27: Robot 0 reward Figure 4.28: Robot 1 reward

Figure 4.29: Robot 0 actor loss Figure 4.30: Robot 1 actor loss

Figure 4.31: Robot 0 critic loss Figure 4.32: Robot 1 critic loss

Figure 4.33: Stage 4 results: Rewards, actor losses, and critic losses for both robots

Comments :
Reward : This last stage marked the smoothest values in terms of reward comparing to other
stages regardless of the final value which was low for the reason that numerous walls existed in
stage 4.

Actor Loss : Rapid convergence with small fluctuations for both robots.

Critic Loss Strikes still exists despite the long time of learning from stage 1 to 4 although
lower values were reached comparing to previous stages.

Stage Learning Time
1 8h 15min
2 12h 25min
3 14h 05min
4 16h 00min

Table 4.2: Training duration for each stage

Stage Success Rate (%)
1 93
2 95
3 90
4 80

Table 4.3: Success rate for each stage
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4.6 Conclusion

Based on our experimental results, the decentralized multi-robot system demonstrated success-
ful coordinated navigation across all four stages, confirming that our TD3-based approach works
effectively for multi-agent mapless navigation. We managed to solve the critical robot-robot de-
tection problem through our communication protocol, which compensated for the LiDAR height
limitation that prevented robots from sensing each other directly. Both robots showed remark-
ably similar learning patterns and reached stable performance levels, with rewards consistently
hitting 420-470 points in the later stages. This confirms that our decentralized approach allows
each robot to make autonomous decisions while still coordinating effectively through minimal
communication.

Our progressive training strategy proved successful in transferring knowledge between stages.
We observed reduced training instability as we moved through the stages, and the robots
maintained their performance levels even as environments became more complex. The pose-
sharing mechanism we implemented worked well - it solved the detection problem and enabled
collision avoidance through our relative distance calculations and penalty rewards. Throughout
all stages, the robots mostly maintained safe distances from each other without compromising
their individual navigation goals.

Looking at the training progression, we found some interesting patterns. Stage 1 gave us a solid
foundation with both robots learning at similar rates and stabilizing around 420-450 reward
points. In Stage 2, we saw better policy convergence with smoother actor losses, though the
robots started showing some individual differences in performance. Stage 3 was particularly
interesting because Robot 1 converged faster than Robot 0, while Stage 4 showed the smoothest
reward curves despite being our most complex environment. Our success rates (93%, 95%, 90%,
80%) were generally strong, though we did see the expected drop in Stage 4 due to increased
environmental complexity.

Comparing our results to the single-robot case, we achieved slightly lower success rates, which
makes sense given the added complexity of coordinating two agents in the same space. This
reduction reflects the natural trade-off in multi-agent systems, each robot now has to balance
reaching its own goal with avoiding the other robot and maintaining cooperative behavior. The
loss patterns we observed were healthy throughout training. Actor losses settled between -50
and -70, and while critic losses had some spikes above 4000, this variability is typical for TD
learning in multi-agent environments and didn’t prevent convergence.

Our decentralized architecture showed good fault tolerance since each robot can operate inde-
pendently, and it scales better than centralized approaches would. The communication overhead
remained manageable, and both robots learned in parallel effectively. Training times increased
reasonably with complexity (from 8h 15min to 16h), showing our approach is computationally
efficient. The progressive training method handled the complexity scaling well while keeping
learning stable.

This work validates that decentralized multi-robot navigation using DRL is feasible in unknown
environments. We achieved good coordination between autonomous agents, and our transfer
learning approach provides a foundation for scaling to larger robot teams. The slightly lower
success rates compared to single robots point to areas we can improve - better communication
protocols, more sophisticated reward shaping, and maybe incorporating explicit cooperation
strategies into the learning process. Our experimental framework gives us a solid platform
for future multi-robot research, with proven methods for progressive training and effective
decentralized coordination.
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Demonstating Videos

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3

Figure 4.34: QR codes to demonstration videos.
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General Conclusion

The Takagi-Sugeno fuzzy modeling approach employed for trajectory tracking provided exact
representation of nonlinear dynamics through sector nonlinearity methods, eliminating approx-
imation errors common in traditional linearization techniques. The Parallel Distributed Com-
pensation control strategy, optimized through Linear Matrix Inequalities, ensured robust stabi-
lization with guaranteed convergence rates even under challenging initial conditions that would
cause conventional controllers to fail. The integration of T-S observers successfully addressed
real-world sensor noise and measurement uncertainties, demonstrating superior performance
and reliability for autonomous navigation applications.

Artificial Intelligence (AI) has become an increasingly vital tool in autonomous robotics, offer-
ing sophisticated techniques for navigation, learning, and optimization of complex multi-agent
systems. In this thesis, we explored several AI-driven approaches to enhance mapless naviga-
tion capabilities for mobile robots, with particular emphasis on deep reinforcement learning
algorithms and multi-robot coordination strategies.

Through comprehensive chapters, we have detailed our approach, findings, and the challenges
encountered in developing robust autonomous navigation systems without prior environmen-
tal knowledge. We began by introducing the theoretical foundations of deep reinforcement
learning, examining its potential applications and advantages in robotic navigation scenarios.
Building upon this foundation, we investigated DRL-based approaches for mapless navigation,
conducting extensive simulations on single robot systems to identify and select the most effec-
tive algorithm for our navigation framework.

Our comparative analysis of various DRL algorithms demonstrated promising results in accu-
rately modeling navigation behaviors and decision-making processes. The TD3 algorithm was
selected and subsequently implemented and rigorously tested in multi-robot system architec-
tures, showing robust capability to handle complex coordination tasks and dynamic environ-
ments. Finally, we developed a fuzzy control approach to ensure reliable trajectory tracking,
providing a dependable method for real-time navigation control and performance assurance
across diverse operational scenarios.

The results demonstrated the efficiency of our integrated approach, with the multi-robot co-
ordination strategies adding flexibility or capabilities that significantly enhanced the overall
navigation performance. This finding underscores the importance of adaptable learning al-
gorithms and intelligent coordination mechanisms in optimizing autonomous navigation for
various robotic applications.

Looking forward, there are several avenues for improving and extending the capabilities of our
mapless navigation system. Future work will focus on real-time implementation of these meth-
ods to further validate their practical applicability in dynamic environments. Additionally,
efforts will be made to improve the algorithms with the goal of achieving full autonomy in
more complex scenarios, including advanced dynamic obstacle avoidance and adaptive behav-
ior learning. Furthermore, investigating the integration of additional sensor modalities could



General Conclusion

provide richer environmental perception, enhancing the algorithm’s accuracy and robustness
in various operational contexts. In the future, we also aim to apply this system to multiple
robot configurations and design state observers to reduce the dependency on physical sensors,
thereby optimizing cost and system complexity.

In summary, this thesis demonstrates the powerful capabilities of AI in advancing autonomous
mobile robotics, offering innovative solutions for complex navigation, coordination, and opti-
mization challenges. The promising results in mapless navigation and multi-robot systems pave
the way for future research and practical applications, ultimately contributing to the develop-
ment of smarter, more efficient autonomous robotic systems capable of operating reliably in
unknown and dynamic environments.
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Figure 4.35: Business Model Canvas for the proposed appraoch.
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