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Résumé

Les robots parallèles, tels que le robot Delta, sont de plus en plus utilisés dans des applications
industrielles exigeantes en raison de leurs performances exceptionnelles en termes de rapidité,
précision et charge utile. L’une des principales problématiques dans leur utilisation réside dans
la gestion optimale de leur commande, afin d’assurer une stabilité et une précision accrues face
aux perturbations et aux incertitudes du système. Ce mémoire propose une approche innovante
en utilisant la commande d’ordre fractionnaire pour améliorer le contrôle adaptatif de ce type
de robot. Les techniques de commande non linéaire fractionnaire permettent une régulation
plus fine et une meilleure réactivité du système, tout en garantissant une stabilité renforcée.
Les résultats expérimentaux valident cette approche, montrant qu’elle offre des performances
supérieures aux méthodes traditionnelles. Ce travail met en évidence l’importance de l’évolution
des stratégies de commande pour répondre aux défis actuels des systèmes robotiques dans les
environnements industriels modernes.

Mots clés : Robot DELTA , Suivi de trajectoire , Calcul Fractionnaire , Commande adaptative
directe et indirecte , Méthode de Backstepping , Commande adaptative par model de reference
, Commande par mode glissant.

Abstract

Parallel robots, such as the Delta robot, are increasingly used in demanding industrial applica-
tions due to their exceptional performance in terms of speed, precision, and payload capacity.
One of the main challenges in their use lies in the optimal management of their control to
ensure enhanced stability and accuracy in the face of disturbances and system uncertainties.
This thesis proposes an innovative approach using fractional-order control to improve the adap-
tive control of this type of robot. Nonlinear fractional-order control techniques allow for finer
regulation and better system responsiveness, while ensuring reinforced stability. Experimental
results validate this approach, showing that it offers superior performance compared to tradi-
tional methods. This work highlights the importance of evolving control strategies to meet the
current challenges of robotic systems in modern industrial environments.

Keywords : Delta Robot, Trajectory Tracking, Fractional Calculus, Direct and Indirect Adap-
tive Control, Backstepping Method, Model Reference Adaptive Control, Sliding Mode Control.



Acknowledgments

First and foremost, we would like to express our deepest gratitude to Almighty Allah for
granting us the strength, patience, and guidance to successfully complete this end-of-study
project.

We would also like to extend our heartfelt thanks to our families for their continuous support,
encouragement, and understanding throughout our academic journey. Their sacrifices and love
have been an invaluable source of motivation.

Our sincere appreciation goes to our supervisor, Pr Samir LADACI, for their guidance, avail-
ability, and constructive feedback throughout the development of this project. Their expertise
and commitment have greatly enriched our work.

We also thank the members of the jury for taking the time to evaluate our work and for their
valuable insights and suggestions, which helped us to improve both technically and academi-
cally.

We are equally grateful to our professors and the entire teaching staff of Ecole Nationale
Polytechnique, who have provided us with the knowledge and skills necessary to undertake
this project.

A special thanks goes to our colleagues and fellow students for their collaboration, advice, and
the friendly atmosphere we shared throughout our studies.

Finally, we express our gratitude to everyone who, directly or indirectly, contributed to the
realization of this project.

Yacine and Sidali



Contents

List of Figures 7

List of Tables 11

List of Acronyms

General Introduction 13

1 Parallel Robot Manipulators 15

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Characteristics of Parallel Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Structure and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Speed and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Precision and Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.5 Constraints and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Applications of Parallel Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Manufacturing and Logistics Industry . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Medical and Surgical Robotics . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Motion Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Aerospace and Space Applications . . . . . . . . . . . . . . . . . . . . . . 20

1.3.5 Construction and Civil Engineering . . . . . . . . . . . . . . . . . . . . . 21

1.4 Comparison with Serial Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Fractional Calculus 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



2.2 Applications for Control Systems and Robotics . . . . . . . . . . . . . . . . . . 23

2.3 Fractional Order Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Riemann-Liouville Definition . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Caputo Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Grünwald-Letnikov Definition . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Numerical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4.1 Fractional Derivatives Using Different Definitions . . . . . . . . 25

2.4.4.2 Letnikov Approximation Analysis . . . . . . . . . . . . . . . . . 26

2.4.5 Properties of Fractional-Order Differentiation . . . . . . . . . . . . . . . 27

2.4.6 Laplace Transform for Fractional Derivatives . . . . . . . . . . . . . . . . 27

2.5 Differential Equations and Transfer Functions for Fractional Systems . . . . . . 28

2.5.1 Fractional Differential Equations . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Transfer Function of Fractional Systems . . . . . . . . . . . . . . . . . . 28

2.6 Frequency domain Approximation for Fractional systems . . . . . . . . . . . . . 28

2.6.1 Oustaloup’s Recursive Approximation . . . . . . . . . . . . . . . . . . . 28

2.6.2 Charef Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.4 First-Order Transfer Function Approximation . . . . . . . . . . . . . . . 31

2.6.5 Second-Order Transfer Function Approximation . . . . . . . . . . . . . . 33

2.7 Performance Analysis of FO Systems . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Step Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.2 Observations and Advantages . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Stability Analysis of Fractional-Order Systems . . . . . . . . . . . . . . . . . . 37

2.8.1 Matignon’s Stability Theorem . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.2 Stability Verification Algorithm . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.3 Stability Domain for Fractional LTI systems . . . . . . . . . . . . . . . . 38

2.8.4 The Extended Lyapunov Second Theorem for Stability . . . . . . . . . . 38

2.9 Fractional-Order PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 State-Space Representation for Fractional Systems . . . . . . . . . . . . . . . . . 39

2.11 Controllable Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



2.12 Observable Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.13 Observability, Controllability, and Stability of Fractional Systems . . . . . . . . 41

2.14 Fractional-State-Space Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . 41

2.15 Time domain fractional approximation . . . . . . . . . . . . . . . . . . . . . . . 41

2.15.1 Simple Fractional Differential Equation . . . . . . . . . . . . . . . . . . . 42

2.15.1.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15.2 Two-State Dynamic Model (η-model) . . . . . . . . . . . . . . . . . . . . 42

2.16 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Modeling of Delta robot 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Description of the Delta Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Forward kinematics equations . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Inverse kinematics equations . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Dynamic model of delta robot . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 State Space Model of Delta Robot . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Fractional Order state space model for delta robot . . . . . . . . . . . . . . . . . 59

3.6 Open loop simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Advanced Fractional Control Strategies For Delta Robot . . . . . . . . . . . . . 60

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 FO Indirect Lyapunov Based Adaptive Backstepping Controller 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Control law design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Proof and Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Robustness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 FO Sliding Mode Control Based on Super-Twisting Algorithm 71



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Simulation and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Robustness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Fractional Order Lyapunov based MRAC with State feedback Controller 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Robustness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Comparative Analysis of the Proposed Control Strategies 88

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Stability and performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Optimality and Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.1 Optimality Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.2 Feasibility Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

General Conclusion 94

Bibliography 96

Appendix 100



List of Figures

1.1 Modern Delta robot in a high-speed pick-and-place application. . . . . . . . . . 15

1.2 Schematic of Delta robot parallelogram linkages and Stewart platform leg ar-
rangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Representative speed and acceleration profile of a Delta robot performing pick-
and-place cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Comparison of positional deflection under load: parallel versus serial robot. . . . 17

1.5 Workspace simulation examples for 3-DOF and 6-DOF parallel robots. . . . . . 18

1.6 Delta robots in a high-speed packaging cell. . . . . . . . . . . . . . . . . . . . . 19

1.7 RCM-capable parallel manipulator used in laparoscopic surgery. . . . . . . . . . 20

1.8 Flight simulator cockpit mounted on a Stewart platform. . . . . . . . . . . . . . 20

1.9 Hexapod platform used for satellite sensor calibration. . . . . . . . . . . . . . . 21

1.10 Delta WASP 3MT CONCRETE: Industrial-Scale Delta 3D Printer for Construc-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Fractional derivatives of f(x) using the Letnikov method for different step sizes h. 26

2.2 Comparison of Oustaloup and Charef approximations for fractional integration
( 1

s0.4 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Comparison of Oustaloup and Charef approximations for fractional derivation (
s0.0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Bode diagram for first order system . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Phase plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Bode diagram for first order system . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Phase plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Step response of a first-order fractional system for different values. . . . . . . . . 36

2.9 Step response of a second-order fractional system for different values. . . . . . . 36

2.10 LTI fractional-order system stability region for 0 < q ≤ 1. . . . . . . . . . . . . . 38

2.11 fractional-order PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



2.12 Dynamics of the fractional equation for different values of α. . . . . . . . . . . . 42

2.13 Comparison between standard and fractional dynamics: (top) Time evolution of
x(t) and y(t); (bottom) Phase portraits x(t) vs y(t). . . . . . . . . . . . . . . . . 43

3.1 Description of Delta Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Description of Delta Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Direct geometric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Top view of DELTA Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Front view of DELTA Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 The sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Inverse geometric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Front view of DELTA Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 The isolation of the Forearms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 The isolation of the nacelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 The isolation of the Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Open loop first joint response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Open loop first joint response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Structure of the adaptive FO Backstepping control system . . . . . . . . . . . . 65

4.2 First Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Second Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Third Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 End effector trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 68

4.10 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 3D End-Effector Trajectory Tracking under noise . . . . . . . . . . . . . . . . . 69

4.12 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 69

4.13 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Structure of the adaptive Sliding Mode FO control system . . . . . . . . . . . . 73



5.2 First Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Second Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Third Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 3D End-Effector Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Joint angle In presence of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10 Joint angle In presence of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 3D End-Effector Trajectory Tracking under noise . . . . . . . . . . . . . . . . . 77

5.12 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Structure of the adaptive FO MRAC control system . . . . . . . . . . . . . . . 83

6.2 First Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Second Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Third Joint angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 End-effector trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Errors Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Induced Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 86

6.10 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 86

6.11 Joint angle In presence of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 First Joint position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Second Joint position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 X-axis tracking error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Y-axis tracking error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Z-axis tracking error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Induced Control Signal FO Backstepping . . . . . . . . . . . . . . . . . . . . . 91

7.7 Induced Control Signal FO MRAC . . . . . . . . . . . . . . . . . . . . . . . . . 91



7.8 Induced Control Signal FO SMC . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Tables

1.1 Key differences between parallel and serial robot architectures. . . . . . . . . . . 22

2.1 Fractional derivatives of f(x) using different definitions. . . . . . . . . . . . . . . 25

2.2 Effect of step size h on the Letnikov approximation. . . . . . . . . . . . . . . . . 26

3.1 Summary of Delta Robot Parameters . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 RMSE values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 RMSE values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 RMSE values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 RMSE values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Acronyms

- FO : Fractional-Order

- PID : Proportional–Integral–Derivative

- MRAC : Model Reference Adaptive Control

- SMC : Sliding Mode Control

- DoF : Degrees of Freedom

- EE : End Effector

- IK : Inverse Kinematics

- FK : Forward Kinematics

- DIAC : Direct and Indirect Adaptive Control

- FOPID : Fractional-Order PID (Proportional–Integral–Derivative)

- SFC : State Feedback Control

- RMSE : Root Mean Square Error

- LTI : Linear Time-Invariant

- BIBO : Bounded-Input, Bounded-Output (stability)

- MIMO : Multi-Input Multi-Output



General Introduction

Parallel robots, particularly Delta robots, have gained significant importance in recent years
due to their high precision, speed, and ability to handle substantial payloads. These robots
have found applications in various fields, such as industrial automation, biomedical procedures,
and 3D printing, where rapid and accurate motion control is crucial. The Delta robot, with
its closed-loop kinematics and efficient design, excels in high-performance tasks that require
precise trajectory tracking and fast response times.

With the increasing complexity and demands placed on robotic systems, there has been a
growing interest in improving their control mechanisms. Traditional integer-order controllers,
although effective, often face limitations in terms of robustness, accuracy, and adaptability
when dealing with uncertainties and non-linearities in dynamic environments. To overcome
these limitations, fractional-order control techniques have emerged as a promising alternative.
Fractional calculus, which extends traditional calculus to incorporate non-integer derivatives
and integrals, offers enhanced flexibility in modeling and controlling complex systems. It allows
for the adjustment of system dynamics over a broader range, providing better performance,
especially in systems with inherent uncertainties or highly dynamic behavior.

This work aims to explore and compare various fractional-order control strategies applied to
Delta robots. The goal is to develop robust and efficient control algorithms that can improve
trajectory tracking and overall system performance. Specifically, we focus on three advanced
fractional-order control methods: fractional-order adaptive backstepping, fractional-order slid-
ing mode control (SMC), and **fractional-order model reference adaptive control (MRAC)**.
Each of these methods offers unique benefits, such as robustness to disturbances, adaptability
to changing environments, and the ability to provide precise control under varying operating
conditions. By leveraging the advantages of fractional-order control, we seek to enhance the
performance of Delta robots in real-world applications.

The document is structured as follows:

- Chapter 1: Parallel Robots
This chapter provides a comprehensive overview of parallel robots, focusing on their de-
sign principles, advantages, and various types of parallel manipulators. We particularly
highlight the Delta robot, describing its kinematic structure, operating principles, and
typical applications. The chapter sets the foundation for understanding the unique chal-
lenges faced when controlling these systems and introduces the need for advanced control
techniques to improve their performance.

- Chapter 2: Fractional Calculus
In this chapter, we introduce the concept of fractional calculus, a key component of this
research. We explain the mathematical foundation of fractional derivatives and integrals
and their relevance to control theory. The chapter also covers the history and develop-
ment of fractional calculus, highlighting its increasing importance in engineering fields,
particularly in system modeling and control design. We emphasize how fractional-order

13



LIST OF TABLES LIST OF TABLES

controllers offer superior flexibility and performance over traditional controllers.

- Chapter 3: Modeling of the Delta Robot
This chapter presents a detailed mathematical model of the Delta robot, including its
kinematics and dynamics. We describe the robot’s structure, including the configuration
of its arms, joints, and end-effector. The chapter outlines the equations governing the
robot’s motion, which serve as the basis for control design in subsequent chapters. A
strong focus is placed on deriving accurate models to ensure that the control algorithms
can be tested and evaluated effectively.

- Chapter 4: Adaptive Fractional-Order Backstepping Control
Chapter 4 introduces the fractional-order adaptive backstepping control approach, which
is designed to handle complex robotic systems with nonlinearities and uncertainties. The
adaptive backstepping method is enhanced by incorporating fractional-order derivatives,
offering improved robustness and performance in tracking trajectories. This chapter
presents the theoretical foundations, the design of the controller, and its application to
the Delta robot model.

- Chapter 5:Adaptive Fractional-Order Sliding Mode Control (SMC)
In Chapter 5, we explore the implementation of fractional-order sliding mode control
(SMC) with an adaptive framework for the Delta robot. The chapter discusses how SMC
can enhance system robustness against disturbances and uncertainties. By incorporating
fractional-order elements into the sliding mode controller, the resulting system offers
better tracking accuracy and reduced chattering, making it ideal for high-performance
applications. The chapter also presents simulation results demonstrating the effectiveness
of the proposed approach.

- Chapter 6: Model Reference Adaptive Control Based on Fractional-Order
(MRAC)
This chapter focuses on the design of a fractional-order model reference adaptive con-
troller (MRAC) for the Delta robot. MRAC is a powerful adaptive control strategy that
ensures the system’s output follows a reference model, even in the presence of parameter
uncertainties and external disturbances. By using fractional-order elements, the MRAC
is further refined to provide enhanced performance, especially in dynamic environments.
We present the mathematical formulation of the controller and analyze its performance
through simulations.

- Chapter 7: Comparative Analysis and Conclusion
In the final chapter, we conduct a comparative analysis of the three control strategies—fractional-
order adaptive backstepping, fractional-order SMC, and fractional-order MRAC. The
performance of each method is evaluated based on several criteria, including tracking
accuracy, robustness, and computational efficiency. The chapter concludes with a sum-
mary of the key findings and a discussion on the potential applications of fractional-order
controllers in Delta robots and other robotic systems.

Through this work, we aim to demonstrate the practical advantages of fractional-order control
in improving the trajectory tracking and robustness of Delta robots. We also explore how these
advanced control strategies can contribute to the broader field of robotics, opening the door
for more efficient and adaptive control techniques in industrial and scientific applications. The
findings of this research are expected to advance the state of the art in both fractional-order
control theory and robotic control systems.
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Chapter 1

Parallel Robot Manipulators

1.1 Introduction

Parallel robots are manipulators composed of multiple kinematic chains (legs) arranged in par-
allel between a fixed base and a moving end-effector, forming closed-loop structures [1]. Each leg
constrains the end-effector, and the combined constraints determine its pose. This architecture
contrasts with serial robots, which have a single open chain of joints and links. Parallel designs
concentrate actuators at the base, reducing moving mass and enabling exceptional dynamic
performance and stiffness.[2]

Delta robots, pioneered by Clavel in the 1980s at EPFL, exemplify high-speed parallel mecha-
nisms. A typical Delta robot uses three carbon-fiber arms connected via parallelogram linkages,
guaranteeing pure translational motion of a triangular end-effector platform. The parallelogram
ensures the platform remains parallel to the base throughout its workspace, simplifying kine-
matics and reducing actuation complexity [3]. Over the decades, Delta robots have evolved
to achieve sub-0.3 s cycle times for pick-and-place tasks and payload capacities up to 8 kg,
making them prevalent in food and electronics packaging lines [2]. Figure 1.1 shows a modern
Delta robot deployed above a conveyor system, illustrating its typical overhead mounting and
workspace coverage.

Figure 1.1: Modern Delta robot in a high-speed pick-and-place application.
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1.2 Characteristics of Parallel Robots

Parallel manipulators possess distinct features arising from their closed-loop kinematic struc-
ture. Below, we analyze key characteristics with specific examples.

1.2.1 Structure and Design

In the Delta robot configuration, three identical kinematic chains connect the fixed base to
the moving platform. Each chain consists of a base-mounted rotary actuator driving an upper
link, which in turn drives two parallel lower links. These lower parallelogram links constrain
the platform to pure translation, as they maintain constant orientation between the base and
platform joints [4]. The resulting symmetric layout distributes loads uniformly and minimizes
deflection under payload.

The Stewart platform uses six actuators, typically linear or rotary, each attached via universal
joints to both base and platform. By coordinating leg extensions, the platform can achieve
motion in all six degrees of freedom (three translations and three rotations) [5]. The hexapod’s
symmetric arrangement enhances stiffness and load capacity.

Figure 1.2: Schematic of Delta robot parallelogram linkages and Stewart platform leg arrange-
ment.

1.2.2 Speed and Acceleration

Parallel robots achieve high dynamic performance due to low moving inertia: all heavy actuators
are mounted on the base, leaving only lightweight links and end-effectors in motion. The Delta
robot exemplifies this: modern FlexPicker models attain accelerations above 100 m/s2 and linear
speeds exceeding 10 m/s, enabling cycle rates upward of 300 picks per minute [6]. Distributed
actuation allows each motor to contribute partially to the net end-effector movement, reducing
torque demands and enabling rapid reversals with minimal overshoot.

Large-scale hexapods leverage similar principles: flight simulator platforms, weighing multiple
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tons, produce realistic motion cues with accelerations up to 3 g, thanks to the coordinated
action of base-fixed hydraulic actuators and low-inertia connecting links.

Figure 1.3: Representative speed and acceleration profile of a Delta robot performing pick-and-
place cycles.

1.2.3 Precision and Rigidity

The closed-loop structure of parallel robots ensures that end-effector position errors are con-
strained by multiple linkages, averaging out individual joint errors and reducing compliance.
Delta robots routinely achieve sub-millimeter repeatability at fast cycle rates, critical for tasks
like microelectronics assembly and pharmaceutical dispensing [7]. Stewart platforms, used in
telescope alignment and machine tool applications, maintain micrometer-level positioning under
heavy loads, as all six legs oppose external forces simultaneously [2].

Advanced implementations use stiff materials (e.g., carbon fiber, hardened steel) and low-
backlash joints, further improving accuracy. However, precision relies on meticulous calibration
of leg lengths and joint offsets to align the physical robot with its kinematic model.

Figure 1.4: Comparison of positional deflection under load: parallel versus serial robot.
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1.2.4 Degrees of Freedom

The number of independent actuators in a parallel robot defines its degrees of freedom (DOF):

- 3-DOF: Classic Delta for pure translational motion along X, Y, and Z axes.

- 4-DOF: Delta with an added rotary axis on the end-effector for yaw orientation.

- 5-DOF: Delta plus two rotational axes (pitch and yaw) via a serial wrist.

- 6-DOF: Stewart platform providing full translational and rotational control.

Workspace boundaries are determined by link geometry and joint limits, creating dome-shaped
or cylindrical workspaces for translation-only Deltas and complex 6D volumes for Stewart
platforms.

Figure 1.5: Workspace simulation examples for 3-DOF and 6-DOF parallel robots.

1.2.5 Constraints and Limitations

Parallel robots exhibit the following challenges:

- Limited Workspace: Defined by leg geometry; unable to reach beyond specific en-
velopes without encountering kinematic singularities.

- Complex Control: Forward kinematics require solving coupled non-linear equations;
singularity avoidance and trajectory planning add software complexity.
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- Mechanical Complexity: Multiple high-precision joints and symmetric assembly in-
crease manufacturing and maintenance efforts.

- Cost: Custom designs, specialized components, and calibration processes result in higher
upfront investment compared to off-the-shelf serial robots.

1.3 Applications of Parallel Robots

Parallel robots are deployed in domains that benefit from their unique capabilities. Key areas
include:

1.3.1 Manufacturing and Logistics Industry

Delta robots revolutionized high-speed pick-and-place in packaging lines, handling up to 300
parts per minute with sub-millimeter accuracy [2]. Vision-guided Deltas sort food, pharma-
ceuticals, and electronic components on moving conveyors. Cable-driven parallel robots are
emerging in warehouse automation, moving pallets and totes across large spans with speeds
exceeding 5 m/s and payloads over 500 kg [8].

Figure 1.6: Delta robots in a high-speed packaging cell.

1.3.2 Medical and Surgical Robotics

Parallel mechanisms provide the stiffness and precision required for neurosurgery and orthope-
dic alignment. A 5-DOF parallel device can hold surgical tools with sub-millimeter accuracy
during brain biopsies [9]. Stewart platforms serve as patient-positioning tables in radiotherapy,
ensuring exact tumor alignment under imaging guidance [10]. RCM-capable designs enable
minimally invasive instruments to pivot around fixed incision points, improving safety and
dexterity.
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Figure 1.7: RCM-capable parallel manipulator used in laparoscopic surgery.

1.3.3 Motion Simulators

Stewart platforms underpin flight and driving simulators, replicating six-axis motions for pilot
and driver training with accelerations up to 3 g. Civil engineering shake tables use similar hexa-
pod rigs to subject full-scale structures to multi-directional seismic loads, vital for earthquake
resilience research .

Figure 1.8: Flight simulator cockpit mounted on a Stewart platform.

1.3.4 Aerospace and Space Applications

Parallel kinematic machines assist in precision drilling and assembly of aircraft fuselages, main-
taining hole placement tolerances of ±0.1 mm [11]. Hexapod devices calibrate satellite star
trackers by executing precise orientation sequences. Cable-driven robots in microgravity, like
ISS cargo handlers, use multiple winches to maneuver payloads without gravity-induced sag
[12].
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Figure 1.9: Hexapod platform used for satellite sensor calibration.

1.3.5 Construction and Civil Engineering

The HEPHAESTUS cable-driven robot installs glass façade panels on skyscrapers with 1 mm
accuracy at heights exceeding 100 m, significantly reducing human exposure to hazardous
conditions Prototype parallel masonry robots and large-scale 3D-printing cable systems explore
autonomous bricklaying and concrete deposition for rapid construction

Figure 1.10: Delta WASP 3MT CONCRETE: Industrial-Scale Delta 3D Printer for Construc-
tion.
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1.4 Comparison with Serial Robots

Consider the following table [13] :

Characteristic Parallel Robots Serial Robots
Workspace Limited, bounded volume Extensive, multi-directional

reach
Speed/Accel. Very high (Delta

>100 m/s2)
Moderate to high (inertia-
limited)

Precision High stiffness, micrometer
repeatability

Lower inherent stiffness, re-
quires compensation

Payload-to-Weight High load sharing by legs Lower ratio, heavy arm
structures

Control Complex inverse/forward
kinematics, singularities

Simpler kinematics, well-
established toolchains

Cost Specialized, higher initial Economies of scale, modular
options

Table 1.1: Key differences between parallel and serial robot architectures.

1.5 Conclusion

Parallel manipulators particularly Delta and Stewart platforms offer unmatched dynamic per-
formance, stiffness, and precision by virtue of their closed-loop kinematics and base-fixed ac-
tuation. Their specialized architectures serve high-speed pick-and-place, surgical precision,
motion simulation, aerospace assembly, and large-scale construction tasks. Challenges remain
in workspace limitations and control complexity, but advancements in reconfigurable designs,
cable-driven systems, and hybrid parallel-serial solutions are expanding their applicability. As
automation demands grow in speed, accuracy, and safety, parallel robots will continue to play
essential roles alongside serial manipulators in the robotics ecosystem.
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Chapter 2

Fractional Calculus

2.1 Introduction

Fractional calculus, dating back over 300 years, extends classical calculus to non-integer orders.
Its origins trace to Leibniz and L’Hôpital (1695) and evolved through contributions from Euler,
Lagrange, Laplace, Fourier, and Abel. Liouville (1832) and Riemann (1892) formalized key
definitions, while 20th-century advancements enabled practical applications. Today, fractional
calculus models diverse phenomena in physics, engineering, control systems, and bioengineer-
ing. It provides accurate descriptions of real-world systems, such as viscoelastic materials and
anomalous diffusion. Modern numerical methods have facilitated its implementation, overcom-
ing prior computational limitations. This chapter explores foundational concepts, mathematical
formulations, and applications of fractional-order for control systems.

2.2 Applications for Control Systems and Robotics

Fractional calculus plays a crucial role in enhancing control strategies in robotics and automa-
tion. Fractional-order controllers (FOC), such as the fractional PID (FOPID), offer improved
robustness and flexibility compared to classical PID controllers [14]. These controllers are
particularly useful in robotic manipulators, where they enhance precision and adaptability to
uncertainties [15].

Fractional calculus has gained significant attention in robotic manipulators due to its ability to
model complex dynamics with memory and hereditary properties. Unlike traditional integer-
order controllers, fractional-order controllers (FOCs) provide enhanced robustness, stability,
and performance in nonlinear systems [15] :

- Trajectory Control and Path Optimization: Robotic manipulators require smooth
and precise trajectory tracking to achieve accurate positioning. Fractional-order control
improves trajectory tracking by incorporating memory effects, resulting in smoother tran-
sitions and better disturbance rejection [16]. This is particularly beneficial in industrial
robots performing assembly or material handling tasks.

- Impedance and Force Control: In human-robot collaboration, impedance control
adjusts the robot’s stiffness and damping in response to external forces. Fractional
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impedance controllers provide greater adaptability, making them effective in applications
such as surgical robotics and rehabilitation systems [17].

- Vibration and Noise Reduction: Robotic arms often experience unwanted vibrations,
especially in high-speed tasks such as pick-and-place operations. Fractional calculus-
based controllers help reduce vibrations, leading to improved stability and lower energy
consumption [18].

- Future Directions: The integration of fractional calculus with artificial intelligence
and machine learning could enable adaptive and intelligent control strategies for robotic
manipulators, further improving their autonomy and efficiency.

2.3 Fractional Order Operators

The integro-differential operator aDtα where a and t are the limits of the operation is defined
as:

aDtα =


dα

dxα , ℜ(α) > 0,

1, ℜ(α) = 0,∫ t
a(dτ)−α, ℜ(α) < 0.

(2.1)

where α is the order of the operation, generally α ∈ R.

In the following, definitions of fractional-order operators are provided along with numerical
approximation tools necessary for algorithm implementation.

2.4 Definitions

Several mathematical definitions exist for fractional-order integration and differentiation. These
definitions do not always lead to identical results but are equivalent for a wide range of functions,
particularly those considered in [19].

2.4.1 Riemann-Liouville Definition

The Riemann-Liouville integral is defined as:

Let C and R represent the complex and real number sets, respectively. The integral of order λ
of a function f with a lower limit t0 is defined as:

Iλ
t0f(t) = 1

Γ(λ)

∫ t

t0
(t − τ)λ−1f(τ)dτ, (2.2)

where t ≥ t0 and Γ is the Euler gamma function.

24



2.4. DEFINITIONS Fractional Calculus

2.4.2 Caputo Definition

Caputo introduced another formulation of fractional-order differentiation:

CDµ
t f(t) = In−µ

t0

dn

dtn
f(t) = 1

Γ(n − µ)

∫ t

t0

f (n)(τ)
(t − τ)µ−n+1 dτ, (2.3)

where n is the smallest integer such that n − 1 < µ < n.

This definition can also be expressed in terms of the Riemann-Liouville formulation as:

CDµ
t f(t) = RLDµ

t f(t) −
n−1∑
k=0

tk

k!f
(k)(t0). (2.4)

2.4.3 Grünwald-Letnikov Definition

The Grünwald-Letnikov derivative of order µ > 0 is given by:

GLDµ
t f(t) = lim

h→0
h−µ

∞∑
j=0

(−1)j

(
µ

j

)
f(t − jh), (2.5)

where h is the sampling period, and the coefficients are:

ω
(µ)
j = Γ(µ + 1)

Γ(j + 1)Γ(µ − j + 1) . (2.6)

2.4.4 Numerical Application

2.4.4.1 Fractional Derivatives Using Different Definitions

Table 2.1 presents the fractional derivatives of f(x) = sin(x) + x computed using the Caputo,
Riemann-Liouville, and Letnikov definitions. The step size for the Letnikov approximation is
set to h = 0.005.

Fractional Derivatives of f(x)
α x Caputo Riemann-Liouville Letnikov (h = 0.005)

0.2 0.5 1.2031 1.2031 1.2023
0.5 10 2.5816 2.5816 5.8369
0.8 100 3.3566 3.3566 26.2013
1 1000 0 0 1.5644

Table 2.1: Fractional derivatives of f(x) using different definitions.
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2.4.4.2 Letnikov Approximation Analysis

From Table 2.1, we observe a significant discrepancy between the Letnikov discrete approxima-
tion and the Riemann-Liouville-based formula, while the Caputo derivative remains consistent
with the Riemann-Liouville result. To further analyze this difference, we investigate the influ-
ence of the step size h on the Letnikov approximation, as shown in Table 2.2.

Letnikov Approximation with Different Step Sizes
α x h = 0.05 h = 0.5 h = 1

0.2 0.5 1.1942 1.1251 0.9794
0.5 10 2.6029 2.5980 2.6384
0.8 100 5.9174 3.2381 3.0429
1 1000 1.5828 1.7417 1.8533

Table 2.2: Effect of step size h on the Letnikov approximation.
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Figure 2.1: Fractional derivatives of f(x) using the Letnikov method for different step sizes h.

From Figure 2.1, we observe the following key phenomena:

- For large h (e.g., h = 1): The Letnikov approximation tends to stabilize but may
introduce larger discretization errors due to the lower number of terms in the summation.
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- For moderate h (e.g., h = 0.5): The approximation improves, providing more accurate
values closer to the theoretical results.

- For small h (e.g., h = 0.05, h = 0.005): The method captures finer variations in the
function but suffers from numerical instability, leading to significant variations in the
computed values.

- General conclusion: Unlike Caputo and Riemann-Liouville definitions, the Letnikov
approximation is highly sensitive to the choice of h, requiring careful tuning to balance
accuracy and stability.

2.4.5 Properties of Fractional-Order Differentiation

Fractional-order differentiation has the following properties [8]:

1. If f(t) is an analytic function, then the fractional-order differentiation 0Dα
t f(t) is also

analytic with respect to t.

2. If α = n and n ∈ Z+, then the operator 0Dα
t can be understood as the usual operator

dn/dtn.

3. Operator of order α = 0 is the identity operator: 0D0
t f(t) = f(t).

4. Fractional-order differentiation is linear; if a, b are constants, then:

0Dα
t [af(t) + bg(t)] = a0Dα

t f(t) + b0Dα
t g(t). (2.7)

5. For the fractional-order operators with ℜ(α) > 0, ℜ(β) > 0, and under reasonable con-
straints on the function f(t), it holds the additive law of exponents:

0Dα
t

[
0Dβ

t f(t)
]

= 0Dβ
t [0Dα

t f(t)] = 0Dα+β
t f(t). (2.8)

6. The fractional-order derivative commutes with the integer-order derivative:
dn

dtn
(a0Dα

t f(t)) = a0Dα
t

(
dnf(t)

dtn

)
= a0Dα+n

t f(t), (2.9)

under the condition t = a and f (k)(a) = 0, (k = 0, 1, 2, . . . , n − 1).

2.4.6 Laplace Transform for Fractional Derivatives

The Laplace transform of the fractional derivative of order α is given by:

L [0Dα
t f(t)] = sαF (s) −

⌈α⌉−1∑
k=0

sα−k−1f (k)(0), (2.10)

where s is the Laplace variable, and f (k)(0) are the initial conditions of the function f(t).

The inverse Laplace transform allows recovering the function from the Laplace domain:

f(t) = L−1 [F (s)] = 1
j2π

∫ c+j∞

c−j∞
estF (s)ds, (2.11)

where c is a real constant greater than the real part of all poles of F (s).
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2.5 Differential Equations and Transfer Functions for
Fractional Systems

2.5.1 Fractional Differential Equations

A fractional differential equation (FDE) is a generalization of classical differential equations
where the order of differentiation can be a fractional number. The general form of a linear
time-invariant fractional differential equation is:

n∑
i=0

ai0Dαi
t x(t) =

m∑
j=0

bj0Dβj

t u(t), (2.12)

where 0Dα
t represents the fractional derivative of order α, x(t) is the system output, and u(t)

is the input. The coefficients ai and bj are real numbers.

2.5.2 Transfer Function of Fractional Systems

Taking the Laplace transform of a fractional differential equation and assuming zero initial
conditions, we obtain the transfer function:

H(s) = Y (s)
U(s) =

∑m
j=0 bjs

βj∑n
i=0 aisαi

. (2.13)

Unlike integer-order systems, the poles and zeros of fractional transfer functions do not nec-
essarily lie on the real axis or the unit circle, leading to a richer and more flexible system
behavior.

2.6 Frequency domain Approximation for Fractional sys-
tems

2.6.1 Oustaloup’s Recursive Approximation

Oustaloup’s method approximates fractional integrators and differentiators using a rational
transfer function:

sα ≈ K
N∏

k=1

s + ω′
k

s + ωk

, (2.14)

where the parameters are defined as:

ω′
k = ωb · ω(2k−1−α)/N

u , (2.15)

ωk = ωb · ω(2k−1+α)/N
u , (2.16)

28



2.6. FREQUENCY DOMAIN APPROXIMATION FOR FRACTIONAL SYSTEMSFractional Calculus

K = ωα
h , ωu =

√
ωh/ωb. (2.17)

Here: - α is the fractional order of differentiation or integration. - N is the number of poles
and zeros used in the approximation. - ωb and ωh define the frequency range where the approx-
imation is valid. - ωk and ω′

k are the locations of the poles and zeros in the approximation.

2.6.2 Charef Approximation

The Charef approximation is a method used for approximating fractional-order differentiation
and integration using integer-order transfer functions. It provides an efficient way to represent
fractional operators in control systems and signal processing.[20]

The fractional derivative of order α is given by:

Dαf(t) = dαf(t)
dtα

, 0 < α < 1. (2.18)

Charef’s approximation represents this operator as a rational function of the Laplace variable
s:

G(s) = 1
(1 + s

p
)α

≈
∏N−1

i=0

(
1 + s

zi

)
∏N

i=0

(
1 + s

pi

) (2.19)

The poles and zeros of the singularity function can be determined as follows:

pi = (ab)ip0, i = 1, 2, 3, ..., N (2.20)
zi = (ab)iap0, i = 2, 3, ..., N − 1 (2.21)

where:
p0 = pT 10

cp
2.0α (2.22)

a = 10
cp

10(1−α) (2.23)

b = 10
cp

10α (2.24)

The fractional integrator is defined as:

HI(s) = KI(
s

ωc

)α = KIωα
c

sα
= 1

sα
(2.25)

The fractional differentiator is given by:

FD(s) = KD

(
s

ωc

)α

= KD

ωα
c

sα = sα (2.26)

The number of terms N is determined using:

N = ⌈ log10(ωm/p)
log10(a · b) ⌉ + 1 (2.27)
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2.6.3 Applications

The fractional integrator (order 0.4) is defined as:

HI(s) = 1
s0.4 (2.28)

We will then use the Oustaloup and Charef approximations to compare the efficiency of these
approximations with the real fractional integrator. For this purpose, the Bode diagrams of the
transfer functions for Oustaloup, Charef, and the real fractional integrator are plotted below.
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Figure 2.2: Comparison of Oustaloup and Charef approximations for fractional integration
( 1

s0.4 ).

The fractional differentiator (order 0.6) is given by:

FD(s) = s0.6 (2.29)

We will use the Oustaloup and Charef approximations to evaluate their efficiency in approx-
imating the real fractional differentiator. To achieve this, the Bode diagrams of the transfer
functions for Oustaloup, Charef, and the real fractional differentiator are presented below.
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Figure 2.3: Comparison of Oustaloup and Charef approximations for fractional derivation (
s0.0.6).

Both approximations provide a reasonable representation of fractional differentiation.The choice
between these methods depends on the application requirements and computational constraints.

2.6.4 First-Order Transfer Function Approximation

In this section, we study the approximation of the fractional-order transfer function
1

(s + 2)0.7

The aim is to find rational approximations that accurately represent the behavior of this func-
tion over a given frequency range. Using Charef method the results will be analyzed by plotting
the Bode diagram for evaluating the accuracy of the approximations.
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(a) Magnitude plot (b) Magnitude plot

Figure 2.4: Bode diagram for first order system .

Figure 2.5: Phase plot

Comments and Conclusions for First-Order Fractional Systems

- Figures 3.4 and 3.5 illustrate the Bode diagrams of the first-order fractional system.

- The magnitude plot (Figure 3.4) shows that the slope of the gain is less than the classical
-20 dB/dec, specifically −α × 20 dB/dec, due to the fractional nature of the system.

- The phase plot (Figure 3.5) highlights that the phase remains constant at −α × π
2 , which

is characteristic of fractional systems.

- The Charef approximation method was employed to obtain a rational approximation of
the fractional-order system for implementation and analysis.

- The results demonstrate the effectiveness of the Charef method in approximating the
frequency response of the real fractional system.
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The characteristics of fractional-order systems, particularly the modified slope in the magnitude
response and the constant phase shift, provide significant advantages in control applications:

- Enhanced Robustness: The gradual slope (−α × 20 dB/dec) allows for better robust-
ness against parametric uncertainties compared to integer-order systems, which exhibit
abrupt changes in gain.

- Infinite Gain Margin: Unlike classical integer-order systems, where gain margin is finite
and can be a limiting factor in stability, the fractional system benefits from an infinite
gain margin. This results in a more stable and resilient behavior in varying conditions.

- Improved Phase Characteristics: The constant phase shift of −α×π
2 ensures smoother

phase transitions, reducing undesired resonances and oscillations in control loops.

- Better Adaptability: The flexibility of fractional-order models allows for more precise
tuning of controllers to meet specific performance criteria, enhancing both stability and
response time.

2.6.5 Second-Order Transfer Function Approximation

In this section, we study the approximation of the fractional-order transfer function :

1
(s2 + 2s + 4)0.7

Using Charef approximation, the fractional transfer function is approximated and the the results
will be analyzed accoring to Bode plots.

Let the transfer function Hi(s) be defined as:

Hi(s) = 1
(1 +

(
2ξ s

ωn

)
+
(

s
ωn

)2
)α

For the case where α < 0.5, the approximation process is as follows:

1. Calculate the parameters η, a, and b:

ξ = Bα, η = 1 − 2α, a = 10
δ

10(1−η) , b = 10
δ

10η

2. Compute the poles p1 and z1:

z1 = ωn

√
b, p1 = az1

3. Determine the number of factors N :

N = ⌈log10

(
ωmp1

ab

)
+ 1⌉ + 1
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4. For each factor k, the transfer function is updated as:

Hi(s) =

 1 + s
wn

1 +
(
2B s

ωn

)
+
(

s
ωn

)2

 ·
∏N−1

i=0

(
1 + s

zi

)
∏N

i=0

(
1 + s

pi

)
where:

pi = p1
(
(ab)k−1

)
, zi = z1

(
(ab)k−1

)
For the case where α ≥ 0.5, the approximation is similarly calculated, but with η = −(1 − 2α).

The overall transfer function is constructed by iterating over k = 1, 2, . . . , N − 1.

(a) Magnitude plot (b) Magnitude plot

Figure 2.6: Bode diagram for first order system .

Figure 2.7: Phase plot

Comments and Conclusions for Second-Order Fractional Systems
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- Figures 3.6 and 3.7 illustrate the Bode diagrams of the second-order fractional system.

- The magnitude plot (Figure 3.6) shows that the slope of the gain is less than the classical
-40 dB/dec, specifically −α × 40 dB/dec, due to the fractional nature of the system.

- The phase plot (Figure 3.7) highlights that the phase remains constant at −α × π, which
is characteristic of fractional systems.

- The Charef approximation method was employed to obtain a rational approximation of
the fractional-order system for implementation and analysis.

- The results demonstrate the effectiveness of the Charef method in approximating the
frequency response of the real fractional system.

The characteristics of second-order fractional-order systems, particularly the modified slope in
the magnitude response and the constant phase shift, provide significant advantages in control
applications:

- Enhanced Robustness: The gradual slope (−α × 40 dB/dec) allows for better robust-
ness against parametric uncertainties compared to integer-order systems, which exhibit
abrupt changes in gain.

- Infinite Gain Margin: Unlike classical integer-order systems, where gain margin is finite
and can be a limiting factor in stability, the fractional system benefits from an infinite
gain margin. This results in a more stable and resilient behavior in varying conditions.

- Improved Phase Characteristics: The constant phase shift of −α×π ensures smoother
phase transitions, reducing undesired resonances and oscillations in control loops.

- Better Adaptability: The flexibility of fractional-order models allows for more precise
tuning of controllers to meet specific performance criteria, enhancing both stability and
response time.

2.7 Performance Analysis of FO Systems

In this section, we analyze the performance of fractional-order systems by plotting the step
response of both first-order and second-order fractional systems for different values of . The
objective is to observe the impact of fractional differentiation on system dynamics, including
response speed, overshoot, and stability.

2.7.1 Step Response Analysis

Figures 2.8 and 2.9 illustrate the step response of first-order and second-order fractional systems
for different values of . The variations in influence the system’s damping, transient response,
and steady-state characteristics.
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Figure 2.8: Step response of a first-order fractional system for different values.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

O
u

tp
u

t

Step response for Second order system

alpha=1

alpha=0.2

alpha=0.4

alpha=0.6

alpha=0.8

Figure 2.9: Step response of a second-order fractional system for different values.

2.7.2 Observations and Advantages

- As the fractional order α decreases, both the rise time and the overall response time
become shorter, resulting in a faster system response.

- For the second-order system, the overshoot is reduced for lower values of α, which improves
system stability and reduces oscillations.

- Fractional-order systems provide more flexibility in tuning system dynamics, allowing for
improved trade-offs between response speed and stability.
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- The smoother transition in fractional systems helps mitigate abrupt changes in control
applications, leading to better robustness against disturbances.

These characteristics make fractional-order controllers a powerful tool for optimizing dynamic
system performance.

2.8 Stability Analysis of Fractional-Order Systems

In order to determine the stability of a fractional system given by (3.30), we consider the
following theorem [8].

H(s) = Y (s)
U(s) =

∑m
j=0 bjs

βj∑n
i=0 aisαi

. (2.30)

2.8.1 Matignon’s Stability Theorem

Theorem 1 (Matignon’s stability theorem): The fractional transfer function

G(s) = Z(s)
P (s) (2.31)

is stable if and only if the following condition is satisfied in the σ-plane:

| arg(σ)| >
qπ

2 , ∀σ ∈ C, P (σ) = 0, (2.32)

where 0 < q ≤ 1 and σ := sq. When σ = 0 is a single root of P (s), the system cannot be
stable.

2.8.2 Stability Verification Algorithm

The algorithm for checking the stability of the system can be summarized as follows:

1. Find the commensurate order q of P (s) and determine the coefficients a1, a2, . . . , an in :

H(λ) =
m∑

k=0
bkσk

/
n∑

k=0
akσk (2.33)

2. Solve for σ the equation:
n∑

k=0
akσk = 0. (2.34)

3. If all obtained roots satisfy the condition in Theorem 1, the system is stable.
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2.8.3 Stability Domain for Fractional LTI systems

The stability regions of a fractional-order system are illustrated in Figure 2.11. It is important
to note that currently, there are no polynomial techniques, either Routh or Jury type, to analyze
the stability of fractional-order systems [8].

Figure 2.10: LTI fractional-order system stability region for 0 < q ≤ 1.

2.8.4 The Extended Lyapunov Second Theorem for Stability

Theorem 1 (Fractional-order extension of Lyapunov direct method ).

Let x = 0 be an equilibrium point for the non-autonomous fractional-order system .
We assume that there exists a Lyapunov function V (x, t) and class-K functions ci for
i = 1, 2, 3 satisfying: [21]

c1∥x∥ ≤ V (x, t) ≤ c2∥x∥, t ≥ t0 (2.35)
and

Dα

dtα
V (x, t) ≤ −c3∥x∥, (2.36)

where α ∈ (0, 1) . Then, the origin of the system (3) is asymptotically stable.

Lemma 1
According to [[22],[23]] If e(t) is a smooth function, then

1
2

C
0 Dα

t

(
eT (t)e(t)

)
≤ eT (t) 0D

α
t e(t), ∀t ∈ D. (2.37)

.

2.9 Fractional-Order PID Controller

The concept of a fractional-order PID (FOPID) controller was introduced by Podlubny in [24].
This generalized controller, also known as the PIλDµ controller, extends the traditional PID
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controller by incorporating an integrator of fractional order λ and a differentiator of fractional
order µ.

Podlubny demonstrated that the fractional-order controller offers superior performance com-
pared to an integer-order PID controller when used in a control loop with a fractional-order
plant. More recent research [25, 26] has confirmed that the fractional-order controller provides
better adaptability and robustness in various applications.

In the Laplace domain, the parallel form of the Fractional-Order PID (FOPID) controller
is given by:

CFOPID(s) = Kp + Kis
−λ + Kdsµ, (2.38)

where: - Kp is the proportional gain, - Ki is the integral gain, - Kd is the derivative gain, - λ is
the fractional order of the integrator (0 < λ ≤ 1), - µ is the fractional order of the differentiator
(0 < µ ≤ 1).

Clearly, when taking λ = µ = 1, the controller reduces to the classical integer-order PID
controller:

CPID(s) = Kp + Ki

s
+ Kds. (2.39)

Figure 2.11: fractional-order PID Controller

2.10 State-Space Representation for Fractional Systems

The state-space representation of a fractional-order system is given by the following equations:

Dαx(t) = Ax(t) + Bu(t)
where Dα represents the fractional derivative operator of order α, with 0 < α < 1.

y(t) = Cx(t) + Du(t)

39



2.11. CONTROLLABLE CANONICAL FORM Fractional Calculus

It is important to highlight that the transfer function can only be derived from the state-
space representation if the initial conditions allow it. If the Riemann-Liouville definition of the
fractional derivative is used, the initial conditions may include fractional-order derivatives of
functions. For this reason, the definitions of Caputo and Grünwald-Letnikov are often preferred
for these calculations.

2.11 Controllable Canonical Form

Theorem 2. Transfer Function: The fractional transfer function is given by:

F (s) =
∑N

i=0 bis
i

sq +∑N−1
i=0 aisi

, N, Q ∈ N, ai, bi ∈ R. (2.40)

This representation is equivalent to the following state-space form, called the controllable canon-
ical form, assuming that the application conditions of Theorem 1 are met:

Dα



x1

x2
...

xN

 =



−aN−1 −aN−2 · · · −a0

1 0 · · · 0
... ... . . . ...
0 0 · · · 1





x1

x2
...

xN

+



bN−1 − aN−1bV

bN−2 − aN−2bV

...
b0 − a0bV

u. (2.41)

y =
[
bV − aN−1bV bN−2 − aN−2bV · · · b0 − a0bV

]


x1

x2
...

xN

+ bV u. (2.42)

2.12 Observable Canonical Form

Theorem 3. The transfer function is equivalent to the following state-space representation,
known as the observable canonical form, under the assumption that the conditions of Theorem
1 hold:[20]

Dα



x1

x2
...

xN−1

xN


=



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
... ... . . . ... ...
0 0 · · · 1 −aN−1





x1

x2
...

xN−1

xN


+



bN − a0bV

bN−1 − a1bV

...
b1 − aN−1bV

u. (2.43)

y =
[
0 0 · · · 0 1

]


x1

x2
...

xN

+ bV u. (2.44)
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Different forms of the state representation are available in the literature.

2.13 Observability, Controllability, and Stability of Frac-
tional Systems

The following results can be demonstrated similarly to the integer-order case.[20]

Theorem 4. A fractional-order system is observable if and only if the observability matrix:

O =



C

CA
...

CAN−1

 (2.45)

is of full rank.

Theorem 5. A fractional-order system is controllable if and only if the controllability matrix:

O =
[
B AB · · · AN−1B

]
(2.46)

is of full rank.

2.14 Fractional-State-Space Nonlinear Models

In the context of state-space representation, a fractional-state-space model can be used to
describe the dynamics of a nonlinear system with fractional-order derivatives. The general
form of a fractional-state-space nonlinear system is given by:

Dαx(t) = f(x(t), u(t))
where: - Dα denotes the fractional derivative of order α (with 0 < α < 1), - x(t) ∈ Rn is the
state vector, - u(t) ∈ Rm is the input vector, - f(x(t), u(t)) is a nonlinear function describing
the system’s dynamics,

For the output equation, we can express it as:

y(t) = h(x(t), u(t)
where: - y(t) is the output vector,

The nonlinear function f(x(t), u(t)) could include various nonlinearities, such as saturation,
dead zones, or hysteresis, depending on the system’s characteristics.

2.15 Time domain fractional approximation

We use the Adams-Bashforth-Moulton (ABM) method, which is a predictor-corrector scheme
for solving fractional differential equations.
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yP
h (tn+1) =

[α]−1∑
k=0

tk
n+1
k! y(k)(0) + 1

Γ(α)

n∑
j=0

bj,n+1f(tj, yh(tj)) (2.47)

yh(tn+1) = yP
h (tn+1) + hα

Γ(α + 2)f(tn+1, yP
h (tn+1)) (2.48)

2.15.1 Simple Fractional Differential Equation

We consider the following fractional differential equation:

Dαy + λy + cos(t) = 0, y(0) = 1 (2.49)

where α is the fractional order and λ is a positive parameter.

We choose λ = 0.5 and compare solutions for various values of α.

2.15.1.1 Results and Analysis

The results show that as α decreases, the exponential decay becomes slower, indicating a
stronger memory effect.

Figure 2.12: Dynamics of the fractional equation for different values of α.

2.15.2 Two-State Dynamic Model (η-model)

We consider here a two-state fractional dynamic system, commonly used to model viscoelastic,
biological, or electrochemical phenomena with long-term memory [14, 27]. The system is defined
by:

Dα1x(t) = ax(t) − by(t) (2.50)
Dα2y(t) = cx(t) − dy(t) (2.51)

where Dαi denotes the fractional derivative of order αi ∈ (0, 1], defined in the sense of Caputo
or Grünwald–Letnikov. The parameters a, b, c, d are positive real constants representing the
cross-interactions between the states.
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This system belongs to the class of multi-order linear time-invariant fractional systems,
extensively studied in the context of robust control and the stability of memory-affected systems
[15, 28].

Two configuration cases are analyzed:

- Standard case:
Parameters: a = 1.2, b = 0.8, c = 0.5, d = 1.0, with α1 = α2 = 1.
This corresponds to a classical linear (non-fractional) system, which is stable and asymp-
totically convergent.

- Fractional oscillatory case:
Parameters: a = 1.5, b = 0.7, c = 0.6, d = 1.2, with α1 = 0.85, α2 = 0.88.
This configuration induces a slower dynamic, typical of memory-driven systems, and may
exhibit prolonged damped oscillations due to the effect of fractional orders.

This type of model is relevant for analyzing memory effects in adaptive control systems and
nonlocal dynamic behaviors.

Figure 2.13: Comparison between standard and fractional dynamics:
(top) Time evolution of x(t) and y(t); (bottom) Phase portraits x(t) vs y(t).

Figure 2.13 illustrates the temporal dynamics and phase behavior of two linear two-state dy-
namic models: a standard integer-order system (α = 1) and a non-integer fractional-order
system (α1 = 0.9, α2 = 0.88). The parameters are selected to ensure both stability and a
damped oscillatory behavior.

In the standard case (top left), the trajectories x(t) and y(t) display rapidly decreasing oscil-
lations that converge to zero. The corresponding phase portrait (bottom left) forms a tight
spiral, indicating fast amplitude decay—characteristic of a stable, weakly coupled system.

In contrast, in the fractional case (right), although the dynamic parameters remain the same,
the oscillations persist longer and the damping is significantly reduced. The phase portrait
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(bottom right) reveals a wider spiral, reflecting prolonged dynamic memory. This highlights
the distinctive impact of fractional derivatives: their ability to capture long-memory dynamics,
offering more realistic modeling of certain physical processes.

2.16 Conclusion

In conclusion, fractional-order systems offer a powerful and flexible framework for modeling and
controlling complex dynamic systems. Their ability to capture memory and hereditary prop-
erties, which are not present in integer-order systems, makes them especially useful in fields
such as engineering, physics, and biology. The extension of Lyapunov’s direct method to frac-
tional systems provides a valuable tool for analyzing the stability of such systems. The Charef
approximation method further enhances the ability to approximate fractional-order transfer
functions, aiding in practical design applications. As research in this area continues to grow,
fractional-order models are expected to play an increasingly prominent role in the develop-
ment of advanced control strategies and the design of resilient systems. Their integration into
real-world applications could revolutionize industries by providing more accurate and efficient
solutions for system behavior prediction and control. The complexity of fractional-order mod-
els, however, requires careful consideration of their computational and analytical challenges.
Nonetheless, their potential for more accurate system representation and control remains a
significant area for future exploration.
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Chapter 3

Modeling of Delta robot

3.1 Introduction

The design of trajectory control for a delta robot requires comprehensive modeling that covers
geometric, kinematic, and dynamic aspects. Each modeling approach serves to address different
facets of the robot’s operation, ensuring that all parameters are considered for optimal control.
Geometric modeling focuses on the physical structure and configuration of the robot, helping
to define its workspace and constraints. Kinematic modeling deals with the motion of the robot
without considering forces, providing equations that describe the robot’s movements in space.
Dynamic modeling incorporates forces and torques, allowing for accurate control in real-world
applications. This chapter will delve into these three types of modeling specifically applied to
the delta robot, presenting the necessary equations, methodologies, and processes for each. The
ultimate goal is to ensure that the trajectory control system can manage the robot’s movement
throughout its range of motion, achieving high precision and stability in various tasks.

3.2 Description of the Delta Robot

The Delta robot, as shown in Figure 2.1, is a parallel robot with three degrees of freedom (DOF),
and it is specifically designed to perform high-speed, high-precision tasks such as picking and
placing in industrial automation. The Delta robot consists of three identical kinematic chains,
each comprising an arm and a forearm. The forearm is constructed from two parallel rods that
are connected at one end to the movable platform, or "nacelle", and at the other end to the
motors fixed to the robot’s base.

These three kinematic chains are arranged symmetrically at 120° intervals, with each chain
working in parallel to provide the desired motion of the movable platform. This design allows
the Delta robot to perform three independent translational movements in the Cartesian space,
providing precise control over the position of the platform. The combination of these movements
results in the ability to manipulate the platform with a high degree of accuracy, making the
Delta robot ideal for tasks requiring fine motion control.

One of the most crucial aspects of the Delta robot is the fact that the three arms work together
to produce these translational movements, which are controlled by the motors fixed to the base.
The inherent parallelism of the kinematic structure ensures that the Delta robot has a high
payload-to-weight ratio, enabling it to carry out delicate operations at high speeds. In addition,
the design of the robot enables the workspace to be relatively large, making it suitable for a
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wide range of applications.

Figure 3.1: Description of Delta Robot

The workspace of the Delta robot is defined by the reach and flexibility of the three arms, as
well as the geometry of the parallel linkage. Understanding the robot’s workspace is essential
for trajectory planning, as it dictates the points where the robot can position its end-effector
within the operating environment. Additionally, the robot’s ability to move with high accuracy
and speed in this workspace is a result of its parallel structure, which minimizes the influence
of gravity on the moving platform, making it ideal for precision tasks in assembly lines, 3D
printing, and other fields requiring fine manipulations.

By fully understanding the geometrical and kinematic principles that govern the movement of
the Delta robot, we can design precise trajectory control algorithms that ensure smooth and
accurate operation within the robot’s workspace. This chapter will outline the methodolo-
gies used to model the Delta robot and will detail the mathematical foundations behind its
operation.

Figure 3.2: Description of Delta Robot

According to [29] The Table bellow summarizes the parameters of the robot with respect to
the figure 2.1:

46



3.3. MATHEMATICAL MODELING Modeling of Delta robot

N° Parameter Notation Value Unit
1 The Arm LA 240 mm
2 The forearm Lb 480 mm
3 The Diameter of the nacelle Dn 30 mm
4 Motor’s Inertia Im 1.8 · 10−4 Kg.m2

5 The Diameter of the base Db 180 mm
6 The mass of the Nacelle mn 0.3815 Kg
7 The mass of the Forearm mb 0.2209 Kg

Table 3.1: Summary of Delta Robot Parameters

3.3 Mathematical modeling

3.3.1 Forward kinematics equations

Forward kinematics defines the relationship between the joint space and the end-effector space
of a robot. Specifically, it involves determining the position and orientation of the end-effector
(x, y, z) based on the given joint angles (θ). Therefore, defining a forward kinematics equation
is essentially about finding the mathematical relationships that link the joint angles to the
end-effector’s position in Cartesian coordinates. This process allows us to predict where the
end-effector will be located in space for any given set of joint parameters.

Figure 3.3: Direct geometric model

According to [2] for the top view, we fix a reference frame R0 at the center of the base, and
we also fix a reference frame Ri associated with each of the three motors. Thus, and due to
symmetry, the rotation angles ϕ1 , ϕ2 and ϕ3 are respectively equal to 0, 2π

3 , and 4π
3 .

The movement of the forearms describes a sphere with center P , which is the center of the
nacelle, with a radius of LB and passing through each of the points Ci connected to both of
arms and forearms.

The points Ci will serve as intermediate points in the development of direct and inverse geo-
metric models, with coordinates given by the following quantities: (θi are joint angles )
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Figure 3.4: Top view of DELTA Robot

Figure 3.5: Front view of DELTA Robot


x

y

z


Ci/Ri

=


R+LA · cos θi

0
−LA · sin θi

 (3.1)

Here, i = 1, 2, or 3. The points Ci belong to circles of radius LB centered on the motor axis.
Applying the change of coordinate system to equations (3.1):


x

y

z


Ci/R0

=


cos ϕi − sin ϕi 0
sin ϕi cos ϕi 0

0 0 1




R+LA · cos θi

0
−LA · sin θi

 =


(R+LA · cos θi) cos ϕi

(R+LA · cos θi) sin ϕi

−LA · sin θi


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Figure 3.6: The sphere

Considering the equation representing the sphere ; while x,y and z are respectively the coordi-
nate of the point P. (the center of the end effector) [7]

(XCi
− x)2 + (YCi

− y)2 + (ZCi
− z)2 = L2

B (3.2)

((R + LA · cos θi) cos ϕi − x)2 + ((R + LA · cos θi) sin ϕi − y)2 + (−LA · sin θi − z)2 = L2
B (3.3)

While,

R = Rb − Rn (3.4)

When developing the formulas, we obtain the following system of equations :

Ai = −L2
B + L2

A + R2 + 2RLA cos θi (3.5)

Bi = 2(R + LA cos θi) cos ϕi (3.6)

Mi = Bi tan ϕi (3.7)

Ni = −2LA sin θi (3.8)

K1 = B1N2 − B1N3 − B2N1 + B2N3 + B3N1 − B3N2 (3.9)

K2 = −B1M2 + B1M3 + B2M1 − B2M3 − B3M1 + B3M2 (3.10)

K3 = −B1A2 + B1A3 + B2A1 − B2A3 − B3A1 + B3A2 (3.11)
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K4 = M1A2 − M1A3 − M2A1 + M2A3 + M3A1 − M3A2 (3.12)

K5 = −M1N2 + M1N3 + M2N1 − M2N3 − M3N1 + M3N2 (3.13)

U = K2
5 + K2

1
K2

2
+ 1 (3.14)

V = 2K5K4 + K1K3

K2
2

− K5B1 + K1M1

K2
− N1 (3.15)

W = K2
4 + K2

3
K2

2
− K4B1 + K3M1

K2
+ A1 (3.16)

At least, we find:

z = −V ±
√

V 2 − 4UW

2U
(3.17)

x = zK5

K2
+ K4

K2
(3.18)

y = zK1

K2
+ K3

K2
(3.19)

Because of the characteristic geometry of the robot, the positive solution of z is rejected, since
the workspace is defined in the negative part of the z axis. Therefore, the equation for z
becomes:

z = −V −
√

V 2 − 4UW

2U
(3.20)

3.3.2 Inverse kinematics equations

The inverse kinematic defines the relationship between the end-effector space and joint space of
a robot. Specifically, it involves determining the necessery joint angles (θ) to achieve a desired
position and orientation of the end-effector (x, y, z).

Figure 3.7: Inverse geometric model

50



3.3. MATHEMATICAL MODELING Modeling of Delta robot

According to Codourey’s approach [30] : The forearms describe from the desired position
P = (x0, y0, z0) of the nacelle in the reference frame Ri a sphere of radius LB, which gives us
equation . 

x0i

y0i

z0i


Ri

=


cos ϕi sin ϕi 0

− sin ϕi cos ϕi 0
0 0 1




x0

y0

z0


R0

The arm, centered at (R, 0, 0), describes a circle of radius LA (equation (3.1)). The point of
intersection between the sphere and the circle lies in the plane y = 0 (equation (3.2)).

To solve the system let’s define :

A = L2
A − L2

B − R2 + x2
0i + y2

0i + z2
0i

B = 2x0i − 2R

a = 4z2
0i + B2

b = 4Rz2
0i + AB

c = A2 + 4R2z2
0i − 4z2

0iL
2
A

The negative solution of x is rejected, since it gives results out of the workspace of the robot,
thus :

x = b +
√

b2 − ac

a

z = A − Bx

2z0i

At least we have,

z = −LA · sin θi

θi = − arcsin( z

LA

)

3.3.3 Dynamic model of delta robot

The dynamic model represents the system of equations that calculates the joint values based
on a vector representing the injected torques.[29]

The following development is based on a set of simplifying assumptions:

- The mass of the forearms is distributed on the ends.
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- The neglect of forearm’s moment of inertia.

- All the frictions are neglect.

Taking into account the simplifying assumptions mentioned above, the dynamic model of the
Delta robot is established in a straightforward manner. Each parallelogram can be replaced by
a mass-less rod, as depicted in Figure (2.8).

Figure 3.8: Front view of DELTA Robot

The development of the dynamic model is based on the Newton-Euler equations, which are
respectively the sum of forces and moments, Therefore, the total body of the robot will be
decomposed into several sub-bodies.

∑
i

F⃗i = mba⃗b (3.21)
∑

i

Γ⃗i = Ibα⃗b + ω⃗b × (Ibω⃗b). (3.22)

In order to calculate the force vectors, we will first calculate the position vectors ∥AC∥i and
∥BC∥i respectively.

Director vector of the arm:

−−→
ACi =


LA cos θi

0
−LA sin θi


Director vector of the forearm:

−−→
BiCi = −−→

BiOi + −−→
OiAi + −−→

AiCi
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−−→
BiCi = −


xi

yi

zi

+


R

0
0

+


LA cos θi

0
−LA sin θi



Where (xi, yi, zi)T is the vector expressing the coordinates of the end-effector in the frame Ri.


xi

yi

zi


Ri

=


cos ϕi sin ϕi 0

− sin ϕi cos ϕi 0
0 0 1




x

y

z


R0

By expanding the formulas, we find,

−−→
BCi =


−x cos ϕi − y sin ϕi + R + LA cos θi

x sin ϕi − y cos ϕi

−z − LA sin θi



In frame R, the director vector of each of the forearms is given by:

−−→
BCi =


(LA cos θi + R) cos ϕi − x

(LA cos θi + R) sin ϕi − y

−z − LA sin θi



Application of Newton-Euler law on the forearms:

Isolating the forearm, considering its negligible mass and inertia, we have;

F⃗i + F⃗fai
= 0⃗

Thus, the two forces F⃗i and F⃗fai
are opposite in direction and along the direction B⃗Ci of the

forearm.

- F⃗i : The contact force between the nacelle and the forearm.

- F⃗fai
: The contact force between the arm and the forearm.

Expanding upon the formulas we have, correct

F⃗i = Fi · B⃗Ci

|B⃗Ci|
= Fi · B⃗Ci

|LB|
= Fi · P⃗i (3.23)
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Figure 3.9: The isolation of the Forearms

While,

P⃗i =


Pix

Piy

Piz

 =


(LA cos θi+R) cos ϕi−x

LB
(LA cos θi+R) sin ϕi−y

LB
−z−LA sin θi

LB



Application of Newton-Euler law on the nacelle:

We isolate the nacelle and add the constraint forces F⃗i (Figure 3.15). Due to the design
of the Delta robot, the platform can only undergo translational movements in the operational
space. Therefore, the Newton-Euler equations reduce to the equations of translational dynamics
(Newton’s equations). In the reference frame R, we obtain:

g⃗n −
3∑

i=1
F⃗i = mn

⃗̈Xn

Where:

- F⃗i: Constraint forces between the nacelle and the forearms, expressed in reference frame
R.

- ⃗̈Xn =
(
ẍ ÿ z̈

)T
: Acceleration of the nacelle expressed in reference frame R.

- g⃗n =
(
0 0 −mng

)T
: Gravitational force acting on the nacelle.

- mn: Total mass of the nacelle, including the transported mass and the mass of the
forearms attached to the platform.

- g: Acceleration due to gravity.

While injecting the equation (3.3.8) in (3.3.9) we have;
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Figure 3.10: The isolation of the nacelle

F1


Px1

Py1

Pz1

+ F2


Px2

Py2

Pz2

+ F3


Px3

Py3

Pz3

 =


−mnẍ

−mnÿ

mn[−g − z̈]

 (3.24)

Equation (3.24) can be expressed as:

P ·


F1

F2

F3

 =


Mx

My

Mz

 (3.25)

where: 
Mx

My

Mz

 =


−mnẍ

−mnÿ

mn[−g − z̈]

 = −mn ·


ẍ

ÿ

z̈

− mn ·


0
0
g

 (3.26)

And

P =


Px1 Px2 Px3

Py1 Py2 Py3

Pz1 Pz2 Pz3

 (3.27)

Then,
F = P−1 · M (3.28)

At least we got,

F = Kn · Ẍ − Gn (3.29)

While,

Kn = −mn · P−1 (3.30)
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Gn = mn · P−1 ·


0
0
g

 (3.31)

Application of Newton-Euler law on the Arms:

The following figure shows the isolation of the arms. .

Figure 3.11: The isolation of the Arm

Due to the rotation around the y-axis Euler’s equation can be written as:

A⃗Ci × F⃗i + r⃗a × G⃗ai
+ Γ⃗i = Iai

· ⃗̈
iθ (3.32)

where:

- ra: Vector expressing the position of the center of gravity of arm i.

- Ga =
(
0 0 −mag

)T
: Gravity forces of arm i expressed in reference frame Ri.

- mb: Total mass of the arm, including the mass of the attached forearms.

- Γi: Torque around point Ai.

- Ia: Moment of inertia of the arm around point Ai.

- θ̈i: Angular acceleration of arm i.

The vectors are given by :

A⃗Ci =


LA cos θi

0
−LA sin θi

 and r⃗a =


ra cos θi

0
−ra sin θi

 (3.33)
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Therefore, we obtain the following expressions for the vector products A⃗Ci × F⃗i and r⃗a × G⃗a:

A⃗Ci × F⃗i =


−LA

LB
sin θi · Fi · yi

Fi

LB
[zi cos θi − (R − xi) sin θi]

−LA

LB
cos θi · Fi · yi

 (3.34)

r⃗a × G⃗a =


0

ra · ma · g · cos θi

0

 (3.35)

Since the rotation of the arms occurs around the y-axis, only the following equation along the
y-axis is useful to us. Developing it, we find:

Γi = Iaθ̈i − Fi
LA

LB

[zi cos θi − (R − xi) sin θi] − ramag cos θi (3.36)

Also,

Γi = Iaθ̈ − KaF − Gaai (3.37)

While,

Γ =


Γ1

Γ2

Γ3

 , θ̈ =


θ̈1

θ̈2

θ̈3

 , F =


F1

F2

F3

 (3.38)

Ia =


Ia1 0 0
0 Ia2 0
0 0 Ia3

 , Ka = LA

LB

·


K1 0 0
0 K2 0
0 0 K3

 (3.39)

With

Ki = zi · cos θi − (R − xi) · sin θi, i = 1, 2, 3 (3.40)

Gaai =


ra · ma · g · cos θ1

ra · ma · g · cos θ2

ra · ma · g · cos θ3

 (3.41)

At least, we replace the expression of the force according the equation (3.37);
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Γ = Iaθ̈ − KaKnẌ + KaGn − Gaai (3.42)

Given the Jacobian matrix J :

J =


∂X
∂θ1

∂X
∂θ2

∂X
∂θ3

∂Y
∂θ1

∂Y
∂θ2

∂Y
∂θ3

∂Z
∂θ1

∂Z
∂θ2

∂Z
∂θ3

 (3.43)

We substitute this into the equation (3.42) by the relation :

Ẍ = J ′θ̇ + Jθ̈ (3.44)

Γ = (Ia − KaKnJ)θ̈ − (KaKnJ̇)θ̇ + KaGn − Gaai (3.45)

Γ = M(θ)θ̈ + C(θ)θ̇ + G(θ) (3.46)

3.4 State Space Model of Delta Robot

The state-space representation is a mathematical framework used to describe the dynamics of a
dynamic system over time. It is particularly useful for modeling and analyzing systems, defined
from the differential equation governing them.

ẋ(t) = f(x, u)
y(t) = h(x)

- State vector (x(t)): Represents the internal state of the system at time t.

- Input vector (u(t)): Represents inputs applied to the system at time t.

- Output vector (y(t)): Represents measurable outputs of the system at time t.

Based on the equations governing the dynamic model of the robot, which consist of three
second-order differential equations, we define the state vector x(t) of order 6 as follows:

x =
[
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

]T
Also, the input vector is;

u =
(
Γ1 Γ2 Γ3

)T

Hence, the state space representation of the delta robot is given by ;
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ẋ(t) =



θ̇1

θ̇2

θ̇3

θ̈1

θ̈2

θ̈3


=


x4

x5

x6

M(θ)−1
(
Γ − C(θ)θ̇ − G(θ))

 (3.47)

3.5 Fractional Order state space model for delta robot

Fractional order modeling is essential to accurately capture the dynamic behavior of the Delta
robot, as it accounts for the effects of memory and nonlocal properties inherent in robotic
systems. Unlike integer-order models, fractional derivatives provide enhanced flexibility in
representing system dynamics [31, 32]. This section proposes a fractional-order state-space
representation of the Delta robot, offering a more precise framework for control design.

The state vector for the fractional-order model is defined as:

x =
[
θ1 θ2 θ3 Dαθ1 Dαθ2 Dαθ3

]T
Hence, the fractional-order state-space representation of the Delta robot is given by:

Dαx(t) =


x4

x5

x6

M(θ)−1 (Γ − C(θ)Dαθ − G(θ))


Where;

- The non-integer order α is set to 0.8 to closely approximate the integer-order model while
capturing the intrinsic fractional dynamics of robots.

3.6 Open loop simulation

In order to analyze the dynamic behavior of the delta robot and assess the impact of model
order on system response, an open-loop simulation is conducted for both the integer-order and
fractional-order models. Open-loop simulation, by definition, refers to system analysis without
the use of feedback control. This method is particularly useful in identifying inherent dynamic
characteristics such as rise time, settling time, oscillatory behavior, and system stability.

From Figure 3.12, we observe that the robot model is highly unstable. When a torque of 5
Nm is applied at the input, the joint dynamics diverge and tend toward infinity within a few
seconds.
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Figure 3.12: Open loop first joint response
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Figure 3.13: Open loop first joint response

Figure 3.13 shows the response of the proposed fractional model under the same conditions.
Indeed, the behavior was practically similar to that of the integer model in terms of divergence
and instability.

3.7 Advanced Fractional Control Strategies For Delta
Robot

This section provides an overview of recent advanced Fractional control strategies applied to
delta robots, including both model-based and data-driven approaches. By analyzing various
techniques such as adaptive control, robust control, and intelligent controllers.

Fractional-Order classical Controller

- This study [33] proposes the implementation of a tracking control for a Delta-type parallel
robot using fractional-order PID controllers in conjunction with the computed torque con-
trol strategy. The performance is contrasted with integer-order PID controllers, demon-
strating improved robustness and disturbance rejection.

- This paper [34] deals with piezoelectric actuators control. A fractional order fuzzy PID
controller is designed for this class of systems with the help of particle swarm optimization
(PSO) algorithm.

- This thesis [3] presents a global modeling for the Delta robot ISIR88, considering several
control structures including PD, fractional-order PD, and Time Delay Control (TDC).
The study involves both simulation and experimentation, demonstrating the robustness
of these control laws in managing modeling uncertainties.
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Fractional-Order Adaptive Controllers

- The Adaptive Backstepping Fractional-Order Non-Singular Terminal Sliding Mode Con-
trol proposed by [35] combines adaptive backstepping with fractional-order non-singular
terminal sliding mode control to achieve precise trajectory tracking of Delta parallel
robots. The approach addresses model uncertainties and external disturbances by employ-
ing an adaptive law that estimates and compensates for these uncertainties in real-time.

- The Adaptive Super-Twisting Fractional-Order Sliding Mode Control proposed by [36] in-
troduces an adaptive super-twisting fractional-order sliding mode control approach for re-
dundantly actuated cable-driven parallel robots. The controller incorporates a fractional-
order sliding surface and an adaptive law to estimate and compensate for uncertainties
and disturbances.

- This paper introduces [37] a Fractional Order Model Reference Adaptive Control (FOM-
RAC) strategy for trajectory tracking of SCARA-type robotic manipulators. The ap-
proach integrates fractional-order systems into the classical MRAC framework to en-
hance the system’s robustness and adaptability to model uncertainties and external dis-
turbances. The proposed controller demonstrates improved tracking performance and
stability compared to traditional integer-order MRAC methods..

Learning based Fractional-Order Intelligent Controllers

- This study presents [38] n inverse kinematic controller using neural networks for trajectory
controlling of a delta robot in real-time. The developed control scheme is purely data-
driven and does not require prior knowledge of the delta robot kinematics. Moreover, it
can adapt to the changes in the kinematics of the robot. For developing the controller,
the kinematic model of the delta robot is estimated by using neural networks. Then, the
trained neural networks are configured as a controller in the system. The parameters of
the neural networks are updated while the robot follows a path to adaptively compensate
for modeling uncertainties and external disturbances of the control system.

3.8 Conclusion

In this chapter, we analyzed the modeling of the Delta robot using both integer and fractional-
order representations. The open-loop simulations revealed high instability in both models,
highlighting the need for advanced control strategies. A review of the literature showed in-
creasing interest in fractional and intelligent adaptive control methods for managing complex
robot dynamics and uncertainties
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Chapter 4

FO Indirect Lyapunov Based Adaptive
Backstepping Controller

4.1 Introduction

This chapter aims at designing a Fractional Order Lyapunov-based Indirect Adaptive Back-
stepping Control strategy for the precise trajectory tracking of a DELTA robot. The proposed
approach integrates fractional calculus with Lyapunov stability theory to enhance the robust-
ness and adaptability of the controller in the presence of system uncertainties and external
disturbances. Unlike conventional backstepping controllers [39] , the indirect adaptive mech-
anism estimates unknown system parameters online, improving control performance without
requiring precise dynamic modeling.

4.2 Problem Formulation

The objective of this strategy is to design a control law for a Delta robot capable of accurately
performing trajectory tracking tasks in the presence of undesired dynamics ( uncertainties and
external disturbances, and the resistive torques applied by the load ).

The control design will be based on the fractional-order state-space model [40] introduced in
the previous chapter, defined as follows:

x1 =
[
θ1 θ2 θ3

]T
(4.1)

x2 =
[
Dαθ1 Dαθ2 Dαθ3

]T
(4.2)

Dαx(t) =
 x2

M(x1)−1(u − C(x1, x2)x2 − G(x1) + ∆(t))

 (4.3)

Where;

62



4.3. CONTROL LAW DESIGN Adaptive FO Backstepping

- ∆(t) represents the unknown dynamics to be estimated and compensated by the con-
troller.

4.3 Control law design

We first define the tracking error vector:

ei(t) = xi(t) − xir(t), i = 1, 2 (4.4)

The estimation error is given by,

∆̃(t) = ∆(t) − ∆̂(t) (4.5)

Assuming the slow dynamics of uncertainties ,

Dα∆(t) ≈ 0 (4.6)

Considering the plant described by Eq. (4.3), with order 0 < α < 1, a positive gain λ > 0,
and a symmetric positive definite matrix Γ > 0. we propose the respectively virtual,
adaptation, and global following control laws:

uv = −λe1(t) + Dαx1r (4.7)

Dα∆̂(t) = Γ−1M−T e2 (4.8)

u = M (Dαuv − e1 − λe2) + CDαx1 + G − ∆̂(t) (4.9)

4.4 Proof and Stability Analysis

Let consider the following lyapunov candidate function:

V1(t, e1(t)) = 1
2e1(t)T e1(t) (4.10)

According to Lemma 1 , which provides an upper bound on the fractional derivative of a
quadratic form [22] , we have:

DαV1 ≤ e1(t)T Dαe1(t) (4.11)

To ensure that DαV1 < 0, we design the virtual control such that:

e1(t)T Dαe1(t) < 0 (4.12)

This leads to:
e1(t)T Dαe1(t) = e1(t)T · (Dαx1 − Dαx1r) (4.13)
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Then we propose to choose the following virtual control signal to stabilize the position error ,

uv = −λe1(t) + Dαx1r (4.14)

where λ > 0 is a positive control gain.

To further analyze stability, we define the following composite Lyapunov function [41] :

V2 = V1 + 1
2e2(t)T e2(t) + 1

2∆̃(t)T Γ∆̃(t) (4.15)

where Γ is a symmetric positive definite matrix.

According to Lemma 1, the fractional derivative of V2 satisfies [23] :

DαV2 ≤ eT
1 Dαe1 + eT

2 Dαe2 + ∆̃(t)T ΓDα∆̃(t) (4.16)

According to (4.6) :
Dα∆̃(t) = −Dα∆̂(t) (4.17)

We aim to design the control input u to make DαV2 < 0. From the previous results:

eT
1 Dαe1 = eT

1 (−λe1 + e2) (4.18)

Substituting into the expression for DαV2, we obtain:

DαV2 ≤ −λ∥e1∥2 + eT
2 (e1 + Dαe2) − ∆̃(t)T Dα∆̂(t) (4.19)

The derivative Dαe2 can be computed as:

Dαe2 = M(x1)−1 (u − Cx2 − G + ∆(t)) − Dαuv (4.20)

The proposed control law is then:

u = M (Dαuv − e1 − λe2) + Cx2 + G − ∆̂(t) (4.21)

Substituting this into the expression for DαV2, we get:

DαV2 ≤ −λ∥e1∥2 − λ∥e2∥2 + eT
2 M−1∆̃(t) − ∆̃(t)T ΓDα∆̂(t) (4.22)

To eliminate the disturbance term, acording to [41] we define the adaptation law as:

Dα∆̂(t) = Γ−1M−T e2 (4.23)

Thus, the final expression becomes:

DαV2 ≤ −λ∥e1∥2 − λ∥e2∥2 < 0 (4.24)

This ensures the exponential stability of the closed-loop system, in accordance with Lemma 1
using the extended Lyapunov stability theorem.
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Figure 4.1: Structure of the adaptive FO Backstepping control system

4.5 Simulation results

To validate the effectiveness of the proposed fractional-order backstepping control strategy,
simulations (For α = 0.8 ) are performed in MATLAB/Simulink. The Delta robot’s end-
effector is tasked with a sinusoidal trajectories on it’s joints angular position.This trajectory is
carefully designed to ensure smooth motion, along with continuous velocity and acceleration
profiles, which are crucial for precise tracking and stability analysis.
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Figure 4.2: First Joint angle

By observing the joint position curve in Fig. 4.1, 4.2 and 4.3, we notice a good tracking of the
reference. The FO Backstepping controller delivered excellent performance with a significantly
low rise time (about 0.05 s), highlighting the stability of the closed-loop system.

The tracking performance of the system can also be evaluated by analyzing the curves along
the 3d space trajectory, in Fig.4.4. As observed, the end-effector response exhibits excellent
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Figure 4.3: Second Joint angle
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Figure 4.4: Third Joint angle

tracking of the reference trajectory, demonstrating the effectiveness of the control strategies
implemented.

Figure 4.5: End effector trajectory

To analyze the performances of the control law, the root mean square error (RMSE) of the

66
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trajectories for both controllers is summarized in Table 7.1.

RMSE =

√√√√ 1
N

N∑
i=1

(xir − xi)2 (4.25)

Table 4.1: RMSE values

Controller RMSE (x-axis) RMSE (y-axis) RMSE (z-axis)
FO Backstepping 1.8 × 10−4 3.2 × 10−10 6.4 × 10−5

The RMSE values highlight the tracking accuracy of the control law along the x, y, and z axes,
confirming that the control objective is achieved.
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Figure 4.6: Induced Control Signal
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Figure 4.7: Induced Control Signal

The figures 4.5, 4.6 and 4.7 illustrate the torque evolution over time for the FO Backstepping
controller. Initially, a significant torque overshoot is observed during the transient phase due
to the influence of the fractional dynamics on rise time and performance. However, it is rapidly
stabilized around 0.2 in the steady state.

4.6 Robustness Tests

This section aims to examine the robustness of the controller against uncertainties, undesired
dynamics, and perturbations. This study is conducted in two steps: first, by injecting an
external perturbation signal, and second, by introducing an uncertain parameter variation
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Figure 4.8: Induced Control Signal
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Figure 4.9: Joint angle In presence of uncertainty

Figure 4.8 shows the joint angle response in the presence of bounded uncertainty. Due to the
adaptation term in the controller, the additive perturbation is estimated and compensated.
This explains the good performance in terms of tracking and stability.

We now evaluate the controller’s ability to reject external disturbances, such as those arising
from sensor noise or environmental factors. As illustrated in Figures 4.9 and 4.10, the system
response remains stable and converges effectively, confirming the robustness of the control law,
which benefits from the inherent memory effect of fractional-order systems.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s) 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 F
is

rt
 J

o
in

t 
A

n
g
le

 (
ra

d
) 

0 0.05 0.1 0.15
0

0.2

0.4

0.6
Zoom

Ref

Joint

Figure 4.10: Joint angle In presence of uncertainty

At least, we will examine the controller’s ability to stabilize the system in the presence of
nonlinear uncertain parameters. The system is then considered as:

Dαx(t) =
 x2

(M(x1) + ∆M)−1(u − (C(x1, x2) + ∆C)x2 − G(x1))

 (4.26)

68



4.6. ROBUSTNESS TESTS Adaptive FO Backstepping

Figure 4.11: 3D End-Effector Trajectory Tracking under noise

Where , ∆M and ∆C are constant bounded uncertainties.
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Figure 4.12: Joint angle In presence of uncertainty
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Figure 4.13: Joint angle In presence of uncertainty
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The impact of nonlinear modeling errors is illustrated in Figures 4.11 and 4.12. Although
the system maintains overall stability, a significant degradation in performance is observed,
particularly in terms of accurate tracking of the reference trajectory. This highlights the sensi-
tivity of the fractional-order backstepping controller to modeling inaccuracies, as the absence
of adaptation mechanisms limits its ability to compensate for nonlinear uncertainties.

4.7 Conclusion

In this chapter, an adaptive fractional-order backstepping controller was proposed for the Delta
robot. The simulation results demonstrated good overall performance, particularly in terms of
robustness and adaptability to external perturbations. The fractional-order design introduced a
relatively high rise time, which is a known characteristic of such systems, but it also contributed
to smoother control actions. While the controller effectively compensates for bounded uncer-
tainties and partially known dynamics, it shows limitations when dealing with systems with
completely unknown dynamics. Therefore, its application is best suited for scenarios where
partial system knowledge is available.
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Chapter 5

FO Sliding Mode Control Based on
Super-Twisting Algorithm

5.1 Introduction

This chapter aims at designing a robust Fractional Order Sliding Mode Control (FO-SMC)
strategy using the Super-Twisting Algorithm for the precise trajectory tracking of a DELTA
robot. The approach [42] integrates fractional calculus with Lyapunov stability theory to
enhance robustness and convergence in the presence of modeling uncertainties and external
disturbances. Unlike classical SMC, [28] the super-twisting mechanism reduces chattering and
introduces more flexible tuning. This controller is particularly beneficial in dealing with strong
nonlinearities and uncertainty that commonly affect parallel robot dynamics.[43, 27]

5.2 Problem Formulation

The objective of this strategy is to design a control law for a Delta robot capable of accurately
performing trajectory tracking tasks in the presence of undesired dynamics (uncertainties, ex-
ternal disturbances, and the resistive torques applied by the load).[44]

The control design is based on the following fractional-order state-space model:

x1 =
[
θ1 θ2 θ3

]T
(5.1)

x2 =
[
Dαθ1 Dαθ2 Dαθ3

]T
(5.2)

Dαx(t) =
[

M(x1)−1(u − C(x1, x2)x2 − G(x1) + ∆(t))
]

(5.3)

Where represents the unknown disturbance and model uncertainty to be estimated and com-
pensated. [45][46]
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5.3 Control Law Design

We define the tracking error vector:

e(t) = x1(t) − x1r(t) (5.4)

Then we define the sliding surface:

S(t) = λe(t) + Dαe(t) (5.5)

Let the estimation error be:
∆̃(t) = ∆(t) − ∆̂(t) (5.6)

Assuming slow variation of the uncertainties:

Dα∆(t) ≈ 0 (5.7)

We consider the following Lyapunov candidate:

V (t) = 1
2ST S + 1

2∆̃T Γ∆̃ (5.8)

Then its derivative is:
DαV (t) ≤ ST DαS + ∆̃T ΓDα∆̃ (5.9)

We impose the following super-twisting law:

DαS = −λ1 sign(S) · |S|1/2 − λ2S + M−1∆̃(t) (5.10)

Then the control law is:

u = M
(
D2αx1r − λDαe − λ1 sign(S) · |S|1/2 − λ2S

)
+ Cx2 + G − ∆̂(t) (5.11)

The adaptation law is:
Dα∆̂(t) = Γ−1MT S (5.12)

Substituting and simplifying:

DαV (t) ≤ −λ1||S||3/2 − λ2||S||2 < 0 (5.13)

Summary: Considering the plant described by Eq. (5.3), with order 0 < α < 1, and
positive gains λ > 0, λ1 > 0, and λ2 > 0, we propose the following:

S(t) = λe(t) + Dαe(t) (5.14)

Dα∆̂(t) = Γ−1MT S (5.15)

u = M
(
D2αx1r − λDαe − λ1 sign(S)|S|1/2 − λ2S

)
+ Cx2 + G − ∆̂(t) (5.16)
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Figure 5.1: Structure of the adaptive Sliding Mode FO control system

5.4 Simulation and Discussions

To validate the effectiveness of the proposed fractional-order Sliding Mode control strategy,
simulations (For α = 0.8 ) are performed in MATLAB/Simulink. The Delta robot’s end-
effector is tasked with a cubic trajectories on it’s joints angular position.This trajectory is
carefully designed to ensure smooth motion, along with continuous velocity and acceleration
profiles, which are crucial for precise tracking and stability analysis.[43][27]

Figure 5.2: First Joint angle

Figure 5.3: Second Joint angle
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Figure 5.4: Third Joint angle

By observing the joint position curve in Fig. 5.2, 5.3 and 5.4, we notice a virtually perfect
tracking of the reference trajectories (dashed) by the actual joint responses (solid). In each case
the fractional-order sliding-mode controller delivers excellent performance, with a remarkably
low rise time of about 0.25 s, negligible overshoot and virtually zero steady-state error. Such
behavior highlights the robustness and stability of the closed-loop system, as well as the high
level of precision typically required for advanced robotic applications.

The tracking performance can be further appreciated in the 3D end-effector plot of Fig. 5.5.
Here, the actual path (solid line) coincides almost exactly with the desired spatial trajectory
(dashed line), confirming the effectiveness of the fractional super-twisting sliding-mode strategy
in coordinating all three joints to steer the end-effector along complex three-dimensional paths.

Figure 5.5: 3D End-Effector Trajectory Tracking

To analyze the performances of the control law, the root mean square error (RMSE) of the
trajectories for both controllers is summarized in Table 7.1.
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RMSE =

√√√√ 1
N

N∑
i=1

(xir − xi)2 (5.17)

Table 5.1: RMSE values

Controller RMSE (x-axis) RMSE (y-axis) RMSE (z-axis)
FO Sliding mode 9.96 × 10−4 2.24 × 10−10 1.02 × 10−5

The RMSE values highlight the tracking accuracy of the control law along the x, y, and z axes,
confirming that the control objective is achieved.

Figure 5.6: Induced Control Signal

Figure 5.7: Induced Control Signal

Figure 5.8: Induced Control Signal

- High initial overshoot:

◦ Joint 1 (Fig. 5.6) peaks at approximately +800N.m and dips to −300N.m within the
first 0.01 s.

◦ Joint 2 (Fig. 5.7) reaches about +120N.m before settling.
◦ Joint 3 (Fig. 5.8) attains roughly +100N.m at its maximum.

This transient spike is due to the fractional dynamics acting on rise-time performance.

- Rapid stabilization: All three torques converge to a small steady-state value ( 0.2 s)
in under 0.05s, demonstrating excellent damping and disturbance rejection.
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- Absence of chattering: Thanks to the Super-Twisting algorithm, the control signals
are completely smooth—no high-frequency oscillations (chattering) are observed in any
torque trace.

These results confirm that the proposed controller delivers both high-bandwidth performance
(fast rise, controlled overshoot) and robust, chatter-free operation, which are essential for pre-
cision robotic tasks.

5.5 Robustness Tests

This section aims to examine the robustness of the controller against uncertainties, undesired
dynamics, and perturbations. This study is conducted in two steps: first, by injecting an
external perturbation signal, and second, by introducing an uncertain parameter variation

Figure 5.9: Joint angle In presence of noise

Figure 5.10: Joint angle In presence of noise

Joint 1 and 2 angle in the presence of uncertainty. Despite the injected perturbations, the
FO–Adaptive SMC (blue) closely follows the desired trajectory (red), with only small oscil-
lations (±0.01 rad) around the set-point. This demonstrates the controller’s ability to reject
disturbances almost immediately.

At least, we will examine the controller’s ability to stabilize the system in the presence of
nonlinear uncertain parameters. The system is then considered as:

Dαx(t) =
 x2

(M(x1) + ∆M)−1(u − (C(x1, x2) + ∆C)x2 − G(x1))

 (5.18)
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Figure 5.11: 3D End-Effector Trajectory Tracking under noise

Where , ∆M and ∆C are constant bounded uncertainties.

Figure 5.12: Joint angle In presence of uncertainty

Figure 5.13: Joint angle In presence of uncertainty

The impact of nonlinear modeling errors is illustrated in Figures 5.11 and 5.12. Although
the system maintains overall stability, a significant degradation in performance is observed,
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particularly in terms of accurate tracking of the reference trajectory. This highlights the sensi-
tivity of the fractional-order backstepping controller to modeling inaccuracies, as the absence
of adaptation mechanisms limits its ability to compensate for nonlinear uncertainties.

5.6 Conclusion

In this chapter, an Fractional Order Sliding Mode controller was proposed for the Delta robot.
The simulation results demonstrated good overall performance, particularly in terms of ro-
bustness and adaptability to external perturbations. The fractional-order design introduced a
relatively high rise time, which is a known characteristic of such systems, but it also contributed
to smoother control actions. While the controller effectively compensates for bounded uncer-
tainties and partially known dynamics, it shows limitations when dealing with systems with
completely unknown dynamics. Therefore, its application is best suited for scenarios where
partial system knowledge is available.[27]
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Chapter 6

Fractional Order Lyapunov based
MRAC with State feedback Controller

6.1 Introduction

This chapter gives the design of a Fractional Order direct adaptive model reference [47] Control
strategy for the precise tracking of reference model for the DELTA robot. The proposed ap-
proach integrates fractional calculus with Lyapunov stability theory to enhance the robustness
and adaptability of the controller in the case of the fully unknown system’s dynamics [13].
The direct adaptive mechanism estimates the controller parameters online, improving control
performance without requiring precise dynamic modeling.

6.2 Problem Formulation

The objective of this strategy is to design a control law for a Delta robot capable of accurately
tracking the dynamics and performances of a reference model [40] [39] , while estimating the
controller parameters online.

The control design will be based on the fractional-order state-space model introduced in the
previous chapter, defined as follows: :

x1 =
[
θ1 θ2 θ3

]T
(6.1)

x2 =
[
Dαθ1 Dαθ2 Dαθ3

]T
(6.2)

Dαx(t) =
 x2

M(x1)−1(u − C(x1, x2)x2 − G(x1))

 (6.3)

The reference model is obtained through feedback linearization of the nonlinear system, followed
by stabilization using state feedback control with a precompensator. It is described by the
following equation:
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Dαxr(t) = (A − BK) · xr + B · P · V (6.4)

where:

- A and B are the state-space matrices in canonical form, ensuring full controllability and
observability.

- K is the state feedback gain matrix used to assign the desired closed-loop dynamics.

- P is the reference precompensator matrix, designed for trajectory tracking.

- V is the reference input or desired trajectory.

6.3 Control Law Design

We begin by defining the feedback linearization-based control law for tracking the reference
model through model identification:

u = −α⋆ − β⋆ (−Kx + PV ) (6.5)

where:

α⋆ = −C(x1, x2) x2 − G(x1) (6.6)

β⋆ = −M(x1) (6.7)

Assuming the system dynamics [48] are completely unknown, we aim to estimate the controller
parameters α and β, and apply their estimated values to the system in Equation (6.3):

u = um1 − um2 · uSF C (6.8)

With um1, um2 representing the adaptive term in the controller and uSF C representing the state
feedback control signal.

u = −α̂ − β̂ (−Kx + PV ) (6.9)

Substituting the control input into the system, the dynamics become:

Dαx(t) =
 x2

M(x1)−1
(
−α̂ − β̂(−Kx + PV ) − C(x1, x2)x2 − G(x1)

)
 (6.10)

By adding and subtracting α⋆ and β⋆, we rewrite:
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Dαx(t) =
 x2

−Kx + PV + M−1α̃ + M−1β̃(−Kx + PV )

 (6.11)

Let the estimation errors of the controller parameters be defined as:

α̃ = α⋆ − α̂ (6.12)

β̃ = β⋆ − β̂ (6.13)

Thus, Equation (6.10) can be expressed in matrix form as:

Dαx(t) = (A − BK)x + BPV + BM−1α̃ + BM−1β̃Φ (6.14)

where:

Φ(3,1) = −Kx + PV =


Φ1

Φ2

Φ3

 (6.15)

β̃(3,3) =
[
β̃1 β̃2 β̃3

]
(6.16)

This leads to:

Dαx(t) = (A − BK) x(t) + BPV + BM−1α̃ + BM−1
3∑

i=1
β̃iΦi (6.17)

The tracking error is defined as:

e(t) = x(t) − xr(t) (6.18)

Dαe(t) = Dαx(t) − Dαxr(t) (6.19)

Substituting Equations (6.4) and (6.16), we obtain:

Dαe(t) = (A − BK)e + BM−1α̃ + BM−1
3∑

i=1
β̃iΦi (6.20)

6.4 Stability Analysis

Let us consider the following Lyapunov candidate function:
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V1(t, e(t)) = e(t)T e(t) + 1
2 α̃T M−T α̃ +

3∑
i=1

β̃T
i M−T β̃i (6.21)

According to Lemma 1, which provides an upper bound on the fractional derivative of a
quadratic form, we have:

DαV1 ≤ e(t)T Dαe(t) + α̃T M−T Dαα̃ +
3∑

i=1
β̃T

i M−T Dαβ̃i (6.22)

To ensure DαV1 < 0, we design the adaptation laws such that:

Dαα̂(t) = 2BT e(t) (6.23)

Dαβ̂i(t) = 2ΦiB
T e(t) (6.24)

Thus, the final inequality becomes:

DαV1 ≤ −e(t)T Qe(t) < 0 (6.25)

Where :

Q is a positive defined matrix.

This guarantees the exponential stability of the closed-loop system according to Lemma 1 and
the extended Lyapunov stability theorem.

Summary:
Considering the plant described by Eq. (6.3) with order 0 < α < 1, and given a state
feedback gain matrix K and a reference precompensator P , we propose the following
adaptive control laws:

u = −α̂ − β̂(−Kx + PV ) (6.26)

Dαα̂(t) = 2BT e(t) (6.27)

Dαβ̂i(t) = 2ΦiB
T e(t), i = 1, 2, 3 (6.28)

6.5 Simulations and Discussions

To validate the effectiveness of the proposed fractional-order MRAC control strategy, simula-
tions (For α = 0.8 ) are performed in MATLAB/Simulink. The Delta robot’s end-effector is
tasked with a Cubic spline trajectories on it’s joints angular position.This trajectory is care-
fully designed to ensure smooth motion, along with continuous velocity and acceleration profiles,
which are crucial for precise tracking and stability analysis.
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Figure 6.1: Structure of the adaptive FO MRAC control system

Figure 6.2: First Joint angle

Figure 6.3: Second Joint angle

By observing the joint position curves in Figures 6.2, 6.3, and 6.4, we notice that the reference
tracking is very good. The FO MRAC controller exhibits satisfactory performance, with a
relatively low rise time (approximately 0.05 s), which reflects the overall stability of the closed-
loop system. Moreover, the controller shows a level of performance that aligns well with typical
requirements in robotic applications.

The tracking performance of the system is further evaluated by analyzing the end-effector
trajectory in 3D space, as shown in Fig. 6.4. The plotted trajectories indicate that the system
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Figure 6.4: Third Joint angle

is capable of following the reference path with good accuracy. The end-effector’s response
closely follows the desired trajectory, suggesting that the implemented control strategies provide
effective path tracking in a three-dimensional environment.

Figure 6.5: End-effector trajectory

To analyze the performances of the control law, the root mean square error (RMSE) of the
trajectories for both controllers is summarized in Table 7.1.

RMSE =

√√√√ 1
N

N∑
i=1

(xir − xi)2 (6.29)

Table 6.1: RMSE values

Controller RMSE (x-axis) RMSE (y-axis) RMSE (z-axis)
FO MRAC 7.86 × 10−3 7.75 × 10−3 4.3 × 10−3

The RMSE values highlight the tracking accuracy of the control law along the x, y, and z axes,
confirming that the control objective is achieved.
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Figure 6.6 shows the error dynamics between the reference model and the robot, demonstrating
very good tracking performance with respect to the reference model.

Figure 6.6: Errors Dynamic

Figure 6.7 presents the time evolution of the torque generated by the FO MRAC controller. At
the beginning of the response, a noticeable overshoot occurs during the transient phase, which
can be attributed to the effect of fractional dynamics on system behavior. Nonetheless, the
torque stabilizes quickly, reaching a steady state around 0.05 seconds.

Figure 6.7: Induced Control Signal

6.6 Robustness Tests

This section aims to examine the robustness of the controller against uncertainties, undesired
dynamics, and perturbations. This study is conducted in two steps: first, by injecting an
external perturbation signal, and second, by introducing an uncertain parameter variation

Figure 6.8: Joint angle In presence of uncertainty
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Figure 6.8 shows the joint angle response in the presence of bounded uncertainty. Due to the
adaptation term in the controller, the additive perturbation is estimated and compensated.
This explains the good performance in terms of tracking and stability.

Next, we will examine the controller’s ability to stabilize the system in the presence of nonlinear
uncertain parameters. The system is then considered as:

Dαx(t) =
 x2

(M(x1) + ∆M)−1(u − (C(x1, x2) + ∆C)x2 − G(x1))

 (6.30)

Where , ∆M and ∆C are constant bounded uncertainties.

Figure 6.9: Joint angle In presence of uncertainty

Figure 6.10: Joint angle In presence of uncertainty

The influence of nonlinear modeling errors is illustrated in Figures 6.9, 6.10 and 6.11. Despite
the presence of significant model uncertainties, the system maintains stable behavior, which
highlights the robustness of the proposed adaptive MRAC fractional-order controller. Although
a slight degradation in tracking performance is observed—particularly in terms of precision with
respect to the reference trajectory—the adaptive nature of the controller, combined with the
memory effect of fractional-order dynamics, allows for effective compensation of these modeling
inaccuracies, ensuring overall system reliability.

6.7 Conclusion

In contrast, the Fractional-Order Model Reference Adaptive Control (FO-MRAC) strategy
exhibited strong performance even under completely unknown system dynamics. The adaptive
mechanism enables real-time adjustment of control parameters, ensuring accurate trajectory
tracking and robustness to a wide range of uncertainties. However, this improved responsiveness
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Figure 6.11: Joint angle In presence of uncertainty

comes at the cost of a more abrupt control signal, which may lead to increased actuator effort
or mechanical stress in practical applications. Therefore, while FO-MRAC is highly effective
in terms of adaptability and precision, careful consideration must be given to the trade-off
between control smoothness and responsiveness when deploying it in real-world systems.
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Chapter 7

Comparative Analysis of the Proposed
Control Strategies

7.1 Introduction

This chapter presents a comparative analysis of three advanced control strategies Model Refer-
ence Adaptive Control (MRAC), Backstepping, and Sliding Mode Control (SMC) implemented
for the same dynamic system. Each method offers distinct advantages in handling system un-
certainties, external disturbances, and nonlinearities, which are critical challenges in modern
control applications.

The objective of this chapter is to evaluate and compare the performance, robustness, and
implementation complexity of these strategies using consistent metrics and simulation condi-
tions. Through this analysis, the strengths and limitations of each controller will be highlighted,
guiding the selection of the most appropriate technique for a given application context.

7.2 Stability and performances

This section provides an in-depth comparative evaluation of the stability and performance
characteristics exhibited by three advanced control strategies: Model Reference Adaptive Con-
trol (MRAC), Backstepping, and Sliding Mode Control (SMC). The comparison is conducted
using a combination of qualitative insights and quantitative performance metrics to ensure a
comprehensive understanding of each controller’s behavior and effectiveness.

The assessment criteria include several critical aspects of control system performance. First,
the trajectory tracking accuracy is examined to determine how closely each control approach
enables the system to follow a desired reference path over time. This reflects the precision and
responsiveness of the controllers under nominal conditions.

Second, the convergence behavior of each strategy is analyzed. This involves evaluating the rate
at which the system’s states approach their desired values and the smoothness or abruptness
of this convergence. Fast and smooth convergence is generally indicative of a well-tuned and
stable control law.
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Figure 7.1: First Joint position
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Figure 7.2: Second Joint position
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Figure 7.3: X-axis tracking error
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Figure 7.4: Y-axis tracking error

- Figures 7.1 and 7.2 illustrate the joint angular position trajectories. The Fractional-Order
Backstepping (FO-Backstepping) controller exhibited an excellent tracking performance,
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Figure 7.5: Z-axis tracking error

Table 7.1: RMSE values

Controller RMSE (x-axis) RMSE (y-axis) RMSE (z-axis)
FO Backstepping 1.8 × 10−4 3.2 × 10−10 6.4 × 10−5

FO Sliding mode 9.96 × 10−4 2.24 × 10−10 1.02 × 10−5

FO MRAC 7.86 × 10−3 7.75 × 10−3 4.3 × 10−3

characterized by a fast response time of approximately 0.1 s and a small overshoot. In
comparison, the Fractional-Order Sliding Mode Control (FO-SMC) also achieved accu-
rate tracking, but with more noticeable overshoots—particularly in certain states—and a
slightly slower response time of around 0.2 s.

- The Fractional-Order Model Reference Adaptive Controller (FO-MRAC) provided a smoother
response with no overshoot. However, this came at the expense of a slower convergence
to the desired trajectory. The overall response time was approximately 0.2 s, with a rise
time of about 0.05 s, which is attributed to the fractional-order integration that improves
smoothness but delays rapid convergence.

- The tracking error in Cartesian space reached significant values during the transient
phase, especially along the x-axis Figure 7.3 . Nonetheless, all controllers were able to
rapidly stabilize the error to near-zero levels, with convergence to the origin occurring at
approximately 0.1 s.

- For the y and z axes Figures 7.4 and 7.5, the FO-SMC controller produced larger tracking
errors compared to FO-Backstepping and FO-MRAC. Despite this, the errors were also
quickly stabilized, with the system settling around 0.2 s.

- The Root Absolute Mean Square Error (RAMSE) values demonstrate outstanding per-
formance across all tested controllers. Notably, the backstepping controller achieves the
lowest RAMSE, highlighting its superior accuracy and robustness in tracking the desired
trajectory compared to the other methods.

7.3 Optimality and Feasibility Analysis

Beyond evaluating controller performance and stability , it is essential to consider the aspects of
optimality and feasibility, especially when transitioning from simulation environments to real-
world implementations. This section provides a critical assessment of each control strategy ,
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Model Reference Adaptive Control (MRAC), Backstepping, and Sliding Mode Control (SMC)
in terms of their optimal behavior and practical applicability.
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Figure 7.6: Induced Control Signal FO Backstepping

Figure 7.7: Induced Control Signal FO MRAC

Figure 7.8: Induced Control Signal FO SMC

7.3.1 Optimality Considerations

Optimality, in the context of control design, refers to the extent to which a controller mini-
mizes a specific performance index, such as tracking error, control energy, or convergence time.
Although none of the controllers studied in this chapter are inherently optimal in the classical
sense , their behavior can be assessed with respect to commonly used performance metrics:
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- Tracking Accuracy: Quantified using the Root Absolute Mean Square Error (RAMSE),
Backstepping exhibited the lowest tracking error, indicating near-optimal performance in
trajectory following.

- Control Effort: An analysis of the control signal magnitude over time can provide insight
into energy efficiency. Excessive or highly oscillatory control signals, often observed in
SMC, may indicate sub optimality in terms of actuator wear and energy consumption.

- Response Time and Overshoot: Time-domain characteristics such as rise time, set-
tling time, and overshoot contribute to the practical optimality of a control method,
particularly in dynamic or safety-critical systems.

7.3.2 Feasibility Considerations

Feasibility encompasses the practicality of implementing a controller in real-world systems,
considering aspects such as computational complexity, ease of tuning, robustness to model
uncertainties, and hardware limitations.

- Implementation Complexity: MRAC [49] requires the identification and continuous
adaptation of parameters, which can demand high computational resources and care-
ful initialization. In contrast, Backstepping and SMC may offer more straightforward
implementations once the system model is well defined.

- Robustness to Uncertainty: SMC is renowned for its robustness against bounded
disturbances and modeling errors, making it highly feasible in uncertain environments
despite its chattering drawback.

- Tuning and Parameter Sensitivity: Feasibility also depends on how sensitive a con-
troller is to its parameters. Adaptive schemes (MRAC) may alleviate this through online
adjustment, while Backstepping and SMC typically require careful offline tuning.

7.4 Conclusion

In summary, the choice between Backstepping, Sliding Mode Control (SMC), and Model Ref-
erence Adaptive Control (MRAC) largely depends on the specific requirements and constraints
of the application. Backstepping control offers strong performance in terms of both optimality
and practical implementation.

On the other hand, Sliding Mode Control is renowned for its robustness against model uncer-
tainties and external disturbances. It achieves this by enforcing system trajectories to "slide"
along a predefined surface, thus ensuring predictable behavior even in the presence of nonlinear-
ities and parameter variations. Despite its strengths, SMC often suffers from the phenomenon
known as control chattering—high-frequency oscillations in the control signal—which has been
overcome by the use of fractional calculus and the super-twisting algorithm.

Model Reference Adaptive Control (MRAC) introduces adaptability into the control loop, en-
abling the system to adjust in real time to changes in system dynamics. This makes MRAC
a versatile option that strikes a balance between robustness and performance. However, the
adaptive nature of MRAC comes at the cost of increased design and computational complexity.
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Careful tuning and real-time estimation are required, which may necessitate more powerful
hardware or advanced software infrastructure.

Ultimately, these trade-offs must be carefully considered in light of the intended application. In
scenarios where hardware limitations, energy efficiency, or real-time processing constraints are
critical, the complexity and implementation overhead of each method become decisive factors.
Therefore, the control strategy should be selected not only based on theoretical performance
but also on practical feasibility.
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General Conclusion

This thesis has focused on the modeling and advanced control of Delta parallel robots with a
particular emphasis on trajectory tracking in the presence of system uncertainties and nonlin-
earities. The Delta robot, a type of parallel manipulator known for its lightweight structure,
high-speed operation, and mechanical precision, presents significant challenges in terms of con-
trol due to its complex dynamic behavior. The nonlinearity of the model, the strong coupling
of joints, and susceptibility to parameter variation require advanced techniques that go beyond
classical linear control theory. As such, this work has explored the potential of fractional-order
adaptive control as a modern and effective strategy for enhancing robot performance.

Throughout the thesis, a comprehensive approach was adopted. First, a thorough review of
the structure and advantages of parallel manipulators was presented, along with a detailed
introduction to fractional calculus and its growing relevance in control theory. The modeling
phase included both kinematic and dynamic representations of the Delta robot, serving as
a foundation for the design and implementation of advanced controllers. A clear emphasis
was placed on the integration of fractional-order dynamics within well-established nonlinear
adaptive frameworks to exploit the benefits of memory and hereditary properties offered by
fractional-order systems.

The main contribution of this research lies in the synthesis and evaluation of three distinct
but complementary control strategies: fractional-order adaptive backstepping, fractional-order
sliding mode control based on the super-twisting algorithm, and fractional-order model ref-
erence adaptive control (FO-MRAC). These control architectures were rigorously designed to
accommodate the specific dynamic characteristics of the Delta robot. The fractional-order
backstepping controller provided a recursive and systematic method for stabilizing the system,
while the super-twisting sliding mode controller introduced robustness against matched dis-
turbances and minimized chattering effects. The FO-MRAC approach enabled the tracking of
reference trajectories under uncertain model dynamics by adjusting its parameters adaptively.

All controllers were validated through numerical simulations. The results demonstrated excel-
lent performance in terms of tracking accuracy, robustness, and convergence time. In particu-
lar, fractional-order dynamics allowed for a more flexible tuning of the system’s transient and
steady-state responses, proving their added value compared to integer-order counterparts. The
comparative evaluation between the controllers revealed their respective strengths and trade-
offs: the backstepping approach ensured smooth convergence with moderate computational
complexity; the sliding mode controller excelled in disturbance rejection but required careful
design to mitigate chattering; and the FO-MRAC exhibited strong adaptability to dynamic
changes with the added complexity of reference model design.

Despite the encouraging results obtained, it is important to acknowledge certain limitations of
this work. All evaluations were conducted in a simulated environment, which, while effective
for initial validation, cannot fully capture the nonlinearities, delays, noise, and actuator limita-
tions present in real-world systems. Moreover, the design of fractional-order controllers often
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involves the selection of multiple parameters—such as fractional orders, adaptation gains, and
boundary layers—whose tuning remains nontrivial and problem-dependent. Therefore, future
investigations should aim at automating this tuning process and extending the framework to
experimental setups.

Looking toward future work, the integration of artificial intelligence (AI) and data-driven
control methods presents a highly promising direction. One potential avenue is the adoption of
reinforcement learning (RL), where the robot learns optimal control strategies by interacting
with its environment and improving performance over time. Such methods are particularly
attractive for dynamic and uncertain environments where modeling is difficult or incomplete.
Another direction involves neural network-based adaptive controllers, which can approximate
unknown nonlinear functions in real-time and adjust their structure and parameters on the
fly. These approaches could be used in combination with fractional-order control frameworks,
yielding hybrid controllers that combine the theoretical strength of model-based design with
the adaptability of AI.

Furthermore, the use of online learning and adaptive observers could allow the controller to
identify system changes in real time and reconfigure itself accordingly. This would be especially
valuable in applications where the robot’s physical conditions evolve (e.g., payload variation,
joint wear, or sensor degradation). Integration with vision-based feedback and sensor fusion
would also enhance the system’s autonomy and reliability.
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1. Customer Segments 2. Value Proposition

• Robotics and mechatronics
companies
• Control systems research
laboratories
• Tech startups
• Robotic biomedical sector
• Safety-critical embedded
systems

• Improved precision and
stability through fractional
control
• Automatic adaptation to
external disturbances
• Easy integration with
ROS, Arduino, etc.
• Enhanced energy efficiency
and reduced wear

3. Channels 4. Customer
Relationships

5. Revenue Streams

• Scientific conferences
(IEEE, ICRA, MED)
• Open-source platforms
(GitHub, ROS)
• Scientific publications
• Professional networks and
LinkedIn

• Personalized technical
support
• Co-development with
partners
• Specialized training
• Clear and interactive
documentation

• Licensing of the developed
algorithm
• Consulting services
• Industrial collaborative
projects
• Technological grants or
scholarships

6. Key Resources 7. Key Activities 8. Cost Structure

• Expertise in adaptive and
fractional control
• Prototyping platforms
(ESP32, MATLAB)
• Experimental data
• Academic supervision

• Development of the
D-Delta algorithm
• Validation on real systems
• Embedded integration
(Arduino, microcontrollers)
• Scientific dissemination

• Electronic components for
testing
• Software tools (MATLAB
licenses, etc.)
• Travel expenses for
conferences
• Development, testing, and
documentation time
• Potential patent filing
costs

9. Key Partnerships

• Academic research institu-
tions
• Robotics equipment suppli-
ers
• Industry partners for pilot
testing
• Open-source and scientific
communities
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