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Résumé

Ce projet traite la commande tolérante aux défauts (FTC) pour les systèmes non linéaires en
utilisant une stratégie d’estimation basée sur les observateurs itératifs. Un cadre de commande
complet est développé en combinant la modélisation floue de Takagi-Sugeno avec des observa-
teurs itératifs rapides de type k-étapes pour l’estimation et la compensation en temps réel des
défauts d’actionneurs. Des observateurs centralisés et distribués sont conçus pour des systèmes
mono-agent et multi-agents, avec des garanties de stabilité assurées à l’aide de la théorie de
Lyapunov et des inégalités matricielles linéaires. La méthode est appliquée à des robots dif-
férentiels afin d’assurer le suivi de trajectoire même en présence de défauts. L’architecture de
commande est implémentée sous ROS et testée dans un environnement de simulation robotique
réaliste. Les résultats confirment la fiabilité et la faisabilité pratique de la méthode. Ce travail
contribue à l’évolution des stratégies de commande robustes et adaptatives pour les systèmes
autonomes soumis à des défauts.

Mots-clés : Commande tolérante aux défauts, Observateurs itératifs, Modèles flous de
Takagi-Sugeno, Estimation de défauts d’actionneurs, ROS, Robots différentiels, Systèmes multi
agents, Estimation distribuée

Abstract

This project deals with fault-tolerant control (FTC) for nonlinear systems using an observer-
based estimation strategy. A complete framework is developed by combining Takagi-Sugeno
fuzzy modeling with fast iterative k-step observers for real-time actuator fault estimation and
compensation. Centralized and distributed observers are designed for both single-agent and
multi-agent systems, with stability ensured using Lyapunov theory and Linear Matrix Inequal-
ities. The method is applied to differential drive mobile robots, maintaining trajectory tracking
despite actuator faults. The control architecture is implemented in ROS and tested in a re-
alistic robotic simulation. Results confirm the method’s reliability and practical applicability.
This work advances robust and adaptive control strategies for autonomous systems under fault
conditions.

Keywords : Fault Tolerant Control, Iterative Observers, Takagi-Sugeno Fuzzy Models, Ac-
tuator Fault Estimation, ROS, Differential Drive Robots, Multi Agent systems, distributed
estimation
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General Introduction

Modern control systems are expected to operate with high reliability and stability, even in the
presence of internal faults and external uncertainties. This requirement is particularly critical
in domains such as autonomous vehicles, robotics, and aerospace systems, where failures can
have significant consequences on safety and system performance. As systems become more
complex and interconnected, it is no longer sufficient to rely solely on redundancy or manual
intervention for fault management. This has led to the emergence and development of Fault-
Tolerant Control (FTC), a field dedicated to designing control strategies capable of detecting,
estimating, and compensating for faults in real time.

Observer-based FTC has proven to be a promising and efficient approach, especially when re-
dundancy in hardware is not feasible. By leveraging mathematical models and system outputs,
observers can estimate faults dynamically and enable the controller to take corrective actions
without disrupting system operation. However, when dealing with nonlinear systems, tradi-
tional linear observers fall short due to the inherent complexity and variability of the dynamics
involved. To address this, Takagi-Sugeno (T-S) fuzzy models have been widely adopted. These
models offer a flexible way to represent nonlinear behavior through a convex combination of
linear models, while still allowing for the use of powerful analysis and design tools.

In this work, we propose an FTC method tailored for nonlinear systems modeled by T-S
fuzzy representations. The core idea is to use iterative observers to estimate actuator faults
with high speed and accuracy. These observers can be implemented both in centralized and
distributed architectures, making the method suitable for a wide range of applications including
multi-agent systems. The approach is validated through theoretical analysis, simulations, and
practical implementation in robotic platforms using the Robot Operating System (ROS).

The report is structured as follows:

- Chapter 1 introduces the theoretical foundations of Takagi-Sugeno fuzzy modeling and
stability analysis. It explains how nonlinear systems can be represented using fuzzy rules
and local linear models, and discusses stability criteria using Lyapunov-based methods.

- Chapter 2 presents the concept of fault-tolerant control in the context of T-S fuzzy
systems. It classifies FTC techniques into passive and active approaches and discusses
their integration with fuzzy modeling frameworks. This chapter prepares the ground for
the observer-based strategy developed in the following sections.

- Chapter 3 focuses on the design of iterative k-step observers for fault estimation. The
chapter first addresses the single-agent case, then extends the approach to distributed
multi-agent systems using graph theory and Kronecker products. Observer gain synthesis
conditions are derived via linear matrix inequalities, and simulation results are presented
to validate the estimation performance.

- Chapter 4 applies the proposed FTC method to differential drive mobile robots. It
shows how actuator faults can be effectively estimated and compensated during trajectory
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tracking tasks. The simulation scenarios highlight the effectiveness of the control scheme
in realistic nonlinear dynamics.

- Chapter 5 details the implementation on ROS of the method using the Robot Operating
System. It describes the simulation setup, communication structure, and deployment
process. The results demonstrate the practical feasibility and performance of the proposed
FTC approach in a robotic environment.

From the existing literature, the findings of this work bridges theoretical developments in fault
estimation of nonlinear systems with practical applications in robotics and automation. The
proposed observer-based control scheme offers a fast, lightweight, and reliable solution to the
growing need for autonomy and fault resilience in modern control systems.
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Chapter 1

Generalities on Modeling and Stability
of Fuzzy Models

Introduction

In modern control systems, the stability and robustness of nonlinear models are essential aspects
of system performance. Among the various modeling approaches, Takagi-Sugeno (T-S) fuzzy
models offer an effective framework for representing complex nonlinear systems using a set of
local linear models weighted by membership functions. This chapter explores the fundamental
principles of T-S modeling, stability analysis using Linear Matrix Inequalities (LMIs), and
control synthesis techniques such as Parallel Distributed Compensation (PDC). The objective
is to develop strategies that ensure system stability while maintaining high performance in the
presence of uncertainties and external disturbances.

The chapter is structured as follows: we first address the fuzzy modeling of nonlinear systems,
providing the necessary theoretical background and formulation. Next, we analyze the stability
of T-S systems and discuss stabilization techniques, including the reference tracking problem.
Following this, we introduce the concept of fault diagnosis, outlining key terminologies and
methodologies relevant to this project. Through this structured approach, we aim to provide
a comprehensive understanding of the stability and control of fuzzy systems while considering
fault diagnosis as an integral aspect of robust system design.

1.1 State space representation

Physical processes are often represented by models described in the following form (explicit
state-space representation) ẋ = f(x(t), u(t))

y = h(x(t))
(1.1)

where x represents the state variables describing the internal state of the system, u and y are
the system’s input and output variables, respectively, and f and h represent linear and/or
nonlinear functions.

Controlling complex nonlinear systems is challenging due to modeling difficulties. Simplified
models may lack accuracy, while detailed models can be impractical. The multi-model approach
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offers a balanced alternative by representing system behavior across operating regions [1]. Two
main methods exist: direct construction, which may lose information, and the more common
sector-based nonlinear representation.

1.2 Multi-model approach

The multi-model approach has garnered significant interest since the publication of the works
by Johansen and Foss [2] it consists more precisely, of reducing the complexity of the system
by decomposing its operating space into a finite number of operating zones.

The T-S approach decomposes a nonlinear system into r linear sub-models, each valid in a
specific operating region. As illustrated in Figure 1.1, the global behavior is approximated by
interpolating these local models using activation functions. The union of all subdomains forms
the overall operating domain, enabling a global multi-model representation [3].

Figure 1.1: Principle of the Takagi-Sugeno approach

- Sub-model: It is the model that represents the behavior of the nonlinear system in a
specific operating region.

- Premise variable: Also known as the decision variable z(t), it influences the activation
functions h(t) and may include measurable or unmeasurable internal or external system
variables.

- Activation function: Determines the contribution level of each local sub-model based
on the system’s operating region. It ensures smooth transitions between models and
depends on decision variables.

µi(ξ(t)) = hi(z(t))
n∑

i=1
hi(z(t))

(1.2)

The activation functions can be constructed either from discontinuous derivative functions
(such as triangular or trapezoidal functions) or from continuous derivative functions (such
as Gaussian functions). They are chosen to satisfy the following convex sum properties:


0 ≤ µi(z(t)) ≤ 1
n∑

i=1
µi(z(t)) = 1 (1.3)

Activation functions built from an exponential law are often used for the continuous case.

Multi-model approach 18
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1.3 Fuzzy modeling and Takagi-Sugeno models

Coupled-state multi-models or Takagi-Sugeno (T-S) fuzzy models [4] are also referred to as TS
dynamic fuzzy models. This model is based on the use of a set of fuzzy rules to describe a
global nonlinear system in terms of a set of local linear models interpolated by fuzzy membership
functions.

The TS fuzzy modeling approach effectively describes complex nonlinear systems while reducing
the number of required rules. It also enables systematic stability analysis and control law
synthesis by combining fuzzy logic with classical control theory.

TS fuzzy models consist of fuzzy If-Then rules, where the antecedent represents the operating
conditions, and the consequent is a local linear or affine model that describes the nonlinear
system at that operating point. The ith fuzzy rule is of the form:

If zi is Fi, then:

ẋi(t) = Aix(t) + Biu(t)
yi(t) = Cix(t)

(1.4)

where z(t) is the decision variable, Fi the ith fuzzy set. x(t) ∈ Rn is the state vector, u(t) ∈ Rn

the control vector, Ai ∈ Rn×n the local dynamic matrix, and Bi ∈ Rn×m the input matrix.

We obtain the following expression for ẋ(t):ẋ(t) = ∑r
i=1 µi(z(t))(Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi((t))Cix(t)

(1.5)

where µi(z(t)) is the membership function (or activation function) of the ith fuzzy set.

r is the number of fuzzy sets (i.e., the number of local linear models).

1.3.1 Multi-model structures

A multi-model is a set of sub-models aggregated through an interpolation mechanism that
characterizes the overall dynamic behavior of a system. A multi-model is defined by the number
of its sub-models, their structure, and the choice of activation functions.

In the literature, two main families of multi-models are identified based on the use of the state
vector [5].

1.3.1.1 Decoupled structure

The decoupled structure, or multi-models with decoupled states, are multi-models proposed by
[6] where the sub-models each have an independent state vector figure 1.2.

They are governed by the following state equations:

ẋi(t) = Aixi(t) + Biu(t) (1.6)
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yi(t) = Cixi(t) (1.7)

The state vector will be given by:

ẋ(t) =
r∑

i=1
µi(z(t))xi(t) (1.8)

And the global output will be given by:

y(t) =
r∑

i=1
µi(z(t))Cixi(t) (1.9)

The structure of the decoupled multi-model, in turn, introduces a certain flexibility in the
modeling stage. Indeed, it allows the introduction of sub-models whose state vectors can be of
different dimensions and thus stands out from the classically used multi-model structures.

Figure 1.2: Decoupled multi-model structure

1.3.1.2 Coupled structure

The coupled state multi-model structure, or Takagi-Sugeno fuzzy models, are widely used for
stability analysis, control, or synthesis of fuzzy observers. In this structure, the sub-models
share a common state and are governed by the following equations:

ẋ(t) =
r∑

i=1
µi(z(t)) (Aix(t) + Biu(t)) (1.10)

y(t) =
r∑

i=1
µi(z(t))Cix(t) (1.11)

Fuzzy modeling and Takagi-Sugeno models 20
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Figure 1.3: Coupled multi-model structure

1.3.2 Techniques for Obtaining T-S Multimodels

Many research studies have been dedicated to the modeling of nonlinear systems using a multi-
model approach. Indeed, there is no specific methodology capable of leading to a unique
multi-model representation of a system [7]. In all cases, the development of a multi-model
raises four major issues:

1. The choice of the decision variable z(t) of the system, which allows indexing the activation
functions.

2. The decomposition of the system’s operating space into a finite number of operating
regions.

3. The determination of the structure of the multi-model and the parametric identification
of each sub-model.

4. The choice of the method for obtaining the multi-model.

The real challenge with fuzzy systems is determining how to obtain local linear models. In the
literature, there are three main ways to derive these models.

1.3.2.1 Models Obtained through Identification

Representing a nonlinear system as a multi-model simplifies its identification to estimating local
linear sub-models and activation functions. Parameter estimation is performed by numerical
optimization methods that minimize the error between the estimated output ŷ(t) and the
measured output ym(t).

1.3.2.2 Models Obtained through Linearization

In this case, the analytical form of the nonlinear model of the physical process is available. The
system is linearized around different appropriately chosen operating points.
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We will represent the nonlinear system 1.1 using a multi-model approach, consisting of several
local linear or affine models obtained by linearizing the nonlinear system around an arbitrary
operating point (xi, ui) ∈ Rn × Rm,[8]

ẋm(t) = ∑r
i=1 µi(z(t))(Aixm(t) + Biu(t) + Di)

ym(t) = ∑r
i=1 µi(z(t))(Cixm(t) + Eiu(t) + Ni)

(1.12)

with

Ai = ∂f(x, u)
∂x

∣∣∣∣∣
(x,u)=(xi,ui)

, Bi = ∂f(x, u)
∂u

∣∣∣∣∣
(x,u)=(xi,ui)

(1.13)

Ci = ∂h(x, u)
∂x

∣∣∣∣∣
(x,u)=(xi,ui)

, Ei = ∂h(x, u)
∂u

∣∣∣∣∣
(x,u)=(xi,ui)

(1.14)

Di = f(xi, ui) − Aixi − Biui, Ni = h(xi, ui) − Cixi − Eiui (1.15)

Note that in this case, the number of local models (r) depends on the desired modeling accuracy,
the complexity of the nonlinear system, and the choice of activation function.

1.3.2.3 Models Obtained through Nonlinear Sector

This approach aims to accurately represent the nonlinear system within a compact state variable
space. In this context, it is sometimes challenging to find a global sector for the nonlinear
system.

For this reason, a local nonlinear sector is considered, as illustrated in the figure 1.4.

The advantage of such a method is that it does not introduce approximation errors and reduces
the number of models compared to the linearization method [9].

(a) Global sector (b) Local sector

Figure 1.4: Non-linear sectors
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Consider the continuous nonlinear system :

ẋ = f(x(t)) + g(x(t)) · u(t) (1.16)

where: x(t) ∈ Rn, u(t) ∈ Rm, f(x(t)) ∈ Rp, and g ∈ Rp×m.

Lemma 1.1 [10] Let z(x(t)) be a bounded function from [a, b] to R for all x ∈ [a, b]
with [a, b] ∈ R+. Then there exist two functions F 1(x(t)) and F 2(x(t)) and two scalars
α and β such that:

z(x(t)) = α ∗ F 1(x(t)) + β ∗ F 2(x(t)) (1.17)

with:

F 1(x(t)) + F 2(x(t)) = 1, F 1(x(t)) ≥ 0, F 2(x(t)) ≥ 0 (1.18)

A decomposition of z(x(t)) over [a, b] is given by:β = minx∈[a,b] z(x(t))
α = maxx∈[a,b] z(x(t))

(1.19)

F 1(x(t)) = z(x(t))−β
α−β

F 2(x(t)) = α−z(x(t))
α−β

(1.20)

Under the assumptions of continuity and boundedness of the functions f(x(t)) and g(x(t)) in
model 1.16, with f(0) = 0 and g(0) = 0, they can be rewritten in the following form:

f(x(t)) = ∑r
i=1 µi(z(t))Aix(t)

g(x(t)) = ∑r
i=1 µi(z(t))Cix(t)

(1.21)

The model 1.17 becomes:

ẋ(t) = ∑r
i=1 µi(z(t))(Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi(z(t))(Cix(t) + Diu(t))

(1.22)

In this case, the obtained multi-model representation exactly matches the nonlinear model over
the considered compact interval.

1.3.2.4 Example 1.1

We consider the following 2-dimensional nonlinear model [11] :

ẋ(t) = f(x(t)) =

ẋ1(t) = sin(x1(t))
ẋ2(t) = −x3

2(t)
(1.23)

This model can be rewritten as follows:
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ẋ1(t)
ẋ2(t)

 =
 sin(x1(t))

x1(t) 0
0 −x2

2(t)

 x1(t)
x2(t)

 (1.24)

The equation 1.24 presents two nonlinearities denoted as z1(x1(t)) and z2(x2(t)) respectively,
such that:

z1(x1(t)) = sin(x1(t))
x1(t)

, z2(x2(t)) = −x2
2(t)

We observe that the nonlinear term z1(x1(t)) is bounded ∀x(t) ∈ Rn, i.e.,

z1(x1(t)) ∈
[

sin(x10)
x10

, 1
]

(where sin(x10)
x10

= min(sin(x1)/x1) ≈ −0.217) (1.25)

while the term

z2(x2(t)) can only be bounded on a compact set defined by x2(t) ∈ [−a, a], with a > 0.
(1.26)

We can transform the nonlinear terms z1(t) and z2(t) ∀x(t) ∈ Rn×[−a, a], a > 0, such that:

z1(x1(t)) = F 1
1 (x1(t)) · 1 + F 2

1 (x1(t)) · sin(x10)
x10

z2(x2(t)) = F 1
2 (x2(t)) · 0 − F 2

2 (x2(t)) · a2

The fuzzy sets are given by:

F 1
1 (x1(t)) = (sin(x1(t))/x1(t)) − (sin(x10)/x10)

1 − (sin(x10)/x10)
, F 2

1 (x1(t)) = 1 − (sin(x1(t))/x1(t))
1 − (sin(x10)/x10)

F 1
2 (x2(t)) = 1 − x2(t)2

a2 , F 2
2 (x2(t)) = x2(t)2

a2

We then obtain the corresponding TS model from the four possible combinations of the bounds
of the nonlinear terms z1(x(t)) and z2(x(t)), described by the following matrices fi:

1. If x1(t) is F 1
1 (x1(t)) and x2(t) is F 1

2 (x2(t)) then:ẋ1(t)
ẋ2(t)

 =
1 0
0 a2

 x1(t)
x2(t)

 (1.27)

2. If x1(t) is F 1
1 (x1(t)) and x2(t) is F 2

2 (x2(t)) then:ẋ1(t)
ẋ2(t)

 =
1 0
0 0

 x1(t)
x2(t)

 (1.28)
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3. If x1(t) is F 2
1 (x1(t)) and x2(t) is F 2

2 (x2(t)) then:ẋ1(t)
ẋ2(t)

 =
 sin(x10 )

x10
0

0 a2

 x1(t)
x2(t)

 (1.29)

4. If x1(t) is F 2
1 (x1(t)) and x2(t) is F 2

2 (x2(t)) then:ẋ1(t)
ẋ2(t)

 =
 sin(x10 )

x10
0

0 0

 x1(t)
x2(t)

 (1.30)

The inference of the fuzzy system is given by:

ẋ(t) =
4∑

i=1
µi(z(t))Aix(t) (1.31)

where


µ1(z(t)) = F 1

1 (z1(t)) × F 1
2 (z2(t))

µ2(z(t)) = F 2
1 (z1(t)) × F 2

2 (z2(t))
µ3(z(t)) = F 2

1 (z1(t)) × F 1
2 (z2(t))

µ4(z(t)) = F 2
1 (z1(t)) × F 2

2 (z2(t))

(1.32)

This transformation leads to a certain number of local LTI (Linear Time Invariant) models
depending on the number of nonlinearities contained in the function f(t). In general, if f(t)
has k nonlinear terms, then the TS model consists of at most 2k local models.

It should also be noted that the adopted transformation strongly influences the analysis results
since the matrices of the local models directly depend on it according to predefined objectives.

From this example, we have shown that the number of rules in an exact TS model increases
based on the nonlinearities considered in the nonlinear model, which leads to greater conserva-
tiveness in the results.

The results of the simulation of the fuzzy and real models for x(0) =
1
1

 are shown in 1.5a

and 1.5b. It is evident that the two models are identical, meaning that the fuzzy model can
exactly represent the original system in the pre-specified domains.

(a) x1NL and x1T S (b) x2NL and x2T S

Figure 1.5: Simulation of the real system and the fuzzy system example 1.1
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1.3.3 Criteria for choosing premise variables

The selection of premise variables plays a key role in ensuring stability [12], controllability, and
observability, without affecting the resolution of LMIs due to the convexity of interpolation
functions. As shown in [13] and [14], the choice influences the number of sub-models and the
global model structure, with methods proposed to reduce LMI complexity and computation
time. However, as noted in [14], the complexity of LMI conditions increases with the number
of state variables used as premise variables.

The four guiding principles mentioned in [13] are:

- The control matrix of the quasi-LPV system must not be a null matrix. This is a necessary
condition for controlling the system.

- A quasi-LPV form with a minimal number of premise variables is preferable.

- A T-S model with a minimal number of submodels should be chosen.

- The premise variable vector should depend on a minimal number of state variables [14].

1.4 Stability of Takagi-Sugeno fuzzy models

Our objective is to ensure the stability of Takagi-Sugeno fuzzy systems, and we have prioritized
the use of quadratic stabilization of the system through Lyapunov’s second method [13]. This
stability is guaranteed if the conditions, formulated as a set of Linear Matrix Inequalities LMI
from the following theorems, are satisfied. We consider the following fuzzy TS system:

ẋ(t) =
r∑

i=1
µi(z(t))Aix(t) (1.33)

Consider the classical quadratic Lyapunov function given by:

V (x(t)) = x(t)T Px(t) (1.34)

Theorem 1. [10] The TS fuzzy multi-model described by 1.33 is asymptotically stable if
there exists a positive definite matrix P such that the following LMIs are satisfied:

AT
i P + PAi < 0, i = 1, . . . , r (1.35)

We draw the reader’s attention to the fact that numerous examples show that a T.S fuzzy
system may contain unstable sub-models while still being stable as a whole, and vice versa.
The stability conditions in Theorem 1 are conservative since the premise variables are not taken
into account. The conservatism issue of these stability conditions is mitigated at the cost of a
significant number of LMIs.
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1.5 Stabilization of a T-S type multi-model

To ensure the stability of a T-S model, we rely on the synthesis of a stabilizing control law.
To achieve this, drawing inspiration from stability analysis results of dynamic systems [7], we
derive state-feedback control synthesis conditions. The conditions on the control gains obtained
are not necessarily formulated directly as an LMI problem. Indeed, in some cases, nonlinear
matrix inequalities arise, requiring a set of matrix transformations to linearize them. In this
context, several fuzzy control laws have been proposed in the literature. Among the most
commonly used is the state-feedback control law, known as Parallel Distributed Compensation
(PDC).

1.5.1 Stabilizing control by the PDC approach with state feedback

The main idea behind the design of the PDC controller is primarily based on stability analysis
using a quadratic Lyapunov function. The concept is to assign a control rule to each controller
based on the corresponding rule of the T-S fuzzy model, ensuring compensation of the model.
As a result, a fuzzy controller is obtained, which also shares the same fuzzy set as the fuzzy
model. Figure 1.6 illustrates the operating principle of the PDC control strategy [10].

Figure 1.6: Principle of the PDC controller

Let the continuous T-S model 1.5 in closed-loop.

The PDC controller rules can be written as follows: Rule i: If z1(t) and F 1
i and ... and zp(t) and

F p
i Then u(t) = −Kix(t) i = 1, . . . , r, which is a state feedback controller in the consequence

part. The fuzzy controller is represented by:

u(t) = −
r∑

i=1
µi(z(t))Kix(t) (1.36)

where Ki : i = 1, . . . , r is the local feedback gain relative to the i-th model, with the same
µi(z(t)) as those of the fuzzy model .
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By combining 1.22 and 1.36, the representation of the global closed-loop model with a PDC
control law is given by:

ẋ(t) =
r∑

i=1

r∑
j=1

µi(z(t))µj(z(t))(Ai − BiKj)x(t) (1.37)

We can write 1.37 as follows:

ẋ(t) =
r∑

i=1

r∑
j=1

µi(z(t))µjGijx(t) (1.38)

With :
Gij = Ai − BiKj

Theorem 2. [10] The continuous fuzzy model 1.33 is globally asymptotically stable via
the PDC control law 1.36 if there exists a common positive definite matrix P = P T > 0
that satisfies the following matrix inequalities:

GT
iiP + PGii < 0, ∀i = 1, . . . , r (1.39)

(
Gij + Gji

2

)T

P + P
(

Gij + Gji

2

)
≤ 0, i < j ≤ r (1.40)

Consider the linear matrix inequalities (LMIs) with variables P and Ki. To make the inequali-
ties linear, we define a new variable X = P −1 and use Mi = KiX. The LMIs are then expressed
in terms of X and Mi:


X > 0
XAT

i + AiX − BiMi − MT
i BT

i < 0 ∀i = 1, . . . , r

X(Ai + Aj)T + (Ai + Aj)X − (BiMj + BjMi) − (BiMj + BjMi)T < 0 i < j ≤ r

(1.41)

The state feedback gains are given by:

Ki = MiX
−1 i = 1, . . . , r (1.42)

1.5.1.1 Example 1.2

We will consider an example to apply the PDC method, aiming at the synthesis of a stabilizing
state feedback control law 1.36.

Let the nonlinear system be represented by a Takagi-Sugeno fuzzy multi-model, defined as
follows [15]:

ẋ(t) =
2∑

i=1
µi(z(t)) (Aix(t) + Biu(t))

Such that :
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A1 =


0 0 1 0
0 0 0 1

−109.8 100 0 0
100 −100 0 0

 , A2 =


0 0 1 0
0 0 0 1
0 100 0 0

100 −100 0 0

 B1 = B2 = B =


0
0
0
1


The initial vector x0 at t = 0 is given by: x0 = [1, 3, 2, −1]T :

The activation functions µi, i = 1, 2 are given by:µ1(x) = 1−tanh(x1)
2

µ2(x) = 1 − µ1(x)

Before applying the PDC method, the system was unstable. We first verify its controllability.
The controllability matrices associated with the pairs (A1, B1) and (A2, B2) both have full rank
(rank = n = 4).The resolution of 1.41 give us the gains of state feedback :

K1 = 104 ×
[
1.5515 2.2845 0.2908 0.0613

]
; K2 = 104 ×

[
1.7714 2.5925 0.3320 0.0697

]
To make the system dynamics faster, we can impose poles in a specific region. For example,
we can constrain them to the left half-plane below a given constant, such as α = 40, to ensure
a desired performance.

K1 = 105 ×
[
8.5963 0.6613 0.4122 0.0040

]
; K2 = 105 ×

[
7.8324 0.6146 0.3791 0.0038

]
(1.43)

Figure 1.7 illustrates the result of the applied control. We observe that the system stabilization
is well established. The graph shows that, without pole placement, the system states stabilize
around the origin after a transient period of approximately 0.6 seconds 1.7a. However, when
poles are placed in the previously defined region, the convergence to the origin is significantly
faster, occurring within 0.2 seconds 1.7b.

This result validates the proper functioning of the implemented PDC controller, as it success-
fully achieves the regulation and stabilization objectives. We can conclude that the tuning of
the PDC gains is satisfactory, ensuring both stabilization and the desired level of precision.

(a) Without pole imposition (b) With pole imposition

Figure 1.7: Temporal evolution of the states of the closed-loop system with a PDC control
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1.6 Tracking trajectories of T-S model :

Most research on multi-model systems has focused on stabilization strategies, ensuring local or
global stability. However, few studies have addressed reference or trajectory tracking problems,
an approach based on a combination of sliding mode control and PDC control for TS models
has been proposed by [7],[10] and [16]

The trajectory tracking problem for a nonlinear system modeled by the T-S model (1.5) involves
designing a control law u(t) that enables the system to follow a desired reference trajectory.
This problem is typically reformulated as a stabilization problem. The tracking error is defined
as the difference between the state vector of the system and that of the reference model, as
follows: e(t) = x(t) − xd(t)

The dynamics of the tracking error is given by:

ė(t) = ˙x(t) − ẋd(t) (1.44)

By replacing 1.5 into 1.44 and adding the term ∑r
i=1 µi(z(t))Ai (xd(t) − xd(t)) .

Equation 1.44 becomes:

ė(t) =
r∑

i=1
µi(z) (Aix̃(t) + Biu(t) + Aixd(t)) − ẋd(t) (1.45)

In equation 1.45, we introduce a new variable τ(t) satisfying the following relation:

r∑
i=1

µi(z(t))Biτ(t) =
r∑

i=1
µi(z(t))Biu(t) +

r∑
i=1

µi(z(t))Aixd(t) − ẋd(t) (1.46)

where τ(t) is a new fuzzy controller that will be synthesized based on the PDC technique. Using
the last equation, the derivative of the tracking error 1.45 can be written as follows:

ė(t) =
r∑

i=1
µi(z(t)) (Aie(t) + Biτ(t)) (1.47)

The output of the fuzzy controller is determined by the following summation:

τ(t) = −
r∑

i=1
µi(z(t))Kie(t) (1.48)

We substitute into equation 1.45 and obtain:

ė(t) =
r∑

i=1

r∑
j=1

µi(z(t))µj(z(t))Gije(t) (1.49)

with:

Gij = Ai − BiKj (1.50)
The problem thus reduces to a stabilization problem, where the goal is to compute the gains
Ki to stabilize e(t) at the origin. The LMIs are obtained in a similar manner to those in the
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previous section concerning stabilization.
If we manage to stabilize e(t) = x(t) − xd(t) at the origin, then the state x(t) tends to follow
the trajectory of the reference model xd(t).

Remark : The stability conditions for trajectory tracking are the same as those for the
stabilization problem of T-S fuzzy models using a PDC-type control law. This means
that the state feedback gains Ki can be directly obtained by solving the stabilization
problem. However, to ensure accurate tracking, it is necessary to impose specific pole
placements.

1.6.1 Nonlinear Control Law :

There are two different methods for determining the control law: the first one proposed by [10],
and the second by [7]. In the following, we will detail the control law using both methods.
. 1st method : To determine the desired variables xd(t) and the control law u(t), we use
equation 1.46:

r∑
i=1

µi(z(t))Bi(u(t) − τ(t)) = −
r∑

i=1
µi(z(t))Aixd(t) + ẋd(t). (1.51)

By defining:

A(x) =
r∑

i=1
µi(z(t))Ai, g(x) =

r∑
i=1

µi(z(t))Bi (1.52)

Equation 1.51 can be rewritten in the following form:

g(x)(u(t) − τ(t)) = −A(x)xd(t) + ẋd(t). (1.53)

The existence of the control u(t) depends on the form of g(x). The input matrix g(x) is assumed
to be full column rank.

g(x) =


0n−m

...
B(x)

 , A(x) =


An−m

...
Am

 , xd(x) =


xdn−m

...
xdm

 (1.54)

Equation 1.53 can be rewritten in matrix form as:


0n−m

...
B(x)

 (u − τ) =


ẋdn−m − A(x)n−mxd(t)

...
ẋdm − Am(x)xd(t)

 (1.55)

From the second equation of 1.55, the nonlinear control law is given by:

u(t) = −
r∑

i=1
µi(z(t))Kix̃(t) + B−1(x)(ẋdm(t) − Am(x)xd(t)). (1.56)
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The variables xd(t) can be easily extracted from the first equation of 1.55.
. 2nd method : There is also another method, presented as follows.
We consider this reference tracking problem by designing a control law that ensures both
stabilization and good reference tracking.
To achieve this objective, we have adopted an improved PDC control law :

The classic PDC control law is given by:

uP DC(t) =
r∑

j=1
µj(x(t)) (−Kjx(t)) (1.57)

And a fuzzy pre-compensator

upc(t) =
r∑

j=1
µj(x(t)) (Pjyref (t)) (1.58)

This pre-compensator is an approximation obtained by computing the gain Pj for each sub-
model while neglecting the interactions between them. Thus, Pj is computed exactly as in a
linear system.

The proposed improved PDC control law is given as follows:

u(t) =
r∑

j=1
µj(x(t)) (−Kjx(t) + Pjyref (t)) (1.59)

where Kj are the gains of the PDC law, computed by solving the LMIs 1.41

The local gains Pj of the pre-compensator are computed using the following formula :

Pj =
(
−Cj(Aj − BKj)−1Bj

)−1
(1.60)

Finally, yref (t) is the desired reference.

1.6.2 Example :

In this example, we will consider the same system analyzed in Example (1.2), with pole place-
ment and trajectory tracking using both methods.
With :

A(x) =
r∑

i=1
µi(z(t))Ai =


0 0 1 0
0 0 0 1

−109.8µ1 100 0 0
100 −100 0 0



g(x) =
r∑

i=1
µi(z(t))Bi =


0
0
0

µ1 + µ2

 =


0
0
0
1

 =⇒ B = 1
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xd =


x1d

x2d

x3d

x4d


u1 = −µ1 ∗ K1 ∗ e − µ2 ∗ K2 ∗ e + ẋdm − Am ∗ xd

u2 = µ1 (−K1x + P1yd) + µ2 (−K2x + P2yd)

From the figure 1.8, we can observe that both methods are capable of tracking a reference.

In the figure 1.8a, we used first method [10] by applying Control Law 1.56.

In the figure 1.8b we used second method [7] by applying Control Law 1.59.
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(a) Tracking using 1.56
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(b) Tracking using 1.59

Figure 1.8: Tracking reference

However, it is important to note that the second method exhibits a shift in the case of high-
frequency periodic reference signals.

Conclusion

In this chapter, we studied the stability of Takagi-Sugeno fuzzy systems using a quadratic
Lyapunov function and designed a PDC-based control law to ensure system stabilization. The
stability conditions were formulated as LMIs and solved using convex optimization tools. While
the conventional PDC approach guarantees stability, it does not inherently ensure reference
tracking. To overcome this limitation, we introduced a fuzzy pre-compensator that improves
both stability and tracking performance. The results demonstrate the effectiveness of this
approach in enhancing the robustness of fuzzy control systems. Future work could focus on op-
timizing the pre-compensator design and exploring adaptive strategies to further refine system
performance.
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Chapter 2

Fault tolerant control for T-S systems

Introduction

Faults in actuators, sensors, or internal components are common in real-world control systems
and can lead to performance degradation or instability. Fault-Tolerant Control (FTC) aims
to maintain acceptable system behavior despite such faults, either by designing robust control
laws (passive approach) or by detecting and compensating for faults in real time.

In this chapter, we focus on observer-based FTC strategies for nonlinear systems represented by
Takagi-Sugeno (T-S) models. After reviewing the classification of FTC techniques, we present
the synthesis of observers under measurable premise variables (MPV), including Proportional-
Integral (PI) and Proportional Multi-Integral (PMI) observers. These observers enable both
state estimation and fault reconstruction, allowing for real-time compensation of constant and
time-varying actuator faults.

2.1 Generalities of Fault-Tolerant Control

In most practical engineering systems, sensor, actuator, and component faults are inevitable
events that may occur at any time. Once faults appear, the control system may experience
performance degradation and even instability. Therefore, it is crucial to study Fault-Tolerant
Control (FTC) and its related challenges [17].

Since its introduction in 1971, the goal has been to enhance the safety of modern industrial
technologies by maintaining system stability and ensuring acceptable control performance in
the presence of failures. With FTC, the impact of faults can be mitigated without halting the
production process [18].

2.2 Classification of fault-tolerant control techniques

2.2.0.1 Classification of Fault-Tolerant Control FTC

FTC has been classified in references [19, 18, 20] into two approaches: Passive FTC (PFTC)
and Active FTC (AFTC). This classification is based on the design structure, the mathematical
method used, the control performance, and the severity of the fault.
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As shown in Figure 2.1, the active approach involves system reconfiguration or fault accommo-
dation, whereas the passive approach relies on robust control.

Figure 2.1: Classification of FTC techniques

2.2.1 Passive approach

The passive approach uses robust control techniques, such as H∞ and sliding mode control, to
handle faults treated as disturbances. It requires no fault detection or control reconfiguration
but offers limited tolerance to small-magnitude faults.

Figure 2.2: Passive FTC

2.2.2 Active approach

AFTC methods are more prevalent in the literature than passive methods due to their superior
performance and ability to handle a wide range of faults. AFTC methods react proactively
by reconfiguring the control law to maintain system stability and performance, even in the
presence of unexpected faults. This process requires a Fault Detection and Isolation (FDI)
module and a reconfiguration mechanism.

Figure 2.3: Active FTC
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Active techniques are generally classified into three types based on their mechanism of ac-
tion on the system and the type of fault that occurs: fault accommodation, control system
reconfiguration, and control system restructuring.

- Fault Accommodation

- System Reconfiguration

- Restructuring

2.2.3 Stabilization by T-S observers

2.2.3.1 Non-linear observers

The application of nonlinear observers to Takagi-Sugeno (T-S) systems primarily aims at state
estimation in complex systems where the dynamics can be modeled as weighted linear sub-
models with nonlinear functions [12]. Here are some key points to consider:

1. Diversity of approaches : Various methods have been developed to estimate the states of
nonlinear systems, including the extended Kalman filter, high-gain observers.

2. Unknown input observers : These have been designed for bilinear systems and systems
with Lipchitz-type nonlinearity.

3. Complexity of multi-model T-S systems : When the structure of the T-S model relies on
Non-Measurable Premise Variables (NMPV), state estimation becomes more challenging.

4. Extensions and improvements : Recent studies have enhanced the robustness of T-S
observers by proposing methods that decouple certain unknown inputs and minimize the
effect of uncertainties on estimation errors.

2.2.3.2 T-S observers with MPV

The T-S observer with MPV has a T-S structure and uses the same state representation as a
Luenberger-type observer. Its state representation is given by:

 ˙̂x(t) = ∑N
i=1 µi(z)

(
Aix̂(t) + Biu(t) + Li

(
y(t) − ŷ(t)

))
ŷ(t) = Cx̂(t)

(2.1)

where x̂(t) represents the estimated state vector. To determine the gains Li of the T-S observers
(2.1), a stability study of the system generating the state estimation error must be carried out.

In order to improve the temporal performance of the diagnosis of a faulty engine, a pole place-
ment observer was proposed in [18]. A stability study using Lyapunov’s theory and conditions
formulated by Linear Matrix Inequalities (LMIs) was carried out.

The synthesis of the observer then involves calculating the gain matrix L. The state estimation
error is given by:
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e(t) = x(t) − x̂(t) (2.2)

By differentiating, we obtain:
ė(t) = ẋ(t) − ˙̂x(t) (2.3)

By substituting the expressions for ẋ and ˙̂x, we have:

ė(t) = Aix(t) + Biu(t) − Aix̂(t) − Biu(t) − Li

(
y(t) − ŷ(t)

)
(2.4)

ė(t) = Ai(x(t) − x̂(t)) − LiCj(x(t) − x̂(t)) (2.5)

ė(t) = (Ai − LiCj)e(t) (2.6)
It is noted that all pairs (Ai, Ci) must be observable.

Theorem 3. [7] The estimation error described by equation (2.6) is asymptotically stable
if there exists a common positive definite matrix P such that the following conditions are
satisfied:

GT
iiP + PGii < 0 for i ∈ {1, 2, . . . , r}(

Gij + Gji

2

)T

P + P
(

Gij + Gji

2

)
≤ 0 for i < j ≤ r

(2.7)

Gij = Ai − WiCj

The observer gains are obtained from the following equation:

Li = P −1Wi

2.2.3.3 T-S observers with NMPV

T-S observers based on NMPV have been proposed in [14] and [21]. The state representation
of a T-S observer with NMPV is given as follows:

 ˙̂x(t) = ∑N
i=1 µi(ẑ)

(
Aix̂(t) + Biu(t) + Li

(
y(t) − ŷ(t)

))
ŷ(t) = Cx̂(t)

(2.8)

When the premise variables are unknown, their factorization becomes impossible, and the
dynamics of the state estimation error are written as follows:

ė(t) =
N∑

i=1
µi(z) (Aix(t) + Biu(t)) −

N∑
i=1

µi(ẑ) (Aix̂(t) + Biu(t) + Lie(t)) (2.9)

In our case, we will work with measurable premise variables to simplify the implementation and
facilitate result validation for the iterative observer. Choosing measurable premise variables
allows us to avoid the complexity associated with estimating these variables in real-time, which
can introduce additional uncertainties and degrade observer performance.
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2.3 Fault-tolerant control actuators case with MPV

In this section, the premise variables are assumed to be measurable [22]. The fault-tolerant
control strategy is studied for two types of observers: the first concerns the Proportional-Integral
(PI) observer, and the second focuses on the Proportional Multi-Integral (PMI) observer.

Consider the fault-free system described by the following TS model:

ẋ(t) = ∑r
i=1 µi(x(t))

(
Aix(t) + Biu(t)

)
y(t) = ∑r

i=1 µi(x(t))
(
Cix(t) + Diu(t)

) (2.10)

Where:

- x(t) ∈ Rn: State vector,

- u(t) ∈ Rm: Input vector,

- y(t) ∈ Rp: Output vector.

The matrices Ai, Bi, Ci, and Di are constants with appropriate dimensions. The functions
µi(x(t)) represent activation functions dependent on the system’s state. It is assumed that the
state is fully measurable.

The system affected by actuator faults is described as follows:

ẋ(t) = ∑r
i=1 µi(x(t)) (Aix(t) + Bi (u(t) + f(t)))

y(t) = ∑r
i=1 µi(x(t)) (Cix(t) + Di (u(t) + f(t)))

(2.11)

where f(t) ∈ Rnf is the fault vector.

The goal is to design an FTC law such that the state x(t) of the faulty system (3.1) converges
to the state of the fault-free system (3.1). The proposed FTC law is given as:

u(t) = −
r∑

i=1
µi(x(t))Kix̂(t) − f̂(t) (2.12)

The matrices Ki are determined to ensure the stability of the closed-loop system.

The control law 1.36 requires the estimation of the fault vector f(t). This estimation is obtained
using a PI observer that simultaneously estimates the state of the system and the fault vector.

2.3.1 PI observer

The structure of the PI observer for system (3.1) is given by [22]:


˙̂x(t) = ∑r

i=1 µi

(
x(t)

)(
Aix̂(t) + Bi

(
u(t) + f̂(t)

)
+ LP i

(
y(t) − ŷ(t)

))
ŷ(t) = ∑r

i=1 µi

(
x(t)

)(
Cix̂(t) + Di

(
u(t) + f̂(t)

))
f̂(t) = ∑r

i=1 µi

(
x(t)

)
LIi

(
y(t) − ŷ(t)

) (2.13)
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where LP i represents the gains for the proportional actions and LIi for the integral actions of
the observer (2.13).

Assumption 1 : Throughout this section, the fault f(t) is assumed to be constant. In other
words, the derivative of f(t) is zero:

ḟ(t) = 0 (2.14)
The state estimation error ex(t) and fault estimation error ef (t) are defined as:

ex(t) = x(t) − x̂(t)
ef (t) = f(t) − f̂(t)

(2.15)

The output error between the faulty system (3.1) and the observer (2.13) is given by:

y(t) − ŷ(t) =
r∑

i=1
µi(x(t)) (Ciex(t) + Dief (t)) (2.16)

Using equations (3.1) and (2.13), and considering Assumption 1, the dynamics of the state
estimation error and fault estimation error are given by:

ėx(t) = ∑r
i=1

∑r
j=1 µi(x(t))µj(x(t)) ((Ai − LP iCj)ex(t) + (Bi − LP iDj)ef (t))

ėf (t) = ∑r
i=1

∑r
j=1 µi(x(t))µj(x(t)) (−LT iCjex(t) − LT iDjef (t))

(2.17)

The closed-loop system is obtained by applying control law (2.12) to the model (3.1). It is
expressed as follows:

ẋ(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t)) (Gijx(t) + BiKjex(t) + Bief (t)) (2.18)

With:

Gij = Ai − BiKj (2.19)

From the dynamics (2.17), we introduce the following augmented error dynamics:

ė(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(z(t))Fij ē(t) (2.20)

where:

Fij =
(
Āi − L̄iC̄j

)
(2.21)

and:

Āi =
Ai Bi

0 0

 , L̄i =
Lpi

Lli

 , C̄j =
[
Cj Dj

]
, ē(t) =

ex(t)
ef (t)

 (2.22)
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The closed-loop system (2.18) is also rewritten in terms of the augmented estimation error ē(t).
Thus, the system (2.18) becomes:

ẋ(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t))
(
Gijx(t) + BiK̄j ē(t)

)
(2.23)

with:

K̄j =
[
Kj I

]
(2.24)

The augmented system can be written by concatenating the augmented estimation error ē(t)
and the state x(t), as follows:

x̃(t) =
x(t)

ē(t)

 (2.25)

The dynamics of the augmented system are expressed as:

˙̃x(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t))G̃ijx̃(t) (2.26)

where:

G̃ij =
Gij BiK̄j

0 Fij


In this section, the main objective is to calculate the gains Ki and L̄i, ensuring the asymp-
totic stability of the augmented system (2.26) while guaranteeing fault compensation for the
actuators. The stability analysis of system (2.26) can be ensured using the separation principle.

2.3.1.1 Separation of Observer and Controller Design:

According to the classification proposed in [23], [7] and many other articles, when the same
measurable premise variable is used for both the T-S fuzzy model and the fuzzy observer, the
controller and observer design procedures can be carried out independently. This configura-
tion corresponds to the case where the scheduling variable used in the fuzzy rules, is directly
accessible through sensors (e.g., input or output variables).

Under these conditions, the estimation error dynamics become independent of the system states,
and the stability of the augmented system (plant + observer) can be established using separate
LMI conditions for the observer and the controller. Consequently, the observer gains Li and the
controller gains Ki can be computed separately without coupling constraints, which significantly
simplifies the design process.

This property of decoupling, known as the separation principle, does not necessarily hold when
the premise variables differ in nature, in which case the joint design must consider their inter-
dependence.
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2.3.1.2 Observer’s poles placement

In the design of observers, we must take into account the observer’s dynamics relative to the
system dynamics to ensure that the observer’s dynamics are faster than those of the system
[24]. To satisfy this condition, we will carefully place the observer poles.

For this purpose, we consider a region of the complex plane bounded by the vertical line with
the abscissa −α, where α > 0. To impose the desired pole placement, we must ensure that the
following LMI condition is satisfied:

(Ai − LiCj)T P + P (Ai − LiCj) + 2αP < 0 (2.27)

2.3.1.3 Example 2.1 :

To verify the effectiveness of the proposed FTC approach, we consider the T-S model affected
by actuator faults as follows:

ẋ(t) = ∑2
i=1 µi(x(t)) (Aix(t) + Bi (u(t) + f(t)))

y(t) = ∑2
i=1 µi(x(t))Cix(t)

(2.28)

with:

A1 =


−2 1 1
1 3 0
2 1 −8

 , A2 =


−3 2 −2
5 3 0
1 2 −4

 , B1 = B2 =


0 0
1 0
0 1

 , C1 = C2 =
1 1 1
1 0 1



By placing the observer poles in the left half-plane and setting α = 2 to ensure faster con-
vergence of the observation error, the state vector is initialized as [1 2 3] and by performing
the calculation using the separation principle, we obtain the gains as follows: By injecting a
constant fault (unit step):

f1 =

1, 5 < t < 10
0, otherwise

f2 =

−1, 15 < t < 20
0, otherwise

The activation functions are defined as:µ1(x) = 1−tanh(x1)
2

µ2(x) = 1 − µ1(x)
The gains are as follow :

K1 =
 3.8772 2.7234 5.7092
12.0129 −6.7592 −7.4140

 K2 =
15.5072 1.1059 42.7296
32.4814 −47.1381 −2.8722



L̄1 =



−43.3569 −0.7811
81.7958 −45.7333

−23.8117 78.7569
574.4190 −178.4007
−15.0153 390.2877


L̄2 = 103 ×



−0.0720 0.1709
−0.0308 −0.1157
0.3036 −0.3357
0.3185 −1.4543
1.6045 −1.9478


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Result analysis :

The dynamics of the observation error in figure (2.5) can be adjusted either for state estimation
or fault estimation by appropriately placing the poles in specific regions. This approach is
particularly useful for high-frequency faults; however, it involves trade-offs, especially regarding
overshoot.

It is observed that fault estimation is influenced by other input disturbances as shown in
figure (2.4) . Additionally, the estimation error rapidly converges to zero, demonstrating the
effectiveness of the PI observer in estimating constant faults.

(a) f1 and f̂1 (b) f2 and f̂2

Figure 2.4: Faults estimation for PI observer

By initializing the estimated state vector with values close to the actual ones, we obtain the
following estimation error.

Figure 2.5: Estimation error for PI observer

While the PI observer is effective for constant faults, its performance may need to be adapted
for time-varying faults using more advanced observer designs (e.g., adaptive or sliding mode
observers).
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2.3.2 PMI observer

The structure of the PMI observer for estimating states and faults affecting the system (3.1) is
given by [22]:

˙̂x(t) = ∑r
i=1 µi(x(t))

(
Aix̂(t) + Bi

(
u(t) + f̂(t)

)
+ LP i (y(t) − ŷ(t))

)
ŷ(t) = ∑r

i=1 µi(x(t))
(
Cix̂(t) + Di

(
u(t) + f̂(t)

))
˙̂

f1(t) = ∑r
i=1 µi(x(t))

(
f̂1(t) + L1i (y(t) − ŷ(t))

)
˙̂

fj(t) = ∑r
i=1 µi(x(t))

(
f̂j+1(t) + Lji (y(t) − ŷ(t))

)
, j = 1, . . . , q − 1

(2.29)

The proportional and integral gains of the observer are represented as LP i for the proportional
terms, and LIi and Lj

Ii for the integral terms of the observer 2.29.

Hypothesis 2: Throughout this section, the fault f(t) is assumed to be time-varying, and its
q-th derivative is zero:

f (q)(t) = 0 (2.30)

Considering f (q)(t) = fq(t), the successive derivatives of f(t) can be expressed in state-space
form as follows:



ḟ(t)
ḟ1(t)

...
ḟq−1(t)

 =



f1(t)
f2(t)

...
fq(t)

 (2.31)

Figure 2.6 illustrates the structure of the observer. It shows that the estimation of unknown
inputs involves estimating its first q − 1 derivatives through q − 1 integral actions [21], hence
the name Multi-Integral.

Figure 2.6: Principle of the PMI observer
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From equation (2.31), considering equation (2.30), the system (3.1) can be represented in the
following augmented form:

 ˙̄x(t) = ∑r
i=1 µi(x(t))

(
Āix̄(t) + B̄iu(t)

)
y(t) = ∑r

i=1 µi(x(t))
(
C̄ix̄(t) + Diu(t)

) (2.32)

where:

x̄(t) =



x(t)
f(t)
f1(t)

...
fq−1(t)


, Āi =



Ai Bi 0 · · · 0
0 0 Inf

· · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 · · · Inf


, B̄i =



Bi

0
0
...
0


, C̄i =

[
Ci Di 0 · · · 0

]

The PMI observer (equation 2.29) can also be expressed in the augmented form as:


˙̄̂x(t) = ∑r

i=1 µi(x(t))
(
Āi

ˆ̄x(t) + B̄iu(t) + L̄i (y(t) − ŷ(t))
)

ŷ(t) = ∑r
i=1 µi(x(t))

(
C̄i

ˆ̄x(t) + Diu(t)
) (2.33)

With :

ˆ̄X(t) =



x̂(t)
f̂(t)
f̂1(t)

...
f̂q−1(t)


, L̄i =



LP i

L1i

L1
1i
...

Lq−2
1i

Lq−1
1i


The augmented estimation error is defined as:

ē(t) = x̄(t) − ˆ̄x(t) (2.34)

The output error between the system (2.32) and the observer (2.33) is given by:

y(t) − ŷ(t) =
r∑

i=1
µi(x(t))C̄iē(t) (2.35)

Using equations (2.32), (2.33), and (2.34), the dynamics of the augmented estimation error can
be expressed as:

˙̄e(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t))Fij ē(t) (2.36)
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where:
Fij =

(
Āi − L̄iC̄j

)
The closed-loop system is obtained by applying control law (2.12) to the model (3.1), which is
written as:

ẋ(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t)) (Gijx(t) + BiKj ē(t)) (2.37)

From equation (2.36) and equation (2.37), the concatenation of the augmented estimation error
ē(t) and the state x(t) allows us to write the following augmented system:

˙̄x(t) =
r∑

i=1

r∑
j=1

µi(x(t))µj(x(t))Ḡijx̄(t) (2.38)

where:

x̄(t) =
x(t)

ē(t)

 , Ḡij =
Gij BiK̄j

0 Fj


The observer used in this section is the PMI observer, which is designed to simultaneously
estimate states and faults. This observer is adapted for estimating polynomial signals with a
null q-th derivative. The fault-tolerant control design involves calculating the gains Ki and
L̄i to ensure the asymptotic stability of the augmented system (2.38) while guaranteeing fault
compensation for the actuators.

Remark : In the case where the disturbance has an infinite-order derivative, such as an ex-
ponential or sinusoidal function, the observer’s order q is determined experimentally by testing
at which order q the disturbance is compensated or its effect no longer appears in the system
(i.e., the disturbance is well observed). As indicated in the examples discussed in [22].

2.3.3 Example 2.2

Let us consider same Example (2.1), which we have analyzed in the case of a PI observer,
by placing the observer poles in the left half-plane and setting α = 1.5, and by injecting the
following fault, :

f1 =

t, 2 < t < 6
0, otherwise

f2 =

−t, 12 < t < 16
0, otherwise

We get :
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L̄1 = 1.0 × 104 ×



0.0370 −0.1166
0.0097 −0.0548
0.0117 0.0771
0.0784 −0.3336
0.1249 0.3782
1.0555 −3.3982
1.0393 −2.1414


; L̄2 = 1.0 × 105 ×



−0.0088 0.0924
0.0057 0.0409

−0.0432 −0.0453
0.0139 0.2520

−0.3004 −0.1896
−0.2263 2.6867
−0.6474 1.8632


In this case, where there are two disturbances,

ˆ̄X(t) =



x̂(t)
f̂1(t)
f̂2(t)
˙̂

f1(t)
˙̂

f2(t)


, L̄i =



LP i

L11i

L21i

L11
1i

L21
1i


where f̂1 and f̂2 represent the estimated errors, and ˙̂

f1 and ˙̂
f2 denote their successive deriva-

tives.
L1 represents the estimation gains for the first disturbance and its derivatives. L2 represents
the estimation gains for the second disturbance and its derivatives.

Result analysis

It can be observed that, in the case of the PMI observer, the estimation error is slightly larger
compared to the PI observer, but it converges directly to zero.

The PMI observer is a generalization of the PI observer, where the successive integration of the
estimation error helps in further reducing it as we can see in figure (2.8) . By increasing the
order and complexity of the fault model, the observer can still achieve good results.

The same remark as in the PI observer we can see in the figure (2.7 that the fault can influence
on the other input fault estimation.

(a) f1 and f̂1 (b) f2 and f̂2

Figure 2.7: Faults estimation for PMI observer
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FTC Control Approach with PMI Observer it’s an approach which effectively compensates for
such faults, leading to significantly improved system performance.

By initializing the estimated state vector with values close to the actual ones, we obtain the
following estimation error.

Figure 2.8: State estimation error for PMI observer

Conclusion

In this chapter, we investigated fault-tolerant control strategies for nonlinear systems repre-
sented using Takagi-Sugeno models. We began by reviewing general fault-tolerant control
concepts, distinguishing between passive and active approaches, and highlighting the relevance
of observer-based techniques in modern control applications.

Particular emphasis was placed on T-S observers under measurable premise variables MPV, cov-
ering both classical Luenberger-type observers and advanced structures such as Proportional-
Integral PI and PMI observers. The mathematical formulation of these observers was presented,
including the use of LMI for ensuring stability and convergence of estimation errors. Through
these designs, we addressed both constant and time-varying actuator faults.

Overall, the results confirm the effectiveness of the designed fault-tolerant controllers and their
observers in maintaining system stability and ensuring robust tracking performance. These
strategies offer practical applicability in critical control systems requiring real-time fault ac-
commodation while maintaining acceptable computational cost.
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Chapter 3

Iterative Observer Design : Single and
Multi-Agent systems

Introduction

The reliability and safety of modern dynamic systems are increasingly threatened by unexpected
faults, especially in complex and interconnected environments. Accurate fault estimation is
therefore a key component of fault-tolerant control strategies. While classical observers such
as Luenberger and Kalman filters have long been used for fault detection and state estimation,
their single-step nature and sensitivity to disturbances and modeling errors often limit their
performance in practice.

To overcome these challenges, this chapter investigates an advanced iterative fault estimation
method, known as the k-step fault estimation, which successively refines the fault estimate at
each step using previous estimation errors. The approach is particularly well-suited for systems
modeled using the Takagi–Sugeno fuzzy formalism, which provides a powerful framework for
representing nonlinear dynamics through a convex combination of linear models.

We begin by applying the k-step fault estimation technique to a single-agent T-S system,
establishing the mathematical formulation, observer design, and stability analysis using an H∞
performance framework. The method is then extended to a multi-agent setting, where agents
are connected through a communication topology. In this context, we explore distributed
iterative observers that incorporate both local and consensus-based estimation errors, and an
output-feedback fault-tolerant control law.

Simulation results demonstrate the effectiveness of the proposed method in reconstructing ac-
tuator faults and maintaining consensus across the agent network. This chapter lays the the-
oretical and practical groundwork for robust and scalable fault-tolerant architectures that will
be further explored in the next chapters.
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3.1 Iterative Fault Estimation of a Single-Agent T-S Sys-
tem

3.1.1 Iterative and classical estimation

Iterative estimation is an advanced method that significantly improves the accuracy of fault and
state estimation in dynamic systems by refining the estimation process over multiple iterations
[25, 26]. This approach reuses previous estimation errors to reduce uncertainties and enhance
robustness, especially when applied to nonlinear systems modeled through the T-S framework.
Unlike single-step methods, which perform a one-time correction, iterative observers continually
adjust their outputs, enabling better handling of time-varying faults and external disturbances.

Classical observers, such as the Luenberger observer and Kalman filter, although widely used,
face several limitations [27]. They often assume accurate modeling and specific noise character-
istics, which makes them sensitive to real-world uncertainties. Moreover, they require complex
gain tuning and struggle to track rapidly changing faults, while robust methods like sliding
mode observers suffer from chattering effects. In contrast, iterative observers offer greater
adaptability to nonlinear and uncertain environments, making them a more suitable choice for
T-S systems that demand resilience against modeling errors and external perturbations [25].

3.1.2 H∞ Performance Index

The objective of H∞ control is to minimize the maximum gain between a disturbance d(t) and
an error e(t) defined as [28]:

sup
d̸=0

∥e∥2

∥d∥2
< λ

where:

- ∥e∥2 is the L2 norm of the error (measuring its total energy),

- ∥d∥2 is the L2 norm of the disturbance,

- λ is a tolerance threshold that defines the maximum level of disturbance amplification.

∫ t

0
eT (s)e(s)ds < λ2

∫ t

0
dT (s)d(s)ds.

This condition guarantees that the system does not overreact to disturbances and that the
estimation error remains controlled under external perturbations. By imposing this constraint,
the system maintains a robust estimation performance, ensuring that the disturbances do not
excessively influence the estimated fault.
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3.1.3 Stability Analysis of Iterative Fault Estimation

By selecting an appropriate Lyapunov function defined as:

V = eT Pe

where e is the estimation error vector that includes both the state estimation error ex = x − x̂
and the fault estimation error ef = f − f̂ at a given iteration, and where P = P T > 0 is a
symmetric positive definite matrix, we can assess the stability of the iterative observer [29]. If
the H∞ performance condition is satisfied, then the quadratic stability of the iterative observer
in the sense of Lyapunov is ensured.

This framework offers flexibility in choosing the observer dynamics and the control design tech-
nique. Whether the observer is implemented via static or dynamic gains, and regardless of
the control law [25] (e.g., output feedback, or PDC control), the stability remains guaranteed
as long as the Lyapunov condition is fulfilled. Additionally, this formulation allows the incor-
poration of robustness criteria such as attenuation of disturbances, which is crucial for fault
estimation in uncertain or nonlinear systems.

3.1.4 Single Agent iterative observer design

In this section, we present the design of an iterative observer intended to estimate both the
system states and additive actuator faults with improved accuracy, it refines the fault estimation
over successive steps by incorporating previous estimation errors into the current correction
process.

3.1.4.1 One-Step Fault Estimation Approach

Let define the system dynamic model in the situation of disturbance and actuator fault of the
following form :

ẋ(t) = A(ξ)x(t) + B(ξ)u(t) + F (ξ)f(t) + G(ξ)d(t)
y(t) = C(ξ)x(t)

(3.1)

where x(t) ∈ Rn is the state vector of the system, f(t) ∈ Rr stands for the additive mismatched
actuator fault, u(t) ∈ Rm stands for the input, d(t) ∈ Rd stands for the bounded disturbance,
and y(t) ∈ Rp represents the output vector. A(ξ), B(ξ), F (ξ), G(ξ), and C(ξ) are described as
follows :

A(ξ) =
r∑

i=1
µi(ξ)Ai, B(ξ) =

r∑
i=1

µi(ξ)Bi,

C(ξ) =
r∑

i=1
µi(ξ)Ci, F (ξ) =

r∑
i=1

µi(ξ)Fi,

G(ξ) =
r∑

i=1
µi(ξ)Gi
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The activation functions µi(ξ) satisfy:

r∑
i=1

µi(ξ) = 1, µi(ξ) ≥ 0, ∀i. (3.2)

Such that r is the number of rules of the T-S system, and A,B,C,G and F represent the identified
constant real parameter matrices of the system with appropriate dimensions.
Assumption 1. The system (3.1) is observable and stabilizable.
Assumption 2. rank(B(ξ), F (ξ)) = rank(B(ξ)).

Assumption (2) indicates that there exists a matrix B∗(ξ) ∈ Rn×m which makes the following
equation hold:

(I − B(ξ)B∗(ξ))F (ξ) = 0 (3.3)

Assumption 3. f, d ∈ L2[0, ∞)

A function f(t) belongs to L2[0, ∞) if its energy is finite [30], which is expressed as:∫ ∞

0
|f(t)|2dt < ∞

This condition ensures that f(t) does not grow indefinitely and has a finite energy, it
guarantees that the fault f(t) remains within a limited energy range, making it possible
to estimate and compensate for it.

The state and the unknown mismatched additive actuator fault of the system (3.1) are estimated
by the k-step FE algorithm.
The one-step FE observer is constructed as [29] :

˙̂x1 = A(ξ)x̂1 + B(ξ)u + F (ξ)f̂1 + Ls(ξ)(y − ŷ1)
ŷ1 = C(ξ)x̂1
˙̂

f1 = Lf (ξ)(y − ŷ1)
(3.4)

where f̂1 ∈ Rr, ŷ1 ∈ Rp, x̂1 ∈ Rn, are the one-step estimations of f , y, and x, respectively. Lf

and Ls stand for the FE observer gain matrices.

The estimate error is constructed as ex1 = x − x̂1, ef1 = f − f̂1, ey1 = y − ŷ1, respectively, and
the augmented vector is denoted as:

eT
1 = [eT

x1 , eT
f1 ].

For simplicity, the time index t is omitted. Then, combining (3.1) and (3.4), the error dynamic
system of the first augmented estimation can be constructed as follows:

ė1 = (Ā(ξ) − L(ξ)C̄(ξ))e1 + Ḡ(ξ)d1,

ey1 = C̄(ξ)e1.
(3.5)
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where

Ā(ξ) =
A(ξ) F (ξ)

0 0

 , L(ξ) =
Ls(ξ)

Lf (ξ)

 =
∑r

i=1 µi(ξ)Lsi∑r
i=1 µi(ξ)Lfi



C̄(ξ) =
(
C(ξ) 0

)
, Ḡ(ξ) =

G(ξ) 0
0 I

 ,

d1 =
d

ḟ

 .

3.1.4.2 Limitations of one-step estimation

One-step fault estimation methods are generally based on ideal assumptions, such as bounded
disturbances and constant system parameters. However, in practical situations, these estimators
are highly sensitive to model uncertainties and external disturbances. Since the estimation is
performed only once [31], there is no mechanism to refine the results, which leads to accumulated
estimation errors especially in the presence of rapidly varying faults. The inability to correct
these errors after the initial step makes the estimator less effective in dynamic environments.

Moreover, one-step approaches often rely on fixed observer gains, limiting their adaptability to
time-varying systems [25]. Without a feedback or update mechanism, they fail to track fast-
changing faults accurately and tend to offer lower robustness against noise and perturbations.
This results in poor estimation performance and limited reliability in applications where high
accuracy is essential.

3.1.4.3 Two step Fault estimation

Then the two-step FE observer can be constructed below [29]:


˙̂x2 = A(ξ)x̂2 + B(ξ)u + F (ξ)f̂2 + Ls(ξ)(y − ŷ2)
ŷ2 = C(ξ)x̂2
˙̂

f2 = Lf (ξ)(y − ŷ2) + ˙̂
f1

(3.6)

where x̂2 ∈ Rn, ŷ2 ∈ Rp, f̂2 ∈ Rr are the two-step estimations of x, y, and f , respectively. Ls

and Lf are the same as those in equation (3.4).

Similarly, denote the estimation errors as:

ex2 = x − x̂2, ef2 = f − f̂2, ey2 = y − ŷ2

and define the augmented error vector as:

eT
2 = [eT

x2 , eT
f2 ].

Then the second augmented error dynamic system is similar to (3.5):
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ė2 = (Ā(ξ) − Lf (ξ)C̄(ξ))e2 + Ḡ(ξ)d2,

ey2 = C̄(ξ)e2.
(3.7)

where Ā(ξ), Lf , C̄(ξ), and Ḡ(ξ) are the same as those in equation (3.5).

It is worth noting that:

d2 =
 d

ḟ − ˙̂
f1

 .

3.1.4.4 The k-step Fault estimation approach

To enhance the accuracy of FE, the (k − 1)-step FE information is applied to construct the
k-step FE observer [29]:


˙̂xk = A(ξ)x̂k + B(ξ)u + F (ξ) ˙̂

fk + Ls(ξ)(y − ŷk)
ŷk = C(ξ)x̂k

˙̂
fk = Lf (ξ)(y − ŷk) + ˙̂

fk−1

(3.8)

where x̂k ∈ Rn, ŷk ∈ Rp, f̂k ∈ Rr are the k-step estimations of x, y, and f , respectively. Ls and
Lf are the same as those in equation (3.4).

Denote the estimation errors as:

exk
= x − x̂k, efk

= f − f̂k, eyk
= y − ŷk,

and define the augmented error vector as:

eT
k = [eT

xk
, eT

fk
].

The kth error dynamic equation can be obtained:

ėk = (Ā(ξ) − Lf (ξ)C̄(ξ))ek + Ḡ(ξ)dk,

eyk
= C̄(ξ)ek.

(3.9)

where Ā(ξ), Lf , C̄(ξ), and Ḡ(ξ) are the same as those in equation (3.5).

It is worth noting that:

dT
k =

(
dT ,

(
ḟ − ˙̂

fk−1

)T )
.
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Theorem 4. Consider the system (3.1) with Assumptions 1 – 2. If there exist matrices
P , Q, satisfying the following inequality, for the given scalar λ > 0, the error dynamic
system (3.9) is stable at given H∞ performance index:∫ t

0
eT

k (s)ek(s)ds < λ2
∫ t

0
dT

k (s)dk(s)ds. (3.10)

The condition to guarantee this stability is:

Σii < 0 for i ∈ {1, 2, . . . , r}
Σij + Σji < 0 for i < j ≤ r

(3.11)

Σij =
ĀT

i P + PĀi − QiC̄j − (QiC̄j)T + I PḠi

∗ −λ2I



where P = P T > 0. The gain matrices of the observer (3.8) can be derived from:

L̄i = P −1Qi

Proof :
The Lyapunov function can be considered as:

Vk = eT
k Pek (3.12)

Along the estimation error dynamic system (3.9), the time derivative of Vk is derived below:

V̇k = eT
k

[
P (Āi − LfiC̄j) + (Āi − LfiC̄j)T P

]
ek

+ 2eT
k PḠidk (3.13)

Denote the auxiliary function as

J = V̇k + eT
k ek − λ2dT

k dk (3.14)

Substituting (3.13) into (3.14), it can be obtained that

J = eT
k

[
P (Āi − LfiC̄j) + (Āi − LfiC̄j)T P + I

]
ek

+ 2eT
k PḠidk − λ2dT

k dk (3.15)

Denote eT = (eT
k , dT

k ). If inequality (4) holds, it can be obtained that eT Σe < 0 with L̄ = P −1Q,
namely

J = V̇k + eT
k ek − λ2dT

k dk < 0 (3.16)

Furthermore, the integral of J is shown as follows:
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∫ t

0

[
V̇k(s) + eT

k (s)ek(s) − λ2dT
k (s)dk(s)

]
ds < 0 (3.17)

It can be formulated that

∫ t

0

[
V̇k(s) + eT

k (s)ek(s) − λ2dT
k (s)dk(s)

]
ds = V (t) +

∫ t

0

[
eT

k (s)ek(s) − λ2dT
k (s)dk(s)

]
ds < 0

(3.18)

It can be immediately obtained that

∫ t

0

[
eT

k (s)ek(s) − λ2dT
k (s)dk(s)

]
ds < 0. (3.19)

Therefore, the actuator fault and the system state can be evaluated by the developed FE
observer (3.8).

To make the above algorithm clearer, the algorithm of the fault estimation method is given in
the following.

Algorithm 1. k-step fault estimation algorithm.

1. Obtain f̂1(t) by solving (3.4).

2. Let k = 2 and calculate f̂k(t) from (3.8).
Calculate

ϵ = ∥f̂k(t) − f̂k−1(t)∥

If ϵ is not less than a given small enough constant, then k = k + 1, go to step 2,
else

f̂(t) = f̂k+1(t)

can be taken as the estimation of f(t).

3.1.4.5 Example 2.1

Let the nonlinear system be represented by a Takagi-Sugeno fuzzy multi-model, defined as
follows [29]:

ẋ(t) = ∑2
i=1 µi(z(t)) (Aix(t) + Biu(t) + Fif(t) + Gid(t))

y(t) = ∑2
i=1 µi(z(t)) Ci x(t)

Such that :

A1 =
−0.5 −0.5

0 −0.3

 , B1 =
0.2 0

0 −0.3

 , C1 =
1 0
0 −1



F1 =
1
1

 , G1 =
0.2
0.1


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A2 =
−0.6 −0.4
−0.4 −0.25

 , B2 =
0.1 0

0 −0.4

 , C2 =
1 0
0 −1



F2 =
0.8
1.5

 , G2 =
0.15

0.2


The weighting functions µi(ξ) are defines as :

µ1(x) = 1
1 + e−3(x1−2)

µ2(x) = 1 − µ1(x)

By applying theorem (4) to the system and we take λ = 0.08 to fix the h∞ performance index
, we derive the observer gains:

Lk1 =
−20.3282 −51.0913
−19.3742 −47.4633

 , Lf1 =
[
−210.6993 −385.7618

]

Lk2 =
−25.6183 −50.2128
−24.3006 −46.7038

 , Lf2 =
[
−257.0665 −399.4831

]

To stabilize the system, we implement a simple PDC feedback control based on theorem (2)
the matrix gain is as follow :

K1 =
−0.4125 −6.1651
−2.2955 0.0034

 ; K2 =
−2.7575 −8.5692
−0.0786 −0.3312



By injecting a fault given by:

f(t) =


0, t ≤ 5

2
(
1 − e5(5−t)

)
, t > 5

We set a tolerance error for fault estimation as: ϵ = 0.2 -this value was chosen to avoid going
too far in the number of iterations, while still allowing the estimation to converge within a
reasonable number of steps. With this threshold, convergence was reached after 6 iterations,
which is sufficient as illustrated in the figures- by setting the initial conditions at xT

0 = [1 2]T
with d(t) = 0, we will determine the iteration at which the estimation reaches this tolerance.
Then, we will compare the fault estimation at this iteration with the one-step estimation and
analyze the results.

In this example, the matrix B is invertible, which allows us to proceed with the computations
directly. However, in other cases, it is important to verify the invertibility condition of B before
applying any operation that involves its inverse. If B is not invertible, alternative approaches
such as using a pseudo-inverse or redesigning the observer may be required.
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Simulation Results :

Iterative estimation is based on the first iteration, known as one-step fault estimation, which
initially produces a small error between the actual fault and the estimated fault, as shown in
Figure (3.1a). It is observed that when the estimation error reaches 0.2, convergence is achieved
around the 6th iteration, as illustrated in Figure (3.1b). Given a nominal model of the system,
it is possible to define an estimation tolerance, which allows for the identification of any type
of fault, whether variable or constant.

The error curve, well illustrated in Figure (3.2), clearly demonstrates that at each iteration,
the error is recalculated. This iterative process determines whether to continue refining the
estimation or terminate the algorithm. The iterative estimation approach provides control
inputs that directly depend on the fault dynamics this highlights the improvement in precision
with an increased number of iterations, while still respecting Assumption 3.

Furthermore, Figure (3.3) demonstrates that with a sufficiently high number of iterations,
the state estimation is significantly improved, ensuring that the effect of the fault is properly
compensated. This confirms the effectiveness of the estimation process. However, special
attention must be given to the initial conditions of the estimated states at each iteration. They
must be set to the same values as the actual system states to maintain estimation consistency.
Therefore, a prior knowledge of the system’s initial state is essential to ensure accurate and
reliable estimation results.
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Figure 3.2: Fault Estimation Error
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Figure 3.3: States evolution

The single-agent k-step fault estimation approach effectively improves accuracy by iteratively
refining the estimation using previous error information. It ensures robustness against distur-
bances and modeling uncertainties through an H∞-based stability analysis. While this method
performs well in isolated systems, real-world applications often involve multiple interacting
agents. Therefore, the following section extends this approach to multi-agent systems, incor-
porating communication topology and distributed estimation dynamics.

3.2 Iterative Fault Estimation of Multi-Agent T-S Sys-
tems

The increasing complexity and scale of modern systems demand robust fault diagnosis and
control strategies. Multi-agent systems offer a decentralized framework well-suited for such
environments, but a fault in a single agent can destabilize the entire network due to inter-agent
interactions.

While numerous works have addressed fault detection and estimation in linear MAS using
distributed observers and proportional-integral schemes [32, 33, 34], the nonlinear case remains
less explored. T-S fuzzy models have proven effective for representing nonlinear dynamics, and
recent efforts have extended observer design to estimate both states and faults in such systems
[35, 36].

A notable approach is the k-step fault estimation method [37], which improves estimation
accuracy by iteratively refining fault estimates. However, this method has primarily been
applied to single-agent systems in the previous section. This work extends the k-step strategy
to nonlinear MAS by combining centralized and distributed estimation errors, enabling accurate
actuator fault reconstruction and supporting the design of a robust fault-tolerant controller.
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3.2.1 Multi-Agent System Modeling

Consider a network composed of N nonlinear agents interacting over a directed communication
topology. The dynamics of each agent i ∈ {1, 2, . . . , N} are described by the following Takagi–
Sugeno fuzzy model:

ẋi(t) = A(ξ)xi(t) + B(ξ)ui(t) + E(ξ)fi(t) + D(ξ)di(t),
yi(t) = C(ξ)xi(t)

(3.20)

where xi(t) ∈ Rn is the system state of the agent i, yi(t) ∈ Rp is the measured output, and
ui(t) ∈ Rm is the control input. The signal di(t) ∈ Rq denotes the external disturbance,
assumed to satisfy di(t) ∈ L2[0, ∞). The term fi(t) ∈ Rr represents the actuator fault affecting
agent i, and is also assumed to belong to L2[0, ∞). The matrices A(ξ), B(ξ), C(ξ), D(ξ), and
E(ξ) are fuzzy interpolations of linear matrices with appropriate dimensions, depending on the
scheduling variable ξ as described in the single agent case 3.1.

3.2.2 Theoretical concepts on Multi-Agent Systems

A multi-agent system MAS is a collection of interacting agents that cooperate (or sometimes
compete) to achieve individual or global objectives [38]. Each agent is typically an autonomous
subsystem capable of sensing, decision-making, and acting within an environment.

- Agent: An agent refers to an independent control system (e.g., a robot, vehicle, or sensor
node) capable of performing tasks and exchanging information with others.

- Communication Graph: The interaction topology between agents is usually modeled
by a graph G = (V , E), where V is the set of agents (nodes), and E the set of communi-
cation links (edges).

- Consensus: A fundamental objective in MAS is consensus, which means all agents
agree on certain quantities (e.g., position, velocity, or state estimates) using only local
information and interactions.

- Distributed Control: Unlike centralized control, distributed control implies that each
agent computes its control input based on its own information and that received from
neighbors, leading to scalable and robust coordination.

- Applications: MASs are widely used in robotics (e.g., swarm robotics), sensor networks,
autonomous vehicles, and smart grids, where coordination and robustness are critical.

The key advantage of MAS lies in their flexibility, fault-tolerance, and scalability. However,
challenges remain in areas such as stability under switching topologies, fault detection, and
coordination in the presence of disturbances or limited communication.

3.2.3 Multi Agent iterative observer design

To estimate the states of the multi-agent system defined in (3.20), we introduce two types of
output estimation errors: the distributed output estimation error ζ1i(t) and the centralized
output estimation error ζ2i(t).
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The distributed output estimation error captures the disagreement between agent i and its
neighbors, and is defined as:

ζ1i(t) =
∑

j∈Ni

aij ((ŷi(t) − yi(t)) − (ŷj(t) − yj(t)))

The centralized output estimation error compares the estimated and actual outputs of agent i:

ζ2i(t) = ŷi(t) − yi(t)

Here, yi(t) and ŷi(t) denote the actual and estimated outputs of agent i, respectively. These
errors will be used in the design of distributed iterative fault estimation observers.

3.2.3.1 One-Step Fault Estimation Approach

To obtain an initial estimate of the actuator fault for each agent i, we define a 1-step fault
estimation observer as follows [26]:

˙̂xi1(t) = A(ξ)x̂i1(t) + B(ξ)ui(t) + E(ξ)f̂i1(t) − ρ1H(ξ)ζ1i1(t) − ρ2G(ξ)ζ2i1(t)
ŷi1(t) = C(ξ)x̂i1(t)
˙̂

fi1(t) = −ρ1F1(ξ)ζ1i1(t) − ρ2F2(ξ)ζ2i1(t)
(3.21)

where x̂i1(t) ∈ Rn is the state estimate, ŷi1(t) ∈ Rp is the estimated output, and f̂i1(t) ∈ Rr is
the fault estimate at the first step. The matrices H(ξ), G(ξ) ∈ Rn×p are the observer gains to
be designed, while F1(ξ), F2(ξ) ∈ Rr×p are fault estimation gain matrices.

The terms ζ1i1(t) and ζ2i1(t) represent the distributed and centralized output estimation errors,
respectively, as defined earlier. The scalars ρ1, ρ2 ≥ 0 are weighting coefficients that satisfy:

ρ1 + ρ2 = 1

The scalars ρ1 and ρ2 are often used to weight the relative importance of the two errors men-
tioned earlier:

- ρ1 weights the consensus error, i.e., the disagreement between agents.

- ρ2 weights the local estimation error, i.e., the difference between the estimated and the
actual output of each agent.

These parameters allow the designer to balance the trade-off between inter-agent coordination
and individual estimation accuracy.

To analyze the observer dynamics, we define the estimation errors as:

exi1(t) = x̂i1(t) − xi(t), eyi1(t) = ŷi1(t) − yi(t), efi1(t) = f̂i1(t) − fi(t)

Based on these definitions and the system model (3.20), the augmented estimation error dy-
namics can be derived and used for stability analysis and iterative estimation improvement.

Iterative Fault Estimation of Multi-Agent T-S Systems 60



Observer Design with Iterative Approach : Single and Multi-Agent systems

To derive the estimation error dynamics of the 1-step observer, we define the augmented error
vector:

ei1(t) =
exi1(t)
efi1(t)

 =
x̂i1(t) − xi(t)

f̂i1(t) − fi(t)


Using the system and observer dynamics, we obtain the following differential equation for the
augmented error dynamics:

ėi1(t) = Ā(ξ)ei1(t) − D̄(ξ)ω̄i1(t) − ρ1H̄(ξ)
∑

j∈Ni

aij

(
C̄(ξ)ei1(t) − C̄(ξ)ej1(t)

)
− ρ2Ḡ(ξ)C̄(ξ)ei1(t)

eyi1(t) = C̄(ξ)ei1(t)
(3.22)

where the matrices are defined as:

Ā(ξ) =
A(ξ) E(ξ)

0 0

 , D̄(ξ) =
D(ξ) 0

0 I

 , C̄(ξ) =
[
C(ξ) 0

]

H̄(ξ) =
H(ξ)
F1(ξ)

 =
∑r

i=1 µi(ξ)Hi∑r
i=1 µi(ξ)F1i

 , Ḡ =
 G(ξ)
F2(ξ)

 =
∑s

i=1 µi(ξ)Gi∑s
i=1 µi(ξ)F2i


and the disturbance and fault vector is:

ω̄i1(t) =
di(t)

ḟi(t)


To compactly express the global estimation error dynamics across all agents, we define:

e1(t) =
[
eT

11(t) . . . eT
1N(t)

]T
, ω̄1(t) =

[
ω̄T

11(t) . . . ω̄T
1N(t)

]T

Then, the global error dynamics can be expressed using Kronecker products as:

ė1(t) =
(
IN ⊗ Ā(ξ) − L ⊗ ρ1H̄(ξ)C̄(ξ) − IN ⊗ ρ2Ḡ(ξ)C̄(ξ)

)
e1(t) −

(
IN ⊗ D̄(ξ)

)
ω̄1(t)

ey1(t) = (IN ⊗ C̄(ξ))e1(t)
(3.23)

This formulation shows that the fault estimate f̂(t) is directly affected by disturbances and
modeling uncertainties. To enhance the robustness and accuracy of the estimation, we propose
in the next section an extension based on the k-step fault estimation approach with k > 2.
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3.2.3.2 Two-Step Fault Estimation Approach

To improve fault estimation accuracy and suppress the influence of the estimated fault from
the 1-step observer, a 2-step fault estimation observer is constructed using the result of the first
step. The observer equations for agent i at the second step are given by [26]:

˙̂xi2(t) = A(ξ)x̂i2(t) + B(ξ)ui(t) + E(ξ)f̂i2(t) − ρ1H(ξ)ζ1i2(t) − ρ2G(ξ)ζ2i2(t)
ŷi2(t) = C(ξ)x̂i2(t)
˙̂

fi2(t) = −ρ1F1(ξ)ζ1i2(t) − ρ2F2(ξ)ζ2i2(t) + f̂i1(t)
(3.24)

Let us define the estimation errors as:

exi2(t) = x̂i2(t) − xi(t), eyi2(t) = ŷi2(t) − yi(t), efi2(t) = f̂i2(t) − fi(t)

and the augmented error vector as:

ei2(t) =
exi2(t)
efi2(t)

 , ω̄i2(t) =
 di(t)
ḟi(t) − ˙̂

fi1(t)


The corresponding error dynamics of the 2-step observer are then given by:

ėi2(t) = Ā(ξ)ei2(t) − D̄(ξ)ω̄i2(t) − ρ1H̄(ξ)
∑

j∈Ni

aij

(
C̄(ξ)ei2(t) − C̄(ξ)ej2(t)

)
− ρ2Ḡ(ξ)C̄(ξ)ei2(t)

eyi2(t) = C̄(ξ)ei2(t)
(3.25)

where the matrices are defined as in the first step estimation. By aggregating the error dynamics
across all agents, the compact global error system can be expressed as:

ė2(t) =
(
IN ⊗ Ā(ξ) − L ⊗ ρ1H̄(ξ)C̄(ξ) − IN ⊗ ρ2Ḡ(ξ)C̄(ξ)

)
e2(t) −

(
IN ⊗ D̄(ξ)

)
ω̄2(t)

ey2(t) = (IN ⊗ C̄(ξ))e2(t)
(3.26)

This 2-step structure improves estimation accuracy by taking into account the residual between
the true fault and the previous estimate. The process can be repeated to design a general k-step
fault estimation observer.

3.2.3.3 k-Step Fault Estimation Approach

To further improve the fault estimation accuracy, the k-step fault estimation observer is recur-
sively constructed by incorporating the result from the previous (k − 1)-th step. The observer
dynamics for agent i at step k are defined as [26]:
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˙̂xik(t) = A(ξ)x̂ik(t) + B(ξ)ui(t) + E(ξ)f̂ik(t) − ρ1H(ξ)ζ1ik(t) − ρ2G(ξ)ζ2ik(t)
ŷik(t) = C(ξ)x̂ik(t)
˙̂

fik(t) = −ρ1F1(ξ)ζ1ik(t) − ρ2F2(ξ)ζ2ik(t) + ˙̂
fi(k−1)(t)

(3.27)

The associated estimation errors are defined as:

exik(t) = x̂ik(t) − xi(t), eyik(t) = ŷik(t) − yi(t), efik(t) = f̂ik(t) − fi(t)

with the augmented error vector:

eik(t) =
exik(t)
efik(t)

 , ω̄ik(t) =
 di(t)
ḟi(t) − ˙̂

fi(k−1)(t)


Then, the error dynamics of the k-th observer are given by:

ėik(t) = Ā(ξ)eik(t) − D̄(ξ)ω̄ik(t) − ρ1H̄(ξ)
∑

j∈Ni

aij

(
C̄(ξ)eik(t) − C̄(ξ)ejk(t)

)
− ρ2Ḡ(ξ)C̄(ξ)eik(t)

eyik(t) = C̄(ξ)eik(t)
(3.28)

The corresponding global compact form is expressed as:

ėk(t) =
(
IN ⊗ Ā(ξ) − L ⊗ ρ1H̄(ξ)C̄(ξ) − IN ⊗ ρ2Ḡ(ξ)C̄(ξ)

)
ek(t) −

(
IN ⊗ D̄(ξ)

)
ω̄k(t)

eyk(t) = (IN ⊗ C̄(ξ))ek(t)
(3.29)

3.2.4 Stability Analysis of the k-Step Observer

To ensure the robustness and convergence of the k-step fault estimation observer, it is essential
to analyze the stability of the augmented estimation error system. This analysis is conducted
under an H∞ performance framework, which guarantees that the estimation error remains
bounded and attenuates the influence of disturbances and model uncertainties.

We define a Lyapunov function candidate for the global estimation error system (3.29), and
derive conditions under which its derivative is strictly negative. By formulating these conditions
as an LMI, we provide sufficient criteria for the stability and H∞ performance of the observer.
The result is summarized in the following theorem.
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Theorem 5. Consider nonlinear multi-agent systems with given scalars γ > 0, for a
given H∞ performance level γ1, if there exist a positive definite matrix Q and matrices
Y1, Y2 of appropriate dimensions such that the following LMI holds:

χii < 0 for i ∈ {1, 2, . . . , r}
χij + χji < 0 for i < j ≤ r

(3.30)

where

χij =
ηij −(IN ⊗ QD̄i)

∗ −γ2
1I



ηij = IN ⊗ (QĀi + ĀT
i Q) − L ⊗ ρ1Y1iC̄j − LT ⊗ ρ1C̄

T
j Y T

1i − IN ⊗ ρ2(C̄T
j Y T

2i + Y2iC̄j + I

then the global estimation error system is stable under H∞ performance.
The observer gain matrices are computed as:

H̄i = Q−1Y1i, Ḡi = Q−1Y2i

Proof :
Consider the following Lyapunov function :

Vk(t) = eT
k (t)(IN ⊗ Q)ek(t)

Taking the time derivative of Vk(t) along the trajectories of the global error system (3.29) (and
neglecting the nonlinear terms), we obtain:

V̇k(t) = eT
k (t)

(
IN ⊗ (QĀi + ĀT

i Q) − L ⊗ ρ1QH̄iC̄j − LT ⊗ ρ1C̄
T
j H̄T

i Q

− IN ⊗ ρ2(ḠT
i C̄T

j Q + QḠiC̄j)
)

ek(t) − 2eT
k (t)(IN ⊗ QD̄i)ω̄k(t)

(3.31)

This expression is used to derive the LMI condition ensuring that V̇k(t) < 0, which guarantees
the asymptotic stability of the estimation error under disturbances [39] .

Note that in the derivation of the Lyapunov function derivative V̇k(t), the equality becomes an
inequality due to the treatment of cross-product terms involving the disturbance vector ω̄k(t).
Specifically, since the disturbance is assumed to belong to L2[0, ∞), and is therefore unknown
but energy-bounded, it is not possible to precisely evaluate the cross term:

−2eT
k (t)(IN ⊗ QD̄i)ω̄k(t)

Instead, this term is upper-bounded using the Cauchy–Schwarz inequality or quadratic com-
pletion techniques, which leads to a conservative estimation of the Lyapunov derivative. Con-
sequently, the time derivative of the Lyapunov function is no longer expressed as an equality
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but as an inequality:

V̇k(t) ≤ eT
k (t)

(
IN ⊗ (QĀi + ĀT

i Q) − L ⊗ ρ1QH̄iC̄j − LT ⊗ ρ1C̄
T
j H̄T

i Q

− IN ⊗ ρ2(ḠT
i C̄T

j Q + QḠiC̄j)
)

ek(t) − 2eT
k (t)(IN ⊗ QD̄i)ω̄k(t)

(3.32)

To evaluate the H∞ performance of the k-step observer, we define the following cost function:

J =
∫ ∞

0

(
eT

k (t)ek(t) − γ2
1 ω̄T

k (t)ω̄k(t)
)

dt (3.33)

According to the global error system and Lyapunov derivative, and assuming zero initial con-
ditions, we derive the following inequality:

J ≤
∫ ∞

0

(
V̇k(t) + eT

k (t)ek(t) − γ2
1 ω̄T

k (t)ω̄k(t)
)

dt (3.34)

The integrand can be rewritten compactly as a quadratic form involving a stacked vector ν(t):

νT (t) =
[
eT

k (t) ω̄T
k (t)

]
, χij =

ηij −IN ⊗ QD̄i

∗ −γ2
1I


with:

η = IN ⊗ (QĀi + ĀT
i Q) − L ⊗ ρ1QH̄iC̄j − LT ⊗ ρ1C̄

T
j H̄T

i Q − IN ⊗ ρ2(ḠT
i C̄T

j Q + QḠiC̄j) + I

So, ηij can be rewritten as :

ηij = IN ⊗ (QĀi + ĀT
i Q) − L ⊗ ρ1Y1iC̄j − LT ⊗ ρ1C̄

T
j Y T

1i − IN ⊗ ρ2(C̄T
j Y T

2i + Y2iC̄j) + I

Such that :
H̄i = Q−1Y1i, Ḡi = Q−1Y2i

ηij −IN ⊗ QD̄i

∗ −γ2I

 < 0 (3.35)

It can be seen from the formula, (3.35) is equivalent to condition (3.30), which implies (3.34)
is satisfied.

3.2.5 Fault Tolerant Output Feedback Controller Design

3.2.5.1 Control Law Design

For the obtained k-step fault estimate f̂ik(t), a fault-tolerant controller with output feedback is
proposed to ensure the consistency of the multi-agent system. The control law for each agent
i is designed as:
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ui(t) = Ks

∑
j∈Ni

aij(x̂i(t) − x̂j(t)) − B∗Ef̂ik(t) (3.36)

where Ks ∈ Rm×n is the feedback gain matrix, and B−1 is a generalized inverse of the input
matrix B or the pseudo-inverse in the case were matrix B is vector or not squar matrix . The
control input ensures that the influence of the estimated fault is compensated while enforcing
synchronization among neighboring agents.

Introducing Synchronization Error Variables :

In multi-agent systems, achieving a consistent collective behavior is as crucial as maintaining
individual stability. This coordination is typically evaluated in terms of synchronization, which
means that all agent states converge to a common trajectory or remain bounded relative to
each other.

To capture this coordination behavior explicitly, we introduce the synchronization error vari-
able:

δi(t) = xi(t) − 1
N

N∑
j=1

xj(t)

This variable measures the deviation of agent i’s state from the average state of the network.
Expressing the system dynamics in terms of δi(t) allows us to study and regulate inter-agent
consensus errors and design controllers that enforce synchronization while compensating for
actuator faults.

By combining the system model (3.20) with the control law (3.36), in this section we will express
the model index by the index q such that q ∈ {1, 2, . . . , r} s is the number of models, the error
dynamics in terms of δi(t) can be written as:

δ̇i(t) = Aqδi(t) + Dqdi(t) − Eqefi(t) + BqKsq

∑
j∈Ni

aij(x̂i(t) − x̂j(t))

− 1
N

N∑
j=1

∑
l∈Nj

BkKsqajl(x̂j(t) − x̂l(t))
(3.37)

where
δi(t) = xi(t) − 1

N

N∑
j=1

xj(t) = xi(t) − x̃(t),

d̄i(t) = di(t) − 1
N

N∑
j=1

dj(t),

ēfi(t) = efi(t) − 1
N

N∑
j=1

efj(t)

Using the symmetry property of the undirected topology graph, where aij = aji, it is easy to
show that:

1
N

N∑
i=1

∑
j∈Ni

BkKsqaij(x̂i(t) − x̂j(t)) = 0 (3.38)
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From the definition ei(t) = x̂i(t) − xi(t), one can derive:

∑
j∈Ni

aij(x̂i(t) − x̂j(t)) =
∑

j∈Ni

aij (δi(t) − δj(t) + ei(t) − ej(t)) (3.39)

Combining equations (3.37), (3.2.5.1), (3.38), and (3.39), the global synchronization error dy-
namics become:

δ̇(t) = (IN ⊗ Aq + L ⊗ BqKsq) δ(t) − (IN ⊗ Eq) ēf (t) + (L ⊗ BqKsq) e(t) + (IN ⊗ Dq) d̄(t)
(3.40)

3.2.5.2 Stability and Robust Performance Conditions

To ensure robust consensus and fault-tolerant behavior of the multi-agent system under actuator
faults, it is necessary to establish sufficient conditions that guarantee synchronization and
disturbance attenuation.

The following result provides a LMI condition under which the H∞ fault-tolerant consensus
is ensured for the system described by the synchronization error dynamics in (3.40), and the
control law in (3.36).

Theorem 6. [26] The problem of robust H∞ fault-tolerant consensus for systems (3.20)
with actuator faults can be solved under the fault-tolerant consensus protocol (3.36), the
Laplacian matrix L, and for a scalar γ2 > 0 and a positive definite matrix P , if there
exist matrices Aq, Bq, Dq, Eq, and Ksq of compatible dimensions such that the following
LMI holds. 

Ψ11 Ψ12 Ψ13 Ψ14

∗ Ψ22 0 0
∗ ∗ Ψ33 0
∗ ∗ ∗ Ψ44

 < 0 (3.41)

where:
Ψ11 = He(PAq + αjHsq) + I, Ψ12 = αjHsq, Ψ13 = −PEq,

Ψ14 = PDq, Ψ22 = −γ2
2I, Ψ33 = −γ2

2I, Ψ44 = −γ2
2I

with
Hs = PBqKsq He(M) = M + MT q ∈ {1, 2, . . . , r}

Proof :
Due to (3.40), use a Lyapunov function candidate to :

V (t) = δT (t)(IN ⊗ P )δ(t) (3.42)

Taking its time derivative along the trajectory of the synchronization error system (3.40), we
obtain:
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V̇ (t) = δT (t)He(IN ⊗ PAq + L ⊗ PBqKsq)δ(t)
− 2δT (t)(IN ⊗ PEq)ēf (t) + 2δT (t)(L ⊗ PBqKsq)e(t)
+ 2δT (t)(IN ⊗ PDq)d̄(t)

(3.43)

Since the Lyapunov derivative expression (3.43) includes uncertain or unmeasurable terms (e.g.,
ēf (t) and d̄(t)), we consider a conservative upper bound on V̇ (t) by relaxing the exact dynamics
and focusing on the quadratic structure. Therefore, we write:

V̇ (t) ≤ δT (t) (He(IN ⊗ PAq + L ⊗ PBqKsq)) δ(t)
− 2δT (t)(IN ⊗ PEq)ēf (t) + 2δT (t)(L ⊗ PBqKsq)e(t) + 2δT (t)(IN ⊗ PDq)d̄(t)

(3.44)

To simplify the analysis and decouple the modes of the multi-agent system, we perform a
coordinate transformation:

ϵ(t) = (ΠT ⊗ In)δ(t) (3.45)

Here, Π is a matrix that diagonalizes the Laplacian matrix L, i.e., Π−1LΠ = Λ, where Λ is diag-
onal. This transformation decomposes the global synchronization error into modal components
associated with the eigenvalues of L.

The diagonalization simplifies the analysis by isolating the consensus mode (associated with
eigenvalue 0) from the non-consensus (disagreement) modes. Since ∑N

i=1 δi(t) = 0, the consensus
mode vanishes (i.e., ϵ1(t) = 0), and only the disagreement modes contribute to the Lyapunov
evolution. This allows us to write:

V̇ (t) ≤
N∑

j=2
ϵT

j (t) (He(PAq + αjPBkKsq)) ϵj(t) (3.46)

Inequality (3.46) can be expressed as:

V̇ (t) ≤
N∑

j=2
ϵT

j (t)χjkϵj(t) (3.47)

where each matrix χjk is defined by:

χj = He(PAk + αjPBqKsq)

It is obvious that if χjq < 0, then V̇ (t) < 0 for any ϵj(t) ̸= 0, which implies that the consensus
errors are guaranteed to decay over time.

Now, let us consider the robust performance in the presence of nonzero disturbances. For this
purpose, we introduce the following coordinate transformations:

ϑ(t) = (ΠT ⊗ In)e(t), κ(t) = (ΠT ⊗ Ir)ēf (t), σ(t) = (ΠT ⊗ Iq)d̄(t)

Iterative Fault Estimation of Multi-Agent T-S Systems 68



Observer Design with Iterative Approach : Single and Multi-Agent systems

where Π is the matrix that diagonalizes the Laplacian matrix L. These transformed vari-
ables represent the decoupled components of the estimation error, fault estimation error, and
disturbance input, respectively, in the modal coordinates.

Note: Based on the structure of the Laplacian matrix and the assumption ∑N
i=1 δi(t) = 0, it

follows that ϵ1(t) = 0, and consequently, κ1(t) = 0, σ1(t) = 0, the inequality (3.44) can be
rewritten as:

V̇ (t) ≤
N∑

j=2
ϵT

j (t)
(

He(PAq + αjPBqKsq)
)

ϵj(t) − 2
N∑

j=2
ϵT

j (t)(PEq)κj(t)

+2
N∑

j=2
ϵT

j (t)(αjPBqKsq)ϑj(t) + 2
N∑

j=2
ϵT

j (t)(PDq)σj(t)
(3.48)

Let the transformed disturbance vector be defined as:

ω̄(t) =
[
ϑT (t) κT (t) σT (t)

]T

Then, the following H∞ performance index is considered:

Jr =
∫ ∞

0

(
ϵT (t)ϵ(t) − γ2

2 ω̄T (t)ω̄(t)
)

dt (3.49)

Let us define the combined signal vector:

ρj(t) =
[
ϵT

j (t) ϑT
j (t) κT

j (t) σT
j (t)

]T

From inequality (3.48) and assuming zero initial conditions, the performance index Jr satisfies:

Jr ≤
∫ ∞

0

 N∑
j=2

ρT
j (t)Ξjqρj(t) − γ2

2ϑT
1 (t)ϑ1(t)

 dt − V (T ) (3.50)

Ξjq is described in the theorem (6), if Ξjq < 0 (for j = 2, 3, . . . , N , q ∈ {1, 2, . . . , s}), then the
performance index function Jr < 0 is satisfied.

3.2.5.3 Example 2.2

Consider multi-agent system comprising four agents, and each agent can be modelled as follows:

ẋj(t) = ∑2
i=1 µi(z(t)) (Aixj(t) + Biuj(t) + Eifj(t) + Didj(t))

yj(t) = ∑2
i=1 µi(z(t)) Ci xj(t)

j = (1, ..., 4)

A1 =
−2 1
−1 −1

 , B1 =
0.4
0.5

 , E1 = B1, D1 =
0.01
0.02

 , C1 =
 1 −0.01
0.1 1



A2 =
 −1 0.5
−0.9 −0.5

 , B2 =
0.5
0.2

 , E2 = B2, D2 =
0.02
0.05

 , C2 =
0.6 0
0.2 1.5


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The network can be expressed in the following topology in Fig. 3.4.

12

34

Figure 3.4: Communication topology

From Fig. 3.4, the Laplacian matrix L can be given as follows:

L =


3 −1 −1 −1

−1 1 0 0
−1 0 2 −1
−1 0 −1 2


By applying theorem (5) to the system and fixing the H∞ performance index γ1 = 0.5, we
derive the observer gains:

H1 = 10−11

−0.0900 0.0280
−0.1360 0.0210

 , G1 =
62.8000 25.5000
83.0000 31.8000

 ,

F11 = 10−10
[
−0.1756 0.0454

]
, F21 = 103

[
1.4050 0.5377

]
,

H2 = 10−11

0.1650 −0.0330
0.2770 −0.0430

 , G2 =
123.4000 8.0000
152.4000 10.8000

 ,

F12 = 10−10
[
0.3395 −0.0697

]
, F22 = 103

[
2.7022 0.1482

]
,

To stabilize the system, we implement the output feedback control based on theorem (6) with
γ2 = 0.3 the matrix gain is as follow :

Ks1 =
[
−0.0638 −0.0936

]
, Ks2 =

[
−0.1524 −0.0536

]

The actuator fault signals are defined as follows in every agent :

f1(t) =

0, t < 5
20(t − 5)e−2(t−5), t ≥ 5

, f2(t) =


0, t < 5
2(t − 5), 5 ≤ t ≤ 7
4, t > 7

f3(t) =

0, t < 5
10

(
1 − e−2(t−5)

)
, t ≥ 5

, f4(t) = 10 · e(−0.25·(t−5))
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The external disturbance is defined by:

dj(t) = 0.08 · e−0.01t · sin(2πt), j = (1, ..., 4)

The tolerance error is fixed as: ϵ = 0.2 and by setting the initial conditions at The initial states

of the four agents are given by: x1,0 =
1
0

, x2,0 =
−1

0.5

, x3,0 =
 2
−0.5

, and x4,0 =
 3
−1

,

we will compare the fault estimation at this iteration with the one-step estimation and analyze
the results.

Simulation Results :

In the first iteration, the shape and dynamics of the injected faults are generally captured by the
estimator. However, the estimation lacks precision, as illustrated in Figure 3.5. The maximum
of the estimation errors are respectively : 1.20, 0.197, 1.472 , 2.92

This limitation is reflected in the corresponding estimation error shown in Figure 3.6, where
the maximum error reaches approximately 2.92 for Agent 4. Such a large deviation can have a
serious impact on closed-loop performance and even threaten system stability. This influence
can also be observed in the state evolution Figure 3.7, where state trajectories show significant
deviation and oscillation, particularly for agents affected by large faults.

These observations highlight the importance of improving the accuracy of fault estimation
before engaging in fault-tolerant control. To address this, we employ a multi-step iterative
estimation strategy, where the process is repeated until a given error tolerance is satisfied.
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Figure 3.5: Fault Estimation - One step fault estimation
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Figure 3.7: State evolution - One step fault estimation

In our case, by setting the tolerance threshold to 0.5, convergence is achieved at the 7th iteration.
Although smaller thresholds could be considered to further improve estimation, they come at
the cost of increased computational time. It is important to note that prior knowledge of the
nominal model allows for an informed choice of the tolerance value that balances precision and
efficiency. The maximum of the fault estimation errors are respectively : 0.41 , 0.04, 0.432
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0.477.

At the 7th iteration, the estimated faults closely match the actual faults, as shown in Figure 3.8.
In parallel, the estimation error decreases significantly and remains below the set threshold,
with a peak of around 0.47 Figure 3.9. As a result, the reconstructed faults are more reliable
and allow for better fault compensation. This improvement is reflected in the evolution of the
agents’ states (Figure 3.10), which now converge more smoothly and exhibit behavior consistent
with stability requirements.
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Figure 3.8: Fault Estimation - 7 step fault estimation
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Figure 3.9: Estimation error - 7 step fault estimation
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Figure 3.10: State evolution - 7 step fault estimation
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It is important to emphasize that the goal of this chapter is to demonstrate the iterative fault
estimation process, and not to assess the performance of the fault-tolerant controller itself. As
such, closed-loop performance and tracking are not the focus here. In the following chapter, we
will investigate advanced control strategies capable of operating in real-world fault scenarios,
including adaptive and robust FTC schemes.

Special case :

In this special case, we evaluate the robustness of the proposed distributed estimation fault by
introducing a fault in only one agent and verifying whether it influences the fault estimation
results of the other agents.
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Figure 3.11: 7-Step Fault estimation in one agent

As shown in Figure 3.11, the actual fault injected in a single agent is accurately estimated,
while the estimators of the remaining agents produce negligible outputs close to 10−15 and for
error around zero in the fault estimation. This behavior is mainly due to numerical round-
off errors inherent to double-precision computations and minor inter-agent coupling effects
through the communication topology. The algorithm successfully rejects such insignificant
signals, confirming its ability to isolate the faulty agent without generating false positives in
healthy agents.

Remarque :

- The estimation process at higher iterations could be improved by recording the dynamics
of certain fault signals. This would allow the estimator to start from non-zero initial
iterations, thus avoiding unnecessary time loss during the early stages. However, this
approach requires the use of non-volatile memory to store historical data, which introduces
additional hardware considerations. Therefore, this method should be explored in future
work to enhance estimation performance and intelligence.

- In our current work, we have assumed a fixed communication topology among agents
during the fault estimation process, which simplifies the design and enables us to validate
the proposed iterative observer-based estimation strategy under controlled conditions. In
future studies, we plan to address more realistic and complex scenarios by allowing the
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communication topology to vary over time, depending on the application context—such
as agent mobility, network disruptions, or environmental changes. In such cases, ob-
server gains must be adapted in real-time according to the current interaction graph,
introducing new challenges like the development of distributed adaptive observers, online
gain computation, and ensuring convergence under switching topologies. These scenar-
ios will require advanced stability analysis tools such as common Lyapunov functions or
dwell-time methods and will impose greater demands on both computational and com-
munication resources.

Conclusion

In this chapter, we have developed a robust and scalable framework for iterative fault estimation
in both single-agent and multi-agent nonlinear systems modeled by T-S fuzzy representations.
We first demonstrated how the k-step observer improves estimation accuracy by compensating
for residual errors in successive iterations. A Lyapunov-based stability analysis was presented,
guaranteeing convergence and robustness through an H∞ performance index.

The methodology was then extended to multi-agent systems with interconnected dynamics
and actuator faults. By combining centralized and distributed estimation errors, we used
an observer capable of exploiting inter-agent information to enhance fault reconstruction. A
distributed fault-tolerant controller was also introduced, which ensures synchronization and
compensation despite actuator failures and external disturbances.

Simulation results validated the approach, highlighting the importance of accurate fault esti-
mation in achieving stable and resilient multi-agent coordination. Although this work focused
primarily on the estimation procedure, the next chapter will shift attention to the design of
advanced control strategies, including adaptive and robust fault-tolerant control, for real-world
deployment under uncertainty and more complex fault scenarios.
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Chapter 4

Fault Tolerant Control for Differential
Drive Robots

Introduction

The transition from theoretical fault estimation frameworks to practical applications is crucial
for validating their efficiency and robustness. In this chapter, we investigate the implementation
of our previously developed fault estimation approach based on k-step observers on a real-time
control system. Specifically, we apply it to the kinematic model of a differential drive mobile
robot, both in single agent and multi agent configurations.

Mobile robots are widely used in real-world applications such as logistics, service robotics, and
autonomous exploration. However, ensuring reliable performance in the presence of actuator
faults is a significant challenge. The integration of fault-tolerant control (FTC) mechanisms,
particularly those capable of estimating and compensating for unknown faults in real time, is
therefore essential for safe operations.

Our objective is to demonstrate how the fault estimation method enhances the robustness of
a differential-drive robot by enabling continuous control despite actuator faults. This chapter
serves as a bridge between theory and implementation, setting the foundation for future real-
time validation in robotic middleware environments.

4.1 Mobile robot modelling

Before proceeding to the kinematic modeling of the differential-drive mobile robot, it is impor-
tant to justify the rationale behind this choice. The kinematic model is widely favored in control
design due to its simplicity, lower computational cost, and ease of implementation. More impor-
tantly, in the case of differential drive robots, actuator faults such as wheel motor degradation
or command signal corruption often manifest directly at the input level of the kinematic model.
This is because the kinematic behavior results from the low-level actuation dynamics, and thus
any faults affecting the actuators or the inputs of the dynamic model ultimately influence the
kinematic control inputs, i.e., the linear and angular velocities (v, ω)

This characteristic is particularly advantageous in fault-tolerant control schemes. By working
with the kinematic model, one can detect and estimate actuator faults indirectly by observ-
ing deviations in the kinematic behavior, without requiring full knowledge of the underlying
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dynamics. While the type and structure of the fault may be transformed, i.e., its effect may
appear in a different form, the presence of the fault itself remains observable. This backward
propagation from observed kinematic deviations to fault estimation enables the application of
high-level observer-based FTC methods with reduced model complexity.

4.1.1 Kinematic model

The differential mobile robot is modeled using the standard nonholonomic kinematic model
under the assumption of no lateral slip. The system’s state is defined by the position (x, y) and
orientation θ, while the control inputs are the linear and angular velocities v and ω, respectively.
The kinematic equations are given by:


ẋ

ẏ

θ̇

 =


cos θ 0
sin θ 0

0 1


v

w

 (4.1)

4.1.2 Kinematic error model

To formulate a trajectory tracking problem, we define a reference trajectory generated by a
virtual robot with states (xr, yr) and control inputs (vr, ωr). The posture error in the robot’s
local frame is computed using a rotation matrix transformation as proposed by [40]:


ex

ey

eθ

 =


cos θ sin θ 0

− sin θ cos θ 0
0 0 1



xr − x

yr − y

θr − θ

 (4.2)

(a) Mobile robot model (b) Posture error

Considering that the imaginary mobile robot has a kinematic model like in equation (4.1), by
deriving the equation (4.2) we obtain the following kinematic model:


ėx

ėy

ėθ

 =


cos θ 0
sin θ 0

0 1


vr

wr

 +


−1 ey

0 −ex

0 −1

 u (4.3)
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where vr, wr are the linear and angular reference velocities, respectively, and u is the control
input.

4.1.3 Linearization

In order to facilitate the linearization of the kinematic error model, a feedforward control action
uF is introduced. This term is defined as a nonlinear transformation of the reference inputs,
and it allows us to explicitly cancel or compensate certain nonlinear components present in the
error dynamics.

The control input is defined as the sum of the feedforward and feedback control inputs as follows
[41]:

u = uF + uB =
vr cos eθ

wr

 +
v

w

 (4.4)

Figure 4.2: Structure of mobile robot control system

As a result, the remaining terms represented by uB, the feedback control action are easier to
handle in a linearized framework.

Substituting equation (4.4) into equation (4.3), the resulting model is given by :
ėx

ėy

ėθ

 =


−v + ey(wr + w)

sin eθ · vr − ex(wr + w)
−w

 (4.5)

By linearizing the error model in equation (4.5) around the reference configuration (ex = ey =
eθ = 0, uB1 = uB2 = 0), we obtain the following linear kinematic error model:

ėx

ėy

ėθ

 =


0 wr 0

−wr 0 vr

0 0 0



ex

ey

eθ

 +


−1 0
0 0
0 −1


v

w

 (4.6)

Remark 1: vr and wr can be given as in [42] or should be calculated by:

vr = ±
√

ẋ2
r + ẏ2

r and wr = ẏrẍr − ẋrÿr

ẋ2
r + ẏ2

r
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4.2 Control Strategy

In this section, we present the control strategy developed for the differential-drive mobile robot
to ensure both trajectory tracking and obstacle avoidance. Given the nature of the robot’s
kinematics, the control objective is twofold: the robot must accurately follow a predefined
reference trajectory while simultaneously avoiding static obstacles encountered along its path.

To achieve this, we design two separate control laws: one dedicated to trajectory tracking
and another specifically for obstacle avoidance. Since the linearized kinematic error model
is dependent on the reference angular velocity, we adopt a Takagi–Sugeno fuzzy modeling
approach. This allows us to represent the nonlinear error dynamics as a collection of local
linear sub-models, each associated with specific values of the reference velocities.

Accordingly, the control inputs are generated using a fuzzy parallel distributed compensation
scheme, where a state feedback controller is designed for each sub-model. To ensure a smooth
and intelligent balance between tracking and avoidance behaviors, a fuzzy fusion mechanism is
introduced. This fusion gain determines how the outputs of the two controllers are combined
in real time, based on the proximity and orientation of obstacles.

4.3 Trajectory Tracking Control

The first component of the control architecture is responsible for making the mobile robot follow
a given reference trajectory. To achieve this, we design a state-feedback controller based on
the tracking error dynamics. The methodology follows a structure similar to gain scheduling,
where the system is represented as a collection of linearized models around different operating
conditions.

In our case, since the error model is derived by linearizing the kinematic model around the
reference trajectory (xr, yr, θr), the resulting dynamics are centered around the origin of the
error space (ex, ey, eθ) = (0, 0, 0). This justifies the use of a linear error feedback controller, as
the objective is to drive the tracking error to zero.

To account for the nonlinearities induced by varying reference velocities, we adopt a T-S fuzzy
modeling framework. The global error dynamics are represented as a weighted combination
of r local linear sub-models. For each sub-model, a linear feedback gain Ki is computed to
stabilize the corresponding dynamics.

The overall tracking control law is then constructed as [41]:

u(t) = −
r∑

i=1
µi(ξ(t))KiR(θ)T e(t) (4.7)

where:

- e(t) ∈ R3 is the state vector of tracking errors,

- Ki ∈ R2×3 is the feedback gain matrix associated with the i-th sub-model,

- R(θ) ∈ SO3 is the rotation matrix from the global frame to the robot frame,

- µi(ξ(t)) ∈ [0, 1] are the normalized activation functions that depend on the scheduling
variables ξ(t), such as the reference velocities vr(t) and ωr(t).
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The rotation matrix R(θ) is introduced because control inputs must be applied in the robot’s
local frame. Since we operate in the global reference frame, it is necessary to transform the
control inputs into the robot’s frame to ensure they are correctly interpreted and executed.

This fuzzy control strategy generates the linear velocity vt and angular velocity ωt required for
trajectory tracking. By ensuring a smooth interpolation between the different local controllers,
it guarantees a continuous and stable response, and drives the tracking errors asymptotically
to zero, provided that the feedback gains are appropriately chosen.

4.4 Obstacle Avoidance Control

In addition to trajectory tracking, the robot must be able to avoid obstacles that may appear
along its path. Assuming accurate knowledge of the robot and obstacle positions, an elementary
avoidance maneuver is triggered whenever the robot detects a nearby obstacle.

The idea is to momentarily shift the reference to a virtual error that pushes the robot away from
the obstacle, and then smoothly bring it back toward the original trajectory. This is achieved
by generating a smooth repulsive reference error defined as:

er(t) = F

Dob
2


xob − x

yob − y

θ − arctan( yob−y
xob−x

)

 (4.8)

where Dob is the distance to the obstacle, F is the fusion gain, and (xob, yob) is the position of
the obstacle.

The resulting avoidance control input is given by:

u(t) = −
r∑

i=1
µi(ξ(t))KiR(θ)T (e(t) − er(t)) (4.9)

This control law generates the linear velocity vob and angular velocity ωob that allow the robot
to perform obstacle avoidance maneuvers. The robot responds as if it were compensating for
the virtual error er, resulting in a temporary deviation from the reference trajectory to bypass
the obstacle. The fusion coefficient F plays a key role in modulating this behavior. As the
robot distances itself from the obstacle, er gradually diminishes, and the control input smoothly
transitions back to nominal tracking.

Figure 4.3: Obstacle avoidance
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4.5 Fusion controller

In the presence of obstacles on the desired path, the mobile robot must avoid them while
it is still tracking the virtual mobile robot, therefore, the mobile robot will be controlled by
the tracking velocities (vT , ωT ) and the obstacle avoidance velocities (vob, ωob) simultaneously.
This is accomplished using a Mamdani fuzzy controller, whose inputs are the current distance
(Dob) and the angle (θob) between the mobile robot and each obstacle encountered on the
desired trajectory, and its output is the fusion gain (F ). Dob has two fuzzy sets: close and far,
which are spread over the range [0, 0.5 m], θob range is [−4, 4] rad divided into three fuzzy sets:
negative, zero and positive, and F domain is [0, 1] divided into three fuzzy sets: little, more
and lots. The forms of the activation functions are presented in Figures 4.4a, 4.4b and 4.5 .
The fuzzy rules used to define the values of the fusion gain are summarized in Table 4.1.

(a) Membership function for Dob (b) Membership function for θob

Figure 4.5: Membership function for F

To ensure a smooth and stable coordination between trajectory tracking and obstacle avoidance,
the fusion factor F is designed as a fuzzy variable rather than a binary switch. This approach
avoids completely disregarding one control objective in favor of the other. For instance, when
the robot encounters a nearby obstacle, the avoidance command should dominate; however,
maintaining a small contribution from the tracking command helps preserve awareness of the
global reference trajectory, thus preventing divergence or disorientation.

The control inputs of the mobile robot are obtained as follows:{
v = (1 − F )vT + Fvob

ω = (1 − F )ωT + Fωob
(20)
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Rule number Linguistic inputs Linguistic outputs

Dob θob F

1 Close Negative More
2 Close Zero Lots
3 Close Positive More
4 Far Negative Little
5 Far Zero Little
6 Far Positive Little

Table 4.1: The fuzzy rules to determine the fusion gain values

4.6 Control Implementation

To evaluate the performance of the proposed control strategy, a Matlab simulation has been
conducted and the trajectory tracking was performed.

The linear and angular velocities of the virtual mobile robot have been used as premise variables,
and they were expressed by these equations as in [41]:

vr(t) = 1 + 5 exp(−2t), ωr(t) = 5 sin(0.01t) [rad/s]

The initial states of the mobile robot and the virtual mobile robot were: q(0) = [−0.5, 2, 0]T
and qr(0) = [0, 0, 0]T . The range of vr(t) is [1, 6] m/s and the range of ωr(t) is [−10, 10] rad/s
(we let the possibility to get the max equals 10 rad/s in the angular velocity). According to
the lower and upper bounds of both reference velocities, the following subsystems were found:

A1 =


0 −10 0
10 0 1
0 0 0

 , A2 =


0 10 0

−10 0 1
0 0 0

 , A3 =


0 −10 0
10 0 6
0 0 0

 , A4 =


0 10 0

−10 0 6
0 0 0



To obtain more than four subsystems, other values of vr(t) and ωr(t) should be taken in their
ranges.

From equation (4.6), the matrix Bi will always have the same values, which are:

B1 = B2 = B3 = B4 =


−1 0
0 0
0 −1



The T-S fuzzy rules are given as follows:

- Rule 1: If vr is small and ωr is negative, then ė(t) = A1e(t) + B1u(t)

- Rule 2: If vr is small and ωr is positive, then ė(t) = A2e(t) + B2u(t)
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- Rule 3: If vr is large and ωr is negative, then ė(t) = A3e(t) + B3u(t)

- Rule 4: If vr is large and ωr is positive, then ė(t) = A4e(t) + B4u(t)

The activation functions used in the T-S fuzzy model and controller are presented in figure 4.6a
and 4.6b.

(a) Membership function for vr (b) Membership function for ωr

By imposing a closed-loop dynamics within a region defined by α = 10, the following state
feedback gains were obtained:

K1 =
−20.311658 −1685.1992 −98.509052

−4.538567 −515.5166 −41.46704

 ; K2 =
−20.311658 1720.1016 101.16299

1.117774 −515.5166 −41.46704



K3 =
−20.311658 −1704.174 −99.951873
−2.6788407 −5553.2243 −336.54994

 ; K4 =
−20.311658 1724.9306 101.53018

0.64448126 −5553.2243 −336.54994



The tracking error converges to zero figure 4.7 within a short period of time, primarily due to
the high values of the state feedback gains used in the control design.

Figure 4.7: Tracking errors
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Figure 4.8: Trajectory tracking

As shown in Figure 4.8a and Figure 4.8b, the trajectory tracking performance is achieved
in both scenarios without obstacles and in the presence of multiple obstacles. However, it is
important to note that this level of performance is obtained through relatively high gain values,
which enforce aggressive corrective actions to minimize the tracking error.
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(a) Linear velocity to avoid obstacles (b) Angular velocity to avoid obstacles

Figure 4.9: Velocities for obstacle avoidance

This effect is also reflected in the velocity profiles. As illustrated in Figure 4.9, the control inputs
exhibit very high values, which could potentially stress or damage the actuators in a real system.
To address this issue, the next chapter will be dedicated to low-level control strategies aimed
at constraining the velocities within admissible physical limits, thereby ensuring both system
safety and actuator longevity.

Figure 4.10: Fusion Coefficient

Moreover, Figure 4.10 provides a clear visualization of the moments when the robot encounters
obstacles. During these intervals, the fusion coefficient F increases significantly compared to
the periods of pure trajectory tracking. This behavior reflects the dynamic switching of control
priority, as the robot detects a nearby obstacle, the controller shifts emphasis toward avoidance,
increasing the weight of the corresponding control input.

4.7 Extension to Multi-Agent Systems

To extend the proposed control framework, we developed a multi-agent system composed of
four mobile robots, one leader and three followers arranged in specific geometric formations
relative to the leader. This configuration was chosen for its practical applicability, as it is
commonly encountered in real-world scenarios such as coordinated exploration, convoy systems,
and formation control. Moreover, the design deliberately minimizes inter-agent communication,
thereby reducing system complexity.
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4.7.1 Formation Control for the Multi-Agent System

In this configuration, the leader robot navigates according to a predefined reference trajectory.
The follower robots use the leader’s trajectory as a guide to maintain their respective formations
while avoiding collisions. All four robots are equipped with obstacle avoidance capabilities.
Importantly, when the leader encounters and avoids an obstacle, the followers do not mimic its
actual deviated path; instead, they continue to track the leader’s original reference trajectory.
This decouples the obstacle response of the followers from the exact motion of the leader,
preserving formation coherence and simplifying the control logic.

It is important to note that the control strategy applied to each robot remains identical to
the single-agent case. Each robot simply receives its own reference trajectory and follows it
independently. No structural modification of the control algorithm is required.

4.7.2 Reference Trajectories for Follower Robots

To maintain the desired formation, the follower robots are assigned reference trajectories derived
from the current position and orientation of the leader robot. The relative positioning is based
on a geometric configuration where three followers are placed around the leader at predefined
offsets.

This leader-follower strategy is a formation control technique, where the spatial arrangement
of the agents is maintained through predefined relative positions with respect to the leader.

Let (xl, yl, θl) represent the current position of the leader robot. The reference positions for the
follower robots are computed as:

R(θl) =
cos θl − sin θl

sin θl cos θl



p1 =
xl

yl

 + R(θl)
− d√

2
d√
2

 ; p2 =
xl

yl

 + R(θl)
d

0

 ; p3 =
xl

yl

 + R(θl)
− d√

2

− d√
2

 (4.10)

Where: - p1, p2, and p3 are the reference positions of followers 1, 2, and 3 respectively, - d is
the desired inter-robot distance.

Each follower is assigned the same reference orientation as the leader:

θref,i = θl, i ∈ {1, 2, 3}

This method allows the follower robots to maintain a triangular formation around the leader
4.11, regardless of the leader’s orientation or trajectory. While the current configuration forms
a triangle, it is not restrictive other formation shapes can be selected depending on the require-
ments of the specific task or application. The approach offers flexibility in defining relative
positions to suit different mission scenarios.
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Figure 4.11: followers position relatice to leader

4.7.2.1 Control Implementation

It is important to note that the premise variables used in the fuzzy system are the reference
linear and angular velocities. In a multi-agent system with centralized control, it would not
be appropriate to assign individual reference velocities to each robot. Instead, it is assumed
that all agents share the same reference velocities, as they are intended to exhibit coordinated
behavior and follow a common motion pattern.

The effectiveness of the control strategy is clearly demonstrated in Figure 4.12, where all robots
successfully follow their respective trajectories. However, it is important to ensure that a
minimum inter-robot distance is maintained during trajectory generation in order to prevent
potential collisions.
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Figure 4.12: Trajectory Tracking and Formation of Multi-Agent System

Figure 4.13 clearly shows that the chosen formation shape is successfully maintained throughout
the motion of the entire multi-agent system in the absence of obstacles.
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Figure 4.13: Formation control

As shown in Figure 4.14, the robots perform their tasks effectively by following their respective
reference trajectories while avoiding obstacles. During the transient phase, the follower robots
may exhibit seemingly irregular or dispersed trajectories. This behavior is a result of the fuzzy
control strategy, which, despite its apparent variability, remains robust. Importantly, these
trajectory deviations do not lead to collisions. In the rare case where robots converge toward
the same point, they treat one another as dynamic obstacles. In a real world scenario, one of
the robots would actively perform an avoidance maneuver to maintain safety.

Figure 4.14: Multi-Agent Navigation with Local Obstacle Avoidance and Reference Tracking

Obstacles in the environment can be either static or dynamic. This explains why the leader
robot was able to avoid one of the obstacles, while the robot in front of it did not, simply
because there was no obstacle present at that moment in its path. However, operating in a
dynamic environment requires high performance sensors and a fast computation rate to ensure
timely and accurate reactions.
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4.8 Fault Estimation for a Single-Agent System

In this section, we address the problem of actuator fault estimation in mobile robot systems. We
begin by focusing on the single-agent case, where a dedicated observer is designed to estimate
the fault affecting the control inputs. Once validated for the single agent, we extend to the
multi-agent system, where each robot is equipped with a local fault estimation mechanism,
enabling decentralized diagnosis while preserving the overall coordination.

4.8.1 Application to the Kinematic Model

The theoretical framework for fault estimation in linear systems was established in chapter2.3.3
. In this section, we apply the same approach to estimate an actuator fault acting on the input
of a nonlinear system specifically, the kinematic model of a differential drive robot 4.1. To
enable this, we assume the presence of a fault at the input of the nonlinear model and derive
the corresponding error dynamics. After linearization, it is shown that the fault affecting
the original system also appears in the error dynamics like in 4.6. Although there is no strict
bijective relationship between the two formulations, estimating the fault within the error model
is effectively equivalent to identifying the original fault in the robot’s input. This link is
clearly illustrated by the transition from Equation 4.11 to Equation 4.12, which validates the
applicability of the linear estimation method to the nonlinear case.


ẋ

ẏ

θ̇

 =


cos θ 0
sin θ 0

0 1


 v + fv

w + fω

 (4.11)

↓↓


ėx

ėy

ėθ

 =


0 wr 0

−wr 0 vr

0 0 0



ex

ey

eθ

 +


−1 0
0 0
0 −1


v

w

 +


−1 0
0 0
0 −1


fv

fω

 (4.12)

With fv and fω are the faults affecting the linear and angular velocity inputs of the system,
respectively.

4.8.2 Control law

As planned, the system states and the fault affecting each input will be estimated. The control
law will then be generated based on the estimated signals, while preserving the same gains and
overall control structure introduced in the previous section as follows :

ū(t) = u(x̂, ŷ, θ̂) − [fv, fθ]T (4.13)

Where u(t) is the control law developed in 4.7 or 4.9, the subtraction of the estimated fault
is justified, as it serves as a compensation technique and is an approach commonly used in
fault-tolerant control.
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4.8.3 Fault Observer Implementation

To evaluate the effectiveness of the iterative fault estimation method, various types of faults
will be injected at the input of the kinematic model. This results offers better estimation
performance will then be analyzed and discussed.

The injected faults are defined as follows:

fv(t) =


2(t − 5), if 5 ≤ t ≤ 10
10, if t > 10
0, otherwise

(linear velocity fault)

fω(t) =

10 e−10(t−7)2
, if 6 ≤ t ≤ 8

0, otherwise
(angular velocity fault)

In practice, the iterative observer offers a more optimal alternative to classical observers. In-
stead of enhancing the estimation performance by increasing observer gains, which can be costly
and difficult to implement in real systems, the iterative approach allows for improved accuracy
through repeated estimations using relatively low gain values. This results in better estimation
dynamics within a few iterations, without requiring aggressive tuning.

For a performance level defined by an H∞ norm bound λ = 0.8, and pole placement constrained
to a region with real parts less than −5, the following observer gains were obtained:

Lk1 =


74.8667 44.3416 3.8492

−24.2749 10.3336 −2.0225
−3.8492 4.7921 74.8667

 , Lf1 =
−811.6830 −570.3105 −40.3973

40.3973 −50.2931 −811.6830



Lk2 =


74.8667 −44.2269 4.8972
24.2026 10.3336 −5.2581
−4.8972 9.9220 74.8667

 , Lf2 =
−811.6830 569.1071 −51.3957

51.3957 −104.1300 −811.6830



Lk3 =


74.8667 45.7031 15.8424

−25.1336 10.3336 6.7218
−15.8424 −1.1444 74.8667

 , Lf3 =
−811.6830 −584.5994 −166.2647

166.2647 12.0108 −811.6830



Lk4 =


74.8667 −43.8524 0.0647
23.9663 10.3336 3.8321
−0.0647 3.4372 74.8667

 , Lf4 =
−811.6830 565.1766 −0.6790

0.6790 −36.0732 −811.6830



As shown in Figures 4.15a and 4.15b, the one-step fault estimation leads to a rough approxi-
mation of the fault signals with the following errors : 0.195 for the linear velocity and 2.3 for
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the angular velocity. This inaccuracy is more evident in the state estimation results in Fig-
ures 4.16a and 4.16c, where large deviations and discontinuities, especially in θ, appear. Such
abrupt angular errors can lead to unstable or erratic rotational motion, which may damage the
actuators in real world systems.
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Figure 4.15: One-step fault estimation

(a) Tracking of the state x (b) Tracking of the state y

(c) Tracking of the state θ

Figure 4.16: Signals evolution under one-step fault conditions and compensation

The experiment injects a sharp, short duration fault to evaluate system sensitivity (Figure 4.17).
The system deviates from its reference trajectory but reconverges once the fault disappears.
This highlights both the fault impact and the partial ability of the estimator to recover the
desired behavior even after temporary disruption.
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Figure 4.17: Trajectory tracking under one-step fault estimation

In contrast, Figures 4.18a and 4.18b show that after six estimation iterations, the fault is
captured accurately with the following errors : 0.038 for the linear velocity fault estimated and
0.4 for the angular one. This leads to improved compensation, enhancing tracking performance
and overall system reliability.

0 2 4 6 8 10 12

Time [s]

0

2

4

6

8

10

12

f
v
 Estimation

Reel fault

6-step fault estimation

(a) Linear velocity fault estimation

2 4 6 8 10 12

Time [s]

-2

0

2

4

6

8

10

12

f
w

 Estimation

Reel fault

6-step fault estimation

(b) angular velocity fault estimation

Figure 4.18: 6-step fault estimation
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Figure 4.19: Trajectory tracking under 6-step fault estimation
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Improving fault estimation accuracy contributes directly to better trajectory tracking perfor-
mance. This is confirmed by the trajectory shown in Figure 4.19. Although minor discrepancies
can still be observed in the state variables x, y, and θ in Figure 4.20, the results remain accept-
able for most mobile robotics applications. In such contexts, a trade-off is often made between
estimation precision and computational load, and the achieved performance is sufficiently ac-
curate without overburdening the onboard processor with unnecessary computations.

(a) Tracking of the state x (b) Tracking of the state y

(c) Tracking of the state θ

Figure 4.20: Signals evolution under 6-step fault conditions and compensation

4.9 Distributed Fault Estimation for Multi-Agent Sys-
tems

To validate the iterative estimation method in a more realistic setting, we extend our study to
the multi-agent case. Although the control strategy for the multi-agent system is not the core
focus, it serves as a practical platform to assess the distributed fault estimation approach.

4.9.1 Interaction Structure

The configuration shown in Figure 4.21 illustrates the communication topology between four
mobile robots. This structure facilitates direct interaction between the leader robot (node 1)
and the follower robots (nodes 2, 3, and 4), enabling efficient coordination and information
exchange.

The corresponding Laplacian matrix associated with this topology is given by:
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1

23

4

Figure 4.21: Communication topology

L =


3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


This symmetric and fully connected structure ensures strong interaction between agents, while
keeping the estimation process localized and efficient.

4.9.2 Fault Observer Implementation

The faults injected into each agent are described below, and their time-dependent expressions
are provided in the appendix.

Figure 4.22: individual fault signals injected per agent
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In multi-agent implementation, the estimation gains vary significantly across agents and sub-
systems. Some gains are extremely high, while others are very small, which imposes strong
requirements on the computational capacity and stability of the onboard controllers.

H1 = 10−11 ·


0.0087 −0.0237 0.5249
0.0025 0.0180 −0.0035
0.5174 −0.1033 −0.0540

 G1 =


82.2821 37.3527 −52.4100

−10.9790 0.7587 −0.0991
52.4100 3.8861 82.2821



F11 = 10−10 ·

−0.0171 0.0353 −0.5209
−0.5115 0.1344 0.0721

 F21 = 103 ·

−1.0732 −0.5692 0.5202
−0.5202 −0.0386 −1.0732



H2 = 10−11 ·


0.0193 −0.0159 −0.0541
0.0016 −0.0143 −0.0046

−0.0406 −0.1169 −0.0281

 G2 =


82.2821 −38.3113 −50.0538
11.4968 0.7587 −1.4914
50.0538 6.4638 82.2821



F12 = 10−10 ·

−0.0152 0.0215 0.0541
0.0372 0.1524 0.0277

 F22 = 103 ·

−1.0732 0.5788 0.4968
−0.4968 −0.0642 −1.0732



H3 = 10−11 ·


−0.0257 0.0053 −0.0240
−0.0014 0.0255 −0.0005
−0.0344 −0.2148 −0.2206

 G3 =


82.2821 37.6191 70.7288

−11.1229 0.7587 0.9793
−70.7288 20.4030 82.2821



F13 = 10−10 ·

0.0271 −0.0041 0.0236
0.0358 0.2825 0.2260

 F23 = 103 ·

−1.0732 −0.5719 −0.7020
0.7020 −0.2025 −1.0732



H4 = 10−11 ·


0.0675 −0.0168 0.1464

−0.0042 −0.0214 0.0018
0.1595 −0.1527 −0.2045

 G4 =


82.2821 −39.2647 −16.5412
12.0118 0.7587 7.4649
16.5412 8.3959 82.2821



F14 = 10−10 ·

−0.0715 0.0232 −0.1428
−0.1597 0.2010 0.1989

 F24 = 103 ·

−1.0732 0.5882 0.1642
−0.1642 −0.0833 −1.0732



As shown in Figures 4.23 and 4.24, applying one-step fault estimation in multi-agent systems
produces limited accuracy. While it provides a rough fault estimate useful for general awareness
or triggering fault alarms, it is not suitable for high-precision control applications.
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Figure 4.23: One-step fault estimation of linear velocity input

Figure 4.24: One-step fault estimation of angular velocity input

The results in Figures 4.25 and 4.26 demonstrate that after five iterations, the estimation
satisfies a predefined convergence criterion based on fault change tolerances:

tolerance1–8 = {0.1, 0.5, 0.5, 0.2, 0.2, 0.1, 0.3, 1.5}

These thresholds ensure that the difference between fault estimates at iteration k and k−1 is
within acceptable bounds. A fixed H∞ performance index γ = 0.8 was used for all observers.
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Figure 4.25: 5-step fault estimation of linear velocity input

Figure 4.26: 5-step fault estimation of linear velocity input

As illustrated in Figure 4.27, trajectories of robots driven using only one-step fault estimates
exhibit large deviations. In contrast, when faults are iteratively estimated (up to the 5th
iteration), the corrected trajectories closely follow the desired paths, validating the superiority
of multi-step fault estimation in coordinated multi-agent navigation.
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Figure 4.27: Trajectory evolution under one-step fault estimation

The estimation errors after six iterations are summarized below. The values correspond respec-
tively to the linear and angular fault components (fv, fω) for Robots 1 to 4:

- Robot 1: fv = 0.087101, fω = 0.448058

- Robot 2: fv = 0.384276, fω = 0.189692

- Robot 3: fv = 0.186134, fω = 0.069124

- Robot 4: fv = 0.262504, fω = 1.395921

We can now replot the trajectory to verify whether the robot accurately follows it. The figure
4.28 illustrates the result.
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Figure 4.28: Trajectory evolution under 5-step fault estimation
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Conclusion

This chapter has presented the implementation of a fault-tolerant control strategy for differential-
drive mobile robots, addressing both single-agent and multi-agent configurations. Through a
combination of fuzzy control, feedforward compensation, and iterative fault estimation, the
proposed method effectively handles actuator faults while preserving trajectory tracking and
obstacle avoidance capabilities.

In the single-agent scenario, the limitations of one-step fault estimation were identified, partic-
ularly in the presence of abrupt disturbances. The iterative observer demonstrated significantly
improved estimation accuracy, enabling more reliable compensation and stable motion control.

The extension to a multi-agent system showcased the robustness and scalability of the approach.
Despite the challenges posed by inter-agent dynamics and varying fault profiles, the distributed
estimation strategy maintained satisfactory performance. Simulations confirmed that accurate
fault identification after multiple iterations leads to enhanced coordination and safer navigation
across all agents.

Building upon these results, the next step involves transitioning to realistic simulation environ-
ments to evaluate the approach under near real-world conditions. This will serve to experimen-
tally validate the proposed framework and pave the way for practical deployment in robotic
platforms.
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Chapter 5

Implementation in ROS

Introduction

While previous chapters focused on the theoretical formulation and MATLAB-based validation
of the proposed fault-tolerant control strategy, it is essential to assess its feasibility in real-time
robotic applications. Therefore, this chapter is dedicated to implementing the iterative fault
estimation observer in a practical setup using the Robot Operating System (ROS) framework
and the Gazebo simulation environment. Although the tests are conducted in a virtual world,
the setup closely mimics real-world conditions, including realistic sensors, dynamics, and inter-
agent communication. This simulation-based deployment bridges the gap between theoretical
modeling and real-world robotics.

The main objective is to validate whether the control and estimation strategies developed
earlier can perform reliably under time and computation constraints. Special attention is paid
to the integration of the control loop, sensor feedback, actuator commands, and inter-robot
coordination in multi-agent scenarios. The implementation also explores key aspects such as
trajectory tracking, obstacle avoidance, and fault compensation in a unified ROS architecture.

This chapter is structured to provide both single-agent and multi-agent validation results,
highlighting the robustness and scalability of the proposed strategy. Detailed figures and signal
plots are used to illustrate the effectiveness of the estimator under various fault scenarios and
dynamic environments. The chapter concludes with an evaluation of performance metrics and
a discussion of limitations encountered in practice.

5.1 Robot Operating System

Robot Operating System (ROS) is a widely adopted open-source framework designed to support
the development, simulation, and deployment of robotic systems. Rather than being a tradi-
tional operating system, ROS provides a flexible middleware layer composed of libraries, tools,
and communication protocols that simplify complex robotic programming tasks. It enables
modular design by allowing different components of a robot—sensors, actuators, controllers—to
communicate efficiently through a publish/subscribe messaging architecture.

ROS offers essential features such as hardware abstraction, low-level device control, inter-
process communication, and tools for visualization and debugging. Its architecture supports
distributed computation across multiple machines or robots, making it particularly suitable for
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collaborative multi-agent systems.

Key advantages of ROS include:

- Seamless integration with various robot-specific platforms and embedded systems.

- Robust tools for visualization, simulation, and debugging (e.g., RViz, Gazebo).

- Support for multiple programming languages, primarily C++ and Python.

- Extensive open-source package ecosystem for perception, navigation, control, and more.

- Active global community and strong support for research and industrial applications.

Thanks to its versatility and community-driven development, ROS has become the standard
for robotic system design in both academic and industrial contexts.

5.1.1 ROS architecture

The architecture of ROS is based on a modular and distributed system where different com-
ponents, called nodes, perform specific tasks and communicate with each other through topics
using a publish/subscribe model. The ROS Master acts as a central coordinator, managing
the registration of nodes and enabling them to locate and exchange information. Data ex-
changed between nodes is structured in predefined messages, which can contain various types
of information such as sensor readings, control commands, or status updates.

Figure 5.1: ROS Master Communication

To launch these components, ROS provides the roscore command for ROS1 to start the Master
and essential services, and the rosrun or roslaunch commands to execute individual nodes or
entire robotic systems defined in launch files. This architecture enables scalable, flexible, and
reusable robotic software development.

5.1.1.1 ROS workspace

A ROS workspace is a directory structure where various ROS packages can be developed, built,
and managed in an organized way. It simplifies the separation of multiple projects and their
dependencies. The following steps describe how to create and configure a ROS workspace:

1. Create a workspace directory and a subdirectory for source files:
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$ mkdir -p ~/workspace_name/src
$ cd ~/workspace_name/

2. Initialize the workspace using catkin_make, which will generate the necessary build and
setup files:

$ catkin_make

3. Source the setup file to load the environment configuration. This command must be
executed every time a new terminal is opened:

$ source devel/setup.bash

After building the workspace, the following directory structure is created:

workspace_name/
|-- build
|-- devel
|-- src

- The src directory contains the source code of ROS packages.
- The build directory stores temporary build files.
- The devel directory holds development environment setup files.
- The logs directory keeps log files generated during the build process.

The following illustrates the structure of our workspace for this project. Each component will
be described in the subsequent sections.
pfe/
|-- build
|-- devel
|-- src/

|-- CMakeLists .txt
|-- fuzzy_tracker
| |-- CMakeLists .txt
| |-- package .xml
| |-- launch
| |-- scripts
|-- my_robot

|-- CMakeLists .txt
|-- package .xml
|-- launch
|-- rviz
|-- urdf
|-- world

Robot Operating System 103



Implementation in ROS

5.1.1.2 ROS packages

To create a new package within a ROS workspace, the following steps should be executed in
the terminal:

$ cd ws_name
$ cd src
$ catkin_create_pkg pkg_name rospy roscpp std_msgs # dependencies
$ cd ..
$ catkin_make

In ROS, a package is the basic unit of software structure. It typically contains everything
required for a specific functionality: nodes (executable files), libraries, configuration files, launch
scripts, and dependencies. Organizing code into packages promotes modularity, reusability, and
clarity across projects.

To be recognized as a valid catkin package and be usable in ROS, the following conditions
must be met:

- A package.xml file must be present, containing meta-information such as the package
name, version, dependencies, and maintainer details.

- A CMakeLists.txt file must be included to define the build process via catkin.

- Each package must reside in a separate directory; placing multiple packages in the same
folder is not permitted.

5.1.2 GUI Tools

In addition to command-line tools, ROS provides powerful GUI tools that enhance development,
visualization, and debugging.

- RViz : is a 3D visualization tool used in ROS to display sensor data, robot models,
and simulation results in a virtual environment. It provides developers with an intuitive
way to observe the robot’s perception, localization, and planning in real-time, making it
essential for system validation and testing.

- RQT : is a plugin-based GUI framework that offers a variety of tools for monitoring
and controlling ROS-based systems. It includes utilities for debugging, visualizing data,
plotting variables, and adjusting parameters dynamically. Thanks to its modular design,
RQT can be extended with custom plugins to meet specific development needs.

- Gazebo : Gazebo is a powerful robotics simulator that offers the ability to accurately and
efficiently simulate populations of robots in complex indoor and outdoor environments.
It provides the following features:

1. High-fidelity Physics: Simulates the dynamics of robots and environments with high
accuracy, including rigid body physics, contact, and sensor data.

2. Sensor Simulation: Includes support for a variety of sensors, such as cameras, LI-
DAR, IMUs, and GPS.

3. Extensible and Flexible: Integrates with various robotics frameworks.
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4. 3D Visualization: Offers 3D visualization tools for designing and debugging complex
robotic systems.

Using Gazebo, developers can test and refine their robotic algorithms in a controlled,
virtual environment before deploying them to real hardware, thus reducing risk and ac-
celerating development.

5.2 Virtual Robotic Modeling and Simulation Environ-
ments

In robotics, creating a realistic virtual environment is essential for validating algorithms and
behaviors before deployment in the real world. Simulation environments like Gazebo provide
a powerful interface for modeling physical interaction, sensor behavior, and motion planning
in a way that closely mimics real-world conditions. A crucial step in this process is defining
the robot’s structure and dynamics using formats like URDF and integrating it within the
simulated world.

5.2.1 URDF Modeling of the Differential Mobile Robot

The Unified Robot Description Format (URDF) is an XML-based format used to describe
a robot’s physical structure, including its links (rigid bodies), joints (connections), inertial
properties, visuals, and collision geometry. To facilitate scalability and reusability, URDF
files are often written using Xacro files, which allows the inclusion of variables, macros, and
conditional statements.

Each element of the robot is defined in terms of geometric primitives (box, cylinder, sphere,
mesh), their positions, and orientations. The URDF file also contains information about the
robot’s sensors, actuators, and optionally transmission interfaces when used with ROS Con-
trol. Once the URDF/Xacro model is complete, it can be loaded into ROS via launch files,
published on the /robot_description parameter server, and instantiated in Gazebo using the
spawn_model node. This enables simulation of both the robot’s dynamics and sensor feedback
in a 3D physics-based environment.

Figure 5.2: Transforms tree of a single robot
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5.2.1.1 Geometric Modeling and Robot Description

In our project, we developed a differential drive mobile robot using Xacro. The robot consists
of a main chassis, two driving wheels, and tow caster wheel. Each component is modeled with
specific dimensions, mass, inertial properties, and visual representations. The coordinate frames
of each link are clearly defined and connected through appropriate revolute and fixed joints.
This structured description allows accurate physical and kinematic simulation in Gazebo.

Figure 5.3: Robot Shape

5.2.1.2 Sensor Integration

The robot is equipped with simulated sensors including a LIDAR scanner and wheel odometry.
The LIDAR is defined in the URDF using the gazeboroslaser plugin, allowing the simulation of
2D range data for environment perception and obstacle detection. Wheel odometry is obtained
through the differential drive motion model and is essential for estimating the robot’s relative
position over time.

This LIDAR is used for obstacle detection, and due to its measurement accuracy, it allows
estimating the relative position of obstacles with respect to the robot. Given the reliable
odometry, the acquired laser data can be confidently used for mapping and navigation tasks.

In the Gazebo configuration file, the sensor’s scanning range was limited to an angular field of
view from −π

2 to +π
2 , which is sufficient for the robot to sweep the 10 meter area in front of it.

Unlike IMU based systems, our odometry relies on wheel encoders, which are simulated through
Gazebo’s differential drive plugin gazebo_ros_diff_drive. This plugin not only provides veloc-
ity commands to the wheels but also publishes odometry information on standard ROS topics.

Figure 5.4: Hokuyo UST-05LA 2D LiDAR sensor
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This setup is critical for enabling basic localization, navigation, and closed-loop control in the
simulated environment.

From these odometry messages, the robot’s planar position (x, y) and its heading angle θ
are derived. The position is directly extracted from the pose.pose.position field of the
message. However, the orientation is initially provided as a quaternion (x, y, z, w), which is a
four-dimensional representation of rotation in 3D space.

To interpret this orientation in 2D navigation, the quaternion is converted into Euler angles (roll,
pitch, yaw) using a mathematical transformation. The yaw angle, corresponding to rotation
around the vertical axis, is used as θ, representing the robot’s orientation in the plane. This
transformation enables real-time tracking of the robot’s pose and is essential for tasks such as
trajectory following, localization, and sensor alignment.

5.2.1.3 Deployment of the Multi Robot System

To simulate a multi-robot system using a single URDF/Xacro file, we leverage the concept
of namespace prefixes. Each instance of the robot is assigned a unique prefix during launch,
which ensures that all links, joints, and topics are properly namespaced and avoid conflicts. This
approach allows multiple robots to coexist in the same simulation environment with isolated
coordinate frames.

To facilitate coordination and visualization, we define static transforms between each robot’s
base frame and a common world or map frame. This global referencing is essential for tasks
such as centralized monitoring, inter-robot communication, and multi-agent coordination.

We launch a Gazebo simulation using an empty world, to which we add both pre-defined
and custom models. These include static and dynamic objects representing obstacles, urban
elements, and natural features. Furthermore, realistic environmental elements such as terrain
friction, lighting (sun), and atmospheric conditions can be configured to enhance realism and
test the robustness of our algorithms in near real-world conditions.

5.2.2 Real Time Visualization

To ensure effective visualization and monitoring, reference trajectories are published for each
robot to follow. Obstacle properties, such as position, diameter, and height, are also specified
to match their visual and collision models, ensuring consistency between what is seen and what
is simulated in terms of physics.

Careful attention is paid to the frame hierarchy of each robot. All links must be correctly
connected and associated with their respective transforms to ensure proper rendering and in-
terpretation in tools like RViz. Proper setup of the TF tree allows intuitive real-time tracking
of robot states, sensor frames, and overall spatial coherence.

In addition, we employ visualization markers to indicate targets, paths, and sensor fields in RViz
published in the global frame odom, aiding in debugging and performance evaluation. Synchro-
nizing Gazebo and RViz via consistent topic and frame definitions is critical to maintaining a
reliable and interpretable simulation environment.
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Figure 5.5: RViz Display Overview

5.3 Implementation of the control law

5.3.1 Control Strategy

In this section, we consider the case of a single-agent system. The control law structure devel-
oped in Chapter 4, based on fuzzy fault-tolerant control using trajectory-following logic, is now
implemented in the ROS environment.

The central component of the implementation is a node named controller, written in Python.
This node is responsible for receiving measurement data from the environment. It subscribes
to the following topics:

- /scan (or laser_scan) – of type sensor_msgs/LaserScan, used for obstacle detection.

- /odom – of type nav_msgs/Odometry, providing the robot’s position and orientation.

Based on these inputs, the controller node computes the control law to make the robot follow
the reference trajectory. The calculated linear and angular velocities are published to the topic
/cmd_vel using messages of type geometry_msgs/Twist. These messages are then transmitted
to the robot model in Gazebo through an appropriate ROS plugin.

Another important node is trajectory_publisher, which publishes the reference trajectory
and obstacle positions to the environment. This ensures that the visual world in Gazebo is
consistent with the one used in control.

For the multi-agent case, the controller node is extended using ROS namespaces. Each robot
has its own controller in the node controller, subscribing and publishing on topics specific to
that robot. The logic remains the same as described in Chapter 4, including the generation of
reference trajectories and movement strategies.

A key practical difference from the MATLAB simulation is how the trajectory is followed. In
practice, the trajectory is divided into a series of steps, avoiding excessively dense sampling due
to limitations in measurement precision. The robot selects the nearest reachable point from
its current position and applies the fuzzy control law to reach it. Once the point is reached
within a position and orientation tolerance, the trajectory index is incremented, and the process
continues until the end of the path is reached. This tolerance provides flexibility and ensures
smooth advancement without excessive computational load.
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Figure 5.6: Communication Flow for a single agent system

Although ROS provides powerful tools for obstacle avoidance—such as the move_base package,
which integrates a variety of global and local planning algorithms—we chose not to use these
built-in solutions in our implementation. Instead, we applied the custom trajectory planner
developed in the previous chapter in order to evaluate its feasibility and performance in a
real-time simulation context.

5.3.2 Real-Time Command Synchronization

In ROS, real-time command synchronization is crucial to prevent divergence between the robot’s
motion and the reference. The function rospy.get_time() is used to align the execution of
control commands with the reference signals, which are time-dependent. To ensure proper
synchronization, the simulation starts only after the robot is fully initialized and ready to
receive commands.

The control loop is executed at a frequency of 10 Hz. This update rate allows follower robots in
a multi-agent system to obtain the leader’s data and compute their control signals in a single
iteration, avoiding latency or delays between agents.

5.3.3 Overcoming Dynamic Modeling

To avoid relying on the full dynamic model of the robot, two practical solutions are employed:

1. Using the differential_drive_controller plugin: This plugin allows control based
solely on the robot’s kinematic model. It receives velocity commands via the /cmd_vel
topic and converts them into wheel velocities, applied directly to the joints. By reducing
the robot’s mass and inertia in the URDF, dynamic effects become negligible, simplifying
implementation while preserving realistic motion.

2. Using recorded reference signals: In this approach, position and velocity data are recorded
from a reference robot moving with predefined velocities. These signals are then reused
as reference inputs in the control node, allowing the controller to replicate the desired
behavior without requiring a dynamic model.

In our implementation, we used the first method with reduced dynamic parameters in the
URDF to facilitate controller deployment.
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5.3.4 Control Feasibility and Actuator Protection

To ensure actuator feasibility and safety, several measures were adopted. First, by selecting the
closest trajectory point at each iteration, we prevent excessive control demands and maintain
commands within the actuator’s range.

In addition, we imposed explicit velocity limits:

- Linear velocity: limited between 0 and 6 m/s.

- Angular velocity: limited between -1.5 rad/s and 1.5 rad/s.

These limits help reduce oscillations during transient phases while respecting the robot’s non-
holonomic constraints.

Furthermore, the control gains were scaled by a factor of 0.01. This scaling reduces the risk of
saturating the actuators and prevents the robot from deviating significantly from its reference
trajectory, enhancing overall stability and robustness of the implementation.

5.4 Real-Time Fault Estimation and Detection

5.4.1 Real Faults in Mobile Robots

In real-world scenarios, mobile robots are subject to various fault sources that can severely
degrade their performance and autonomy. These faults originate from electrical, mechanical,
and energy supply subsystems, or may emerge due to aging components. In our simulation
study, representative faults have been injected to test the robustness of the proposed fault
estimation and control strategy. The classification provided here is based on a comprehensive
analysis of DC motor behavior, as referenced in [43].

- Electrical Faults : Electrical faults in DC motor-driven robots include short-circuits
causing overheating and torque loss, open-circuits leading to power failures, and worn
brushes inducing unstable motion. Poor commutation and insulation degradation may
also cause sparking and component damage.

- Mechanical Faults : Mechanical faults result from wear and degradation, such as worn
bearings causing vibrations, rotor imbalance reducing accuracy, and friction from dust or
poor lubrication leading to energy loss and overheating.

- Power Supply Faults : Power supply instabilities, such as voltage drops, transients,
or current surges, can cause speed oscillations, shutdowns, or damage to motor drivers.
Loose connections or faulty cables may also lead to intermittent faults and erratic robot
behavior.

All of these fault scenarios were emulated during the simulation phase to evaluate the efficiency
and resilience of the proposed fault-tolerant estimation and control strategy.
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5.4.2 Real-Time Fault Estimation Strategies

In the context of real-time implementation, two distinct strategies can be adopted for fault
estimation, each with its own advantages and trade-offs.

The first strategy, consists of running an online estimation algorithm that continuously detects
faults as they occur, regardless of their type or occurrence time. This method provides real-
time responsiveness and is particularly effective in unpredictable environments where fault
characteristics are unknown. However, it requires frequent computation, and the use of iterative
estimation techniques can significantly increase processing time, especially as the number of
iterations grows. To manage computational load while maintaining reactivity, we adopted a
control frequency of 10 Hz the estimation process will be in the same node of control.

The second strategy relies on prior knowledge of the possible fault types. In this case, a fixed
number of known fault profiles are identified and analyzed offline. Estimation is performed
in advance under controlled conditions to determine characteristic patterns. Then, during
online operation, the system only needs to recognize and match incoming fault signals to these
pre-characterized forms. Once identified, the compensation can be applied more efficiently and
accurately. This approach yields higher precision and faster fault rejection but is only applicable
when fault types are limited and well understood.

Each method serves different operational contexts: the first is suited for general, which was used
in our simulation, unpredictable environments, while the second excels in controlled systems
with predefined fault scenarios.

5.5 Simulation Results and Validation

To validate the different components developed throughout the implementation, we adopt a
step-by-step evaluation approach. The validation begins with the single-agent case, where
both the control performance and the fault estimation accuracy are analyzed in a controlled
environment. This phase helps verify the core functionalities in isolation and under simplified
conditions. Once satisfactory performance is confirmed, we extend the analysis to the multi-
agent case. This transition enables us to assess the robustness, scalability, and coordination
capabilities of the proposed strategies in a distributed setup. Each stage is supported by detailed
visualizations, quantitative error analysis, and observations that highlight the system’s behavior
under realistic constraints.

5.5.1 Single Agent case

To validate the proposed control strategy, we first consider a single-agent scenario in a simple
environment without any faults or obstacles. The objective is to assess whether the robot
can successfully follow the reference trajectory from non-zero initial conditions using the fuzzy
fault-tolerant controller.

Several plots are generated to illustrate the behavior of the system:
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5.5.1.1 Trajectory Tracking

To verify whether the robot follows the predefined reference trajectory, it is necessary to visual-
ize both the robot and the reference trajectory using the RViz visualization tool, as illustrated
in Figure 5.7b. During the simulation, various signals are recorded for later analysis and display.

In this chapter, the same gain values and parameters are used for both the control and estima-
tion processes, in both the single-agent and multi-agent scenarios. This allows for a consistent
comparison of the method’s performance between the theoretical results obtained from MAT-
LAB simulations and the more realistic conditions of the practical simulation environment.

As illustrated in Figure 5.7a, even with non-zero initial conditions, the robot—as previously
explained—searches for the closest point on the reference trajectory, which is (0,0). Once this
point is reached, it proceeds to follow the trajectory as expected.

−5 0 5 10 15
x [m]

−2

0

2

4

6

8

10

12

14

y 
[m

]

Trajectory
Robot

(a) Trajectory tracking

(b) robot state with reference trajectory

In Figure 5.8, the tracking errors ex, ey, eθ converge to zero once the robot reaches the refer-
ence trajectory. Afterward, a small residual error appears, which corresponds to the tolerance
specified in the algorithm. This level of error is acceptable and indicates that the robot can be
considered to have reached the desired position.
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Figure 5.8: Tracking Errors

Figure 5.9 shows that the control velocities v and ω closely follow the shape of the reference in-
puts imposed by the trajectory planner. This similarity confirms that the controller successfully
tracks the desired velocity profiles.

Moreover, the control inputs remain within admissible bounds and exhibit smooth transitions,
indicating proper dynamic behavior without excessive oscillations or instability. The conver-
gence toward the reference commands in both transient and steady-state phases validates the
effectiveness of the implemented control strategy.
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Figure 5.9: Control Signals (Velocities)

5.5.1.2 Obstacle avoidance

Trajectory tracking must be implemented in real time alongside the obstacle avoidance control.
To evaluate the latter, static cylindrical obstacles with a diameter of 0.5 m are placed directly
along the robot’s reference path.
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Several key signals are recorded to assess the reliability and effectiveness of the control strategy.
As shown in Figure 5.10, the robot successfully detects and avoids obstacles that lie directly in
its path.

As previously described, the fusion between the trajectory tracking and obstacle avoidance
controllers is handled using a fuzzy logic scheme. This fusion ensures a smooth and balanced
combination of both objectives, preventing one control objective from dominating the other,
which could otherwise lead to divergence or failure in reaching the goal.
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Figure 5.10: Obstacle avoidance

Figure 5.11a shows the measured distance between the robot and the closest obstacle, as de-
tected by the onboard LiDAR sensor. To ensure numerical stability and bounded decision-
making, the maximum distance was capped at 10 m instead of using an infinite value.

As the robot approaches obstacles—specifically around 5 s, 10 s, and 20 s sharp drops in
distance are observed. In response, as illustrated in Figure 5.11b, the fusion coefficient F
increases accordingly. This indicates a stronger influence of the obstacle avoidance controller
during those time intervals.

The observed correlation between the LiDAR measurements and the variation in F confirms the
efficiency and responsiveness of the fusion algorithm. It demonstrates that the control system
dynamically prioritizes obstacle avoidance when necessary, while maintaining overall trajectory
tracking integrity.
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A fusion coefficient F in the range of approximately 0.6 to 0.7 is sufficient to activate the obstacle
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avoidance control. These values can be adjusted by redefining the membership functions in the
fuzzy controller.

However, the value of F should not reach 1, as it is essential to maintain a minimum contri-
bution from the trajectory tracking controller. This ensures that the robot continues to follow
the global path while avoiding obstacles, preventing complete divergence from the intended
trajectory.

5.5.1.3 Fault Estimation

We now reach the main objective of this project: injecting faults with arbitrary shapes into the
system. As previously discussed, this fault injection can be implemented both in simulation
and in real-time scenarios.

In this section, we introduce actuator faults directly at the system input. These faults are the
same as those used in the previous chapter. We estimate these faults using a single iteration of
the k-step observer, and we analyze their impact on the robot’s behavior, particularly in terms
of trajectory tracking and control signals. As shown in Figures 5.12a and 5.13a, a small residual
error remains compared to the true injected fault. These residual errors are approximately 0.195
and 2.323, respectively, for the linear and angular components.
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Figure 5.12: Input 1 fault estimation

After seven iterations, we observe in Figures 5.12b and 5.13b that the estimated fault signals
closely match the actual faults. The residual errors are reduced to 0.048 and 0.276 for the linear
and angular components, respectively.

Although the algorithm could be allowed to run for additional iterations, this is unnecessary
in practice. As observed, further iterations have a negligible impact on the trajectory tracking
performance, making the additional computational cost unjustified.
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Figure 5.13: Input 1 fault estimation

As previously discussed, estimating the injected faults using only a single iteration is insufficient.
This limitation is evident in Figure 5.14a, where a slight divergence from the reference trajectory
is observed due to inadequate fault compensation.

However, after performing seven iterations, the effect of the fault becomes almost imperceptible
at the trajectory level figure 5.14b. The compensation is effectively achieved, and the robot is
able to maintain accurate trajectory tracking despite the presence of actuator faults.
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Figure 5.14: Trajectory tracking

The appearance of faults at the input level can destabilize the system. Since we are operating
in an closed-loop configuration, the system tends to recover stability on its own, which in
turn generates undesirable control signals—often deviating significantly from the predefined
reference values.

One of the key advantages of accurate fault estimation and compensation is the improvement
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in the quality of the control inputs. As shown in Figure 5.15 for the linear velocity and
Figure 5.16 for the angular velocity, the control signals become smoother and more consistent
after compensation. This smoothness helps reduce mechanical stress on the actuators, thus
enhancing their operational safety and longevity.
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Figure 5.15: Control signals - Input 1
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Figure 5.16: Control signals - Input 2

5.5.2 Multi Agent case

It is more relevant to extend the "k-step fault estimation" algorithm to multi-agent systems in
order to evaluate its efficiency and reliability in a distributed context. This extension is justi-
fied by the fact that both single-agent and multi-agent frameworks share the same theoretical
foundation and estimation logic.

We adopted the same simulation setup as in the previous chapter, using an identical communi-
cation prototype between the robots. To ensure better synchronization and reliable communi-
cation among the four robots, each agent was assigned a unique namespace prefix. This allowed
us to reuse the same controller model across all agents within the simulation environment.

Figure 5.17 illustrates the communication structure between the ROS nodes, including the pub-
lication of reference trajectories in the visualization tool. This configuration provides complete
insight into the behavior of each robot within the multi-agent network.
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Figure 5.17: RQT graph for multi agent system

5.5.2.1 Trajectory Tracking

Robot 1 acts as the leader and guides the rest of the agents, as previously described. As shown
in Figure 5.18, the multi-agent system successfully follows the reference trajectory under the
following velocity profiles:

vr = 1 m/s,

wr = 0.3 e−0.2t rad/s

The results confirm that the coordinated tracking behavior is well maintained within the group,
even under time-varying angular velocity references.
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Figure 5.18: Trajectories tracking

As shown in Figure 5.19, the tracking errors gradually converge to zero after a transient phase.
This behavior is mainly due to the anticipation mechanism used to determine the next target
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position along the reference trajectory. As a result, the error requires some time to stabilize
around zero.

Furthermore, the error curves are not perfectly smooth, which can be attributed to the numeri-
cal computation and the use of a relatively moderate control and update frequency. Despite this,
the system exhibits satisfactory performance in terms of convergence and trajectory tracking
accuracy.
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Figure 5.19: Tracking Errors

As observed in Figure 5.20, the velocity signals exhibit a transient phase during which the linear
and angular velocities may reach relatively high values. To prevent potential damage to the
robot’s actuators and to ensure system stability, we imposed saturation limits on the control
inputs.

Specifically, the angular velocity is constrained within the range [−1.5, 1.5] rad/s, while the
linear velocity is bounded between 0 and 6 m/s. These bounds serve to protect the hardware
and to avoid generating excessively large velocities that could destabilize the overall system.
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Figure 5.20: Control signals

To provide a more precise evaluation of formation control, we visualize the distance between
the leader and each follower, as shown in Figure 5.21. It can be observed that all distances
converge toward a constant value of 4 m, which was predefined in the control strategy.

This convergence confirms the effectiveness of the formation maintenance mechanism and high-
lights the stability of inter-agent coordination during trajectory tracking.
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Figure 5.21: Distance between the leader and the followers

5.5.2.2 Obstacle avoidance

As we did in the single-agent case, the obstacle avoidance control must also be validated for
each robot operating in real-time within the multi-agent configuration. A specific logic was
defined to govern the behavior of this control mechanism:

- During the transient phase, if two robots come close to each other, they will treat one
another as obstacles and perform mutual avoidance maneuvers.

- The follower robots track the actual position of the leader robot. If the leader avoids an
obstacle, the followers continue tracking its updated trajectory. Once the leader returns
to its original reference path, the followers also realign with it.
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This logic was previously introduced and explained in detail in the preceding chapter, and is
recalled here for clarity.

To test this behavior, we considered a simple scenario illustrated in Figure 5.22, where no
obstacles are placed directly on the leader’s reference trajectory. This choice helps to clearly
visualize the trajectories of each robot and evaluate their interaction without interference from
the leader’s obstacle avoidance maneuvers,under the following velocity profiles:

vr = 1 m/s,

wr = 0.06 tanh(t − 10) rad/s
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Figure 5.22: Obstacle avoidance - Multi Agent

Figures 5.23a and 5.23b demonstrate that the robots operate effectively in an environment
containing static obstacles. The results confirm that the proposed control strategy ensures both
reliable obstacle avoidance and consistent inter-agent coordination under realistic conditions.
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5.5.2.3 Fault Estimation

To evaluate the performance of the fault estimator in the multi-agent system, we follow the
same procedure as in the single-agent case.

5.5.2.3.1 One-Step Fault Estimation The same actuator faults used in the previous
chapter were injected, but at different time instants for each of the four robots. The results of
the one-step fault estimation are presented in Figures 5.24 and 5.25, which show the estimated
faults applied to input 1 and input 2 of each robot, respectively.

Simulation Results and Validation 121



Implementation in ROS

These initial estimations provide a qualitative view of the estimator’s ability to respond quickly,
even in a distributed multi-agent context.
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Figure 5.24: One-step fault estimation - Input 1
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Figure 5.26 illustrates the trajectories of the four robots under a control strategy based on the
one-step fault estimation. A noticeable deviation from the reference path is observed for each
robot.

Such deviations are not acceptable in high-precision applications, as they indicate insufficient
fault compensation when relying on a single iteration of the estimator.
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Figure 5.26: Trajectory tracking

For the same reference trajectory, Figure 5.27 shows that the tracking errors are directly affected
by the presence of uncorrected faults, as also illustrated in the previous figure.

This confirms the need to increase the number of estimation iterations in order to improve the
accuracy of the fault compensation and, consequently, the overall control performance.
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Figure 5.27: Tracking Errors

The presence of faults also affects the control signals, even after the system reaches the steady-
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state phase, as shown in Figures 5.28a and 5.28b.

These disturbances in the control inputs highlight the impact of inaccurate fault estimation
on actuator behavior, further emphasizing the necessity of refining the estimation process to
ensure smooth and reliable control signals.
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The estimation errors for the actuator faults after a single iteration are summarized below for
each robot. The values correspond respectively to the linear and angular fault components
(fv, fw) for Robots 1 to 4:

- Robot 1: fv = 0.399728, fω = 2.114611

- Robot 2: fv = 1.296750, fω = 0.660917

- Robot 3: fv = 0.555112, fω = 0.224343

- Robot 4: fv = 0.688149, fω = 3.793464

These results confirm that the estimation error remains significant for certain agents, especially
for the angular faults. This justifies the need to perform more iterations to improve accuracy
and ensure reliable control in fault-tolerant multi-agent scenarios.

5.5.2.3.2 4-step Fault Estimation After four iterations, the fault estimation errors were
significantly reduced, with values as follows for each robot (fv, fω):

- Robot 1: fv = 0.116411, fω = 0.473179

- Robot 2: fv = 0.435226, fω = 0.159298

- Robot 3: fv = 0.211115, fω = 0.042769

- Robot 4: fv = 0.257568, fω = 1.566265

These results are considered acceptable, as the estimation errors converge toward zero as ex-
pected. This improvement is clearly illustrated in Figures 5.29 and 5.30, which show the
alignment between the estimated and actual fault signals after four iterations.
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Figure 5.29: 4-step fault estimation - Input 1
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Figure 5.30: 4-step fault estimation - Input 2

As shown in Figure 5.31, the reference trajectory is accurately followed after four iterations of
fault estimation. This confirms the effectiveness of the compensation mechanism and validates
the robustness of the proposed approach in the presence of actuator faults within a multi-agent
system.

The tracking errors clearly converge after four iterations of fault estimation, as illustrated in
Figure 5.32. This demonstrates the capability of the estimator to effectively reduce the impact
of actuator faults and restore accurate trajectory tracking performance.
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Figure 5.31: Trajectory tracking
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Figure 5.32: Tracking Errors

Finally, the control signals confirm the effectiveness of the fault compensation. As shown
in Figure 5.33a, the linear velocity remains close to the desired value, indicating that the
compensation mechanism has successfully restored proper control performance.

However, for the angular velocity, Figure 5.33b reveals that the signal is not yet fully stable.
Although additional iterations of the estimator could further refine the compensation, this is
not strictly necessary, as the main objective has already been achieved: the trajectory tracking
is rigorous and robust, even in the presence of actuator faults.
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Based on the results obtained, we can conclude that the proposed approach has been suc-
cessfully validated in real-time conditions. However, compared to the results presented in the
previous chapter, the real-time performance appears slightly degraded. This discrepancy can
be attributed to practical constraints inherent to real-world implementation, such as limited
computation frequency, sensor noise, communication delays, and actuation imperfections. De-
spite these factors, the system remains robust and the experimental outcomes are consistent
with the theoretical expectations, thereby confirming the practical applicability of the method.

Specifically, the "k-step fault estimation" algorithm demonstrates reliable performance, provid-
ing accurate fault estimation and effective compensation within a multi-agent system. These
results confirm that the estimator is suitable for applications requiring a given level of precision,
while maintaining reasonable computational efficiency.

5.6 Limitations and Drawbacks of K-Step Fault Estima-
tion

Despite its effectiveness in estimating faults, the implementation of the k-step fault estimation
approach presents several limitations, particularly when extended beyond mobile robots:

- Computational Load: The method is computationally heavy, especially when pro-
cessing real-time measurement signals from physical environments. High-performance
hardware is often required to maintain real-time performance.

- Communication Overhead in Multi-Agent Systems: In multi-agent scenarios, re-
liable and fast inter-agent communication is crucial. The need to exchange state and
estimation data frequently adds complexity and demands robust communication proto-
cols.

- Estimation Inaccuracy: Estimation errors cannot be fully eliminated. The observer
always retains a residual estimation gap that may affect control decisions.

- Poor Performance with Fast-Varying Faults: The estimator struggles with high-
dynamic faults, which can cause overshoots or delayed responses, destabilizing the esti-
mation loop and potentially the overall control system.

Limitations and Drawbacks of K-Step Fault Estimation 127



Implementation in ROS

- Dependency on Measurement Quality: The performance is highly sensitive to noise,
delays, and sensor inaccuracies. Any corruption in the measurements may compromise
convergence or produce significant estimation errors.

- Sampling Frequency Constraints: There is a trade-off in selecting the sampling rate.
A high frequency increases the computational burden, while a low frequency delays fault
detection. Even with low frequencies, poor signal quality can lead to false estimations.

5.7 Future Work and Perspectives

Several directions can be explored to improve the robustness, efficiency, and applicability of the
k-step fault estimation and control framework:

5.7.1 Enhancing the Estimator

- Online adaptive gain computation: The current implementation uses offline-computed
observer gains based on fixed performance indices. A promising extension would be to de-
sign adaptive or reinforcement learning-based mechanisms that update gains in real-time,
based on the system state and varying performance metrics.

- Acceleration of the estimation process: By allowing the observer to learn and store
fault dynamic profiles, it may be possible to skip initial iterations and begin with a more
accurate estimate, thereby reducing transient estimation errors.

- Reduced-order or local-model-based observers: For large-scale or complex systems,
simplified observer structures can be used, where each observer is associated with a specific
submodel, reducing the computational burden.

- Hybrid approaches with AI-based estimators: Fault recognition can be improved
by combining traditional k-step observers with neural networks, support vector machines,
or other machine learning techniques to enhance detection performance.

- Development of a generic ROS package: Creating a reusable ROS package dedicated
to fault detection using k-step observers would promote broader use and ease integration
across platforms.

- Extension to stochastic and multiplicative faults: In future work, we plan to study
the case of stochastic or random faults, which pose a significant challenge due to their
high variability and rapid dynamics. The current k-step observer has shown limitations
when dealing with such fast-evolving fault profiles. Addressing this will require more
robust estimation strategies. Additionally, we will investigate multiplicative fault models
by modifying the fault representation in the system equations, which may offer a more
realistic modeling framework for certain actuator or sensor degradations.

5.7.2 Advanced Applications

- Deployment on real robots with noisy sensors: Transitioning from Gazebo simula-
tions to physical platforms like differential-drive robots equipped with real sensors would
allow validation under realistic conditions with sensor fusion technics to improve state
estimation accuracy.
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- Extension to more complex multi-agent systems: The framework can be adapted
to heterogeneous or dynamic agents such as UAVs or robotic arms in logistics in dynamic
environment with moving obstacles .

- Migration to ROS2: Porting the architecture to ROS2 can leverage DDS, offering better
communication latency and real-time performance support for large-scale applications.

Conclusion

This chapter demonstrated the successful implementation of the k-step fault estimation observer
within a realistic robotic framework using ROS and Gazebo. The simulation environment
provided a valuable platform to emulate real-world constraints such as sensor delays, noisy
measurements, and actuator saturation, while maintaining full control over the testing scenarios.

The proposed estimator proved to be effective in both single and multi-agent configurations. It
was capable of detecting and compensating for actuator faults in real-time, thereby maintaining
accurate trajectory tracking and stable control inputs. The results showed that increasing the
number of iterations significantly improved estimation accuracy and control performance.

Despite the absence of real hardware, the use of a physics-based simulator with realistic sensor
models ensured that the findings remain valid and transferable to physical platforms. This
practical validation confirms the robustness and adaptability of the fault-tolerant strategy in
conditions that closely resemble real-world deployment.

The success of this implementation paves the way for future integration on actual robotic
systems, with further enhancements such as adaptive gain tuning, learning-based estimation,
and deployment on heterogeneous agent networks.
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General Conclusion

This project successfully achieved its goal of developing and validating a fault-tolerant control
strategy for nonlinear systems using iterative observer-based methods. By combining Takagi-
Sugeno fuzzy modeling, iterative k-step observer design, and distributed estimation logic, the
proposed framework provides an effective and robust solution for detecting and compensating
actuator faults in both centralized and decentralized configurations.

Theoretical developments were carried out to design fault estimation observers that ensure
convergence, robustness, and adaptability under various fault conditions. The observer struc-
ture was rigorously analyzed using Lyapunov based techniques, and synthesis conditions were
derived using linear matrix inequalities. The iterative nature of the observer, which updates
fault estimates at each time step, provides fast responsiveness an essential characteristic for
embedded control systems and autonomous agents.

The proposed methodology was first validated in a single-agent configuration, where simulation
results demonstrated accurate reconstruction of fault signals and rapid convergence of the
estimation error. The approach was then extended to multi-agent systems, leveraging graph
theory and Kronecker product representations to design a distributed estimation scheme. This
extension enables each agent to reconstruct local faults while cooperating with neighboring
agents, thus enhancing the overall fault-awareness of the networked system.

In the context of robotics, the framework was applied to differential drive mobile robots. These
systems, commonly used in both research and industrial applications, exhibit nonlinear and
coupled dynamics that make fault compensation particularly challenging. The integration
of the observer-based FTC approach allowed the robots to maintain stability and trajectory
tracking performance, even when actuator faults were introduced during operation.

Beyond theoretical and simulated environments, the project culminated in a real-time imple-
mentation using the Robot Operating System (ROS). The observer and control algorithms
were deployed in a realistic robotic simulation architecture, demonstrating that the proposed
solution is not only theoretically sound but also practically feasible. Real-time tests confirmed
that the method performs well under realistic timing constraints, communication delays, and
software integration requirements.

This work, therefore, bridges the gap between abstract theoretical control design and practical
implementation on autonomous robotic platforms. It illustrates how modern FTC techniques
can be made computationally efficient, modular, and adaptable to the real-world demands of
distributed and embedded systems.
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General Conclusion

While the initial objectives of this project have been successfully met, several promising direc-
tions can be pursued as future work:

- Extending the fault estimation capability to include sensor faults and combining actuator
and sensor fault reconstruction in a unified observer framework,

- Enhancing scalability for large-scale multi-agent systems, with time-varying communica-
tion topologies and event-triggered interactions,

- Integrating adaptive and learning-based mechanisms to allow online tuning of observer
parameters using machine learning or data-driven methods,

- Transitioning from simulated robots to real physical platforms and evaluating the perfor-
mance in hardware-in-the-loop or real-world scenarios,

- Exploring applications in other domains such as unmanned aerial vehicles, autonomous
underwater robots, or cooperative industrial manipulators.

In conclusion, the developed fuzzy FTC approach for nonlinear systems using iterative observer
represents a solid and scalable contribution to the field of modern control theory, particularly
in the context of nonlinear and distributed systems. It combines rigorous mathematical foun-
dations with practical validation, opening the door to reliable and autonomous operation in the
presence of faults. As system complexity and autonomy continue to grow, such fault-tolerant
strategies will play a critical role in ensuring resilience, safety, and continuous performance.
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Appendix A

L2 Attenuation and Lemmas

1.1 L2 Approach

Consider the linear system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (A.1)

If the system is stable and the input u(t) is bounded, then the output y(t) is also bounded.
There exists a scalar γ > 0 such that:∫ +∞

0
yT (t)y(t)dt ≤ γ2

∫ +∞

0
uT (t)u(t)dt (A.2)

The scalar γ is called the L2-gain of the system.

1.2 Lemmas

Lemma 1 (Bounded Real Lemma): Inequality (A.2) holds for all u(t) ̸= 0 if and only if there
exists a matrix P > 0 such that:AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ2I

 < 0 (A.3)

To minimize γ, one may solve the following convex optimization problem:

min γ (A.4)

subject to: AT P + PA + CT C PB + CT D

BT P + DT C DT D − γI

 < 0, P > 0 (A.5)

Proof: The proof uses the Lyapunov function:

V (x(t)) = xT (t)Px(t), P > 0 (A.6)
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Integrating both sides:∫ +∞

0
ẋT (t)Px(t)dt +

∫ +∞

0
yT (t)y(t)dt ≤ γ2

∫ +∞

0
uT (t)u(t)dt (A.7)

which leads to: ∫ +∞

0

(
ẋT (t)Px(t) + yT (t)y(t)

)
dt ≤ γ2

∫ +∞

0
uT (t)u(t)dt (A.8)

Which implies:
ẋT (t)Px(t) + yT (t)y(t) ≤ γ2uT (t)u(t) (A.9)

Using system equations, the quadratic form becomes:

xT (t)(AT P + PA + CT C)x(t) + 2xT (t)(PB + CT D)u(t)+
uT (t)(DT D − γ2I)u(t) ≤ 0

(A.10)

Matrix form: x(t)
u(t)

T AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ2I

 x(t)
u(t)

 ≤ 0 (A.11)

Thus inequality (A.12) is satisfied:AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ2I

 < 0 (A.12)

Lemma 2: For any matrices X, Y of compatible dimensions, the inequality:

XT Y + Y T X ≤ XT Ω−1X + Y T ΩY, Ω > 0 (A.13)

is verified.

Lemma 3 (Schur Complement): Given matrices Ψ(x), S(x), R(x) with R(x) = R(x)T , the
following LMIs are equivalent:  Ψ(x) S(x)

ST (x) R(x)

 > 0 (A.14)

R(x) > 0, Ψ(x) − S(x)R(x)−1ST (x) > 0 (A.15)
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Appendix B

LMI Regions

2.1 LMI Regions

The time-domain behavior of a linear system is linked to the location of its poles in the complex
plane. In Takagi-Sugeno systems, this behavior depends on the location of the poles of the sub-
models (polytope vertices). The real parts of the poles influence the convergence speed of
the associated modes. The imaginary parts, on the other hand, affect oscillation presence
and overshoot, as well as 5% settling time. Consequently, one effective approach to improve
controller or observer performance is to place the poles of the closed-loop or observer system
within LMI-defined complex-plane regions. These are known as LMI regions.
Definition 1 ([24]). A region S in the complex plane is called an LMI region if there exists a
symmetric matrix M ∈ Rm×m and a matrix N ∈ Rm×m such that:

S = {z ∈ C : fS(z) < 0} (B.1)

with
fS(z) = M + zN + z∗NT (B.2)

where z∗ denotes the complex conjugate of z. The function fS(z) is called the characteristic
function of the region.

In other words, an LMI region is a region of the complex plane characterized by an LMI de-
pending on z and z∗, where a = ℜ(z) and b = ℑ(z). LMI regions are thus convex sets.

2.2 Examples of LMI Regions

Let a = ℜ(z) and b = ℑ(z), then:

a = z + z∗

2 , b = z − z∗

2j
(B.3)

The left half complex plane can be characterized by a < 0, hence its LMI region representation
is:

fS(z) = z + z∗ (B.4)

The region S1 (left half-plane shifted by α):

fS1(z) = z + z∗ + 2α (B.5)
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Figure 2.1: Examples of LMI regions.

The disk centered at the origin S2 is characterized by:

z∗z − β2 < 0 (B.6)

which can be rewritten using the Schur complement:

fS2(z) =
−β2 z

z∗ −1

 < 0 (B.7)

The sector S3 with angle 2θ defined by | arg(z)| < θ has LMI form:

fS3(z) =
sin(θ)(z + z∗) cos(θ)(z − z∗)
cos(θ)(z∗ − z) sin(θ)(z + z∗)

 < 0 (B.8)

2.2.1 Pole Placement Using LMI Regions

Theorem 7 ([24]). The eigenvalues of a real matrix M lie inside the region S if and only if
there exists a symmetric matrix X > 0 such that:

MS(M, X) = A ⊗ X + B ⊗ MX + BT ⊗ XMT < 0 (B.9)

Here, ⊗ denotes the Kronecker product.

To use this in practice, the function fS(z) is substituted with:

(X, MX, XMT ) 7→ (1, z, z∗) (B.10)

For example, if the eigenvalues of M must lie in S1, we require:

∃X > 0 : MX + XMT + 2αX < 0 (B.11)

For region S2, we require:

∃X > 0 :
−βX MX

XMT −βX

 < 0 (B.12)

For region S3, we require:

∃X > 0 :
sin(θ)(MX + XMT ) cos(θ)(MX − XMT )
cos(θ)(XMT − MX) sin(θ)(MX + XMT )

 < 0 (B.13)
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Theorem 8 ([24]). Let S1 and S2 be two LMI regions. The eigenvalues of M lie in S1 ∩ S2 if
and only if there exists X > 0 such that:

MS1(M, X) < 0, MS2(M, X) < 0 (B.14)

2.3 Multi Agent Faults

The following faults were injected in the Chapter 2.3.3 in the part of the multi-agent system.

Agent Linear Velocity Fault fv(t) Angular Velocity Fault fω(t)

1


2(t − 5), 5 ≤ t ≤ 10
10, t > 10
0, otherwise

10e−10(t−7)2
, 6 ≤ t ≤ 8

0, otherwise

2
10, 8 ≤ t ≤ 13

0, otherwise


10(1 − e−0.8(t−8)), 8 ≤ t ≤ 13
10, t > 13
0, otherwise

3


10(1 − e−0.8(t−10)), 10 ≤ t ≤ 15
10, t > 15
0, otherwise


2(t − 10), 10 ≤ t ≤ 15
10, t > 15
0, otherwise

4 8 · e− (t−8.5)2
2

10e−0.5(t−8) sin(2π(t − 8)), 8 ≤ t ≤ 11
0, otherwise

Table 2.1: Injected fault signals for each robot’s linear and angular velocity inputs.
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Appendix C

Graph Theory Notations

Information exchange among agents in a multi-agent system is typically modeled using directed
or undirected graphs [38]. Let G = (V , E) be a graph, where V = {1, 2, . . . , p} is the node set
(each node representing an agent), and E ⊆ V × V is the edge set.

In a directed graph, the edge (i, j) ∈ E indicates that agent j receives information from agent
i, but not necessarily vice versa. In contrast, an undirected graph assumes mutual information
exchange, i.e., if (i, j) ∈ E , then (j, i) ∈ E as well. Self-loops (i, i) are typically excluded unless
otherwise specified.

A neighbor of node j is any node i such that (i, j) ∈ E , and the set of neighbors of node j is
denoted by Nj. A weighted graph assigns a nonnegative weight to each edge. The union of a
collection of graphs is defined by the union of their respective node and edge sets.

A directed path is a sequence of directed edges such as (i1, i2), (i2, i3), . . .. A cycle is a directed
path that starts and ends at the same node. A directed graph is said to be strongly connected
if there exists a directed path from every node to every other node. An undirected graph is
said to be connected if there exists a path between any two distinct nodes.

A directed tree is a directed graph in which every node has exactly one parent, except for one
node called the root, which has no incoming edge and has a directed path to all other nodes.
A tree in an undirected graph is a connected graph with no cycles.

A subgraph (Vs, Es) of a graph (V , E) satisfies Vs ⊆ V and Es ⊆ E ∩ (Vs × Vs). A directed
spanning tree is a subgraph that is a directed tree and covers all nodes in V . The existence
of a directed spanning tree implies that there is at least one node from which a directed path
exists to all other nodes.

Adjacency Matrix and Laplacian Matrix: Let A = [aij] ∈ Rp×p denote the adjacency matrix of
G, where aij > 0 if (i, j) ∈ E , and aij = 0 otherwise. For undirected graphs, aij = aji, and the
adjacency matrix is symmetric. The graph is called balanced if ∑p

j=1 aij = ∑p
j=1 aji for all i.

The Laplacian matrix L = [ℓij] ∈ Rp×p is defined as:

ℓii =
p∑

j=1
j ̸=i

aij, ℓij = −aij for i ̸= j

This can also be written as L = D − A, where D is the degree matrix, defined by D =
diag(d1, . . . , dp), with di = ∑p

j=1 aij. For undirected graphs, L is symmetric and positive semi-
definite. The smallest eigenvalue is zero, and its multiplicity equals the number of connected
components in the graph.
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In both directed and undirected cases [44], the Laplacian matrix has row sums equal to zero. All
nonzero eigenvalues of an undirected Laplacian are real and nonnegative. The second smallest
eigenvalue λ2(L), known as the algebraic connectivity, is positive if and only if the graph is
connected, and it quantifies the convergence rate in consensus algorithms.

Finally, for a given weight matrix S = [sij], the directed graph Γ(S) is defined by placing an
edge from node j to node i if sij ̸= 0, and no edge otherwise.
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Business Model Canvas
1. Key Partners 2. Key Activities 3. Value Proposition

• Academic research labs
• ROS and open-source com-
munities
• Robotics hardware suppliers

• Fault-tolerant control design
• Real-time implementation in
ROS
• Simulation and validation of
faults

• Robustness against faults
• Online estimation and com-
pensation
• Compatible with ROS and
Arduino
• Energy efficiency and safety
increase

4. Customer Relationships 5. Customer Segments 6. Channels

• Personalized technical sup-
port
• Co-development with part-
ners
• Workshops and tutorials
• Clear and interactive docu-
mentation

• Robotics and mechatronics
startups
• Embedded critical systems
• Research in autonomous sys-
tems
• Biomedical robotics

• GitHub (open-source)
• Scientific publications
• Professional networks
(LinkedIn)
• Conferences and exhibitions

7. Key Resources 8. Cost Structure 9. Revenue Streams

• FTC and adaptive control ex-
pertise
• ROS + MATLAB code base
• Test platforms (Arduino,
robots)
• Experimental data

• Hardware components
• Development and testing
time
• Software licenses (e.g. MAT-
LAB)
• Conference participation

• Licensing of advanced mod-
ules
• Custom integration services
• Industrial partnerships
• Training and consulting
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