RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE

Département Automatique

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Automatique

Implémentation pratique d'un signal de modulation généré par algorithme quantique QPWM et conception d'un circuit analogique d'émulation quantique

KOUICI Abderraouf & TAZEROUT Anis-lounes

Sous la direction de **Pr. TADJINE Mohamed** ENP et **Pr. ZIOUI**Nadjet UQTR

Présenté et soutenu publiquement le (22/06/2025)

Composition du jury:

Président : Pr. NOM Prénom ENP

Promotrice: Dr. NOM Prénom ENP

Examinatrice: Dr. NOM Prénom ENP

ENP 2025

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE

Département Automatique

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Automatique

Implémentation pratique d'un signal de modulation généré par algorithme quantique QPWM et conception d'un circuit analogique d'émulation quantique

KOUICI Abderraouf & TAZEROUT Anis-lounes

Sous la direction de **Pr. TADJINE Mohamed** ENP et **Pr. ZIOUI**Nadjet UQTR

Présenté et soutenu publiquement le (22/06/2025)

Composition du jury:

Président : Pr. NOM Prénom ENP

Promotrice: Dr. NOM Prénom ENP

Examinatrice: Dr. NOM Prénom ENP

ENP 2025

ملخص

تفترح هذه المذكرة مقاربة مبتكرة لتوليد إشارات التحكم بالاعتماد على مبادئ الحساب الكمومي. ينقسم العمل إلى جزئين رئيسيين. يهتم الجزء الأول بتوليد إشارة تضمين عرض النبضة (PWM) انطلاقًا من محاكاة دارة كمومية (QPWM). انطلاقًا من الصياغة الرياضية للعمليات على الكيوبت، يتم اشتقاق عبارة رياضية ثم يتم برمجته على بطاقة مدمجة لإنتاج إشارة تحكم مضمنة. بعد ذلك، يتم إجراء مقارنة مع إشارة PWM التقليدية من أجل تقييم مدى فعالية وجدوى هذه المقاربة. أما الجزء الثاني من المذكرة، فيتناول تصميم دارة إلكترونية تماثلية قادرة على محاكاة السلوك الديناميكي لنظام كمومي. تُفسر التحولات الأحادية المرتبطة بالبوابات الكمومية على أنها دارات تماثلية، مما يؤدي إلى إنشاء دارة تنتج إشارة مستمرة تمثل تطوّر الحالات الكمومية، بهدف تحقيق تنفيذ عملي للدوائر الكمومية.

الكلمات المفتاحية

إشارة تضمين عرض النبضة QPWM - PWM - الحوسبة الكمومية - الكيوبت - بطاقة تحكّم مدمجة - دارة إلكترونية تماثلية - دارة كمومية

Abstract

This thesis explores an original approach to signal generation in control systems by leveraging principles from quantum computation. The work is divided into two main parts. The first part investigates the generation of a Pulse Width Modulation (PWM) signal from a simulated quantum circuit. Starting from the mathematical formulation of single-qubit operations, we derive an analytical expression that is implemented on a microcontroller to produce a modulated control signal. A comparative analysis is then conducted with conventional PWM signals to evaluate the effectiveness of the quantum-based approach.

The second part of the study proposes the design of an analog electronic circuit that emulates the behavior of a quantum system. By interpreting the unitary transformations associated with quantum gates as equivalent analog blocks, the circuit is constructed to output a continuous signal that mimics the dynamics of quantum states for the practical implementation of quantum circuit.

Keywords : pulse width modulation PWM - QPWM - Quantum computing -analog blocks - electronic circuit - qbits - quantum circuit.

Résumé

Ce memoir propose une approche innovante de la génération de signaux de commande en s'appuyant sur les principes du calcul quantique. Le travail est structuré en deux parties principales. La première s'intéresse à la génération d'un signal de modulation de largeur d'impulsion (PWM) à partir de la simulation d'un circuit quantique (MLIQ). En partant de la formulation mathématique des opérations sur un qubit, une expression analytique est dérivée, puis implémentée sur une carte embarquée afin de produire un signal de commande modulé. Une comparaison est ensuite réalisée avec un signal PWM classique pour évaluer la pertinence et la performance de l'approche.

La seconde partie du mémoire traite de la conception d'un circuit électronique analogique capable d'émuler le comportement dynamique d'un système quantique. Les transformations unitaires associées aux portes quantiques sont interprétées comme des blocs analogiques, aboutissant à un circuit produisant un signal continu reproduisant l'évolution des états quantiques dans l'optique d'une implementation partique des circuits quantiques.

Mots clés: modulation de largeur d'impulsion (PWM) - (QPWM) - calcul quanitque -blocs analogique - circuit electronique- qbits - circuit quantique.

Remerciements

Avant toute chose, nous remercions Dieu Tout-Puissant de nous avoir accordé la force, la santé et la patience nécessaires pour mener à bien ce travail.

Nous souhaitons également exprimer notre profonde gratitude à nos parents, dont l'amour inconditionnel, les encouragements constants et les sacrifices quotidiens ont rendu notre parcours possible. Leur confiance indéfectible en nous a toujours été une source de motivation essentielle.

Nous exprimons notre sincère reconnaissance à nos encadrant, Professeur Nadjet ZIOUI et Professeur Mohamed TADJINE, pour leurs encadrements rigoureux, leurs disponibilité et la qualité de leurs conseils tout au long de ce projet. leurs expertise nous a été précieuse à chaque étape du travail.

Nous tenons aussi à remercier l'ensemble du corps enseignant du département d'Automatique, pour la qualité de l'enseignement reçu et pour les compétences solides qu'ils nous ont permis d'acquérir durant notre formation, Ainsi que tout le personnel de l'École Nationale Polytechnique qui ont contribué au bon déroulement de nos année d'étude au seins de l'établissement.

Enfin, nous remercions chaleureusement nos camarades, collègues et amis pour leur soutien, leurs échanges constructifs et leur présence tout au long de cette expérience.

KOUICI et TAZEOURT

Table des matières

Table des figures

Liste des acronymes

In	trod	uction	générale	16	
1	Gér	iéralité	és sur le calcul quantique	19	
	1.1	Introd	uction	20	
	1.2	Princi	ncipe du calcul quantique		
		1.2.1	Définition de l'espace de Hilbert	21	
			1.2.1.1 Vecteurs de base	21	
		1.2.2	La notion de Quantum bit	22	
			1.2.2.1 Supports physiques des qubits	22	
			1.2.2.2 Superposition	23	
			1.2.2.3 Mesure	24	
			1.2.2.4 Bloch sphère	25	
	1.3	Les op	opérations quantiques		
		1.3.1 Opérations sur un seul Qubit			
			1.3.1.1 Décomposition des opérations sur un seul qubit	29	
		1.3.2	Opérations sur plusieurs Qubits	29	
	1.4	Les cir	rcuits quantiques	32	
		1.4.1	Outils de simulation des circuits quantiques	32	
		1.4.2	Exemples de circuits quantiques	33	
			1.4.2.1 Circuit de Bell	33	

		1.4.2.2 Circuit d'observateur quantique (par mode glissant)	34
2	Gér	nération d'un signal QPWM à l'aide d'algorithme quantique	37
	2.1	Introduction	38
	2.2	Algorithme quantique de génération de la QPWM	38
	2.3	Comparateur \geq (duty cycle \geq 50%) :	38
	2.4	Duty cycle < 50%:	42
	2.5	Relation entre duty cycle et angle de rotation	43
	2.6	Simulation et comparaison entre PWM et QPWM	44
	2.7	Comparaison en boucle ouverte	44
	2.8	Comparaison en boucle fermée	46
		2.8.1 Variation de la fréquence	46
		2.8.2 Effet de la variation de la dynamique du systeme	49
		2.8.3 Variation de la référence	51
	2.9	Conclusion	53
3	3 Implémentation pratique du signal de QPWM pour la commande d'un teur à courant continu		
	3.1	Introduction	55
	3.2	Présentation du matériel utilise	56
		3.2.1 Carte de développement STM 32	56
		3.2.2 Moteur à courant continu	57
		3.2.3 Module Driver L298N	57
		3.2.4 Convertisseur de niveau logique IIC I2C	58
	3.3	Description de l'algorithme	59
	3.4	Résultats obtenues	59
	3.5	Comparaison pratique entre QPWM et PWM :	63
		3.5.1 Comparaison des signaux de commande en boucle ouverte	63
		3.5.2 Comparaison en boucle fermée	63
	3.6	Conclusion	67
4	Ém	ulation analogique d'un calculateur quantique	68
	4.1	Introduction	69

4.2	Présentation Proteus	71
4.3	circuit déphaseur	72
	4.3.1 Modulation quadratique	72
4.4	Mesure du déphasage	74
	4.4.1 Réalisation	76
	4.4.2 Exemple d'application :	78
4.5	Circuit de calcul des coefficients complexes α, β	79
	4.5.1 Réalisation	79
	4.5.1.1 Circuit du Log et AntiLog à base d'amplificateurs :	79
	4.5.1.2 Circuit extracteur de la racine carrée	81
4.6	Porte de rotation Rx,Ry,Rz	83
	4.6.1 Réalisation des circuits	83
4.7	Porte NOT (X Pauli gate)	84
	4.7.1 Représentation d'euler	84
	4.7.2 Réalisation du circuit	85
	4.7.3 Exemple d'application	85
4.8	Porte CNOT	86
	4.8.1 Fonctionnement de la porte CNOT et problème d'intrication	86
	4.8.2 Réalisation du circuit	87
	4.8.3 Exemple d'application	87
4.9	Circuit de la transformation inverse	89
	4.9.1 Circuit analogique de la fonction $Atan2(y, x): \ldots \ldots \ldots$	89
	4.9.1.1 Circuit analogique de la fonction $\frac{y}{x}$:	91
	4.9.1.2 Circuit analogique de la fonction $\arctan(\frac{y}{x})$:	92
	4.9.2 Circuit analogique $\cos x$ et $\sin x$	97
4.10	Application de l'émulateur sur des circuits quantiques	98
	4.10.1 Circuit de Bell	98
	4.10.2 Circuit d'observateur quantique	101
4.11	Conclusion	102
Bibliog	raphie 1	.05

TABLE DE	C MATTED	FC

Fiches techniques utilisées	107
Annexe	108

Confidentielle