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Résumé

Cemémoire porte sur lamodélisation, l’identification et la commande d’un système de dessalement
par osmose inverse ROReverseOsmosis Dans un contextemarqué par la raréfaction des ressources
en eau douce, cette technologie s’impose comme une solution viable et durable Une première
phase est consacrée à la modélisation dynamique du procédé à partir de données expérimentales,
permettant de représenter avec précision les relations entre les variables clés telles que la pression,
le pH, le débit du perméat et la conductivité Deux stratégies de commande ont été développées,
à savoir la commande prédictive MPC appliquée à la fois sur un modèle découplé et sur un
modèle multivariable, ainsi que la commande PID classique et sa variante améliorée IMC-PID
L’analyse des résultats met en évidence les performances, la robustesse et les limites de chaque
approche face aux incertitudes du système

Mots-clés : Dessalement, Osmose inverse, Modélisation, Commande prédictive, PID, IMC,
Robustesse.

Abstract

This thesis focuses on themodeling, identification, and control of a reverse osmosis (RO) desalination
system. In response to the growing scarcity of freshwater resources, RO technology offers a
viable and sustainable solution. The first phase involves the development of a dynamic model
based on experimental data, accurately capturing the interactions between key variables such as
feed pressure, pH, permeate flow rate, and conductivity. Two control strategies are explored :
Model Predictive Control (MPC), implemented on both decoupled and multivariable models,
and classical PID control, including an improved IMC-PID version. The results obtained highlight
the performance, robustness, and limitations of each control approach undermodel uncertainties.



Keywords :Desalination, ReverseOsmosis,Modeling, Predictive Control, PID, IMC,Robustness.
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XB Mole fraction of the solvent

CAi
Solute concentration (mol/m³)



General Introduction

“We made from water every living thing”

Approximate translation of verse 30, Surah Al-Anbya, the Quran

Freshwater is an essential resource for life, yet it is becoming increasingly scarce on a global
scale.This scarcity is driven by several factors, including population growth, rapid urbanization,
industrial development, and the effects of climate change. In certain arid regions or areas experiencing
significant water stress, access to clean and safe drinking water is a major challenge. To address
this issue, seawater desalination has emerged as a viable and sustainable solution to meet the
growing demand for freshwater.

Among the available technologies, reverse osmosis (RO) is currently one of themost widely used
methods. It enables the production of high-quality water from saline sources while offering a
degree of operational flexibility. However, this technology remains complex and energy-intensive.
Its efficiency strongly depends on the precise control of key variables such as feed pressure,
permeate flow rate, and the conductivity of the produced water.

This work is organized into several chapters to provide a systematic and comprehensive exploration
of the proposed problem of modeling and control of a reverse osmosis desalination system, with
particular attention to membrane fouling prediction. The following outlines the organization of
the thesis :

This chapter introduces the topic, providing an overview of the motivations, objectives, and
contributions of this work. It also presents the scope of our work and outlines the organization
of the subsequent chapters.

Chapter 1 presents reverse osmosis as a key desalination technology, outlining its fundamental
operating principles, the underlying physical phenomena, and the main stages of a typical RO
process. These stages include seawater intake, pretreatment, membrane separation using semi-permeable
membranes, post-treatment, and final storage. The objective is to establish a comprehensive
technological and operational framework for the system under investigation.

The chapter 2 is dedicated to the development of a dynamic model describing the behavior
of a reverse osmosis (RO) desalination system. Based on physical principles and experimental
data, the model captures the relationships between key variables such as feed pressure, pH,
permeate flow rate, and conductivity. The mathematical formulation is linearized around an
operating point and validated through experimental tests. The accuracy of the model is assessed
using performancemetrics including RMSE, NRMSE, and the coefficient of determination (R2),
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ensuring its reliability for control design purposes.

In chapter 3, focuses on the implementation of Model Predictive Control (MPC) strategies for
the RO process. Two approaches are examined : the first applies MPC to a decoupled model
representing separate control loops, while the second addresses the system in its full multivariable
form. The MPC controllers are designed based on state-space representations, with constraints
and cost functions defined to optimize tracking performance and system stability. Simulation
results demonstrate the influence of prediction and control horizons on the system’s responsiveness
and robustness.

The chapter 4 explores classical PID control and its enhancement through the Internal Model
Control (IMC) framework. Controllers are designed and applied to the two main control loops :
permeate flow (G11(s)) and conductivity (G22(s)). A comparative analysis is conducted between
the PID controllers obtained from literature and those designed using the IMCmethodology. The
results highlight the advantages of IMC-based PID tuning in terms of faster response, improved
stability, and better disturbance rejection.

The final technical chapter 5 investigates the robustness of the proposed control strategies in the
presence of modeling uncertainties, particularly multiplicative disturbances affecting the system
dynamics. Frequency-domain analysis using singular value plots, alongwith time-domain closed-loop
simulations, are used to evaluate the impact of these uncertainties. Conditions for robust stability
are derived and tested on both control loops, providing insights into the system’s capacity to
maintain performance under imperfect model knowledge.

Finally, the general conclusion presents This work summarizes the complete set of tasks undertaken :
rigorousmodeling, development and comparison of various control strategies (MPC, PID, IMC-PID),
and robustness analysis. The overarching objective is to enhance the performance, stability, and
reliability of reverse osmosis desalination processes.
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Chapitre 1

Reverse Osmosis Desalination
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Reverse Osmosis Desalination

1.1 Introduction

At the beginning of the 20th century, inspired by the osmotic nature of cell membranes, researchers
proposed the idea of using a membrane to separate salt from seawater. In the 1960s, American
and Japanese scientists developed semi-permeablemembranes for industrial purposes and quickly
realized that these same membranes could be used for seawater desalination.[8].

In nature, osmosis is a vital mechanism formaintaining biological balance. However, in industrial
applications, the process is referred to as reverse osmosis, as high pressure P (above the osmotic
pressure, approximately 80 bars) is applied to force saltwater to flow from the highly concentrated
compartment to the freshwater side through a semi-permeablemembrane. In doing so, the freshwater
compartment becomes enriched with clean water. If this pressure were not applied, osmosis
would naturally cause the freshwater to migrate into the saltwater side, increasing its salinity.[8].

1.2 Fundamentals of Reverse Osmosis

1.2.1 Reverse Osmosis Phenomenon

Reverse osmosis is a membrane separation process that operates at the molecular scale in the
liquid phase. Separation occurs by permeation through a permselective membrane under the
action of a pressure gradient. It is based purely on physical principles and does not involve
any chemical additives. The process typically operates at ambient temperature and is easily
automated and scalable, with adaptable membrane surface areas.

Osmosis is a natural process inwhich speciesmigrate from a dilute solution to amore concentrated
one Figure 4.6 (a).When pressure is applied to the compartment containing the concentrated
solution, the flow between the two compartments decreases until it reaches zero. The pressure
at which the net flow stops is called the osmotic pressure Figure 4.6 (b). If the applied pressure
- typically increased using a pump—exceeds the osmotic pressure, the flow is reversed : species
move from the more concentrated side to the less concentrated side. This is known as the reverse
osmosis phenomenon Figure 4.6 (c) [9].

Fig. 1.1 : Schematic of (a) osmosis (b) osmotic equilibrium (c) RO
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According to [4], the osmotic pressure (πi) is a thermodynamic property of the solution, and it
is related to the mole fraction of the solvent XBi

, as follows :

πi = −
(
RT

VB

)
lnXBi

(1.1)

where R is the universal gas constant (J/K mol), T is the temperature (K), and VB is the volume
of the solvent (m3).
For dilute solutions, it has been shown that the previous equation can be simplified to the Van’t
Hoff equation, as follows :

πi = CAi
RT (1.2)

where CAi
is the solute concentration (mol/m3).

Thus, the pressure difference across themembrane,∆π, is related to the concentration difference,
CA2 − CA3 .
Osmotic pressure does not depend on the type of solute or the size of its molecules, but solely
on its molar concentration, as shown in the Eq. 1.2[4]

1.3 Reverse Osmosis Process Stages

This work focuses on this type of desalination, as it is the most commonly employed method
worldwide.

Fig. 1.2 : Membrane-Based Seawater Desalination via Reverse Osmosis

This process consists of five essential stages, which are :
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1.3.1 Seawater Intake

The desalination process begins with the collection of seawater, primarily through open intakes
or beach wells.

1.3.1.1 Open intakes

Fig. 1.3 : Seawater Collection through Open Intake Systems

Open seawater intakes allow for the collection of larger volumes of water and represent the most
commonly used method in large-scale desalination plants.

Fig. 1.4 : Water intakes [14]
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However, the quality of the water provided is not consistently stable over time, as it is affected
by turbidity, temperature fluctuations, marine discharges, and storm events.

1.3.1.2 Beach Wells

Fig. 1.5 : Seawater Wells

The well system provides higher and more stable water quality, thanks to the natural filtration
process that occurs in the soil.

1.3.1.3 Seawater Intake Pumps

It is necessary to use pumps to transport the seawater to the plant, which are either installed on
the surface (for water collected via open intakes) or submersible (for water drawn from seawater
wells).

• Submersible Pump :

As shown in Figure 1.6, submersible pump operates by being fully immersed in water,
usually inside a seawater well. Unlike surface pumps, it pushes water to the surface rather
than pulling it. This design minimizes the risk of cavitation and is suitable for deep water
extraction with stable quality due to natural filtration through sediments.
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Fig. 1.6 : Diagram of the Submersible Pump Operation [23]

• Pump installed on the surface :

A surface pump is a type of pump installed above the water level, typically on land.
It is used to draw seawater through suction pipes and is commonly employed in open
intake desalination systems. Surface pumps require careful installation to avoid issues
like cavitation and must compensate for pressure losses due to suction height and friction
in the pipes.

1.3.2 Pretreatment

Pretreatment is a critical stage in the reverse osmosis (RO) desalination process. Its main purpose
is to protect themembranes by removing suspended solids, organicmatter, and chemical components
that can cause scaling, fouling, or damage to the RO system. The quality and stability of pretreatment
directly affect the longevity and performance of the membranes.

1.3.2.1 Sand Filters (Raw Media Filter – RDMT)

Most suspended solids larger than 20 microns are retained at this stage.
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Fig. 1.7 : Filtration with Granular Media [12]

These filters must be cleaned regularly in order to be reused.

1.3.2.2 Additional Protection

• Chemicals : It is common practice to add an antiscalant along with various chemicals
such as coagulants and sodium hypochlorite before starting the process, in order to prevent
salt deposit buildup on the membranes.

Fig. 1.8 : A list of some chemicals that need to be added

• Cartridge Filters : Cartridge filters are an additional safety system installed upstream
of the high-pressure pumps and reverse osmosis membranes. Their purpose is to protect
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the equipment by capturing microparticles that may have passed through the previous
pretreatment stages.

Fig. 1.9 : An Explanatory Diagram of Cartridge Filters [11]

The filtration size of cartridge filters generally ranges between 1 and 5 nominal microns.
These filters are used to remove even finer particles and to further improve the quality of
the water.

• Disc Filters : These filters, composed of stacked discs, are used to achieve an optimal
level of purity before the water reaches the reverse osmosis module.

Fig. 1.10 : An Explanatory Diagram of Cartridge Filters

• Equalization Tank : The equalization tank serves to mix the pretreated water in order to
smooth out fluctuations in flow rate and quality that may result from irregular raw water
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intake.
It helps ensure a continuous and consistent supply to the system.

• Pressurized Treatment : Once the water has been pretreated, it must be subjected to
sufficient pressure—typically between 50 and 60 bars—before being pumped into the
pressure vessels containing the membranes. This is achieved using a high-pressure pump.

Fig. 1.11 : Explanatory Diagram of Water Flow Through RO Membranes [10]

1.3.3 RO Membranes (Reverse Osmosis Membranes)

Fig. 1.12 : Explanatory Diagram of RO Membranes [13]

The system includes a series of pressure vessels, each containing several membranes (typically
seven membranes arranged in series per vessel).
The flow of seawater molecules through the membranes occurs in a tangential manner.
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1.3.4 Post-Treatment

After passing through the reverse osmosismembranes, thewater is essentially free from dissolved
salts, particles, and organic contaminants. However, the produced water (permeate) is not yet
suitable for direct human consumption or industrial use. A post-treatment process is therefore
required to adjust its chemical composition, ensure its stability, and meet quality standards. This
process generally includes the following steps :

1. Remineralization : Since reverse osmosis water is highly demineralized, it is aggressive
to pipelines and lacks essential minerals. Minerals (typically calcium and magnesium) are
added to increase hardness and stabilize the pH. This is done through :

• Filtration through a limestone bed (CaCO3)

• Injection of lime (Ca(OH)2) or caustic soda (NaOH)

2. pH Adjustment : The pH is adjusted to prevent pipe corrosion and to comply with
drinking water standards. This step is often combined with remineralization.

3. Disinfection : A final disinfection step is applied to eliminate any potential microbial
contamination. This may include :

• Chlorine injection (Cl2)

• Ozonation (O3)

• UV sterilization

4. Quality Control : Analyses are carried out to ensure that the treated water meets quality
standards (e.g., WHO, EPA), particularly with respect to residual salts, pH, hardness, and
absence of pathogens.

1.3.5 Storage and Distribution

Once the water has been remineralized, and if it is intended for human consumption, chlorination
is carried out in the distribution tanks in order to comply with current public health regulations.

1.4 Conclusion

This chapter presented the main components and stages of a reverse osmosis (RO) desalination
system. It highlighted the importance of each phase, from seawater intake and pretreatment to
membrane separation, post-treatment, and storage. These stages are essential to ensure high-quality
potable water production and to protect the membranes from fouling or damage. This overview
lays the technical foundation necessary for the modeling and control strategies addressed in the
following chapters.
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2.1 Introduction

Reverse osmosis (RO) desalination is a vital technology for addressing water scarcity. However,
its efficiency depends on the precise control of key parameters : permeate flow rate (productivity)
and conductivity (quality). These variables, influenced by feed pressure and pH, require rigorous
dynamic modeling to optimize control systems.

2.2 Objective

The prototype was developed to study and optimize the control of critical parameters in a reverse
osmosis (RO) desalination system, namely :

• Permeate flow rate (an indicator of productivity).

• Permeate conductivity (an indicator of quality, related to salinity).

Themain objectivewas to design a robust closed-loop control system for efficient and sustainable
operation.

2.3 Prototype Description

The system under study is a pilot-scale reverse osmosis (RO) desalination unit installed in the
R&D laboratory of a water treatment facility in Kuwait [26].

Fig. 2.1 : P$ID Diagram of the RO Prototype [26]
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Process Components :
The prototype consists of the following elements :

• High-Pressure Pump : Capacity up to 80 bar (1,160 psi).

• Permeator :

– Model : B-10 Permasep (DuPont)

– Configuration : Hollow aramid fibers

– Nominal capacity : 1,400 GPD (5.30 m3/day)

– Operating pressure : 800–1,200 psig (5,515–8,274 kPa)

• Pretreatment :

– Dual media pressure filters (20 µm)

– Dosing of Fe3+ (coagulation) and H2SO4 (pH adjustment)

• Instrumentation :

– Pressure, pH, conductivity, and flow sensors

– Data acquisition systems for real-time monitoring

2.4 Modeling of theReverseOsmosis Desalination Process (in
GPM, psi, µS/cm)

The reverse osmosis process is based on the separation of solutes from a solution using a semi-permeable
membrane under the effect of a pressure gradient.
In the following, we present a symbolicmodel of the permeate flux and the permeate conductivity
as functions of the system’s physical parameters.

2.4.1 Permeate Flux Expression

The permeate flux F (expressed in gallons per minute – GPM) can be modeled using a modified
form of the generalized Darcy’s law :

F = Aw · (∆P −∆π) (2.1)

where :

• Aw : hydraulic permeability of the membrane (GPM/psi),

• ∆P = Pf − Pp : total pressure difference (in psi),

• ∆π = πf − πp : osmotic pressure difference (in psi).
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2.4.2 Simplifying Assumptions

In most systems, the permeate pressure as well as its osmotic pressure can be neglected. The
previous equation can then be simplified as follows :

F = Aw · (Pf − πf ) (2.2)

2.4.3 Solute Concentration Relationship

The feed osmotic pressure can be modeled using Van’t Hoff’s law :

πf = ϕ · Cf (2.3)

where :

• ϕ : osmotic coefficient (psi∙m³/mol),

• Cf : solute concentration in the feed (mol/m³).

This leads to the final expression for the flux :

F = Aw · (Pf − ϕCf ) (2.4)

2.4.4 Modeling of Permeate Conductivity

The permeate conductivity Cond (expressed in microsiemens per centimeter – µS/cm) depends
on the concentration of residual ions in the permeate.
It can be approximated by the sum of ionic contributions :

Cond =
∑
i

λi · [Ci] ≈ λeff · Cp (2.5)

where :

• λeff : average effective molar conductivity (µS∙cm²/mol),

• Cp : ion concentration in the permeate (mol/m³).

2.4.5 Relationship Between Permeate Concentration and Rejection Rate

The concentration Cp depends on the membrane rejection rate R :
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Cp = Cf · (1−R) (2.6)

This rejection rate can be empirically modeled as a function of pressure :

R(Pf ) = 1− exp(−β · Pf ) (2.7)

Thus :

Cp = Cf · exp(−β · Pf ) (2.8)

And consequently, the conductivity becomes :

Cond = λeff · Cf · exp(−β · Pf ) (2.9)

where :

• β : empirical rejection coefficient (1/psi).

2.4.6 Effect of pH on Conductivity

Under acidic or basic conditions, the ions H+ and OH− can significantly contribute to the
overall conductivity :

Cond ≈ λeff · Cp + λH+ · [H+] + λOH− · [OH−] (2.10)

As a function of pH :

[H+] = 10−pH , [OH−] = 10−(14−pH) (2.11)

The complete form of the conductivity model becomes :

Cond(Pf , pH) = λeff · Cf · exp(−β · Pf ) + λH+ · 10−pH + λOH− · 10−(14−pH) (2.12)

• F : permeate flux (GPM),

• Pf : feed pressure (psi),

• ϕ : osmotic coefficient (psi∙m³/mol),

• Aw : hydraulic permeability (GPM/psi),

• Cf : feed solute concentration (mol/m³),
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• Cond : permeate conductivity (µS/cm),

• λeff : effective molar conductivity (µS∙cm²/mol),

• β : rejection coefficient (1/psi),

• PH : hydrogen ion concentration (−log scale),

• λH+ , λOH− : molar conductivities of H+ and OH− (µS∙cm²/mol).

The final relationships obtained for permeate flux and conductivity, taking into account the
effects of both pressure and pH, are given by :

F = Aw · (Pf − ϕ · Cf ) (2.13)

Cond(Pf , pH) = λeff · Cf · exp(−β · Pf ) + λH+ · 10−pH + λOH− · 10−(14−pH) (2.14)

2.5 Mathematical Model

This linearizedmodel is derived from the fundamental equations previously presented (permeate
flux F = Aw · (Pf − ϕCf ) and conductivity Cond(Pf , pH)), and simplified under linearity
assumptions that were experimentally validated by Alatiqi et al. (1989) [26] within the typical
operating ranges of the system.

The model, linearized around the following nominal operating point :

Nominal Operating Point[26]

• Feed Pressure : 900 psi (reference pressure during step tests),

• Permeate Flux : 1.05 gpm (initial value before disturbances),

• Permeate Conductivity : 430–440 µS/cm (stable range before testing),

• pH : 6.45 (nominal value prior to step variations)

is described by the following transfer function matrix :

F (s)

C(s)

 =


0.002 (0.056s+ 1)

0.003s2 + 0.1s+ 1
0

−0.51 (0.35s+ 1)

0.213s2 + 0.7s+ 1

−57 (0.32s+ 1)

0.6s2 + 1.8s+ 1


 P (s)

pH(s)

 (2.15)

where :
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Y(s) =

F (s)

C(s)

 , U(s) =

 P (s)

pH(s)


• P : Feed pressure (psi),

• pH : Input fluid pH,

• F : Permeate flux (gpm),

• C : Permeate conductivity (µS/cm).

Interaction Analysis

Effect of P :

• On F : Static gain+0.002 gpm/psi, fast dynamics (dominant poles at s = −33.33min−1).

• On C : Static gain −0.51µS/cm/psi, slower dynamics (pole at s = −1.43min−1).

Effect of PH :

• On C : Static gain −57µS/cm per pH unit, second-order response.

• On F : No effect (Gp12 = 0).

2.6 Experimental Validation and Performance Analysis

2.6.1 Data Preparation

The data used in the study [26] (Table 22 and Table 3) are experimental and were collected from
a pilot-scale reverse osmosis (RO) unit at the R&D laboratory in Doha (Kuwait). These data
include precise measurements of permeate flux and conductivity during step response testing.

Variables Approximate Ranges
Flux (gpm) 0.85–1.25

Pressure (psig) 800–1000

Conductivity (µS/cm) 400–450

PH 6–7

Tab. 2.1 : Approximate operating ranges of system variables
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2.6.2 Model Definition

In this study, the three transfer functions analyzed are based on a standard mathematical model
of the following form :

G(s) =
Ki (Tas+ 1)

T 2s2 + 2ξTs+ 1
(2.16)

2.6.2.1 Model Simulation

This step is central to the validation process. It enables the prediction of the model’s behavior
in response to real variations in the inputs (experimental data), and allows comparison between
the model’s predictions and the actual measured conductivity values.

2.6.3 Model vs. Experimental Comparison

2.6.3.1 Graphical Visualization

The following figures present the experimental data (actual measurements) alongside the model
predictions for G11, G21, and G22.

Fig. 2.2 : Time Response of Permeate Flux to Feed Pressure Disturbances and Prediction Errors
G11

Observations :

• The model predictions closely match the experimental data, validating the fast and linear
pressure–flux dynamics described by G11.

• The residuals (prediction errors) are extremely low.
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Fig. 2.3 : Time response of permeate conductivity to feed pressure disturbances and prediction
errors (G21)

Observations :

• The model captures the general trend well, although minor deviations appear during rapid
transitions (conductivity peaks).

Fig. 2.4 : Time response of permeate conductivity to pH disturbances and prediction errors (G22)

Observations :

• The predictions follow the experimental trend, but withmore noticeable errors, particularly
during transient phases.

2.6.3.2 Residual Calculation

Residuals, defined as the difference between experimental values and model predictions, are
computed at each time point ti using the following expression :
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Residuali = yexp,i︸︷︷︸
Experimental

value

− ymodel,i︸ ︷︷ ︸
Predicted
value

(2.17)

• yexp,i : Experimental output value at point i,

• ymodel,i : Model-predicted output at point i,

• Rresidual,i = yexp,i − ymodel,i : Deviation between measurement and prediction (modeling
error).

Residual Visualization

Fig. 2.5 : Prediction residuals for model G11

Fig. 2.6 : Prediction residuals for model G21

38



Modeling and Validation of a Reverse Osmosis (RO) System

Fig. 2.7 : Prediction residuals for model G22

Observations :

• G11 : Residuals are extremely small and random, confirming the model’s reliability for
real-time control.

• G21 : Residuals are small but exhibit a few localized peaks, likely due to unmodeled
disturbances.

• G22 : Residuals are more significant and structured, highlighting the influence of pH
nonlinearities on conductivity.

2.6.4 Performance Metrics (RMSE, NRMSE, R2, MAE)

This section presents the metrics used to evaluate the accuracy of the identified dynamic model.

2.6.4.1 RMSE (Root Mean Square Error)

RMSE measures the average deviation between model predictions and experimental data :

RMSE =

√√√√ 1

N

N∑
i=1

(yexp,i − ymodel,i)
2 (2.18)

• N : Total number of experimental samples

• yexp,i : Measured output at time i

• ymodel,i : Model-predicted output at time i
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2.6.4.2 NRMSE (Normalized Root Mean Square Error)

NRMSE normalizes RMSE by the dynamic range of the data :

NRMSE =
RMSE

ymax − ymin
× 100% (2.19)

• ymax : Maximum value in the experimental dataset

• ymin : Minimum value in the experimental dataset

2.6.4.3R2 (Coefficient of Determination)

The R2 coefficient quantifies the proportion of variance explained by the model :

R2 = 1−
∑N

i=1 (yexp,i − ymodel,i)
2∑N

i=1 (yexp,i − ȳexp)
2

(2.20)

• ȳexp : Mean of the experimental values :

ȳexp =
1

N

N∑
i=1

yexp,i

2.6.4.5 MAE (Mean Absolute Error)

MAE provides the average absolute error :

MAE =
1

N

N∑
i=1

|yexp,i − ymodel,i| (2.21)

• N , yexp,i, ymodel,i : Defined as for RMSE

2.6.4.5 Computation Results :

Model RMSE NRMSE (%) R2 MAE
G11 (Pressure→ Flux) 0.0008 gpm 0.0014 0.99995 0.0005 gpm

G21 (Pressure→ Conductivity) 6.8787 µS/cm 0.0427 0.9475 4.9200 µS/cm
G22 (PH→ Conductivity) 5.5976 µS/cm 0.1399 0.8502 3.4553 µS/cm

Tab. 2.2 : Performance metrics of the identified transfer functions

2.6.5 Results Analysis

G11 : An NRMSE of 0.0014% and an R2 value close to 1 indicate that the model captures the
pressure–flux relationship almost perfectly. Furthermore, the fast and linear dynamics between

40



Modeling and Validation of a Reverse Osmosis (RO) System

pressure and flux justify this high level of performance. This model is sufficiently reliable to be
used in real-time control loops.

G21 : An R2 > 0.94 and a low NRMSE (< 0.05%) confirm the model’s ability to predict
conductivity under pressure variations. The remaining 5.25% of unexplained variance may be
attributed to external disturbances such as temperature or salinity fluctuations.

G22 : An R2 = 0.85 and an NRMSE < 0.2% show that the model is usable, though less
accurate than G11 and G21. Nonlinear effects of PH—such as salt precipitation thresholds—are
not captured by this linear model.

2.6.6 Open-Loop Simulation

Fig. 2.8 : Open-loop step response – Permeate
flux

Fig. 2.9 : Open-loop step response –
Conductivity

• The step response of the flux is comparable to that of a first-order system. Although G11

contains complex poles, the presence of a zero in the numerator acts as a derivative effect
that damps oscillations.

• For conductivity, its step response also resembles that of a first-order system. The presence
of a zero in the transfer functions G21 and G22 reduces oscillatory behavior, giving a
response similar to that of a first-order system. However, the response evolves in the
opposite direction, due to the negative gain of both transfer functions.

• The flux response is faster than the conductivity response, which is consistent with
the inherent dynamics of each channel in the system, given the respective time constants
(TFlux = 0.0959 s, TCond = 3.1086 s).
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2.7 Conclusion

Although the effect of PH on conductivity is inherently nonlinear (due in particular to salt
precipitation and dissociation phenomena), a linear model was chosen for G22 in order to :

• Ensure the validity of a local approximation around the nominal operating point (the
considered PH perturbations remain small) ;

• Reduce computational complexity with a view to real-time embedded implementation.

The good performance results (NRMSE < 0.2%, R2 = 0.85) demonstrate that, for the tested
pH variations, this linearization is an acceptable compromise between accuracy and simplicity.

Linear relationships (pressure–flux) are easier to model than nonlinear ones (PH–conductivity).

The models G11, G21, and G22 are accurate enough to be used for control applications.

42



Chapitre 3

Model Predictive Control Strategies for
Reverse Osmosis Systems

43



Model Predictive Control Strategies for Reverse Osmosis Systems

3.1 Introduction

Model Predictive Control (MPC) is an advanced control method based on a dynamic model
of the system, enabling prediction of future behavior and optimization of control actions while
respecting system constraints.
It is particularly well-suited for complex systems such as reverse osmosis (RO) in desalination
processes. The objective is to ensure potable water quality, optimize system performance, and
protect the membranes.
More specifically, the control aims to limit feed pressure to 900 psi, reduce permeate conductivity
below 440 µS/cm, and stabilize the permeate flow around 1.25 GPM.

3.2 Objective

Controlling anRO system is intended to ensure compliancewithwater quality standards, maximize
efficiency, and protect the equipment.
The main control objective is to maintain feed pressure below the maximum limit of 1000 psi
to protect the membranes, to reduce permeate conductivity below 440 µS/cm to ensure water
potability and prevent membrane fouling, and to keep the permeate flow rate close to 1.05 GPM,
which corresponds to the system’s nominal capacity [24].

Parameter Control Objective
Permeate Conductivity Maintain < 440 µS/cm to ensure potability
Permeate Flow Rate Maintain near 1.05 GPM (nominal capacity)

Tab. 3.1 : Control objectives of the reverse osmosis system [24]

Remark :
The selection of the predictive controller parameters (whether for the decoupled model or the
global model), namely the prediction horizon, the control horizon, and the weighting matrices
Q , R and λ, was carried out empirically through a series of tests and trials.
The objective was to identify the combination of parameters that provides the best overall
system performance in terms of stability, response speed, tracking quality, and robustness
to disturbances.
The final tuning corresponds to the configuration that offers the best trade-off between these
criteria.
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3.3 The Linear RO System

3.3.1 Control Model

The linearmodel of the reverse osmosis (RO) system used in this chapter is based on experimentally
identified transfer functions that describe the dynamic relationships between the inputs (pressure,
pH) and outputs (permeate flow rate, conductivity). This model was established and validated in
the previous chapter, confirming its relevance for the development of the control laws investigated
in this work. It is based on the structure presented in the work of Alatiqi et al. (1989) [26].

The model is represented by the following transfer function matrix :

F (s)

C(s)

 =


0.002 (0.056s+ 1)

0.003s2 + 0.1s+ 1
0

−0.51 (0.35s+ 1)

0.213s2 + 0.7s+ 1

−57 (0.32s+ 1)

0.6s2 + 1.8s+ 1


 P (s)

pH(s)

 (3.1)

where :

Y(s) =

F (s)

C(s)

 , U(s) =

 P (s)

pH(s)


• P : Feed pressure (psi),

• pH : Input fluid pH,

• F : Permeate flow rate (gpm),

• C : Permeate conductivity (µS/cm).

3.3.2 System Decoupling

In multivariable systems, interactions between control loops can complicate controller design
and degrade system performance, especially when coupling is strong.
In our case, analysis of the dynamic model shows that the system has an upper triangular
structure, meaning that one of the two inputs affects both outputs :

• Feed pressure (P ) affects both the permeate flow rate (F ) and conductivity (C),

• Feed pH affects only the conductivity (C), with no significant influence on the flow rate
(F ).

Thus, the dynamic system matrix takes the form :
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G(s) =

G11(s) 0

G21(s) G22(s)

 (3.2)

This structure suggests the possibility of treating each loop independently. A structural analysis
of the system is essential to select the most appropriate input–output pairings.
A commonmethod for guiding this selection is theRelative Gain Array (RGA) analysis, which
assesses cross-variable influence and helps select optimal input–output pairings.

The RGA matrix is defined from the static gain matrix G(0) by :

Λ = G(0) ◦
(
G(0)−1

)⊤ (3.3)

where ◦ denotes the Hadamard (element-wise) product, and G(0) is the matrix of static gains
(i.e., transfer function values at s = 0).

The inverse of G(0) is computed as :

G(0)−1 =
1

det(G(0))

−57 0

0.51 0.002

 =
1

−0.114

−57 0

0.51 0.002

 (3.4)

Which gives :

G(0)−1 =

 500 0

−4.47 −0.0175

 (3.5)

Therefore, the RGA matrix is calculated as :

Λ = G(0) ◦
(
G(0)−1

)⊤
=

0.002 · 500 0 · (−4.47)

−0.51 · 0 −57 · (−0.0175)

 =

1 0

0 1

 (3.6)

We now compute the decoupling matrixD(s), with the goal of transforming the coupled transfer
function matrix into a diagonal form :

GD(s) = G(s) ·D(s) =

G11 G12

G21 G22

 ·

 1 d1(s)

d2(s) 1



GD(s) =

G11 +G12d2(s) G11d1(s) +G12

G21 +G22d2(s) G21d1(s) +G22


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To obtain a diagonal matrix, we cancel the off-diagonal terms by solving :

G11d1(s) +G12 = 0

G21 +G22d2(s) = 0
(3.7)

Solving these equations gives :

d1(s) = −G12

G11

= − 0

G11

= 0

d2(s) = −G21

G22

= −0.1071s3 + 0.6273s2 + 1.097s+ 0.51

3.885s3 + 24.91s2 + 58.14s+ 57

Thus, the decoupler matrix is :

D(s) =

 1 0

−0.1071s3+0.6273s2+1.097s+0.51
3.885s3+24.91s2+58.14s+57

1


The decoupled transfer function matrix becomes :

GD(s) =

G11 0

0 G22

 =

0.002(0.056s+1)
0.003s2+0.1s+1

0

0 −57(0.32s+1)
0.6s2+1.8s+1


After decoupling, each output is predominantly influenced by its corresponding input :

• Pressure P primarily influences flow rate F ,

• pH primarily influences conductivity C.

This decoupling greatly simplifies control, allowing each loop to be treated as a Single Input
Single Output (SISO) system and enabling the use of classical controllers such as PID, without
the need for complex cross-compensation strategies.
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Fig. 3.1 : Final closed-loop structure of the multivariable system

The Figure 3.1 above shows the functional diagram of a multivariable system with implemented
decoupling in Simulink. The structure includes three main blocks :

• RD(s) : A diagonal matrix of PID controllers providing independent control of each loop :

RD(s) =

R11(s) 0

0 R22(s)


Each element controls one output independently :R11(s) regulatesY1, andR22(s) regulates
Y2.

• D(s) : The decoupling block, used to eliminate dynamic interactions between system
variables. It can be obtained from the inverse of G(s) or by approximate methods.

• G(s) : The real two-input two-output multivariable system. Initially coupled, each input
affects both outputs.
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Fig. 3.2 : Functional diagram of the multivariable system with decoupler implemented in
Simulink

The Figure 3.2 illustrates the final closed-loop structure of the multivariable system after
dynamic decoupling. It clearly shows two independent control loops, each treated as a SISO
system (Single Input Single Output).

This approach is particularly effective for complex industrial systems, wheremultivariable interactions
often make direct regulation more difficult.

3.4 Predictive Control on Decoupled Model

In this section, we apply Model Predictive Control (MPC) to the two SISO systems resulting
from the decoupling of the multivariable RO system. Each subsystem is treated independently.
The objective is to implement and evaluate the performance of theMPC controller under various
parameters and operating conditions.

3.4.0.1 Principle of the Approach

The decoupling was validated using the RGA matrix, indicating that the following pairings are
optimal :

• The feed pressure P with the permeate flow rate F (loop GD11).
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• The feed pH with the conductivity C (loop GD22).

Each loop is then considered as an independent SISO system,with anMPC controller implemented
for each loop.

Models Used

The transfer functions used for the decoupled control are as follows :

• GD11(s) =
0.002(0.056s+ 1)

0.003s2 + 0.1s+ 1
.

• GD22(s) =
−57(0.32s+ 1)

0.6s2 + 1.8s+ 1
.

3.4.0.2 Model Discretization

In order to implement a predictive controller based on a discrete model, it is necessary to convert
the continuous-time system into a discrete-time representation.

We employed the Zero-Order Hold (ZOH)method, which assumes that the control input remains
constant between two sampling instants. The sampling time was chosen as follows :

Ts = 0.1 s

The discretization was carried out in MATLAB using the c2d function. After converting the
continuous-time models to their discrete-time counterparts, we obtained the following transfer
functions :

GD22(z) =
−6.084 z + 3.242

z2 − 1.499 z + 0.5488

GD11(z) =
0.002013 z − 2.225× 10−5

z2 − 0.005708 z + 0.001273

3.4.0.3 State-Space Transformation

Once the discrete transfer functions are obtained, it is essential to convert them into a state-space
representation. Model Predictive Control (MPC) relies on this formulation to predict the future
behavior of the system and optimize the control input. The discrete models G11(z) and G22(z)

were thus transformed into state-space form according to the following structure :

xk+1 = Axk +Buk ; yk = Cxk +Duk (3.8)

where :
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• xk : state vector at time k,

• uk : control input,

• yk : measured output,

• A, B, C, D : matrices derived from the discretization of the continuous model.

The following matrices were obtained for the two systems :

3.4.0.3.1 Discrete State-Space Model of GD11(z)

A11 =

0.0057 −0.0407

0.0313 0

 , B11 =

0.0625
0

 (3.9)

C11 =
[
0.0322 −0.0114

]
, D11 = 0 (3.10)

x(t) =

x1(t)

x2(t)

 (3.11)

then we got :

ẋ(t) =

0.0057 −0.0407

0.0313 0

 x(t) +

0.0625
0

 u(t) (3.12)

y(t) =
[
0.0322 −0.0114

]
x(t) (3.13)

3.4.0.3.2 Discrete State-Space Model of GD22(z)

A22 =

1.499 −0.5488

1 0

 , B22 =

4
0

 (3.14)

C22 =
[
−1.521 0.8106

]
, D22 = 0 (3.15)

x(t) =

x1(t)

x2(t)

 (3.16)
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then we got :

ẋ(t) =

1.499 −0.5488

1 0

 x(t) +

4
0

 u(t) (3.17)

y(t) =
[
−1.521 0.8106

]
x(t) (3.18)

3.4.0.3.2 Deviation Variables and Operating Point
In this work, predictive control is applied using deviation variables, i.e., the differences between

system variables and their values at the nominal operating point. Formally, we define :

xdev = x− xop (3.19)

where x represents an input or output variable, and xop is its value at the operating point.

This formulation allows us to :

• Operate around a stable point xop.

• Linearize the system dynamics.

• Express constraints in terms of deviations :

umin − uop ≤ udev ≤ umax − uop (3.20)

ymin − yop ≤ ydev ≤ ymax − yop (3.21)

It is often preferable not to penalize the absolute value of the control input, especially
when the objective is to minimize variations and avoid abrupt changes.

• Formulate the cost function using deviation variables :

J =

Np∑
k=0

(ydev,k − rdev,k)
TQ(ydev,k − rdev,k) + ∆uT

dev,kR∆udev,k (3.22)

This approach ensures effective regulation of deviations around the operating point.

3.4.1 Optimization Problem Formulation

Model Predictive Control (MPC) is a control strategy used to manage dynamic systems.
It relies on a mathematical model of the system to predict its future behavior over a given
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prediction horizon.
Based on these predictions, the control input is calculated so as to achieve a predefined objective,
such as minimizing tracking error or improving system performance.
This process involves solving an optimization problem at each time step, while accounting for
the system’s constraints.

In our case, for the reverse osmosis system, the objective is to maintain the outputs (permeate
flow and conductivity) close to a reference value, reflecting an optimal operating point for the
system and the desalination plant.

3.4.1.0.1 Objective Function At each time step k, an optimal control sequence is determined
by solving an optimization problem that minimizes a performance criterion subject to system
constraints.
The cost function (or objective function) to be minimized over the prediction horizon Np is
defined as :

J =

Np∑
i=1

(ydev,k+i|k − rdev,k+i)
2 + λ

Nc−1∑
i=0

(∆udev,k+i)
2 (3.23)

where :

• rdev,k+i is the reference trajectory to follow,

• ∆udev,k+i = udev,k+i − udev,k+i−1 is the control input variation,

• Np : prediction horizon,

• Nc : control horizon,

• λ : weighting factor on control effort variation.

In our application, the two objective functions associated with the models GD11 and GD22 are
respectively :

• For GD11 (Flow control) :

J11 =

Np11∑
i=1

(Fluxk+i|k − Fluxref )
2 + λ11

Nc11−1∑
i=0

(∆pk+i)
2 (3.24)

• For GD22 (Conductivity control) :

J22 =

Np22∑
i=1

(condk+i|k − condref )
2 + λ22

Nc22−1∑
i=0

(∆pHk+i)
2 (3.25)
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3.4.1.0.2 Horizon Selection Various combinations ofNp andNc will be tested in the following
sections to analyze their impact on the controllers’ performance.
This analysis aims to evaluate how the prediction horizon (Np) and control horizon (Nc) affect
system stability, response time, and reference tracking quality.

3.4.1.0.3 Constraints MPC allows for the explicit inclusion of system constraints :



x(k + 1) = f(x(k), u(k)) (system dynamics)

Pmin ≤ P (k) ≤ Pmax

Pdev,min ≤ Pdev(k) ≤ Pdev,max

Fluxmin ≤ Flux(k) ≤ Fluxmax

Fluxdev,min ≤ Fluxdev(k) ≤ Fluxdev,max

pHmin ≤ pH(k) ≤ pHmax

pHdev,min ≤ pHdev(k) ≤ pHdev,max

Cmin ≤ C(k) ≤ Cmax

Cdev,min ≤ Cdev(k) ≤ Cdev,max

(constraints) (3.26)

In our case, each subsystem is subject to constraints related to its input and output variables.

• For the first system, where the input is pressure and the output is permeate flow, the
constraints are :

– Operating point (OP) :

Pressureop = 900 psi (3.27)

Flowop = 1.05 GPM (3.28)

– Absolute constraints : 700 ≤ P ≤ 1000

0.65 ≤ Flux ≤ 1.25
(3.29)

– Relative constraints (around the operating point) :−200 ≤ Pdev ≤ 100

−0.40 ≤ Fluxdev ≤ 0.20
(3.30)

• For the second system, where the input is pH and the output is conductivity, the considered
constraints are :
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– Operating point (OP) :

pHop = 6.75 (3.31)

Condop = 423 µS/cm (3.32)

– Absolute constraints : 6.45 ≤ pH ≤ 7.05

401 ≤ C ≤ 562
(3.33)

– Relative constraints (around the operating point) :−0.30 ≤ pHdev ≤ 0.30

−20 ≤ Cdev ≤ 20
(3.34)

These constraints ensure compliance with the physical limits of the system and help maintain
stable and efficient operation under the desired working conditions.

The control law

The predictive control law for a system without constraints

The predictive control law (without constraints) is given by :

uk = −Kmpcxk (3.35)

with :

Kmpc =
(
ΦTΦ + R̄

)−1
ΦTΓ (3.36)

This gain is computed based on the prediction model :

xk+1 = Axk +Buk

and the cost function to minimize :

J =

Np−1∑
i=0

[
(xk+i|k − xref)

TQ(xk+i|k − xref) + (uk+i|k − uref)
TR(uk+i|k − uref)

]
(3.37)

The predictive control law for a system with constraints

At each time step k, the constrained MPC control input is computed by solving the following
quadratic program :
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min
U

1

2
UTHU+ f(xk)

TU

subject to : GU ≤ W + Exk

(3.38)

where :

• U =



uk|k

uk+1|k
...

uk+Nc−1|k


is the control sequence,

• H = ΓTQpΓ + Rp is the Hessian matrix,

• f(xk) = ΓTQp(Φxk −Xref) is the gradient vector,

• G,W,E encode state, input, and rate constraints.

3.4.2 Optimization Problem Solving

The control problem is formulated as a Quadratic Programming (QP) problem of the form :

min
∆U

1

2
∆UTH∆U + fT∆U (3.39)

subject to equality and inequality constraints. The solution to this problem yields the optimal
sequence of control variations, but only the first element is applied :

uk = uk−1 +∆uoptk (3.40)

Then, the system is updated with the new state, and the procedure is repeated at the next time
step.
Only the first control action of the computed optimal sequence is implemented on the actual
system, according to the ”receding horizon” principle.
This optimization loop is executed at each time step, with the system state being updated based
on new measurements.

3.4.2.1 Implementation in MATLAB

The implementation was carried out in MATLAB using the mpc object provided by the Model
Predictive Control Toolbox. At each time step k :

• the model predicts the output evolution over 100 steps for the Flow–Pressure system and
10 steps for the Conductivity–pH system,
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• a QP problem is solved to optimize the cost function J ,

• only the first control input ûk is applied.

3.4.2.2 Using MATLAB MPC Toolbox as Optimization Solver

To solve the optimization problem related tomodel predictive control, we used the built-in solver
available in MATLAB’sMPC Toolbox. This solver automatically formulates and solves, at each
time step, a quadratic programming (QP) problem while accounting for the constraints defined
on inputs, outputs, and their variations.
The user does not need to manually implement the QP matrices : it is sufficient to specify
high-level parameters using dedicated functions provided by the toolbox.

3.4.2.2.1 Creating the MPC Controller The main function to create a predictive controller
is :

mp c _ c o n t r o l l e r = mpc ( sys_d , Ts , Np , Nc ) ;

with the following parameters :

• sys_d : Discrete model of the system (obtained via c2d)

• Ts : Sampling period

• Np : Prediction horizon

• Nc : Control horizon

3.4.2.2.2Defining theCost FunctionWeights The cost functionweights are specified directly
in the MPC object using three key parameters :

mp c _ c o n t r o l l e r . Weights .MV = 0 .0001 ;
mp c _ c o n t r o l l e r . Weights . MVRate = 0 . 1 ;
mp c _ c o n t r o l l e r . Weights .OV = 2 . 5 ;

These parameters correspond to the following components of the quadratic cost function :

J =

Np∑
i=1

Q︸︷︷︸
OV

·∥y(k + i|k)− r(k + i)∥2 +
Nc−1∑
i=0

R︸︷︷︸
MVRate

·∥∆u(k + i)∥2 +
Nc−1∑
i=0

λ︸︷︷︸
MV

·∥u(k + i)∥2

where :

• Weights.OV (Q = 2.5) : Weight on the output tracking error. A higher value favors fast
reference tracking.
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• Weights.MVRate (R = 0.1) : Weight on the control input variation ∆u. This penalizes
abrupt control changes to protect the actuators.

• Weights.MV (λ = 0.0001) : Weight on the control input amplitude u. This limits control
effort and keeps inputs close to the operating point.

In our case, two systems were modeled and controlled :

For the pressure–flow system (GD11) :

G11_d = c2d (G11 , Ts , ’ zoh ’ ) ;
Np = 100 ;
Nc = 20 ;
mpc_G11 = mpc ( G11_d , Ts , Np , Nc ) ;

For the pH–conductivity system (GD22) :

G22_d = c2d (G22 , Ts , ’ zoh ’ ) ;
Np = 10 ;
Nc = 3 ;
mpc_G22 = mpc ( G22_d , Ts , Np , Nc ) ;

3.4.2.2.2.1 Managing Initial Conditions By default, the MPC toolbox assumes a zero initial
state. To start the simulation from a different value (flow_initial = 0.65), the following steps
are required :

1. Compute the constant input u0 that maintains the output y0 :

y0 = f l o w _ i n i t i a l − f low_op ;
u0 = y0 / dcga i n ( G11_d ) ;

2. Deduce the initial state x0 :

x0 = ( eye ( s i z e (Ad ) ) − Ad) \ (Bd * u0 ) ;

3. Use it in the simulation :

s imOpt ions = mpcsimopt ;
s imOp t ions . P l a n t I n i t i a l S t a t e = x0 ;

3.4.2.2.3 Defining Constraints on Variables Once the controller is created, constraints on
the manipulated variables (MV) and output variables (OV) can be specified. These constraints
are defined as deviations from the operating point :

p r e s s u r e _ o p = 900 ;
f low_op = 1 . 05 ;
mp c _ c o n t r o l l e r .MV. Min = 700 − p r e s s u r e _ o p ;
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mp c _ c o n t r o l l e r .MV.Max = 1000 − p r e s s u r e _ o p ;
mp c _ c o n t r o l l e r .OV. Min = 0 .65 − f low_op ;
mp c _ c o n t r o l l e r .OV.Max = 1 .25 − f low_op ;

In this case :

• The control input (pressure) is constrained between 700 and 1000 psi

• The output (flow rate) is constrained between 0.65 and 1.25 GPM

By working in deviation mode, the controller optimizes values relative to the operating point,
which simplifies system linearization and analysis.

3.4.2.2.4 Defining the Cost Function Weights The cost function minimized by the solver is
a quadratic function of the form :

J =

Np∑
i=1

Q · ∥y(k + i|k)− r(k + i)∥2 +
Nc−1∑
i=0

R · ∥∆u(k + i)∥2 +
Nc−1∑
i=0

λ · ∥u(k + i)∥2

The associated weights are defined directly in the MPC object :

mp c _ c o n t r o l l e r . Weights .MV = 0 .0001 ;
mp c _ c o n t r o l l e r . Weights . MVRate = 0 . 1 ;
mp c _ c o n t r o l l e r . Weights .OV = 2 . 5 ;

• Weights.MV : corresponds to the weight λ applied to the absolute magnitude of the control
input u. It limits the control effort.

• Weights.MVRate : represents the weightR on the control input variation∆u. It penalizes
abrupt control changes.

• Weights.OV : refers to the weight Q on the output error, i.e., the deviation between
predicted output and the reference. It directly influences tracking performance.

3.4.2.2.5 Automatic Solution at Each Time Step After configuration, the toolbox’s solver
automatically solves the QP problem at each time step via :

[ Ysim , ~ , Usim ] = sim ( mpc_ con t r o l l e r , Nsim , Re fS igna l , [ ] ) ;

This function simulates the closed-loop system behavior overNsim sampling steps, applying the
optimal control at each time step. The arguments and outputs of the function are :

• mpc_controller : an mpc object containing the model, constraints, weights, prediction
and control horizons.
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• Nsim : total number of simulation steps. It is typically defined as the total simulation time
Tsim = 20s divided by the sampling time Ts = 0.1s.

• RefSignal : column vector representing the output reference trajectory. It can be constant,
time-varying, or scenario-based.

• [] : fourth optional argument, used to specify initial conditions. If empty, default conditions
(zero initial state) are assumed.

The outputs of the function are :

• Ysim : matrix containing simulated output values over time.

• Usim : matrix containing the optimal control inputs applied at each time step. Only the
first control input from the optimized sequence is applied at each iteration, following the
receding horizon principle.

This function automatically performs the following steps :

1. Predict future outputs over the horizon Np

2. Formulate and solve the QP problem while considering constraints

3. Apply only the first optimal control input (receding horizon principle)

4. Repeat the process at each simulation step

3.4.3 Results – Influence of Prediction and Control Horizons

In these simulations, a step reference is applied from t = 0 seconds, representing a setpoint
tracking scenario where the output variable is targeted.
Simulations are performed for different sets of parameters.

3.4.3.0.1 Parameters Used for the Pressure–Flow System (GD11)

• Prediction horizon : Np = 1, 10, 100, 1000, 10 000

• Control horizon : Nc = 2, 5, 10, 20

• Weight on output error : Q = 2.5

• Weight on control variation : R = 0.1

• Weight on control magnitude : λ = 0.0001

• Operating point : Pop = 900 psi, Fop = 1.05 GPM
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• Initial value : Finitial = 0.65 GPM

• Pressure constraints (in deviation) : −200 ≤ Pdev ≤ +100

• Flow constraints (in deviation) : −0.40 ≤ Fdev ≤ +0.20

3.4.3.0.2 Parameters Used for the pH–Conductivity System (GD22)

• Prediction horizon : Np = 3, 10, 100, 1000

• Control horizon : Nc = 1, 3, 7

• Weight on output error : Q = 1

• Weight on control variation : R = 0.1

• Weight on control magnitude : λ = 0

• Operating point : pHop = 6.75, Conductivityop = 423 µS/cm

• Initial value : Condinitial = 562 µS/cm

• pH constraints (in deviation) : −0.30 ≤ pHdev ≤ +0.30

• Conductivity constraints (in deviation) : −20 ≤ Cdev ≤ +20

Fig. 3.3 : Flow–Pressure system response for
various Nc values with fixed Np = 100

Fig. 3.4 : Flow–Pressure system response for
various Np values with fixed Nc = 20
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Fig. 3.5 : Pressure for various Nc values with
fixed Np = 100

Fig. 3.6 : Pressure for various Np values with
fixed Nc = 20

Fig. 3.7 : Conductivity–pH system response
for various Nc values with fixed Np = 10

Fig. 3.8 : Conductivity–pH system response
for various Np values with fixed Nc = 1

Fig. 3.9 : pH response for various Nc values
with fixed Np = 10

Fig. 3.10 : pH response for various Np values
with fixed Nc = 1
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3.4.3.1 Flux/Pressure System Analysis

This first case study focuses on the regulation of the permeate flow rate (output, unit : GPM) to
a setpoint value of 1.05GPM, starting from an initial condition of 0.65GPM. The manipulated
variable is the pressure (input, unit : psi). The sampling time used for the simulations is Ts =

0.1 s. The relevant figures for this section show the evolution of the flow and pressure over time
for various configurations of Np and Nc.

3.4.3.1.1 Influence of the Prediction Horizon (Np) with FixedNc In this set of simulations,
the control horizonNc is kept constant (assumed to beNc = 20, consistent with other simulations),
while the prediction horizon Np takes the values : 1, 10, 100, 1000, and 10000.

3.4.3.1.2 Flow Response Analysis (Controlled Output) (see corresponding figure)

• Np = 1 : The response is very slow. The controller, predicting only one step ahead, lacks
anticipation and fails to reach the setpoint within the simulated time interval (20 seconds).
This highlights the inefficiency of a very short prediction horizon.

• Np = 10 : Increasing the prediction horizon significantly improves performance. The
flow reaches the setpoint in about 4 seconds, with a slight overshoot before settling.

• Np = 100 : The response is similar to that with Np = 10, but the overshoot appears
slightly more pronounced, indicating a slightly more aggressive initial strategy by the
controller.

• Np = 1000 and Np = 10000 : The response curves are nearly identical to that for
Np = 100, indicating that increasing the prediction horizon beyond Np = 100 brings
no significant benefit for this particular system. The relevant future behavior for control
is already well captured at Np = 100.

3.4.3.1.3 Pressure Response Analysis (Manipulated Variable) (see corresponding figure)

• Np = 1 : The pressure increases very slowly and stabilizes at a low value, consistent with
the poor performance observed in the flow. The control action is very limited.

• Np = 10 : The pressure rises rapidly, reaching a peak around 903.5 psi at approximately
1.5 s, then decreases toward the steady-state value (about 900 psi). This initial peak corresponds
to the control effort required to accelerate the flow response.

• Np = 100 : The pressure peak is higher (around 906 psi) and occurs earlier (around 1 s),
confirming the more aggressive initial control action observed in the flow response.

• Np = 1000 and Np = 10000 : The pressure profiles are very close to that of Np = 100,
confirming that increasing Np further has little impact on the overall control strategy in
this scenario.
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3.4.3.1.4 Influence of the Control Horizon (Nc) withNp = 100 Here, the prediction horizon
is fixed at Np = 100 (considered sufficient based on the previous analysis), and the control
horizon Nc varies : 2, 5, 10, and 20.

3.4.3.1.5 Flow Response Analysis (Controlled Output) (see corresponding figure)

• All tested values of Nc result in satisfactory tracking of the 1.05GPM setpoint.

• A slight trend is observed : increasing Nc (from 2 to 20) marginally reduces the initial
overshoot and slightly slows down the response.

• This suggests that for this system and with Np = 100, the performance of the controlled
output (flow) is relatively insensitive to the value of Nc within the range [2, 20].

3.4.3.1.6 Pressure Response Analysis (Manipulated Variable)

• The influence of Nc is more noticeable on the manipulated variable (pressure).

• Nc = 2 : The controller computes only a short sequence of two future control actions,
resulting in a more aggressive control effort characterized by the highest and fastest initial
pressure peak (around 906 psi).

• Nc = 5, 10, 20: AsNc increases, the controller optimizes over a longer control sequence,
enabling it to plan a smoother trajectory for the pressure. The initial peak is gradually
reduced (down to about 904.5 psi forNc = 20), and convergence to the steady-state value
is slower and more damped.

• IncreasingNc therefore leads to a less aggressive and smoother control action, which may
be preferable for actuator longevity (e.g., pump), at the cost of slightly slower dynamics
in the manipulated variable.

3.4.3.2 Analysis of the Conductivity/pH System

The second case study focuses on regulating the water conductivity (output, unit : µS/cm)
to a target setpoint of 413µS/cm, starting from a high initial condition of 562µS/cm. The
manipulated variable is pH (input, unitless). Operational constraints are defined : conductivity
must remain within [403, 562] µS/cm, and pH within [6.45, 7.05]. The sampling time, based on
figure captions, is Ts = 0.1 s.

3.4.3.2.1 Influence of the Prediction Horizon (Np) with Nc = 1 In this configuration, the
control horizon is fixed at its minimum value Nc = 1 (the controller optimizes only the next
control move), while the prediction horizon Np takes the values : 3, 10, 100, and 1000.
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3.4.3.2.2 Conductivity Response Analysis (Controlled Output)

• Np = 3 : With a very short prediction horizon and Nc = 1, the performance is poor.
Conductivity decreases very slowly and does not reach the target value of 413µS/cm
within the 100-second simulation window.

• Np = 10 : Increasing Np significantly improves performance. Conductivity reaches the
target within about 10 seconds, with a fast and smooth response and no significant overshoot.

• Np = 100 and Np = 1000 : The responses are very similar to that with Np = 10. There
may be a slight acceleration in response, but the effect is marginal. This confirms that
beyond a certain point (Np ≈ 10 in this case with Nc = 1), increasing Np brings little
additional benefit.

3.4.3.2.3 PH Response Analysis (Manipulated Variable)

• To reduce conductivity from 562 to 413, the controller must adjust the pH. An initial drop
in pH is observed in all simulations.

• Np = 3 : The pH decrease is minimal and stabilizes very slowly.

• Np = 10, 100, 1000: The control action is much more aggressive. A strong initial undershoot in pH is observed, more pronounced asNp

increases (minimumaroundpH 6.925 forNp = 1000). This rapid pHdrop accelerates
the conductivity response.

• After this undershoot, pH gradually returns to its steady-state value (about 6.93).
Stabilization is faster for larger Np values.

• It is noted that the upper pH constraint (7.05) is reached at the beginning of the
simulation (t = 0) for high Np, indicating the controller immediately applies the
maximum allowable control to initiate conductivity reduction.

3.4.3.2.4 Influence of the Control Horizon (Nc) with Np = 10 Here, the prediction horizon
is fixed at Np = 10 (considered sufficient based on earlier analysis with Nc = 1), while the
control horizon Nc varies : 1, 3, and 7.

3.4.3.2.5 Conductivity Response Analysis (Controlled Output) (see corresponding figure)

• The influence of Nc is visible in the dynamics of the conductivity.

• Nc = 1 : The fastest response, reaching the target in about 10 seconds.

• Nc = 3 and Nc = 7 : Increasing Nc slows the response. Both reach the target in about
15–20 seconds, with very similar curves.
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3.4.3.2.6 PH Response Analysis (Manipulated Variable)

• The impact of Nc on the manipulated variable (pH) is significant.

• Nc = 1 : As previously observed, the control action is aggressive, with a sharp initial
undershoot (pH down to around 6.9).

• Nc = 3 andNc = 7 :HigherNc values yield much smoother, less aggressive control. The
undershoot is greatly reduced (pH drops only to about 6.925), and the response is more
gradual.

• The upper constraint (pH = 7.05) is reached at the beginning and lasts slightly longer for
Nc = 3 and Nc = 7, reflecting a milder initial control action.

• Thus,Nc provides a key tuning parameter to adjust the aggressiveness of pH control, with
direct impact on conductivity response speed.

3.4.3.2.7 General Discussion and Summary This comparative analysis of the influence of
the horizonsNp andNc on both systems reveals general insights into their roles in MPC tuning.

Role of the Prediction Horizon (Np) : The prediction horizon is fundamental to controller
performance. Simulations clearly show that a very shortNp (e.g., 1 or 3) leads to poor performance—extremely
slow or inadequate regulation—due to the controller’s lack of foresight into system behavior and
long-term effects of control actions. IncreasingNp allows better anticipation of system dynamics
and constraints, yielding faster responses and improved setpoint tracking. However, beyond a
certain threshold (Np ≈ 100 for Flow/Pressure andNp ≈ 10 for Conductivity/pH withNc = 1),
further increase does not improve performance significantly and only increases computational
burden. The optimal Np should be large enough to capture key dynamics and constraints, but
not unnecessarily long.

Role of the Control Horizon (Nc) : The control horizon primarily affects the aggressiveness of
the control action. A smallNc (typicallyNc = 1) leads to fast but often aggressive control—characterized
by sharp peaks or abrupt changes in the manipulated variable (e.g., pressure or pH). Increasing
Nc allows the controller to plan a longer sequence of future control moves, providing more
degrees of freedom for shaping smoother control trajectories. This results in less aggressive,
more gradual actions—desirable for actuator protection and system stability—at the expense of
slightly slower response in the controlled output. Thus, Nc provides a direct trade-off between
fast/aggressive and smooth/gradual control. It is important to note that Nc must always be less
than or equal to Np.

3.4.3.3 Conclusion

This study has analyzed the critical influence of prediction (Np) and control (Nc) horizons
on the performance of MPC controllers applied to two distinct systems (Flow/Pressure and
Conductivity/pH). Simulation results confirm the expected roles of these parameters.
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The prediction horizon Np must be large enough to allow the controller to anticipate system
behavior and constraints, which is necessary for good performance. A very small Np leads to
poor results, while a very largeNp bringsminimal benefit and increases computational complexity.

The control horizonNc mainly governs the aggressiveness of the manipulated variable. A small
Nc enables fast, but potentially harsh, control actions, while a larger Nc produces smoother
control, at the cost of slower output response. The choice ofNc provides flexibility in balancing
performance and actuator limitations.

In conclusion, proper tuning of Np and Nc is essential to fully exploit the potential of MPC. It
requires an understanding of system dynamics and clear performance objectives, to achieve the
best compromise between responsiveness, accuracy, constraint handling, control smoothness,
and computational efficiency. The presented analyses provide a concrete illustration of these
principles and emphasize the value of simulation-based tuning for these fundamental parameters.

3.5 Predictive Control on the Global (Non-Decoupled)Model

3.5.1 Integrated Multivariable Approach

3.5.1.1 Residual Coupling Modeling

The global model considers the complete interactions between variables, represented in matrix
form as follows :

F (z)

C(z)

 =

G11(z) G12(z)

G21(z) G22(z)

 P (z)

pH(z)

 (3.41)

where G21(z) represents the residual coupling from pressure to conductivity. This interaction,
neglected in the decoupled approach, introduces additional dynamics described by :

G21(z) =
−0.037z + 0.032

z2 − 1.213z + 0.548
(3.42)

3.5.1.1 Multivariable Discretization

Zero-order hold (ZOH) discretization with a sampling time Ts = 0.2 s yields the following
discrete-time transfer matrix :

GMIMO(z) =

 0.002z−0.0002
z2−0.005z+0.001

0

−0.037z+0.032
z2−1.213z+0.548

−6.084z+3.242
z2−1.499z+0.548

 (3.43)
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3.5.2 Formulation of the Multivariable MPC Controller

3.5.2.1 Augmented State Model

The discrete-time state-space representation includes the four system states :

xk+1 =



0.005 −0.041 0 0

0.031 0 0 0

0 0 1.499 −0.549

0 0 1 0


xk +



0.062 0

0 0

0 4

0 0


uk (3.44)

with :

xk =



x1(k)

x2(k)

x3(k)

x4(k)


, uk =

u1(k)

u2(k)

 (3.45)

A =



0.005 −0.041 0 0

0.031 0 0 0

0 0 1.499 −0.549

0 0 1 0


(3.46)

B =



0.062 0

0 0

0 4

0 0


(3.47)

C =
[
c1 c2 c3 c4

]
, D =

[
0 0

]
(3.48)

3.5.2.2 Multi-Criteria Cost Function

The objective function integrates the tracking errors of both outputs and the control effort variations :

J =

Np∑
k=1

(|Fk − Fref|QF + |Ck − Cref|QC) +
Nc−1∑
k=0

(|∆Pk|RP + |∆pHk|RpH) (3.49)
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With the following optimal weights :

• QF = 1, QC = 1 (equal priority on both outputs)

• RP = 0.1, RpH = 0.1 (moderate penalization on control inputs)

3.5.3 Implementation of Coupled Constraints

3.5.3.1 Absolute Constraints

700 psi ≤ P ≤ 1000 psi (3.50)

6.45 ≤ pH ≤ 7.05 (3.51)

0.65 GPM ≤ F ≤ 1.25 GPM (3.52)

401 µS/cm ≤ C ≤ 562 µS/cm (3.53)

3.5.3.2 Operational Limits

• Max pressure variation : ∆Pmax = 50 psi/step

• Max pH variation : ∆pHmax = 0.1/step

• Conductivity response time : < 30 s

3.5.4 Results – Influence of Input Conditions

To evaluate the RO unit’s behavior under different pressure values, the system is simulated with
Np = 10, Nc = 3.
This study focuses on pressure as a key parameter in reverse osmosis (RO) systems :

• Pop = 500, 900, 1500
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Fig. 3.11 : Conductivity response for various
Pop with pHop = 6.45

Fig. 3.12 : Permeate flow response for various
Pop with pHop = 6.45

Simulation results highlight critical behaviors depending on the operating pressure Pop :

• Permeate Flow (Figure 5.8) :

– At Pop = 1500 psi : flow reaches 1.5GPM, exceeding the upper limit.

– At Pop = 900 psi : nominal flow at 1.05GPM.

– At Pop = 500 psi : flow drops to 0GPM due to hydraulic blockage.

• Conductivity (Figure 5.7) :

– At Pop = 500 psi : 655.8µS/cm, above drinkability limits.

– At Pop = 900 psi : 425µS/cm, within specifications.

– At Pop = 1500 psi : 333µS/cm, possibly due to model limitations.

• MPC Controller Behavior :

– At Pop = 1500 psi : constraint violation and saturation due to model limitations.

– At Pop = 900 psi : robust tracking with overshoot < 2%.

3.5.5 Conclusion

Themultivariable control strategy offers superior global performance, but it requires significantly
more computational resources.
Its use is justified in critical applications that demand joint optimization of coupled constraints,
provided a reliable model and adequate hardware are available.
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3.6 PerformanceComparisonBetweenDecoupled andMultivariable
MPC

3.6.1 Prediction and Control Horizon Selection

In this study, we selected a prediction horizon of Np = 10 and a control horizon of Nc = 3 for
both control configurations (decoupled and multivariable). This choice is based on the analysis
of the dynamic characteristics of each output :

• The conductivity, influenced by pH and pressure, exhibits a fast dynamic response with
a short time constant (Tcond ≈ 0.0217 min).

• Thepermeate flow, primarily influenced by pressure, evolvesmore slowly, with a significantly
longer time constant (Tflow ≈ 0.5717 min).

The chosen prediction horizon is sufficient to capture the essential system dynamics while
ensuring computational efficiency. The shorter control horizon (Nc = 3) helps limit the complexity
of the optimization problem while maintaining good controller responsiveness.

3.6.2 Simulation Results : Performance Comparison

This section presents the simulation results of the two MPC strategies :

• Decoupled MPC, using separate SISO transfer functions (G11 and G22),

• Multivariable MPC, using the full 2×2MIMOmodel accounting for cross-interactions.

Fig. 3.13 : Flow response under decoupled
MPC

Fig. 3.14 : Flow response under multivariable
MPC
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Fig. 3.15 : Conductivity response under
decoupled MPC

Fig. 3.16 : Conductivity response under
multivariable MPC

Fig. 3.17 : Pressure evolution under decoupled
MPC

Fig. 3.18 : Pressure evolution under
multivariable MPC

Fig. 3.19 : pH evolution under decoupled
MPC

Fig. 3.20 : pH evolution under multivariable
MPC
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3.6.3 Performance Analysis

This section presents the results obtained from simulations of systems controlled by Model
Predictive Control (MPC). The performance evaluation relies on four classical indicators : the
Integral of Absolute Error (IAE), steady-state error (ess), overshoot, and the 5% settling time.
These indicators quantify the tracking accuracy, response speed, and transient behavior of the
system.

3.6.3.0.1 Permeate FlowControl System The flow regulation system exhibited highly satisfactory
dynamic behavior. The numerical results are as follows :

• IAE = 0.0877;

• Steady-state error (ess) = −0.0001GPM;

• Overshoot = 0.0066GPM;

• Settling time to ±5% = 0.10 s.

These values indicate excellent reference tracking. The steady-state error is practically zero,
meaning the system accurately reaches the reference value in steady-state. The overshoot is
very low, demonstrating effective control of the transient phase. Finally, the fast settling time
highlights the system’s responsiveness.

3.6.3.0.2 Conductivity Control System The simulation of the conductivity regulation system
yielded the following results :

• IAE = 207.3150;

• Steady-state error (ess) = −0.0380µS/cm;

• Overshoot = 149.0000µS/cm;

• Settling time to ±5% = 2.60 s.

Although the system manages to reach the setpoint in steady-state with a moderate steady-state
error, the initial overshoot is significant. This is also reflected in a high IAE value. The settling
time remains reasonable but is slower than in the previous case, indicating slower dynamics or
a more complex control effort required by this system.

The multivariable system studied involves two inputs (pressure and pH) and two main outputs :
the permeate flow and conductivity. Performance analysis for each output is carried out individually,
using the standard indicators : IAE, steady-state error, overshoot, and 5% settling time.
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3.6.3.0.3 Output 1 – Flow Performance related to flow regulation is summarized below :

• IAE = 5.3352;

• Steady-state error (ess) = 0.0070GPM;

• Overshoot = 0.2030GPM;

• Settling time to ±5% = 34.30 s.

The system successfully reaches the reference with a low steady-state error, but the settling time
is relatively long. The overshoot is more pronounced than in previous cases, indicating a less
damped transient response, probably due to variable interactions or the complexity of coupled
dynamics.

3.6.3.0.4 Output 2 – Conductivity The results obtained for the conductivity output are as
follows :

• IAE = 112.6690;

• Steady-state error (ess) = 0.0000µS/cm;

• Overshoot = 149.0000µS/cm;

• Settling time to ±5% = 1.30 s.

The conductivity control exhibits excellent steady-state accuracy, with a final error of zero.
However, the overshoot remains significant, indicating an abrupt transient phase. The relatively
fast settling time demonstrates good responsiveness of the controller for this output.

3.6.4 Comparison Between Decoupled and Multivariable Systems

This section compares the performance of the two tested control configurations : on one hand,
MPC controllers applied in a decoupled manner to each loop (independently on G11 and G22),
and on the other hand, a multivariable MPC (MIMO) acting simultaneously on both inputs
(pressure and pH).

3.6.4.0.1 Permeate Flow For the flow output, the decoupled system demonstrated very good
performance : a very low IAE (0.0877), a nearly zero steady-state error, negligible overshoot
(0.0066GPM), and a very short settling time (0.10 s). In contrast, performance significantly
deteriorated in themultivariable system. The IAE increased substantially (5.3352), the overshoot
became noticeable (0.2030GPM), and the settling time rose significantly to 34.30 s.

This can be explained by the dynamic interactions introduced in the MIMO system, which make
flow control more difficult when both inputs are manipulated simultaneously.
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3.6.4.0.2Conductivity Regarding the conductivity output, the situation is reversed. Themultivariable
system enabledmore efficient regulation than the decoupled one : the IAE decreased significantly
(from 207.3150 to 112.6690), and the steady-state error was completely eliminated. The overshoot
remained the same in both cases (149.0000µS/cm), but the settling time was twice as fast in the
multivariable configuration (1.30 s vs. 2.60 s).

This shows that taking interactions into account in themultivariablemodel improves conductivity
control, likely due to better coordination between the actions on pressure and pH.

3.7 Conclusion

The results obtained show that :

• The multivariable MPC provides better regulation of conductivity, with a significant
reduction in IAE, zero steady-state error, and a shorter settling time. This reflects the
controller’s ability to exploit the interactions between pressure and pH.

• The decoupledMPC shows very good performance for permeate flow, with a very short
settling time, negligible overshoot, and nearly zero steady-state error. However, it shows
limitations in conductivity control due to the lack of coordination between pressure and
pH actions.

This comparison highlights the value of using amultivariable (MIMO)model when the variables
are strongly coupled.While decoupling simplifies implementation and provides excellent results
for outputs with weak cross-interactions, multivariable MPC remains the preferred choice for
robust and coordinated regulation of complex outputs.

75



Chapitre 4
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4.1 Classical PID Control Design

4.2 Introduction

PID control (Proportional-Integral-Derivative) is a robust andwidely used solution for regulating
dynamic systems, particularly after a decoupling step. In this chapter, we apply this method to
the independent subsystems obtained through the decoupling strategy previously presented. The
two resulting SISO (Single Input Single Output) loops—one for controlling the permeate flow
via pressure, and the other for regulating conductivity via pH—are well suited to a PID controller
approach.

The main objective is to determine the optimal parameters (proportional gainKp, integral time
Ti, and derivative time Td) for each controller, based on the dynamic characteristics of the
decoupled transfer functions G11(s) and G22(s).

This study aims to validate the effectiveness of PID control in a decoupled system context, while
also identifying its potential limitations, particularly in the presence of residual disturbances or
parametric variations. The results will serve as a foundation for further improvements, such as
incorporating adaptive strategies or combining with other advanced control methods.

4.3 PID from Reference Literature

The reference article proposes specific PID parameter values for the decoupled transfer functions
G11(s) (permeate flow) and G22(s) (permeate conductivity). These settings, determined using
classical tuning methods, serve as a starting point for our analysis. Table (??) below presents a
structured comparison of the various control configurations :

• Basic actions : Proportional (P ), Proportional-Integral (PI)

• Advanced configuration : Proportional-Integral-Derivative (PID) with their respective
parametersKc, τi, τd

Loop Type Kc τi τd

G11(s)

P 596 – –
PI 536 0.23 –
PID 715 0.14 0.03

G22(s)

P -0.06 – –
PI -0.05 1.81 –
PID -0.07 1.09 0.27

Tab. 4.1 : PID controller parameters for the decoupled loops
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This summary enables a systematic evaluation of the impact of each control action (P , I , D)
on system performance, while facilitating the reproducibility of the results. The provided values
will guide our Simulink implementation and serve as a reference for the comparative analysis
of time-domain responses and robustness.

4.4 Closed-Loop Simulation

4.4.1 Response of G11(s) (Flow)

As part of this final-year project (PFE), a PID controller was implemented to regulate thepermeate
flow in a reverse osmosis (RO) system. Amulti-step reference signal for the flowwas designed
with smooth transitions using an exponential function, in order to test the controller’s performance
under progressive yet significant changes in the setpoint.

The applied PID controller corresponds to the one derived from theG11 model in the reference
article. This choice is based on prior system identification and optimized tuning to ensure both
stability and fast response. The closed-loop system response was simulated using Simulink and
compared against the reference setpoint.

Fig. 4.1 : Evolution of the permeate flow
reference over time

Fig. 4.2 : Response of the article’s PID
controller for G11(s) to the permeate flow
reference

4.4.2 Analysis of G11(s)

From the second graph, which displays the actual system response (in green) compared to the
setpoint (in yellow), several observations can be made based on classical control performance
criteria :
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1. Setpoint Tracking

The PID controller accurately follows the variations in the setpoint across the three defined levels
(0.85, 1.25, and 1.05). The deviation between the setpoint and the output is minimal, indicating
a good steady-state behavior.

2. Speed of Response

Transitions between setpoint levels are fast, with rise/fall to the new values occurring within a
few seconds. This indicates a short response time, likely under 10 seconds for each change.

3. Overshoot

No significant overshoot is observed at the higher setpoints. The system appears well-damped,
which is characteristic of a properly tuned proportional and derivative action in the PID controller.

4. Steady-State Error

The steady-state error is nearly zero at each level, indicating an effective integral action in the
PID that compensates for steady discrepancies.

Overall Assessment

The system controlled by the PID tuned for G11(s) demonstrates excellent performance in
tracking the permeate flow reference. It combines stability, fast response, and accuracy, making
it a suitable choice for real-time implementation in an industrial filtration control system.

The response is stable, with no oscillations or divergence. This confirms that the phase and
gain margins are adequate under the current configuration.

4.4.3 Response of G22(s)(Conductivity)

To validate the control performance of the treatment system, a dynamic setpoint for the permeate
conductivity was generated in the form of decreasing steps. This reference input, shown in blue
in the following figures, simulates setpoint variations under realistic conditions. To track this
reference, a PID controller—as proposed in theG22 article—was implemented and tested (green
curve). The goal is to evaluate the controller’s ability to follow setpoint changes while ensuring
both stability and performance.
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Fig. 4.3 : Evolution of the permeate
conductivity reference over time

Fig. 4.4 : Response of the article’s PID
controller for G22(s) to the permeate
conductivity setpoint

4.4.4 Analysis of G22(s)

The response analysis highlights several classical performance criteria in control theory :

1. Setpoint Tracking

The PID controller enables fast and accurate tracking of the reference. At each setpoint change :

• The response quickly converges to the new value.

• Initial overshoot is very low or even nonexistent in some phases.

• The steady-state error is nearly zero.

These observations reflect well-tuned PID gains and system dynamics suited to this control
approach.

2. Response Time

The system exhibits a short response time, particularly noticeable during transitions :

• Transition from approximately 560 µS/cm to 500 µS/cm : rapid stabilization (under 30
seconds).

• Similar response times are observed for other steps.

This indicates a good trade-off between speed and stability—essential for automatic control
systems.

80



PID and IMC-Based Control of Permeate Flow and Conductivity

3. Stability

The response shows neither prolonged oscillations nor divergent behavior, indicating that :

• The system is asymptotically stable.

• The PID is correctly tuned for this model, introducing no undesirable dynamics.

4. Robustness

Even during significant setpoint changes, the PID controller adapts well without degradation in
performance. This demonstrates good robustness to operating condition variations.

Overall Result

The obtained results show that the PID controller based on the article’sG22(s)model is capable
of ensuring effective and stable tracking of the permeate conductivity. It offers a simple yet
robust solution for this application.

4.5 IMC-Based PID Design

4.5.1 Introduction

The PID control based on the InternalModel Control (IMC) framework offers an elegant solution
to the challenges posed by coupled systems. Unlike traditional PID approaches, this method
explicitly incorporates knowledge of the processmodel into its design, allowing better anticipation
and compensation of variable interactions. The fundamental principle relies on integrating a
copy of the system model within the control structure, combined with a tuning filter that ensures
robustness.

For our coupled flow-conductivity system, this approach offers three major advantages : first,
it naturally decouples the interactions through model-based compensation ; second, it simplifies
tuning through a single parameter, λ, which directly controls the speed–robustness trade-off ;
and third, it guarantees inherent stability when the internal model is sufficiently close to the
actual process. However, its implementation requires accurate modeling of the couplings and
rigorous experimental validation to properly adjust the performance–robustness compromise,
which is particularly crucial in our case where the dynamics of the two loops have very different
characteristics.
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4.5.2 IMC Theory

Internal Model Control (IMC) is a model-based approach in which the process model GM(s)

is integrated alongside the real process G(s).

The error signal E ′(s) corresponds to the difference between the real process output and the
model output.

The controllerQ(s), combined with the modelGM(s), forms the IMC controller structure, as
shown in Figure (2.7).

This structure can then be transformed into a classical feedback loop controllerC(s), as represented
in Figure (2.8).

Fig. 4.5 : IMC structure

Fig. 4.6 : Feedback control loop

4.4.2.1 IMC-PID Controller

This section presents the main design steps for a controller based on the Internal Model Control
(IMC) structure, as well as its equivalent in classical PID form. This method enhances robustness
in the presence of model uncertainties.

1. IMC Controller Design Q(s) :
The IMC controller is defined as :

Q(s) = Ĝ−1
M (s)F (s) = Ĝ−1

M (s) · 1

(1 + λs)n
(4.1)

Where :
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• ĜM(s) is the nominal process model,

• F (s) is a low-pass filter ensuring robustness,

• λ is a tuning parameter (typically λ = 1 or 2),

• n is the filter order, usually equal to the order of ĜM(s).

2. Equivalent Unity Feedback Controller C(s) :
The IMC controller can be converted into an equivalent classical feedback controller :

C(s) =
Q(s)

1−Q(s)GM(s)
(4.2)

where GM(s) is the process model.

3. Conversion to Classical PID Form :
From the expression obtained for C(s), the parameters of a classical PID controller can
be identified. The goal is to match the dynamics of C(s) to the form :

CPID(s) = Kp

(
1 +

1

Tis
+ Tds

)
· 1

1 + Tfs
(4.3)

CPID(s) = Kp

(
TiTds

2 + Tis+ 1

Tis

)
· 1

1 + Tfs
(4.4)

The parameters to be determined are :

• Kp : proportional gain,

• Ti : integral time,

• Td : derivative time,

• Tf : filter constant (optional, for practical PID implementation).

These steps allow a transition from a theoretical IMC controller to an industrially applicable PID
regulator.

4.5.3 Implementation on RO System

In this section, we apply the IMC–PIDmethod to the two subsystems obtained after decoupling :
the control of the permeate flow rate via pressure, and the control of the conductivity via pH.
These two channels, now considered independent (SISO), are well suited for an IMC-based
design, which is subsequently translated into a PID controller.

4.4.3.1 Modeling of the Decoupled System

The decoupled transfer functions obtained are :
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G11(s) =
0.002(0.056s+ 1)

0.003s2 + 0.1s+ 1
(Permeate Flow Rate) (4.5)

G22(s) =
−57(0.32s+ 1)

0.6s2 + 1.8s+ 1
(Conductivity) (4.6)

4.4.3.2 For G11(s)

IMC Controller Design

Before designing the IMC–PID controller, it is essential to simplify the process model when it
contains complex poles. This is the case here, as the denominator of Gp11(s) is given by :

D(s) = 0.003s2 + 0.1s+ 1 (4.7)

Since this polynomial has complex poles, direct factorization into a product of real first-order
terms is not possible. To address this, we approximate the denominator as :

D(s) ≈ (1 + T1s)(1 + T2s) = T1T2s
2 + (T1 + T2)s+ 1 (4.8)

The following time constants are selected to obtain a reasonable approximation of the dynamic
behavior :

• T1 = 0.05

• T2 = 0.06

This leads to :

Dapprox(s) = (1 + 0.05s)(1 + 0.06s)

= 0.003s2 + 0.11s+ 1

This approximation results in a transfer function with real poles, which simplifies the IMC–PID
controller design.

The IMC controller is defined as :

Q11(s) = Ĝ−1
M11(s) ·

1

(1 + λ11s)n

Q11(s) =
(1 + 0.06s)(1 + 0.05s)

0.002(1 + 0.056s)
· 1

1 + λ11s
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Conversion to an Equivalent PID Controller

The equivalent classical controller is given by :

C11(s) =
Q11(s)

1−Q11(s)G11M(s)
=

Q11(s)

1− F11(s)

C11(s) =
0.003s2 + 0.11s+ 1

0.002λ11s
· 1

1 + 0.056s

This expression is then approximated in the form of a PID controller :

CPID(s) = Kp

(
TiTds

2 + Tis+ 1

Tis

)
· 1

1 + Tfs

The PID parameters are determined either algebraically or numerically. Thus, we obtain :

• Tf11 = 0.056

• Ti11 = 0.11

• Td11 =
0.003
Ti11

= 0.003
0.11

= 0.027273

• Kp11

Ti11
= 1

0.002λ11
⇒ Kp11 =

0.11
0.002λ11

• The filter parameter is chosen as λ11 = 0.04, as a compromise between response speed
and robustness.

Simulink Implementation

The IMC-based controller for this loop is implemented in Simulink :

Visual Description

The graph shows the time response of both PID controllers to a stepped setpoint (3 steps). Both
curves are very close, with slight dynamic differences.

1. Steady-State Error

• No residual error is observed at the end of each step → both PIDs perfectly reach the
setpoint.

• This confirms that both controllers are well-integrated (effective integral action).
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Fig. 4.7 : Response of the PID-IMC controller for G11(s) to a permeate flow setpoint

2. Rise Time and Speed

• The PID-IMC-G11(s) reaches the first setpoint more quickly.

• At the second step, it also exhibits a slightly faster rise time than the PID from the article.

• This shows that the IMC-based PID is more responsive, as expected from internal
model-based design.

3. Overshoot and Oscillations

• Overshoot is very small for both controllers and almost nonexistent.

• No oscillations are observed→ strong damping and good robustness.

• This indicates both controllers are well-tuned, with the IMC favoring a slightly faster
response without compromising stability.

4. Stability and Robustness

• Both systems exhibit excellent stability.

• After each setpoint change, the system converges properly.
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• The PID-IMC seems to better reject transient disturbances (e.g., faster recovery after
a setpoint drop).

Comparative Table

Criterion Article PID G11(s) PID-IMC-G11(s)

Steady-state error None None
Rise time Medium Slightly faster
Overshoot Very low Very low
Damping Good Good
Stability Excellent Excellent
Robustness Good Slightly better
IMC-compliant No Yes

Tab. 4.2 : Detailed comparison of the PID controllers

• ThePID-IMC-G11(s) provides a slightly faster responsewhilemaintaining solid stability,
which is typical of controllers designed via the Internal Model Control (IMC) method.

• TheArticle PID forG11(s) remains effective, but is slightly more conservative in terms
of responsiveness.

This experimental validation confirms the effectiveness of the IMC approach for PID controller
design in membrane filtration applications, establishing a performance benchmark for automatic
control of permeate flow.

4.4.3.3 For G22(s)

Transfer Function

The conductivity transfer function is defined as :

G22(s) =
−57(0.32s+ 1)

0.6s2 + 1.1s+ 1
=

−57(0.32s+ 1)

(1 + 1.36s)(1 + 0.44s)

IMC Controller Design

The IMC controller is given by :

Q22(s) = Ĝ−1
M22(s) ·

1

(1 + λ22s)n

Q22(s) =
(1 + 1.36s)(1 + 0.44s)

−57(0.32s+ 1)
· 1

1 + λ22s
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Conversion to Equivalent PID Controller

The equivalent classical controller is given by :

C22(s) =
Q22(s)

1−Q22(s)GM22(s)
=

Q22(s)

1− F22(s)

C22(s) =
0.6s2 + 1.8s+ 1

−57λ22s
· 1

1 + 0.32s

This expression is approximated as a PID controller :

CPID(s) = Kp

(
TiTds

2 + Tis+ 1

Tis

)
· 1

1 + Tfs

The PID parameters are identified algebraically or numerically as :

• Tf22 = 0.32

• Ti22 = 1.8

• Ti22Td22 = 0.6 ⇒ Td22 =
0.6
1.8

= 0.027273

• Kp22

Ti22
= 1

−57λ22
⇒ Kp22 =

1.8
−57λ22

• The parameter λ22 = 0.03 is chosen as a compromise between speed and robustness.

Simulink Implementation

The IMC-based controller for permeate conductivity is implemented in Simulink :

Observed Results

• Blue curve : Conductivity setpoint (step changes)

• Red curve : System response with PID-IMC-G22(s)

1. Setpoint Tracking

• The PID follows the setpoint closely at every step.

• Zero steady-state error : after each transition, the system reaches the exact setpoint value.

• No overshoot observed, indicating good damping.
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Fig. 4.8 : Response of the PID-IMC controller for G22(s) to the permeate conductivity setpoint

2. Response Time

• Very fast response to each setpoint variation.

• The system reaches the new value in just a few seconds.

• This indicates a short rise time and excellent responsiveness.

3. Stability

• No signs of oscillations or instability.

• The system quickly returns to a stable condition after every change→ excellent stability.

4. Disturbance Rejection

• Between transitions, the output remains perfectly stable.

• This confirms that the PID-IMC controller is robust to disturbances and measurement
noise.
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5. Characteristics of the PID-IMC Controller

The behavior is typical of an IMC-based controller :

• Gain well-tuned to the process dynamics.

• Filtering ensures a good trade-off between performance and robustness.

• Overshoots are eliminated while maintaining a fast response.

Criterion Observation
Steady-state error Zero (good integral tuning)
Overshoot Absent or negligible
Rise time Short
Settling time Fast, even after sudden changes
Robustness Good disturbance rejection
Stability Very high (no oscillations)
Setpoint tracking Excellent, precise at each level

Tab. 4.3 : Performance analysis of the IMC-based PID controller

The PID-IMC-G22(s) delivers excellent setpoint tracking performance :

• It combines precision, speed, and stability.

• It is well-suited for systems with sudden setpoint changes, as in this case.

• It is an excellent choice for systems with known dynamics, especially in water treatment
or quality control tasks such as permeate conductivity regulation.

4.6 Performance Comparison

This section presents a comparative analysis of the performances of PID controllers obtained via
the Internal Model Control (IMC) method and those proposed in the reference article, applied to
the twomultivariable subsystemsG11(s) andG22(s). The comparison is based on the time-domain
responses of both systems.

The objective is to evaluate the quality of regulation provided by each controller in terms of
speed, accuracy, overshoot, and tracking capabilities. The results highlight the advantages and
limitations of each PID tuning approach in a multivariable context.
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Fig. 4.9 : Comparison of step response for the systemG11(s) using PID from article vs. PID-IMC

4.6.1 Comparison : PID-IMC G11(s) vs. PID from Article G11(s)

1. PERFORMANCE ANALYSIS

Observed Similarities :

• Nearly identical responses : The two curves perfectly overlap.

• Same response time : Approximately 120 seconds to reach steady-state.

• Identical final values : Stabilization at 1.05.

• No overshoot : Neither controller exceeds the reference.

Minor Differences :

• PID-IMC (blue) : Slightly smoother during transitions.

• PID from article (red) : Slight delay of a few seconds.
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2. DYNAMIC CHARACTERISTICS

Criterion PID Article (G11) PID-IMC (G11) Advantage
Rise time ∼100s ∼100s Equal
Settling time ∼120s ∼120s Equal
Overshoot 0% 0% Equal
Steady-state error Zero Zero Equal
Smoothness Good Slightly better PID-IMC
Robustness Good Theoretically higher PID-IMC

Tab. 4.4 : Performance comparison of PID controllers

3. AUTOMATED INTERPRETATION

Main conclusion : The performances are practically identical, indicating :

• The parameters for G11(s) are well adapted to the system dynamics.

• The IMC internal model closely matches the real process behavior.

• Both tuning approaches validate each other.

Specific advantages :

PID from article (G11(s)) :

• Simple to implement.

• Parameters readily available from literature.

• Tuning validated through prior research.

PID-IMC (G11(s)) :

• Stronger theoretical foundation.

• Better theoretical robustness.

• Easy to tune via a single λ parameter.

Overall Assessment

This convergence of results strongly validates our approach and demonstrates the consistency
between theory (IMC) and practice (literature-based tuning). For our final project, we have
identified two equivalent solutions with different philosophies but similar performance.
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4.6.2 Comparison : PID-IMC G22(s) vs. PID from Article G22(s)

Fig. 4.10 : Step response comparison for the systemG22(s) using PID from article vs. PID-IMC

• PID-IMC-G22(s) (red) : PID designed using the InternalModelControl (IMC) approach.

• PID fromArticleG22(s) (green) : A PID controller derived from a classical or experimental
method, possibly optimized differently.

1. Initial Response Time

• Both responses react rapidly to setpoint changes.

• IMC-based PID exhibits a slightly faster initial rise.

• This suggests a shorter response time for the PID-IMC.

2. Transient Behavior

• After each setpoint change (clearly visible steps), both controllers react almost identically.

• No significant overshoot is observed in either case.

• Rapid damping of oscillations indicates well-tuned transient behavior.
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3. Stability

• No signs of instability are detected.

• The PID-IMCprovides a smoother response, with fewermicro-oscillations post-transition.

4. Settling Time

• The settling time is almost identical for both controllers.

• The difference between curves remainsminimal after each transition, indicating equivalent
setpoint tracking.

5. Robustness to Setpoint Variations

• Multiple step changes are handled well by both controllers.

• Both demonstrate good adaptability, reflecting solid robustness.

• IMC-based PID exhibits slightly smoother convergence, suggesting better tolerance to
modeling uncertainties or noise.

Theoretical Interpretation

Criterion PID-IMC-G22 PID from Article G22

Design Method Model-based (IMC) Empirical / experimental tuning
Response Speed Slightly faster Comparable but slower
Damping Good, no overshoot Very good as well
Robustness Slightly better Good
Design Complexity Moderate (depends on λ) Often empirical

Tab. 4.5 : Comparison of controllers for G22(s)

Summary of Observations

Both PID controllers perform very well, but :

• PID-IMC-G22(s) demonstrates better control of transient behavior : faster rise time,
no overshoot, and stronger robustness.
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• PID from Article G22(s) offers equivalent steady-state performance, though slightly
less efficient during transitions.

4.7 Conclusion

This chapter has evaluated and compared two PID control strategies applied to the decoupled
subsystems G11(s) (permeate flow) and G22(s) (conductivity) :

1. Classical PID, using parameters from a reference article.

2. PID-IMC, designed using the Internal Model Control method.

Key Findings :

• Comparable steady-state performance :

– Both controllers achieve zero steady-state error.

– Excellent damping with negligible overshoot.

– Accurate setpoint tracking for slow or constant references.

• Advantages of PID-IMC in transient dynamics :

– Faster response, especially evident with G22(s).

– Smoother transitions with fewer oscillations.

– Higher theoretical robustness, tunable via λ.

• Design flexibility :

– PID-IMC offers a systematic tuning process based on a trade-off between speed
and robustness.

– Classical PID remains simple and effective for standard applications.

Final Summary :

For G11(s) : Both controllers exhibit nearly identical performance. The choice depends on
the application :

• For simplicity : use the PID from the article.

• For enhanced robustness : use the PID-IMC.

For G22(s) : The PID-IMC shows superior dynamic performance (faster and smoother), making
it more suitable for sensitive processes such as conductivity regulation.
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These findings validate the effectiveness of the IMC-based PID design in decoupled MIMO
systems, particularly for demanding industrial applications such as water treatment or chemical
processes. The next chapter will explore robustness in the presence of model uncertainties.
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Chapitre 5

Robustness Evaluation of MPC and PID
Controllers under Modeling Uncertainties
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5.1 Introduction

In this chapter, we focus on the impact ofmodeling uncertainties on the stability and performance
of control systems. In practice, the model used for controller design never perfectly reflects the
actual dynamics of the system, which may lead to potentially critical deviations.

The main objective is to model these uncertainties using a widely adopted approach : the
multiplicative error representation. This modeling framework is applied to a given nominal
system to assess the associated robustness conditions, using the sensitivity function Sy(s) and
the complementary sensitivity function Ty(s), which respectively analyze disturbance rejection
and stability with respect to model variations. These tools provide a rigorous framework to
evaluate robust stability and performance.

The analysis aims to determine under which conditions the system remains stable and performant
despite the presence of modeling errors.

More specifically, this study focuses on the system’s two main channels :

• G11(s) representing the permeate flow,

• G22(s) representing the permeate conductivity.

For each subsystem, the performance is analyzed under modeling errors, and the robustness of
the control laws is verified according to the nature of the multiplicative uncertainty considered.

This work is part of a robust control design approach, aiming to anticipate the effects of
uncertainties and ensure the reliability of the controllers under realistic conditions that may
deviate from the theoretical model.

5.2 Theoretical Framework

5.2.1 Multiplicative Uncertainty Model

The multiplicative error model assumes that the discrepancy between the real system and the
nominal model is proportional to the nominal model itself. It is defined as :

GR(s) = GN(s) · [1 + ∆Gm(s)] (5.1)

where :

• ∆Gm(s) : multiplicative modeling uncertainty.

This approach is particularly suitable when the uncertainty varies with frequency or depends on
the system’s amplitude response.
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5.2.2 Robust Stability Conditions

The robustness condition for multiplicative uncertainty is expressed as :

|∆Gm(jω)| · |Ty(jω)| < 1, ∀ω (5.2)

|Bm(ω)| · |Ty(jω)| < 1, ∀ω (5.3)

where :

• Ty(s) =
G(s)C(s)

1 +G(s)C(s)
is the complementary sensitivity function.

5.3 Practical Analysis

To evaluate the impact ofmodeling uncertainties on system behavior, several tests were performed
by applying different perturbation functions ∆G, both of additive and multiplicative types.
These tests aim to assess the system’s sensitivity to deviations between the nominal model
and the real plant, and to verify whether the robustness conditions introduced in the previous
sections are satisfied.

For each tested configuration, the system’s frequency response was analyzed to ensure that
the robustness criterion remains fulfilled over the considered frequency range. The chosen
perturbations were designed to represent realistic modeling errors while covering a range of
possible scenarios.

These simulations illustrate the practical validity of the theoretical framework previously presented
and allow for an assessment of the controllers’ robustness with respect tomodeling uncertainties.

Note :

The perturbation ∆G(s) was chosen to simulate a realistic frequency-dependent uncertainty,
starting from low frequencies and gradually increasing toward higher frequencies. This approach
models a progressive widening of the uncertainty bandwidth, characterized by a specific cutoff
frequencyW , reflecting the increasing influence of dynamic uncertainties at higher frequencies.

At low frequencies, the system operates in a quasi-static regime, where dynamic effects are
negligible and uncertainties are generally minimal. In contrast, at high frequencies, the system
enters a dynamic regime, where transient effects, delays, and physical limitations become dominant.
It is precisely in this frequency range that dynamic uncertainties become significant, making it
necessary to adopt a rigorous modeling approach to ensure control system robustness.
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5.3.1 Effect of Modeling Errors on the (Flux, Pressure) Loop = (Y1, U1)

In this section, we evaluate the robustness of the closed-loop control system associated with
G11(s) (permeate flux) in the presence of modeling errors.

To do this, several types of perturbations ∆G(s) were considered, each representing a specific
configuration of frequency-domain uncertainty. Each perturbation was simulated in closed loop
with the overall system in order to verify the robustness condition (expressed as |∆G(jω)| ·
|Ty(jω)| < 1) across the entire frequency spectrum. This approach enables a comparison of
how each uncertainty impacts stability and performance, thereby identifying the most critical
scenarios.

The following table presents four examples of uncertain transfer functions used in this analysis.

Name Transfer Function∆Gi(s)

∆G1(s)
2s2 + 0.1s+ 0.001

0.003s2 + 0.1s+ 1

∆G2(s)
4s2 + 1.8s+ 0.5

0.003s2 + 0.1s+ 1

∆G3(s)
0.002s2 + 0.01s+ 0.01

0.003s2 + 0.1s+ 1

∆G4(s)
0.002s2 + 0.01s+ 0.01

0.003s2 + 0.1s+ 1

Tab. 5.1 : Examples of uncertain transfer functions ∆Gi(s)

5.3.1.1 Frequency-Domain Analysis for G11(s) : Permeate Flux

This subsection focuses on evaluating the robustness of the permeate flux control loop with
respect to modeling uncertainties affecting the transfer function G11(s).
TheBode diagram of the complementary sensitivity functionTy(s) is used to assess the frequency-domain
performance of the closed-loop system.

EachBode plot corresponds to the frequency response of the system under a specificmultiplicative
uncertaintymodeled by a perturbation∆G11(s). The analysis is based on verifying the robustness
criterion :

|∆G11(jω)| · |Ty11(jω)| < 1, ∀ω (5.4)

This criterion highlights the frequencies at which the systemmay lose robustness. By examining
the gain plots, we can determine whether the controller remains robust against variations in the
model G11(s), particularly in scenarios that alter the pressure dynamics.
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Fig. 5.1 : Singular value plot of ∆G11(s) for
error -1

Fig. 5.2 : Singular value plot of ∆G11(s) for
error -2

Fig. 5.3 : Singular value plot of ∆G11(s) for
error -3

Fig. 5.4 : Singular value plot of ∆G11(s) for
error -4

5.3.1.2 Closed-Loop Simulation for G11(s)

In this simulation, we introducedmultiplicative uncertainties on themodelG11(s), which represents
the relationship between feed pressure and permeate flux. These uncertainties dynamically affect
the system’s response under varying levels of modeling error (labeled as -1, -2, -3, and -4).
The objective is to observe the evolution of the regulated flux and assess the impact of these
perturbations on closed-loop stability and performance.
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Fig. 5.5 : Flux response under multiplicative
error -1

Fig. 5.6 : Flux response under multiplicative
error -2

Fig. 5.7 : Flux response under multiplicative
error -3

Fig. 5.8 : Flux response under multiplicative
error -4

5.3.1.3 Result Analysis for G11(s)

The results show that for small modeling errors (cases -1 and -2), the system is able to track the
reference with only minor delays or slight overshoots. However, for larger uncertainties (cases
-3 and -4), the closed-loop stability is compromised and the control performance deteriorates
significantly. This indicates a loss of control effectiveness under substantial uncertainty, especially
at higher frequencies, as predicted by the frequency-domain analysis. Therefore, the importance
of designing a robust controller is clearly demonstrated.
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5.3.2 Effect of Modeling Errors on the Loop (Conductivity, pH) = (Y2, U2)

Name Transfer function∆Gi(s)

∆G1(s)
5s2 + 0.08s+ 0.001

0.6s2 + 1.8s+ 1

∆G2(s)
3s2 + 0.5s+ 0.002

0.6s2 + 1.8s+ 1

∆G3(s)
0.1s2 + 0.2s+ 0.1

0.6s2 + 1.8s+ 1

∆G4(s)
0.05s2 + 0.1s+ 0.05

0.6s2 + 1.8s+ 1

Tab. 5.2 : Examples of uncertain transfer functions ∆Gi(s)

5.3.2.1 Frequency Analysis for G22(s) : Permeate Conductivity

In this case, we assess the robustness of the control loop regulating the permeate conductivity,
whose manipulated variable is the pH. The analysis is based on Bode plots of the closed-loop
system T22(s) under different multiplicative modeling errors ∆G22(s).

The goal is to verify the satisfaction of the robustness condition :

|∆G22(jω)| · |T22(jω)| < 1 ∀ω

This representation helps identify frequency bands where the system may be more sensitive and
allows us to evaluate whether closed-loop stability is preserved under uncertainty. Since the pH
input introduces nonlinear behavior, this frequency-domain analysis is particularly important for
guaranteeing the robustness of the G22(s) control loop.

Fig. 5.9 : Singular value plot of ∆G22(s) for
error -1

Fig. 5.10 : Singular value plot of∆G22(s) for
error -2
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Fig. 5.11 : Singular value plot of ∆G22(s) for
error -3

Fig. 5.12 : Singular value plot of∆G22(s) for
error -4

5.3.2.2 Closed-Loop Simulation for G22(s)

In addition to the frequency analysis, a series of closed-loop simulations is conducted to evaluate
the time-domain response of the conductivity control loop under various levels of multiplicative
uncertainty affecting G22(s).

The focus is on the system’s ability to track the reference signal and maintain stability despite
modeling errors. These tests allow us to confirmwhether the controller design ensures robustness
against perturbations.

Fig. 5.13 : Closed-loop response of permeate
conductivity for error -1

Fig. 5.14 : Closed-loop response of permeate
conductivity for error -2
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Fig. 5.15 : Closed-loop response of permeate
conductivity for error -3

Fig. 5.16 : Closed-loop response of permeate
conductivity for error -4

5.3.2.3 Results Analysis for G22(s)

The results show that the G22(s) control loop is more sensitive to modeling uncertainties than
the G11(s) loop, particularly due to the nonlinear effects introduced by pH dynamics.

For moderate uncertainties, the system is able to track the reference signal, although with slower
responses and degraded transients. For higher levels of uncertainty, the loop becomes unstable
or exhibits poor regulation performance.

These observations confirm that ensuring robustness for the (Y2, U2) loop is more challenging,
requiring particular attention during controller design.

5.4 Robust Stability Verification

5.4.1 Overview

In this section, we verify whether the robustness conditions against multiplicative uncertainties
are satisfied for the two control loops of the system, namelyG11(s) (permeate flow) andG22(s)

(permeate conductivity). This verification is based on the frequency-domain robustness criterion :

|∆G(jω)| · |T (jω)| < 1 ∀ω

This condition ensures that closed-loop stability is preserved even in the presence of modeling
errors proportional to the system dynamics. For each uncertainty case (from −1 to −4), we
plotted the curve of |∆G(jω)| · |T (jω)| to determine whether the condition is satisfied.
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5.4.2 Case of G11(s)—Robustness Condition Analysis

Fig. 5.17 : Verification of multiplicative
robustness for ∆G11(s) — error -1
(non-robust case)

Fig. 5.18 : Verification of multiplicative
robustness for ∆G11(s) — error -2
(non-robust case)

Fig. 5.19 : Verification of multiplicative
robustness for ∆G11(s) — error -3 (robust
case)

Fig. 5.20 : Verification of multiplicative
robustness for ∆G11(s) — error -4 (robust
case)

The frequency analysis shows that the robustness condition

|∆G11(jω)| · |T11(jω)| < 1

is not satisfied for errors−1 and−2. Peaks above the critical threshold are observed, indicating
excessive amplification of uncertainties at certain frequencies.

However, time-domain responses indicate that the system behaves more stably for larger errors
(−3 and −4), with better-damped transients and no oscillations. This can be explained by the
slowed dynamics introduced by the uncertainty, which attenuates the effect of critical frequencies.

Partial Conclusion : Although the robustness condition is violated for small uncertainties (−1,
−2), theG11(s) system exhibits more stable and well-regulated behavior for larger uncertainties
(−3, −4). Therefore, frequency-domain analysis alone does not provide a complete picture of
robustness.
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5.4.3 Case of G22(s)—Robustness Condition Analysis

Fig. 5.21 : Verification of multiplicative
robustness for ∆G22(s) — error -1
(non-robust case)

Fig. 5.22 : Verification of multiplicative
robustness for ∆G22(s) — error -2
(non-robust case)

Fig. 5.23 : Verification of multiplicative
robustness for ∆G22(s) — error -3 (robust
case)

Fig. 5.24 : Verification of multiplicative
robustness for ∆G22(s) — error -4 (robust
case)

Similarly, for the G22(s) loop, the robustness condition

|∆G22(jω)| · |T22(jω)| < 1

is not satisfied for errors −1 and −2. The product exceeds 1 at several frequencies, indicating a
potential loss of robustness.

Yet, closed-loop simulations show more stable behavior for larger uncertainties (−3 and −4),
with no significant oscillations. These results may be attributed to the attenuation effect caused
by strong uncertainties, which slow down system dynamics and reduce frequency-domain peaks.

Partial Conclusion :TheG22(s) system exhibits better regulation under significant uncertainties
(−3, −4), despite theoretical violations of robustness conditions under small errors (−1, −2).
This confirms the need to complement frequency-domain analysis with time-domain simulations.
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5.5 Conclusion

This chapter analyzed the robustness of the two control loops of the desalination system against
multiplicative uncertainties. The approach combined frequency analysis (Bode diagrams), theoretical
robustness criteria, and closed-loop time-domain simulations.

The results highlighted that :

• ForG11(s) (permeate flow), the robustness condition is violated under small uncertainties,
but the system remains stable under larger ones.

• For G22(s) (conductivity), the system performs better under large uncertainties, contrary
to theoretical expectations.

This reveals a limitation of purely frequency-based methods, which may overlook the stabilizing
effect introduced by certain dynamics associated with the modeling errors.

A rigorous robustness evaluationmust combine both theoretical criteria and behavioral (time-domain)
analysis. This dual approach provides a better understanding of stability margins and the true
performance of the control system.
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This final-year project addressed a critical and contemporary issue : the sustainable management
of water resources. In the face of freshwater scarcity, reverse osmosis desalination has emerged
as a relevant technological solution for producing potable water from saline or brackish sources.
The main objective of this work was to enhance the efficiency and robustness of this process
through a combined approach based on dynamic modeling and advanced control strategies.

We first conducted an in-depth study of the reverse osmosis process, followed by dynamic
system identification using experimental data. This modeling step enabled the design of various
control strategies, particularly Model Predictive Control (MPC), which was applied both to
decoupled SISO models and to a multivariable (MIMO) system model. The study was further
extended by integrating a robust control strategy based on the Internal Model Control (IMC)
framework.

The second part of the project focused on assessing the system’s performance in the presence
of model uncertainties, specifically multiplicative modeling errors. To this end, a dual approach
was adopted : a frequency-domain analysis of robustness conditions using Bode diagrams, and
a time-domain validation through closed-loop simulations.

The results revealed an unexpected observation : the theoretical robustness conditions are not
always consistent with the actual dynamic behavior of the system. In some cases, large modeling
errors produced more stable responses than smaller ones. This highlighted the importance of
critically evaluating classical robustness criteria and underscored the necessity of combining
theoretical analysis with practical simulation-based validation.

In conclusion, this project provided us with a deep understanding of the challenges involved in
controlling complex dynamical systems under uncertainty. It revealed the limitations of classical
approaches and opened the door to exploring more adaptive methods that can ensure stability,
performance, and robustness under real-world operating conditions.
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Chapitre 6

Appendix
Business Model Canvas (BMC)

This appendix presents a structured overview of the business model (Business Model Canvas)
related to the modeling, identification, and control of a reverse osmosis desalination system.

1. Customer Segments

• Seawater desalination plants.

• Water management authorities.

• Municipal and local utilities in arid regions.

• Countries facing water scarcity.

2. Value Propositions

• Accurate and validated dynamic model for reverse osmosis systems.

• Robust control strategies (MPC and IMC-based PID).

• Enhanced water quality and reduced energy consumption.

• Increased membrane life span and system reliability.

3. Distribution Channels

• Scientific publications in specialized journals.

• Presentations at control and process engineering conferences.
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• Partnerships with water treatment research centers.

• Pilot industrial implementations.

4. Customer Relationships

• Applied research collaborations.

• Technical support for system integration.

• Documentation and training services.

5. Revenue Streams

• Engineering service contracts for control implementation.

• Licensing of advanced control software.

• Consulting and professional training.

6. Key Resources

• Experimentally validated RO system model.

• Simulation and identification tools (MATLAB/Simulink).

• Pilot experimental platform.

• Expertise in predictive and PID-based control.

7. Key Activities

• Dynamic modeling and system identification.

• Design of robust controllers (MPC, PID-IMC).

• Robustness and performance evaluation.

• Experimental validation and testing.
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8. Key Partners

• Process Control Laboratory – ENP.

• Academic and industrial supervisors.

• Desalination sites (e.g., Kuwait).

• Sensor and membrane suppliers.

9. Cost Structure

• Costs of prototyping and experimental validation.

• Controller algorithm development and tuning.

• Software licenses (e.g., MATLAB/Simulink).

• Maintenance of experimental equipment.
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