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Résumé

La planification chirurgicale hépatique classique repose sur 'interprétation manuelle d’images
2D, ce qui limite sa précision et son efficacité. Ce projet propose un systeme intégré com-
binant segmentation automatique par deep learning et visualisation immersive en réalité
mixte (MR). Le modele atteint un Dice médian de 0,92 sur le dataset IRCAD, avec des
résultats comparables sur LiTS et MDHYV.

Les modeles 3D générés sont visualisables en MR via une application interactive multi-
utilisateur. Ce systeme novateur améliore considérablement la précision de la planification
et ouvre la voie a une meilleure prise en charge clinique grace a la synergie entre intelligence
artificielle et réalité mixte.

Mots-clés : Planification chirurgicale hépatique, segmentation automatique, deep
learning, réalité mixte, reconstruction 3D, collaboration médicale.



Abstract

Traditional liver surgical planning, relying on manual interpretation of 2D images, is
often limited in precision and efficiency. This report introduces an integrated system
designed to revolutionize this practice by combining automated deep learning-based liver
segmentation with a collaborative Mixed Reality (MR) environment.

The developed approach leverages advanced neural network architectures for accurate
liver and tumor segmentation, followed by rapid 3D reconstruction. The segmentation
model achieved a median Dice score of 0.92 on the IRCAD dataset, with comparable
performance on LiTS and MDHV. The generated 3D models are then imported into an
interactive MR application, enabling immersive visualization and intuitive manipulation.

Furthermore, the system supports multiple simultaneous users in local collaborative
mode, facilitating joint discussion and planning. This unique contribution, merging auto-
mated segmentation with immersive MR collaboration, significantly enhances the preci-
sion and efficiency of surgical planning, offering substantial potential for improving clinical
outcomes. The emphasis on these key figures and the system’s unique contribution high-
lights that the project’s value lies not only in the performance of its individual components
but also in the synergy created by integrating Al and MR to optimize a complex clinical
workflow.

Keywords: Liver surgical planning, automated segmentation, deep learning, Mixed
Reality, 3D reconstruction, clinical collaboration.
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Introduction

Background and Motivation

Liver surgery is one of the most challenging procedures in abdominal surgery due to the
organ’s complex vasculature and segmental anatomy. Accurate localization of tumors and
vascular bifurcations is critical to choose the optimal surgical approach that maximizes
the chances of a successful outcome and to avoid complications [34].

Advancements in artificial intelligence (Al), particularly deep learning for medical im-
age segmentation, combined with mixed reality (MR) visualization technologies, present
a unique opportunity to enhance surgical planning. This project leverages these innova-
tions to provide a more accurate, immersive, and collaborative planning solution for liver
resection procedures.

Problem Statement

Liver surgery requires precise spatial understanding of complex intrahepatic structures.
However, the current clinical workflow for surgical planning relies primarily on two-
dimensional (2D) imaging modalities such as computed tomography (CT) and magnetic
resonance imaging (MRI) [38]. While these techniques offer high-resolution anatomical
information, they suffer from several fundamental limitations:

e Lack of depth perception and spatial orientation.
e Overlapping structures that obscure anatomical boundaries.

e Difficulty distinguishing tissues with similar radiodensity, particularly in hepatic
vasculature.

e Interpretation is dependent on radiologists, introducing inter-observer variability.
These limitations directly impact a surgeon’s ability to accurately assess tumor mar-
gins, vascular proximity, and resectability, which can compromise surgical outcomes.
Current Surgical Planning Workflow
The conventional preoperative workflow typically follows these steps:

1. Imaging Acquisition: CT or MRI scans are acquired to visualize the liver, lesions,
and surrounding structures.

2. Radiological Analysis: A radiologist interprets the scans and provides annotated
reports of tumors, vessels, and anomalies.

3. Surgical Planning: The surgeon mentally constructs a three-dimensional (3D)
model based on 2D images and radiological descriptions.

4. Mental Visualization: The surgeon memorizes spatial relationships between key
anatomical features and uses this mental model intraoperatively.

This process places a high cognitive burden on surgeons, relying heavily on experi-
ence and visualization skills. It also introduces the risk of subjective interpretation and
inconsistent surgical decisions.

BENZINE Yasser 14 TOUIL Mohamed Reda



Mental Reconstruction Challenges and Risks

The reliance on mental reconstruction for spatial reasoning poses several challenges:

e Cognitive Load: Memorizing detailed anatomical structures in 3D space is men-
tally taxing.

e Subjectivity: Surgeons’ spatial reasoning abilities vary, which may lead to incon-
sistent planning.

e Potential for Error: Misinterpretation of spatial relationships can result in in-
complete tumor resection or accidental vascular damage.

These issues collectively underscore the need for improved tools that support intuitive,
accurate, and reproducible surgical planning. Combining automated segmentation via
deep learning with immersive 3D visualization in mixed reality environments offers a
promising solution to overcome these limitations.

Objectives

The primary objective of this project is to develop an end-to-end system that assists
surgeons in liver resection planning through intelligent image analysis and intuitive visu-
alization. Specifically, the system aims to:

e Automate the segmentation of liver parenchyma, hepatic vessels, and tumors from
3D medical images using deep learning.

e Generate 3D mesh models from segmented volumes for immersive visualization.

e Develop a mixed reality application for the Meta Quest 3 headset to interact with
the anatomical models in real-time.

e Enable local multi-user collaboration for surgical discussion and planning.

Structure of the Report

This report is structured as follows:

e Chapter [I Presents the anatomical and clinical background of liver surgery and
tumor management.

e Chapter [2} Reviews the state of the art in deep learning-based liver segmentation
and mixed reality in surgical applications.

e Chapter 3} Describes the methodology for segmentation, reconstruction, and model
conversion.

e Chapter : Details the development of the mixed reality (MR) application for Meta
Quest 3 headset.

BENZINE Yasser 15 TOUIL Mohamed Reda



Chapter 1

Medical and Clinical Background

1.1 Liver Anatomy and Segmentation Relevance

A comprehensive understanding of internal liver anatomy is critical in liver disease di-
agnosis and treatment. Claude Couinaud, a renowned French surgeon and anatomist,
published his work on segmental liver anatomy in 1957 @ He emphasized that the func-
tional anatomy of the liver is primarily governed by its vascular and biliary systems, a
foundation that modern hepatic surgery still relies upon today.

1.1.1 Organ

Figure [1.1] shows the general liver anatomy on (A) a physical model and (B) a CT slice.
The liver is the largest internal organ, roughly 2-3% of total body weight. Morphologi-
cally, it is divided into two lobes, but functionally it is segmented based on vasculature
rather than surface anatomy [21].

Falciform

Inferior .
~__Ligament
\\\;

—>
Vena-Cava /(“ =

Right

@) K (B)

[

Round
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Figure 1.1: General liver anatomy on (A) physical model and (B) CT slice.

1.1.2 Vasculature

The liver receives about 25% of the cardiac output, via two main inflows: the hepatic
artery (25%) and the portal vein (75%) [27]. These blood sources mix within the hepatic
sinusoids before draining through hepatic veins into the inferior vena cava (IVC).

Venous System Couinaud’s classification [6] defines liver segments based on portal
and hepatic vein bifurcations. The portal vein divides into right and left branches at
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the hilum, creating functional subdivisions. Each subdivision is further segmented into
sectors and segments (I-VIII) as shown in Figure [1.2]
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duct
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'

Cystic Bile Portal Hepatic
Gall bladder duct duct vein artery

Figure 1.2: Couinaud classification of liver segments based on vascular anatomy.

Arterial and Biliary Systems The hepatic artery typically branches from the celiac
axis, forming the proper hepatic artery which runs alongside the portal vein and bile ducts
in the Glissonean pedicle . The biliary tree closely follows portal vein branching and
is essential for bile secretion.

1.1.3 Function

The liver performs numerous essential functions including metabolism regulation, bile pro-
duction, detoxification, blood clotting factor synthesis, hormone regulation, and storage
of vitamins and glucose [11]. Albumin production and bilirubin elimination are especially
critical in hepatic pathology evaluation.

1.2 Importance of Preoperative Visualization

1. Why imaging is important

Imaging is essential for diagnosing liver diseases and planning surgery because it is non-
invasive. It helps doctors clearly locate tumors inside the liver.

2. Common types of imaging

e CT Scan (Computed Tomography) Computed Tomography (CT), commonly
referred to as a CT scan, is a medical imaging method that uses X-rays taken from
multiple angles and computer processing to generate cross-sectional images of the
body. It is especially effective for examining bones, detecting internal injuries, and
evaluating conditions affecting the chest, abdomen, and pelvis.
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e MRI (Magnetic Resonance Imaging) Magnetic Resonance Imaging (MRI) is
a non-invasive medical imaging technique that uses strong magnetic fields and ra-
diofrequency waves to produce high-resolution images of soft tissues in the human
body. Unlike CT, MRI does not use ionizing radiation. It is particularly useful for
visualizing the brain, spinal cord, joints, muscles, and internal organs such as the
liver or kidneys.

3. What imaging tells us

e Liver anatomy and blood vessels: Imaging shows the shape of the liver and
the position of its main vessels (portal vein, hepatic artery, hepatic veins), which is
important to see how close tumors are to these structures.

e Tumor details: Imaging helps locate tumors, count them, measure their size, and
analyze their blood flow. Malignant tumors usually have specific contrast patterns
(bright in arterial phase, then fading in later phases).

e Other liver problems: It can also show signs of fibrosis or cirrhosis, such as
irregular liver shape, enlarged or shrunken liver parts, or uneven liver texture.

e Signs of portal hypertension: Doctors look for an enlarged portal vein (over 12
mm), a big spleen (more than 381 cc), or unusual blood vessels (shunts), which can
affect whether surgery is safe.

1.3 Current Challenges in 2D-based Planning

While two-dimensional (2D) imaging modalities like CT and MRI remain the foundation
for diagnosing and assessing liver disease, relying solely on 2D views for complex surgical
planning presents significant limitations and challenges [21].

The primary challenge lies in limited spatial understanding. Standard 2D displays
(axial, coronal, sagittal slices) require surgeons to mentally integrate these separate views
to build a three-dimensional understanding of the liver’s intricate internal anatomy, in-
cluding the complex branching patterns of the portal veins, hepatic arteries, hepatic veins,
and bile ducts, and their precise spatial relationship to tumors [38]. This mental recon-
struction process is inherently difficult, places a high cognitive load on the surgeon, is
heavily dependent on individual experience and spatial reasoning skills, and is prone to
error or misinterpretation, especially when dealing with anatomical variations or complex
tumor configurations [38].

The lack of true depth perception in 2D images makes it challenging to accurately
judge the proximity of a lesion to critical vascular structures or to precisely define the 3D
trajectory of a resection plane relative to segmental boundaries [29]. Structures can be
obscured by others in certain 2D projections, hindering a complete assessment [23]. This
limited spatial comprehension can directly impact the accuracy and confidence of surgical
planning, potentially leading to suboptimal resection strategies, difficulty in achieving
clear margins, or increased risk of inadvertent vascular injury during the procedure [14].

Comparative studies consistently show that surgeons using 3D visualization tools
achieve significantly higher accuracy in localizing tumors and defining appropriate re-
section plans compared to those relying on 2D images alone [38§].
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Chapter 2

State of The Art on Medical Image
Segmentation with Deep Learning

2.1 Medical Image Segmentation

2.1.1 Definition and Importance

Image segmentation is the process during which the pixels/voxelﬂ shaping a particular
region of interest (ROI) are identified. Image segmentation continues to be one of the
hottest research topics in the field of computer vision. In medical imaging, the role of seg-
mentation extends beyond anatomical structure delineation to include ROI localization
(e.g., tumor position in the liver). With technological advancement in image acquisi-
tion and the ever-increasing number of acquired images, medical image segmentation has
gained significant popularity in assisting medical doctors in clinical diagnosis and treat-
ment planning. Therefore, accurate, reliable, and repeatable segmentation algorithms
can play an important role in the fast automation process of analyzing a large number of
cases, and the improvement of the overall standard routine of care.

This chapter introduces detailed literature review of the different deep learning models
proposed for the liver, tumor, and vessel segmentation.

Figure 2.1: 3D anatomical of the liver with segmented tumor (purple), vascular structures
(red, green, yellow), and parenchymal regions.

Pixel is the smallest 2D constituent of an image. Voxel is the smallest volume element in a 3D image.
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2.2 Liver and Tumor Segmentation

Liver tumor segmentation is a challenging task to accomplish for various reasons such
as: the tumor size and position can significantly vary between different patients. The
following is a detailed review of the recent (2015-2024) deep learning models that perform
liver tumor segmentation.

Figure 2.2: Multimodal visualization of liver and tumor segmentation. (a, b) Axial CT
slices and (c¢) 3D reconstructed volume.

2.2.1 Literature Review

The evolution of deep learning approaches for liver tumor segmentation can be catego-
rized into three primary methodological frameworks: cascaded architectures, end-to-end
integrated models, and hybrid attention-based networks. Each approach addresses the
fundamental challenge of accurately delineating tumor boundaries while managing the
inherent complexity of medical imaging data.

Cascaded architectures emerged as the foundational approach for liver tumor segmen-
tation, establishing a two-stage process that first segments the liver region before focusing
on tumor detection. Christ et al. introduced this paradigm using fully connected CNNs
trained on the IRCAD dataset, achieving 94% Dice coefficient for liver segmentation and
82% for tumor segmentation through the application of 3D conditional random fields for
post-processing refinement. This methodology demonstrated that hierarchical process-
ing could effectively manage the multi-scale nature of the segmentation task. Yuan et
al. extended this concept with hierarchical convolution-deconvolution networks on the
LiTS dataset, implementing a three-stage approach where successive networks progres-
sively refine segmentation quality, ultimately achieving 65.7% Dice coefficient for tumor
segmentation.

End-to-end integrated approaches subsequently emerged to address the limitations
of cascaded methods, particularly the error propagation inherent in sequential process-
ing. Vorontsov et al. proposed simultaneous training of liver and tumor segmentation
networks, where both models receive identical input while sharing latent representations
from the final convolutional layers. This approach achieved 95% Dice coefficient for liver
segmentation and 66% for tumor segmentation on the LiTS dataset. The integration
of contextual information through shared representations demonstrated superior perfor-
mance compared to traditional cascaded methods while maintaining computational effi-
ciency.

Recent developments have focused on attention mechanisms and hybrid architec-
tures to enhance feature extraction and spatial awareness. Li et al. introduced the
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H-DenseUNet, combining 2D DenseUNet for intra-slice feature extraction with 3D com-
ponents for inter-slice processing, achieving 96% liver segmentation and 72.2% tumor
segmentation accuracy. This hybrid approach addresses the volumetric nature of medical
imaging while maintaining computational tractability. Advanced attention mechanisms
have been implemented by Jiang et al., incorporating both soft and hard attention blocks
within fully convolutional networks, resulting in 96% liver segmentation and 67% tumor
segmentation performance on the IRCAD dataset.

The relationship between tumor size and segmentation accuracy represents a critical
performance factor across all methodological approaches. Vorontsov et al. demonstrated
this challenge through evaluation on liver metastases from colorectal cancer, achieving
14%, 53%, and 68% Dice coefficients for tumors smaller than 10mm, between 10-20mm,
and larger than 20mm, respectively. This size-dependent performance limitation remains
consistent across different architectural approaches and represents a fundamental chal-
lenge for clinical application.

Contemporary research has achieved notable performance improvements through ad-
vanced architectural innovations. Li et al. developed the Eres-UNet incorporating highly
efficient channel attention modules, achieving 96% liver segmentation and 91% tumor
segmentation accuracy. However, this evaluation was conducted on a subset of the LiTS
dataset with small tumors removed, highlighting the ongoing challenge of comprehensive
evaluation standards.

The literature reveals persistent challenges in standardized evaluation and dataset
availability. While the LiTS and IRCAD datasets serve as common benchmarks, many
studies employ private datasets or modified evaluation protocols, limiting direct perfor-
mance comparisons.

2.3 Liver Vessel Segmentation

Proper vascular function remains fundamental to tissue health throughout the human
body, with vessel abnormalities manifesting as significant pathological conditions includ-
ing atherosclerosis and cerebrovascular accidents. Medical imaging and computational
analysis have substantially advanced vessel delineation capabilities, enabling enhanced
diagnostic and therapeutic applications. Vessel segmentation from medical images serves
as an essential preprocessing step for surgical planning and vascular disease diagnosis,
with methodological approaches varying according to imaging modality, contrast quality,
automation level, and segmentation technique employed.

Traditional vessel segmentation approaches relied on manual delineation across sequen-
tial image slices, requiring substantial expertise while proving both labor-intensive and
time-consuming. The emergence of deep learning methodologies for medical image seg-
mentation has facilitated the development of automated vessel segmentation approaches
that address these limitations. Classical vessel segmentation methods have been compre-
hensively reviewed by Kirbas and Quek [22], while Moccia et al. [26] provide extensive
analysis of blood vessel segmentation algorithms across various imaging modalities and
evaluation frameworks.

The following section presents a focused examination of liver vessel segmentation from
contrast-enhanced computed tomography using deep learning approaches, emphasizing re-
cent methodological developments and performance characteristics within this specialized
domain.
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Figure 2.3: Multimodal visualization of liver vessel segmentation. (a, b) Axial CT slices
and (c) 3D reconstructed liver model.

2.3.1 Literature Review

Jin et al. propose a dual-stage transformer-based framework for liver vessel segmentation
that leverages global contextual modeling and local spatial refinement . In the first
stage, a coarse segmentation of the liver vessels is generated using a Vision Transformer
(ViT) that captures global features from the liver region cropped using a pretrained
liver segmentation model. The second stage refines the coarse predictions using a hybrid
CNN-transformer module that integrates fine-grained spatial details. This framework is
evaluated on the IRCAD dataset, with 16 cases used for training and 4 for testing. The
method achieves an average Dice score of 92%, outperforming several baseline CNN-based
models and demonstrating enhanced performance in delineating thin and low-contrast
vessels. Notably, their ablation study shows that combining transformer-based attention
with traditional convolutional layers improves both recall and vessel continuity.
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2.4 Mixed Reality in Surgical Planning

Mixed Reality technology represents a paradigm shift in surgical planning and intra-
operative assistance by seamlessly integrating physical and digital environments. This
technology enables real-time interaction with three-dimensional holograms that are spa-
tially anchored within the real-world environment, providing enhanced depth perception
and spatial awareness capabilities that are particularly valuable for complex surgical pro-
cedures.

Figure 2.4: Mixed Reality applied in surgery for preoperative planning and intraoperative
assistance.

Recent developments between 2022 and 2024 have demonstrated the practical appli-
cation of MR devices, including Microsoft HoloLens and Meta Quest 3, across various
surgical specialties. The Carnalife Holo system developed by MedApp S.A. in Poland
exemplifies this advancement by converting medical imaging data into interactive three-
dimensional holograms for both preoperative planning and intraoperative guidance. Pre-
liminary evaluation of this system in pediatric oncological surgery revealed that MR im-
plementation did not significantly extend surgical procedure duration or hospitalization
time, establishing its viability as a promising surgical tool .

Figure 2.5: Visual comparison of XR headsets. On the left: Meta Quest 3, On the right:
Microsoft HoloLens 2.
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Surgical navigation applications have shown particularly compelling efficiency im-
provements. An augmented reality-mixed reality navigation system for high tibial os-
teotomy demonstrated substantial reductions in preoperative planning time, decreasing
from conventional method durations of 30.5 to 75.5 minutes to just 4 minutes. Similarly,
intraoperative time requirements were reduced from 31.5 minutes or 10.5 minutes using
conventional approaches to 8.5 minutes with the MR system. Although this system ex-
hibited slightly lower accuracy compared to traditional methods, the significant efficiency
gains position it as a valuable alternative for appropriate clinical scenarios [36].

The application of augmented reality in surgical consent and anatomical understanding
has emerged as another significant benefit area. Comprehensive reviews of AR applica-
tions from 2019 to 2023 have highlighted substantial improvements in mental comprehen-
sion of complex medical concepts and enhanced visualization of anatomical structures.
These capabilities prove particularly valuable for the surgical consent process, where
patient understanding of proposed procedures is essential [37]. Additionally, HoloLens
technology has gained increasing adoption in medical education applications, including
anatomy instruction and medical imaging training [13].

Despite these promising developments, current MR devices present several inherent
limitations that must be addressed for optimal surgical implementation. The field of view
constraint represents a fundamental challenge, as MR headsets like the HoloLens provide
a more restricted visual field compared to natural human vision, potentially limiting
immersion and comprehensive situational awareness during surgical procedures.

Latency issues pose another critical concern, particularly for surgical applications
where temporal precision is paramount. Real-time tracking, registration of holograms
with the physical environment, and rendering processes can introduce perceptible delays
that may compromise surgical accuracy and workflow efficiency.

Depth sensor accuracy represents an additional technical limitation, as these sensors
can be affected by environmental noise, reducing the precision of environmental mapping
capabilities. The fixed focus plane limitation, such as the two-meter focus distance of
the HoloLens, can particularly impact the precision required for close-proximity surgical
procedures where millimeter-level accuracy is essential [13].

The novelty bias phenomenon must also be considered when evaluating MR technology
benefits. Initial participant enthusiasm for new technology may lead to overestimation of
perceived benefits, potentially skewing early adoption assessments and requiring careful
evaluation protocols to distinguish genuine utility from technological novelty appeal [37].

The consistent identification of latency and field of view as fundamental limitations
across different MR systems suggests these constraints are inherent to current technology
generations. Consequently, project design must accommodate these limitations while fu-
ture development efforts should focus on mitigation strategies and leverage anticipated
advancements in subsequent hardware generations to address these foundational chal-
lenges.
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Chapter 3

Methodology Part I: Segmentation
and 3D Reconstruction

3.1 Dataset and Preprocessing

3.1.1 Dataset

We used three publicly available CT datasets commonly applied in abdominal imaging
research:

LiTS (Liver Tumor Segmentation Challenge): This dataset contains CT scans
focused on liver and tumor segmentation. It is widely used to benchmark algorithms on
liver lesion detection and volumetry .

Figure 3.1: Example from the LiTS dataset showing liver and tumor segmentation on
axial CT slices.
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IRCAD: The IRCAD dataset consists of high-resolution, manually annotated CT
images of the liver, including tumors and hepatic vasculature. It is often used for detailed
anatomical analysis and vessel-tumor interaction studies [7].

Figure 3.2: Example from the IRCAD dataset showing annotated liver, vessels, and tumor
regions.

MDHYV (Medical Decathlon Hepatic Vessel): Part of the Medical Segmenta-
tion Decathlon challenge, this dataset provides CT scans with annotations specifically
targeting hepatic vessel segmentation, useful for vascular topology learning .

LAl ~

Figure 3.3: Example from the MDHV dataset: (Left) raw CT image, (Middle) vessel
mask overlaid on CT, (Right) 3D reconstruction of segmented hepatic Vessels.

Summary Table of Dataset Characteristics

Properties LiTS IRCAD MDHV

Use Case Liver, Tumor Liver, Tumor, Vessels Vessels
Dataset Size 201 (131/70) 20 443 (303/140)
Available Annotations Train: Yes, Test: No Yes Train: Yes, Test: No
In-plane Resolution (mm) 0.76 (0.56, 1.00) 0.74 (0.56, 0.87) 0.80 (0.56, 0.97)
Slice Thickness (mm) 1.0 (0.7, 5.0) 1.6 (1.0, 4.0) 5.0 (0.8, 8.0)
Number of Slices 432 (74, 987) 99 (41, 187) 49 (24, 181)

Table 3.1: Characteristics of publicly available CT datasets. In-plane resolution, slice
thickness, and number of slices are expressed as median (min, max).
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3.1.2 Preprocessing

Prior to model training, a comprehensive preprocessing pipeline was applied to ensure
data uniformity and enhance model performance. The preprocessing steps are described

below.

e Resampling: CT images often exhibit anisotropic voxel spacing — for example,
in-plane resolution might be 0.7 x 0.7 mm while the slice thickness is 5 mm. To

address this:

— A resampling strategy was implemented to standardize all scans to isotropic
spacing (typically 1 x 1 x 1 mm?).

— A threshold value (ANISO_THRESHOLD = 3) was defined to determine whether
a volume was anisotropic (e.g., the z-spacing is three times the x/y spacing).

Isotropic Volumes: Volumes with nearly equal spacing in all directions were in-
terpolated directly using trilinear or bicubic interpolation to standardize reso-

lution.

Anisotropic Volumes: For volumes with significant spacing disparities, slice-wise
processing was considered or higher-order interpolation was avoided to prevent

spatial distortion.
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7
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thickness
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Figure 3.4: Comparison between anisotropic (left) and isotropically resampled (right) CT

volumes.
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e Intensity Windowing and Normalization: CT scan intensities are measured
in Hounsfield Units (HU), a radiodensity scale. To focus on soft tissues, intensities
were clipped to the range [—100,400] HU, a standard liver window.

Normalized CT
Original CT (Hounsfield Units) ([-100, 400] HU)

Figure 3.5: Effect of intensity windowing on CT data. Left: Original CT image in raw
Hounsfield Units. Right: CT image clipped to [—100,400] HU for soft tissue visualization.

— This step discards irrelevant intensity values (e.g., bone, air) and emphasizes
liver and tumor structures.

e Cropping (Bounding Box Extraction): To optimize training efficiency and
focus the model on relevant anatomical structures:

— A tight 3D bounding box was computed around the liver (and tumor) region
by identifying non-zero voxels in the segmentation masks.

— A few slices above and below the liver were retained to preserve anatomical
context.

— Cropped sub-volumes reduced memory usage and increased the model’s focus
on pathological regions, particularly for detecting small lesions.

Z-Axis HU Clipping Min-Max Normalization Bouunding Box
Cropping [-100, 400] [0,1] Extraction

Abdominal
CT VYolume

Figure 3.6: Preprocessing pipeline for liver CT scans including cropping, HU clipping,
normalization, bounding box extraction.
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3.2 Evaluation Metrics

3.2.1 Dice Loss

Dice Loss is a popular metric for evaluating segmentation performance, especially in
medical imaging. It measures the overlap between the predicted segmentation and the
ground truth [2], defined as:

2|P NG|
[Pl + 1G]

where P represents the predicted segmentation set and G the ground truth set.

Dice Loss =1 —

3.2.2 IoU Loss

Intersection over Union (IoU), also known as the Jaccard Index, is another common
metric for evaluating segmentation performance. It quantifies the similarity between the
predicted segmentation and the ground truth by comparing their overlap relative to their
union [2]:

PNG
PUG

where P is the predicted segmentation set and G is the ground truth set.

IoU Loss =1 —

3.3 Segmentation Models Implemented
We implemented and evaluated multiple deep learning architectures for medical image
segmentation.

Since the IRCAD dataset is relatively small, with only 20 patients, we propose a two-
stage system to improve segmentation performance. The first stage focuses on liver and
tumor segmentation, followed by a second stage for hepatic vessel segmentation.

3.3.1 Liver Tumor Segmentation

2D Approach

For the 2D approach, we employed the traditional 2D U-Net architecture, which has
been widely used for image segmentation tasks in medical imaging.
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e 2D U-Net: The 2D U-Net architecture is a well-established convolutional neu-
ral network designed specifically for image segmentation. It follows a symmetric
encoder-decoder structure with skip connections , as illustrated in Figure .
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Figure 3.7: Architecture of the 2D U-Net.

Configuration of Training:

Parameter

Liver /Tumor Segmentation

Input Channels

Output Classes

Image Size
Normalization
Architecture

Batch Size

Epochs

Optimizer

Learning Rate

Final Dice Score (Liver)
Final Dice Score (Tumor)

1 (Grayscale CT)
3 (Background, Liver, Tumor)
512 x 512

Yes

U-Net

8

20

Adam

1x10™*

0.931

0.613

Table 3.2: Training configuration and results for the 2D U-Net model used in liver and

tumor segmentation.
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Figure 3.8: Training and validation Dice score curves over 50 epochs. (a) Liver segmen-
tation. (b) Tumor segmentation.

2. 2.5D Approach

The 2.5D approach extends the 2D model by incorporating neighboring slices to pro-
vide context along the depth dimension.

Models: Attention U-Net, Dense U-Net

e Attention U-Net: Introduces attention gates that help the model focus on relevant
structures such as the liver and tumors [2§].
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Figure 3.9: Architecture of the Attention U-Net .
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e Dense U-Net: Employs dense connections to improve feature reuse and gradient

propagation [4].
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Figure 3.10: Architecture of Dense U-Net.

Configuration of Training:

Parameters Attention U-Net Dense U-Net
Depth 4 4
Dropout 0.2 -
Epochs 50 50
Batch size 8 8

Batch normalization True True
Loss Dice loss Dice loss
Optimizer Adam Adam
Momentum 0.99 0.99
Learning rate 0.0001 0.0001

Results:
Method Att U-Net Dense U-Net
Dice (liver) 0.951 0.949
Dice (tumor) 0.65 0.600

Table 3.3: Dice scores for liver and tumor segmentation (best results highlighted).
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Figure 3.11: Training and validation Dice score curves for liver (a) and tumor (b) seg-
mentation using the best-performing 2.5D model: Attention U-Net.
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3. 3D Approach

The 3D approach handles full volumetric data, enabling better spatial context extrac-

tion in all directions.
Models: 3D U-Net and 3D ResUNet

e 3D U-Net: A direct 3D extension of the classic U-Net .
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Figure 3.12: Architecture of the 3D U-Net ||

e 3D ResUNet: Incorporates residual connections to improve training depth and

stability [39].
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Figure 3.13: Architecture of the 3D Residual U-Net .
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Input Strategies for 3D Models:

e Patch-based: The 3D volume is divided into smaller patches.

Figure 3.14: Patch-based approach.

e Slab-based: Small contiguous blocks of slices (slabs) are processed.

Figure 3.15: Slab-based approach.

e Full-volume: The entire 3D CT volume is input at once.

\\\\\

Figure 3.16: Full-volume approach.
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Configuration of Training:

Parameter Value

Train/Val Split 80% / 20%

Batch Size 4

Normalization Yes

Model Architecture 3D UNet, 3D ResUnet

Epochs 50 (with early stopping after 100 epochs)
Learning Rate 3x 1074

Optimizer Adam

Loss Function BCE + Dice (BCEDiceLoss)

Metrics Dice, IoU

Checkpoint Saving Best model saved based on validation loss

Dice Scores for Liver Segmentation (3D Models)

Set-up 3D U-Net 3D ResU-Net
Full 3D 0.951 0.963
Slabs-based 0.947 0.953
Box-based 0.920 0.943

Table 3.4: Dice scores for liver segmentation using different 3D input strategies.

Dice Scores for Tumor Segmentation (3D Models)

Set-up 3D U-Net 3D ResU-Net
Full 3D 0.734 0.88
Slabs-based 0.700 0.863
Box-based 0.551 0.764

Table 3.5: Dice scores for tumor segmentation using different 3D input strategies.
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Figure 3.17: Training and validation Dice score curves for liver (a) and tumor (b) seg-
mentation using the best-performing model: 3D ResU-Net (full volume setup).

3.3.2 Hepatic Vessel Segmentation via Filter-enhanced and 3D
U-Net

For the hepatic vessel segmentation task, we retained the 3D U-Net architecture, which
is well suited for volumetric medical image processing. Instead of modifying the model
itself, we enhanced its input by applying vesselness filters to better emphasize vascular
structures within the CT scans.

Hepatic vessels are particularly challenging to segment due to their small caliber,
branching geometry, and poor contrast in CT images. Standard intensity-based segmen-
tation methods often fail to capture their complex topology. Therefore, we explored sev-
eral vesselness filters that leverage second-order intensity information to enhance tubular
structures before feeding the volumes into the 3D U-Net.
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These filters are typically based on the Hessian matrix H(f) of the image function
f (1,29, 23), which encodes second-order partial derivatives:

T T
027 Ox10x2  Ox10x3
_ *f 2f > f
H(f) | Ox2011 817% Ox20T3 (31)
oy _of  92f
Ox3dxry  Oxr30x2 81‘%

To handle the discrete nature of digital images, f is approximated by smoothing
the input image I with a Gaussian kernel of standard deviation o, enabling multi-scale
analysis.

Let A1, A2, A3 be the eigenvalues of H(f) ordered as [A;] < |[Ao| < |A3]. Vessel-like
structures exhibit the pattern:

‘)\1‘ ~ O, )\2 ~ )\3 <0 (32)
We evaluated the following vesselness filters:

Frangi filter [10]: Uses ratios of eigenvalues to enhance tubular structures. Three derived

measures are:
A1l A2 /

Ry= ———, Ry=+—, S=4/A+XN+)\ 3.3

b *|>‘2)‘3| |)\3| 1 2 3 ( )

Combined in the vesselness function:

Rg _Ry 52
F = (1 - e_2a2> e 267 . (1 - 6_23) (3.4)

This response is applied only when Ay, A3 < 0.

Image Normalisée Filtre Frangi

Figure 3.18: Effect of the Frangi filter on a CT scan slice.
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Sato filter |31]: Uses an asymmetric formulation based on the sign of A;:

)xc-exp —ﬁ 1f>\1§0,>\c7£0
F =4\ exp —ﬁ if Ay >0,A\.#0 (3.5)
0 ifA.=0

with A, = min(—X2, —A3).

Image Normalisée Filtre Sato

Figure 3.19: Effect of the Sato filter on a CT scan slice.

Jerman filter [18]: Introduces a regularized eigenvalue A, for bifurcation robustness:

As if A3 > 7 - max, \3(z)
A, = {7 omax, Ag(x) if 0 < Ay < 7 - max, Ag(x) (3.6)
0 otherwise

Then the vesselness function is defined as:

0 if A <0orA, <0
F={<1 if Ao >X\,/2>0 (3.7)
2 3
—Aa&;\j’;\;\)ﬂ otherwise

Image Normalisée Filtre Jerman (approximation)

Figure 3.20: Effect of the Jerman filter on a CT scan slice.
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Zhang filter [40]: Builds on Jerman’s function by incorporating tissue-specific enhance-
ment through clustering. The vesselness is further modulated by an exponential term

over the squared sum of eigenvalues:

F = (JermanResponse) - (1 — exp (—

3N+ A3+ A7) )) (3.

2\

where )\ is a tunable contrast control parameter.

Image Normalisée

Filtre Zhang (approximation)

Figure 3.21: Effect of the Zhang filter on a CT scan slice.

Training Configuration for Vascular Segmentation

Parameter Value

Train/Val Split 80% / 20%

Image Size 512 x 512

Number of Classes 2 (background, vessel)
Batch Size 8

Filter Type

Frangi, jerman, sato

Normalization Yes

Model Architecture 3D UNet

Input Channels 2 (Raw CT + Enhanced)
Output Channels 1

Feature Maps (64, 128, 256, 512]
Epochs 50

Learning Rate 1x10°*

Optimizer Adam

Loss Function

Dice + Cross-Entropy (0.5 / 0.5)

Table 3.6: Configuration used for vascular segmentation training with preprocessing and

model setup.
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Results:
Filter Dice Score
Frangi 0.5
Jerman 0.481
Zhang 0.561

Table 3.7: Dice scores of the filters.

Dice Score
o
w

o
[N}

o
-

0.0

Epoch

Figure 3.22: Dice score evolution across epochs for the three vessel enhancement filters
(Frangi, Jerman, Zhang).

3.4 Discussion

3.4.1 Interpretation of Results

This subsection discusses the performance of the segmentation models on liver, tumor
and vessels tasks.

Liver and Tumor Segmentation

Across all experiments, liver segmentation showed consistently high performance across all
models, with Dice scores above 0.94 in most cases. The liver, being a large and relatively
homogeneous organ, is easier to segment accurately, especially with volumetric models.

Tumor segmentation, however, proved more challenging due to their small size, irreg-
ular shape, and intensity similarity with healthy tissue. The best tumor segmentation
results were obtained using the 3D ResUNet with full-volume input, achieving a
Dice score of 0.880. This confirms that both architectural depth (residual connections)
and full spatial context are crucial for accurate tumor detection.

Impact of Model Dimensionality and Input Strategy:

e 2D U-Net: Adequate for liver segmentation (Dice = 0.931), but limited in tumor
detection (Dice = 0.613) due to lack of inter-slice context.

BENZINE Yasser 41 TOUIL Mohamed Reda



Methodology Part I: Segmentation and 3D Reconstruction

2.5D Models: Slight improvements by including neighboring slices, but still infe-
rior to volumetric approaches.

e 3D Patch-based Models: Improved tumor segmentation (up to 0.764 Dice for
ResUNet), but suffered from loss of global anatomical context.

e 3D Slab-based Models: Balanced trade-off between context and memory usage.
3D ResUNet with slab input achieved 0.863 Dice for tumor.

e 3D Full-volume Models: Best overall results. 3D ResUNet reached 0.961 for
liver and 0.880 for tumor, highlighting the benefit of full spatial continuity and
residual learning.

Interpretation

2D and 2.5D Approaches

The 2D U-Net model show satisfactory segmentation results for the liver, achieving a
Dice score of 0.931. However, performance declined for tumor segmentation, with a Dice
score of 0.613. This discrepancy highlights the limitation of slice-wise 2D segmentation
in capturing 3D spatial continuity.

The 2.5D approaches, including Attention U-Net and Dense U-Net, offered only marginal
improvements or parity.

3D Volumetric Context and Architectures

The 3D U-Net and ResUNet models leveraged full volumetric context. ResUNet out-
performed U-Net due to residual connections that improved gradient flow and boundary
learning. Full-volume ResUNet achieved Dice scores of 0.961 for liver and 0.880 for
tumors, the best in the study.

Approach Model Liver Dice Tumor Dice

2D U-Net 0.931 0.613
25D Att U-Net 0.951 0.650
Dense U-Net 0.949 0.600
3D Patch 3D U-Net 0.920 0.551
3D ResUNet 0.943 0.764
3D Slab 3D U-Net 0.947 0.700
3D ResUNet 0.953 0.863
3D Full 3D U-Net 0.951 0.734
3D ResUNet 0.963 0.880

Table 3.8: Comparison of Dice scores for liver and tumor segmentation across all ap-
proaches.
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Liver Vessel Segmentation

Across all experiments, liver segmentation showed consistently good performance, with
Dice scores above 0.5 in most cases.

The best results were obtained using the 3D U-Net combined with the Zhang
filter, achieving a Dice score of 0.561. These results suggest that while vessel enhancement
contributes positively, it represents only an initial step in segmentation pipeline.

3.4.2 Challenges Encountered

Automatic 3D segmentation of hepatic structures presents several challenges:

e Anatomical Complexity: The liver varies greatly between patients. Ambiguous
boundaries with adjacent organs (spleen, heart, stomach) and low tissue contrast
complicate segmentation [25].

e Tumor Variability: Tumors vary in shape, size, and intensity. Small or low-
contrast lesions are difficult to identify, even for experts [8].

e Vascular Complexity: Vessels are thin, branching, and have variable diameters.
Maintaining topological continuity is challenging, especially with low-contrast CT
data [12].

e Dataset Limitations: Public datasets (e.g., 3D-IRCADb1) are small, prone to
inconsistent annotations, and do not always include all hepatic structures [20].

e Computational Demands: Full-resolution 3D volumes require high GPU mem-
ory. Training on patches reduces context, which may impair learning [25].

3.5 3D Reconstruction

3.5.1 Marching Cubes Algorithm

The Marching Cubes algorithm, introduced by Lorensen and Cline in 1987 [24], is a widely
used method for extracting isosurfaces from 3D scalar fields, such as those obtained from
CT or MRI scans. It is especially popular in medical imaging and scientific visualization
for reconstructing 3D surface models from volumetric data.

Overview

Given a 3D scalar volume V' (z,y, z), the algorithm generates a surface mesh corresponding
to a specified isovalue 7. This isosurface represents all points in the volume where the
scalar value equals 7, i.e.,

S={(,y,2) | V(z,y,2) =7} (3.9)

The method proceeds by traversing the volume in a grid of cubes, where each cube is
defined by 8 neighboring voxels. For each cube, the algorithm determines which corners
lie above or below the isovalue and uses this information to generate a set of triangles
that approximate the surface within the cube.
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Algorithm Steps

The Marching Cubes algorithm can be summarized in the following steps:

1.

Cube Construction: Divide the scalar volume into small cubes formed by 8 ad-
jacent voxel values.

Classification: For each cube, compare the scalar value at each of the 8 corners
to the isovalue 7. Label each corner as either inside (value < 7) or outside (value
> 7).

. Index Computation: Use the inside/outside labels to construct an 8-bit index

representing the cube’s configuration (total of 28 = 256 possible cases).

Triangle Lookup: Use a precomputed lookup table (edge and triangle tables) to
determine which edges of the cube are intersected by the surface, and how to connect
those intersections into triangle(s).

. Vertex Interpolation: For each intersected edge, linearly interpolate the surface

intersection point using the scalar values at the edge’s endpoints:

TV

Vo—V1

p=p1+ (P2 — p1) (3.10)

where p; and p, are the voxel coordinates, and Vi, V5 are the scalar values.

. Mesh Generation: Create triangle(s) inside the cube using the interpolated points

and add them to the output mesh.

0'71 2]

dlh e

: — 1 \ :
@3 Nk

Figure 3.23: triangulated cubes
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Advantages and Limitations

Marching Cubes is efficient and simple to implement, and it generates high-quality triangle
meshes for smooth surfaces. However, it has limitations:

e It cannot accurately represent sharp features (e.g., corners or edges).
e It may produce non-manifold meshes or ambiguities in some configurations.

e [t generates a dense mesh even in flat regions, leading to redundant triangles.

3.6 Flying Edges Algorithm

The Flying Edges algorithm, introduced by Lawlor et al. |32], is a high-performance
isosurface extraction method that improves upon the classical Marching Cubes algorithm
by leveraging modern CPU architectures and memory access patterns. It is particularly
efficient for large volumetric datasets commonly encountered in medical imaging and
scientific computing.

Motivation

Although Marching Cubes is widely used, it has several performance limitations:
e Redundant computation of edge intersections across neighboring cubes.
e Inefficient memory usage and branching.
e Poor cache utilization, especially on modern CPUs.

Flying Edges addresses these issues through parallel processing, edge-based traversal,
and minimized memory access, while maintaining the same surface quality as Marching

Cubes.

Key Concepts and Workflow

Flying Edges rethinks the traversal pattern of the volume by operating along the pri-
mary axes (usually the z-axis), rather than marching through full cubes. The algorithm
performs three main passes:

1. Edge Classification (Pass 1): The scalar values are evaluated along the primary
edges (e.g., x-axis), and edges are classified as active (cross the isovalue) or inactive.
This pass computes the number of intersections and prepares prefix sums for memory
allocation.

2. Vertex Generation (Pass 2): Interpolation is performed on the active edges to
compute surface vertices, similar to Marching Cubes. These vertices are stored in a
compact data structure, reusing shared edges to avoid duplication.

3. Triangle Construction (Pass 3): Using the previously computed edge informa-
tion and a lookup table (analogous to Marching Cubes), the algorithm constructs
triangle primitives across cells using the interpolated vertices.
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Advantages Over Marching Cubes

Flying Edges provides several important advantages:

e Thread-parallelism: The algorithm is designed to be easily parallelized across
multiple CPU cores.

e Reduced memory usage: Shared edge data is reused, and unnecessary compu-
tations are skipped.

e Improved performance: Cache-friendly data access and reduced branching allow
faster execution on modern CPUs.

e Same mesh quality: The output triangle mesh is topologically and geometrically
equivalent to that of Marching Cubes.

Comparison with Marching Cubes

Feature Marching Cubes Flying Edges
Traversal Strategy Cube-by-cube Axis-aligned edge-by-edge
Parallel Execution Limited Highly parallel
Memory Efficiency Moderate High (reuse of edge data)
Performance Slower on large data Significantly faster
Output Quality High High (same as MC)

Table 3.9: Comparison of Marching Cubes and Flying Edges
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Chapter 4

Methodology Part II: Mixed Reality
and Interaction System

4.1 Definition of Mixed Reality (MR)

Definition

Mixed Reality (MR) is a type of technology where real and virtual elements are
combined in a way that they can interact with each other in real time.

You still see the real world around you (like with Augmented Reality), but virtual
objects appear to exist inside that real world—and you can interact with them just
like physical objects [16].

More Detailed Explanation

The virtuality continuum

The virtuality continuum represents the full spectrum of technological possibilities be-
tween the entirely physical world or real environment and the fully digital world or vir-
tual environment. It includes all current technologies that alter reality with computer-
generated graphics as well as those yet to be developed.

Mixed Reality

Any environment where the real and virtual objects
are combined within a single display.

Real Augmented Augmented Virtual
Environment Reality Virtuality Environment

Consists soley of real The real world is The virtual world is Consists solely of virtual
or physical objects. augmented with digital augmented with real or or digital objects.
elements. physical objects.

Figure 4.1: The virtuality continuum [17]

In a continuum, adjacent parts are almost indistinguishable, but the extremes are very
different. Therefore, the exact limits of the various terms are not a hundred percent clear.
The term mixed reality covers any environment where the real and virtual objects are
combined within a single display. According to this framework, mixed reality covers most
of the continuum except for the endpoints. The researchers Paul Milgram and Fumio
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Kishino first introduced the virtuality continuum or reality-virtuality continuum concept
in 1994 [17].

Example:

Imagine you're wearing a Mixed Reality headset like the Microsoft HoloLens or Meta
Quest 3 (in MR mode):

e You look at your desk, and you see a virtual 3D brain model floating above it.

e As you move closer, the brain stays in place, and you can walk around it to view
it from every angle.

e You can touch it with your hands, and it rotates or opens up to show its parts.

e If you push it, it might fall on the floor (virtually) and bounce, just like a real
object.

This is not just a video effect—it’s an interactive simulation where real and virtual
worlds are fused together.

How It Works

Mixed Reality uses a combination of technologies:

e Cameras and sensors to scan your environment (walls, tables, lighting).

Spatial mapping to understand where virtual objects can be placed.

Head tracking to know where you're looking or moving.

Hand tracking or controllers for interactions.

3D rendering engines (like Unity or Unreal Engine) to create the visuals.

These technologies work together to make it feel like virtual objects are really
there, and not just “floating” on top of your camera view like in AR.

4.2 VR Headsets

4.2.1 definition

A VR headset is a head-mounted device that provides immersive virtual experiences. Also
known as a head-mounted display, it typically includes a pair of lenses that users look
through, a screen (or screens) inside the device, and a mechanism to secure it to the head
[15].
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4.2.2 Evolution of VR Headsets

Year Milestone Description
1832 The Stereoscope — | Used angled mirrors to view two images side-
Sir Charles Wheat- | by-side, creating a 3D effect; foundation of
stone stereoscopic photography.
Late Stereoscopic View- | Popular devices for viewing stereoscopic im-
1800s—Early ers ages of faraway places; early examples of
1900s virtual-like experiences.
1968 Sword of Damocles | First-ever head-mounted display (HMD);
— Ivan Sutherland | overlaid basic wireframe graphics onto the
real world.
1980s VPL Research — | Developed early commercial VR headsets
Jaron Lanier and coined the term ”Virtual Reality”; in-
troduced gloves and goggles for interactive
simulation.
1990s Virtuality Arcade | Public VR arcade machines with HMDs and
Systems motion-tracked gameplay; showcased early
interactive 3D environments.
2012 Oculus Rift Kick- | Launched the first modern consumer-grade
starter — Palmer | VR headset; sparked mass interest and major
Luckey industry investment.
2016-2020 Consumer  Head- | Introduced room-scale tracking, motion
sets (HTC Vive, | controllers, and high-resolution displays;
PSVR, Oculus) brought VR to gamers and developers.
2023-2024 Standalone Head- | Modern VR headsets with wireless freedom,
sets (Apple Vision | eye/hand tracking, haptics, and spatial com-
Pro, Meta Quest) puting, enabling fully immersive interaction.

Table 4.1: Evolution of VR Headsets[15]

4.2.3 Components of a VR headset

A virtual reality headset includes the following components [15]:

Display: One or two screens that display stereoscopic images. Stereoscopic images
show slightly different versions of the same image for each eye to create a three-dimensional
effect, thus giving the illusion of depth and space.

Lenses: Lenses focus the pictures for each eye, creating a convincing 3D virtual
environment. They also help to enlarge the image, filling the user’s field of vision for a
more immersive experience.

Tracking Sensors: VR headsets can include various sensors such as gyroscopes (to
track orientation), accelerometers (for movement), and cameras (to detect the user’s hand
movements and surroundings). These track the user’s head movements and adjust the
image accordingly to ensure that the virtual environment aligns with physical movements.

Input Devices: Many headsets work with handheld controllers or gloves that track
hand and finger movements. Some also support voice commands, eye tracking, and even
full-body tracking for a more interactive experience.
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Spatial Audio: Headsets often include built-in headphones or earphones that provide
spatial audio to mimic how people hear sound in the real world. Audio enhances immer-
sion, as the user can experience sounds as if they were coming from specific directions
and distances within the virtual environment.

Comfort Features: Good headsets must be comfortable, especially for extended use.
Adjustable straps, padding and balanced weight distribution minimize discomfort.

Connectivity: VR headsets may connect to a computer or a gaming console or
operate as standalone devices. Tethered headsets require a physical connection (often via
HDMI or USB) to a PC or console, while standalone headsets are self-contained units
with their own onboard processing power

4.3 System Architecture

4.3.1 unity Engine

definition

Unity is a real-time development platform and game engine used to create 2D, 3D, Virtual
Reality (VR), and Augmented Reality (AR) applications. It provides all the tools needed
to build interactive experiences—from games to simulations to XR applications.

It’s especially popular because it is:

e Fasy to learn for beginners
e Very powerful and flexible for professionals
e Supports many platforms like Windows, Android, iOS, Web, VR/AR headsets, etc.

Unity is a cross-platform engine, which means you can write your code once and deploy
it to many platforms. It uses C# as its main programming language and offers a pow-
erful visual editor for building scenes, importing 3D models, managing lighting, adding
animations, and handling physics.
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Main Components of Unity Engine

Figure 4.2: Main components of the Unity interface

Scene View
The Scene View is your design workspace—it’s where you visually build and arrange your
game or XR environment. You can:

e Drag and drop 3D models, cameras, lights, and other objects into the scene.
e Move, rotate, or scale objects using the transform tools.
e Use different views (top, side, perspective) to place objects accurately in 3D space.

e In XR apps, layout virtual objects in the real-world context (e.g., place a 3D organ
on a table).

Figure 4.3: Unity Scene View
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Game View
The Game View shows what the user will actually see when running the game or app. It
is a preview mode that renders the scene through the active camera.

e Test how your scene looks and behaves.
e Switch screen resolutions or aspect ratios to simulate different devices.
e Simulate VR/AR views using XR tools.

Hierarchy

The Hierarchy window in Unity displays all the GameObjects in the currently loaded
Scene, such as models, cameras, lights, and prefabs, organized in a tree structure. It
reflects the structure and relationships of these objects, including parent-child hierarchies,
allowing users to view, group, and organize elements within a Scene. It also supports
multi-Scene editing, sorting options (e.g., alphabetical or transform order), and override
indicators for prefab modifications. This window plays a central role in managing the
contents and structure of a Scene.

Figure 4.4: The Hierarchy window in Unity showing a structured view of all GameObjects
in the active Scene, organized in a parent-child hierarchy.

Inspector
The Inspector window displays the properties and components of the selected GameOb-
ject.

e Modify position, rotation, scale, materials, animations, and more.
e Add or remove components like Rigidbody, Colliders, or custom scripts.

Project Panel
The Project window in Unity is a key interface that displays and organizes all the files
and assets in a project, allowing developers to browse, manage, and preview their content.
It consists of a left panel showing the folder hierarchy and a right panel displaying the
selected folder’s contents with icons representing different asset types. Users can switch
between One Column and Two Column layouts, with the latter offering visual previews.
A Favorites section allows easy access to frequently used items or saved searches. The
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toolbar at the top includes tools like the Create menu, search bar, search filters by type
or label, and options to manage hidden packages, making the Project window essential
for efficient asset navigation and organization

Ul Toolkit Live Reload
Ul Toolkit Debugger  Cul+F5

Figure 4.5: Unity Project window in One Column Layout (left) and Two Column Layout
(right)

Scripting (C#)

Scripting is how you define logic and interactivity in your Unity project.
e Unity uses C# as its scripting language.
e Scripts are attached to GameObjects as components.

e Control animations, input, Ul, physics, networking, and more through scripting.

Debugging Workflow During Development One major advantage of using Unity
with the Meta XR All-in-One SDK is the ability to test and debug applications directly in
the Unity Editor, even without building to the Meta Quest device. This is made possible
through Unity’s support for in-editor XR simulation and hand tracking emulation, which
allows rapid iteration and real-time debugging using Unity’s native debugger, console,
and scene view.

However, when testing features that require reading files directly from the Meta
Quest’s internal storage—such as runtime .obj model loading in our case—a full APK
build and deployment to the device becomes necessary. This introduces a debugging
challenge, as Unity’s editor debugger is no longer available once the app runs on the
headset.

To address this, we used the Android Debug Bridge (ADB), a versatile command-line
tool provided by the Android SDK. ADB allows developers to:

e Log and filter real-time application output using adb logcat,
e Inspect or push/pull files on the device file system,
e Monitor performance and application state during runtime,

e Run shell commands remotely from the PC to control the device.

This ADB-based workflow enabled us to capture logs, diagnose import errors, and
monitor interactions directly on the Meta Quest 3, even during runtime testing outside the
Unity environment. It proved essential during the runtime model loading stage, especially
for resolving issues related to file paths, model formatting, or Android permissions.
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Using ADB for On-Device Debugging During early development stages, Unity’s
ability to run the application directly within the Editor without compiling to APK proved
extremely valuable. It allowed us to test core features like model loading logic, interaction
setup, and camera positioning while leveraging Unity’s native debugging tools. However,
when we transitioned to testing runtime file access on the actual Meta Quest 3 device, a
full APK build and install became mandatory—which disabled Unity Editor debugging.

To overcome this limitation, we used Android Debug Bridge (ADB), the command-
line tool bundled with the Android SDK. ADB enabled us to monitor real-time logs, test
APK installations, and issue commands directly to the headset. For instance, running adb
logcat allowed us to capture Unity errors and warnings during model import, interaction
triggers, and hand tracking validation.

ADB also supports wireless debugging. After connecting the headset via USB
and identifying the IP address using:

adb shell ip route
we enabled TCP/IP mode with:

adb tcpip 55556
adb connect <device-ip>:5555

This made it possible to test while the headset was untethered|9].
Moreover, to install updated APKs without removing the previous one, we used:

adb install -r myApp.apk

We also addressed common ADB issues, such as unrecognized devices (solved by au-
thorizing USB debugging inside the headset and using verified USB cables) and ambiguous
device targeting when both USB and Wi-Fi were active. In multi-device setups, the -s
<device-id> flag helped us route commands to the correct device.

Altogether, ADB was indispensable for bridging the gap between Unity’s simulation
and real-world device behavior during runtime testing, especially for APKs accessing
Quest internal storage.

4.4 Post-processing and Preparation for Mixed Re-
ality Integration

Following the 3D segmentation process, the resulting model consists of multiple anatom-
ical structures—such as the liver, blood vessels, and tumors—already assembled into a
coherent 3D volume. However, before integrating this model into a Mixed Reality (MR)
application, several preprocessing steps are required to localize, enrich, and optimize each
part of the model for real-time interaction and visualization.

To perform this post-processing, we used the open-source 3D content creation software
Blender, which offers a powerful suite of tools for coordinate management, material
assignment, optimization, and animation.
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RRIE N A2

Figure 4.6: Initial 3D model composed of multiple anatomical structures (liver, vessels,
tumors).

4.4.1 Preprocessing Steps

1. Spatial Reference Assignment: Although the anatomical structures are spa-
tially coherent and correctly positioned in the 3D reconstruction, each part initially
lacks an explicit local coordinate system. The first step consists of defining and
assigning a local reference frame to each structure (e.g., origin, orientation). These
frames are then anchored within a unified global reference system, which is neces-
sary for subsequent transformations, animations, and correct alignment within the
MR environment.

2. Material and Color Assignment: To improve visual clarity and facilitate struc-
ture identification, each anatomical part is assigned a specific material and color.
For example, the liver may appear in semi-transparent red, blood vessels in blue,
and tumors in yellow or orange. This color coding greatly enhances interpretability
during MR visualization by clinicians.

1521m
-191.95m
3.6004m

90°
&

SRR N A

Figure 4.7: Final 3D model after preprocessing: materials assigned.
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Animation for Mixed Reality Applications

A key requirement for Mixed Reality integration is the ability to animate components
of the model. While the 3D model remains static in its initial form, animations allow
structures to move, rotate, or change visibility over time. These animated behaviors
are essential for simulating surgical procedures, educational sequences, or user-guided
exploration.

Each animation frame encodes a transformation—position, rotation, and optionally
scale—for a given structure relative to its reference frame. These animations are embedded
in the final exported model and can be dynamically triggered within the MR application.
They enable features such as:

e Simulating organ motion or virtual dissection.

e Triggering structure separation or highlighting via user interaction (e.g., hand ges-
tures).

e Stepwise educational sequences that gradually reveal or explain anatomical content.

e H-8 86

Options
~ Transform

Location:
15.21m
-191.95m
3.6004 m

Location X
Y =919 S
Z 3.6004 m
Rotation X 90°
Start 1 End 70 § Y 0°
550 600 Z 0°
Mode XYZ Euler

Scale X 1.000

Figure 4.8: Example of an animation keyframe applied to anatomical structures in
Blender.

Together, these preprocessing and animation steps serve as a crucial bridge between
raw segmentation output and an interactive, immersive MR application. The result is
a medically accurate, visually intuitive, and performance-optimized model tailored for
clinical training, patient education, and preoperative planning.
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4.5 Mixed reality application developmental

4.5.1 XR Foundation Setup: Meta All-in-One SDK Integration

To establish the core Mixed Reality (MR) infrastructure on Meta Quest 3, the application
was developed using the Meta XR All-in-One SDK. This official SDK is designed to

streamline XR development on Meta devices by providing modular prefabs, interaction
patterns, and system components — referred to as building blocks.

Meta SDK Building Blocks

Building Blocks

¢ Building Blocks

Documentation

thanks to a library of XR capabilities that you can simply drag and drop Building Blocks

sting GameObject when relevant.

s ¥ Core d4 Haptics Y Interaction @ Multiplayer @ Passthrough e .l Spatial Anchor & Voice Sort by Most popular

Grab Interaction [ Poke Interaction

& Interaction <5 Interaction

Figure 4.9: Main building blocks from Meta All-in-One SDK integrated into the MR
application.

The SDK offers a range of plug-and-play modules that handle common XR, functionality.
The following building blocks were utilized during this stage:

e Camera Rig (OVRCameraRig): A central prefab that handles stereoscopic ren-
dering, head tracking, spatial anchoring, and serves as the base for all other head-
mounted features.

e Passthrough Layer: Allows blending of the physical environment into the vir-
tual scene using the Meta Quest’s external cameras. It enables full passthrough or
masked occlusion effects.

e Hand Tracking and Interactors: Includes tracking support for hands and fingers,
as well as built-in components to detect grabbing, pinching, or poking gestures.
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e Interaction Prefabs: Reusable prefabs that implement typical interaction logic
(e.g., grab interactables, grabbables, physics manipulators), which are essential for
later stages of the application.

e System Ul and Input Blocks: Although not used at this stage, the SDK pro-
vides system-ready Ul elements such as virtual keyboards, text input fields, and Ul
canvases optimized for MR.

These building blocks are designed for drag-and-drop use within Unity and are highly
customizable. They significantly reduce implementation time while ensuring stability and
consistency with Meta’s system-level interaction patterns.

Camera Rig and Passthrough Setup

3 Meta XR Tools

‘= Hierarchy
-+ a;
i Button

0 [BuildingBlock] Passthrough
) Directional Light

(1] pose_detection

Figure 4.10: OVRCameraRig and scene hierarchy after SDK integration.

Using the SDK’s building blocks, the scene was initialized with the OVRCameraRig prefab,
which manages all head and eye tracking, stereoscopic rendering, and spatial anchoring.
To enable passthrough, the PassthroughLayer component was configured and attached
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to the rig. This allows the user to see the real world behind or around virtual content,
establishing the foundation for Mixed Reality experiences.

4.5.2 Stage 1: Runtime 3D Model Upload on Meta Quest 3

At this early stage of development, the Mixed Reality APK built with Unity targets
a critical foundational capability: loading and displaying a 3D model (.obj format) at
runtime directly from the internal storage of the Meta Quest 3 headset. This mechanism
enables fast model iteration without requiring the application to be rebuilt each time a
new model is used.

Functionality Overview

When launched, the APK automatically searches for a 3D model located in the directory:

/Android/media/com.DefaultCompany.load_obj/MyModels/

fa > comDefaultCompanyload obj > MyModels

Figure 4.11: Model folder on Meta Quest 3 internal storage. The application automatically
searches this path for 3D models in OBJ format at runtime.

This folder must be populated beforehand via USB or file transfer tools. The system
scans this path for the first valid . obj file and dynamically loads it into the Unity scene at
runtime. The model is rendered and placed at a predefined position in the 3D environment,
visible through the headset.

At this stage, the model is static and not yet interactive. However, this system provides
the backbone for future manipulation and animation capabilities.

Technical Architecture

The APK is implemented in Unity (version 2022.3 or higher) using the following key
packages and libraries:

e AsImpL: an open-source runtime importer for .obj files, used to load models from
the device’s storage during runtime.
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e Oculus Integration SDK: provides native support for Meta Quest hand tracking
and controller input.

e XR Interaction Toolkit (Unity): a cross-platform input system used to support
grabbing and object manipulation.

e Unity Netcode for GameObjects: a networking framework that will later enable
model synchronization in multi-user MR experiences.

Implementation Workflow

The runtime model upload system is implemented as a Unity C# MonoBehaviour script
attached to a scene GameObject. Its behavior follows these steps:

1. At startup, the script determines the appropriate file path based on the platform:

e On Meta Quest 3: /Android/media/com.DefaultCompany.load_obj/MyModels/
e In the Unity Editor (for testing): Application.persistentDataPath

2. The script then enumerates all files in this directory and filters for those with the
.obj extension.

3. If a valid model is found, the LoaderObj component from AslmpL is instantiated
and used to import the file.

4. The model is scaled, positioned, and rotated based on predefined import options.

5. Once loaded, the GameObject is added to the scene with basic configuration.

STATION/Ap)

STATI

( STATION/AppData, )01 mm.obj

00Tmm.obj

t up for the model.

Figure 4.12: Unity log output confirming the model loading pipeline: directory access,
model detection, and component assignment.

BENZINE Yasser 60 TOUIL Mohamed Reda



Methodology Part II: Mixed Reality and Interaction System

Runtime Scene Integration

Once the selected 3D model is successfully imported, it is instantiated twice in the scene,
resulting in two initially identical GameObjects:

= Hierarchy
+ - u
2 E:uttD"T

1HL|Ir‘||’rHr
[EUI|I"1H"I']E|
§ Z‘ RM F \
) IRM FULL
) IRM FULL
) IRM
&7 IEM FU
(D IRMF
I~ * '.‘-.1 F
) "1' VER.
&P Assembly Mmdel
I IRM F W
:: "-.,-1 :._.__
) IRM FULL

1 Grablnteractable

Figure 4.13: At runtime, the uploaded 3D model is instantiated twice: once as PartModel
and once as AssemblyModel. Initially identical, they are configured differently in later
stages—PartModel will support per-component interaction, while AssemblyModel re-
mains a manipulable whole.

e PartModel: This GameObject contains a full copy of the imported model and will
later support per-part interaction. FEach individual component (e.g., anatomical
substructure) may become grabbable or selectable in future stages.

e AssemblyModel: Also based on the same model, this object is treated as a com-
plete unit. It will be used for global interactions such as full-model manipulation,
inspection, or positioning within the MR space.
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These GameObjects are instantiated independently, enabling flexible interaction modes
while maintaining a consistent reference geometry.
Advantages of This Approach

This runtime-based model upload system introduces multiple benefits:

e Decoupling content from build: New models can be tested on-device without
recompiling the APK.

e Scalability: Supports future features such as dynamic model libraries or real-time
cloud-synced content.

e Clinical relevance: Facilitates rapid testing and review of anatomical models in
surgical planning contexts.
Current Limitations

e Only the first model in the directory is loaded (single-model support).

e The system assumes correctly formatted and preprocessed .obj files with appropri-
ate pivot and scale.

e No interaction or animation is yet available; these will be addressed in subsequent
stages.

4.5.3 Stage 2: Enabling Grab Interaction on Children of PartModel

In this stage, interaction is added to the children of the PartModel GameObject. The
parent object remains untouched — all logic and components are applied to its individual
sub-objects (referred to as “parts”).

Each child corresponds to a single mesh representing an anatomical component. These
sub-objects are enhanced with components that allow them to be grabbed, moved, and
reset independently in Mixed Reality.

Component Configuration Per Child

For each part (child GameObject) under PartModel, the following components are added
in Unity:

e Mesh Filter: Contains the geometry data of the part.
e Mesh Renderer: Renders the part using the assigned material.

e Rigidbody: Enables physics. It is typically set to isKinematic = true to support
grabbing without falling.

e Box Collider: Allows collision and physical interaction. Adjusted to tightly fit the
part’s geometry.

e Grabbable (Script): Enables the part to be grabbed using the Meta Interaction
SDK. This is part of the [BuildingBlock] Grab system.
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e Grab Free Transformer (Script): Handles how the part behaves when grabbed
and released, e.g., allowing free movement in space.

e Reset Pose (Script): Provides functionality to return the part to its original
position and rotation when we reset or switching between models.

Meta Building Block Integration
The grab system used here relies on Meta’s high-level XR interaction building blocks.
Specifically:

e [BuildingBlock] Grab Interaction: A ready-made prefab or script bundle from
the Meta SDK that manages detection of user hands, gesture recognition, grip logic,
and object attachment.

Each child receives this component to become individually grabbable in Mixed Reality,
using either hand tracking or controller input.

Example Setup
Figure shows the typical component configuration applied to each child GameObject:

0 Insy
N W p
H'v IRM FULL LIVER.001

Tag Untagged ¥ Layer Default

Transform

74

IRM FULL LIVER.001 (Mesh Filter)

1

Mesh Renderer

74

Rigidbody

#

Grabbable (Script)

74

Grab Free Transformer (Script)

Box Collider

#

v
v

74

Reset Pose (Script)

mat_1 (Ma

Add Component

Figure 4.14: Unity Inspector showing all components required for enabling grab interac-
tion on a child of PartModel.

Resulting Interaction

Once configured, each part becomes individually manipulable in MR. The user can:
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e Grab a part using hand tracking or controller input.
e Move, rotate, or inspect it in isolation.

e Return it to its original pose using the Reset function.

This stage enables immersive interaction with sub-anatomies or modular components,
opening the path for future features like snapping, guided disassembly, or procedural
learning sequences.

4.5.4 Stage 3: Enabling Grab Interaction on the Assembled
Model (AssemblyModel)

Following the implementation of part-based interaction on the PartModel, the next de-
velopment stage focuses on the AssemblyModel. Unlike the previous configuration, in-
teraction in this case is applied only to the parent GameObject, treating the model as a
single unified structure.

Interaction Strategy

The goal is to allow users to grab, move, and manipulate the entire model at once without
affecting or interacting with individual sub-parts. This is particularly useful for scenarios
involving global repositioning, inspection, or comparative visualization of the full anatomy.
To achieve this, all interaction components are attached directly to the root GameOb-
ject AssemblyModel, while the children (the individual mesh parts) remain unmodified.

Component Configuration on AssemblyModel

The following components are added to the parent object only:

e Rigidbody: Enables physics-based manipulation. Set as isKinematic = true for
controlled behavior.

¢ Box Collider or Mesh Collider: Defines the bounds for physical interactions with
the model as a whole.

e Grabbable (Script): Makes the model responsive to XR-based grab events.

e Grab Free Transformer (Script): Enables smooth movement and release behav-
ior during interactions.

e Reset Pose (Script): Allows the user to return the model to its original position
and orientation.
Applying the Building Block

The same Meta SDK prefab used in the part-level interaction is applied here, but to the
parent model instead of individual parts:

e [BuildingBlock] Grab Interaction: Attached to the AssemblyModel GameOb-
ject to support full-model manipulation via hand tracking or controllers.
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Resulting Behavior
With this setup, the user can:
e Grab and move the entire model as a single unit.
e Rotate or reposition it spatially within the MR scene.

e Reset its pose to a default anchored location if needed.

Visual Example

The diagram below illustrates the structure of the AssemblyModel, where only the parent
GameObject contains the interaction components. All children remain passive renderable
parts.

O Inspector

;‘i v Assembly Model

Tag Untagged v Layer Default

Prefab @@ e_Origin
Overrides

. Transform

Position X 0
Rotation X 0
Scale &2 X 0.1
v Animator
v Exploded View Controller (Script)
v Reset Pose (Script)
Rigidbody
Grabbable (Script)

Grab Free Transformer (Script)

Box Collider

P 00O O

Add Component

Figure 4.15: Interaction applied at the AssemblyModel level. All components such as
Rigidbody, Collider, and Grab Interaction are attached to the parent. Children are used
only for rendering and are not individually grabbable.
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Comparison with PartModel

Feature PartModel AssemblyModel
Target Children (per part) Parent (whole model)
Grab Behavior Individual parts Entire model
Interaction Level Fine-grained Global
BuildingBlock Applied To Each child Parent object only
Collider Type Per-part Box Collider | Whole-model Box/Mesh Collider

(a) Grabbing the whole model (b) Scaling the model with two hands

Figure 4.16: Screenshots from Meta Quest showing manipulation of the model: grabbing
(left) and scaling (right).

4.5.5 Stage 4: Adding Hand Pose Recognition

In this stage, user interaction is extended through the integration of hand pose recognition
using Meta’s Interaction SDK. This enables the application to recognize specific hand
gestures (e.g., thumbs up) and associate them with triggers, selections, or interaction
events in the MR environment.

Pose Definitions

Several custom hand poses are defined and organized under a dedicated GameObject
group named pose_detection. Each pose is represented as a child GameObject:

e Left Hand Pose
e Right Hand Pose
e thumps_up

e thumps_up_left
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e thumps_up_right

These GameObjects are empty containers that serve as anchors for pose tracking and
recognition components.

Component Setup for Each Pose
Each hand pose GameObject is equipped with a standard set of components from the

Meta SDK to enable recognition and event binding:

e Hand Ref (Script): Specifies whether the pose applies to the left or right hand.

e Shape Recognizer Active State: To define the hand gesture for triggering the
exploded view, we used the Shape Recognizer Active State component refer-
encing a left-hand pose and the custom shape ExplodedView, which is defined by
configuring curl, flexion, and abduction parameters for each finger.

n v Hand Ref (Script)

ﬂ + Shape Recognizer Active State (Script)

Hand B Left_ Hand_F
Finger Feature State Provid BlHandFeaturesLeft (Finger Feature St:
Shapes

Element 0

Figure 4.17: Shape Recognizer Active State linked to the Left Hand Pose and the
ExplodedView shape.
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Shape Name ExplodedView

Thumb Feature Configs Curl

Curl IsMNot = Open
Index Feature Configs Curl, Flexion, Abduction
Curl IsNot = Closed
IsNot = Closed
Abduction IsNot ~ Open
Middle Feature Configs Curl, Flexion
Is Not « Closed
IsNot = Closed
Curl, Flexion
Is Mot « Open

IsNot = Open

Mothing

Figure 4.18: Detailed configuration of the ExplodedView shape recognizer using per-finger
feature states.

e Transform Recognizer Active State: Tracks spatial configuration (pose) rela-
tive to the camera or hand.

figs Palm Away From Face

Away From Face Is: True

Figure 4.19: Inspector view of the Transform Recognizer Active State component
used to detect spatial hand poses based on relative transforms.
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e Active State Group: Groups multiple recognizers together it become true in our
state when the two ( shape and transform)are true .

e Active State Selector: Evaluates active states and determines whether the full
pose condition is met.

e Selector Unity Event Wrapper: Allows UnityEvents to be invoked when the
pose is detected.

Visual Reference

O Inspector

@ v Left_Hand_Pose
v Tag Untagged

’ Transform

Hand Ref (Script)

Shape Recognizer Active State (Script)
Transform Recognizer Active State (Script)
Active State Group (Script)

Active State Selector (Script)

Selector Unity Event Wrapper (Script)

Add Component

Figure 4.20: Inspector view of a single hand pose GameObject, configured with all required
components for shape and transform recognition.

Runtime Behavior

Once active in the scene, the pose detection system continuously monitors the user’s hand
input. When a predefined pose is recognized:

e The corresponding Active State Selector becomes true.
e The Selector Unity Event Wrapper emits an event.

e This event can be used to trigger logic such as toggling object visibility, snapping
parts, changing modes, etc.
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(a) ThumbsUpright pose rec- (b)  ThumbsUpLeft pose (c) ExplodedView gesture
ognized recognition. detected.

Figure 4.21: Screenshots from the Meta Quest 3 showing real-time recognition of three
hand poses used in the application.

4.5.6 Stage 5: Switching Interaction Modes Using Hand Poses

In this stage, specific hand gestures are used to switch between different interaction modes
in the application — namely, toggling between the PartModel and AssemblyModel. Two
hand poses are defined: thumbs up_left and thumbs up_right, each assigned to a differ-
ent functional state.

Pose Recognition for Mode Switching
Each pose is implemented using the same Meta SDK pattern:

e A Shape Recognizer Active State tied to a hand reference (left or right).
e A Selector Unity Event Wrapper to listen for pose activation.

e A UnityEvent that activates the relevant GameObject and resets the other.

thumbs_up_right is used to activate and reset the PartModel, enabling per-part in-
teraction. Conversely, thumbs_up_left is linked to the activation of the AssemblyModel,
which treats the model as a unified whole.

This switching mechanism ensures only one model is active and interactive at a time,
avoiding conflicts in physics or user experience.

Runtime Behavior

e When the user performs the thumbs_up _right gesture, the system enables part-level
manipulation and disables the assembled view.

e When the user performs the thumbs up_left gesture, the whole model becomes
active and movable, and part-based interaction is hidden.

This logic is especially useful in educational or surgical planning contexts where the
user might toggle between detailed anatomical exploration and a global model view with
a simple, intuitive gesture.
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(a) Grabbing the full model (b) Grabbing a single part

Figure 4.22: Meta Quest screenshots comparing whole-model interaction (left) with per-
part interaction (right).

4.5.7 Stage 6: Triggering Animations with Recognized Hand
Poses
This stage builds on the hand pose recognition system by linking gestures to anima-

tions through Unity’s Animator Controller. The goal is to allow gestures — such as
ExplodedView — to trigger part separation or movement animations in Mixed Reality.

Animator Setup

An Animator Controller is assigned to the animated model (typically AssemblyModel). It
contains a state machine where custom animation clips (e.g., Scene) are linked to states
and controlled via runtime parameters such as AnimationPosition.

Add Behaviour

Figure 4.23: Animator Controller with a custom clip triggered by a gesture using
parameter-based control.
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Gesture-Driven Triggering

The custom pose ExplodedView is recognized through the Shape Recognizer Active
State. When matched:

e The Selector Unity Event Wrapper emits an event.
e This event sets the Animator parameter (e.g., AnimationPosition = 1).

e The Animator transitions to the Scene clip and plays the explosion animation.

Resulting Workflow
1. User performs the ExplodedView hand pose.

2. Pose is matched and event is triggered.
3. Animator parameter is updated.

4. The model plays an animation separating its parts or changing layout.

This gesture-to-animation system introduces a powerful, immersive control method for
surgical planning, simulation, or learning sequences — allowing intuitive visual transitions
controlled entirely through hand poses.

Figure 4.24: The animation triggered by the ExplodedView pose, showing part separation
in Mixed Reality.
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4.5.8 Stage 7: Adding View Mode Controls via Ul Buttons

To support clinical exploration and surgical planning, this stage introduces a user interface
element in the form of a button-based table. Each button represents a distinct “view
mode” that selectively reveals or hides components of the anatomical model. This allows
users to visually explore tumors, vessels, and regions of interest with precision and clarity.

User Interface Structure

The interface is implemented as a virtual panel in the MR environment, visible in-world
or attached to the user’s hand. It contains three primary buttons, each associated with a
UnityEvent that controls specific visibility logic in the model:

e Deep View: Deactivates the outer liver mesh to expose tumors and vasculature
embedded within the AssemblyModel. This is used for internal inspection without
disassembly.

Figure 4.25: Deep View mode: The outer liver body is hidden to expose internal tumors
and vessels.

e Inside View: Hides the healthy regions of the liver while keeping only the part
that the surgeon plans to resect. This focused view emphasizes the surgical target
area and highlights potential risk zones.

BENZINE Yasser 73 TOUIL Mohamed Reda



Methodology Part II: Mixed Reality and Interaction System

Figure 4.26: Inside View mode: The liver is mostly hidden except for the resection zone
— the part intended to be surgically removed.

e Normal View: Restores all components of the liver model to their original state,
re-enabling the full anatomical surface.
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Figure 4.27: Normal View mode: The entire liver anatomy is visible in its original,
preoperative form.

Each view is toggled programmatically via the button’s UnityEvent trigger, which
calls a visibility management script that shows or hides specific GameObjects.

Interaction Logic

The logic behind each view mode is modular. Specific liver parts are grouped and tagged
in Unity, allowing batch activation or deactivation based on the selected view. This
ensures consistency and simplifies logic for reset or switching between modes.
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VIEW

Figure 4.28: View mode panel in MR. Users can switch between internal, external, and
surgical views of the liver using simple hand-based Ul interaction.

Future Ul Expansion

Three additional buttons have been defined in the same UI panel but are not yet fully
implemented:

e Activate Drawing: Enables an MR drawing or markup tool for sketching on or
around the liver.

e Deactivate Drawing: Disables the drawing tool to return to navigation mode.

e Clear Drawing: Removes all current annotations or sketches made during the
session.

These functions are scheduled to be implemented in the next development stage, ex-
panding the system’s utility for education, planning, and intraoperative guidance.

4.5.9 Stage 8: Freehand Drawing and Annotation in Mixed Re-
ality

This stage introduces an in-situ annotation feature, enabling users to draw freely in 3D

space using natural hand gestures. The system leverages Meta Quest’s hand tracking

to detect index finger pinching, allowing clinicians, educators, or engineers to sketch in
mid-air, annotate surgical zones, or highlight anatomical landmarks in real-time.

Drawing Interaction Logic

Drawing is initiated when the system detects a sustained pinch gesture between the user’s
thumb and index finger. Once the pinch strength crosses a predefined threshold, the
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system begins rendering a 3D line at the index fingertip’s position, continuously updating
as the user moves their hand.

To avoid noisy inputs or jitter, a minimum distance threshold is enforced between each
point added to the line. This ensures smooth strokes while maintaining fidelity with the
user’s motion.

When the pinch is released, the current stroke is considered finished. A new stroke
begins upon the next pinch. Each line is rendered with a consistent width, customiz-
able color, and is recorded as an independent object within the scene, allowing future
interaction or deletion.

Multi-Stroke and Runtime Customization

All strokes are managed independently to allow for:

- **Multiple annotations™* within a single session. - Runtime updates of **line thick-
ness** **color** and **drawing precision®* (distance threshold between points). - Clear-
ing all strokes via a single interaction, such as pressing a UI button.

Figure 4.29: Drawing in MR using hand tracking and index pinch. The user traces
contours or marks surgical regions directly in 3D space.

Drawing Tool Control Buttons

As prepared in Stage 7, three Ul buttons are now fully functional to control the drawing
tool:
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e Activate Drawing: Enables line rendering and begins monitoring hand pinch
input.

e Deactivate Drawing: Halts all drawing activity without erasing existing sketches.

e Clear Drawing: Deletes all current strokes from the scene to reset the canvas.

This feature significantly enhances the interactivity and educational value of the MR
environment, empowering users to visually communicate decisions, risks, or observations
within the surgical or training scenario.

4.5.10 Stage 9: Measurement Tool Integration with VR Con-
trollers

In the final stage, the Mixed Reality application was equipped with a measurement tool
to allow precise spatial analysis of anatomical structures or surgical targets. This feature
is designed to simulate the use of a virtual measuring tape within the 3D environment
using Meta Quest’s hand controllers.

Controller-Based Measurement Workflow

Users initiate the measurement process by pressing a designated button on either the left
or right Meta Quest controller. Upon activation:

e A virtual line is instantiated at the controller’s current position.

e As the controller moves, the end point of the line dynamically updates to reflect its
trajectory in 3D space.

Real-time distance calculations are performed between the two endpoints of the line.

The calculated distance is displayed in centimeters (cm) near the user’s controller
during the interaction.

Once the user releases the button, the measurement line is fixed in space and the
text label snaps to the center of the line for clarity.

Measurement Visualization and Usability

Each measurement line is visualized using a thin, colored 3D line rendered in world space.
The distance label is implemented using a floating Ul text element that always faces the
user’s view (billboard behavior). This ensures readability from all angles, even within
complex anatomical scenes.
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Figure 4.30: Measurement tool in action: a virtual line is drawn between two points, with
the measured distance displayed in centimeters.

Educational and Clinical Impact

This functionality adds measurable value for:

e Preoperative planning, allowing users to measure tumor sizes or resection mar-
gins.

e Training scenarios, where learners can compare anatomical dimensions.

e Spatial awareness, improving depth perception and understanding of organ lay-
out.

As with all other interactive elements, the measurement tool is modular and supports
multiple annotations within a single session.

BENZINE Yasser 79 TOUIL Mohamed Reda



Methodology Part II: Mixed Reality and Interaction System

{Runtime Model Upload}

EGrabbing Setup (Part and Assembly)}

[Interaction Components}

[Grab Modes (Part vs. Whole)}

[Hand Pose Recognition}

[Pose—based Animation}

[View Mode UI (Deep, Inside, Normal)}

{ Drawing Tool }

[Measurement Tool}

Figure 4.31: Development Pipeline: 9 Stages of Mixed Reality Interaction on Meta Quest3
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4.5.11 Integrating Multiplayer into a VR APK with Unity

Overview

To enable multiplayer features in a VR application built with Unity, we leveraged the
Unity VR Multiplayer Template. This template provides a complete framework that
integrates networking, player avatars, and interaction systems using Unity Netcode
for GameObjects and Unity Cloud Multiplayer Services such as Authentication,
Lobby, Relay, and Vivox (voice chat). The process is compatible with XR, platforms like
Meta Quest and OpenXR-compliant devices.

Step-by-Step Integration Workflow

1. Create a Project from the VR Multiplayer Template
In Unity Hub, choose New Project s VR Multiplayer, and ensure that the option
Connect to Unity Cloud is checked to automatically set up services.

2. Configure XR Settings and Platform Build Target
In File > Build Settings, select the appropriate platform:

e Android for Meta Quest — enables OpenXR settings with Meta Quest profile.
e PC for desktop VR — enables Valve Index, Vive, or Oculus profiles.

3. Set Up Multiplayer Services

e Go to Window > Unity Services > Cloud Project Settings.
e Enable Authentication, Lobby, and Relay.

e Optionally enable Vivox for in-game voice communication.

4. Use the Sample Scene as a Base
The provided SampleScene includes:

e XR Interaction Setup (Camera, Hands, Controllers)

Networked Player Avatars

Network Manager

Spatial Ul (keyboard, menus)
You can extend this scene or remove unused assets.
5. Network Configuration

e The NetworkManager component handles connection setup.
e Use the XRI Network Game Manager prefab to link to Unity Cloud services.

e Instantiate player avatars with XRI Network Player Avatar prefab.

6. Build the APK

e Connect your Meta Quest headset via USB and enable Developer Mode.
e In Build Settings, choose Android and click Build and Run.
e Test the APK on-device to verify multiplayer syncing.
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Testing Multiplayer Locally

e Use Multiplayer Play Mode (MPPM) to simulate multiple players within the
Unity Editor.

e Install from Package Manager > Multiplayer Play Mode.

e Ensure each virtual player has a unique identifier (-playerArg:<UNIQUE_ID>).

Notes and Recommendations

e Avoid using ParrelSync alongside Multiplayer Play Mode due to compatibility
issues.

e Ensure all prefabs that are synchronized (avatars, objects, UI) include the required
NetworkBehaviour components.

e For long-term deployment, consider using custom player authentication instead of
anonymous login.

4.5.12 Conclusion

Using Unity’s VR Multiplayer Template significantly simplifies the process of adding
multiplayer support to a VR APK. With built-in components for networking, player rep-
resentation, and Ul, developers can rapidly prototype and deploy immersive collaborative
VR experiences on devices like Meta Quest.
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Conclusion and Perspectives

Summary of Contributions

This project developed and validated an innovative integrated system for liver surgical
planning, combining artificial intelligence and collaborative mixed reality. The key con-
tributions of the work are as follows:

e Automated Segmentation and 3D Reconstruction: We implemented an Al-
based pipeline capable of segmenting key liver structures — including the liver
parenchyma, tumors, and vascular networks. Our approach leverages state-of-the-
art deep learning models widely used in medical image analysis. The resulting seg-
mentations enabled high-quality 3D reconstructions, achieving competitive results
compared to recent benchmarks in the literature.

e Immersive Mixed Reality Visualization: A mixed reality application was de-
veloped on the Meta Quest 3 headset, allowing fluid, real-time, and interactive ren-
dering of 3D anatomical models. This significantly enhances spatial understanding
when compared to conventional 2D planning approaches.

e Intuitive Interactions and Clinical Tools: Gesture-based interactions, com-
bined with built-in measurement and annotation tools, provide a user-friendly and
clinically relevant interface tailored for surgical planning tasks.

e Local Collaboration Capability: The system enables multiple users to engage
in co-visualization and interaction in a shared MR environment, with minimal syn-
chronization delay. This supports collaborative and multidisciplinary planning.

Clinical Potential of the Proposed System

The developed system demonstrates considerable potential for clinical application in liver
surgery. By enabling surgeons to interact with accurate and immersive 3D anatomical
representations, it aims to:

e Enhance the accuracy and confidence in surgical planning.
e Reduce intraoperative errors and complications.
e Improve overall patient outcomes through better preoperative assessment.

e Foster more effective communication among surgical team members.
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To validate and implement this system clinically, a phased roadmap is proposed:

1. Phase 1 — Pilot Trial: A preliminary clinical study involving approximately 20
surgeons in a hospital setting will be conducted to evaluate usability, acceptabil-
ity, and initial effects on planning confidence. Institutional Review Board (IRB)
approval will be sought.

2. Phase 2 — Workflow Integration: Contingent on favorable pilot results, the
system will be integrated into the hospital’s preoperative planning workflow, with
close coordination between surgical teams and radiologists.

3. Phase 3 — Clinical Impact Study: A comprehensive prospective study will
measure clinical impact using metrics such as operative time reduction, improved
resection margins, decreased postoperative complications, and long-term patient
outcomes.
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Future Work and Recommendations

Several research directions and enhancements are proposed to extend the system’s
capabilities:

Enhanced Remote Collaboration: Extend the system beyond local collabora-
tion to support real-time remote surgical planning over wide-area networks. This
would allow geographically distributed teams to interact simultaneously with 3D
models. Key challenges such as latency, synchronization, and network reliability
must be addressed to ensure seamless experiences.

Haptic Feedback Integration: Integrate haptic devices (e.g., haptic gloves) to
provide tactile feedback when interacting with virtual anatomical models. Sim-
ulating the texture and stiffness of tissues would significantly improve immersion
and realism in preoperative planning, especially when based on real patient data
collected in clinical settings.

Extension to Other Organs: Generalize the system to support the segmentation,
reconstruction, and interactive planning of surgeries involving other organs such
as the brain, heart, or kidneys. This would broaden its clinical applicability and
usefulness across multiple surgical specialties.

Real Clinical Data Validation: Enhance the system by validating and training
it using real hospital data from diverse patient populations. This would improve
model robustness, segmentation accuracy, and overall clinical relevance.

Headset-Free Mixed Reality Using Depth Cameras: Develop a mixed reality
experience without the use of a headset, leveraging depth-sensing cameras such
as Kinect or stereo vision systems. This setup aims to deliver an immersive MR
environment through spatial tracking and gesture recognition, enabling interaction
with 3D anatomical models directly in the physical space—without requiring a head-
mounted display.

These future directions aim to evolve the system into a more comprehensive and intel-
ligent tool, aligning with the complex requirements of next-generation surgical planning
and execution.
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