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Résumé

L’imagerie 3D occupe une place centrale dans de nombreuses applications ot la précision spatiale
est cruciale. Les capteurs LiDAR s’imposent comme une solution de référence grace a leur
fiabilité et leur capacité a mesurer des distances avec une grande exactitude. Toutefois, dans des
conditions d’acquisition réalistes, leurs performances peuvent étre compromises par la présence
de bruit et la faible densité d’informations issues de mesures limitées.

Pour répondre a ces défis, nous avons développé une approche reposant sur I'apprentissage
profond, combinée a un traitement multi-echelle, afin d’améliorer la qualité de reconstruction
des images de profondeur. Cette méthode, évaluée sur des données LiDAR simulées, a démontré
des gains significatifs en précision et en robustesse, méme dans des contextes bruités.

Mots clés : Carte de profondeur, Nuage de points, Lidar monophoton, Dtof, Multi-échelle,
Robuste, Rareté photonique.

Abstract

3D imaging is critical in applications requiring precise spatial detail. Among available tech-
nologies, LIDAR sensors are particularly prized for their accuracy and reliability. However,
in realistic conditions, their performance is usually compromised by photon noise and sparse,
low-resolution measurements.

To overcome these limitations, we introduce a deep learning approach with multiscale process-
ing to produce high-quality depth reconstructions despite low-quality input data. Tested on
simulated LiDAR datasets, the method has notable improvements in accuracy and robustness.

Keywords : Depth map, Point cloud, single photon Lidar, Dtof, Multi-scale, Robust, Photon
sparsity.
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General Introduction

General Introduction

In today’s fast-evolving technological landscape, the way we perceive and interpret the world
around us is being fundamentally reshaped by advances in computational imaging. Whether
it’s enabling self-driving cars to safely navigate busy streets, helping robots understand and in-
teract with their surroundings, or supporting immersive augmented reality experiences computa-
tional imaging lies at the heart of it all. What makes it so powerful is its unique ability to go
beyond the limitations of traditional cameras and sensors, by combining physical models with
intelligent algorithms to reconstruct, enhance, and analyze visual information in ways that
were once considered impossible.

One of the most exciting and impactful areas within this field is 3D imaging the ability to
capture not just reflectivity images, but depth and structure, giving machines a true sense of
space. At the core of many 3D imaging systems is LIDAR (Light Detection and Ranging), a
technology that uses laser pulses to measure distances and generate precise depth maps. LiDAR
has already proven invaluable in a wide range of fields, from autonomous vehicles and drones
to smart cities and environmental monitoring. However, like any technology, it comes with its
challenges. LiDAR sensors can be expensive, they often suffer from noise and limited resolution,
and in many real-world scenarios, they simply can’t provide the full picture on their own.

To overcome these limitations, researchers and engineers are increasingly turning to multimodal
imaging combining LiDAR data with other sources like RGB images, thermal data, or radar
signals—to create richer, more reliable representations of the environment. But merging and
making sense of these different data types isn’t easy. It requires advanced methods that are
not only data-driven, but also guided by physical understanding. This is where Model-Based
Deep Learning (MBDL) enters the scene.

MBDL is a hybrid approach that blends the strengths of two worlds: the rigor and inter-
pretability of traditional model-based methods, and the learning power and adaptability
of deep neural networks. Rather than treating deep learning as a black box, MBDL embeds
known physics and mathematical constraints into the learning process, leading to smarter, more
robust models that can work well even in challenging conditions like noisy data, missing infor-
mation, or limited training examples.

This project explores how MBDL can be applied to improve robust multimodal 3D imaging,
especially by leveraging the strengths of LiDAR alongside complementary data. Our goal is to
design a practical, theoretically sound framework that makes 3D imaging more accurate, more
reliable, and more adaptable to real-world conditions. Throughout this work, we’ll delve into
the theory behind these methods, explore existing solutions and their limitations, and propose
a novel approach backed by experimental validation.

18



General Introduction

Ultimately, this study aims to contribute not just to academic knowledge, but also to the de-
velopment of intelligent imaging systems that can truly understand the complex world we live
in.

To explore this promising direction, the present work is structured across five chapters :
It begins with a general introduction outlining the field and its main motivations.

Chapter 1 This chapter delineates the foundational context and articulates the scientific ra-
tionale for integrating deep learning with physics-based modeling as a means to address current
limitations in 3D perception.

Chapter 2 presents a detailed analysis of LIDAR system architecture, data quality constraints,
and the influence of noise and signal parameters on depth reconstruction accuracy.

Chapter 3 reviews existing methods both traditional and deep learning-based—and high- lights
the promise of hybrid approaches that merge the strengths of both worlds.

Chapter 4 outlines our proposed method, including the problem setup, the model archi- tecture,
and strategies to improve robustness and adaptability.

Chapter 5 analyzes the results, discussing the model’s performance, its strengths, and areas
for improvement.

Finally, a general conclusion summarizes the study and outlines future research directions.

19



CHAPTER 1 :

Context and challenges in computational 3D
vision

In a world where vision is quickly becoming the cornerstone of most emerging technologies, com-
putational imaging has been developed as a cross-disciplinary science that combines physics,
signal processing, and machine learning. Unlike classical approaches, it applies cutting-edge
algorithms to extract rich information from raw data and thereby becomes highly suitable for
applications such as robotics, autonomous driving, smart surveillance, and medical imaging.
This chapter establishes the general context of multimodal 3D vision, emphasizing the comple-
mentarity of LiDAR, RGB cameras, and radar sensors, and presents our hybrid approach we
explain, based on model-based deep learning with physical principles incorporated into learn-
ing. It also defines the key problem addressed in this study, outlining the limitations of current
methods and the specific aims aimed at reinforcing environmental perception in complex and
dynamic contexts.

1.1 Context and challenges of LiDA R-based 3D imag-
ing

Despite the development of 3D sensing technologies, LIDAR systems, particularly Direct Time-
of-Flight (DTOF)-based ones, are still challenged by low spatial and temporal resolution. Since
there are trade-offs between acquisition speed and power consumption versus accuracy, point
clouds acquired tend to be sparse and noisy, negatively impacting the quality of 3D scene under-
standing, and small or distant object detection and accurate segmentation become challenging.
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Improved LiDAR resolution is especially important in real-time and long-range applications,
where accurate geometric information matters. However, whereas improved data quality can
be delivered through enhanced sensor hardware, this incurs a cost in terms of practicability in
most cases. Therefore, the inherent challenge is to design computational methods able to derive
high-resolution 3D data from low-quality measurements.

This work belongs to the broader class of computational imaging, seeking to extract rich in-
formation from unprocessed data based on algorithmic modeling. Instead of relying solely on
physical sensor innovation, we highlight learning-based approaches to recover subtle 3D details.

Our goal is to enhance LiDAR depth data resolution and quality by combining it with high-
resolution RGB data. Through a model-driven deep learning architecture, we leverage both the
physical properties of the sensing process and the learnable aspects of neural networks. This
combination enables super-resolution, denoising, and improved depth estimation from sparse
data.

Lastly, our goal is to bridge the gap between low-cost, low-resolution sensing and high-fidelity
3D perception—providing more robust, higher resolution insight into complex scenes.

1.2 Motivation and approach

The proposed method combines cutting-edge multimodal sensor fusion with Model-Based Deep
Learning (MBDL) framework to address growing perception task complexity in challenging
dynamic situations. By fusing LIDAR, RGB camera, and radar data, the method leverages each
modality’s strengths: LiDAR offers dense point clouds in 3D; RGB cameras offer rich color and
texture for object detection; and radar provides strong motion detection despite unfavorable
weather conditions.

Historical perception methods based only on physical or statistical models struggle to generalize
across real-world variability, while completely data-driven deep learning techniques have been
shown to need large amounts of data and lack interpretability. Our approach, however, takes
the MBDL paradigm that integrates physical and mathematical priors within deep learning
models. This integration not just regularizes and directs the learning process but also enhances
generalization, robustness, and data efficiency.

In order to attain optimal sensor complementarity, we rely on sophisticated neural architectures
capable of processing varied streams of data. These models combine geometric, visual, and
dynamic information for improved object detection, segmentation, and 3D scene interpretation.
Optimized alignment algorithms, synchronization, and real-time fusion facilitate the combination
process, resulting in consistent performance even under adverse environments such as fog, rain,
or sensor misalignment.

Second, our approach utilizes a modular Plug-and-Play architecture that treats each processing
step—depth refinement, saliency detection, or anomaly processing—as an independent but com-
patible module. Modularity enables plugin-compatible model-driven and data-driven modules
so that the system can react in an adaptive way to environmental changes and sensor faults.
The result is an efficient, explainable, and fault-tolerant perception pipeline for challenging
applications in autonomous driving, robotics, and intelligent surveillance.
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1.3 Project objectives

This study sets out to achieve several specific objectives aimed at advancing the field of multi-
modal 3D imaging using model-based deep learning techniques.

- The project consists of developing advanced computation algorithms that combine the rig-
orousness of statistical models with the learning capacity of deep neural networks. The goal
is to create a hybrid system that attempts to solve complex inverse problems related to 3D
imaging.

- Our work aims to enhance spatial resolution under sparse-photon conditions and strong
background noise (e.g., fog or rain), enabling accurate long-range imaging at high frame
rates.

- The study also emphasizes the fusion of heterogeneous sensor data—integrating informa-
tion from single-photon LiDAR and RGB cameras. This multimodal fusion is expected to
significantly reduce uncertainties and improve reconstruction fidelity.

- Finally, the work also studies high-level computer vision tasks such as saliency detection
on RGB-D data, object detection, and segmentation. These tasks make use of high 3D
reconstructions for the purpose of improving scene understanding and allowing general-
ization to real-world tasks such as robotics, augmented reality, smart surveillance, and
human—computer interaction.

1.4 Conclusion

Finally, chapter one established the theoretical and technical foundation of the project by in-
troducing the issues of modern 3D imaging and the limitations of traditional methods. It em-
phasized the significance of hybrid approaches combining physical modeling with deep learning,
as well as the advantages of multimodal sensor fusion in enhancing perception systems. These
served as the context for chapters two to four, which will detail the approach and deliver results
in real applications.
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Background Knowledge

2.1 Introduction

The evolution of LiDAR systems has transformed 3D perception on the basis of advanced opto-
electronic components and increasingly powerful computational imagery. Each subunit ranging
from the laser source to GPS/IMU modules is tasked with producing accurate point clouds.
With advanced processing algorithms, these devices enable not just the capture of dense spa-
tial data but also depth image reconstruction via accurate computational models. This chapter
discusses the major elements of a LiDAR system and how they play a role in creating three-
dimensional computational images, which open doors to applications in mapping, autonomous
navigation, and computer vision.

2.2 Computational imaging

2.2.1 Definition of computational imaging:

Computational Imaging (CI) is an advanced imaging approach that combines optics, sensors,
and computational processing to overcome the limitations of traditional imaging systems. Unlike
conventional methods that passively record light using sensors, CI actively modifies and encodes
light information before capture and then applies sophisticated reconstruction algorithms to
extract more detailed and useful images.
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By integrating physical models, optimization techniques, and artificial intelligence algorithms,
CI reconstructs images with unprecedented accuracy, even from imperfect or incomplete mea-
surements. The rise of multi-core processors and GPUs has significantly enhanced the feasibility
of CI, enabling real-time or near-real-time image reconstruction and enhancement [1].
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3D Scene Coded image Conventional Image Computational camera

Figure 2.1: Principle of Computational Imaging

This Figure 2.1 illustrates the process of image acquisition and reconstruction using a compu-
tational camera system. It highlights the transformation of a 3D scene into a final conventional
image through several key steps:

1. 3D Scene: The real-world environment that is being captured.

2. Perspective Projection: The transformation of the 3D scene into a 2D representation
based on geometric projection principles.

3. Computational Camera: A system that includes advanced optics and sensors designed
to manipulate and encode visual information before capture.

4. Coded Image: The intermediate result obtained after the computational camera pro-
cesses the light and scene information. This image is typically encoded in a way that
allows for enhanced data extraction and post-processing.

5. Post-processing: Algorithms are applied to decode and reconstruct the final conven-
tional image, restoring a viewable representation of the original scene.

This approach allows for improved image capture capabilities, such as enhanced resolution, depth
perception, and noise reduction, making it particularly useful for applications in computer vision,
robotics, and scientific imaging.

2.2.2 Applications of computational imaging :

Computational Imaging (CI) is subtly transforming the way we observe and interpret the world
around us.. As shown in Figures 2.2a and 2.2b, CI plays a critical role in the medical field
by significantly improving the accuracy and quality of diagnostic imaging such as MRI and
ultrasound. Enhanced resolution in CT scans, MRIs, and microscopic images enables earlier
disease detection and better patient monitoring.

At a much smaller scale, in advanced microscopy, CI makes it possible to visualize ultra-fine
structures such as viruses and proteins—structures that were once invisible to conventional imag-
ing methods—thus opening new frontiers in biology and medicine. In astronomy, CI pushes
telescopes beyond their physical limitations, enabling groundbreaking milestones such as the
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first-ever image of a black hole (see Figure 2.2¢). Likewise, radar imaging systems (Figure 2.2d)
are enhanced by CI, improving detection capabilities in both scientific and industrial applica-
tions.

In industrial manufacturing, CI is key to quality assurance, enabling automated systems to detect
even the tiniest product defects, thus elevating production standards. Environmentally, CI
boosts satellite and remote sensing technologies, facilitating more effective ecosystem monitoring,
smarter agriculture, and more precise geographic and climate mapping.

In everyday life, CI strengthens advanced security and surveillance systems—making facial recog-
nition and object detection more robust, even in difficult lighting or weather conditions. In con-
sumer photography, CI allows for post-capture adjustments like refocusing and dynamic lighting
changes, enabling users to take stunning images in low-light settings.

In summary, Computational Imaging is not just a technological innovation—it’s a powerful,
evolving tool that bridges science, industry, and daily life. By making the invisible visible
and the complex understandable, CI is transforming the way we explore and interact with the
world [2].

()

Figure 2.2: Examples of imaging systems: (a) MRI scan image, (b) Ultrasound scan
image, (c¢) Astronomical telescope image, (d) Radar imaging system [2]

2.2.3 Importance of computational imaging for 3D Imaging

Computational Imaging (CI) is reshaping the world of 3D imaging by breaking through the
limitations of traditional methods. Conventional systems like stereo vision, structured light,
and time-of-flight sensors often struggle with noise, occlusions, and environmental factors that
can distort data. But with CI, these challenges are met head-on by blending advanced optical
techniques with algorithmic reconstruction and deep learning models. This combination allows
for the extraction and enhancement of 3D information in ways that were previously impossible.
One of CI’s standout strengths is its ability to improve depth accuracy and spatial resolution.
By using methods like multi-view fusion, compressive sensing, and neural network-based depth
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estimation, CI can produce incredibly detailed 3D models, even in low light or when sensor
data is sparse. Techniques such as wavefront coding and phase retrieval also help capture richer
optical data, enhancing depth perception and producing clearer 3D representations.

Another area where CI excels is in tackling occlusions and noise—persistent problems in fields
like medical imaging, robotics, and autonomous vehicles. Traditional systems often fail when
parts of a scene are blocked or the environment is noisy, but CI overcomes these issues using
advanced techniques like model-based reconstruction and sensor fusion. By combining data from
LiDAR, hyperspectral sensors, and depth-aware neural networks, CI enables systems to fill in
gaps and accurately reconstruct 3D scenes, even when parts of the environment are obstructed
or the data is imperfect.

In the realm of real-time 3D imaging, CI has made huge strides, thanks to advances in Al and
computational power. Technologies like GPU acceleration and neural radiance fields (NeRF) are
allowing for lightning-fast 3D imaging, which is crucial for applications like augmented reality
(AR), virtual reality (VR), and medical diagnostics. These advancements make it possible to
generate high-quality, real-time 3D images with minimal latency, making CI incredibly valuable
for dynamic environments where quick, accurate depth information is essential.

CI also shines in multi-modal 3D imaging, where it combines different types of sensors to pro-
vide deeper insights across various fields. For instance, in medical imaging, Al-powered 3D
reconstructions from CT scans, MRIs, and optical coherence tomography (OCT) help doctors
diagnose more accurately and plan surgeries more effectively. In robotics and autonomous
systems, enhanced 3D perception allows robots to understand their surroundings better and
navigate complex environments with ease. And in scientific and industrial fields, CI’s role in
3D imaging is crucial—whether it’s helping astronomers study black holes, aiding in nanoscale
imaging for research, or detecting defects in manufacturing.

Looking to the future, CI is expanding the possibilities of 3D imaging in ways we could only
dream of a few years ago. By combining data-driven Al with traditional physics-based models,
CI is pushing the boundaries with innovations like holography and plenoptic cameras. These
breakthroughs are laying the foundation for next-gen imaging systems that will offer even more
precision, adaptability, and scalability, revolutionizing industries from healthcare to manufac-
turing and beyond [1].

2.3 Fundamentals of Depth Maps and their applica-
tions

2.3.1 Definition

A depth map is a two-dimensional image where each pixel encodes the distance from a specific
point in the scene to a reference viewpoint, typically the camera lens. This spatial information
allows the depth map to represent the three-dimensional structure of a scene from a particular
perspective. In computer vision and computer graphics, depth maps represent a fundamental
intermediate representation that bridges the gap between 2D images and their underlying 3D
geometries. When fused with RGB images, they allow for photorealistic 3D reconstructions,
spatial comprehension, and interactive scene manipulation of real or virtual scenes. Depth maps
can be created in a number of ways: through direct capture via 3D sensors like LiDAR, stereo
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cameras, or time-of-flight (ToF) sensors; through synthetic generation in simulators or 3D en-
gines like Unreal Engine; or through multi-view reconstruction, in which depth is approximated
by triangulation techniques analyzing multiple images captured from varying viewpoints.

2.3.2 The working principle of depth maps:

Every pixel in a depth map carries a numerical value that depicts the depth distance between
the camera (or sensor) and the respective point in the scene. The value can be encoded as an
8-bit grayscale value, with pixel intensity ranging from black (close) to white (distant), or more
accurately as a floating-point value that encodes the depth directly using physical units (e.g.,
meters or millimeters).Practically, the depth value at every pixel enables the system to calculate
how distant the particular point is in 3D space from the camera position. Lower (darker) values
generally designate closer objects, and higher (lighter) values designate more distant surfaces.
The gradient of the depth value creates a depth-aware scene projection.

(b)

Figure 2.3: Example illustrating an RGB image (a) and its associated depth map (b),
where blue indicates nearby objects and yellow indicates distant ones [3].

The illustration in Figure 2.3 illustrates how an ordinary RGB image 2.3a compares to its depth
map. The colors in the depth map (b) 2.3b represent relative distances from the camera: blue
hues are closer regions, green is for the middle distance, and red is for regions that are farther.
The color gradient provides an intuitive and more informative visualization of spatial depth,
and one can readily discern the 3D structure of the scene.

2.3.3 Applications of Depth Maps in vision and graphics

Depth maps are widely used in both computer vision and computer graphics for a variety of
tasks. When combined with their corresponding RGB images, they enable the reconstruction
of accurate 3D models of environments by assigning a depth value to each pixel, effectively
transforming a flat image into a spatially coherent point cloud or 3D mesh. This representation
is beneficial to applications like object tracking, augmented reality, collision detection, and
robot navigation. Depth maps also facilitate high-level vision applications like object detection,
pose estimation, and scene segmentation. In computer graphics, they facilitate photorealistic
rendering effects like depth of field simulation, shadow mapping, subsurface scattering, and
simulation of semi-transparent media like smoke or fog. They are also responsible for maximizing
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rendering efficiency through z-buffering and z-culling, and are vital to the creation of 3D illusions
in stereoscopy and autostereograms.

2.4 3D LiDAR imaging

3D LiDAR (Light Detection and Ranging) is an advanced active remote sensing technology
that enables precise three-dimensional measurements by analyzing the time of flight of laser
pulses reflected off objects and surfaces. It employs laser scanners, also known as laser radar,
laser rangefinders, or laser profilers, to capture high-resolution structural data from natural
and urban environments.

Using measurement techniques such as Time of Flight (ToF), LiDAR can map terrains,
forests, infrastructure, or moving objects with an accuracy ranging from centimeters to even
millimeters in high-performance systems. Several categories of LiDAR exist:

- Airborne LiDAR: Initially developed for bathymetry and topographic mapping, this
type is used for large-scale surveys, employing side-scanning laser beams to capture vast
areas with a relative accuracy of 0.15 m and absolute accuracy of less than 0.5 m.

- Ground-based LiDAR: Used in urban or forested environments, it can be stationary
or mobile and is applied in 3D modeling of infrastructure or natural ecosystems.

- Single-Photon LiDAR (SPL): Based on Time-Correlated Single-Photon Counting
(TCSPC), this technology enables extreme sensitivity and high surface resolution, even in
low photon return conditions (e.g., underwater imaging, long-range scanning).

Recent advancements in LiDAR systems have significantly increased pulse repetition rates to
over 100 kHz, enabling point densities exceeding 10 points/m?, which are crucial for applications
such as forest remote sensing, 3D infrastructure modeling, and autonomous vehicle navigation.
Moreover, LIDAR systems operating in the shortwave infrared (SWIR, 1.4-3 um) spectrum offer
advantages in terms of eye safety and reduced solar interference [4, 5, 6].

To observe how LiDAR is incorporated in cutting-edge computing systems for real-world ap-
plications, Figure 2.4 shows a typical pipeline for real-time 3D reconstruction. In the figure,
a LiDAR sensor captures depth information from a scene at a distance of 320 meters, while
an RGB camera simultaneously takes visual reference information. These input streams are
taken to a GPU in real time and produce 3D reconstruction with dense geometric and visual
data. This merging offers accurate and dense spatial mapping, which is essential for uses such
as autonomous navigation, remote surveillance, and virtual environmental simulation.
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Real-time 3D reconstruction

RGB reference

Figure 2.4: Real-time 3D reconstruction pipeline combining long-range LiDAR sensing
and RGB reference imagery |[7].

2.4.1 Evolution and Technological advancements of LiDAR sys-
tems

LiDAR (Light Detection and Ranging) technology has had an amazing progression since the
conceptual foundations were laid in the early 20th century. The use of light to estimate distances
began to take form in the 1930s, precisely in 1938 when light pulses were used to calculate cloud
heights—marking one of the first practical applications of the principle. However, it was the 1960
development of the laser that actually kick-started the advancement of LiDAR as a coherent
sensing technology.

The first commercial LiDAR system, Colidar (Coherent Light Detecting and Ranging), was
made available in 1961 by Malcolm Stitch at Hughes Aircraft Company. Initially developed
for military tracking applications, the Colidar Mark II (1963) was among the first land-based
systems. NASA played a key role in expanding LiDAR’s applications throughout the 1970s
through the development of laser-based remote sensing techniques for environmental monitoring
including ocean profiling and atmospheric measurements.

While the early LiDAR systems were very promising, their widespread application to high-
accuracy applications was hindered until the mid-1980s by the absence of accurate positioning
technologies. That is, until the development of Global Positioning System (GPS) and Inertial
Measurement Unit (IMU) integration refined accurate geolocation, greatly stimulating imaging,
mapping, and topographic analysis.

From the late 1980s, LiDAR demand in aerial photogrammetry and topographic surveys grew,
stimulating further research and development. Commercial availability of precise positioning
systems enabled LiDAR to be a powerful instrument in a wide range of applications from en-
vironmental mapping and forest canopy investigations to urban infrastructure planning and
autonomous vehicle navigation [8, 9, 6].

Recent years have seen unparalleled expansion in LiDAR performance and flexibility, driven
by developments in semiconductor and photodetector technology. Perhaps the most significant
advance has been the mating of silicon-based Single-Photon Avalanche Diode (SPAD) detec-
tors that are realized in complementary metal-oxide-semiconductor (CMOS) technology. Such
SPADs achieve single-photon detection with extremely high sensitivity and at picosecond-scale
time resolution [10].
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Such temporal precision makes SPAD detectors an ideal fit for Time-Correlated Single-Photon
Counting (TCSPC), which allows for ultra-fine spatial resolution even at extensive ranges. This
makes SPAD-based LiDAR extremely well-suited for long-range and high-altitude use, for in-
stance, airborne remote sensing [11].

Furthermore, modern LiDAR systems are increasingly coupled with powerful Graphics Process-
ing Units (GPUs), enabling real-time data processing and 3D reconstruction. GPU acceleration
enables the generation of very dense point clouds and 3D models in almost real-time, benefiting
applications such as autonomous driving, robotics, and augmented reality.

From its beginnings in experimental techniques to its present position as the foundation of
sophisticated sensing and mapping technologies, LiDAR has matured into a powerful and es-
sential tool. Through continued research as well as engineering innovation, LiDAR remains at
the forefront of redefining the limits of 3D perception, delivering unparalleled precision, speed,
and environmental awareness to a wide range of scientific, industrial, and commercial applica-
tions [12, 13, 14].

2.4.2 LiDAR working principle

LiDAR (Light Detection and Ranging) operates based on the principle of measuring the time
taken for a laser pulse to travel to a target and reflect back to the sensor. By analyzing this time-
of-flight (ToF) data, LiDAR systems can calculate distances with high precision and generate
detailed 3D maps of the surrounding environment.

output
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Figure 2.5: LiDAR working principle [15]

This figure 2.5 illustrates the operating principle of a 3D imaging system that utilizes flood
illumination in combination with an array sensor—a configuration commonly employed in Time-
of-Flight (ToF) or structured light technologies. The main components involved are:

- Laser Source: A short laser pulse (typically in the nanosecond range) is emitted toward
the scene. The wavelength—often in the near-infrared range—is selected to ensure strong
interaction with a variety of surfaces and resistance to atmospheric interference.

- Light Propagation and Reflection: The emitted beam spreads across the scene, illu-
minating all objects in its path. These objects reflect a portion of the light back toward
the sensor.
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- Array Sensor: The reflected light is captured by a 2D array of photodetectors. Each
pixel in the array corresponds to a specific point in the scene, enabling fast and parallel
acquisition of depth information across the entire field of view.

- Output (3D Reconstruction): The system calculates the time-of-flight (ToF) for each
laser pulse—the time it takes to travel to the object and back. From this, it estimates
the distance to each point, producing a 3D depth image or point cloud of the observed
environment.

This type of LiDAR architecture is well-suited for compact, real-time systems such as those
in smartphones, drones, or robotics, offering fast and wide-area 3D perception without moving
parts.

A — Operational process of a LIDAR System:

As shown in the figure 2.6, power is supplied
to the laser through the laser power supply.
The laser beam then passes through a set @ Object
of focusing optics before reaching the target S
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object. The reflected laser light is collected | Focusing Fo;lsmg i
through another set of focusing optics, where [ Omtes o ]

a specific wavelength is filtered by an opti- votor CJ0) 1 l !

cal filter. The filtered output is directed to : LASER Fier L Plo
a photodetector, which converts the optical : : i
signal into an electrical one. This data is _L_AIE_R_ _______ j
then transmitted to a computer for analysis Power pC
and visualization. The entire LIDAR system

is mounted on a rotating mechanism, typi- Figure 2.6: Operational block dia-
cally powered by a motor, allowing for con- gram of LiDAR [6]

tinuous scanning and mapping of the envi-

ronment .
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B — Time-of-Flight (ToF) principle:

The fundamental principle behind LiDAR
(Light Detection and Ranging) lies in Time-
of-Flight (ToF) measurements, where laser
pulses are emitted toward a target, and the
time taken for the reflected light to return
is used to calculate distance with high pre-
cision. As illustrated in Figure 2.7, the ToF
process involves emitting short laser pulses,
detecting their reflections with a photodetec-
tor, and analyzing the time delay to estimate
distance. This method enables accurate 3D
mapping of environments and is a corner-
stone of modern LiDAR systems [16].

The system records the time interval (AT)
between emission and reception, and the dis-
tance (D) to the object is determined using
the formula:

c- AT
2

D=

(2.1)

where:

- D = Distance to the target

- ¢ = Speed of light (=~ 3.0 x 10® m/s)
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Figure 2.7: time of flight ToF prin-
ciple [16]

- AT = Time taken for the light to travel to the object and return

This method is widely used in pulsed LiDAR systems and allows for high-speed and accurate

distance measurements.

C — Alternative measurement approaches:

While ToF pulsed lasers are the most common, two alternative techniques exist for measuring

distances:

1. Phase-Shift measurement (AMCW LiDAR)

/ --_§‘_"‘::
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e

Meter Target
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Figure 2.8: Time of flight phase-measurement principle used in AMCW sensors [17]
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The figure 2.8 above illustrates the Phase-Shift Measurement method used in AMCW
LiDAR operates based on the following principles :

- This approach uses an amplitude-modulated continuous wave (AMCW) laser.

The phase difference (A®) between the emitted and received light is used to compute
the distance.

far denotes the modulation frequency.

This method is highly effective for short-range applications, but it is limited by range
ambiguity beyond approximately 100 meters.

2. Frequency modulated continuous wave (FMCW LiDAR)
Frequency Modulated Continuous Wave (FMCW) LiDAR systems operate based on the
following principles:

- The instantaneous frequency of the emitted laser is modulated over time.

- The frequency shift between emitted and reflected light is analyzed to determine
distance.

- This method provides superior depth resolution (as low as 0.1 cm) and improved
immunity to interference.

2.4.3 LiDAR Data quality

A — LiDAR data output and processing formats:

To better understand the structure of LiDAR data, it is helpful to begin with a visual example.
Figure 2.9 compares a standard RGB image (a) with its corresponding 3D point cloud (b),
where depth is color-coded: blue represents nearby surfaces, yellow indicates mid-range, and red
denotes distant areas. This comparison illustrates how 2D visual input can be transformed into
a structured 3D representation—an essential step in LiDAR-based perception and analysis.

!;;I[-"

(a) RGB image (b) 3D point cloud

Figure 2.9: Example of an RGB image (a) and its corresponding point cloud (b), with
color representing depth [18].

LiDAR systems generate point clouds, spatial datasets composed of 3D Cartesian coordinates
(x,y, z) that precisely capture the geometry of real-world scenes. The initial data output—raw
range measurements and sensor orientation—is transformed through calibration and coordinate
conversion into a coherent 3D representation within a local or global reference frame.
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Modern systems often enrich these point clouds with ancillary information such as return in-
tensity, return number, timestamp, and RGB values from co-registered cameras. This multidi-
mensional data enhances the spectral and spatial fidelity of the representation, enabling more
accurate analysis.

However, raw point clouds are typically sparse and irregular, limiting their direct usability
in tasks like object detection or 3D reconstruction. To overcome this, deep learning-based
upsampling techniques such as PU-Net [19], PU-GCN [20], and RS-CNN have been developed
to generate denser, more uniform point distributions while preserving fine geometric details.

As LiDAR hardware and computational capabilities have advanced, point clouds have evolved
from static representations to dynamic, high-resolution datasets. Real-time processing, pre-
dictive modeling, and integration with Al are now feasible thanks to GPU acceleration and
improved storage solutions. Consequently, point clouds form the backbone of digital twins,
smart environments, and a wide array of emerging applications across science, engineering, and
industry [21, 22, 23].

In the majority of state-of-the-art LiDAR systems, particularly dToF or TCSPC-based systems,
the photon count temporal histogram is the fundamental measurement from which depth infor-
mation is extracted. The histogram records the count of photon arrivals received over discrete
time bins and provides a statistical profile of return times per detection unit or pixel. The shape
and peak of the histogram directly encode the scene’s depth structure.

Raw histogram data is post-processed after collection—often with matched filters, deconvolution,
or deep learning networks—to infer depth, and then geometrically transformed using sensor
orientation and calibration parameters to generate 3D point clouds in global or local coordinate
frames.

This end-to-end pipeline—from photon-counting histograms to dense, semantic 3D models—enables
important applications in autonomous navigation, remote sensing, digital twins, and smart in-
frastructure systems.

B — Photon count and signal quality in ToF imaging (PPP):

The Photons Per Pixel (PPP) value is the mean number of photons received per pixel within one
acquisition period in a time-of-flight (ToF') camera system. PPP is an absolute measurement of
the intensity of the arriving signal at the sensor and is a function of the reflectance of the scene,
illumination power, exposure time, and the efficiency of the optical system. A higher PPP is
linked with a higher number of detected photons, which reduces the quantum (Poisson) noise
statistically and leads to more stable and accurate depth estimation. On the other hand, low
PPP yields a sparse photon distribution across time bins, increasing uncertainty and lowering
the signal-to-noise ratio (SNR). This is common in low-light environments or when viewing
distant or low-reflectivity surfaces. PPP consequently plays an important part in defining the
robustness and quality of the histogram generated by the ToF sensor and the performance of
any subsequent depth reconstruction algorithm [12].
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C — Signal-to-Background Ratio (SBR) in depth estimation:

The Signal-to-Background Ratio (SBR) calculates the ratio of signal photons—those that
travel directly from the light source, are reflected from scene surfaces, and reach the sensor—to
the background photons, which may originate from ambient light, multiple scattering, or indirect
reflections.

It is defined as:

SBR — Sum of signal counts

2.2
Sum of Background counts (22)

A large SBR indicates that most of the detected photons are signal photons, which results in
well-defined, localized peaks in the histogram and consequently more accurate depth estimation.

However, a small SBR indicates severe contamination by background noise, which can spread
the temporal profile of the histogram and compromise the reliability of depth reconstruction
methods—particularly in the case of outdoor scenes or complex optical environments [12].

D — Complementary roles of PPP and SBR:

PPP and SBR both determine the quality of the signal and the precision of the depth sens-
ing of a ToF system. High PPP assures statistical stability, while high SBR makes detected
photons informative and useful. Low values for either of them can lead to noisy or uncertain
histograms, making depth estimation highly sensitive to the reconstruction algorithm used. For
instance, simple techniques such as argmax will fail in low SBR or low PPP conditions, whereas
robust techniques such as matched filtering will still provide valuable output by accommodating
anticipated signal profiles [12].

2.4.4 Temporal Histogram simulation for dToF sensors

During this work, the temporal histogram of a single pixel is generated to model how a real direct
time-of-flight (dToF) sensor performs under mixed signal and noise conditions. Signal strength
as well as background contamination are modeled by two governing parameters: Photons Per
Pixel (PPP) and Signal-to-Background Ratio (SBR).

The process begins by dividing the total number of photons per pixel (PPP) between the signal
component (Levg) and the background component (Levp), according to the SBR as follows:

PPP x SBR

1+ SBR '’
Then, for each pixel, the signal shape is approximated as a Gaussian distribution centered at
the pixel’s actual depth value. Its amplitude is modulated by the pixel’s reflectivity, computed
from the RGB image using the luminance formula:

Levg = Levp = PPP — Levg

Y =0.299R + 0.587G + 0.114B
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The obtained grayscale reflectivity map is normalized to lie in the interval [0,1]. The depth
range is discretized into 7' temporal bins (e.g., " = 300), and the normalized depth value for
each pixel is computed to determine the center of the Gaussian.

Each pixel is modeled by a histogram with a weighted Gaussian-shaped signal (with the true
depth as center and scaled by reflectivity and Levg) superposed onto a uniformly distributed
background noise term in every bin:

Levp
T

H(t) =ro-Levs - G(t,do) +

where G(t,dp) is the normalized Gaussian function centered at the pixel’s true depth dy, and 7
is the pixel’s normalized reflectivity.

Finally, to simulate realistic sensor behavior, Poisson noise is added to the summed histogram
values. This process simulates the statistical nature of photon arrival in actual sensing conditions
and introduces uncertainty that is directly proportional to PPP.

Using this simulation strategy, we generated noisy depth maps under different sensing conditions
by varying the values of PPP and SBR. Three configurations were experimented:

- PPP = 1, SBR = 0.25: noise-saturated and low-light environment,
- PPP = 4, SBR = 1: signal and background are equal,

- PPP = 16, SBR = 4: ideal, high-signal conditions.

Figure 2.10 presents examples of recorded photon histograms under various sensing conditions.

mmmm Photon Histogram

—— Total Signal

=== Background Signal
Target Signal

(c)

Bins Bins

Figure 2.10: Photon histogram simulation under different sensing conditions : (a) the
ideal case, (b) strong background illumination, (c) few photons.
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- Subfigure (a) illustrates the ideal case, where the photon signal is well-defined with
minimal background noise, leading to a sharp Gaussian peak.

- Subfigure (b) shows the effect of strong background illumination (low SBR), where the
histogram becomes irregular and noisy, blurring the peak.

- Subfigure (c)corresponds to a scenario with few photons (low PPP), resulting in a sparse
and poorly defined histogram.

These cases demonstrate how signal clarity degrades with decreasing photon count and increasing
background noise, directly impacting depth estimation accuracy.

2.4.5 Challenges and issues

Although 3D LiDAR offers impressive capabilities, it still faces a number of technical and prac-
tical challenges. Onme of the first and most obvious hurdles is the cost. High-quality LiDAR
systems especially the ones capable of detailed, high resolution scanning aren’t cheap. They
require precise laser components, sensitive detectors, powerful processors, and sometimes even
moving parts. That means both buying and maintaining them can be expensive, making them
less practical for smaller scale or budget-conscious projects.

Another critical issue is data quality. While LiDAR is highly precise in theory, the data collected
is often affected by various sources of noise and degradation. Environmental factors such as
dust, fog, or highly reflective surfaces (like glass or water) can scatter the laser pulses or distort
returns. Additionally, sensor limitations such as low spatial resolution—common in lightweight
or embedded LiDARs—further impact the quality of the depth information.
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Figure 2.11: Hlustration of depth map degradations and their effects on 3D reconstruction.
In the point clouds, blue indicates closer surfaces and yellow more distant areas.
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To further illustrate the impact of data degradations on 3D perception, Figure 2.11 presents a
comparative analysis of depth maps and their resulting point clouds under various conditions:

shows an ideal, clean depth map;

introduces Poisson-like noise, simulating realistic measurement degradation;
represents a low-resolution depth map, mimicking hardware limitations;

is the 3D point cloud derived from (a), offering high spatial fidelity;

shows the effect of noise on 3D reconstruction, with increased distortion;

displays a sparse and less informative point cloud due to reduced resolution.

These examples clearly demonstrate how input quality directly influences the geometry and
density of 3D reconstructions. In the visualizations, blue indicates nearby surfaces, while
represents more distant regions, offering intuitive depth perception. The degradation scenarios
emphasize the need for robust processing techniques capable of handling noisy or incomplete
LiDAR data.

Another challenge lies in the range-resolution trade-off: increasing range often comes at the
expense of spatial detail, which is critical in applications like autonomous driving or aerial

mapping.

While LiDAR performs well in low-light conditions, adverse weather (rain, snow, fog) can scatter
laser beams and reduce effectiveness. Certain materials—dark or reflective—also yield poor
returns.

Furthermore, LiDAR. generates large volumes of data, requiring substantial storage and com-
puting resources, particularly for real-time applications.

Mechanically scanned LiDAR systems involve moving parts that wear out over time. Solid-
state LIDAR, a more robust alternative, is promising but not yet widely adopted. High power
consumption further limits deployment on mobile or battery-powered platforms.

Finally, LIDAR is often integrated with cameras, GPS, and IMUs. However, multisensor fusion
is complex due to differences in resolution, frame rates, and fields of view. Synchronization and
calibration demand advanced algorithms, and the lack of standardization hinders interoperabil-
ity. Moreover, as LIDAR becomes more widespread in public spaces, it raises privacy concerns,
particularly in surveillance and behavioral monitoring. [9].
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2.5 Conclusion

This first chapter focused on the theoretical foundation and key issues inherent with computa-
tional imaging, with special consideration to the application of LiDAR sensors in this context.
LiDAR, through its ability for precise and dense depth sensing, has become a key component
of modern 3D imaging systems. However, its weaknesses most notably in the areas of spatial
resolution, noise, and environmental sensitivity have served to increase interest in computational
imaging techniques.

Computational imaging attempts to overcome the limitations of physical sensors using physical
models and advanced algorithms, generally based on deep learning. The addition of LiDAR
data enables the combination of reliable physical measurements and powerful reconstruction
algorithms, paving the way for robust, precise, and efficient 3D imaging solutions.
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State-of-the-art

In this chapter, we provide an overview of existing methods for multimodal 3D imaging, covering
both traditional techniques and data-driven approaches. The chapter is structured in two parts:
the first focuses on the core architectures and representative models developed for key tasks such
as super-resolution and multimodal 3D imaging; the second part is dedicated to UC-Net [24], a
segmentation model that plays a central role in our experimental framework.

3.1 Existing methods for multimodal 3D imaging :

Multimodal sensors capture and integrate diverse characteristics of a scene to maximize informa-
tion gain. In optics, this may involve capturing intensity in specific spectra or polarization states
to determine factors such as material properties or an individual’s health conditions. Combining
multimodal camera data with shape data from 3D sensors is a challenging issue. Multimodal
cameras, e.g., hyperspectral cameras, or cameras outside the visible light spectrum, e.g., thermal
cameras, lack strongly in terms of resolution and image quality compared with state-of-the-art
photo cameras. These are some existing methods for multimodal :

3.1.1 Traditional approaches for multimodal image fusion :

Traditional approaches for multimodal image fusion refer to a set of techniques and methods
developed over the years for integrating information from multiple sources of images. These
approaches are typically based on mathematical or statistical models and involve extracting
features from the input images and fusing them to generate a single output image.
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As shown in Figure 3.1, Transform-based fusion, dictionary-based fusion, and statistical
based fusion are examples of traditional approaches that have been widely used in the litera-
ture. These traditional approaches have been used in various medical imaging, remote sensing,
surveillance, and industrial image processing applications.

Traditional
Approaches
|
I I I 1
Spatial Frequency Transform Dictionary Statistical
Domain Domain Domain based based
¥ v ¥ ¥ v
* Simple Average » Laplacian # Discrete  Cosine » Sparse » Bayesian
*  Minimum- Pyramid Transform Encoding inference
Maximum Decomposition » Wavelet « PCA » Probabilistic
+  Simple Block Transform ; maodeling
Average 1 * Maximum
*  Weighted Average likelihood
= HIS estimation
s PCA
*  Gradient Descent

Figure 3.1: Classification of traditional multimodal image fusion approaches. [25]

In the following, we will discuss some of these traditional approches :

A — Transform-Based Fusion: Transform domain techniques involve converting images from
the spatial domain into a different representation—typically the frequency domain—before fu-
sion. This approach facilitates more effective integration of image details across various scales
and resolutions. Among the commonly used methods in this category are:

- Discrete Cosine Transform (DCT): A widely used method, particularly in image
compression (e.g., JPEG). DCT helps isolate image features in the frequency domain, and
in the context of image fusion, DCT coefficients from different modalities are selectively
combined to enhance relevant information while suppressing redundancy.

- Wavelet Transform: Another popular method that decomposes images into sub-bands
representing different frequency components. It supports multi-resolution analysis, allow-
ing detailed information from each source image to be fused at the appropriate scale. This
results in high-quality fused images with well-preserved texture and contrast.

B — Dictionary-Based Fusion:

Dictionary-based methods use a learned or predefined set of basis functions (called a "dictionary")
to represent image patches in a sparse or compact form. These techniques are powerful for
preserving structural details and removing noise. Among the commonly used methods in this
category are:

- Sparse Encoding: Each image patch is represented as a sparse linear combination of
dictionary atoms. Fusion is performed by selecting or averaging the sparse representations
to form a more informative fused representation. This method excels in retaining fine
details and edges.
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- Principal Component Analysis (PCA): Although PCA is primarily a statistical tool,
it is often used within dictionary-based approaches. It transforms correlated image data
into a set of orthogonal components (principal components), and the fusion is typically
carried out on the first few components that capture the most significant variance (i.e.,
information).

C — Statistical-Based Fusion: : Statistical-based image fusion techniques rely on mathe-
matical models and probability theory to combine information from multiple modalities. These
methods aim to model the uncertainty and variability inherent in the imaging process, often lead-
ing to more robust and reliable fusion outcomes. Key approaches include Bayesian inference,
where prior knowledge and observed data are integrated to estimate the most probable fused
image; probabilistic modeling, which uses statistical tools such as Gaussian Mixture Models
to represent data distributions and manage noise; and maximum likelihood estimation (MLE),
which identifies the fusion parameters that maximize the probability of observing the input
images. These techniques are particularly effective in medical image fusion and remote sensing
applications where uncertainty is significant.

3.1.2 Data-Driven Methods

The motivation for introducing deep learning into image fusion is to overcome the limitations
of traditional methods. Deep learning has become a popular technique for multimodal image
fusion due to its ability to automatically learn complex mappings between different modalities
and efficiently handle large amounts of data.

In the following, we first present some key architectures used in data-driven methods, and then
examine several existing models.

Common Deep Learning Architectures :

1 - Convolutional Neural Networks CNNSs :

Convolutional Neural Networks (CNNs) become a central technology for image processing and
increasingly applied to multimodal image fusion. Compared with traditional approaches, CNNs
can automatically learn hierarchical spatial features from input images, which are particularly
well-behaved to tap complementary and salient information from different modalities.
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Figure 3.2: CNNs architucture for image fusion [25]

Typical steps involved in using CNNs for multimodal image fusion are shown in the figure 3.2 :

1. Data Preparation The input images are pre-processed to ensure consistency. This
involves resizing them to a common size, normalizing pixel values, and organizing image
channels appropriately.

2. CNN Architecture Selection Select an appropriate convolutional neural network
based on the fusion goal. Popular choices include VGG for its simplicity, ResNet for deep
feature extraction, and Inception for handling multi-scale features.

3. CNN Training The selected CNN is trained on datasets of paired images and their
corresponding fused images. A loss function guides the training to preserve key structural
and semantic details from both input images.

4. Image Fusion Process Once trained, the CNN takes new image pairs, extracts features
from each, and combines them to form a fused representation that integrates the most
relevant information from both.

5. Evaluation and Refinement The fused results are evaluated using quantitative metrics
like PSNR and SSIM, along with visual assessment. Based on performance, the model
may be fine-tuned for better quality fusion.
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2 - Multimodal image fusion using Auto-encoders :

Auto-encoders are another type of deep learning model that can be used for multimodal image
fusion. Auto-encoders can be used to perform feature-level fusion, where the input images are
encoded into a lower-dimensional feature space and then decoded to create a fused representa-
tion; the figure 3.3 shows the general architecture of Multimodal Image Fusion using Stacked
Auto-encoders.Here are the general steps :

Feature Image 1

ww%lllh
'Wm—‘llll

Feature Image 2

Fused
—'““ oo |

Fused Features

Fusion strategy

Figure 3.3: Auto-encoder architecture for image fusion [25]

1. Data Preparation
Input images are pre-processed—resized to a common size, normalized, and channels are
separated if needed.

2. Auto-Encoder Architecture Selection
An appropriate auto-encoder is chosen, typically with a convolutional encoder and a de-
convolutional decoder for image reconstruction.

3. Training the Auto-Encoder
The model is trained on image pairs and their fused targets using a loss function that
combines MSE and SSIM to retain important information from both inputs.

4. Image Fusion
After training, the encoder extracts features from each image, which are then combined
and passed through the decoder to generate the final fused image.
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3 - Multimodal Image Fusion Using Generative Adversarial Networks :

Generative Adversarial Networks (GANs) [26] are a class of deep learning models consisting of
two neural networks — a generator and a discriminator — trained in opposition. The generator
aims to produce realistic data, while the discriminator attempts to distinguish between real
and generated data, thus encouraging the generator to create increasingly convincing outputs.
Initially developed for image synthesis, GANs have also been applied to multimodal image fusion,
where the goal is to generate a single fused image by combining salient features from multiple
input modalities. This process is illustrated in Figure 3.4.
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Figure 3.4: GAN architecture for Multimodal image fusion [25]

1. Data Preparation
Input images are resized, normalized, and formatted (e.g., channel separation) to be com-
patible with the GAN model.

2. GAN Architecture Selection
A suitable GAN architecture is chosen, typically with a convolutional-deconvolutional
generator and a discriminator to differentiate real and generated fused images.

3. Training the GAN
The generator learns to produce fused images similar to ground truth, while the discrim-
inator learns to tell real from fake. A combination of adversarial and content loss (e.g.,
SSIM, MSE) ensures realistic and informative fusion.

4. Image Fusion
After training, the generator fuses new image pairs by extracting and merging their fea-
tures to produce a single fused image.
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4 - Multimodal image fusion using transformers :

Transformers are a type of deep learning model widely used in natural language processing
(NLP), but they can also be applied to image fusion tasks. Attention mechanisms can be used
in multimodal image fusion to enable the model to focus on the most relevant features from each
input modality.

Different attention mechanisms can be used for fusion tasks. Currently, Transformer architec-
tures are not much explored for multimodal image fusion. Here is an overview of how Transform-
ers can be applied to multimodal image fusion , the figure 3.5 shows the general architecture
of the model :

1. Understanding Multimodal Image Fusion
Multimodal image fusion involves combining information from multiple sources or modal-
ities (e.g., visible light, infrared, depth) to create a single, more informative image. Each
modality typically provides unique information, and the goal is to fuse this information
to enhance the overall image quality or extract specific features.

2. Transformers in Image Fusion
Transformers are robust neural network architectures that have shown remarkable success
in various tasks due to their ability to capture complex dependencies in data. In image
fusion, Transformers can be used to learn the relationships and dependencies between the
different modalities and create a fused representation.

3. Input Representation
The input to a Transformer-based multimodal image fusion system includes multiple
source images from different modalities. Each source image is usually passed through
a convolutional neural network (CNN) to extract image features. These features are then
combined and passed as input to the Transformer model.

4. Attention Mechanism
Transformers leverage attention mechanisms to weigh the importance of different parts of
the input features when making predictions. In the context of image fusion, the attention
mechanism can highlight regions or features from each modality that are most relevant
for fusion.
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Figure 3.5: Image fusion using Transformers [25]
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Overview of existing data-driven models

One of the most notable contributions in this area is the work titled Consistent Direct Time-
of-Flight Video Depth Super-Resolution [27], which addresses the super-resolution problem by
fusing low-resolution dToF measurements with high-resolution RGB images. Unlike traditional
per-frame RGB-guided depth enhancement methods, the authors propose the first multi-frame
fusion approach, introducing two novel models:

- Depth Video Super-Resolution (DVSR): Exploits multi-frame correlations to en-
hance geometry prediction and temporal consistency, achieving superior performance com-
pared to state-of-the-art per-frame methods [28], while maintaining a lightweight archi-
tecture.

- Histogram Video Super-Resolution (HVSR): Further incorporates unique dToF his-
togram information, which reduces spatial ambiguity and flying pixels, thereby improving
geometric fidelity.
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Figure 3.6: Proposed dToF video super-resolution framework. [27]

Figure 3.6 shows the proposed dToF video super-resolution framework. It generally follows a
two-stage prediction strategy, where both stages predict a depth map and a confidence map
that are fused to obtain the final prediction. Features are aligned and aggregated between
frames, either bidirectionally or forward-only. (b) Schematic of flexible warping-based multi-
frame feature aggregation. Instead of strictly following the estimated optical flow, features from
multiple candidate positions are warped between frames. (c) Schematic of proposed histogram
processing pipeline. The full histogram is compressed with peak detection and rebinning to
produce an approximated histogram. At the confidence prediction stage, histogram distance is
computed between the input histogram and the histogram generated by predicted depth values
to estimate confidence in the prediction.
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In parallel, significant work has been carried out on point cloud upsampling, which is closely
related to depth map refinement. Notable examples include:

- PU-Net [19]: An upsampling framework that uses a hierarchical feature learning mecha-
nism to progressively refine point representations. It employs interpolation-based restora-
tion and introduces both reconstruction and repulsion losses during end-to-end training to
produce more uniform and accurate point distributions. PU-Net addresses the challenge of
upsampling irregular, unordered 3D point clouds, where traditional interpolation fails to
ensure both geometric fidelity and distribution uniformity. The authors demonstrate that
PU-Net outperforms prior optimization-based and learning-based approaches in terms of
surface accuracy and uniformity, evaluated through metrics like Earth Mover’s Distance
(EMD) and Normalized Uniformity Coefficient (NUC).
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Figure 3.7: The architecture of PU-Net (better viewed in color) [19]

Figure 3.7 shows the architecture of PU-Net where input has N points, while the output
has N points, where r is the upsampling rate. C;, C, and C; represent feature channel
dimensions. Multi-level features are restored for the original N points using interpolation
and then reduced to a fixed dimension C' via a convolution. The red color in the point
feature embedding component denotes the original and progressively subsampled points
in the hierarchical feature learning process, while the green color indicates the restored
features. A joint loss function combining reconstruction loss and repulsion loss is used in
the end-to-end training of PU-Net.
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- PU-GCN [20]: A point cloud upsampling method based on Graph Convolutional Net-
works (GCNs). It integrates the Inception DenseGCN multi-scale feature extractor with a
novel NodeShuffle upsampling module. When incorporated into the 3PU [29] framework,
PU-GCN improves structure preservation and fine detail reconstruction, effectively restor-
ing features like the neck and ball shape of a faucet. PU-GCN addresses the limitations of
prior MLP- or duplication-based upsampling techniques by leveraging graph convolutions
to better encode local neighborhood structures and generate new points from learned fea-
tures. Extensive experiments show that PU-GCN achieves state-of-the-art performance
on benchmark datasets (e.g., PU-GAN’s dataset and the newly introduced PU1K) with
fewer parameters and faster inference, while preserving fine-grained details and reducing
outliers.
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Figure 3.8: PU-GCN architecture. PU-GCN uses an inception feature extractor consisting
of one or more Inception DenseGCN blocks, followed by the NodeShuffle based upsampler,
and a coordinate reconstructor [20]

3.1.3 Hybrid Methods: Model-Based Deep Learning

By combining model-based and data-driven approaches, hybrid methods aim to leverage the
advantages of both and mitigate their respective drawbacks. Rather than relying solely on purely
data-driven techniques such as convolutional neural networks (CNNs) or generative adversarial
networks (GANSs), these approaches integrate prior knowledge, physical models, or mathematical
optimization frameworks into deep learning architectures.

This integration leads to more interpretable, efficient, and robust models, particularly in tasks
such as image fusion.

Advantages of Model-Based Deep Learning

- Improved Interpretability: These methods are grounded in established mathemati-
cal models, making their behavior easier to understand compared to purely data-driven
networks.

- Robustness in Challenging Conditions: They tend to perform better under con-
ditions such as noise, blur, or low lighting due to the incorporation of domain-specific
knowledge.
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To synthesize the various multimodal fusion strategies explored in this chapter—including tradi-
tional, deep learning, and hybrid approaches—we provide in Table 3.2 a comparative summary
of representative methods. This table outlines the input modalities, architectural choices, fusion
objectives, and evaluation metrics, offering a concise overview of current trends and positioning
of our proposed framework.

Approach Principle Advantages Limitations Examples

Type

Traditional Based on phys- | Interpretable, Limited adapt- | Kalman  Filter,
ical /statistical requires little | ability, poor | Bayesian fusion
models and rule- | data generalization
based fusion

Deep Learning | Data-driven mod- | High perfor- | Requires large | CNN-based  fu-
els trained end- | mance, auto- | datasets, less | sion, GANSs,
to-end for fusion | matic  feature | interpretable Transformers
tasks extraction

Hybrid (Model- | Combines physi- | Better general- | Higher complex-

Based DL) cal priors with | ization, robust | ity, needs careful
learnable models | to noise, inter- | design

pretable
Table 3.1: Comparison of multimodal fusion approaches in 3D imaging.
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Table 3.2 provides a comparative overview of representative multimodal 3D image fusion meth-
ods presented in this chapter. It outlines the input modalities, network architectures, fusion
mechanisms, and evaluation metrics, offering a clear perspective on current approaches and
their respective strengths.

Method Modality Architecture Objective Metric(s) | Year
Input
PU-Net [19] Sparse Point | Hierarchical Fea- | Point  cloud | Standard 2018
Cloud ture CNN upsampling deviation,
NUC
GAN-based Fu- | RGB, Depth | GAN (adversarial | Image fusion | SSIM, 2021
sion [26] + content loss) MSE
PU-GCN [20] Sparse Point | Graph ConvNet | Point  cloud | CD, HD, | 2021
Cloud (DenseGCN  + | upsampling P2F
NodeShuffle)
Transformer Fu- | RGB, In- | CNN + Trans- | Feature-level | Attention | 2023
sion [30] frared, Depth | former (atten- | fusion scores
tion)
DVSR [27] Low-res Multi-frame CNN | Depth super- | AE, TEPE | 2023
depth  maps | with alignment resolution
+  High-res
RGB
HVSR [27] ToF His- | Histogram-aware | Depth super- | AE, TEPE | 2023
togram + | CNN resolution
High-res
RGB
Hybrid Fusion | Tof His- | Multiscale + | Depth super- | RMSE, AE | 2024
(Ours) togram + | DVSR/HVSR + | resulotion
RGB UC-Net + saliency
detection

Table 3.2: Comparison of state-of-the-art methods for multimodal 3D image fusion
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To highlight the advantages of the proposed hybrid fusion method, Table 3.3 presents a com-
parison with the previous existing approaches based on key practical criteria.

Method Handles Noise | Low Photon | Multimodal Saliency | Realistic Li-

Fusion DAR
Support Detection | Conditions

PU-Net [19] Limited No No No No

GAN-based Fu- Limited No RGB + Depth No No

sion [26]

PU-GCN |[20] Limited No No No No

Transformer Fu- Limited No RGB + Infrared No No

sion [30] + Depth

DVSR [27] Limited No RGB + Depth No No

HVSR [27] Limited No Histogram + No Partial
RGB

Hybrid Fusion Yes Yes Histogram + Yes Yes

(Ours) RGB

Table 3.3: Comparison of existing methods with our proposed Hybrid Fusion approach.
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3.2 High-level computer vision :

3.2.1 Saliency detection :

Saliency detection aims to identify the most visually important or attention-grabbing regions in
an image or video—areas that are likely to attract human attention due to factors like contrast,
color, shape, motion, or semantic content.

Existing RGB-D saliency detection methods treat the saliency detection task as a point esti-
mation problem, and produce a single saliency map following a deterministic learning pipeline
[24]. However, this approach overlooks the inherently subjective nature of saliency perception,
which can vary significantly between human annotators. To address this limitation, UC-Net:
Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders [24]
reformulates saliency detection as a distribution estimation task. Rather than generating a sin-
gle output, UC-Net explicitly models the uncertainty in human annotations using a generative
framework based on conditional variational autoencoders (CVAEs). This allows the network to
capture a distribution over plausible saliency maps, better reflecting the variability and ambi-
guity inherent in human visual attention.
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Figure 3.9: UC-NET. [24]

The figure 3.9 presents the UC-NET architecture, developed for RGB-D salient object detection
(SOD). It utilizes both RGB images and depth maps to generate precise saliency predictions.
The architecture will be detailed in the following section.
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3.2.2 Architecture

Saliency Saliency
Concensus Map

Figure 3.10: UC-Net framework [24]

The network is composed of five main modules, as illustrated in the figure 3.10:

1. LatentNet (PriorNet & PosteriorNet)
It maps the RGB-D input X; (for PriorNet) or X; and Y; (for PosteriorNet) to the low-
dimensional latent variables z; € RX (where K is the dimension of the latent space).

2. DepthCorrectionNet
Takes the RGB image [; and the depth image D;, and refines the depth map into D),
enhancing its quality and spatial consistency.

3. SaliencyNet
Uses the RGB image I; and the refined depth D) to extract deterministic saliency features
Sid, which represent the core saliency cues.

4. PredictionNet
Combines the deterministic features S¢ from SaliencyNet and stochastic features S sam-
pled from the latent space (via LatentNet) to predict a saliency map P;.
This sampling mechanism allows the network to generate diverse saliency predictions re-
flecting human uncertainty.

5. Saliency Consensus Module (Testing Only)
Aggregates multiple stochastic predictions to produce a final consensus saliency map,
mimicking the ground truth generation process used in datasets (which often aggregates
multiple human annotations).

Building on the insights discussed previously, our research adopts a Plug-and-Play strategy for
robust depth map fusion from RGB and LiDAR data, followed by the integration of a high-level
computer vision task—saliency detection. Unlike conventional approaches, our focus lies in real-
world environments affected by challenging degradation factors such as fog, smoke, sensor noise,
and spatial misalignment.

While the original DVSR (Depth-Video Super-Resolution) and HVSR (Histogram-Video Super-
Resolution) frameworks were mainly tailored for synthetic direct Time-of-Flight (dToF') datasets,
we extend these concepts to more complex and realistic scenarios.

Our proposed method combines a statistical multiscale algorithm with a deep learning model
-Depth Video Super-Resolution-, and concludes with saliency detection using the UCNet model.

By doing so, we aim to achieve high-fidelity, temporally consistent depth estimation suitable
for practical applications in autonomous systems and AR/VR systems operating under ad-
verse conditions. This work highlights the flexibility and generalizability of hybrid image fusion
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frameworks and underscores the practical potential of Plug-and-Play strategies in real-world
deployments.

3.3 Conclusion

In this chapter, we reviewed traditional, deep learning, and hybrid methods for multimodal
3D imaging. While traditional approaches are interpretable and deep learning offers high per-
formance, hybrid methods combine the strengths of both, making them a promising direction.
These insights motivate the proposed method in the next chapter.
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Modeling and Proposed Approach

4.1 Introduction

As shown in the previous chapter “the state of the art”, a number of reconstruction techniques
have been proposed to improve the quality of depth videos produced by Direct Time-of-Flight
(dToF) sensors, which are accurate but limited by the low resolution. A novel solution has been
suggested to overcome this limitation by taking advantage of two complementary neural network
architectures:

- DVSR (Depth Video Super-Resolution) that generates temporal sequences of RGB
and depth images to create more temporally coherent and sharper depth maps.

- HVSR (Histogram-based Video Super-Resolution), an extension of this that also
uses depth histograms from the sensor, enabling reconstruction of finer features more
accurately.

For both training and testing their models, the authors supplied synthetic datasets (Replica, Dy-
DToF) and a real-world dataset, ARKIT. The results demonstrate that their approach surpasses
state-of-the-art methods in reconstruction quality and temporal stability. However, real-world
sensor measurements generally have severe defects. Specifically, dToF sensors are susceptible
to various types of noise, such as thermal noise, multipath reflections, and ambient light in-
terference. Moreover, environmental aspects like illumination changes, transparent or reflective
objects, and dynamic conditions (e.g., motion in the scene or from the sensor) can greatly affect
the depth measurement accuracy.
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These constraints render real-world data far less "clean" than synthetic data or data recorded
in controlled environments. Therefore, a model trained on nothing but flawless data might not
generalize when transferred to real-world environments. It is thus required to generalize and
strengthen the algorithm by subjecting it to noisy data during training. This kind of gener-
alization enables more realistic simulation of sensor behavior in real-world conditions. It aims
at enhancing the robustness of the model to perturbations while achieving high reconstruction
accuracy even in complicated and uncontrolled conditions.

4.2 Proposed approach and model architecture

As already discussed, our prime goal is to extend the HVSR and DVSR algorithms to noisy data,
in order to more accurately replicate the real environment in which dToF sensors are deployed.
To realize this goal, we have followed a systematic approach, as illustrated by the figure 4.1
below. There are five general steps in this method:

Implementing
Multiscale

>

Depth estimation

Synthesis of > . High-level
Rewdats "|  Noisy data SR Algorithm ~|  computer
vision

Figure 4.1: Data processing pipeline

DATA PRE-PROCESSING Depth SR & Saliency

DATA

1. Synthesis of Noisy Data: From raw input data, we synthesize depth data by intro-
ducing realistic noise and distortions that emulate the characteristics of real-world depth
sensors.

PRE-PROCESSING

2. Multiscale Approach: Utilizing multiscale processing to obtain data at different spatial
and temporal resolutions, improving the model’s capability for extracting useful features
even under noisy conditions.

3. Depth Estimation: The depth estimation process relies on Matched Filtering and
ARGMAX techniques, which help suppress noise while preserving fine structural details,
resulting in a more accurate reconstruction of the depth map.

Depth super resolution & Saliency

4. Super-Resolution (DVSR & HVSR): Running the algorithms on the simulated data
to see how they perform under unfavorable conditions. This phase quantifies their robust-
ness and their performance in generating coherent high-quality depth maps under realistic
conditions. By doing so, we aim to validate the applicability of DVSR and HVSR through
a procedure of confronting the models with data reproducing realistic conditions.
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5. High-level computer vision: Seeks to highlight visually important regions in an image.
In our work, we applied the UC-Net model to the data we generated, enabling uncertainty-
aware saliency detection adapted to real-world conditions.

4.2.1 Noisy Data Generation

In this project, a 3D histogram for each image was constructed based on a merged RGB image
and its corresponding depth map. The goal was to replicate what a time-of-flight (ToF) sensor
would achieve by simulating significant physical phenomena such as:

surface reflectance,

actual depth values,

signal-to-background ratio (SBR),

average number of photons per pixel (PPP).

Reflectivity from the RGB image was approximated using the luminance formula:
Y =0.299R + 0.587G + 0.114B (4.1)

which converts the color image to a grayscale intensity representation. The resulting reflectivity
map was normalized to the interval [0, 1].

Depth values from the map were discretized into T" uniform intervals (e.g., T'= 300), where each
interval corresponds to a temporal bin in the simulated ToF sensor response. The result was
a 3D histogram, denoted as z values, representing the photon count distribution across depth
bins per pixel.

Once the histogram was generated, the depth map could be retrieved through two mechanisms:

- Argmax: selecting the depth bin with the highest photon count.

- Matched filter approach: correlating the histogram with a Gaussian kernel to estimate
depth.

This pipeline allows us to simulate a virtual dToF sensing process and to evaluate the accuracy
of reconstruction using objective metrics such as the Root Mean Square Error (RMSE).
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4.2.2 Implementing multiscale [31]

A — Definition of Multiscale:

Multiscale processing is a technique that filters or analyzes a signal at different spatial scales
to extract both fine-grained details and large-scale structural information. In this work, the
technique is applied to the photon time histograms of each pixel using mean filters with increasing
kernel sizes (e.g., 3x3, 5x5, etc.). This allows the attenuation of noise due to stochastic photon
limitations while preserving local depth variations.

Figure 4.2 illustrates the multiscale convolution operator applied with different kernel sizes. This
hierarchical processing enables the integration of information across multiple scales, leading to
more robust and accurate depth reconstructions by balancing noise suppression with detail

preservation.
,,,,,,,, B R B BeEe
Kefnel: 3x3
Kefinel: 55
Kefnel: 77
(b) Target image/patch of complexity
A grid cell close to the boundary
(a) Input mask patch of the target image/patch to be scanned.

Figure 4.2: Multiscale convolution operator using different kernel sizes [32].

Multiscale processing integrates data across these different scales to create stronger and more
robust depth reconstructions, with an optimal balance between noise reduction and preservation
of detail.

B — Applying Multiscale Processing:

For reconstructing depth from noisy histogram-type measurements, the presence of noise can
significantly affect the accuracy of the recovered depth, especially when the number of photons
per pixel (PPP) is low.

To counteract such effects, an efficient strategy consists in applying multiscale filtering to
the temporal histograms before performing depth reconstruction. The idea is to smooth the
photon count cube zcubel:,:, t|—i.e., the image of photons detected at time t—using a mean

filter (average kernel) of size k x k.
This kernel is defined as:
1 k k
Ki(i,j) = —= i — =,y |=
k(Z7]) k2’ VZ,]G{ \‘QJ’ ’\‘2J}

This corresponds to a uniform low-pass filter, which replaces the value of each pixel by the
average of its neighboring values within a local k£ x k window.
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Mathematically, for each spatial coordinate (x, y) and each temporal bin ¢, the filtering operation
gives a new value:

M\:s-

w\w
| I—

3]
:L‘ Y, t Z Kk Z(:E"i'iay_‘_jvt)
[5]s=-13]

m\?r

Let zi(z,y) = Zcube|T, ¥, t] denote the photon count at spatial location (z,y) and temporal bin
t, and let Z;(x,y) denote the filtered result after applying the spatial smoothing kernel.

We define
2(2,Y) = zeuve[T, Y, 1],
and let
Zi(z,y)
denote the filtered result.

This filtering is applied for each temporal bin, resulting in a total of T' “2D convolutions” for
each kernel size k.

In practice, we invoke the scipy.ndimage.convolve function, performing the convolution in
’reflect’ mode. This mode applies symmetric padding along the image edges: at pixels near
the boundary, out-of-bounds values are approximated by reflection. This avoids artifacts that
would otherwise arise from zero or constant padding, thereby maintaining uniform filtering
across the entire image domain, including edges.

From a processing standpoint, this corresponds to independent spatial smoothing for each tem-
poral image slice. The goal is to reduce random variation (noise) in the photon histograms. This
approach is based on the assumption that, within a small spatial neighborhood, adjacent pixels
share common depths and, hence, exhibit similar histogram shapes. The filtering leverages this
spatial redundancy to remove noise without significantly distorting the signal of interest (e.g.,
the Gaussian peak associated with time-of-flight).

The benefit of multiscale filtering is the ability to employ several kernel sizes k € {1, 3,5,7,9},
each representing a different trade-off:

- k = 1: no filtering, raw histograms (high sensitivity to noise),
- k = 3 or 5: light to moderate filtering, balancing noise attenuation and detail preservation,

- k > T: strong filtering, better noise suppression with potential loss of fine depth structures.

Each scale produces an independent version of the filtered histograms, which are reconstructed
separately. By analyzing these reconstructions (e.g., using metrics like RMSE), we can investi-
gate how neighborhood size impacts spatial smoothing effectiveness.

After multiscale processing, depth reconstruction is further enhanced by statistically fusing the
outputs obtained at different kernel sizes. This fusion is crucial for noise reduction, stable
pixel-wise depth estimation, and improved spatial coherence.
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Two statistical fusion strategies were explored:

- Median fusion: prioritizes robustness to outliers,

- Mean fusion: favors structural smoothing and averaging.

C — Median Fusion Strategy:

The median is the middle value of a sorted list. More precisely, for a set of K values, the
median is the value that lies at the center of the sorted sequence. If K is odd, the median is the
exact middle value; if K is even, it is defined as the average of the two middle values.

In contrast to the mean, the median is not influenced by outliers or extreme values, making it
a noise-robust estimator.

1. Histogram Fusion Using Median Each pixel’s temporal response is captured for
different kernel sizes, resulting in multiple histograms z1, 23, ..., 2k for each pixel. Each
histogram is of length T', corresponding to the number of time bins.

To obtain a single noise-robust histogram per pixel, we compute:
Zmedian = median(z1, 29, ..., 2K)

This approach ensures that any unusual peaks present in only a few scales are disregarded,
preserving only the central tendency across the set of histograms.

2. Depth Map Fusion Using Median The same concept is applied to the reconstructed
depth maps D1, Ds,...,Dg. For each pixel location (i,7), the median value across all
scales is computed as:

Diyedian (4, j) = median(D1 (i, j), Da(i, j), . - -, Dk (i, 7))
This results in a depth map that is more robust to scale-specific artifacts or anomalies,
producing a representation that is less sensitive to the particular choice of kernel size.

D — Mean Fusion Strategy:

The mean, or arithmetic average, is calculated by adding up all the values and dividing by their
count:

| K
mean(x1,...,Tg) = §Zxk
k=1

It provides a central value measure but is responsive to outliers. If a number is quite higher or
lower compared to the rest, it can change the average significantly.
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1. Histogram Fusion Using Mean In order to get a representative histogram from the
multiscale responses, the average histogram is calculated for every pixel:

1 K
Ravg = ? Z 2k
k=1

This method smooths out personal variations and brings out common patterns at different
scales. But strong outliers could still influence the outcome.

2. Depth Map Fusion Using Mean In the same way, pixel-wise mean is computed for
the reconstructed depth maps:

1T E
Davs(i7) = 2= > Dy(i, j)
k=1

4.2.3 Depth estimation using MF and ARGMAX Filtering

Post the multiscale processing stage, depth map reconstruction involves calculating one depth
value per pixel from the data obtained. Two approaches were employed to implement this op-
eration: a straightforward approach utilizing the argmax operator, and a more robust approach
utilizing a matched filter.

A — Depth Reconstruction Using Argmax:

The first method relies on a straightforward strategy. For each pixel, the maximum value of the
multiscale response vector is selected—that is, the most likely. Then, using the index of this
maximum value, one goes to fetch the corresponding depth from the list of normalized depth
values.

Mathematically, given: z; = [2i1, 22, . - . , ;x| be the multiscale response vector for the i-th pixel,
and d = [d1,ds, ..., dy] the corresponding vector of discrete depth values.

The estimated depth d; is then given by:

A

d; = dg+ where k* = arg mAX Zik

This technique has the advantage of being very fast and easy to apply. It provides a good starting
point for an initial reconstruction. However, it suffers from some disadvantages, particularly in
noisy conditions or if the response distribution is not well characterized (i.e., if there are several
values close to the maximum). In this case, argmax will give unstable or erroneous depth
estimates.
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Depth Reconstruction Using Argmax (Clear Peak)
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Figure 4.3: Illustration of the argmax method for depth reconstruction.

As illustrated in Figure 4.3, this method is based on selecting the maximum value from the
response vector z;, and using its index k* to retrieve the corresponding discrete depth dpx.

B — Depth Reconstruction using Matched Filter :

To make depth estimation more robust, a secondary method based on a matched filter was
incorporated. This involves convolving each pixel’s response vector with a pre-defined filter that
will highlight response shapes close to the expected (i.e., peaked and centered).

The matched filter is implemented as a discrete Gaussian window centered at the midpoint of
the response vector. Let NN be the number of discrete depth values, and ¢ = {%J the center
index. The matched filter is computed as:

hlk] = exp (—(k_;)2>

20

The filter is then normalized so that the sum of all its values equals 1:

For each pixel 4, let its response vector be z; = [zi0, zi1, ..., 2 n—1]. The filtered response is
computed by a 1D convolution in "same" mode (to keep the length), which can be written as:

si[k] = (zi x h)[k]
Finally, the predicted depth is the location where the filtered response is maximum:
where k™ = arg max silk]
The actual depth value is then read from the normalized depth vector:
d; = dy

This matched filter method enhances the depth map reconstruction accuracy and stability,
particularly when raw responses are noisy or ambiguous. The width of the Gaussian is controlled
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by the parameter o (named sigma filter in the code) and can be adjusted to fit the expected
signal spread.

—— si=zj*h
----- Est. Depth = 2.59 m

Original Response z; Matched Filter h[k] Filtered Output s;
1.2 4 0.10 0.61
1.01 0.08 0.51
0.8
—_ — 0.06 _o4
X i) X
= 0.6 = = 0.3
N < 504 G
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Figure 4.4: Matched filter depth estimation. Left: original response z;. Center: Gaussian
filter h[k]. Right: filtered output s; = z; x h with estimated depth.

Figure 4.4 illustrates the matched filter approach for depth estimation. The first panel shows
the original response vector z;, where the peak is not very sharp. The second panel displays the
Gaussian-shaped matched filter h[k], centered around the expected location. In the third panel,
the filtered response s; = z; * h is shown, where the convolution results in a smoother and more
stable peak. The estimated depth corresponds to the index of the maximum filtered response,
which is then mapped back to the discrete depth value.

4.2.4 Plug-and-Play strategy

To tackle the heterogeneity and complexity of real-world scenes, our method leverages a Plug-
and-Play strategy inspired by state-of-the-art computational imaging and processing LiDAR
data research [33]. This allows us to plug-in independently designed modules—each handling
a specific subtask such as noise removal, upsampling, or saliency estimation—into one and the
same pipeline.

Within such a paradigm, deep learning-based models (e.g., UC-Net for saliency prediction) can
be supplemented with model-based algorithms (e.g., matched filtering or statistical fusion) that
share both interpretability and data-adaptive characteristics. Modular design raises flexibility
levels so that elements can be replaced or reconfigured based on specific input conditions, such
as fog-deteriorated depth maps, sensor noise, or spatial displacement.

This also increases overall generalization to out-of-sample data and simplifies transfer of the
framework to other tasks. The Plug-and-Play also facilitates real-time or near-real-time pro-
cessing through optimization of each module in isolation with overall system performance main-
tained.
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4.3 Conclusion

This chapter presented a comprehensive approach to improving the reconstruction of depth maps
generated by dToF sensors, taking into account the noise typically present in real-world data.
By simulating various conditions through the PPP (Photons Per Pixel) and SBR (Signal-to-
Background Ratio) parameters, and applying techniques such as multiscale processing, statistical
fusion, and reconstruction filters (argmax and matched filter), we enhanced the robustness and
accuracy of the DVSR and HVSR algorithms. The use of objective metrics such as RMSE
(Root Mean Square Error) and AE (Absolute Error) enabled a rigorous quantification of the
improvements achieved at each stage of the proposed pipeline. The results obtained for each
component of the approach will be presented and analyzed in the following chapter.
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Experimental Results and Analysis

In this chapter, we present and analyze the results of our experiments. Our main objective was to
simulate LiDAR data under real-world conditions by introducing noise and applying multiscale
processing, as described in the previous chapter. To assess the accuracy of our approach, we use
the Root Mean Square Error (RMSE) to compare the reconstructed outputs against the ground
truth across the three different types of datasets.

Finally, as part of our high-level computer vision objectives, we present the results of the saliency
detection process applied after all reconstruction and fusion steps.

5.1 Development Environment: Hardware and Soft-
ware

To ensure high performance, reproducibility, and compatibility with the original DVSR (Con-
sistent Direct Time-of-Flight Video Depth Super-Resolution) framework, a high-performance
development environment was built. The environment supports intensive training and real-time
inference on large-scale video depth data to standards compatible with CVPR 2023 research
practice.
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5.1.1 Hardware Configuration

A high-performance hardware configuration was required to handle high-resolution RGB se-
quences and low-resolution depth signals across thousands of frames. The specifications are as
follows:

- CPU: Intel® Core™ i7 / AMD Ryzen™ 7 — High multi-threaded performance for data
preprocessing and orchestration tasks

- GPU: NVIDIA RTX 3090 (24GB VRAM) - Large-scale training with CUDA Compute
Capability > 7.0 and mixed-precision acceleration

- RAM: 64 GB DDR4 — Enables smooth handling of video sequences for training and
testing

- Storage: 1 TB NVMe SSD — Ensures quick access to datasets and intermediate results

- Operating System: Ubuntu 20.04 LTS / Windows 10 with WSL2 — Combines Linux-
based flexibility with Windows compatibility

This setup ensures smooth experimentation with multi-view, spatio-temporal fusion architec-
tures, and real-time inference pipelines.

5.1.2 Software Stack

The software environment is based on Python and the PyTorch + OpenMMLab ecosystem,
bringing together best-in-class tools for training, video processing, and evaluation:

Language: Python 3.8

- Framework: PyTorch 1.12.1 + CUDA 11.3

Vision/Audio Libraries: torchvision==0.13.1, torchaudio==0.12.1

OpenMMLab Modules:

o mmcv-full==1.7.0 — Core training infrastructure
o MMEditing — Backbone framework for video super-resolution

o MMSegmentation==0.29.1 — Semantic guidance support

- Utility Libraries: scipy, pyyaml, natsort, terminaltables, tqdm

5.1.3 Environment Management

To foster reproducibility and avoid dependency conflicts, the entire project was encapsulated in
a dedicated Conda environment:

conda create -name dvsr python=3.8

This isolated environment ensured a clean working space, full compatibility with CUDA-supported
libraries, and stability during all experimental runs.
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5.2 Dataset Overview

The datasets used in this work consist of three main sources: two synthetic datasets (Replica and
DyDToF) and one real-world dataset (ARKit). Each serves a specific purpose in the training
and evaluation of the DVSR and HVSR models.

Examples of the datasets are shown in Figure 5.1, where RGB images and their associated depth
maps illustrate the diversity in content and resolution.

Depth Map RGB Image Depth Map

RGBImage

(a) Replica dataset (b) Arkit dataset

RG ’mage

ef ]

Depth Map )

(c) Dydtof dataset

Figure 5.1: Examples of the three datasets used in this study: (a) Replica, (b) Arkit, and
(c) Dydtof

Table 5.1 summarizes the key properties and roles of the three datasets used, complementing
the visual examples in Figure 5.1.
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Dataset Description Characteristics Purpose
- 100 RGB im-
ages + 100
Synthetic RGB-D depth maps
dataset generated
Replica 5.1a from the Replica 3D - Hosolution: i(tirejitfgrn i?iltei ;?;)ilé_
P ) indoor scenes using 640480 ’

an image formation
model.

- Highly realistic
textures and ge-
ometry

controlled conditions.

ARKit 5.1b
Apple’s Aug-
mented Real-
ity Kit

Real-world dataset
captured via iPhone
with ARKit and ToF

Sensor.

- 50 RGB + 50
depth images

- Resolution:
256x192 (down-
sampled)

- Contains real-
world noise and
artifacts

Used to evaluate gen-
eralization of models
to real sensor data.

DyDToF 5.1c

Synthetic dataset cre-
ated using Unreal En-
gine to emulate direct
ToF' sensors.

- 100 RGB
ages +
depth maps

im-

100

- Resolution:
640x 352

- High visual and
structural real-
ism

Designed for train-
ing/testing on tem-
porally coherent, dy-
namic, synthetic ToF
data.

Table 5.1: Comparison of the Replica, DyDToF, and ARKit datasets used in our experi-

ments.
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5.3 Performance Metrics Used for Evaluation

To measure the quality of the reconstruction obtained with the different methods used, we used
these two common metrics :

- RMSE:

The root mean square error (RMSE) measures the average difference between a statistical
model’s predicted values Z; and the actual values z; :

1 N

RMSE = J N > (@i — 34)2

i=1
It is outlier-sensitive, with very large errors being harshly penalized by squaring. Thus, it
is a useful measure to use for the detection of reconstructions with very large local errors.
- AE :

The absolute error (AE) measures the absolute difference between observed Z; and original
values x; :

It can be averaged for all the samples to obtain the MAE (Mean Absolute Error). Un-
like RMSE, AE is not as sensitive to single large errors and provides a more stable and
representative overall error estimate.

5.4 Results of synthesising noisy data :

Figure 5.2 presents example results from the three datasets—Replica, DyDToF, and ARKit—using
two reconstruction methods: Matched Filter and Argmax.

The figure is split into two sections: the left side shows results from the Matched Filter, while
the right side displays those from the Argmax method.

Each row corresponds to a different (PPP, SBR) pair, highlighting the performance of both
methods under varying conditions across all datasets. For each pair, the corresponding RMSE
values—computed with respect to the ground truth—are also displayed, allowing for a quanti-
tative comparison of the reconstruction accuracy.

The results are analyzed and discussed in the following section.
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Matched Filter | Argmax
PPP=1 | SBR=0.25 PPP=4 | SBR=1 PPP=16 | SBR=4 I PPP=1 | SBR=0.25 PPP=4 | SBR=1 PPP=16 | SBR=4
RMSE = 1.4506 m RMSE = 0 7514 m RMSE = 0 0537 m RMSE = 1.4460 m RMSE = 0 8022 m RMSE = 0 1190 m

REPLICA

--- --- 4

RMSE = 0.9488 m  RMSE = 0.5237 m  RMSE = 0.1476 m RMSE = 0.9541m  RMSE =0.7096 m RMSE = 0.2487 m i

RMSE = 0.6392m  RMSE =0.3448 m RMSE = 0.1375 m RMSE = 0.6419 m  RMSE = 0.4280 m  RMSE = 0.1654 m

Figure 5.2: Results of synthesising noisy data using the two methods : Matched filter and
Argmax

DYDTOF

ARKIT

5.4.1 Using Matched filter for the reconstruction :

In this case, a matched filter was used to reconstruct the depth map.

At low values of PPP (Photons Per Pixel) and SBR (Signal-to-Background Ratio), the RMSE
is significantly high—1.45m for the DVSR dataset and 0.94m for the DYDTOF dataset—
indicating substantial reconstruction error.

For medium PPP and SBR values, the depth maps appear less noisy, and more scene details are
visible. The RMSE in this case is moderate; for example, the DVSR dataset shows an RMSE
of 0.75m, which is the highest among the three datasets at this level.

When the PPP is high, the depth maps are visually accurate and much cleaner, although some
fine details may still be lost. Overall, the reconstruction quality improves considerably as PPP
and SBR increase.

5.4.2 Using Argmax :

In this case, a naive reconstruction was used :

As we did for the matched filter, we evaluated the reconstruction performance using the argmaz
method under varying PPP and SBR conditions. At low values of PPP and SBR, the RMSE
is significantly high—1.45m for the DVSR dataset and 0.95m for the DYDTOF dataset—
indicating substantial reconstruction error and noisy depth maps.

For medium PPP and SBR values, the depth maps become less noisy, and more scene details are
visible. The RMSE is moderate; for instance, the DYDTOF dataset shows an RMSE of 0.7 m.
At high PPP and SBR, the depth maps are much cleaner and visually accurate, though some
fine details may still be missed. Overall, as with the matched filter, the reconstruction quality
improves significantly with increasing photon counts and signal quality.
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5.4.3 Comparison between the two methods of reconstruction :

We compare the reconstruction performance of the Matched Filter and Argmax methods across
the three datasets under varying PPP and SBR conditions. For this analysis, we calculated the
mean RMSE over all frames for each dataset and plotted the corresponding graphs.

The following figure 5.3 presents the graphs.

RMSE Comparison Between Two Methods -REPLICA DATASET- RMSE Comparison Between Two Methods -DYDTOF DATASET-
2.00 1 e —8— Argmax 0.7+ & —8— Argmax
175 4 Ry Matched filter Matched filter

Mean RMSE
Mean RMSE

qu) '\«Qb V‘og I qu) '\'QG b<‘°° |
o o r & s &
QQQ/," QQQ/, QQQ P QQQ//“' QQQ,, QQQA
(a) Variation of RMSE with (PPP,SBR) —  (b) Variation of RMSE with (PPP,SBR) — Dy-
Replica dtof

RMSE Comparison Between Two Methods -ARKIT DATASET-

—8— Argmax
Matched filter

Mean RMSE
o © o
£ w [+

! f

e
w

0.2 4

(c¢) Variation of RMSE with (PPP,SBR) —
Arkit

Figure 5.3: RMSE as a function of PPP and SBR for the three datasets: a- Replica, b-
Dydtof, and c- Arkit.

These are some comments about the graphes 5.3 :

- The Matched Filter provides more robust reconstruction, particularly in scenarios with
higher Photon Per Pixel (PPP) and Signal-to-Background Ratio (SBR).

- The performance gap widens as the quality of the data improves, confirming the supe-
rior denoising and localization capability of the Matched Filter compared to the simpler
Argmax approach.
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- At low data quality (PPP = 1,SBR = 0), both methods are similarly affected, with no
significant distinction observed.

Table 5.2 compares Argmax and Matched Filter in terms of noise sensitivity, accuracy, and
robustness under low photon conditions, highlighting their respective strengths.

Method | Noise Accuracy | Robustness Main Advantages
impact | (RMSE) | (Low
PPP,SBR)
Argmax | High Lower Fails under low | Simple and fast to
(variable) | photons compute; suitable for

clean data

Matched | Low Higher Robust to noise | Improved  accuracy

Filter (stable) + sparse signals | under noise; better
depth localization;
suitable for real-world
degraded data

Table 5.2: Comparison between Argmax and Matched Filter reconstruction methods
under varying photon conditions.

In summary, the Matched Filter consistently outperforms the Argmax method in terms of re-
construction accuracy, noise robustness, and adaptability to low-photon conditions. Its superior
performance across diverse datasets and varying PPP/SBR configurations demonstrates its ef-
fectiveness in handling challenging scenarios typical of real-world data. Given these advantages,
we adopt the Matched Filter as the primary reconstruction method for depth map generation
in the subsequent stages of our processing pipeline.

5.5 Results of the multiscale :

As demonstrated earlier, the matched filter performs better, so it will be used in the following
steps.

Figure 5.4 illustrates the average RMSE curves across different scales under varying values of
PPP and SBR for the three datasets.

As expected, RMSE generally decreases with increasing PPP and SBR values, since higher values
imply more reliable and informative input data, resulting in reconstructions that are closer to
the ground truth. Additionally, we observe that increasing the kernel size systematically reduces
RMSE across all datasets, particularly in scenarios with low PPP. For instance, in the Replica
dataset, the RMSE drops significantly from approximately 2m at scale 1 to 0.4m at scale
9. This improvement is largely attributed to noise reduction, as larger kernels capture more
neighborhood context, enhancing the robustness of the depth estimation in highly noisy cases.
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However, this trend reverses for medium and high PPP settings. Starting from scale 3, increasing
the kernel size leads to a noticeable rise in RMSE. This occurs because averaging over a larger
neighborhood modifies depth values that are already accurate, resulting in the loss of meaningful

spatial details. In such cases, overly large kernels blur important features and degrade the quality
of the reconstruction.

Therefore, increasing the kernel size introduces a trade-off: while it reduces noise, it also leads to
a loss of spatial resolution. To address this, we employ a multiscale approach using kernel sizes
of 1, 3,5, 7, and 9, and fuse the results using both mean and median strategies based on depth
map and histogrames. This enables a balance between preserving fine details and suppressing
noise, depending on the characteristics of the input data.

Average RMSE per PPP,SBR for Each Filter Scale for the REPLICA DATASET Average RMSE per PPP,SBR for Each Filter Scale for the DYDTOF DATASET
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Figure 5.4: Average RMSE per PPP,SBR for each scale for the 3 datasets
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5.5.1 Depth-map-based method:

We first reconstructed the depth maps at all individual scales, and then calculated the mean
and median of the resulting depth values.

Depth Maps at Different Scales with Mean & Median for Various PPP/SBR Settings
RMSE using MF

3x3 7x7 Mean Median
RMSE: 0.0392m RMSE: 0.0481m

RMSE: 0.0339m RMSE: 0 0524m RMSE: 0.0697m RMSE: 0 0819m

X
RMSE: 0.0394m

PPP 16, SBR 4

3x3 7x7 Mean Median
RMSE: 0.0710m

RMSE: 0 0666m RMSE: 0.0758m RMSE: 0 0855m

x7 9x9
RMSE: 0.3072m RMSE: 0.1924m

X
RMSE: 0.6253m RMSE: 0.1339m RMSE: 0.0589m

PPP 4, SBR 1

Ix1 Mean Median
RMSE: 1.1836m MSE:

PPP 1, SBR 0.25

15

Figure 5.5: Depth maps at different scales with Mean and Median results

Figure 5.5 illustrates the results of the multiscale implementation using various kernel sizes on
the DVSR (Replica) dataset across different (PPP, SBR) configurations.

Each row corresponds to a specific (PPP, SBR) pair, while each column shows the reconstruction
results for a given kernel size (1, 3, 5, 7, and 9). The final two columns display the results
obtained using the mean and median of the multiscale outputs.

Below each reconstructed depth map, the corresponding RMSE value, computed with respect
to the ground truth, is provided to facilitate quantitative evaluation.

Visually, we observe that in the most challenging scenario (PPP = 0.25, SBR = 1), increasing
the kernel size significantly reduces noise. A similar denoising effect is also evident in the case
of (PPP = 4, SBR = 1), where larger kernels lead to noticeably cleaner reconstructions.

The mean and median across the five scales yield significantly improved results compared to
the original noisy data, demonstrating the effectiveness of multiscale aggregation in enhancing
reconstruction quality. Below are some observations regarding the RMSE behavior:

- For low PPP and SBR values, increasing the kernel size results in a notable decrease
in RMSE, dropping from 1.18m to 0.19m. Furthermore, the mean and median aggrega-
tions outperform the original noisy input, confirming their usefulness in low-quality data
scenarios.

- For medium PPP and SBR settings, the RMSE decreases progressively up to the 7x7
scale, after which a slight increase of around 10cm is observed. This suggests an optimal
kernel size beyond which further smoothing may degrade the quality.
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- For high PPP and SBR configurations, the original data is already of high quality. In
this case, applying multiscale smoothing tends to increase the RMSE across all kernel
sizes. However, the aggregated mean result remains acceptable and may still be retained
depending on the application needs.

5.5.2 Histogram-based method: :

For each reconstructed depth map, we constructed a cube of histogram values corresponding to
the different kernel sizes (scales). This cube represents the temporal histogram distribution at
each pixel across the five selected scales (1, 3, 5, 7, and 9). From this 3D structure, we computed
the mean and median histograms at each pixel location to generate aggregated reconstructions
that benefit from multiscale smoothing while preserving useful spatial features.

Figure 5.6 illustrates the cube histogram for the specific case of PPP = 16 and SBR = 4 at
diffrent scales, which corresponds to a high-quality data scenario

Cube histogram (scale 1) Cube histogram (scale 3) Cube histogram (scale 5) Cube histogram (scale 7) Cube histogram (scale 9)

Cotimen
Cotimen

o 50
100 100
D& 150 D 150
Dth 5, 200 0t . 200
h g% 20 h g% 2s0

0 ° 300

Figure 5.6: Cube histograms of the scales for PPP = 1 | SBR

Since the cube histogram does not reveal the individual histograms of each pixel, we selected a
random pixel—located at coordinates (400, 200)—along with its 3x3 neighborhood which are
in figure 5.7.

3x3 Neighborhood at Scale 1 (Center Pixel = [400, 200])
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Figure 5.7: 3x3 neighborhood at scale 1 for the pixel (400,200)
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Figure 5.8 presents the histograms corresponding to the selected pixel across multiple scales,
highlighting how the distribution evolves with scale variation.
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Figure 5.8: Histograms of the selected pixel (400,200) at diffrent scales

Subsequently, we applied both mean and median fusion across all scales. The results for the
selected pixel are shown in Figure 5.9, while the aggregated cube histogram after multiscale
fusion over the entire image is depicted in Figure 5.10. What follows is a comparison of the

obtained results.
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Figure 5.9: histograms of the mean and median results for the selected pixel (400,200) for
PPP = 16 | SBR =4
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Mean Filtered Histogram
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Figure 5.10: Cube histograms of the mean and median results for PPP = 16 | SBR =4

5.5.3 Comparison between the two methods :

RMSE vs (PPP, SBR) for the Mean-Based Method
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Figure 5.11: Comparison of RMSE as a function of PPP and SBR for the mean-based
(left) and median-based (right) fusion strategies.

To compare the effectiveness of multiscale fusion strategies, we plotted the RMSE for different
PPP and SBR combinations using two aggregation techniques: the mean and the median.
The results are shown separately for depth maps and histograms 5.11.

The following key points summarize the observations from the two plots:

- Mean-Based Fusion (Left Graph):

o In the most challenging setting (PPP = 1, SBR = 0.25), depth maps provide signif-
icantly better results than histograms, with RMSE around 0.75m versus 1.85m.

o As the data quality improves (higher PPP and SBR), the RMSE decreases noticeably

for both methods.
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o For high-quality data (PPP = 16, SBR = 4), histograms slightly outperform depth
maps, both achieving RMSE values below 0.1 m.

- Median-Based Fusion (Right Graph):
o Median fusion shows greater robustness to noise, particularly in low-quality scenar-
ios.

o At PPP = 1, SBR = 0.25, it yields lower RMSE than the mean approach for both
depth maps and histograms.

o As PPP and SBR increase, the gap between depth maps and histograms narrows,
with both methods reaching similar low RMSE values.
- Overall Findings:

o Multiscale fusion significantly enhances reconstruction quality regardless of the method.
o Depth maps tend to be more reliable in noisy settings.

o Histogram-based methods become more effective when the signal-to-background ra-
tio and PPP increase.

o Median fusion is generally more robust than the mean strategy across all conditions.

5.6 DVSR and HVSR results

Before we proceed to explicit quantitative and qualitative results, we present a short overview of
the evaluation methodology. Having generated temporal response data for various reconstruction
methods—namely, PPP (Photon per-Pixel) and SBR (Signal to Background Ratio)—on diverse
spatial scales using our multiscale processing pipeline, we performed statistical fusion with both
mean and median in order to increase robustness. The fused results were then processed with
two recent state-of-the-art reconstruction algorithms:

- DVSR (Depth Video Super Resolution).

- HVSR (Histogram Viedo Super Resolution).

These methods test the reliability and fidelity of the final reconstructed depth through both
visual quality and performance measures such as RMSE and AE. In this section we present a
detailed comparison of their performance for various types of fusion and qualities of input. In
particular, we focus here on the medium-quality scenario, corresponding to PPP = 4 and SBR
=1.

5.6.1 Median based method

Figure 5.12 displays the DVSR and HVSR results generated using the median-based fusion
method on the DYDTOF dataset.

Visually, combining multiscale aggregation with the super-resolution model yields significant
enhancements, resulting in outputs that are sharper and more closely match the ground truth.
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Results of the Histograms median when PPP = 4 | SBR = 1

Ground Truth Noisy data -Before multiscale- Input -After multiscale- DVSR

AE: 0.289185 m AE: 0.014230 m AE: 0.014422 m AE: 0.011716 m
RMSE: 0.548409 m RMSE: 0.080493 m RMSE: 0.043942 m RMSE: 0.035576 m

(a) Median on cube histograms.
Results of the depth maps median when PPP = 4 | SBR = 1

Ground Truth Noisy data -Before multiscale- Input -After multiscale- DVSR

AE: 0.289185 m AE: 0.014556 m AE: 0.013817 m AE: 0.011978 m
RMSE: 0.548409 m RMSE: 0.080305 m RMSE: 0.043247 m RMSE: 0.036818 m

(b) Median of depth maps

Figure 5.12: Comparison of the DVSR and HVSR results for the median method from
cube histograms and depth maps for PPP = 4 | SBR = 1, on diffrent datasets

Comments :

- The multiscale preprocessing step visually enhances the data quality before feeding it into
the model, resulting in improved performance when the model is applied.

- The median fusion strategy yields strong results. For instance, on the DYDTOF dataset,
DVSR algorithm achieved AE = 0.0138m and RMSE = 0.0432m for the fused depth maps,
and AE = 0.0144m and RMSE = 0.0439m for histogram fusion. This marks a substantial
improvement compared to the noisy input data (AE = 0.289m, RMSE = 0.548m), showing
much closer alignment with the ground truth

- At this stage, the depth map fusion method demonstrates superior performance compared
to the histogram-based approach, even if the improvement in RMSE and AE is only by a
few centimeters.

Table 5.3 presents the AE and RMSE values for the median-based methods applied to both
histograms and depth maps from the ARKit dataset, which consists of real-world captures
using an iPhone.A clear improvement is observed from left to right across the table, with both
RMSE and AE progressively decreasing. Notably, median filtering on depth maps outperforms
that on histograms. For instance, the AE decreases significantly from 0.1728m in the input
to just 0.0134m after applying the multiscale approach combined with DVSR, highlighting the
effectiveness of the method.
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Config Input Multiscale DVSR

AE RMSE| AE RMSE| AE RMSE
Median - Histograms | 0.1728 0.3516 | 0.0229 0.1043 | 0.0167 0.0594
Median - Depth maps | 0.1728 0.3516 | 0.0164 0.0725 | 0.0134  0.0353

Table 5.3: AE and RMSE in meters for Median Methods

5.6.2 Mean based method

Figure below 5.13 presents the DVSR and HVSR results obtained using the mean-based fusion
method. Visually, the use of multiscale aggregation combined with the super-resolution model
leads to noticeable improvements, producing outputs that are clearer and more closely aligned
with the ground truth.

Results of Histograms mean when PPP = 4 | SBR =1

Ground Truth Noisy data -Before multiscale- Input -After multiscale- DVSR HVSR v
AE: 0.289185 m AE: 0.031802 m AE: 0.014703 m AE: 0.013314 m
RMSE: 0.548409 m RMSE: 0.158519 m RMSE: 0.044029 m RMSE: 0.041161 m

(a) Mean on cube histograms.

Results of the depth maps mean when PPP =4 | SBR = 1

Ground Truth Noisy data -Before multiscale- Input -After multiscale- DVSR HVSR -
AE: 0.289185 m AE: 0.065913 m AE: 0.020296 m AE: 0.044466 m
RMSE: 0.548409 m RMSE: 0.129063 m RMSE: 0.062113 m RMSE: 0.086850 m

(b) Mean of depth maps.

Figure 5.13: Comparison of the DVSR and HVSR results for the mean method from cube
histograms and depth maps for PPP = 4 | SBR = 1, on diffrent datasets

Comments :

- The improvements are particularly noticeable for the DYDTOF dataset, which contains
finer details. For example, in the case of the cat, the initial reconstruction was noisy, but
after applying the method, the result becomes smoother while preserving the same depth
information.

- Applying multiscale processing, which serves as a form of data pre-processing, enhances
the quality of the data both visually and quantitatively, as reflected in improved RMSE
and AE values.

- Examining the AE and RMSE values, the histogram-based mean fusion demonstrates
superior performance compared to the depth map-based mean. For instance, in the DY-
DTOF dataset, the HVSR method achieves an AE of 0.013m using histogram mean,
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whereas the depth map mean yields an AE of 0.044m. This highlights the advantage of
the histogram-based approach over the depth map method in this case.

Table 5.4 validates the results obtained for the DYDTOF dataset by presenting the AE and
RMSE values for mean-based methods applied to both histograms and depth maps on the ARKit

dataset. As evidenced by the table, the histogram-based approach consistently outperforms the
depth map-based method.

Config Input Multiscale DVSR

AE RMSE| AE RMSE| AE RMSE
Mean - Histograms | 0.1728 0.3516 | 0.0461 0.1646
Mean - Depth maps | 0.1728 0.3516 | 0.0441 0.0911 | 0.0174 0.1668

Table 5.4: AE and RMSE in meters for Mean Methods

5.6.3 Comparison between the methods :

Figures 5.14 illustrate the variation of average RMSE as a function of (PPP, SBR) for the two

output fusion strategies: median and mean, across different reconstruction methods (depth-dvsr,
depth-hvsr, hist-dvsr, hist-hvsr).

RMSE Variation with PPP and SBR using the mean fusion as input of DVSR and HVSR

RMSE Variation with PPP and SBR using the median fusion as input of DVSR and HVSR
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Figure 5.14: Comparison of RMSE as a function of PPP and SBR for the mean-based
(left) and median-based (right) fusion strategies.

Median Fusion:

- The depth dvsr method achieves the lowest RMSE values across most PPP and SBR
combinations.

- Its performance improves significantly with increasing PPP and SBR, indicating high
sensitivity to data quality and density.

- Histogram-based methods (hist_dvsr, hist_hvsr) show higher RMSEs, particularly under
low SBR or PPP.
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- The hist hvsr method consistently yields the highest RMSE values, 0.24m for PPP = 1,
SBR = 0.25

Conclusion: Median fusion is highly effective for depth-based methods, especially depth dvsr,
providing robust performance across various conditions.

Mean Fusion:

- The depth dvsr method performs poorly under low PPP and SBR, with higher RMSEs
than in the median case.

- Histogram-based methods (hist_hvsr and hist_dvsr) show more stable and competitive
performance.

- The performance gap between histogram- and depth-based methods narrows.

- Mean fusion is more sensitive to outliers, which negatively affects depth-based reconstruc-
tions.

Conclusion: Mean fusion favors histogram-based methods due to their stability across varying
input conditions.

Overall Insight: Median fusion provides superior robustness and accuracy for depth-based
methods, while mean fusion may be preferable for histogram-based approaches in settings with
variable or noisy inputs.

5.7 3D point cloud result visualization

Given the superior performance observed with mean fusion applied to histograms and median
fusion applied to depth map, we opted to showcase the corresponding results in the subsequent
analysis.

This figure 5.15visually reinforces the quantitative results presented earlier by showcasing median-
filtered 3D point cloud reconstructions for both DVSR and HVSR methods across different PPP
levels (1, 4, and 16), with and without multiscale filtering.
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Ground Truth
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Figure 5.15: 3D point cloud visualization showing median results from depth maps recon-
structed using DVSR and HVSR methods, with and without multiscale filtering, under
varying photon count levels (PPP =1, 4, 16). The first column displays the ground truth,
while the last row presents the corresponding noisy inputs.
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From left to right, we can observe a clear progression in reconstruction quality as photon count
(PPP) increases. The top row displays the ground truth, serving as a reference, while each sub-
sequent row presents the output for DVSR and HVSR before and after applying the multiscale
fusion step.

This figure 5.16visually reinforces the quantitative results presented earlier by showcasing median-
filtered 3D point cloud reconstructions for both DVSR and HVSR methods across different PPP
levels (1, 4, and 16), with and without multiscale filtering.
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Ground Truth
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Figure 5.16: 3D point cloud visualization showing mean results from histograms recon-
structed using DVSR and HVSR methods, with and without multiscale filtering, under
varying photon count levels (PPP = 1, 4, 16).
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Comments :

- DVSR tends to outperform HVSR, producing sharper and more accurate 3D structures,
particularly when combined with multiscale pre-processing.

- Multiscale fusion significantly improves reconstruction quality, acting as an effective
denoising and signal-enhancing step—especially in low-quality settings (e.g., PPP = 1),
where inputs are sparse and noisy.

- While all methods tend to converge toward ground truth at higher PPP levels (e.g., PPP
= 16), multiscale processing still enhances fine detail consistency.

In summary, the figure provides a strong visual confirmation of the statistical improvements
(RMSE, AE) reported earlier, and highlights the robustness of the multiscale + DVSR com-
bination, especially when median fusion is applied to depth maps.

5.8 Sailency detection results :

In this section, we present UC-Net segmentation results on the DYDTOF dataset, which includes
identifiable objects like the cat and detailed scenes suitable for segmentation.

Figure 5.17 illustrates the saliency detection results obtained using the UC-Net algorithm, with
bounding boxes highlighting the detected objects. The figure presents four different input sce-
narios: (1) clean RGB with noisy depth, (2) clean RGB with clean depth (Multiscale + DVSR),
(3) noisy RGB with noisy depth, and (4) noisy RGB with clean depth (Multiscale + depth).
From left to right, each row shows the input RGB image, the corresponding depth map, and the
resulting saliency map.

Clean RGB Multiscale + DVSR Saliency object

~ "

Noisy depth Saliency object

Noisy RGB Multiscale + DVSR Saliency object

Noisy RGB Noisy depth

Figure 5.17: Visual results of saliency object detection using UCNet under varying input
conditions.

87



CHAPTER 5

Table 5.5 provides a qualitative comparison of saliency detection outcomes under various com-
binations of clean and noisy RGB and depth inputs, highlighting the influence of input quality
on the model’s performance.

Table 5.5: Interpretation of saliency detection under varying input conditions using UC-
Net

Case | RGB Input | Depth Input | Saliency Detection Output and Inter-
pretation

1 Clean Clean The saliency object is clearly detected, with
sharp contours and accurate boundaries.
This is the optimal condition, where both
RGB and depth data are clean, enabling pre-
cise object localization.

2 Clean Noisy The object remains detectable, but the
saliency mask is slightly degraded. The clean
RGB helps compensate for the noisy depth,
though spatial coherence is weakened.

3 Noisy Clean The model fails to correctly detect the cat,
producing a saliency mask that is mostly
noisy and does not highlight the object of
interest.

4 Noisy Noisy The output is heavily degraded, with frag-
mented detection and poor object localiza-
tion. With both inputs noisy, the model fails
to generate a coherent saliency map.

In summary, the results show that UCNet performs reliably when the RGB input is clean,
even in the presence of noisy depth data. However, when the RGB input is degraded—even if
the depth map is clean—the model’s saliency detection significantly deteriorates. This indicates
that UCNet relies more heavily on the RGB modality to produce accurate results.

5.8.1 Computational Cost vs. Performance

In addition to evaluating reconstruction accuracy and robustness, we assessed the computational
efficiency of the proposed methods. While deep learning architectures significantly improved
the quality of depth estimation, this came at the cost of higher computational demand. For
instance, histogram-based methods required longer processing times due to their reliance on
high-dimensional data cubes and multi-scale convolution operations.

‘We observed that:

- Matched Filter methods were faster but less precise, especially under strong noise.

- DVSR and HVSR approaches yielded superior results, particularly with multiscale fusion,
but required longer inference times (up to X ms per frame on our setup with GPU XY7Z).
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- The Plug-and-Play modularity slightly increased overall latency due to sequential module
execution, but ensured adaptability and fault tolerance.

5.9 Conclusion

This chapter presented a comparative study of three datasets (Replica, DyDToF, and ARKit),
reconstruction methods (Argmax and Matched Filter), multiscale techniques, and saliency de-
tection for depth estimation. The Matched Filter consistently outperformed Argmax, especially
under challenging PPP and SBR conditions. Multiscale aggregation using mean or median filters
proved effective in reducing noise and improving robustness. Finally, saliency detection enhanced
the interpretability of results by highlighting visually or structurally important regions, aiding
both analysis and potential downstream tasks.
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General Conclusion

In this work, we explored the intersection of computational imaging, LiDAR technology, and
model-based deep learning (MBDL) to enhance the quality and robustness of 3D imaging sys-
tems. Beginning with the history and working principles of LIDAR, we highlighted its essential
role in modern perception systems, with applications ranging from autonomous navigation to
augmented reality. Despite its strengths, LiDAR suffers from limitations such as data sparsity,
noise sensitivity, and low resolution under challenging lighting or ambiguous conditions.

To address these issues, we examined state-of-the-art multimodal imaging techniques that fuse
LiDAR with complementary data sources, such as RGB images. We introduced MBDL as a
new paradigm that combines physical modeling with the adaptability of deep learning. This
cross-modal fusion enables us to benefit from the mathematical rigor of physics-based methods
and the generalization capabilities of neural networks.

We proposed a new 3D imaging framework that incorporates multiscale histogram-based depth
estimation, matched filtering strategies, and a plug-and-play architecture capable of handling
various levels of scene complexity and noise. Simulations using noisy photon data allowed us to
quantitatively evaluate performance across different datasets using both matched filtering and
argmax-based depth recovery methods.

The multiscale approach proved particularly effective. Coarse scales rapidly suppress background
noise and provide global structural information, while finer scales enhance edge precision and lo-
calization. This hierarchical strategy improves resilience in photon-starved conditions, increases
spatial resolution, and significantly reduces root mean square error (RMSE) compared to single-
scale methods. Moreover, integrating this approach into both Depth Value Space Reconstruction
(DVSR) and Histogram Value Space Reconstruction (HVSR) allowed for efficient depth fusion,
particularly in cases with sparse and noisy data.
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Experimental results confirmed the effectiveness of our method in managing real-world degrada-
tions—especially under low photon counts and poor signal-to-background ratios (SBR)—leading
to more accurate depth maps and better scene interpretation. Furthermore, the integration of
saliency detection introduced a high-level semantic component, enabling targeted computational
focus on visually and contextually important regions.

In summary, this research contributes to the development of robust and intelligent 3D imaging
systems by leveraging the synergy between physics-based design and deep learning flexibility.
The integration of multiscale matched filtering and argmax estimation into a plug-and-play
framework offers a generalizable and real-time-capable solution for multimodal depth percep-
tion, particularly in adverse environments. These findings open pathways for future development
involving real hardware, live processing, and deployment in robotics, AR/VR, and remote sens-
ing platforms.

Limitations and Future Work

Despite the promising performance of our method, several limitations remain:

- Dependence on RGB Quality: The method relies on the fusion of RGB and depth
data. In low-light or dark environments, RGB images may be degraded or absent, which
negatively impacts the accuracy of depth map reconstruction.

- Saliency Detection Sensitivity: The saliency detection module (UCNet) depends
strongly on RGB features. When the RGB modality is noisy or missing, salient object
detection becomes unreliable, affecting scene understanding.

- No Testing with Real Hardware: Our experiments were conducted on three datasets—two
synthetic (Replica and DyDToF) and one real (ARKit). However, the method has not yet
been tested on real-world data acquired from actual LiDAR and RGB camera systems.
Validating it on real sensor data is crucial to assess its robustness in practical scenarios.

- Limited Modality Robustness: The current pipeline does not explicitly address sce-
narios where one modality (e.g., RGB) is missing or corrupted. This could hinder the
method’s effectiveness in challenging environments such as night-time scenes or adverse
weather conditions.

Future Perspectives

- Generalization to Multi-Sensor Fusion
A promising future direction consists in extending the current framework to enable the
fusion of data from multiple heterogeneous sensors. In real-world environments, percep-
tion systems often depend on diverse sensing modalities such as LiDAR, RGB cameras,
thermal imagers, radar, or event-based sensors. Each of these provides complementary
information—depth, texture, heat signatures, or motion cues—while differing in terms
of resolution, sampling rate, field of view, and noise characteristics. Designing a unified
and adaptable fusion strategy would require flexible preprocessing pipelines, alignment
of asynchronous data streams, and robust fusion modules capable of handling missing or
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degraded inputs. Achieving this generalization would significantly enhance the system’s
reliability and versatility in complex and dynamic scenarios, particularly in robotics, au-
tonomous navigation, and remote sensing.

RGB-D Object Detection Using Depth-Aware Architectures Another valuable
extension of this work involves the development of an object detection framework that
leverages both RGB and depth (RGB-D) data. Unlike conventional detectors based
solely on RGB imagery, this approach incorporates spatial information to enhance object-
background separation, improve localization accuracy, and ensure robustness in visually
ambiguous scenes—such as those with poor lighting, clutter, or occlusions. A suitable
direction would be to adapt a lightweight and efficient architecture such as YOLO to
process RGB-D inputs by modifying the backbone and feature fusion mechanisms to ex-
ploit depth-aware cues. The incorporation of depth not only enhances the precision of
bounding box placement but also improves semantic understanding of the scene, making
this approach particularly useful for applications in robotics, scene understanding, and
navigation in structured or unstructured environments.
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