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Résumé

Ce projet présente une étude approfondie sur l’estimation de l’IMC à partir d’images de visage, en
mettant l’accent sur l’amélioration des performances prédictives. En s’appuyant sur des architectures
d’apprentissage profond de pointe, des techniques avancées de prétraitement d’images et des méthodes
robustes d’extraction de caractéristiques, l’approche proposée améliore significativement la précision
de l’estimation. Les résultats expérimentaux démontrent l’efficacité du modèle optimisé sur des
jeux de données de référence, soulignant le potentiel de l’analyse faciale comme outil pratique pour
l’évaluation automatisée de l’IMC dans diverses applications de santé et de bien-être.

Mots clés : IMC – Visage – Deep Learning – Apprentissage profond – Traitement d’images –
Régression – Santé – Estimation automatique.

Abstract

This project presents a comprehensive study on BMI estimation from face images, with a partic-
ular emphasis on improving predictive performance. By leveraging state-of-the-art deep learning
architectures, advanced image preprocessing techniques, and robust feature extraction methods, the
proposed approach achieves significant improvements in estimation accuracy. Experimental results
demonstrate the effectiveness of the optimized model on benchmark datasets, highlighting the po-
tential of facial analysis as a practical tool for automated BMI assessment in various healthcare and
wellness applications.

Keywords: BMI – Face – Feature Extraction – Image Pre-rocessing – Regression – Health – Auto-
matic Estimation.
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General Introduction

“The face is the mirror of the mind, and eyes without speaking confess the secrets of
the heart.”

St. Jerome – 4th Century

Body Mass Index (BMI) is a widely accepted indicator used to classify individuals according to their
body weight relative to height. It provides an effective yet simple way to assess weight-related health
risks, categorizing individuals into groups such as underweight, normal weight, overweight, or obese.
While traditionally BMI is calculated using manually provided weight and height, recent progress
in artificial intelligence and computer vision has opened new pathways for estimating BMI directly
from facial images—automating the process and increasing accessibility.

Facial analysis presents a powerful, non-invasive alternative by leveraging visual cues that correlate
with body weight. Features like facial adiposity, cheek fullness, jaw structure, and geometric ratios
have shown strong associations with BMI. Advances in deep learning and transfer learning, combined
with the availability of large-scale annotated facial datasets, have enabled the training of robust
models that predict BMI directly from images.

This approach has gained interest due to its practical benefits in areas like remote health moni-
toring, digital wellness platforms, and biometric analytics. In contexts where scales or direct body
measurements are unavailable—or even socially intrusive—face-based estimation provides a valuable
alternative. However, this method brings challenges including demographic bias, variability in light-
ing and pose, and generalization across diverse populations, all of which must be addressed to ensure
reliability and fairness.

In this project, we present a comprehensive study of BMI estimation from facial images using deep
learning. We compare several state-of-the-art architectures such as Vision Transformers (ViT),
VGG16, ResNet50, and Inception-V3, across multiple public datasets (VisualBMI, Arrest Records,
and Illinois DOC Faces). We also investigate how data preprocessing, augmentation, and loss function
choices influence performance, and explore gender-specific models to improve predictive accuracy.

The main contributions of this work include:

- A review and comparison of leading facial BMI estimation techniques based on different deep
learning models and pipelines.

- Implementation of customized preprocessing and augmentation strategies, including face align-
ment using MTCNN.
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- Empirical evaluation of models across gender-specific and mixed-gender datasets, with perfor-
mance measured using MAE, RMSE, and AUC.

- A robust training strategy integrating multiple datasets to improve generalization to unseen
subjects and real-world conditions.

This thesis is organized into four chapters structured as follows:
Chapter one introduces the concept of BMI, its health implications, and the motivation for estimat-
ing it from face images.
Chapter two provides a detailed review of existing deep learning approaches, including face detection
and feature extraction techniques used in BMI estimation.
Chapter three presents the datasets used in this study and discusses their composition, characteris-
tics, and relevance.
Chapter four outlines our proposed methodology, experiments, and results, including model archi-
tectures, training strategies, and performance evaluations.

Through this work, we aim to contribute to the development of accessible, non-invasive health mon-
itoring tools using computer vision and deep learning, while highlighting the importance of fairness,
transparency, and robustness in AI-driven biomedical applications.

Finally, this manuscript concludes with a general conclusion that summarizes the key findings and
insights of this work. It also outlines future research directions and perspectives that could further
enhance the performance, generalizability, and applicability of BMI estimation systems. Potential
improvements include exploring multimodal inputs, addressing demographic biases more effectively,
and extending the system to real-time or mobile health applications.
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Chapter 1

BMI, its applications and its estimation
from face images

1.1 What is BMI

Body Mass Index (BMI) is a simple yet essential metric used to assess whether an individual has
a healthy weight relative to their height. Medical professionals across the world use BMI daily to
classify individuals as underweight, of normal weight, overweight, or obese.

As weight-related health issues continue to rise globally, understanding BMI becomes increasingly
important. Many people are unaware of their health status in terms of weight, and BMI provides an
accessible method for quick and informative evaluation.

1.1.1 BMI formula

Recently, BMI has drawn significant interest in health-monitoring and weight loss applications. Body
mass index (BMI) serves as a metric for assessing an individual’s weight relative to their height. This
measurement is derived by dividing the weight in kilograms by the square of the height in meters.
In short, BMI provides a quantitative evaluation of body composition [1].

BMI =



weight (kg)
height (m)2

weight (lb)×703

height (in)2

(1.1)

kg = lbs × 0.453592

m = in × 0.0254
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1.1.2 BMI categories

BMI values are divided into 4 categories: underweight, normal, overweight, and
obese [2].

• Underweight: BMI < 18.5.

• Normal: 18.5 < BMI < 25.

• Overweight: 25 < BMI < 30.

• Obese: BMI > 30 [2].

BMI values correspond to specific areas, providing a broader understanding of a
person’s weight status. Visual models of facial images corresponding to different
BMI categories provide a visual representation of different weight statuses in the
population studied [1], and the Figure 1.1 shown some facial images display varying
BMI values and corresponding categories :

Figure 1.1: Some facial images display varying BMI values and corresponding categories. As the
BMI increases, noticeable increases in facial adiposity become evident [1].
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1.2 BMI for biometrics

Biometrics refers to the measurement and statistical analysis of people’s physical and
behavioral characteristics. It is commonly used for identification, authentication,
and access control. The basic principle is that individuals can be recognized based
on their intrinsic biological and behavioral traits. The term “biometrics” originates
from the Greek words bios (life) and metron (measure) [3].

BMI is part of a broader field called biometrics, which involves measuring various
physical and behavioral characteristics of the human body. Biometrics is generally
divided into two categories: soft biometrics, which include variables such as age,
gender, height, and weight—factors that can change over time; and hard biomet-
rics, such as fingerprints, facial structure, and iris patterns, which remain largely
constant.

1.2.1 Types of biometrics

Biometric traits are typically classified into two main categories: hard biometrics
and soft biometrics [4].

1.2.1.1 Hard biometrics

Hard biometrics are unique, permanent, and highly discriminative traits that can
reliably and unambiguously identify an individual. These traits remain stable over
time and are widely used in security and authentication systems. Hard biometrics
include:

- Physical characteristics: face geometry, fingerprint, iris, retina, hand geom-
etry.

- Biological characteristics: DNA, blood type, and other physiological traits.

- Behavioral characteristics: signature dynamics, voice patterns, gait, and
keystroke dynamics (when they are consistent and unique to individuals).
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1.2.1.2 Soft biometrics

Soft biometrics are traits that are not sufficient for unique identification on their
own but can provide supportive or descriptive information to improve recognition
accuracy when combined with hard biometrics. They are often variable over time
and include attributes such as:

- Descriptive features: gender, age, ethnicity, height, weight, body mass index
(BMI).

- Contextual or semantic attributes: clothing style, accessories, tattoos, and
facial hair.

Soft biometrics are particularly useful in scenarios such as surveillance, where full
biometric data might not be available, and in health-related applications, such as
the prediction of BMI or age from images.

The distinction between soft and hard biometrics is important, especially in the de-
sign of secure and reliable authentication systems. While hard biometrics offer high
accuracy, soft biometrics can provide useful supplemental information, particularly
in surveillance scenarios.

Note: In this work, we focus specifically on soft biometric estimation—particularly
BMI—from facial images, which does not aim to uniquely identify individuals but
rather to infer informative health-related characteristics.
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The following Figure 1.2 shows the types of biometric information with some exam-
ples:

Figure 1.2: Types Of biometric information [5].

1.3 BMI in medical context

1.3.1 Importance of BMI estimation and tracking

BMI serves as a crucial indicator in various medical and health-related contexts:

- Numerous aspects like physical health, mental health, and popularity have been
linked to weight and BMI [6].

- High BMI increases the risk of chronic and cardiovascular diseases, cancers like
colon cancer, breast cancer, and thyroid cancer for all genders [7].

- Low BMI can indicate inadequacies or malnutrition, so BMI can help a person
to keep a track record of their health [6].

- BMI is considered a risk factor for myocardial infarction in the field of medicine.
In patients, it is often known as a risk factor for dysfunctional angina. The risk
of type 2 diabetes, neoplasms, stroke and cardiovascular disease (CVD) can be
stratified using BMI [7].
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The following Figure 1.3 represent the Proportion of deaths from leading "Non-
Communicable Diseases" attributable to high BMI, showing and ensuring more
about the importance of tracking BMI:

Figure 1.3: Proportion of deaths from leading NCDs attributable to high BMI [8].

1.3.2 Alarming global statistics

In the current scenario, health is one of the most neglected factors. Technology
which has more benefits also has some drawbacks. It has made humans lazy and
thus reduced their physical activity leading to a sedentary lifestyle and a rise in BMI
which adversely affects their health.

- Almost 26% of adults in the United Kingdom are living with obesity [9].

- Excess weight is responsible for approximately 500,000 deaths per year in the
United States [9].

- By the year 2030, an estimated 20% of the global population would be obese
[9].
This Figure 1.4 shows Algeria’s projected obesity crisis from 2020-2035 for
children and adults. This trend highlights the urgent need for accessible BMI
monitoring tools like our face-based estimation system.
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Figure 1.4: Projected numbers of adults and children with high Body Mass Index (BMI) [8].

- Trends related to obesity are alarming because obesity affects 93.3 million adults
in the United States alone [10].

- Obesity is one of the biggest drivers of preventable chronic diseases and health-
care costs in the United States. Severe obesity costs the United States approx-
imately 69 billion overall, with almost 8 billion a year being paid for via state
Medicaid programs [11].

- According to research published by the "GBD 2017 Obesity Collaborators",
more than 4 million people die each year from complications related to excess
weight. Paradoxically, the prevalence of obesity has increased in recent decades,
affecting both children and adults worldwide [1].

- The following Figure 1.5 represents Global estimate (2020) and projected num-
ber of young people (2025-2035) with overweight (BMI >1sd – 2sd)* and obesity
(BMI >2sd)*

Table 1.1: Global estimate (2020) and projected number of young people (2025–2035) with overweight
and obesity [8].

Year Children with overweight Chilfren with obesity
2020 260m 175m
2025 310m 240m
2030 350m 310m
2035 390m 380m
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- The burden of obesity is not limited to developed countries; low-income and
developing countries are also struggling with rising rates. In fact, the overall in-
fection rate in these areas is a staggering 30% higher than the rate in developed
countries [1].

1.3.3 Challenges in traditional BMI measurement

The main challenges in BMI estimation can be summarized into 4 key points:

0 People often fail to keep track of their weight and BMI over time. This happens
because some people find it too much effort to measure themselves regularly,
while others simply don’t own or can’t easily use basic measurement tools like
scales and rulers [6].

0 Traditional methods for measuring body weight and size require people to be
physically present during the assessment process, which can make many indi-
viduals feel uncomfortable or embarrassed about their bodies [12].

0 The BMI calculation relies on a specific statistical formula that requires accu-
rate and detailed measurements of both height and weight. Without precise
data, the BMI score may not reflect the person’s true health status [13].

0 The whole procedure of taking precise body measurements is very time-consuming
and often requires several attempts to get reliable results, which makes it in-
convenient for both patients and healthcare providers [13].

Conventional measurement techniques require the cooperation of the subject to be
measured, which might not be possible during medical emergencies where rapid
investigation is needed, road accidents or due to different patient disabilities.
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1.4 BMI and face images

1.4.1 Facial features and BMI correlation

Human faces carry a significant amount of information about a person. Recent
studies specially in psychology and human emotions have shown a strong correlation
between the human face and the BMI of the person. It’s visually clear that for
example people with skinny faces have chances of less BMI and vice versa.

Generally, obese people tend to have the middle and lower part of the face wider,
and to go more specifically: BMI and weight are strongly related with the structure
of eye or it uses features anterior corneal curvature (ACD) and intraocular pressure
(IOP), neck circumference, and physical measurements of the face, including ratios
like: width to height, perimeter to area, and cheek to jaw width [6] [13] [1].

- This is can be seen from this following Figure 1.5 :

(a) BMI = 19.6 (b) BMI = 21.8 (c) BMI = 21.9

(d) BMI = 39.6 (e) BMI = 40.4 (f) BMI = 45.6

Figure 1.5: 06 images taken from VisualBMI dataset with their BMI.
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In the modern era, advances in technology have transformed lifestyles but have
also led to increased sedentarism. Prolonged screen time, reduced physical activity,
and unhealthy dietary habits contribute significantly to the growing prevalence of
weight-related health problems worldwide.

1.4.2 General principle of existing solutions

Because of some academic researches claim that machine and human readable fa-
cial pictures can be used to determine BMI, the existing solution to facilitate and
automate and simplify this process of estimating the BMI or the weight of a person
can be as follows: Predict the BMI by giving only the Face Image as input,
by using Machine Learning or Deep Learning approaches where models can extract
meaningful features from Face Images, and estimate the BMI [6] [14].

1.4.3 Potential applications

- This system has the potential to revolutionize health monitoring and manage-
ment. For health insurance companies, it could serve as a tool to maintain and
update the health records of their customers efficiently. By automating BMI
and weight estimation through facial images [6].

- Additionally, governments could leverage this system to track and analyze the
health metrics of specific regions, design targeted policies to address issues like
obesity, malnutrition in specific regions [6].

- Some social media analysis purposes like: Images from platforms like Instagram
can be used to study BMI trends demographically or geographically.

- Many use cases necessitate the estimation of body weight without the physical
measurement or presence of a person directly. For example, in health analysis
to check the weight through mobile devices for a quick estimation, in forensics
to gain additional identification features, in airports to estimate weight to aid
dynamic baggage allowance, for physicians working remotely for rural patients
[12].
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1.4.4 General approach outline

This section is to summarize the whole approach in some main steps to compute
the BMI from an input face image, as the Figure 1.6 shows :

Figure 1.6: General road-map [6].

1. Input image:

- A facial image of a person is provided as input.

2. Face detection:

- A face detection algorithm (HOG + SVM, Hierarchical Hetero-PSO-Adaboost-
SVM Model, MTCNN, Viola-Jones algorithm) is used to locate the face
within the image.

- Then blurring the background of all images while focusing only on the face.

3. Face alignment:

- The detected face is aligned vertically to ensure consistency across im-
ages, making sure that landmarks like: eyes, nose, and mouth are properly
oriented, or consistently positioned (all the faces must be in the same ori-
entation direction -Upright-).

4. Deep feature extraction:

- A deep learning or a machine learning model (Pretrained Models, Custom
CNN end-to-end) is used to extract features from the aligned faces.

- These features encode facial structure, fat distribution, and other visual
cues related to BMI.

5. Regression model:
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- A regression algorithm (Support Vector regression, Deep Neural Network
Model) is used to extrapolate or maps the previous extracted deep features
to BMI values.

6. Predicted BMI:

- The model outputs the predicted BMI value.

1.4.5 Advantages of face-based BMI estimation

This new approach solves many problems with traditional BMI measurement:

- People don’t need scales or measuring tools

- They don’t have to feel embarrassed about measuring their body

- The process is quick and can work even when someone cannot cooperate, like
in medical emergencies

- It provides a non-invasive method for health monitoring

- It can be implemented in various settings without specialized equipment

1.5 Conclusion

BMI is a very important tool for checking and understanding our health. The
numbers and facts we have seen in this chapter are truly alarming and should make
us all reflect seriously on the growing weight-related health issues facing the world
today.

The statistics clearly show that millions of people globally are overweight or obese,
and this number continues to rise each year. Worryingly, this is no longer just a
problem for wealthy countries; low-income nations are also experiencing increased
rates of obesity, even among children.

Being overweight or obese is associated with numerous serious health conditions,
including heart disease, diabetes, and several types of cancer such as breast and colon
cancer. Additionally, high BMI can negatively affect mental health and self-esteem.
Conversely, being underweight can also be dangerous, often indicating malnutrition
or other underlying health problems.
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The advantage of BMI lies in its simplicity—it requires only basic information like
height and weight, and can be calculated easily. This empowers individuals to take
control of their health through better lifestyle choices such as balanced diets and
regular physical activity.

This study shows that it is possible to estimate BMI from face images using modern
technology. The method works by taking a photo of someone’s face, finding the face
in the picture, and then using computer programs to analyze facial features. These
programs can learn the connection between how a face looks and what the person’s
BMI might be.

The technology has many useful applications in healthcare, insurance, government
health monitoring, and remote patient care. However, this method is not perfect
yet and gives an estimate, not an exact measurement. More research is needed to
make it more accurate and reliable.

Despite these limitations, face-to-BMI technology represents an important step for-
ward in making health monitoring easier and more accessible for everyone. Main-
taining a healthy BMI contributes to both physical and mental well-being. Promot-
ing awareness among individuals, families, schools, and governments is essential to
tackling this growing public health challenge.

In the next chapter, we will explore the technical foundations of our ap-
proach, including the challenges involved, the facial features linked to
BMI, and the detailed methodology we propose to perform this estima-
tion.
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Chapter 2

Deep learning approaches for BMI
estimation from face images

2.1 Introduction

In recent years, there has been a growing interest in estimating health-related at-
tributes such as Body Mass Index (BMI) directly from facial images using deep
learning techniques. This interest is driven by the increasing availability of visual
data, advances in computer vision, and the potential applications in non-invasive
health monitoring, biometric systems, and personalized healthcare services. Tradi-
tional methods of BMI estimation require manual input of weight and height, which
may not always be accessible or reliable. In contrast, facial analysis offers a passive
and automated approach that can be integrated into modern digital platforms with
minimal user effort.

Several research studies have explored various methodologies to predict BMI from
facial features, employing different datasets, preprocessing strategies, feature extrac-
tion techniques, and machine learning models. These approaches range from basic
regression frameworks to more complex architectures involving multitask learning,
facial region segmentation, and fine-tuned deep neural networks.

This chapter presents a comprehensive review of three prominent approaches in the
literature: the works of Dhanamjayulu et al. (2021), Yousaf et al. (2021), and
Sidhpura et al. (2022). Each of these studies brings forward unique contributions
and methodologies in tackling the challenge of BMI estimation from facial images.
Through a comparative analysis of their datasets, preprocessing pipelines, model
architectures, and results, this chapter aims to highlight current trends, strengths,
and limitations in the state of the art, providing valuable insights for future research
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directions.

The chapter is organized around the detailed presentation of each ap-
proach, followed by a comparative discussion of their outcomes and key
takeaways.

2.2 1st approach by: Dhanamjayulu et al. (2021)

2.2.1 Used dataset

The dataset used in this study is a small Arrest Records dataset consisting of 1544
person images scraped from the web. Each record includes metadata such as:

- Age

- Height (in feet and inches)

- Weight (in pounds)

- Gender

- Race

Each image is named according to a unique ID and is linked to a metadata row. The
dataset includes a variety of races and is dominated by male samples (approximately
80%) [7].

2.2.2 Data preprocessing

- Converting height to meters and weight to kilograms.

- Calculating BMI: BMI = weight (kg)
height (m)2 .

- Encoding gender numerically.

- Splitting the dataset into training (1227 images) and testing (317 images).

- Using the MTCNN face detection model, to detect and cropp only the
region of interest (face region), from the whole image [7].
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2.2.2.1 Joint face detection and alignment using multitask cascaded convolutional net-
works MTCNN:

- In 2016 a powerful framework called MTCNN have introduced, It consists of 03
stages, each with its own CNN: P-Net, R-Net, and O-Net. The key innovation
is using multitask learning to simultaneously: [15]

- Detect faces (classification).

- Refine bounding boxes (regression).

- Locate facial landmarks (alignment).

- The following Figure 2.1 shows the Pipeline of the cascaded framework that in-
cludes 03 stage multitask deep convolutional networks. First, candidate windows
are produced through a fast P-Net. After that, we refine these candidates in the
next stage through a R-Net. In the third stage, the O-Net produces final bounding
box and facial landmarks position : [15]
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Figure 2.1: Pipeline of the 03 stages [15].

Stage 1: P-Net (Proposal network) [15]

- Input image is resized to multiple scales to detect faces of varying sizes, called:
Image pyramid.

- Fully convolutional network processes each scale, to obtain the candidate facial
windows and their bounding box regression vectors. Then candidates are cal-
ibrated based on the estimated bounding box regression vectors. After that, we
employ non maximum suppression (NMS) to merge highly overlapped candi-
dates.

- This 1st stage is for doing Fast screening eliminates obvious non-face regions.

Stage 2: R-Net (Refine network) [15]

- All candidates are fed to another CNN, called refine network (R-Net), which fur-
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ther rejects a large number of false candidates, that mean rejecting more false
positives (Actual: negative / Predicted: positive).

- Finally, its performs calibration with bounding box regression (After the bounding
box regression outputs the offsets, calibration means: applying those offsets to
adjust the original boxes), and conducts NMS (NMS removes duplicate or over-
lapping detections for the same object, so it’s applied to reduce redundancy, If
multiple bounding boxes are detecting the same object (a face), we want to: Keep
only the best box (highest confidence score), Remove redundant ones that overlap
too much based on a specific threshold), This stage allow better descriminations.

Stage 3: O-Net (Output network) [15]

- This 3rd stage is similar to the second stage, but in this stage we aim to identify face
regions with more supervision (Final decision making). In particular, the network
will output 05 facial landmarks’ positions (including: left eye, right eye, nose,
left mouth corner, and right mouth corner).

- This is because that the 3rd stage Performs the most precise face bounding box
regression and landmark localization, du to the Most complex network (Deepest
network with most parameters).
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CNN architectures of MTCNN stages

The CNN architectures of MTCNN stages is shown in the following Figure 2.2, and
it will be explained later:

Figure 2.2: Architectures of P-Net, R-Net, and O-Net [15].

- PReLU as a non-linearity activation function is applied after the convolution and
fully connection layers (except output layers), They wanted to avoid dead neurons
to improve convergence. The difference between this activation function "PReLU"
and "ReLU" is shown here in this Figure 2.3 :

Figure 2.3: ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and
is adaptively learned [16] [15].
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- Each network performs three tasks: [15]

- Face classification (is it a face?).

- Bounding box regression (adjust face box location).

- Facial landmark localization (predict 5 keypoints).

1/- Face classification [15]

The learning objective is formulated as a two-class classification problem. For each
sample xi, we use the cross-entropy loss as

Ldet
i = −(ydet

i log(pi) + (1 − ydet
i )(1 − log(pi))) (2.1)

where pi is the probability produced by the network that indicates sample xi being
a face. The notation ydet

i ∈ {0, 1} denotes the ground-truth label.

2/- Bounding box regression [15]

For each candidate window, we predict the offset between it and the nearest ground
truth (i.e., the bounding boxes’ left, top, height, and width). The learning objective
is formulated as a regression problem, and we employ the Euclidean loss for each
sample xi

Lbox
i = ||ŷbox

i − ybox
i ||22 (2.2)

where ŷbox
i is the regression target obtained from the network and ybox

i is the ground-
truth coordinate. There are four coordinates, including: (left, top, height and
width), and thus ybox

i ∈ R4.

- Left position (x): The x-coordinate of the left edge of the bounding box.
- Top position (y): The y-coordinate of the top edge of the bounding box.
- Height: How tall the bounding box is (vertical dimension).
- Width: How wide the bounding box is (horizontal dimension).

3/- Facial landmark localization [15]: Similar to bounding box regression task,
facial landmark detection is formulated as a regression problem and we minimize
the Euclidean loss as
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Llandmark
i = ||ŷlandmark

i − ylandmark
i ||22 (2.3)

where ŷlandmark
i is the facial landmark’s coordinates obtained from the network and

ylandmark
i is the ground-truth coordinate for the ith sample. There are five facial

landmarks, including: (left eye, right eye, nose, left mouth corner, and right mouth
corner), and thus ylandmark

i ∈ R10.

2.2.3 Features extraction

Deep features were extracted using ResNet-50 and VGG16 pre-trained models (will
be explained later) via transfer learning from facial images [7].

Transfer learning using pre-trained models: Transfer learning is an approach
to machine learning where a model trained on one task is used as the starting point
for a model on a new task. This is done by transferring the knowledge that the first
model has learned about the features of the data to the second model [17], as it
shown in the Figure 4.9.

BMI calculation from facial images is rather complicated so learning all required
features from relatively small datasets would be infeasible. Many tasks in computer
vision have used transfer learning to boost performance and reduce the training
time. Hence a state of the art pre-trained models such as: (ResNet50, VGG16
..ect) are used.

In feature extraction, the pre-trained model is used to extract features from the
data. These features are then used to train a new model on the target task. This is
a good approach in the case of a limited data for the target task.

Figure 2.4: Transfer learning idea [17].
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2.2.4 Regression model

A multi-task learning framework was used for simultaneous prediction of:

- BMI (regression).

- Age (regression).

- Gender (classification).

Each task was handled by dedicated fully connected layers [7].

2.2.5 Performance of the method

To evaluate the performance of their BMI estimation model from facial images, they
adopted the widely-used regression metric MAE [18] and AUC area under the curve
[19] as classification metric. These evaluation metrics help quantify the accuracy
and reliability of the predicted values compared to the ground-truth values.

The following Table 2.1 shows the obtained results :

Table 2.1: Results on Arrest Records dataset [7].

Models \ Results BMI (MAE) Age (MAE) Gender (AUC)
ResNet50 5.02 7.16 0.998
VGG16 6.13 9.57 0.99

Interpretation

- ResNet50 model clearly outperform the VGG16 Model.

- Low BMI regression preformances, due to the insufficient size of training dataset
(very small = 1227).

- Dataset imbalance and range limitations may affect generalization.
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2.3 2nd Approach by: Yousaf et al. (2021)

2.3.1 Used datasets

The study evaluated the method across three public datasets:

- VisualBMI: 4206 user-shared transformation face images.

- VIP-Attribute: 1026 celebrity face images (balanced gender).

- Bollywood Dataset: 237 celebrity images with multiple samples per identity
[20].

2.3.2 Data preprocessing

- The first 3368 images are used for training and the rest of the images are used
for testing.

- Face detection using MTCNN.

- Semantic segmentation using a modified BiSeNet trained on CelebAMask-HQ
to extract precise facial regions (eyes, nose, lips, hair, etc).

- Mask generation and interpolation for region-based processing [20].

2.3.3 Features extraction

- Deep features were extracted using VGGFace and FaceNet pre-trained models
backbone.

- Final convolution layer features were pooled region-wise using masks.

- Region-Aware Global Average Pooling (Reg-GAP) was performed over seg-
mented areas to enhance local feature representation [20].

2.3.4 Regression model

- Fully connected network with layers (512 → 256 → 1), using ReLU activation
and dropout (0.4).
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- Final output layer for BMI regression with linear activation.

- Optimization using MSE loss and Adam optimizer [20].

2.3.5 Performance of the method

To evaluate the performance of their BMI estimation model from facial images, they
adopted the widely-used regression evaluation metrics MAE [18] and RMSE [21].

The following Table 2.2 shows the obtained results :

Table 2.2: Results on VisualBMI dataset [20].

Dataset Model MAE RMSE
VisualBMI VGGFace (Reg-GAP) 4.99 6.94
VisualBMI FaceNet (Reg-GAP) 5.03 6.92

Interpretation

- The Reg-GAP method significantly improved BMI prediction across all datasets.

- Region-based pooling captures local features (eyes, nose, mouth) which are
more correlated with BMI.

- Demonstrated superior performance over GAP and classical regression base-
lines.

- Strong gender classification potential (as visualized via t-SNE plots), though
male BMI prediction lagged due to dataset bias [20].
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2.4 3rd Approach by: Sidhpura et al. (2022)

2.4.1 Used datasets

- Illinois DOC Faces: 56,200 male and 3,649 female images with BMI calcu-
lated from height/weight metadata [6].

- Arrest Records: 1544 images. BMI mean = 26.41, BMI Standard deviation
= 5.2 [6].

- VIP-Attribute: 1026 celebrity images (513 male, 513 female) [6] [22].

2.4.2 Data preprocessing

- Cleaning malformed or missing entries.

- Converting height to meters and weight to kilograms.

- Calculating BMI: BMI = weight (kg)
height (m)2 .

- Face alignment using DLIB 68 landmark detector.

- Dataset split for training (Illinois DOC) and evaluation (Arrest Records, VIP-
Attribute) [6].

2.4.3 Features extraction

- Transfer learning using pre-trained models:

◦ Inception-v3.
◦ VGG-Face.
◦ VGG-19.
◦ Xception [6].
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2.4.4 Regression model

The same fully connected layers is used at the end of all pre-trained models. The
added layers at the end are shown in the Figure 2.5 :

Figure 2.5: Regression model architecture [6].

To prevent overfitting, we added one dropout layer with a dropout of 50% into
the model architecture. They also used Gaussian Error Linear Unit (Gelu) as an
activation function, it combines the properties of the RELU activation function,
Dropout, and Zoneout. Due to this, it tends to generalize better when there is
more noise in the data so they used it in our models [6]. The folowwing Figure 2.6
represent the GELU, RELU, ELU activation functions curves.
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Figure 2.6: GELU, RELU, ELU activation functions curves [23].

As a comparatively larger dataset is found for their study they also fine-tuned the
models. In deep convolutional networks, layers near the input learn basic features
such as edges and corners. As we move towards the output, the layers generally
learn advanced features from the images used for training it. They used a higher
learning rate for the new fully connected layers and a much lower learning rate for
some of the final layers of the pre-trained model so that it extracts more features
from the images. Due to these reasons, Adam optimizers is used (with decreasing
learning rates as we move to deeper layers of the model) [6].

They fixed a batch size of 128. To prevent overfitting, Early Stopping Callback is
used to stop training if validation loss does not improve for 5 consecutive epochs [6].

2.4.5 Performance of the method

The following Table 2.3 represent the best 02 results on each datasets :

Table 2.3: Testing results on 03 datasets [6].

Dataset Model MAE Overall MAE Male MAE Female
Illinois DOC Xception 2.82 2.79 3.54
Illinois DOC Inception-v3 2.86 2.83 3.59
VIP Attribute Inception-v3 3.10 3.04 3.17
VIP Attribute VGG-19 3.20 3.33 3.07
Arrest Records VGG-19 3.79 3.75 3.99
Arrest Records VGG-Face 3.73 3.35 5.09
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Interpretation:

- On the VIP Attribute Dataset: The Inception-v3 model gave the best scores
on all 03 cases, with very small differences between male and female, indicating
the high quality of the extracted features.

- On the Arrest Records Dataset: For all models, MAE-Female > MAE-Male.
The difference is due to gender imbalance in the training dataset.

- Inception-v3 performed best overall, followed closely by VGG-19.

- Inception-v3 outperform all other pretrained-models, across testing on the 03
datasets.

2.5 Conclusion

All three approaches demonstrate the potential of using facial features for estimat-
ing BMI. The first uses basic regression with multitask learning, the second adds
region-aware pooling for performance improvement, and the third leverages large-
scale transfer learning with multiple models. Each contributes uniquely to BMI
prediction from facial images and suggests promising directions for health assess-
ment tools.

In the next chapter, we present our own contribution to this field, in-
cluding the models we developed, the experiments conducted, and the
results obtained on different datasets.
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Chapter 3

Datasets for BMI estimation from face
images

3.1 Introduction

The accuracy and generalizability of any machine learning or deep learning model
depend heavily on the quality and diversity of the datasets used for training and
evaluation. In the context of BMI estimation from facial images, having access to
representative and well-annotated datasets is essential for building robust and reli-
able models.

Collecting such datasets, however, presents various challenges. These include en-
suring demographic diversity, maintaining consistent image quality, and obtaining
accurate labels such as height, weight, and gender. Furthermore, ethical consider-
ations like data privacy and consent must be taken into account, especially when
dealing with facial images.

Fortunately, several publicly available datasets have emerged in recent years, en-
abling researchers to experiment with and benchmark their models in this domain.
Each dataset comes with its own structure, characteristics, and limitations, which
must be thoroughly understood to choose the appropriate dataset for the task.

In this chapter, we present the different datasets used in our study, pro-
vide detailed descriptions of their sources, structures, and statistics, and
explain how we preprocessed them to suit our BMI estimation task.

48



3.2 Selected datasets

We were able to get and download 03 publicly available and very famous datasets
which are:

- Illinois DOC labeled faces Dataset [24] [6].

- VisualBMI dataset [25] [2] [20].

- Arrest Records Dataset [26] [7].

3.2.1 VisualBMI dataset

- These images are collected from Reddit posts that link to the imgur.com ser-
vice, with examples of the underlying Reddit posts available in the ’progresspics’
subreddit [27].

- The VisualBMI dataset comprises a total of 16,483 images containing pairs of
’before’ and ’after’ images, annotated with gender, height, and previous and current
body weights. all image URLs are manually processed and the faces are cropped,
retaining only images with two faces since we required both previous and current
body weight information. After this manual cleaning process, a 2,103 pairs of faces
obtained with corresponding gender, height, and previous and current body weights.
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- Here are 08 images token from the VisualBMI dataset in this Figure 3.1:

Figure 3.1: VisualBMI dataset images.

- This process yielded a total of 4,206 faces with corresponding gender and BMI
information. The distribution of BMI categories in our dataset is as the Figure 3.2
shows:

- Underweight (BMI < 18.5): 7 faces

- Normal weight (18.5 ≤ BMI < 25): 680 faces.

- Overweight (25 ≤ BMI < 30): 1,151 faces.

- Moderately obese (30 ≤ BMI < 35): 941 faces.

- Severely obese (35 ≤ BMI < 40): 681 faces.

- Very severely obese (BMI ≥ 40): 746 faces.
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Figure 3.2: BMI category statistics of VisualBMI dataset.

- The dataset contains 2,438 male and 1,768 female subjects as the Figure 3.3 of
gender distribution shows:

Figure 3.3: Gender distribution of VisualBMI dataset.
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3.2.2 Arrest Records dataset

- This small dataset consists of 1544 person images was scraped from the web. Each
containing demographic information including: name, location, age, height, weight,
race, sex, eye color, and hair color, along with corresponding facial photographs.

- We performed extensive data pre-processing to ensure data quality. Height mea-
surements were converted from imperial format (feet and inches) to metric units,
and weight measurements were converted from pounds to kilograms.

- Here are 08 images token from the Arrest Records dataset in this Figure 3.4:

Figure 3.4: Arrest Records dataset images.

- The BMI values in our dataset range from 16.95 to 68.35, with a mean BMI
equal to 26.32 and a standard deviation of 5.35. The distribution of BMI
categories in our dataset is as follows and as the Figure 3.5 shows:

- Underweight (BMI < 18.5): 60 individuals.

- Normal weight (18.5 ≤ BMI < 25): 505 individuals.

- Overweight (25 ≤ BMI < 30): 600 individuals.

- Very severely obese (BMI ≥ 30): 379 individuals.

52



Figure 3.5: BMI category statistics of Arrest Records dataset.

- The dataset contains 1,244 male and 300 female subjects as it is represented by
the Figure 3.6, with ages ranging from 18 to 73 years (average age: 34.7 years).

Figure 3.6: Gender distribution of Arrest Records dataset.
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3.2.3 Illinois DOC labeled faces dataset

- The source of this dataset is the Illinois Dept. of Corrections. This dataset
comprises frontal and side views of 68149 prisoners and has additional information
such as gender, height (in inches), weight (in lbs), and date of birth.

- Here are 08 images token from the Illinois DOC labeled faces dataset in this Figure
3.7:

Figure 3.7: Illinois DOC labeled faces dataset images.

- There were 1365 corrupt images and 7309 images that did not have the height
and weight information. They were not included in our research study. The dataset
in the end we used had 56200 males and 3649 females, with a mean BMI equal
to 27.88 and a standard deviation of 5.20.
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- The statistics of BMI categories in our entire dataset is represented by the Figure
3.8 as follows:

Figure 3.8: BMI category statistics of Illinois DOC labeled faces dataset.

As shown, the combined dataset (males and females) includes:

- 41.2% Overweight,

- 30% Normal weight,

- 28.3% Obese,

- 0.5% Underweight.
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- The statistics of BMI categories in our dataset (devided by 02 : Male / Female) is
represented by the Figure 3.9 as follows:

Figure 3.9: BMI category statistics of Illinois DOC labeled faces dataset by gender.

- Males: 41.8% Overweight, 30.4% Normal weight, 27.3% Obese, 0.5% Under-
weight.

- Females: 43.4% Obese, 30.6% Overweight, 25.1% Normal weight, 0.9% Un-
derweight.

We observe that obesity is significantly higher among females, while males have a
higher proportion of overweight individuals.

- This Figure 3.10 represent the Gender distribution in the entire dataset:

3.3 Conclusion

In this chapter, we introduced the three main datasets used in our study: Visu-
alBMI, Arrest Records, and Illinois DOC labeled faces. Each dataset brings its own
characteristics, such as diversity in age, gender, and BMI distribution, which are
essential for training a robust and generalizable model.

We explored the sources of the data, the types of annotations available, and the
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Figure 3.10: Gender distribution of Illinois DOC labeled faces dataset.

BMI categories represented. These datasets vary in size, structure, and data qual-
ity, but together they provide a solid foundation for building and testing our BMI
estimation models.

We also highlighted the importance of preprocessing and cleaning steps to ensure
data consistency and reduce noise, as well as the significance of gender and category
balance when developing health-related machine learning applications.

The richness and variability of the datasets play a crucial role in the model’s ability
to learn meaningful patterns and make accurate predictions.

In the next chapter, we will delve into the technical approach used in our
work, including preprocessing methods, model selection, training proce-
dures, and evaluation metrics for estimating BMI from facial images.
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Chapter 4

Our approaches for BMI estimation from
face images

4.1 Introduction

Estimating Body Mass Index (BMI) from facial images offers a non-invasive alterna-
tive to traditional methods, with potential applications in telemedicine and digital
health. Recent advances in deep learning, including CNNs and Vision Transformers,
have enabled progress in facial analysis, yet BMI prediction remains challenging due
to limited datasets, subtle feature correlations, and demographic variability.

In this chapter, we present our contributions based on three diverse datasets (Visu-
alBMI, Arrest Records, and Illinois DOC), combining advanced preprocessing, novel
model architectures, and data augmentation techniques. We also explore gender-
based modeling and multi-task learning to improve accuracy and generalizability.

The chapter details our experimental setup, model design, training strate-
gies, and a comparative evaluation of the results across all datasets.
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4.2 Our methodology

- We selected 03 of the most important and recent approaches from the state of the
art . We were able to obtain and download 03 publicly available and widely used
datasets in this field:

- Illinois DOC labeled faces dataset [24] [6].

- VisualBMI dataset [25] [20].

- Arrest Records dataset [26] [7].

- Our objective in this work is to analyze results across these 03 datasets by study-
ing several criteria, including: model generalization capacities, gender separation
impact, pre-trained model impact, impact of internal model parameters (such as
data augmentation and model fine-tuning), impact of MTCNN usage for face de-
tection and alignment from the whole image, and impact of the nature of Dataset
images (like: Resolution variety, face poses ..ext).

4.2.1 Model selection:

The model have been selected based on the following main considerations: model
complexity, dataset size, and available computing device (GPU, CPU).

1/- For the VisualBMI dataset, we chose to work with the large ViT-H-14 vi-
sion transformer model (with 633M parameters, indicating high complexity), which
operates differently from CNN models. We wanted to test its performance on this
task, particularly after our research on this transformer model revealed that Vision
Transformers have recently emerged as competitive alternatives to Convolutional
Neural Networks (CNNs), outperforming current state-of-the-art CNNs by almost
4x in terms of computational efficiency and accuracy in some computer vision tasks
[28]. This model is applied to the VisualBMI dataset, which is relatively smaller.
We could not apply it to a large dataset like the Illinois DOC Faces dataset because
this process would require high computational cost (dramatically increased training
time and very powerful hardware such as GPUs/TPUs), and our GPU was fully
utilized most of the time.
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2/- For the Arrest Records dataset, we chose VGG16 (138M parameters) and
ResNet50 (25M parameters) pre-trained models, which are less complex models,
particularly ResNet50. We worked on this dataset using the CPU device because
the GPU was frequently occupied by ourselves or other users. This made the usage
of these models very compatible with this small-sized dataset. We could have used
the Inception-v3 model again, but we chose not to in order to test the performance
of as many different models as possible. Due to these computational constraints,
we were also unable to increase the size of our datasets via data augmentation tech-
niques, which would have required high computational cost.

3/- For the Illinois DOC labeled faces dataset, we have chosen the Inception-v3
as a pretrained model for the feature extraction step, which is a relatively lightweight
model (27 million parameters — that means it’s not a particularly complex model.),
which makes it compatible with this large-sized dataset, also due to its proven per-
formances in recent research papers.

4.2.2 Dataset usage methodology:

- Due to the comparatively large size of the Illinois DOC Faces Dataset, we used
it as a complete dataset initially, and then split it by gender (male and female) to
verify or deduce certain properties.
- For the other two datasets, we could not apply the same approach due to their
smaller sizes.

4.3 Experiment 01 : ViT-H/14 + Visual BMI

4.3.1 Model description

The system first processes input images from the VisualBMI dataset through MTCNN
(Multi-task Convolutional Neural Network) for face detection and alignment. The
detected and aligned faces are then fed into a ViT-H/14 (Vision Transformer) model
for deep feature extraction, capturing high-level facial characteristics. Finally, a
regression layer maps these extracted features to BMI predictions, enabling the es-
timation of body mass index directly from facial appearance, This is shown in the
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Following Figure 4.1:

Figure 4.1: Model description.

4.3.2 Data preprocessing

- Splitting the dataset: The first 3368 images are used for training (80%) and
the rest of the images are used for testing (like is done on the state of the art
previous work).

- Using the MTCNN face detection model, to detect and cropp only the
region of interest (face region), from the whole image.
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- The following Figure 4.2 showing the MTCNN usage on Visual BMI dataset :

(a) Original image. (b) Original image. (c) Original image.

(d) Preprocessed with MTCNN. (e) Preprocessed with MTCNN. (f) Preprocessed with MTCNN.

Figure 4.2: Original images / Preprocessed images with MTCNN.

4.3.3 Model architecture

- Our method for predicting Body Mass Index (BMI) from Visual BMI dataset
images utilizes a Vision Transformer (ViT) as a feature extractor, specifically the
vit-h-14 model from the torchvision library, extracting a feature vector of size
= 1280. This backbone is chosen for its powerful capability in modeling global
dependencies in image data.
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Vit-H-14 model architecture:

Vision Transformers (ViT) shown in the Figure 4.3 have recently emerged as
a competitive alternative to Convolutional Neural Networks (CNNs) that are cur-
rently state-of-the-art (SOTA) in different image recognition and computer vision
tasks. ViT models outperform the current SOTA CNNs by almost x4 in terms of
computational efficiency and accuracy [28].

Figure 4.3: Vision transformer ViT architecture [29].

Transformer models have become the de facto status quo in Natural Language Pro-
cessing (NLP). For example, the popular ChatGPT AI chatbot is a transformer-
based language model. Specifically, it is based on the GPT (Generative Pre-trained
Transformer) architecture. This uses self-attention mechanisms to model the
dependencies between words in a text [28].

A transformer in machine learning is a deep learning model that uses the mecha-
nisms of attention, differentially weighing the significance of each part of the
input sequence of data. Transformers in machine learning are composed of mul-
tiple self-attention layers. They are primarily used in the AI subfields of natural
language processing (NLP) and computer vision (CV) [28].
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1/- Difference between CNN and ViT (ViT vs. CNN):

The ViT is a visual model based on the architecture of a transformer originally
designed for text-based tasks. The ViT model represents an input image as
a series of image patches, like the series of word embeddings used when using
transformers to text, and directly predicts class labels for the image. ViT exhibits an
extraordinary performance when trained on enough data, breaking the performance
of a similar SOTA CNN with 4x fewer computational resources [28].

These transformers have high success rates when it comes to NLP models and are
now also applied to images for image recognition tasks. CNN uses pixel arrays,
whereas ViT splits the input images into visual tokens. The visual transformer
divides an image into fixed-size patches, correctly embeds each of them, and includes
positional embedding as an input to the transformer encoder [28].

The self-attention layer in ViT makes it possible to embed information globally
across the overall image. The model also learns from training data to encode the
relative location of the image patches to reconstruct the structure of the image [28].

- The Vision Transformer (ViT) model architecture was introduced in a research
paper published as a conference paper at ICLR 2021 titled “An Image is Worth
16*16 Words: Transformers for Image Recognition at Scale”. It was developed and
published by Neil Houlsby, Alexey Dosovitskiy, and 10 more authors of the Google
Research Brain Team [28].

The fine-tuning code and pre-trained ViT models are available on the GitHub of the
Google Research team. The ViT models were pre-trained on the ImageNet and
ImageNet-21k datasets [28].
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2/- How does ViT-H/14 work ?

Vit-H-14 meaning:
ViT = Vision Transformer , H = Huge (Model Size) , 14 = Patch Size.

- Embedding:

In this step, the input image is devided into fixed-size patches of [P, P] dimension
like it represented in the Figure 4.4, and linearly flatten them out, by concatenating
the channels.

Figure 4.4: Image devided into fixed-size patches [30].

For example, a patch of size [P, P, C]=[14*14*3] is converted to [P*P*C, 1]. This
linearly flattened patch is further passed through a Feed-Forward layer with a linear
activation function to get a linear patch projection of the dimension [D, 1]. D is
the hyperparameter called as embedding dimension used throughout the transformer
[30], as its shown in the Figure 4.5.
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Figure 4.5: Embedding step [30].

For classification purposes, taking inspiration from the original BERT paper, we
concatenate a learnable class embedding with the other patch projections, whose
state at the output serves as class information. This extra class token is added
to the set of image tokens which is responsible for aggregating global image
information and final classification. It is able to learn this global aggregation
while it passes and learns through the attention layers (The class token learns how
to selectively gather and combine information from patches. For example, it might
prioritize certain patches (like a dog’s head) over others (like the background) [30].

1D positional embedding is added also to the linear patches, to establish a certain
order in the input patches [30].

- Why is positional encoding necessary?

Transformers are not capable of remembering the order or sequence of the inputs.
If the image patches are re-ordered the meaning of the original image is lost, as it
is shown in the Figure 4.6. Hence, we add a positional embedding to our linearly
embedded image patches to keep track of the sequence [30].
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Figure 4.6: Necessity of patches order [30].

To understand the embedding step a bit better let us see the dimensions:

Suppose, we have an input image of size 224x224x1, we divide it into fixed-size
patches of size 16x16. Let us denote the patch size as P and the image channels as
C. The total number of patches N that we get is 196 [30].

After linearly flattening all the patches to get a vector X of dimension [N, P2C],
we pass it through a Dense Layer to convert it to a D dimensional vector called
embedding E [N, D]. We then append a learnable class embedding [1, D] to
convert the E vector to dimension [N+1, D]. The last step is adding positional
encoding to get the final vector Z, as it’s shown in he Figure 4.7. Both the class
and positional embeddings are randomly initialized vectors, learned during
the training of the network [30].

Figure 4.7: Calculation of dimensions example [30].

– Once we have our vector Z we pass it through a Transfomer encoder layer.
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- Transformer encoder:

The Transformer Encoder is core component of the model, the architecture consists
of multiple of identical encoder blocks, where each block has a Multi-Head
Attention unit and a Feed-Forward Network. Each layer is also followed by a
normalization layer, to stabilize training and improve convergence [30].

Note: The attention output is added back to the original input (Residual Connec-
tion), that’s mean: skip connections.

The Z vector from the previous step is passed through the transformer Encoder
architecture to get the context vector C [30], as it’s shown in the following Figure
4.8.

Figure 4.8: Transformer encoder block [30].
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- Multi-head attention:

The main component of a Multi-Head Attention unit is the Scaled Dot-Product
Attention. At first, the input vector Z is duplicated 3 times and multiplied by
weights Wq, Wk, and Wv, to get the Queries, Keys, and Values respectively,
like its shown in the Figure 4.23. The Queries are then multiplied by the Keys, and
the result is divided by the square root of the dimension, to avoid the vanishing
gradient problem. This matrix goes through a Softmax layer and gets multiplied
by the Values to give us the final output called Head H [30], these steps are done
and represented in the Figure 4.9.

Figure 4.9: Dimension of multi-head attention block [30].
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The Scaled Dot-Product Attention as explained above is applied h times (h=8) to
get h attention heads. These attention heads are concatenated and passed through
a dense Layer to get the final vector of embedded dimension D [30], as the Figure
4.10 shows.

Figure 4.10: Dimensions for attention block [30].

Note: The CLS token learns to represent the entire image by attending to the
different patches through the self-attention mechanism. At the output of the
transformer layers, the CLS token is extracted and passed to a classifier for the final
prediction.
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- MLP head:

After the transformer encoders process the sequence of patches and the CLS token
(class token c0), the output corresponding to the CLS token is used for classification
[30].

The output of the CLS token is fed into an MLP, typically consisting of one or
two fully connected layers. A softmax layer is applied at the end of the MLP for
classification tasks, predicting the image’s label [30].

Figure 4.11: Complete ViT architecture [30].
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- To adapt the ViT model for the regression task of BMI prediction, we replaced its
classification head with a custom regression head, which is a deep fully connected
layers consisting of:

05 layers with decreasing dimensionalities: 1280 → 640 → 320 → 160 → 80 → 1.
This architecture is shown in this Figure 4.12 :

Figure 4.12: Regression model architecture.

- GELU activation function after each layer, except the last one RELU, because
the BMI has a positive range values.

- To prevent overfitting, we added one dropout layer, with a dropout of 50% into
our model architecture, which applied only after in first linear layer. It’s usually
more effective to regularize at the beginning of deep networks (the largest part of
the network, where overfitting is most likely) than in later narrow layers (where
underfitting is most likely).

- The final output is a single scalar value representing the predicted BMI.

- We have leveraged the pretrained knowledge, all parameters (632 M parameters) of
the vit-h-14 model are one time frozen and other time are trainable during training.
In all cases the parameters of the custom BMI-Head are updated.
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4.3.4 Training and optimization

The models are trained using the Mean Squared Error (MSE) loss function,
appropriate for regression tasks, for 30 epochs.

We have fixed the batch size = 16.

The optimization is handled using the Adam optimizer with a learning rate of
1e-3 and 1e-4 in case of fine-tuning the Vit-H-14 model, and to reduce or penalize
the complexity of the model weights which can reduce the overfitting, we have used
a weight decay (Regularization Parameter L2) of λ = 1e-4.

Ltotal = 1
N

N∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
MSE Loss

+ λ
∑
j

∥wj∥2
2︸ ︷︷ ︸

Weight Decay (L2)

(4.1)

- yi: Ground truth BMI.

- ŷi: Predicted BMI.

- N : Number of samples.

- wj: Trainable weight parameters (e.g., in your regression head).

- λ = 0.0001: Weight decay factor.

4.3.5 Data augmentation

- The dataset is splitted on 03 different sets (70% , 10% , 20%) for training, valida-
tion, testing respectively.

- In fact, the training dataset is small (2944 images), because of that we have
applied a Data augmentation technique for each training image (1x5) so we will
have (2944x5=14720 training images) like it’s shown here in this Figure 4.13:
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(a) Original Image (b) BMI = 23.02 (c) BMI = 23.02

(d) BMI = 23.02 (e) BMI = 23.02

Figure 4.13: Data augmentation images.

- More precisely, in order to improve the robustness and generalization ability of the
BMI estimation model, a variety of data augmentation techniques have been
applied for the training phase. These transformations are designed to artificially
increase the diversity of the training dataset by applying random but controlled
modifications to the input images. We have applied :

1/- Random rotation: Rotates the image randomly within a range of ±5 de-
grees. It Introduces slight angular variations to simulate different head tilts and
orientations. This helps the model become invariant to minor rotations, improving
robustness. This is shown by the following Figure 4.14 :

Figure 4.14: Original image , rotated image by 5 degree.
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2/- Random horizontal flip: The image is flipped horizontally (mirrored). It
mimics left-right symmetry, allowing the model to learn features regardless of face
orientation. This can prevent the model from overfitting to a specific face orienta-
tion. This is shown by the following Figure 4.15 :

Figure 4.15: Original image , horizontal flipped image.

3/- Random brightness adjustment using Lambda: Brightness refers to the
overall darkness or lightness of the image Brightness is adjusted using a random
factor between 0.5 and 1.5 (50% darker to 50% brighter), to increase variation
in image illumination. Preventing the model from relying too heavily on specific
brightness levels. This is shown by the following Figure 4.16 :

Figure 4.16: Orignal image, image with 0.8 brightness factor.

4/- Random adjust contrast (Custom class): Contrast is the difference in
brightness between objects or regions (the difference between maximum and min-
imum pixel intensity in the image). This technique randomly changes how much
light/dark separation is in an image (the image contrast is adjusted randomly be-
tween 80% and 120% of the original) and helps the model become less sensitive to
contrast changes in real-world images. This is shown by the following Figure 4.17 :
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Figure 4.17: Original image , image with 96.34% contrast.

- Input images and labels are transferred to the appropriate device CUDA, to use
the GPU of the PC, reducing time consuming of the training process, and increasing
the memory capacity.

4.3.6 Experimental results, interpretations

After training models for 30 epochs, with the Hyper-Parameters montioned before,
we get the results represented by the Table below :

Table 4.1: Obtained results on VisualBMI: Existing work (VGGFace) vs. Our model (with different
Hyper-Parameters).

Works Existing Work [20] Our Work
Models VGGFace Vit_H_14 Vit_H_14 Vit_H_14

MTCNN for Preprocessing ✓ ✓ ✓ ✓

Data Augmentation ✗ ✗ ✓ ✓

Fine-Tuning ✗ ✗ ✗ ✓

BMI RMSE 6.94 6.82 6.27 6.14
BMI MAE 4.99 4.85 4.36 4.18

- Interpretations:

- Baseline comparison – VGGFace vs. ViT_H_14:
The ViT_H_14 model outperforms the VGGFace model in both RMSE (6.82
vs. 6.94) and MAE (4.85 vs. 4.99). This demonstrates that Vision Transform-
ers are more effective than traditional CNN-based models (like VGGFace) for
BMI estimation from facial images.
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- Effect of data augmentation:
Applying data augmentation to ViT_H_14 improves the results significantly:
RMSE drops from 6.82 to 6.27, and MAE from 4.85 to 4.36. This indicates
that data augmentation helps the model generalize better by increasing the
diversity of the training data.

- Effect of fine-tuning:
Adding fine-tuning on top of data augmentation further enhances the model’s
performance. The best results are achieved with an RMSE of 6.14 and MAE of
4.18. This confirms that fine-tuning the pretrained ViT_H_14 on the specific
dataset leads to more accurate BMI predictions.

- Progressive improvement through customization:
The results show a clear step-by-step improvement:

ViT_H_14 (Baseline) → + Data augmentation → + Fine-tuning

Corresponding MAE values: 4.85 → 4.36 → 4.18. This progression highlights
the importance of tailoring the model to the task.

- Conclusion:
Our proposed method (highlighted in red) shows that customized training
strategies (such as augmentation and fine-tuning) yield better performance than
simply switching to a more advanced model. Model adaptation to the dataset
proves crucial for achieving optimal BMI estimation accuracy.
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4.4 Experiment 02 : VGG16, ResNet50 + Arrest Records

4.4.1 Model description

The system first processes input images from the Arrest Records dataset through
MTCNN for face detection and alignment. The detected and aligned faces are
then fed into a VGG16, ResNet50 models for deep feature extraction, capturing
high-level facial characteristics. Finally, a regression layers maps these extracted
features to BMI predictions (Mutli-Task Learning will be explained later), enabling
the estimation of body mass index directly from facial appearance, This is shown in
the Following Figure 4.18:

Figure 4.18: Model description.

4.4.2 Data preprocessing

- Converting height to meters and weight to kilograms.

- Calculating BMI: BMI = weight (kg)
height (m)2 .

- Encoding gender numerically.
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- Splitting the dataset into training (1227 images) and testing (317 images).

- Using the MTCNN face detection model, to detect and cropp only the
region of interest (face region), from the whole image.

(a) Original image (b) Original image (c) Original image

(d) Preprocessed with MTCNN (e) Preprocessed with MTCNN (f) Preprocessed with MTCNN

Figure 4.19: Original images / Preprocessed images with MTCNN

4.4.3 Model architecture

- Our method for predicting Body Mass Index (BMI) from Visual BMI dataset im-
ages utilizes VGG16 and ResNet50 pre-trained models as a feature extractor models
via Transfer Learning, imported from Keras python library, extracting a feature
vector of size = 25088, and a feature vector of size = 100352.
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1/- ResNet50 model architecture:

- The Figure 4.20 represent a general or a basic overview on the ResNet50 pre-trained
model architecture :

Figure 4.20: ResNet50 architecture [31].

Resnet50 is a deep convolutional neural network (CNN) architecture that was
developed by Microsoft Research in 2015. It is a variant of the popular ResNet
architecture, which stands for “Residual Network.” The “50” in the name refers to
the number of layers in the network, which is 50 layers deep [31].

Resnet50 is a powerful image classification model that can be trained on large
datasets and achieve state-of-the-art results. One of its key innovations is the use
of residual connections, which allow the network to learn a set of residual functions
that map the input to the desired output. These residual connections enable the
network to learn much deeper architectures than was previously possible, without
suffering from the problem of vanishing gradients [31].

The architecture of ResNet50 is divided into four main parts: the convolutional
layers, the identity block, the convolutional block, and the fully connected layers.
The convolutional layers are responsible for extracting features from the input image,
while the identity block and convolutional block are responsible for processing and
transforming these features. Finally, the fully connected layers are used to make the
final classification [31].

Resnet50 begins with convolutional layers, each followed by batch normalization
and ReLU activation to extract features like edges and textures. Max pooling lay-
ers then reduce spatial dimensions while preserving important information. The
identity block applies convolutions and adds the input back to the output to learn
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residual mappings. The convolutional block includes a 1×1 convolution to adjust
filter dimensions before applying 3×3 convolutions. These residual connections help
with deeper training and prevent vanishing gradients. Finally, fully connected layers
make predictions, ending in a softmax layer for class probabilities [31].

- How it solved the problem of vanishing gradients

Skip connections, or residual connections as is represented in the Figure 4.21, are
essential in Resnet50 for enabling deep network training without vanishing gra-
dients. Vanishing gradients occur when deeper layers receive very small updates,
hindering learning. Skip connections help by allowing data to bypass certain layers,
preserving gradient flow.

Figure 4.21: The concept of the widely popular CNN [31].

They let the network learn residual functions—differences between input and out-
put—instead of full mappings. In Resnet50, identity blocks pass input unchanged
alongside convolutions and then add it back to the output. Convolutional blocks use
a 1×1 convolution to align dimensions before performing this addition. This design
allows for effective training of deeper architectures by stabilizing learning [31].
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- Summary

In summary, ResNet50 is a cutting-edge deep convolutional neural network architec-
ture that was developed by Microsoft Research in 2015. It is a variant of the popular
ResNet architecture and comprises of 50 layers that enable it to learn much deeper
architectures than previously possible without encountering the problem of vanish-
ing gradients. The architecture of ResNet50 is divided into four main parts: the
convolutional layers, the identity block, the convolutional block, and the fully con-
nected layers. The convolutional layers are responsible for extracting features from
the input image, the identity block and convolutional block process and transform
these features, and the fully connected layers make the final classification. ResNet50
has been trained on the large ImageNet dataset, achieving an error rate on par with
human performance, making it a powerful model for various image classification
tasks such as object detection, facial recognition and medical image analysis. Addi-
tionally, it has also been used as a feature extractor for other tasks, such as object
detection and semantic segmentation.

2/- VGG16 model architecture:

- The VGG-16 model shown in the Figure 4.22 is a convolutional neural network
(CNN) architecture that was proposed by the Visual Geometry Group (VGG) at the
University of Oxford. It is characterized by its depth, consisting of 16 layers, includ-
ing 13 convolutional layers and 3 fully connected layers. VGG-16 is renowned for its
simplicity and effectiveness, as well as its ability to achieve strong performance on
various computer vision tasks, including image classification and object recognition.
The model’s architecture features a stack of convolutional layers followed by max-
pooling layers, with progressively increasing depth. This design enables the model
to learn intricate hierarchical representations of visual features, leading to robust
and accurate predictions. Despite its simplicity compared to more recent architec-
tures, VGG-16 remains a popular choice for many deep learning applications due to
its versatility and excellent performance [32].

- The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual
competition in computer vision where teams tackle tasks including object localiza-
tion and image classification. VGG16, proposed by Karen Simonyan and Andrew
Zisserman in 2014, achieved top ranks in both tasks, detecting objects from 200
classes and classifying images into 1000 categories [32].
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Figure 4.22: VGG-16 architecture. [32]

- This model achieves 92.7% top-5 test accuracy on the ImageNet dataset which
contains 14 million images belonging to 1000 classes [32].

- The ImageNet dataset contains images of fixed size of 224 × 224 and have RGB
channels. So, we have a tensor of (224, 224, 3) as our input. This model process the
input image and outputs the a vector of 1000 values: [32]

ŷ =



ŷ0

ŷ1

ŷ2
...
...
...

ŷ999


- This vector represents the classification probability for the corresponding class,
and to make sure these probabilities add to 1, a softmax function is used [32].
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- Softmax activation function:

The Figure 4.23 represents the Softmax activation function curve.

Figure 4.23: Softmax curve [33].

- It gives the probability distribution of multiple classes, making the decision-making
process straightforward and effective [33].

- By converting raw scores to probabilities, it not only provides a value to be worked
with but also brings clarity to interpreting results [33].

Figure 4.24: Example [33].

The softmax function converts a vector of real numbers into a probability distribu-
tion:

softmax(zi) = ezi∑K
j=1 ezj

(4.2)

where zi is the i-th element of the input vector and K is the number of classes.
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Example: Given input vector z = [1.3, 5.1, 2.2, 0.7, 1.1]:

softmax(z1) = e1.3

e1.3 + e5.1 + e2.2 + e0.7 + e1.1 = 3.67
185.39 = 0.02 (4.3)

softmax(z2) = e5.1

185.39 = 164.02
185.39 = 0.90 (4.4)

softmax(z3) = e2.2

185.39 = 9.03
185.39 = 0.05 (4.5)

softmax(z4) = e0.7

185.39 = 2.01
185.39 = 0.01 (4.6)

softmax(z5) = e1.1

185.39 = 3.00
185.39 = 0.02 (4.7)

The output probabilities sum to 1: 0.02 + 0.90 + 0.05 + 0.01 + 0.02 = 1.00

- The Softmax Function comes into its own when dealing with multi-class classifi-
cation tasks in machine learning. In these scenarios, we need our model to predict
one out of several possible outcomes [33].

- VGG16 architecture:

- The VGG-16 architecture is a deep convolutional neural network (CNN) designed
for image classification tasks. It was introduced by the Visual Geometry Group at
the University of Oxford. VGG-16 is characterized by its simplicity and uniform
architecture, making it easy to understand and implement [32].

- The VGG-16 configuration typically consists of 16 layers as its shown in the Figure
4.25, including 13 convolutional layers and 3 fully connected layers. These layers
are organized into blocks, with each block containing multiple convolutional layers
followed by a max-pooling layer for downsampling [32].
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Figure 4.25: VGG-16 architecture map [32].

The following describes the complete architecture based on the provided specifica-
tions:

Input dimensions: (224, 224, 3).

- Convolutional block 1

- Two consecutive convolutional layers with 64 filters each.
- Filter size: 3 × 3.
- Padding: Same padding (to maintain spatial dimensions).
- Activation: ReLU.
- Max Pooling Layer: Pool size 2 × 2, stride = 2.

- Convolutional block 2

- Two consecutive convolutional layers with 128 filters each.
- Filter size: 3 × 3.
- Padding: Same padding.
- Activation: ReLU.
- Max pooling layer: Pool size 2 × 2, stride = 2.

- Convolutional block 3
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- Three consecutive convolutional layers with 256 filters. each
- Filter size: 3 × 3.
- Padding: Same padding.
- Activation: ReLU.
- Max pooling layer: Pool size 2 × 2, stride = 2.

- Convolutional block 4

- Three consecutive convolutional layers with 512 filters each.
- Filter size: 3 × 3.
- Padding: Same padding.
- Activation: ReLU.
- Max pooling layer: Pool size 2 × 2, stride = 2.

- Convolutional block 5

- Three consecutive convolutional layers with 512 filters each.
- Filter size: 3 × 3.
- Padding: Same padding.
- Activation: ReLU.
- Max pooling layer: Pool size 2 × 2, stride = 2.

- Feature map flattening Flatten the output feature map (7 × 7 × 512) into a
vector of size 25088.

- Fully connected layers

0 First FC layer:

- Input size: 25088.
- Output size: 4096.
- Activation: ReLU.
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0 Second FC layer:

- Input size: 4096.
- Output size: 4096.
- Activation: ReLU.

0 Third FC layer (Output layer):

- Input size: 4096.
- Output size: 1000 (corresponding to 1000 classes in ILSVRC challenge)
- Activation: Softmax (for classification probabilities).

– This architecture follows the specifications provided, including the use of ReLU
activation function and the final fully connected layer outputting probabilities for
1000 classes using softmax activation.

- To adapt these models for the regression task of BMI prediction, we have removed
the original classification head of both pre-trained models (which is represented as
FC in the figure of ResNet50 model architecture for example), and we used Multi-
Task Learning technique (replacing the classification head of the pre-trained models
with these new Heads) for simultaneous prediction of:

- BMI (regression), - Age (regression), - Gender (classification).

Each task was handled by dedicated fully connected layers, that’s mean we have
used 02 custom regression heads (ends with Relu activation), and 01 custom
classification head (ends with sigmoid activation), consisting of:

03 layers with decreasing dimensionalities: extracted features size → 256 → 128 →
1. These are represented in the Figure 4.26 and 4.27 :
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Figure 4.26: Regression head.

Figure 4.27: Classification head.

- GELU activation function after each layer, except the last one RELU activation
function for the regression head of BMI and AGE, because both BMI and AGE have
a positive range values, and Sigmoid activation function for the classification head

- To prevent overfitting, we added one dropout layer, with a dropout of 50% into
our model architecture, which applied only after in first linear layer. It’s usually
more effective to regularize at the beginning of deep networks (the largest part of
the network, where overfitting is most likely) than in later narrow layers (where
underfitting is most likely).

- The final output is a single scalar value representing the predicted BMI, AGE,
SEX.

- We have leveraged the pretrained knowledge, all parameters (26 M parameters for
ResNet50 / 138 M parameters for VGG16) are one time frozen and other time are
trainable during training.
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4.4.4 Training and optimization

This model is designed to predict three different outputs:

- bmi: a regression output, optimized using the Mean Squared Error (MSE) loss.

- age: another regression output, optimized using the Mean Absolute Error
(MAE) loss.

- sex: a binary classification output, optimized using the Binary Crossentropy
loss.

The total loss function Ltotal is given by:

Ltotal = wbmi · Lbmi + wage · Lage + wsex · Lsex + + λ
∑
j

∥wj∥2
2︸ ︷︷ ︸

Weight Decay (L2)

(4.8)

Where:

- (wbmi, wage, wsex) are the weights assigned to each task’s loss (0.8,0.1,0.1).

- Lbmi is the MSE loss between predicted and true BMI values.

Lbmi = 1
N

N∑
i=1

(
ybmi

i − ŷbmi
i

)2 (4.9)

where:

◦ ybmi
i is the true BMI value for the i-th sample.

◦ ŷbmi
i is the predicted BMI value.

◦ N is the total number of samples.

- Lage is the MAE loss between predicted and true AGE values.

Lage = 1
N

N∑
i=1

|yage
i − ŷage

i | (4.10)

where:
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◦ yage
i is the true age value.

◦ ŷage
i is the predicted age.

- Lsex is the binary crossentropy loss for the SEX classification task.

Lsex = − 1
N

N∑
i=1

[ysex
i log (ŷsex

i ) + (1 − ysex
i ) log (1 − ŷsex

i )] (4.11)

where:

◦ ysex
i ∈ {0, 1} is the true label (e.g., 0 for female, 1 for male).

◦ ŷsex
i is the predicted probability that the input corresponds to class 1 (male).

.

- Adjusting these weights (0.8 for BMI / 0.1 for AGE / 0.1 for SEX) allows us to
prioritize one task over the others during training. In our case, setting a higher value
for wbmi emphasizes minimizing the BMI prediction error more than the others

- The models are trained for 60 epochs.

- We have fixed the batch size = 32.

- The optimization is handled using the Adam optimizer with a learning rate of
1e-4 and 1e-5 in case of fine-tuning, and to reduce or penalize the complexity of
the model weights which can reduce the overfitting, we have used a weight decay
(Regularization Parameter L2) of λ = 1e-4.

- Input images and labels are transferred to the appropriate device CPU of the PC.

4.4.5 Experimental results, interpretations

After training models for 60 epochs, with the Hyper-Parameters montioned before,
we get the results represented by the Table 4.2 :

- Interpretations:

- Effect of the pretrained model: ResNet50 outperformed the VGG 16 model
even if the VGG16 model has 138 M parameters and the the ResNet50 has 25
M parameters (5.52 times lesser), gaining in both time factor and the accuracy.
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Table 4.2: Obtained Results on Arrest Records: Existing work (VGGFace) vs. Our model (with
different Hyper-Parameters).

Works Previous work [7] Our work
Models VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50

MTCNN Preprocessing ✓ ✓ ✓ ✓ ✓ ✓

Fine-Tuning ✗ ✗ ✗ ✗ ✓ ✓

BMI MAE 6.13 5.02 3.77 3.56 4.18 4.04

That may be due to: It introduces residual connections (skip connections),
which solve the problem of vanishing gradients and allow training much deeper
models effectively.

- Effect of fully connected layers:
Our custom deep FC layers very likely contributed to the improved prefor-
mances:
- A more deeper FC can give the model more capacity to learn complex rela-
tionships.
- Providing better adaptation to regression-specific tasks, unlike (may be) the
simpler FC structures used in previous work.

- Regularization Hyper-Parameter:
In the previous work, they did not montioned the usage of this hyper-parameter
of L2 Regularization, we have used this hyper-parameter preventing the model
from learning very large weight values, which are often a sign of overfitting.

- Effect of fine-tuning:
Our work included fine-tuning the models, which was not applied in the previ-
ous work, but not likely contributing more to the performance gains, because
the fine-tuning in this case leads the model to lose performance comparing with
not applying the fine-tuning. This confirms that this dataset is relatively small
for fine-tuning a deep learning model like VGG16. Fine-tuning a large model
requires a significant amount of labeled data to avoid overfitting. Since the
dataset is small, fine-tuning the entire VGG16 network might lead to overfit-
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ting.
- Why ? Fine-tuning the entire pre-trained model is risky with a small dataset
like 1544 images because the model can forget the useful knowledge it learned
before (that can lead to a catastrophic forgetting problem, specially when the
model have a very big size).

The following Table 4.3 represent BMI MAE results when using MSE loss function
and when using the MAE loss function :

Table 4.3: Obtained results with MSE vs. MAE loss functions.

Models VGG16 VGG16
MTCNN Preprocessing ✓ ✓

Fine-Tuning ✗ ✗

Loss Function MSE MAE
BMI MAE 3.77 3.99

- Training with MSE loss function gives better results, possibly because MSE
penalizes larger errors more, encouraging more accurate predictions in outlier cases,
That’s our reason to choose the MSE loss function.

4.5 Experiment 03 : Inception-V3 + Illinois DOC Faces

4.5.1 Model description

The system first processes input images from the Illinois DOC Faces dataset through
MTCNN (Multi-task Convolutional Neural Network) for face detection and align-
ment. The detected and aligned faces are then fed into Inception-v3 model for deep
feature extraction, capturing high-level facial characteristics. Finally, a regression
layers maps these extracted features to BMI predictions, enabling the estimation of
body mass index directly from facial appearance, This is shown in the Following
Figure:
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Figure 4.28: Model description.

4.5.2 Data preprocessing

- Cleaning malformed or missing entries.

- Converting height to meters and weight to kilograms.

- Calculating BMI: BMI = weight (kg)
height (m)2 .

- Dataset splitted (70% , 10% , 20%) for (Training , Validation , Testing).

- Face detection using MTCNN detector.

4.5.3 Face detection and alignment method selection

A very recent study discovered that significant regions for a weight estimation model
from face images such as the face-contour (forehead, cheeks and jaw) are usually
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excluded from face cropping algorithms since eyes contain the most meaningful
information for face recognition tasks [2].

Indeed, the VIP attribute dataset is distributed in an already cropped version,
narrow bounding box and excluding in most cases parts of the face contour (forehead,
cheeks and jaw).

Those who did this study have contacted the authors of the VIP attribute dataset
which provided us with the original version. Therefore, they evaluated whether
different croppings, specially the ones considering larger face areas, will lead to a
more accurate prediction as suggested by the explainability approaches.

In their experiment, they have trained and tested their network for 4 different face
cropping methods: Viola-Jones [34], Multi Cascade CNN (MTCNN) [15], the
dlib python package and a customized cropping.

They defined our face cropping by considering the highest, lowest, and furthest at
the left and furthest at the right facial landmarks computed by the dlib landmark
detector.

The results presented in the following Figure 4.29 represent the MAE for different
cropping margins.
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Figure 4.29: MAE in kg of the VIP attribute test set for various face detectors and cropping margins
[2].

This Figure 4.1 highlights the benefit of an increased margin, specifically of 0.1 (10%
increase of the original bounding box), specially for the rectangular face croppings
(MTCNN) whose output is more adapted to the face shape. Nevertheless, large
croppings include a high amount of hair and background regions increasing the
network’s MAE [2].

4.5.4 Model architecture

- Our method for predicting Body Mass Index (BMI) from Visual BMI dataset
images utilizes the Inception-V3 model as a feature extractor from the torchvision
library, extracting a feature vector of size = 2048. This backbone is chosen for its
powerful performances as it’s shown in the part of state-of-the-art, and because
of it’s small size = 103.9 MB, with 27 M parameters.
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Inception-v3 model architecture:

Rethinking the Inception Architecture shown in the Figure 4.27, for Computer Vi-
sion has been one of the most complicated research papers I have read. The paper’s
language is very complicated along with its content. It was also difficult to find a
detail breakdown of paper on the internet. So, the goal of this article is to break-
down Inception-v3 research paper in great detail.

- The Figure 4.30 represent an overall architecture of the Inception-v3 model. :

Figure 4.30: Inception-V3 model architecture [35].

1/- General design principals [35]:

- Avoid representational bottlenecks, especially in the early layers. A bot-
tleneck occurs when there is a sudden, large reduction in input dimension,
resulting in a high number of weights. Instead, dimensions should be reduced
gradually to maintain representational capacity.

- Higher-dimensional representations are easier to process locally within a
network. They help capture complex and disentangled features, whereas
lower-dimensional data requires more entangled features to represent the same
complexity.

- Spatial aggregation (e.g., with 3×3 convolutions) can be effectively per-
formed over lower-dimensional embeddings without significant loss in rep-
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resentational power. This can be achieved by applying 1×1 convolutions
before spatial aggregation to reduce dimensions efficiently.

- Balance width and depth of the network. Optimal performance is achieved
by tuning both the number of filters per stage (width) and the number of layers
(depth). Deeper networks are needed to process wider layers effectively. This
principle was applied in the design of EfficientNets.

2/- Factorizing convolutions with large filter size [35]:

The paper believes that original gains of GoogLeNet network arises from their gen-
erous use of dimensional reduction. Here dimensional reduction accounts for using
1x1 convolutions before 3x3 and 5x5 convolutions. This reduced number of param-
eters per stage and hence allowed to increase the depth of network. Similarly, we
will see few techniques that can help to furthur reduce the dimensions [35].

Factorization into smaller convolutions:

Large filters like 7x7 and 5x5 are very expensive in computation. For example, a
5x5 convolution with n filters over a grid is 25/9 = 2.78 times more computationally
expensive than a 3x3 convolution with the same number of filters. However, 5x5
filter can capture dependencies between signals between activations of units further
away in the earlier layers which is very helpful for capturing spatial invariance. So,
can we create 5x5 convolution using 3x3 convolution? Yes, convolving two 3x3 filters
can produce same output size as convolving one 5x5 filter. This way, we end up with
a net (9+9)/25 × reduction of computation, resulting in a relative gain of 28% by
this factorization [35], This shown here in the Figure 4.31 :

Figure 4.31: Mini-network replacing the 5 × 5 convolutions [35].

Still, this setup raises two general questions: Does this replacement result in any loss
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of expressiveness? If our main goal is to factorize the linear part of the computation,
would it not suggest to keep linear activations in the first layer? According to second
question, if we apply ReLU after 5x5 conv then we should apply ReLU after two
3x3 conv, keeping linear activation after first 3x3 conv. They tested both models
and found out ReLU activation performs better than linear activation [35].

Spatial factorization into asymmetric convolutions:

- The Figure 4.32 represents the structure of a single Inception module—specifically,
a simplified view of how parallel convolution operations are performed and their
outputs concatenated :

Figure 4.32: Mini-network replacing the 3 × 3 convolutions [35].

A major question arises that should we reduce 3x3 convolutions furthur to 2x2 con-
volutions? The paper states that reducing 3x3 convolutions into 2x2 convolutions
results in 11% saving of computation while reducing 3x3 convolutions into 3x1 con-
volutions and 1x3 convolutions results in 33% saving of computation. They found
that employing this factorization does not work well on early layers, but it gives
very good results on medium grid-sizes (On m × m feature maps, where m ranges
between 12 and 20). On that level, very good results can be achieved by using 1 ×
7 convolutions followed by 7 × 1 convolutions [35].

- The Figure 4.33 represents the improvement made in Inception-v3 using Factor-
ization into smaller convolutions—a technique that makes the model more efficient
without sacrificing accuracy :

Efficient grid size reduction:
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Figure 4.33: Inception modules after the factorization of the n × n convolutions [35].

To efficiently perform max pooling or average pooling, they present another variant
that reduces the computational cost even further. We can use two parallel stride
2 blocks: P and C. P is a pooling layer (either average or maximum pooling) the
activation, both of them are stride 2 the filter banks of which are concatenated [35],
as it’s shown in the Figure 4.34:

Figure 4.34: Inception module that reduces the grid-size while expands the filter banks [35].
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- To adapt the Inception-V3 model for the regression task of BMI prediction, we
replaced its classification head with a custom regression head, which is a deep fully
connected layers consisting of:

04 layers with decreasing dimensionalities: 2048 → 1024 → 512 → 64 → 1.

Figure 4.35: Regression model architecture

- GELU activation function after each layer, except the last one RELU, because
the BMI has a positive range values.

- To prevent overfitting, we added one dropout layer, with a dropout of 50% into
our model architecture, which applied only after in first linear layer. It’s usually
more effective to regularize at the beginning of deep networks (the largest part of
the network, where overfitting is most likely) than in later narrow layers (where
underfitting is most likely).

- The final output is a single scalar value representing the predicted BMI.

- We have leveraged the pretrained knowledge, all parameters (27 M parameters)
of the Inception-v3 model are one time frozen and other time are trainable -Fine-
Tuning- during training.

4.5.5 Data augmentation option

- The dataset is splitted on 03 different sets (70% , 10% , 20%) for training, valida-
tion, testing respectively.

- To improve the performances more, we have applied a Data augmentation technique
for each training image (1x5) for each model (because there are 03 types of models
and we will speak about that later), the applied Data Augmentation technique is
exactly the same as the previous one (in our 1st method).
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4.5.6 Gender-based model

- Because we have a comparatively large dataset than the previous ones that contain
56200 males and 3649 females, and because there are differences between the
general face caracteristics between man face image and female face image, they
have different bone mineral and muscle density, so their facial appearance differs even
when they are of the same BMI; we have applied the idea of gender separation.

- So we want to demonstrate that BMI estimation benefits from gender perception,
therefore we implement a gender-mixed model and 02 gender-based models.

4.5.7 Training and optimization for (Gender-mixed model / Gender-
based model)

- The models are trained using the Mean Squared Error (MSE) loss function,
appropriate for regression tasks, for 50 epochs in case of Female-based Model
and for 30 epochs in case of Male-based Model and Gender-mixed model.

- We have fixed the batch size = 16.

- The optimization is handled using the Adam optimizer with a learning rate
of 1e-4 and 1e-5 in case of fine-tuning the Inception-V3 model, and to reduce or
penalize the complexity of the model weights which can reduce the overfitting, we
have used a weight decay (Regularization parameter L2) of λ = 1e-4.

Ltotal = 1
N

N∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
MSE Loss

+ λ
∑
j

∥wj∥2
2︸ ︷︷ ︸

Weight Decay (L2)

(4.12)

- yi: Ground truth BMI.

- ŷi: Predicted BMI.

- N : Number of samples.

- wj: Trainable weight parameters (e.g., in your regression head).

- λ = 0.0001: Weight decay factor.
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- Input images and labels are transferred to the appropriate device CUDA, to use
the GPU of the PC, reducing time consuming of the training process, and increasing
the memory capacity.

4.5.8 Experimental results, interpretations

After building and training models, we have tested the final models on 03 different
datasets:

- 1st one: the same as the training dataset Illinois DOC Faces dataset. - 2nd
one: the Visual BMI dataset. - 3rd one: the Arrest Records dataset.

Here are the obtained results of female-based model represented by the
Table 4.4 :

Table 4.4: Obtained results on our 03 datasets: Female-based model (with different hyper-
parameters).

Models Inception_v3 Inception_v3 Inception_v3 Inception_v3
MTCNN preprocessing ✗ ✓ ✓ ✓

Fine-tuning ✗ ✗ ✓ ✓

Data augmentation ✗ ✗ ✗ ✓

BMI MAE (Illinois) 5.11 4.98 3.98 3.85
BMI MAE (VisualBMI) 6.72 7.09 6.68 6.05

BMI MAE (Arrest Records) 6.46 5.81 5.21 4.82

- Interpretations: As shown in the Table 4.4:

- The baseline model had a high error rate, indicating poor generalization from
face images, this is absolutely due to the small size of the training dataset.

- Integrating MTCNN helped reduce MAE slightly, by improving facial region
alignment.

- Fine-tuning significantly improved accuracy (4.98 down to 3.98 MAE), showing
that task-specific weight adjustments were crucial.

- The best results were achieved after applying data augmentation, which further
reduced the MAE to 3.85, highlighting its effectiveness in enhancing model
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robustness and generalization.

Here are the obtained results of male-based model represented by the
Table 4.5 :

Table 4.5: Obtained results on our 03 datasets: Male-based model (with different hyper-
parameters).

Models Inception_v3 Inception_v3 Inception_v3 Inception_v3
MTCNN preprocessing ✗ ✓ ✓ ✓

Fine-tuning ✗ ✗ ✓ ✓

Data augmentation ✗ ✗ ✗ ✓

BMI MAE (Illinois) 3.52 3.46 2.84 2.78
BMI MAE (VisualBMI) 7.04 6.95 5.74 5.44

BMI MAE (Arrest Records) 4.30 4.01 3.15 3.12

- Interpretations: As shown in the Table 4.5:

- Similar to the female model, male facial features slightly benefited from MTCNN
preprocessing.

- Fine-tuning improved MAE considerably, from 3.46 to 2.84.

- After applying data augmentation, the MAE dropped to 2.78, showing that
male faces were even more predictable under the model compared to female
faces.

- This model showed a very good performance with MAE=2.78, this is absolutely
due the large number of the training images (56200).

104



Here are the obtained results of gender-mixed model represented by the
Table 4.6 :

Table 4.6: Obtained results on our 03 datasets: Gender-mixed model (with different hyper-
parameters).

Models Inception_v3 Inception_v3 Inception_v3 Inception_v3
MTCNN preprocessing ✗ ✓ ✓ ✓

Fine-tuning ✗ ✗ ✓ ✓

Data augmentation ✗ ✗ ✗ ✓

BMI MAE (Illinois) 3.59 3.49 2.86 2.81
BMI MAE (VisualBMI) 7.13 6.99 5.89 5.62

BMI MAE (Arrest Records) 4.38 4.08 3.21 3.15

- Interpretations: As shown in the Table 4.6:

- The mixed model performed slightly worse than the male-only model. This
could be attributed to the increased variability in the dataset due to the inclu-
sion of both genders, making the task slightly more challenging, in other word:
this is compatible with what we montioned previously (BMI estimation benifits
from Gender Separation).

- Nevertheless, the progressive improvement through MTCNN, fine-tuning, and
augmentation led to a final MAE of 2.81 (3.59 to 2.81), showing that the model
was still able to generalize well across genders.

.

- Overall insights:

- MTCNN preprocessing consistently led to better detection and alignment, and
slightly improved results with only about 2.5%, because the model can easly
see the face and extract best features related with BMI, due to: Approxima-
tively there is no differences between backgrounds in images (the thing that
can complex the feature extraction step).

- Fine-tuning is the most impactful strategy across all configurations because
when fine-tuning a pre-trained model, this model adapts its previous learned
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(knowledge) representations to be more relevant to the target domain.

- Data augmentation can lead to improve the performance more with 3% - 2%,
because of the comparatively lesser variabilty in poses and lighting conditions
in this dataset.

- Gender-specific models slightly outperform the mixed model in their respective
domains, especially the male model, which achieved the lowest MAE, and we
cannot talk a lot about the error rate for the female model because of the insuff-
iscient training images (just: 3649x0.70 = 2555 images) to achieve a reasonable
performances. So we want to demonstrate that BMI estimation really benefits
a little bit from gender perception.

- The BMI MAE values on VisualBMI are very High in all cases, in all models,
because this dataset is known for its very noisy nature. It contains: some of
very low-resolution images, many Non-frontal or varied poses, also many of im-
ages contain objects such as headphones, phones, glasses, or other accessories,
which can cause a poor generalization performances.

4.6 Conclusion

This chapter presented our key contributions to BMI estimation from facial images,
validated across three diverse datasets. Our experiments showed that Vision Trans-
formers, especially ViT-H-14, outperformed traditional CNNs in BMI prediction
tasks, but the training of this model require a huge computational resources and
a lot of time. Data augmentation significantly improved model robustness specifi-
cally in case of the large variabilty in poses and lighting conditions in this dataset,
fine-tuning is a very impactful option but need a suffiscient size of dataset, and
multi-task learning strategies further enhanced accuracy that ensurs that the BMI
estimator model need informations on the age and the gender of the person.

Gender-specific modeling is a good idea, because BMI estimation really benefits
from gender perception.

These findings emphasize the importance of dataset diversity, attention-based ar-
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chitectures, and tailored training strategies for medical image analysis.

In the conclusion, we conclude this study by summarizing our findings
and discussing future research directions in automated health monitoring
using facial analysis.
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Conclusion

This thesis investigated the estimation of Body Mass Index (BMI) from facial im-
ages using deep learning techniques. The goal was to design a non-invasive and
scalable solution to facilitate health monitoring, especially where traditional BMI
measurements are impractical.

We reviewed the importance of BMI in public health and presented a methodology
that combines face detection and alignment (via MTCNN) with feature extraction
using state-of-the-art deep networks: ViT-H/14, ResNet50, VGG16, and Inception-
V3. These models were trained and fine-tuned using three diverse datasets (Visu-
alBMI, Arrest Records, and Illinois DOC Faces), incorporating data augmentation
and evaluating the effect of hyperparameters and loss functions.

Key results:

- ViT-H/14 achieved the best results on VisualBMI.

- ResNet50 and VGG16 performed reliably on Arrest Records.

- Inception-V3 showed good generalization on Illinois DOC Faces.

- All models outperformed prior VGGFace-based approaches.

Challenges encountered include dataset bias, input sensitivity, and BMI’s limited
medical expressiveness. Ethical and privacy considerations were also highlighted.

In summary, our findings confirm the potential of deep learning models for facial-
based BMI estimation, offering promising applications in digital health, wellness,
and remote diagnostics—provided ethical and clinical validation is pursued.

Summarized Conclusion

- BMI is a widely used indicator of health status.
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- Traditional BMI methods are sometimes invasive or impractical.

- Deep learning enables non-invasive, image-based BMI estimation.

- Our models demonstrated improved accuracy over previous methods.

Future Work

- Collect larger and more diverse datasets with demographic labels.

- Explore multi-task models combining BMI with age or gender prediction.

- Extend ViT-H/14 to real-world, high-resolution applications.

- Integrate 3D face modeling and robust preprocessing techniques.

- Partner with healthcare institutions for validation and ethical review.
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