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Résumé

Ce mémoire explore l’utilisation du calcul fractionnaire pour la commande du système Twin
Rotor MIMO (TRMS). Après une modélisation détaillée du système et un rappel des bases du
calcul fractionnaire, des régulateurs PID classiques et fractionnaires (FOPID), ainsi que des
commandes par mode de glissement (classique et fractionnaire), sont conçus. Leurs paramètres
sont optimisés via l’algorithme PSO. Les simulations montrent que les commandes fractionnaires
offrent de meilleures performances que les approches classiques, en particulier en termes de
robustesse et de rejet des perturbations.

Mots-clés : calcul fractionnaire, TRMS, régulateur PID, FOPID, commande par mode de
glissement, commande fractionnaire, optimisation par essaim particulaire (PSO).

Abstract

This project focuses on designing and optimizing fractional-order controllers for the Twin Rotor
MIMO System (TRMS), a nonlinear and strongly coupled platform. Two strategies—FOPID
and FOSMC—are developed and tuned using Particle Swarm Optimization (PSO). Simulation
results show that fractional-order controllers offer superior performance over classical methods
in terms of robustness, disturbance rejection, and handling system nonlinearities.

Keywords: fractional-order calculus, Twin Rotor MIMO System (TRMS), PID controller,
FOPID, sliding mode control, fractional-order sliding mode control, Particle Swarm Optimiza-
tion (PSO).
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Acronyms

- PID : Proportional Integral
Derivative

- FOPID : Fractional Order PID

- TRMS : Twin Rotor MIMO Sys-
tem

- MIMO : Multi-Input Multi-
Output

- LQR : Linear Quadratic Regula-
tor

- SMC : Sliding Mode Control

- FOSMC : Fractional Order Slid-
ing Mode Control

- SISO : Single-Input Single-
Output

- TITO : Two-Input Two-Output

- PSO : Particle Swarm Optimiza-
tion

- ACO : Ant Colony Optimization

- GA : Genetic Algorithm

- LSTM : Long Short-Term Mem-
ory

- DC : Direct Current

- PWM : Pulse Width Modulation

- LTI : Linear Time-Invariant

- G-L : Grünwald-Leitnikov Defini-
tion (of fractional derivative)

- R-L : Riemann–Liouville Defini-
tion (of fractional derivative)
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- RMSE : Root Mean Square Er-
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- IAE : Integral of Absolute Error
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General introduction

Motivation

Technological progress, especially in the aeronautics sector, has accelerated the development of
advanced control laws. While many control strategies have proven effective on aircraft and he-
licopters, increasing system complexity often leads to intricate, hard-to-implement controllers.
To address this, simulators like the Twin Rotor MIMO System (TRMS) are widely used as
experimental platforms.

The TRMS, a nonlinear, coupled, and unstable multivariable system, offers a realistic yet safe
environment for testing advanced control techniques before their application to real helicopters.

State of the Art

In recent decades, the growing complexity and performance requirements in industry have
driven major advances in automatic control. These improvements were made possible by tech-
nological progress especially the emergence of microprocessors and by developments in mathe-
matical tools such as numerical analysis and systems theory.

Among the promising tools in modern control theory is fractional calculus, which generalizes
classical differentiation to non-integer orders. Initially a theoretical curiosity, it gained practical
traction in the 1990s with Oustaloup’s CRONE controller and Podlubny’s PIλDµ regulator, both
exploiting the memory and robustness properties of fractional operators.

Since then, fractional-order control has proven its relevance in various fields, including pro-
cess control, robotics, and system identification, offering enhanced flexibility and robustness
compared to traditional methods.

Several scientific studies have confirmed the benefits of fractional-order systems and contributed
to their theoretical and practical development [2, 3, 4, 5]. These references provide a strong
foundation for further research in this area.

Objective of this Thesis

Our main objective in this thesis is to develop and validate fractional-order control strategies for
the Twin Rotor MIMO System (TRMS), demonstrating how non-integer operators can improve
performance compared to classical integer-order approaches. Specifically, we aim to:

- Introduce fractional-order operators into TRMS control laws and quantify their benefits
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(robustness, disturbance rejection, tuning flexibility) relative to integer-order designs.

- Optimize both PID and fractional PID (FOPID) controllers using Particle Swarm Opti-
mization (PSO) for the decoupled TRMS model, then assess performance degradation if
any when applied to the fully coupled dynamics.

- Extend sliding mode control (SMC) to a fractional-order sliding mode controller (FOSMC)
for the TRMS, and compare its ability to mitigate coupling effects and reduce chattering
versus classical SMC.

- Implement and validate both integer-order and fractional-order controllers on an experi-
mental TRMS.

Thesis Overview

This thesis investigates the application of fractional-order control strategies to the Twin Rotor
MIMO System (TRMS), a benchmark platform that mimics helicopter flight dynamics.

Chapter 1 presents the full modeling of the TRMS, including its physical components, and
the nonlinear dynamic equations governing the pitch and yaw axes. An open-loop stability
analysis reveals the system’s intrinsic coupling and instability.

Chapter 2 introduces fractional calculus, detailing the Riemann–Liouville and Caputo defi-
nitions, along with their distinctive properties (memory effect, nonlocal behavior). Numerical
approximation methods such as Oustaloup’s recursive filter are also discussed in the context of
control systems.

Chapter 3 focuses on designing classical PID and fractional-order PID (FOPID) controllers,
optimized using the Particle Swarm Optimization (PSO) algorithm. The performance of both
controllers is compared on decoupled and coupled TRMS models. Results highlight FOPID’s
superior robustness.

Chapter 4 develops sliding mode control (SMC) and its fractional counterpart (FOSMC).
After designing both on the decoupled model* Simulations show that FOSMC significantly
reduces chattering and better handles the coupling effects.

Chapter 5 presents the experimental validation of PID and FOPID controllers on a physical
TRMS bench. Despite practical constraints (sensor noise, actuator saturation, model uncer-
tainties), the FOPID controller maintains improved performance.

The general conclusion emphasizes the benefits of fractional-order controllers (FOPID and
FOSMC) in terms of robustness, disturbance rejection, and coupling management. Future work
may include online adaptive fractional control strategies.
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Chapter 1

Principles and Mathematical Modeling
of the Twin Rotor MIMO System

1.1 Introduction

The field of aerospace control presents significant challenges due to the high complexity, strong
nonlinearities, and safety-critical nature of flight systems. Real-world aircraft and rotorcraft
operate under uncertain environmental conditions, experience strongly coupled dynamics, and
require precise control to ensure stability and performance.

While the development of advanced control strategies is essential for aerospace applications,
their direct implementation on real aircraft is often impractical and risky. High costs, safety
concerns, and the complexity of real-world systems necessitate the use of experimental testbeds
and simulation environments to evaluate control strategies before real-world deployment.

To address these challenges, experimental platforms such as the Twin Rotor MIMO System
have been developed. The TRMS serves as a laboratory-scale model, designed to mimic the
dynamics of a helicopter, providing a controlled environment for testing and validating advanced
control techniques. Its strongly coupled pitch and yaw dynamics make it an ideal benchmark
for studying multi-input multi-output (MIMO) control strategies.

A comprehensive understanding of the TRMS’s behavior requires the development of a
mathematical model that accurately describes the relationships between its inputs and outputs.
Such a model can be expressed in the form of differential equations, state-space representations,
or transfer functions to analyze the system’s dynamics. However, achieving an accurate ana-
lytical model is often challenging due to complex physical phenomena such as aerodynamics,
friction, and coupling effects. Alternatively, a system identification approach can be used, where
the model is derived from experimental data to capture the system’s behavior.

This chapter begins with an introduction to helicopter flight principles and a presentation
of the TRMS. We then provide a detailed modeling of the system, covering both coupled
and decoupled models, before concluding with open-loop simulations to validate the derived
equations.
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1.2 Helicopter Flight Principle

Helicopters achieve flight through the principles of aerodynamics, utilizing rotating blades to
generate lift and maneuver in multiple directions. Unlike fixed-wing aircraft, helicopters can
hover, take off, and land vertically, as well as move forward, backward, and sideways. Addition-
ally, helicopters possess six degrees of freedom, allowing them to move in three translational
axes (forward/backward, left/right, up/down) and three rotational axes (pitch, roll, yaw). This
unique capability is enabled by two key components: the main rotor, which provides lift and
thrust, and the tail rotor, which counters torque and maintains stability.

Figure 1.1: Single Main Rotor Helicopter[1]

1.2.1 Forces Acting on the Helicopter

Once a helicopter leaves the ground, it is acted upon by four aerodynamic forces; thrust, drag,
lift, and weight. Understanding how these forces work and knowing how to control them with
the use of power and flight controls are essential to flight.They are defined as follows:

Figure 1.2: Four forces acting on a helicopter in forward flight[1]
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- Lift: opposes the downward force of weight, is produced by the dynamic effect of the air
acting on the airfoil and acts perpendicular to the flightpath through the center of lift.

- Weight: the combined load of the aircraft itself, the crew, the fuel, and the cargo or
baggage. Weight pulls the aircraft downward because of the force of gravity. It opposes
lift and acts vertically downward through the aircraft’s center of gravity (CG).

- Thrust: the force produced by the power plant/ propeller or rotor. It opposes or over-
comes the force of drag. As a general rule, it acts parallel to the longitudinal axis.

- Drag: a rearward, retarding force caused by disruption of airflow by the rotor, fuselage,
and other protruding objects. Drag opposes thrust and acts rearward parallel to the
relative wind.

1.2.2 The main rotor

The main rotor is the primary component responsible for generating lift and controlling the
helicopter’s movement. It consists of rotating blades with an asymmetrical airfoil shape, which
creates aerodynamic lift based on Bernoulli’s principle. As the blades rotate, air moves faster
over the upper surface (extrados) than the lower surface (intrados), generating a pressure
difference that results in an upward lifting force. The amount of lift depends on two key
factors the rotor speed (RPM) and the blade angle of attack. The collective pitch control,
operated by a lever, adjusts the angle of attack of all blades simultaneously increasing blade
pitch results in greater lift and ascent, while decreasing blade pitch reduces lift and causes
descent. Additionally, the cyclic pitch control, managed through a joystick-like stick, changes
the pitch of individual blades as they rotate, allowing the pilot to tilt the rotor disk in different
directions. For instance, pushing the cyclic forward increases the pitch of the blades at the
rear while decreasing it at the front, causing the helicopter to move forward. These inputs
are transmitted through the swashplate mechanism, which uses tilting rings and control rods
to dynamically adjust blade angles. In essence, the main rotor provides both lift and thrust,
enabling the helicopter to hover, climb, descend, and move in any direction with precise control.

Figure 1.3: An illustration of aerodynamic lift generation, showing the pressure difference and
airflow around a rotor blade[1]
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1.2.3 The tail rotor

The tail rotor is essential for maintaining stability and controlling the helicopter’s yaw (rotation
around the vertical axis). According to Newton’s Third Law, the rotation of the main rotor
generates an opposite reactionary torque that would cause the fuselage to spin uncontrollably
without compensation. To counteract this, the tail rotor produces lateral thrust in the oppo-
site direction of the main rotor’s torque, stabilizing the aircraft. The pilot controls this thrust
using anti-torque pedals, which adjust the blade pitch of the tail rotor. Pressing the right pedal
increases thrust, causing the helicopter to rotate right, while pressing the left pedal decreases
thrust, making the helicopter turn left. This system provides precise yaw control, allowing the
pilot to maintain heading and execute turns smoothly. While the tail rotor does not physi-
cally tilt, its thrust variation is perceived as a directional force that influences the helicopter’s
movement. Ultimately, the tail rotor ensures stability and maneuverability, enabling controlled
flight.

Figure 1.4: A tail rotor is designed to produce thrust in a direction opposite torque. The thrust
produced by the tail rotor is sufficient to move the helicopter laterally.[1]

1.3 TRMS Description and Configuration

1.3.1 System description and schematics

The Twin Rotor MIMO System is an experimental platform designed by Feedback Instruments
Ltd to facilitate laboratory-based research in control system engineering. It serves as a simplified
representation of a helicopter’s dynamic behavior, allowing for the safe testing and validation
of advanced control algorithms before applying them to actual aerial vehicles.

While the TRMS replicates key aerodynamic and control characteristics of a helicopter, it
incorporates several simplifications. Unlike a real helicopter, which maintains a nearly constant
rotor speed while adjusting blade pitch to control movement, the TRMS operates by modulating
rotor speeds to achieve changes in position and velocity. Additionally, the system is fixed to a
central pivot, limiting its motion to pitch (vertical) and yaw (horizontal) rotations.

A key feature of the TRMS is its strong cross-coupling between the rotors, similar to real
helicopters. Adjustments in the main rotor, which influences vertical movement, also induce
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changes in the yaw direction due to aerodynamic interactions. These complex MIMO (Multi-
Input Multi-Output) dynamics make the TRMS an ideal testbed for control system experi-
mentation, providing researchers with a platform to explore and refine nonlinear, adaptive, and
robust control techniques[6].

Figure 1.5: Scheme of TRMS’ Components

The principle components of the TRMS are as represented in Figure 1.5:

- The base: It is the component on which the system rests. It contains electronic circuits
for signal adaptation and filtering of both input and output signals.

- The tower: Supports the beam structure.

- The Free-Free beam: Can freely rotate on its base in both the horizontal and vertical
planes.

- Two DC motor(main and tail): Attached to the ends of the beam, each consisting of
a propeller, a DC rotor, and a safety shield.

- The counterbalance:Fixed at the center or at the end of the beam to reduce vibrations,
it is also used to simulate different scenarios of weight.

- The rotor on/off control box:It allows initializing the TRMS or stopping it using the
emergency stop button

Overview of System Dynamics:

The Twin Rotor MIMO System (TRMS) has two degrees of freedom, allowing it to move
freely in both the horizontal and vertical planes. The horizontal motion (azimuth) ranges from
−2.82 rad to +2.82 rad, while the vertical motion (elevation) is limited to −1.05 rad to +1.22 rad
like is represented on figure 1.6.
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Figure 1.6: Range of Motion of the TRMS

If needed, the movement can be restricted to a single plane using locking screws, enabling
experiments that focus solely on one-degree-of-freedom (1-DOF) control. This feature provides
flexibility for researchers to study isolated dynamics before addressing the full MIMO complex-
ity of the system.

Figure 1.7: Vertical and Horizontal Screws

Since the TRMS operates in two degrees of freedom, it is essential to measure its key state
variables to analyze and control its behavior effectively.

The measurable values of the TRMS (representing the system outputs) consist of:

- The horizontal angle αh, called azimuth, which is primarily generated by the propulsive
force of the tail rotor.

- The vertical angle αv, called elevation, which is mainly produced by the propulsive force
of the main rotor.

The spherical joint allows the beam to rotate simultaneously in both the horizontal and
vertical planes, making it a two-degree-of-freedom (2-DOF) system.
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Control of the rotors:

The system inputs (i.e., the control commands) are the voltage supplies to the rotors, uv

and uh, which vary within a range of [−2.5 V,+2.5 V].

To effectively control the motion of the TRMS, the system relies on DC rotors, which have
the advantage that their rotation speed is proportional to the applied voltage. This allows for
precise regulation of the pitch and yaw angles by adjusting the input voltage.

The rotor control mechanism is based on a chopper circuit, which is a static converter
powered by a DC voltage source. This converter produces a variable average voltage across
the rotor terminals, enabling smooth speed control. The chopper is driven by Pulse Width
Modulation (PWM) signals, which are generated from the control signal sent by the PC via
the data acquisition card (See Figure 1.8).

Figure 1.8: Control of the rotors

Measurement and Control Signal Acquisition:

The state of the beam is described by four process variables: the horizontal and vertical
angles, measured using position sensors placed at the pivot point, and the two corresponding
angular velocities. Tacho-generators measure the angular velocities of the rotors. Unlike a real
helicopter, where aerodynamic force is controlled by adjusting the angle of attack, this model
keeps the angle of attack fixed, and aerodynamic forces are regulated by varying rotor speeds.
Adjustments in voltage levels lead to changes in the propellers’ rotational speeds, subsequently
altering the beam’s position. Optical encoders determine the beam’s angular position: two
light sources (A and B) emit beams passing through two rings of slits on a disc. These slits are
offset to produce rectangular wave signals with a specific phase difference at the output. The
sign of this phase difference indicates the direction of rotation.1.9

Figure 1.9: Position sensor
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The control signal originates from the computer and passes through the D/A converter of
the data acquisition board. The output of the D/A converter is connected to a power amplifier,
which then drives the DC rotor. Both the power amplifier and encoder interface are housed
within the TRMS unit. Additionally, this unit includes two switches: a main power switch and
a separate switch to cut off power specifically to the DC rotor.

1.4 TRMS Modeling

The Twin Rotor MIMO System (TRMS) has been modeled using various methodologies in the
literature. An analytical modeling approach using fundamental laws of physics, specifically
Newton’s second law and Euler–Lagrange equations, was applied in [7]. A hybrid modeling
method, combining physics-based analytical modeling using Newton’s equations and Genetic
Algorithms (GA) for parameter estimation, was utilized in [8]. Furthermore, [7] employed a
hybrid modeling approach, combining first-principles physics-based nonlinear equations derived
using Newton’s second law and refined through Genetic Algorithm optimization,Also An ant
colony optimization-based approach was proposed for predicting the dynamic behavior of a twin
rotor system, demonstrating the effectiveness of nature-inspired algorithms in system modeling
[9].Finally, a data-driven approach utilizing a fuzzy inference system based on clustering and
Differential Evolution for the identification of a twin rotor system was presented in [10]and A
real-time observer based on a Chebyshev neural network was developed and implemented for
the control of a twin rotor system, highlighting the potential of neural network-based observers
in nonlinear system estimation [11].

In this work, the mathematical modeling of the Twin Rotor MIMO System follows the
methodology proposed by [12]. This approach involves deriving nonlinear equations explicitly
based on fundamental physical principles, capturing the dynamics associated with gravitational
effects, aerodynamic forces, and rotor dynamics. Given that the TRMS is an underactuated
nonlinear MIMO system, it requires careful consideration of its complex interactions. The
nonlinear equations obtained through this approach are subsequently validated and calibrated
through rigorous simulation and experimental testing, ensuring an accurate and reliable math-
ematical representation of the TRMS dynamics. Since the TRMS possesses two degrees of
freedom (pitch and yaw rotations), these dynamics are modeled separately yet simultaneously,
reflecting the intricate coupling between the two axes. The validation step through simulation
and experiments ensures the robustness and precision of the resulting model.

1.4.1 Vertical subsystem

In this subsystem, the analysis focuses on rotation around the horizontal axis. Several forces act
on this subsystem: primarily, the force generated by the rotor, responsible for most of the system
dynamics, as well as gravitational forces due to the weight of the various components.Figure
1.10 illustrates these forces.
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Figure 1.10: vertical subsystem.

The application of Newton’s second law gives:

Mv = Jv
d2αv

dt2
(1.1)

With: Mv = ∑4
i=1 Mvi

Jv = ∑8
i=1 Jvi

(1.2)

Where:

- Mv: Moment of the resultant force

- Jv: Sum of moments of inertia about the horizontal axis

- αv: Vertical angle (angle of elevation)

As mentioned above, we have 4 moments of force, so we have 8 moments of inertia to
calculate. We have 8 rigid bodies, so 8 moments. We will start by detailing the calculation of
the moments of force and then move on to the calculation of the moments of inertia.

We therefore have the following moments of forces:

- Moment of the gravitational force

- Moment of the aerodynamic force

- Moment of the centrifugal force
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- Moment of the friction force

Moment of the Gravitational Force Mv1:

Physically, the moment measures the tendency of a force to rotate an object around a point
or an axis. Therefore, one can say that the moment is the applied force at the point, multiplied
by the lever arm (distance).

M⃗ = d⃗ ∧ F⃗

By defining the applied force and measuring the distance between the point where the force
is applied and the center of our reference frame, we can calculate the resulting moment. We
will do this for the 8 bodies present (the two parts of the arm, the bar and the counterweight,
the two rotors, and the two airscrew rotors). For example, for F⃗ = migĵ:

M⃗ = d⃗ ∧ F⃗ =


− l

2

0
0

 ∧

mig sin(αv)
−mig cos(αv)

0

 = l

2mig cos(αv)

We can therefore apply this definition to our system. The moment of the gravitational force
is given by the sum of each gravitational moment. We can write:

Mv1 = g [(A−B) cos(αv)− C sin(αv)] (1.3)

With: 
A =

(
mt

2 +mtr +mts

)
lt

B =
(

mm

2 +mmr +mms

)
lm

C = mb

2 lb +mcblcb

(1.4)

Where:

mmr: Mass of the main rotor.

mm: Mass of the main part of the beam.

mtr: Mass of the tail rotor.

mt: Mass of the tail part of the beam.

mcb: Mass of the counterweight.

mb: Mass of the beam’s counterweight.

mms: Mass of the main rotor airscrew.

mts: Mass of the tail rotor airscrew.

lm: Length of the main part of the beam.

lt: Length of the tail part of the beam.
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lb: Length of the counterweight beam.

lcb: Distance between the counterweight and the joint.

g: Gravitational acceleration.

Moment of the Centrifugal Force Mv2:

When the beam performs a rotation in the horizontal plane, it creates an orthogonal force
to the direction of rotation, called the centrifugal force. The expression of this force is given
by the following relation:

F⃗ = mtΩ2
nr⃗t (1.5)

Ωh = dαh

dt
being the angular velocity of the arm around the vertical axis.

We can therefore write the moment as:

M⃗ = d⃗ ∧ F⃗

We can thus write the moment of the centrifugal force as follows:

Mv2 = −Ω2
h(Alt +Blm + c∗) sin(αv) cos(αv)

Mv2 = −1
2Ω2

h(Alt +Blm + c∗) sin(2αv)
(1.6)

With
C∗ = mbl

2
b

2 +mcbl
2
cb (1.7)

Moment of the Aerodynamic Force Mv3:

The aerodynamic lift force depends on the angular velocity of the main rotor. The relation-
ship will be determined experimentally using empirical methods (non-linearity, so we will give
the expression later in this report). We can therefore write the expression of the force as:

Fv = Sffv(ωm) (1.8)
The resulting moment is therefore:

Mv3 = lmSffv(ωm) (1.9)

Where: ωm is the angular velocity of the main rotor, and fv(ωm) is the dependence of the
aerodynamic force on the angular velocity of the main rotor.

Moment of the Friction Force Mv4:

The frictions here are viscous; they are proportional to the rotational speed around the
horizontal axis:

Mv4 = −Ωvkv (1.10)

With: Ωv = dαv

dt
is the angular velocity of the arm around the horizontal axis, and kv is the

friction constant that we will determine experimentally.
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Moment of Inertia:

The moment of inertia allows us to express the distribution of the body’s mass during its
rotation around an axis. It is calculated using the following formula:

J =
∫
r2dm (1.11)

The solids that make up our flight simulator are basic geometric shapes (cylinders, circles,
rods...), the moments of such figures are known, so we can write:



Jv1 = mmrl
2
m

Jv2 = mm
l2m
3

Jv3 = mtrl
2
t

Jv4 = mb
l2b
3

Jv5 = mcbl
2
cb

Jv6 = mt
l2t
3

Jv7 = mmsl
2
m + mms

2 r2
ms

Jv8 = mtsl
2
t +mtsr

2
ts

(1.12)

Where:

- rms: The radius of the main propeller.

- rts : The radius of the tail propeller.

1.4.2 Horizontal subsystem

Similarly to the vertical plane, the tail rotor is responsible for most of the horizontal dynamics.
Since gravity does not have an effect in this plane, aerodynamic force is the primary force
causing motion. Additionally, friction in the joints is always present during motion and must
be accounted for, as illustrated in 1.11 By always applying Newton’s second law, we obtain:

Mh = Jh
d2αh

dt2
(1.13)

With: Mh = ∑2
i=1 Mhi

Jh = ∑8
i=1 Jhi

(1.14)

Where:

- Mh: Moment of the resultant force in the horizontal plane.

- Jh: The sum of moments of inertia about the vertical axis.

- αh: The azimuth angle of the beam.

TRMS Modeling Page 30



Principles and Mathematical Modeling of the Twin Rotor MIMO System

Figure 1.11: horizontal subsystem

Moment of the Aerodynamic Force Mh1:

From figure 1.11 which shows the direction of the aerodynamic force, this force depends on
the angular velocity of the tail rotor. Therefore, the moment of the aerodynamic force is as
follows:

Mh1 = ltSfFh(ωt) cos(αv) (1.15)

Where:

- ωt: The angular velocity of the tail rotor.

- Fh(ωt): The dependence of the aerodynamic force on the angular velocity of the tail rotor.

Moment of the Friction Force Mh2:

We still consider viscous-type friction, so the general form of the moment of the friction
force is:

Mh2 = −Ωhkh (1.16)

with:

- Ωh = dαh

dt
: Angular velocity of the beam around the vertical axis.

- kh: Friction constant to be determined experimentally.

Moment of Inertia Jh:
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The moments of inertia about the vertical axis are:

Jh1 = mm

3 (lm cosαv)2

Jh2 = mt

3 (lt cosαv)2

Jh3 = mb

3 (lb sinαv)2

Jh4 = mtr(lt cosαv)2

Jh5 = mmr(lm cosαv)2

Jh6 = mcb(lcb sinαv)2

Jh7 = mmsr
2
ms +mms(lm cosαv)2

Jh8 = mts

2 r2
ts +mts(lt cosαv)2

(1.17)

Or in compact form:
Jh(αv) = D cos2 αv + E sin2 αv + F (1.18)

With: 
D =

(
mm

3 +mmr +mms

)
l2m +

(
mt

3 +mtr +mts

)
l2t

E = mb

3 l
2
b +mcbl

2
cb

F = mmsr
2
ms + mts

2 r2
ts

Gyrosopic Effect:

When a helicopter is rotated around an axis, it generates several phenomena such as the
gyroscope effect. Additionally, an object in rotation possesses a kinetic moment proportional
to its inertia and angular velocity, which is expressed by the formula S = Iω. Koenig’s theorem
links the kinetic moment and the sum of moments as follows:

dS

dt
=

n∑
i=1

M(F⃗i)

In a helicopter, the rotor (mass) rotates around a main axis, just like in a gyroscope. In case
of system perturbation, it will try to compensate by performing a rotation around a horizontal
axis parallel to the applied force. Thus, any force applied outside the center of mass of the
system will cause a resulting perpendicular movement. The following relations are derived:

Sv = JvΩv − Jtrωt

Sh = Jh(αv)Ωh − Jmrωmcos(αv)

With:

- Jtrωt: is the kinetic moment generated by the tail rotor to counteract the gyroscopic
effect.

The kinetic moment Jmrωmαv is generated by the main rotor to counteract the gyroscopic effect
due to the rotation of the tail rotor. By replacing all the results found, we can summarize the
dynamics of our system as follows:
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

dSv

dt
= lmSfFv(ωm)− Ω2

h(Alt +Blm + C∗) sin(αv) cos(αv)− Ωvkv

+g[(A−B) cos(αv)− C sin(αv)]
Ωv = dαv

dt

Sv = JvΩv − Jtrωt

dSh

dt
= ltSfFh(wt) cos(αv)− ΩhKh

Ωh = dαh

dt

Sh = Jh(αv)Ωh − Jmrωmcos(αv)

(1.19)

1.4.3 Dynamics of Propellers

The Twin Rotor MIMO System (TRMS) is equipped with two propellers, each consisting of a
directe current motor and a rotor airscrew. Although the two rotors are identical, they have
different mechanical charges.

We consider the simple model of an MCC with an external charge:

Iω̇ = ki

R
(u− kbω)− TL (1.20)

With:

- ω: Angular velocity of the rotor (rad/s).

- u: Command voltage (V).

- I: Moment of inertia.

- R: Resistance of the armature.

- kb: Constant of the EMF.

- ki: Torque constant.

- TL: Resistant torque generated by the load.

The load TL encompasses the mechanical and aerodynamic frictions resulting from the
rotation of the rotors. Since these frictions are complex to model, a new variable Uvv for the
vertical axis and Uhh for the horizontal axis has been introduced, and two non-linear functions
have been experimentally determined to characterize their behavior. As a result, the subsystems
of the propellers become first-order systems. of first order with a nonlinear output function as
follows [6]: 

duvv

dt
= 1

Tmr
(−uvv + kmruv)

duhh

dt
= 1

Ttr
(−uhh + ktruh)

(1.21)

With: ωm = pv(uvv)
ωt = ph(uhh)

Where:
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- Tmr: The time constant of the main rotor.

- Ttr: The time constant of the tail rotor.

- kmr: The static gain of the main rotor.

- ktr: The static gain of the tail rotor.

This can be illustrated in the following figure1.12

Figure 1.12: Bloc diagram of propellers

1.4.4 Nonlinearities and Model Parameters:

We will now establish the various nonlinear equations related to the thrusters and aerodynamic
forces. The characteristics of the aerodynamic forces can be expressed in polynomial form as
follows:

Fv(ωm) = −3.48 · 10−12ω5
m + 1.09 · 10−9ω4

m + 4.123 · 10−6ω3
m − 1.632 · 10−4ω2

m + 9.544 · 10−2ωm

Fh(ωt) = −3 · 10−14ω5
t − 1.595 · 10−11ω4

t + 2.511 · 10−7ω3
t − 1.808 · 10−4ω2

t + 0.0801ωt

(1.22)

pv(uvv) = ωm = 90.99u6
vv + 599.73u5

vv − 129.26u4
vv − 1238.64u3

vv + 63.45u2
vv + 1283.41uvv

ph(uhh) = ωt = 2020u5
hh − 194.69u4

hh − 4283.15u3
hh + 262.27u2

hh + 3796.83uhh

(1.23)

After establishing the equations governing our system, we must now define the parameter
values of our system in order to simulate it.
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Parameter Numerical Value Unit
mmr 0.228 kg
mm 0.0145 kg
mtr 0.206 kg
mt 0.0155 kg
mcb 0.068 kg
mb 0.022 kg
mms 0.225 kg
mts 0.165 kg
lm 0.24 m
lt 0.25 m
lb 0.26 m
lcb 0.13 m
g 9.806 m/s2

Jv 0.055448 kg·m2

Jtr 2.65 · 10−5 kg·m2

Jmr 1.6543 · 10−5 kg·m2

rms 0.155 m
rts 0.10 m

Table 1.1: TRMS Parameters.

We can also summarize the table of time constants and various gains present in our system:

Parameter Numerical Value Unit
kv 0.00545371 V·s/rad
kh 0.0095 N·m/V
Tmr 1.432 s
Ttr 0.3842 s
kmr 1 –
ktr 1 –
Sf 8.4332 · 10−4 N·m·s/rad

Table 1.2: Motor Parameters.

1.5 State Space Representation

One of the representations that allows for a complete description of our system and enables
analysis of stability, controllability, and observability is the state space representation, which
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is given as follows:  Ẋ = F (X,U)
Y = h(X)

We must therefore define a state vector X, an input vector U, and an output vector Y. We
have chosen the following vectors:

- Input vector: U = [uv uh]T

- State vector: X = [x1 x2 x3 x4 x5 x6]T = [αv Sv uvv αh Sh uhh]T

- Output vector: Y = [αv αh]T

Using our mathematical model 1.19, we can provide the state representation of our simulator
as follows:



ẋ1 = x2 + JtrPh(x6)
Jv

ẋ2 = lmSfFv(Pv(x3))− kv

[
x2 + JtrPh(x6)

Jv

]
+ g [(A−B) cos(x1)− C sin(x1)]

− 1
2

[
x5 + JmrPv(x3) cos(x1)

Jh(x1)

]2

(Alt +Blm + C∗) sin(2x1)

ẋ3 = 1
Tmr

(−x3 +Kmruv)

ẋ4 = x5 + JmrPv(x3) cos(x1)
Jh(x1)

ẋ5 = lfSfFh(Ph(x6)) cos(x1)− kh

[
x5 + JmrPv(x3) cos(x1)

Jh(x1)

]

ẋ6 = 1
Ttr

(−x6 +Ktruh)

(1.24)

1.5.1 Decoupling of the State Model

The state model 1.24 is nonlinear and strongly coupled. However, by restricting the motion
of the rod to a single plane, we reduce the degrees of freedom from 2 to 1. This allows us to
obtain two state representations for our two subsystems.

Vertical Subsystem:

In this first case, we fix the azimuth angle αh = αh0, so U = uv (the input voltage to the
tail rotor motor is zero), and y = αv. The state vector becomes Xv = [αv Sv uvv]T . We can
therefore write the first decoupled state model as follows:


ẋ1v = x2v

Jv

ẋ2v = g[(A−B) cos(x1v)− C sin(x1v)] + lmSfFvPv(x3v)− kv
x2v

Jv

ẋ3v = 1
Tmr

(−x3v + kmruv)
(1.25)
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Horizontal Subsystem:

In this second case, we fix the elevation angle αv = αv0, so U = uh (the input voltage to the
main rotor motor is zero), and y = αh. The state vector becomes Xh = [αh Sh uhh]T . We can
therefore write the second decoupled state model as follows:


ẋ1h = x2h

Jh(αv0)

ẋ2h = ltSfFhPh(x3h)− kh

Jh(αv0)x2h

ẋ3h = 1
Ttr

(−x3h + ktruh)
(1.26)

1.5.2 Open-Loop Simulation

We will now perform some open-loop simulations on our system. We will plot the free responses
and step responses of the two subsystems as well as the coupled system:

Free Response:

(a) Vertical subsystem (b) Horizontal subsystem

Figure 1.13: Free response of the decoupled subsystems

Figure 1.14: Free response of the coupled system
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Step Response (u = 0.5V ):

(a) Vertical subsystem (b) Horizontal subsystem

Figure 1.15: Step response of the decoupled subsystems (u = 0.5V )

Figure 1.16: Step response of the coupled system (u = 0.5V )

1.5.3 Comments and Observations

1. Vertical Subsystem

- We notice that the system stabilizes at an equilibrium point αv0 = −0.9 rad/sec,
which results from friction forces.

- The damped oscillatory response is due to the gravitational moment.
- This vertical subsystem is stable for |Uv| < 1.3 V.

2. Horizontal Subsystem

- The horizontal subsystem remains in its initial state as long as it is not excited.
- This subsystem diverges even for small excitations.
- When the horizontal subsystem is excited, the vertical subsystem converges to a new

equilibrium point.
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1.6 Conclusion

In this chapter, we studied the TRMS system. We began by understanding the operation of a
helicopter and how the TRMS simulator works.

We then established the mathematical model of our system by providing the differential
equations governing its operation as well as the nonlinear state representation.

Finally, we performed some open-loop simulations to observe how our simulator behaves in
the absence of a controller.
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Chapter 2

fractional order calculus

2.1 Introduction

Fractional-order calculus is the field of mathematics that deals with the study and application
of integrals and derivatives of arbitrary order. It is considered an ancient concept. Fractional-
order calculus was introduced 300 years ago, and the question of fractional derivatives was first
addressed in 1695 by Leibniz in a letter to L’Hôpital. When L’Hôpital asked him what the half-
order derivative of the function x(t) with respect to the variable t might be, Leibniz replied that
it led to an apparent paradox, from which useful consequences would one day be drawn. This
event is now regarded as the birth of fractional calculus. Many mathematicians such as N.H.
Abel, M. Caputo, L. Euler, J. Fourier, A.K. Grünwald, J. Hadamard, G.H. Hardy, O. Heaviside,
P.S. Laplace, G.W. Leibniz, J. Liouville, B. Riemann, M. Riesz, and H. Weyl contributed to its
development up until the middle of the last century [13]. However, fractional-order calculus is
considered a new and interesting field of research, as it has only been the subject of extensive
research for just over three decades. The first book dedicated to fractional-order calculus was
published in 1974 by K.B. Oldham and J. Spanier [14], following collaborative work initiated
in 1968. Today, the use of fractional-order calculus and its applications is rapidly growing in
various fields.

Nevertheless, fractional-order calculus has been applied to almost all areas of science, en-
gineering, and mathematics. Fractional-order calculus has had a profound impact on nearly
every field, including viscoelasticity and rheology, electrical engineering, electrochemistry, bi-
ology, biophysics and biotechnology, signal and image processing, mechanics, mechatronics,
physics, and especially in the field of control theory [15].

In this chapter, we will begin by exploring the application areas of fractional-order calculus,
providing definitions related to fractional calculus and fractional-order operators, their main
properties, and also the Laplace transforms of fractional-order derivatives and integrals. We
will particularly present some approximation methods for fractional-order operators.
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2.2 Application Areas of Fractional-Order Calculus

Over the past two decades, fractional-order calculus has been applied to almost every field of
science, engineering, and mathematics. Fractional-order calculus has made a profound impact
in nearly all domains,electrical engineering, electrochemistry, biology, biophysics and biotech-
nology, signal and image processing, mechanics, mechatronics, physics, and especially in the
field of control theory. Although some mathematical issues remain unresolved, most challenges
have been overcome, and most major mathematical problems in the field of fractional-order
calculus have been addressed to the point where several mathematical tools for integer-order
and fractional-order calculus are now identical [15].

In Control Systems Many authors have focused on non-integer order calculus and have
used control laws that incorporate fractional derivatives. Podlubny[5, 16], and Caponetto et
al. [17] demonstrated that the best approach to ensure effective control of fractional-order
systems is the use of fractional-order controllers. They propose a generalization of traditional
PID controllers. Mbodje and Montseny [18] and Matsuda and Fuji (1993) successfully applied
fractional-order control laws to distributed parameter systems.

However, we cannot discuss fractional-order control without addressing the CRONE ap-
proach, introduced by Oustaloup (1991). The CRONE control is the work of a group of re-
searchers at the Laboratoire de l’Intégration du Matériau au Système (IMS) in Bordeaux, under
the direction of Alain Oustaloup. This approach has been the subject of numerous publications
and several books. The CRONE methodology enables the synthesis of robust dynamic out-
put feedback controls in the frequency domain for linear time-invariant (LTI) systems, whether
uncertain, single-input single-output (SISO), or multi-input multi-output (MIMO). The perfor-
mance it achieves can be explained by the minimally pessimistic consideration of uncertainties
in the controlled systems, as well as the effectiveness of the tuning parameters used. This
control strategy has been applied to automotive suspension systems, which also bear the same
name. However, it is worth noting that the implemented compensator is of integer order and
physically synthesized using classical components. The non-integer qualifier is still justified be-
cause the behavior of an authentic non-integer operator can be approximated with arbitrarily
small error over a given frequency band.

In Electrical Engineering Fractional-order systems are particularly interesting for finely
representing and reducing the order of devices whose operation relies on the diffusion of a
quantity (field, temperature, etc.). The link between diffusion and non-integer-order modeling
is analyzed in detail in [5, 16].

In Robotics Path Planning, Trajectory Optimization, and Beyond Fractional cal-
culus has emerged as a transformative tool in robotics, particularly in path planning, trajec-
tory optimization, and system modeling. For path planning, Likun Li et al. [19] introduced a
fractional-order enhanced ant colony optimization (ACO) method tailored for car-like mobile
robots operating in narrow or large environments. By integrating fractional-order kinematic
models and dynamic angle constraints, their approach generates smoother, more efficient paths
while adapting to real-time environmental changes. In trajectory control, Yixiao Ding et al.
[3] developed a fractional-order impedance controller for robot manipulators, leveraging frac-
tional derivatives to model damping forces with greater accuracy. This method outperforms
traditional integer-order controllers in step response and disturbance rejection, ensuring precise
trajectory tracking even under uncertainties.

For modeling and forecasting, Bhukya Ramadevi et al.[2] proposed a hybrid fractional-order
neural network to address wind power prediction challenges. Combining long short-term mem-
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ory (LSTM) networks with fractional-order layers, their model mitigates data gaps in wind
speed and direction, enhancing forecasting reliability for renewable energy applications. Mean-
while, Kishore Bingi et al. [4] reviewed fractional-order modeling of robotic manipulators ,
demonstrating its superiority in capturing complex dynamics, such as viscoelasticity in actua-
tors and memory-driven behaviors, over conventional integer-order models.

2.3 Fractional-order operators

Fractional calculus is a generalization of integration and differentiation to the fundamental op-
erator of non-integer order t0Dα

t , where t0 and t are the limits of the operation. The continuous
differential and integral operator is defined as [16]:

t0D
α
t =


dα

dtα α > 0
1 α = 0∫ t

t0
(dt)α α < 0

(2.1)

Where α ∈ R is the order of the operation. Several mathematical definitions exist for
fractional integration and differentiation.

2.3.1 Riemann-Liouville (R-L) Definition

Definition 1: Let α ∈ R+ and t0 ∈ R, and let f be a locally integrable function defined on
[t0,+∞[. The integral of order α of f with lower bound t is defined by [16]:

RL
t0 I

αf(t) = 1
Γ(α)

∫ t

t0
(t− τ)α−1f(τ)dτ (2.2)

where t ≥ t0 and Γ is the Euler Gamma function defined by:

Γ(α) =
∫ ∞

0
e−yyα−1dy (2.3)

Definition 2: Let α ∈ R+, t0 ∈ R, and f be a locally derivable function defined on [t0,+∞[.
The derivative of order α of f with lower bound t is defined by:

RL
t0 D

α
t f(t) = 1

Γ(n− β)
dn

dtn

∫ t

t0
(t− τ)n−β−1f(τ)dτ (2.4)

where n is an integer such that n− 1 < β < n.

This definition can also be derived from Equation 2.2 as follows:

RL
t0 D

α
t f(t) = dn

dtn

{
I(n−α)f(t)

}
(2.5)
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2.3.2 Caputo Definition

At the end of the 1960s, within the framework of his work on dissipation in a linear viscoelastic
material, Caputo introduced another definition of fractional differentiation [16] as follows:

C
t0D

α
t f(t) = In−αDnf(t) = 1

Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α−n+1dτ (2.6)

This definition can also be formulated in terms of the Riemann-Liouville definition as follows:

C
t0D

α
t f(t) = RL

t0 D
α
t f(t) +

n−1∑
k=0

tk−α

Γ(k − α + 1)f
(k)(0+) (2.7)

To illustrate the practical computation of the Caputo derivative, Figure 2.1 demon-
strates its application to the function f(t) = t2, highlighting the integral-based
formulation and its dependence on the order α
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Figure 2.1: Fractional derivative using caputo method

2.3.3 Definition of Grünwald-Leitnikov (G-L)

The fractional derivative for α > 0 of the G-L is given by [16]:

GL
t0 D

α
t f(t) = lim

h→0

1
hα

[ t−t0
h ]∑

k=0
(−1)k

(
α

k

)
f(t− k.h) (2.8)

where [·] denotes the integer part of a real number, h is the sampling period, and the
coefficients

(
α
k

)
are given by:
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(
α

k

)
= Γ(α + 1)

Γ(k + 1) · Γ(α− k + 1) (2.9)

The definition of Grünwald-Leitnikov for fractional integration is formulated as follows [15]:

GL
t0 I

α
t f(t) = GL

t0 D
−α
t f(t) = lim

h→0
hα

[ t−t0
h ]∑

k=0
(−1)k

(
−α
k

)
f(t− k.h) (2.10)

To illustrate the discrete approximation framework of the Letnikov-Grunwald def-
inition, Figures 2.2a and 2.2b demonstrate its application to the fractional integral
and derivative of f(t) = t2
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(a) Fractional Integral
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Figure 2.2: Comparison of fractional integral and derivative of f(t) = t2 using the Letnikov-
Grunwald definition.

2.4 Properties of Fractional Derivatives

- If f(z) is an analytic function of z, then its fractional derivative Dαf(z) is also an analytic
function of both z and α.

- For α = n, where n is an integer, the operator Dαf(z) yields the classical derivative of
order n.

- For α = 0, the operator acts as the identity:

D0f(z) = f(z)

- Fractional-order differentiation and integration are linear operations:

Dm {af(z) + bg(z)} = aDm {f(z)}+ bDm {g(z)}
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- Additive law (semigroup property):

t0D
α
t

[
t0D

β
t f(t)

]
= t0D

β
t [t0D

α
t f(t)] = t0D

α+β
t f(t), (2.11)

valid when ℜ(α) > 0, ℜ(β) > 0, and under certain regularity conditions on f(t).

- Commutation with integer-order derivatives:

dn

dtn
(t0D

α
t f(t)) = t0D

α
t

(
dnf(t)
dtn

)
= t0D

α+n
t f(t), (2.12)

provided that f (k)(a) = 0 for all k = 0, 1, . . . , n− 1.

- Successive fractional derivatives:

t0D
α
t f(t) = t0D

α1
t · · · t0D

αn
t f(t), where α =

n∑
i=1

αi, 0 < αi < 1

2.4.1 Properties of the Gamma Function

- Γ(z) is defined and analytic in the region ℜ(z) > 0.

- Γ(n+ 1) = n! for all integers n ≥ 0.

- Functional equation:
Γ(z + 1) = zΓ(z)

- This property, together with the previous one, characterizes the factorial function. Hence,
Γ(z) generalizes n! to complex numbers z. Some authors denote this by Γ(z + 1) = z!.

- Γ(z) can be analytically continued to a meromorphic function on the whole complex plane,
with simple poles at 0,−1,−2, . . .. The residues at those poles are:

Res(Γ,−m) = (−1)m

m!

- Infinite product representation:

Γ(z) =
[
zeγz

∞∏
n=1

(
1 + z

n

)
e−z/n

]−1

where γ ≈ 0.577 is the Euler–Mascheroni constant:

γ = lim
n→∞

(
n∑

k=1

1
k
− log n

)

- Euler’s reflection formula:

Γ(z)Γ(1− z) = π

sin(πz)
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This identity, together with the infinite product representation, leads to a product formula
for sin(πz).

- Stirling’s formula (asymptotic approximation for large |z|, ℜ(z) > 0):

Γ(z + 1) ≈
√

2π zz+1/2e−z

In particular:
n! ≈

√
2π nn+1/2e−n

- Legendre’s duplication formula:

22z−1Γ(z)Γ(z + 1/2) =
√
π Γ(2z)

2.5 Laplace Transform of Fractional-Order Operators

2.5.1 Laplace Transform of the Fractional Integral

The Laplace transform of the Riemann-Liouville fractional integral of order α > 0, defined by
Equation 2.2 and written as a convolution product of functions g(t) = tα−1

Γ(α) and f(t) [15]:

Iαf(t) = D−αf(t) = 1
Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ (2.13)

The Laplace transform of the function tα−1 is given by [16]:

G(s) = L{tα−1} = Γ(α)
sα

Thus, the Laplace transform of the Riemann-Liouville fractional integral is:

L{Iα(f(t))} = s−αF (s) (2.14)

In the same way, the Laplace transform of the fractional integral defined by Grünwald-
Leitnikov or Caputo is also given by Equation 2.10.

2.5.2 Laplace Transform of the Fractional Derivative

Definition of Riemann-Liouville:

L{Dαf(t)} = sαF (s)−
n−1∑
k=0

sk
[
Dn−k−1f(t)

]
t=0

(2.15)
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where (n − 1) < α < n; however, the practical applicability of the Laplace transform of
the Riemann-Liouville derivative is limited due to the lack of physical interpretation of the
fractional-order derivatives at t = 0.
Definition of Caputo:

L{Dαf(t)} = sαF (s)−
n−1∑
k=0

sk−αf (k)(0) (2.16)

With α > 0. The main advantage of the Caputo definition over the Riemann-Liouville
definition is that it allows for the consideration of conventional initial conditions that are easy
to interpret. Furthermore, the derivative of a constant in the Caputo sense is zero, whereas the
derivative of a constant in the Riemann-Liouville sense is an unbounded function at t = 0.

Definition of Grünwald-Leitnikov [16]

L{Dαf(t)} = sαF (s) (2.17)

2.6 Approximation of Fractional-Order Operators

There exist several techniques for approximating fractional-order operators using rational func-
tions. The available approximations in the frequency domain are referred to as analog approx-
imations or frequency-domain approximations [20]. Among these methods, one can find:

- The Oustaloup method.

- The Carlson method.

- The Charef method.

2.6.1 Oustaloup Method

This method [20] is based on approximating a function of the form:

H(s) = sα, α ∈ R (2.18)

by a rational function:

Ĥ(s) = C
N∏

k=−N

1 + s
ω′

k

1 + s
ωk

(2.19)

Using the following set of formulas:

ω′
0 = α−0.5ωu, ω0 = α0.5ωu,

ω′
k+1
ω′

k

= ωk+1

ωk

= αη > 1
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ω′
k

ωk

= η > 0; N = log(ωN/ω0)
log(αη) ; µ = logα

log(αη) , η = ωh

ωl

where ωu is the unit frequency gain and ωc is the central frequency of a geometrically
distributed frequency band around it. Let ωu = √ωhωl, where ωh and ωl are the high and low
frequencies, respectively.

Approximation Order Comparison The transfer function approximations for s0.5 using
Oustaloup’s method with orders N=2, 4, 6 demonstrate increasing complexity:

H1 = 2.512s5 + 98.83s4 + 531.7s3 + 442.3s2 + 56.87s+ 1
s5 + 56.87s4 + 442.3s3 + 531.7s2 + 98.83s+ 2.512

H2 = 2.512s9 + 212.2s8 + 4737s7 + 3.469×104s6 + 8.844×104s5

s9 + 103.7s8 + 2840s7 + 2.552×104s6 + 7.983×104s5

+7.983×104s4 + 2.552×104s3 + 2840s2 + 103.7s+ 1
+8.844×104s4 + 3.469×104s3 + 4737s2 + 212.2s+ 2.512

H3 = 2.512s7 + 155.9s6 + 2045s5 + 6806s4 + 5967s3 + 1378s2 + 80.73s+ 1
s7 + 80.73s6 + 1378s5 + 5967s4 + 6806s3 + 2045s2 + 155.9s+ 2.512

where higher N yields better approximation accuracy at the cost of higher-order dynamics in
the frequency range [ωL, ωH ] = [0.1, 1000] rad/s.
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Figure 2.3: Effect of Approximation Order N

Bandwidth Impact on Approximation Accuracy The transfer function approximations
for s0.5 using Oustaloup’s method with fixed order N=4 and varying bandwidths demonstrate
sensitivity to the chosen frequency range [ωL, ωH ]. For N = 4, the approximations take the
form:
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H1 =

3.162s9 + 53.25s8 + 333.9s7 + 1013s6 + 1628s5

+ 1432s4 + 690.1s3 + 176.1s2 + 21.75s+ 1
s9 + 21.75s8 + 176.1s7 + 690.1s6 + 1432s5

+ 1628s4 + 1013s3 + 333.9s2 + 53.25s+ 3.162

H2 =

10s9 + 724.5s8 + 1.387× 104s7 + 8.715× 104s6 + 1.905× 105s5

+ 1.475× 105s4 + 4.045× 104s3 + 3860s2 + 120.8s+ 1
s9 + 120.8s8 + 3860s7 + 4.045× 104s6 + 1.475× 105s5

+ 1.905× 105s4 + 8.715× 104s3 + 1.387× 104s2 + 724.5s+ 10

H3 =

31.62s9 + 1.275× 104s8 + 9.106× 105s7 + 1.35× 107s6 + 4.278× 107s5

+ 2.915× 107s4 + 4.269× 106s3 + 1.337× 105s2 + 868.4s+ 1
s9 + 868.4s8 + 1.337× 105s7 + 4.269× 106s6 + 2.915× 107s5

+ 4.278× 107s4 + 1.35× 107s3 + 9.106× 105s2 + 1.275× 104s+ 31.62
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Figure 2.4: Effect of Bandwidth [ωL, ωH ] on s0.5 Approximation with Fixed Order N=4.

2.6.2 Carlson Method

This approximation is based on Continued Fraction Expansion and Newton iterative process.
In the method, fractional operator is defined as

H(s) = sα (2.20)

The iterative Newton method will generate a sequence of approximations Hi(s) starting
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with the initial value H0(s) = 1 [5]. The rational function approximating H(s) is obtained in
the following form:

Hi(s) = Hi−1(s)

(
1
α
− 1

)
(Hi−1(s))1/α +

(
1
α

+ 1
)
s(

1
α

+ 1
)

(Hi−1(s))1/α +
(

1
α
− 1

)
s

(2.21)

The fractional order differentiator has the general transfer functionH(s) = sα, where 0 < α < 1,
which has to be approximated to an integer order differentiator model H(s). The transfer
functions for S0.1, S0.2, and S0.5 obtained by substituting α as 0.1, 0.2, and 0.5 respectively in
equation 2.21 for i = 1, are:

H0.1(s) = s0.1 = 11s+ 9
9s+ 11 (2.22)

H0.2(s) = s0.2 = 3s+ 2
2s+ 3 (2.23)

H0.5(s) = s0.5 = 3s+ 1
s+ 3 (2.24)

The models of equations. 2.22,2.23,2.24 obtained by first iteration of the Newton process, are
of first order.

1/α can have only integer values, hence it is not possible to obtain the approximated transfer
function of Sα directly for all other values of α.

For example: for S0.3 we use S0.1S0.2. The approximated transfer function for

H0.3(s) = s0.3 = s0.1s0.2 = (11s+ 9)(3s+ 2)
(9s+ 11)(2s+ 3) = 33s2 + 49s+ 18

18s2 + 49s+ 33 (2.25)

For S0.8 and S0.9, the approximations used are

S0.8 = S0.5S0.2S0.1 and S0.9 = S0.5S0.2S0.2 (2.26)
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G(s)
s0.1 i = 1 1.2222

(
s+0.8182
s+1.222

)
i = 2 1.4938 · (s+9.697)(s+1.002)(s+0.8182)(s+0.8781)(s2+2s+1.005)

(s2+1.985s+1.006)(s2+1.933s+1.012)(s2+1.614s+1.054) ·
(s+12.81)(s+1.222)(s+0.998)(s+0.1031)(s2+1.991s+0.9955)

(s2+1.972s+0.9938)(s2+1.91s+0.9879)(s2+1.53s+0.9487)

s0.2 i = 1 1.5
(

s+0.6667
s+1.5

)
i = 2 2.25 · (s+8.733)(s+0.6667)(s+0.06545)

(s2+2.019s+1.038)(s2+1.7455s+1.123) ·
(s+15.28)(s+1.5)(s+0.1145)

(s2+1.945s+0.963)(s2+1.553s+0.8903)

s0.3 = s0.2s0.1 1.8333
(

(s+0.6667)(s+0.8182)
(s+1.5)(s+1.222)

)
s0.4 = s0.2s0.2 2.25

(
s+0.6667

s+1.5

)2

s0.5 3
(

s+0.3333
s+3

)
s0.6 = s0.5s0.1 3.6667

(
(s+0.3333)(s+0.8182)

(s+3)(s+1.222)

)
s0.7 = s0.2s0.5 4.5

(
(s+0.3333)(s+0.6667)

(s+3)(s+1.5)

)
s0.8 = s0.5s0.2s0.1 5.5

(
(s+0.3333)(s+0.6667)(s+0.8182)

(s+3)(s+1.5)(s+1.222)

)
s0.9 = s0.5s0.2s0.2 6.75

(
(s+0.3333)(s+0.6667)2

(s+3)(s+1.5)2

)
Table 2.1: Approximated Transfer Functions for Various Fractional Orders

Approximation Order Comparison The transfer function approximations for s0.5 using
Carlson’s method show progressively more complex rational forms when implementing succes-
sive iterations of the approximation algorithm:

first iteration

H1 = 3s+ 1
s+ 3 ,

seconde iteration

H2 = 9s4 + 84s3 + 126s2 + 36s+ 1
s4 + 36s3 + 126s2 + 84s+ 9 ,

third iteration

H3 = 27s13 + 2925s12 + 80730s11 + 888030s10

s13 + 351s12 + 17550s11 + 296010s10

+4.687×106s9 + 1.304×107s8 + 2.006×107s7

+2.22×106s9 + 8.436×106s8 + 1.738×107s7

+1.738×107s6 + 8.436×106s5 + 2.22×106s4

+2.006×107s6 + 1.304×107s5 + 4.687×106s4

+296010s3 + 17550s2 + 351s+ 1
+888030s3 + 80730s2 + 2925s+ 27

where higher-order approximations provide better accuracy at the cost of increased computa-
tional complexity.
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Figure 2.5: Response of f-o differentiator s0.5 on applying Carlson method

2.6.3 Charef Method (Singularity Function)

The approximation method will differ depending on the order of the fractional transfer function
to be approximated, whether it is first or second order [21]:

Fractional-Order System of First Order

For a first-order fractional system, the modeling is in the form:

H(s) = 1
(1 + s

pT
)β

(2.27)

Equation 2.27 can be written in the form :

H(s) = 1
(1 + s

pT
)β

= lim
N→∞

N−1∏
i=0

(1 + s
zi

)
(1 + s

pi
) (2.28)

Where (N + 1) is the total number of singularities that can be determined by the frequency
band of the system. Equation 2.20 can be reduced to a finite number N , and the approximation
becomes:

H(s) = 1
(1 + s

pT
)α
≈
∏N−1

i=0 (1 + s
zi

)∏N
i=0(1 + s

pi
)

(2.29)

The poles and zeros of the singularity function can be obtained as follows:
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pi = (ab)ip0 i = 1, 2, 3, . . . , N
zi = (ab)iap0 i = 1, 2, 3, . . . , N − 1

(2.30)

with

p0 = pT 10
ϵp

20β

a = 10
ϵp

10(1−β)

b = 10
ϵp

log(ab)

β = log(a)
log(ab)

ϵP is the tolerated error in dB.

Fractional-Order System of Second Order

A second-order system is described by the equation:

G(s) = 1(
s2

ω2
n

+ 2ξ s
ωn

+ 1
)β (2.31)

where β is a positive real number such that 0 < β < 1. Two cases can be distinguished:

- Case 0 < β < 0.5

One can express the function 2.31 as follows:

Ge(s) =

(
s

ωn
+ 1

) (
s

ωn+1

)η(
s2

ω2
n

+ 2ξ s
ωn

+ 1
) (2.32)

With α = ζβ and n = 1− 2β, this can also be approximated by the function:

Ge(s) ≈

(
s

ωn
+ 1

)∏N−1
i=1

(
1 + s

zi

)
(

s2

ω2
n

+ 2ξ s
ωn

+ 1
)∏N

i=1

(
1 + s

pi

) (2.33)

The singularities (poles pi and zeros zi) are given by the following formulas:

pi = (ab)i−1az1 i = 1, 2, 3, . . . , N
zi = (ab)i−1z1 i = 2, 3, . . . , N − 1

(2.34)

With
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

z1 = ωn

√
b

a = 10
εp

10(1−η)

b = 10
εp

10η

η = log(a)
log(ab)

(2.35)

εP is the tolerated error in dB.

The approximation order N is calculated by fixing the frequency band of operation, specified
by Nmax such that: pn−1 < ωmax < pn, which leads to the following value:

N =

 log
(

ωmax
pi

)
log(ab) + 1

+ 1 (2.36)

The coefficients am and bm are calculated from the singularities pi and zi such that α and
ωi

- For 0.5 < β < 1

The approximation function is given as follows:

GE(s) =

(
s

ωn
+ 1

) (
s

ωn+1

)η(
s2

ω2
n

+ 2ξ s
ωn

+ 1
) (2.37)

Where

pi = (ab)i−1p1 i = 1, 2, 3, . . . , N
zi = (ab)i−1ap1 i = 2, 3, . . . , N − 1

p1 = ωn

√
εp

b

a = 10
εp

10(1−η)

b = 10
εp

10η

η = log(a)
log(ab)

εP is the error in dB.

2.7 Representations of Fractional-Order Systems

The classification diagram of linear and time-invariant fractional-order systems is given by the
following Figure2.6:

There are several ways to represent fractional-order systems, such as representation by
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differential equations, recurrence equations, transfer functions, and state-space representations.

Figure 2.6: Classification of LTI systems: integer-order vs. fractional-order

2.7.1 Representation by Differential Equations

A fractional-order linear system is, by definition, a system described by a fractional differential
equation of the form [16]:

anD
αny(t) + an−1D

αn−1y(t) + . . .+ a0D
α0y(t) = b0D

βmu(t) + bm−1D
βm−1u(t) + . . .+ b0D

β0u(t)
(2.38)

Where u(t) and y(t) are respectively the input and output of the fractional system, αi and
βi are the orders of the derivatives, which are real numbers. When the orders αi and βj are
multiples of the same real number α (0 < α < 1), such that αi = i · α (0 < i < n) and
βj = j ·α (0 < j < m), the fractional system is said to be commensurable. Then, the fractional
differential equation 2.38 becomes:

a∑
i=0

aiD
αiy(t) =

m∑
j=0

bjD
βju(t) (2.39)

2.7.2 Representation by Transfer Function

The Laplace transform of the differential equation 2.38 allows determining the transfer function
of the fractional-order system as follows:
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F (s) = Y (s)
U(s) =

∑m
j=0 bjs

βj

1 +∑n
i=1 aisαi

(2.40)

In the case of commensurate-order fractional systems α of Equation 2.40, this transfer
function is written in the form:

F (s) =
∑m

j=0 bjs
αj

1 +∑n
i=1 aisαi

(2.41)

2.7.3 Representation by State Space of a Fractional-Order System

The state representation of a continuous-time fractional-order system is written in the form:

Dαx(t) = A.x(t) +B.u(t)
y(t) = C.x(t) +D.u(t)

(2.42)

Where u(t) is the input vector, y(t) is the output vector, x(t) is the state vector, and α is the
order of derivation (0 < α < 1). The matrices A, B, C, and D are of appropriate dimensions
with constant coefficients, called the state matrix, input matrix, output matrix, and direct
transmission matrix, respectively.

2.7.4 Controllability, Observability, and Stability

Theorem 1 The fractional order system of Equation 2.42 is controllable if and only if the
controllability matrix given by

Mcom =
[
B AB . . . AL−1B

]
(2.43)

is invertible; where L is the number of state variables .

Theorem 2 The fractional order system of Equation 2.42 is observable if and only if the
observability matrix given by:

Mob =



C

CA
...

CAL−1

 (2.44)

is invertible; where L is the number of state variables .

Theorem 3 The fractional-order system 2.42 is stable (in the sense that bounded inputs will
always produce bounded outputs) if and only if all the roots (complexes) r of its denominator
satisfy:
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| arg(r)| > π

2α (2.45)

Figure 2.7: Stability Region in the sα-Plane for a Fractional-Order System

2.8 Conclusion

This chapter is an introduction to the basic elements of fractional calculus. We have presented
some essential concepts regarding fractional-order control systems necessary for understanding
our work on the fractional-order control of dynamic systems.

After introducing non-integer order processes, we presented the definitions of fractional-
order operators and fractional-order systems. The characteristics and representation and ap-
proximation methods of these systems are also studied.
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Chapter 3

TRMS Control: Optimized PID and

FOPID Using PSO

3.1 Introduction

PID (Proportional-Integral-Derivative) controllers have been a fundamental tool in control
engineering for over a century. Originating in the early 20th century, PID controllers gained
widespread adoption due to their simplicity, reliability, and effectiveness in regulating a wide
range of systems, from industrial processes to aerospace applications. The PID structure, with
its three terms proportional, integral, and derivative provides a balanced approach to achieving
desired system performance by minimizing errors, reducing overshoot, and improving stability.
PID controllers remain a go-to solution for many control problems due to their adaptability
and ease of tuning [22].

In recent years, advancements in control theory have led to the development of more sophis-
ticated controllers, such as the Fractional-Order PID (FOPID). The FOPID controller extends
the traditional PID framework by introducing fractional-order calculus [23], which allows for
non-integer orders in the integral and derivative terms. This added flexibility enables finer
tuning and better performance, particularly for complex, nonlinear, or highly coupled systems.
FOPID controllers have shown promise in applications requiring high precision and robustness,
such as robotics, energy systems, and aerospace engineering.

Building on these developments, this chapter focuses on the application of both PID and
FOPID controllers to the TRMS (Twin Rotor MIMO System), a multivariable system known
for its nonlinear dynamics and strong coupling between its two rotors. The TRMS serves
as an excellent testbed for evaluating control strategies, as it mimics the behavior of real-
world systems like helicopters and drones, where coupling effects and external disturbances are
significant challenges.

The primary objective of this work is to design, optimize, and compare the performance
of PID and FOPID controllers for the TRMS. Using the Particle Swarm Optimization (PSO)
algorithm [24], the parameters of both controllers are tuned to minimize control error and
enhance system performance. The controllers are first tested on a decoupled version of the
TRMS, where rotor interactions are neglected, and then validated on the coupled system,
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where these interactions are treated as disturbances. This approach allows us to evaluate the
robustness and effectiveness of each controller in handling real-world complexities.

The chapter is structured as follows: First, the design and optimization of the PID and
FOPID controllers are presented, with a focus on the PSO-based tuning process [25]. Next,
the performance of both controllers is analyzed through simulations, comparing their ability to
achieve stability, precision, and disturbance rejection. Finally, the results are discussed, high-
lighting the advantages of FOPID in achieving superior control for complex, coupled systems
like the TRMS.

3.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired by
the social behavior of birds flocking or fish schooling. It is widely used for solving complex
optimization problems due to its simplicity, efficiency, and ability to find global optima in
high-dimensional search spaces.

3.2.1 PSO Algorithm Steps

The PSO algorithm operates as follows:

Algorithm 1 Particle Swarm Optimization (PSO) Algorithm
1: Initialize parameters: swarm size n, cognitive coefficient c1, social coefficient c2, inertia

weight ω, position and velocity bounds, and maximum number of iterations.
2: Initialize positions and velocities of n particles randomly.
3: for each particle i in the swarm do
4: Evaluate the objective function f at the current position.
5: Set personal best P i

best = current position.
6: end for
7: Set global best Gbest = best position among all particles.
8: while termination condition not met (e.g., max iterations or convergence) do
9: for each particle i in the swarm do

10: Update velocity:

vi ← ωvi + c1r1(P i
best − xi) + c2r2(Gbest − xi)

where r1, r2 ∼ U(0, 1) are random numbers.
11: Update position:

xi ← xi + vi

12: Evaluate objective function f at new position.
13: Update personal best P i

best if current position is better.
14: end for
15: Update global best Gbest if any particle has a better solution.
16: end while
17: return Global best solution Gbest.
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3.2.2 Explanation of PSO Components

The PSO algorithm initializes a swarm of particles, where each particle represents a potential
solution to the optimization problem. Each particle has a position and a velocity in the search
space, which are updated iteratively based on the following principles [?]:

- Personal Best (Pbest): Each particle remembers the best position it has encountered
so far.

- Global Best (Gbest): The swarm shares the best position found by any particle in the
entire population.

- Velocity Update: The velocity of each particle is updated based on its current velocity,
the distance to its personal best, and the distance to the global best.

- Position Update: The position of each particle is updated using its new velocity.

Mathematically, the updates for the personal best and global best are given by:

P k+1
best,i =

P k
best,i, if f(xk+1

i ) ≥ f(P k
best,i),

xk+1
i , otherwise.

(3.1)

Gk+1
best = arg min

1≤i≤n
f(P k+1

best,i). (3.2)

where:

- P k
besti: The personal best of particle i at iteration k.

- Gk+1
best: The global best at iteration k + 1.

- f(x): The objective function (fitness function) to be minimized.

3.2.3 Stopping Criteria

The stopping criterion for PSO can be:

- A fixed number of iterations.

- A threshold on the fitness value.

- When the velocities of the particles approach zero (indicating convergence).

3.2.4 Challenges and Improvements

While PSO is a powerful and versatile optimization algorithm, it faces some challenges in
practical applications. A notable issue is the potential divergence of particles from the
defined search space, leading to suboptimal solutions or algorithm instability. To mitigate these
problems, several enhancements to the standard PSO have been proposed in the literature:
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- Velocity Clamping: This technique limits the maximum allowable velocity (Vmax) of
each particle, ensuring that the particles remain within the feasible region of the search
space. By capping the velocity, particles are prevented from “exploding” out of bounds
and the algorithm maintains a stable exploration behavior [26, 27].

- Constriction Coefficient (χ): A more theoretically grounded approach introduces a
constriction factor into the velocity update equation to improve convergence stability
and control the swarm dynamics. The velocity update with constriction is defined as [27]:

vk+1
i,j = χ

[
vk

i,j + c1r
k
1i,j(P k

bestj − xk
i,j) + c2r

k
2i,j(Gk

bestj − xk
i,j)
]
, j ∈ {1, . . . , D} (3.3)

where:

- χ = 2
|2−ϕ−

√
ϕ2−4ϕ|

, with ϕ = ϕ1 + ϕ2 > 4 [28].

- A common choice is ϕ1 = ϕ2 = 2.05, leading to χ ≈ 0.7298844 [27].

These enhancements strike a balance between exploration (diversifying the search across
the space) and exploitation (refining solutions in promising areas), which is crucial for ensuring
robust convergence and avoiding premature stagnation.

3.2.5 Application to PID and FOPID Tuning

In this study, PSO is applied to optimize the parameters of PID and FOPID controllers for the
Twin Rotor MIMO System (TRMS). The objective is to fine-tune controller parameters
to achieve the desired system performance by minimizing a predefined cost function, such as
the Integral of Squared Error (ISE) or other performance indices.

The optimized controller parameters, obtained through the PSO algorithm, allow the TRMS
to meet stability and performance criteria, ensuring improved response characteristics such as
reduced overshoot, faster settling time, and better disturbance rejection.

3.3 PID Control

The Proportional-Integral-Derivative (PID) controller is one of the most widely used control
strategies in engineering, renowned for its simplicity, effectiveness, and versatility. Its structure
comprises three key components: the proportional (P), integral (I), and derivative (D) actions,
each playing a distinct role in shaping the system’s response.

The output of a PID controller, u(t), is calculated using the following equation:

u(t) = Kp · e(t) +Ki

∫
e(t) dt+Kd

de(t)
dt

(3.4)

Where:
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- u(t): The control signal sent to the system.

- e(t): The error signal, defined as the difference between the desired reference yr(t) and
the system output y(t), i.e., e(t) = yr(t)− y(t).

- Kp: The proportional gain, which adjusts the controller’s response to the current error.

- Ki: The integral gain, which addresses accumulated past errors to eliminate steady-state
offsets.

- Kd: The derivative gain, which predicts future error trends based on the rate of change
of the error.

Role of Each Term

- Proportional Term (Kp · e(t)): This term provides an immediate response proportional to
the current error. It reduces steady-state error and improves response speed, but excessive
gain can lead to overshoot or instability.

- Integral Term (Ki

∫
e(t) dt): This term addresses accumulated past errors, eliminating

steady-state offsets and ensuring long-term accuracy. However, high integral gains can
cause sluggish responses or oscillations.

- Derivative Term (Kd
de(t)

dt
): This term predicts future error trends based on the rate of

change of the error. It enhances stability and reduces overshoot but can amplify noise if
not properly tuned.

In this section, we focus on the design and implementation of a PID controller for the
TRMS. The primary objective is to stabilize the system and achieve key performance metrics,
such as fast response times, minimal overshoot, and robustness to disturbances. The PID
controller’s parameters Kp, Ki, and Kd are optimized using the Particle Swarm Optimization
(PSO) algorithm to ensure optimal performance.

3.3.1 PID Control of the TRMS

The main objective of this section is to stabilize and track the angular positions αv (vertical)
and αh (horizontal) of the Twin Rotor MIMO System (TRMS). To achieve this, we implement
a PID controller for each subsystem, one for the vertical axis and one for the horizontal axis.

The control laws governing these two PID controllers are defined as follows:

uv(t) = Kpvev(t) +Kiv

∫
ev(t)dt+Kdv

dev(t)
dt

(3.5)

uh(t) = Kpheh(t) +Kih

∫
eh(t)dt+Kdh

deh(t)
dt

(3.6)

where:

- ev(t) = αvr(t)− αv(t) represents the tracking error for the vertical angle.
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- eh(t) = αhr(t)− αh(t) represents the tracking error for the horizontal angle.

- Kpv, Kiv, Kdv are the proportional, integral, and derivative gains for the vertical subsys-
tem.

- Kph, Kih, Kdh are the proportional, integral, and derivative gains for the horizontal sub-
system.

The tuning of these controller gains is performed using the Particle Swarm Optimization
(PSO) algorithm, which estimates the optimal values of the parameters to ensure effective
control of the TRMS.

Figure 3.1: Block diagram of the PID controller optimized using PSO

To optimize the six PID gains (Kph, Kih, Kdh, Kpv, Kiv, Kdv), we define the following PSO
parameters:

- Optimization vector:
K = {Kph, Kih, Kdh, Kpv, Kiv, Kdv}

- Number of particles: n = 50

- Number of iterations: m = 100

- Lower and upper bounds of the PID gains:

K(i) ∈ [0, 15], i ∈ {1, . . . , 6}

Optimization Criterion

The PSO algorithm minimizes the following fitness function, which evaluates the cumulative
tracking error over the entire simulation period:

f(m) =
N∑

j=1
(eh(j)2 + ev(j)2) (3.7)

where N is the total number of samples, defined as:
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N = simulation time
integration step (3.8)

This function ensures that the optimization process minimizes the overall control error,
leading to improved tracking accuracy and system stability.

The PID gains obtained through Particle Swarm Optimization (PSO) are presented in
Table 3.1.

Table 3.1: Optimized PID Gains for TRMS using PSO

Subsystem Proportional Gain (Kp) Integral Gain (Ki) Derivative Gain (Kd)
Vertical (αv) 2.0395 7.83 6.556

Horizontal (αh) 0.31145 0.086634 0.29503

3.3.2 Simulation Results

This part presents the results obtained from implementing the PSO-optimized PID controllers
for the TRMS. Various tests were conducted to assess their tracking accuracy, stability, and
robustness under different conditions.

Figures 3.2 and 3.3 present the closed-loop simulation results of the optimized PID control
for the Twin Rotor MIMO System. These results demonstrate the effectiveness of the PID con-
trollers in stabilizing and tracking the desired angular positions while respecting the saturation
constraints for motors protection.

Figure 3.2: Simulation results of the optimized PID control for the vertical subsystem
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Figure 3.3: Simulation results of the optimized PID control for the horizontal subsystem

Observations from the simulation Results Using PID Control

Vertical Subsystem Response (αv)

- The system starts with an initial condition of αv = −0.5 radians and converges to the
desired setpoint of zero radian.

- The response exhibits a significant overshoot ( 0.5 radian) and high-frequency oscillations
in the transient phase

- The vertical angle stabilizes at zero radian, demonstrating the stability of the PID con-
troller.

Horizontal Subsystem Response (αh)

- The system starts with an initial condition of αh = −0.5 radians and quickly converges
to the desired setpoint of zero radian.

- The system exhibits a small overshoot ( 0.2 radians) but quickly settles.

- The horizontal angle stabilizes at zero radian, demonstrating the stability of the PID
controller.

Control Effort and Saturation Constraints

- The control efforts (Uv and Uh) for both subsystems are constrained within the saturation
limits (−2.5 ≤ Uv, Uh ≤ 2.5) to protect the motors and ensure safe operation.

- Initially, the control efforts are high to compensate for the initial deviations (αv = −0.5
and αh = −0.5) and bring the system back to the desired setpoints.

- As the system stabilizes, the control efforts decrease, showing that the PID controllers
effectively reduce the errors without excessive control inputs.
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3.3.3 Robustness Testing of the PID Control

To evaluate the robustness of the optimized PID control, we conducted tests by modifying key
parameters of the Twin Rotor MIMO System TRMS. Specifically, we changed the weight
and the position of the counterweight. These modifications simulate real-world variations and
disturbances, allowing us to assess the controller’s ability to maintain stability and performance
under different conditions.

Simulation Results

Changing the position of the counterweight

We modified the position of the counterweight by 7 cm. The results are shown in Figures
3.4 and 3.5)

Figure 3.4: Modified Vertical Subsystem (lcb) Stabilization Using PID.

Figure 3.5: Modified Horizontal Subsystem (lcb) Stabilization Using PID.
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Changing the mass of the counterweight

We modified the mass of the counterweight by adding 20g. The results are shown in Figures
( 3.6 and 3.7)

Figure 3.6: Modified Vertical Subsystem (mcb) Stabilization Using PID

Figure 3.7: Modified Horizontal Subsystem (mcb) Stabilization Using PID
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Observations on the Robustness Test

During this robustness tests, we first altered the position of the counterweight, then modified
its mass. In both scenarios, we observed similar results

Vertical Subsystem Response

- The vertical angle (αv) converges to the reference in both modified systems

- Demonstrates the controller’s adaptive capability to dynamic parameter changes

Horizontal Subsystem Response

- Stable trajectory tracking with minimal oscillations (αh)

- Rapid convergence to reference in all configurations.

3.4 FOPID Control

The Fractional-Order PIλDµ (also known as PIλDµ controller) was introduced by [29] as a
generalization of the classical PID controller. Unlike conventional PID controllers, this approach
uses an integrator of real order λ and a differentiator of real order µ. The transfer function of
the Fractional-Order Controller (FOC) in the Laplace domain is given as follows [29], [30]):

C(s) = U(s)
E(s) = Kp +Kis

−λ +Kds
µ, (0 < λ, µ < 2). (3.9)

where:

- Kp is the proportional gain,

- Ki is the integration constant,

- Kd is the differentiation constant.

As illustrated in Figure 3.8, the internal structure of the fractional-order controller consists
of a parallel connection of the proportional, integral, and derivative components [31].

The fractional differential equation is given by:

u(t) = Kpe(t) +Ki D
−λ
t e(t) +Kd D

µ
t e(t), (3.10)

or its discrete transfer function form:

C(z) = U(z)
E(z) = Kp + Ki

(ω(z−1))λ
+Kd(ω(z−1))µ, (3.11)
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Figure 3.8: General Structure of a PIλDµ Controller.

where ω(z−1) denotes the discrete operator, expressed as a function of the complex variable
z or the shift operator z−1.

Taking λ = 1 and µ = 1, we obtain a classical PID controller. If λ = 0 and Ki = 0, we
obtain a PDµ controller, etc.

All these types of controllers are particular cases of the fractional-order controller, which
is more flexible and provides an opportunity to better adjust the dynamical properties of the
fractional-order control system.

It can be expected that the PIλDµ controller (3.9) may enhance the system’s control per-
formance due to more tuning knobs introduced, which is intuitively illustrated in Figure 3.9.

Figure 3.9: PID controller: from points to plane.

3.4.1 Controller Tuning Methods for FOPID Controllers

The tuning of the PIλDµ controller parameters is determined according to the given require-
ments. These requirements are, for example, the damping ratio, the steady-state error (ess),
dynamical properties, etc. One of the methods being developed is the method of dominant
roots [32], [33], based on the given stability measure and the damping ratio of the closed con-
trol loop. Assume that the desired dominant roots are a pair of complex conjugate roots as
follows:
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s1,2 = −σ ± jωd, (3.12)

designed for the damping ratio ζ and natural frequency ωn. The damping constant (stability
measure) is σ = ζωn and the damped natural frequency of oscillation is:

ωd = ωn

√
1− ζ2. (3.13)

The design of parameters Kp, Ti, λ, Td and µ can be computed numerically from the char-
acteristic equation. More specifically, for a simple plant model P (s), this can be done by
solving:

min
Kp,Ti,λ,Td,µ

||C(s)P (s) + 1||s = −σ ± jωd. (3.14)

Another possible way to obtain the controller parameters is using the tuning formula, based
on gain Am and phase Φm margins specifications for crossover frequency ωcg. Gain and phase
margins have always served as important measures of robustness. The equations that define
the phase margin and the gain crossover frequency are expressed as [34], [35]:

|C(jωcg)P (ωcg)|dB = 0 dB, (3.15)

arg(C(jωcg)P (ωcg)) = −π + Φm. (3.16)

The above equations are often used also for the so-called auto-tuning techniques. For
instance, the relay auto-tuning process has been widely used in industrial applications and it
was already modified for fractional-order controllers [34].

Other numerical rules for controller tuning might use specifications like Integral of Abso-
lute Error (IAE), Integral of Time multiplied Absolute Error (ITAE), Integral of Time mul-
tiplied Squared Error (ITSE), etc., which are calculated numerically [36]. These criteria are
particularly suitable for use with computational intelligence-based optimization methods like
Evolutionary and Swarm-based optimizations.

IAE =
∫ ∞

0
|e(t)|dt =

∫ ∞

0
|r(t)− y(t)|dt (3.17)

ITAE =
∫ ∞

0
t|e(t)|dt (3.18)

ITSE =
∫ ∞

0
te2(t)dt (3.19)

where r(t) is the desired set-point of the system, and y(t) is the actual output of the system.
These criteria are related to the set-point tracking performance of the system.

- In Equation (3.17), the penalty applies only to the absolute error.
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- In Equation (3.18) and Equation (3.19), the penalty also includes a time-dependent term.

- As time increases, the penalty grows larger, encouraging faster error correction.

Some other specifications for FO controller tuning, which can be numerically calculated, are
as follows [37]:

- The values of the gain crossover frequency ωgc and phase margin ϕm.

- Phase flatness at ωgc, i.e.,
d∠G(s)
ds

∣∣∣∣∣∣
s=jωgc

= 0. (3.20)

- High-frequency noise rejection,

C(jω)G(jω)
1 + C(jω)G(jω) ≤ H, ∀ω ≥ ωh. (3.21)

- Output disturbance rejection at low frequencies,

1
1 + C(jω)G(jω) ≤ N, ∀ω ≤ ωl. (3.22)

3.4.2 FOPID Control for the TRMS

For our TRMS system, the outputs of the fractional-order FOPID controllers are described, for
each subsystem, by the following control laws:

uv(t) = Kpvev(t) +KivD
−λv
t ev(t) +KdvD

µv
t ev(t), ev(t) = αvr(t)− αv(t). (3.23)

uh(t) = kph
eh(t) + kih

D−λh
t eh(t) + kdh

Dµh
t eh(t), eh(t) = αhr(t)− αh(t). (3.24)

As in the PID control case, with four additional parameters to estimate, the parameter
vector becomes:

K =
[
kph

, kih
, kdh

, kpv , kiv , kdv , λh, λv, µh, µv

]
.

The search space is limited by:

0 ≤ KPh
, Kih

, Kdh
, Kpv , Kiv , Kdv ≤ 15,

0 ≤ λh, λv, µh, µv ≤ 2.

FOPID Control Page 71



TRMS Control: Optimized PID and FOPID Using PSO

The number of particles, the number of iterations, and the cost function remain unchanged.
Furthermore, based on the results obtained for PID control.

The gains estimated by the PSO algorithm are presented in the following table (Table 3.2).

Table 3.2: PSO-Optimized FOPID Gains

Parameter Vertical Subsystem Horizontal Subsystem
Kp 7.4353 0.897
Ki 1.7997 0.1
Kd 3.515 0.6121
λ 0.81822 0.2
µ 1.4147 0.99031

3.4.3 Simulation Results

This section presents the results obtained from the implementation of PSO-optimized FOPID
controllers for the Twin Rotor MIMO System (TRMS). A series of experiments were conducted
to evaluate the performance of the proposed control strategy in terms of tracking accuracy,
stability, and robustness under various operating conditions and disturbances. Figures( 3.12)
and ( 3.13) present the closed-loop simulation results of the optimized FOPID control for the
TRMS.

Figure 3.10: simulation results of the optimized FOPID control for the vertical subsystem
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Figure 3.11: simulation results of the optimized FOPID control for the horizontal subsystem

Observations from the simulation Results Using FOPID Control

Vertical Subsystem Response (αv):

- The system starts with an initial condition of αv = −0.5 radians and quickly reaches the
desired setpoint of zero (rad).

- The overshoot is significantly reduced compared to PID control, indicating improved
damping characteristics.

- The transient response is smoother, with faster settling time and minimal oscillations.

Horizontal Subsystem Response (αh):

- The system starts at αh = −0.5 radians and rapidly converges to zero (rad).

- Overshoot is almost negligible, with a very smooth transition towards the reference.

- The response demonstrates higher accuracy and reduced steady-state error, confirming
the efficiency of FOPID tuning.

Control Effort and System Stability:

- The control efforts Uv and Uh remain well within the saturation limits (−2.5 ≤ Uv, Uh ≤
2.5), preventing excessive actuator strain.

- The required control input is less aggressive, leading to energy-efficient operation.

- FOPID reduces high-frequency oscillations, leading to smoother and more stable control
action.

3.4.4 Robustness Testing of the FOPID Control

To test the robustness of our FOPID controller, we apply the control strategy obtained in the
modified systems defined earlier.
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Changing the position of the counterweight

We modified the position of the counterweight by 7 cm. The results are shown in Figures
3.12 and 3.13)

Figure 3.12: Modified Vertical Subsystem (lcb) Stabilization Using FOPID

Figure 3.13: Modified Horizontal Subsystem (lcb) Stabilization Using FOPID
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Changing the mass of the counterweight

We modified the mass of the counterweight by adding 20g. The results are shown in Figures
( 3.14 and 3.15)

Figure 3.14: Modified Vertical Subsystem (mcb) Stabilization Using FOPID

Figure 3.15: Modified Horizontal Subsystem (mcb) Stabilization Using FOPID
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Observations on the Robustness Test

During the robustness tests, we first altered the position of the counterweight, then modified
its mass. In both scenarios, we observed similar results, highlighting the robustness of the
control strategy.

Vertical Subsystem Response

- The vertical angle (αv) of the modified system also converges to zero radian.

- This confirms the controller’s ability to adapt to changes in the system dynamics.

Horizontal Subsystem Response

- The horizontal angle (αh) of the modified system exhibits similar performance, maintain-
ing stability despite the modifications.

- The response features minimal oscillations and a fast convergence to zero radian.

3.5 Comparative Study Of PID and FOPID Control

In this section, we will conduct a comparison and qualitative analysis of the two controllers, PID
and FOPID. The various simulations will cover several aspects, such as stabilization, reference
tracking, and rejection of external disturbances.

This analysis will provide valuable insights into the advantages and limitations of each
controller, helping to guide design and optimization decisions for the control system.

We begin our comparative study with a tracking test, where the input is changed to a
sinusoidal signal of the form:

0.6 sin(0.2t).

3.5.1 Simulation Results

The following results are obtained (see Figure 5.7 for the vertical subsystem and Figure 5.8 for
the horizontal subsystem):
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Figure 3.16: Response of the Vertical Subsystem for Both Controllers to a Sinusoidal Trajectory

Figure 3.17: Response of the Horizontal Subsystem for Both Controllers to a Sinusoidal Tra-
jectory

Interpretation of the Results

Vertical Subsystem Response (αv)

- The FOPID controller exhibits better reference tracking, reducing initial oscillations com-
pared to the PID controller.

- The PID controller presents a higher overshoot and transient oscillations, which can
negatively impact system stability.

- Both controllers ultimately follow the sinusoidal reference signal, but FOPID achieves
smoother tracking with reduced oscillatory behavior.

Horizontal Subsystem Response (αh)

- The FOPID controller results in a smoother trajectory with minimal overshoot, while the
PID controller introduces more aggressive oscillations.

- The PID controller lags slightly behind the reference during transitions, whereas FOPID
provides a more precise and synchronized response.

- Overall, FOPID outperforms PID in terms of stability and reference tracking accuracy.

Control Effort Analysis
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- The control effort (Uv and Uh) with the PID controller is more oscillatory, requiring higher
energy consumption to maintain reference tracking.

- The FOPID controller provides a more stable and optimized control effort, reducing
unnecessary fluctuations and improving efficiency.

3.5.2 disturbance rejection Analysis

To evaluate the disturbance rejection capability of both controllers, we introduce an external
disturbance in the form of two impulse signals applied at T = 0s and T = 30s with an amplitude
of 1. This disturbance simulates sudden external forces or unexpected system variations, as
shown in Figure 3.18.

Figure 3.18: impulse disturbances at T = 0s and T = 30s

Simulation Results

We get the following Results (figures 3.19 and 3.20)

Figure 3.19: Response of the Vertical Subsystem for Both Controllers
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Figure 3.20: Response of the Horizontal Subsystem for Both Controllers

Discussion on Disturbance Rejection

Vertical Subsystem Response

- The vertical subsystem shows a significant transient deviation following the impulse dis-
turbances.

- The FOPID controller exhibits improved damping, reducing oscillations and stabilizing
faster compared to the PID controller.

- The PID controller produces higher amplitude oscillations, indicating a weaker distur-
bance rejection capability.

Horizontal Subsystem Response

- The horizontal subsystem is less affected by disturbances compared to the vertical sub-
system.

- The FOPID controller allows for a smoother response with minimal overshoot and faster
stabilization.

- The PID controller exhibits a more pronounced oscillatory behavior before stabilizing.

Control Effort Analysis

- The control effort under the FOPID controller is more stable and produces lower high-
frequency oscillations compared to the PID controller.

- The PID controller generates a higher control effort with more fluctuations in response
to disturbances.

These observations confirm that the FOPID controller provides better disturbance rejection
and stability, especially in handling sudden impulse disturbances, compared to the conventional
PID controller.
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3.5.3 Applying the Controllers to the Coupled System

The optimized PID and FOPID controllers are now applied to the coupled Twin Rotor MIMO
System. Unlike previous tests where each subsystem was considered independently, the coupling
effects between the vertical and horizontal subsystems are now taken into account.

The coupling between the two subsystems is treated as an external disturbance affecting
both dynamics. This allows us to evaluate the controllers ability to maintain stability, and
ensure reference tracking.

The controllers are now tested with a sawtooth signal as the input, with an amplitude of
0.6 and a frequency of 0.15 rad/sec. This type of signal presents a new challenge, as it requires
the system to track sharp variations while maintaining stability.

By introducing this non-smooth periodic input, we evaluate how well the PID and FOPID
controllers adapt to sudden changes in direction. The goal is to observe their ability to minimize
tracking errors, reduce overshoot.

Simulation Results

The following results are obtained ( Figures 3.21 and 3.22):

Figure 3.21: Vertical Response of the Coupled System: PID vs. FOPID

Figure 3.22: Horizontal Response of the Coupled System: PID vs. FOPID
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Coupled System Response Analysis

Vertical Subsystem Response

1. FOPID Controller:

- Accurately tracks the sawtooth reference signal (αv) with minimal overshoot.
- Maintains a smooth and stable response throughout the simulation.
- Effectively rejects disturbances from the coupled horizontal motion.
- Generates a low and steady control effort, indicating efficient energy usage.

2. PID Controller:

- Fails to properly track the sawtooth reference signal, especially during abrupt changes.
- Produces high-frequency oscillations in αv, reducing performance.
- Struggles with disturbance rejection due to the coupling effect.
- Control effort is highly oscillatory and reaches saturation, risking actuator limita-

tions.

Horizontal Subsystem Response

1. FOPID Controller:

- Maintains stability in the horizontal angle αh despite coupling.
- Closely follows the reference trajectory with low steady-state error.
- Exhibits good disturbance rejection and robustness.
- Control effort remains low and smooth across the simulation.

2. PID Controller:

- System becomes unstable with the horizontal angle diverging over time.
- Cannot handle coupling disturbances, leading to continuous deviation from the ref-

erence.
- Control effort is erratic and lacks regulation.
- Performance degrades rapidly, indicating poor robustness.

These observations confirm that the FOPID controller significantly outperforms the PID
controller in handling the coupled TRMS system, offering better stability, disturbance rejection,
and tracking performance.
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3.6 Conclusion

In this chapter, we developed and optimized PID and FOPID controllers for the Twin Rotor
MIMO System using the Particle Swarm Optimization algorithm.

A detailed comparative analysis was carried out to evaluate both controllers based on the
closed-loop behavior of the TRMS. The results clearly show that the FOPID controller delivers
superior performance compared to the classical PID controller, offering better handling of
nonlinearities and coupling, smoother responses, reduced overshoot, faster convergence, and
stronger robustness against modeling errors and external disturbances.
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Chapter 4

SMC and FOSMC Control Approaches

for the Twin Rotor MIMO System

4.1 Introduction

Sliding Mode Control (SMC) is a nonlinear control technique known for its accuracy, robustness,
and ease of tuning and implementation. The core idea behind SMC is to guide the system’s
states toward a specific surface in the state space, called the sliding surface. Once the system
reaches this surface, the control law ensures that the states stay close to it. This process involves
two main steps: first, designing a sliding surface that meets the desired performance goals, and
second, creating a control law that ensures the system states are drawn to this surface [38],
[39].

SMC has two key advantages. First, the system’s behavior can be tailored by carefully
choosing the sliding function. Second, the system becomes highly resistant to certain types
of uncertainties, such as changes in model parameters, external disturbances, and nonlinear-
ities. This makes SMC especially useful for controlling nonlinear systems that face external
disturbances or significant model uncertainties.

To further improve performance, Fractional-Order Sliding Mode Control (FOSMC) in-
troduces fractional calculus into the control design. This advanced approach builds on the
strengths of SMC while offering better handling of complex dynamics and increased robust-
ness, making it a valuable tool for modern control challenges.

This chapter introduces the fundamental concepts of Sliding Mode Control and its core
principles. We begin by explaining the basics of SMC, including the design and selection of
sliding surfaces. Next, we derive the control law using SMC and then apply Fractional-Order
Sliding Mode Control to enhance the control design. Finally, we compare the simulation results
of both methods, highlighting their differences and performance characteristics.
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4.2 Fundamentals of Sliding-Mode Control Design

Sliding Mode control uses output feedback and a fast switching control action to steer the
system’s behavior. Ideally, this switching happens infinitely quickly, driving the system toward
a specific subspace called the sliding surface or manifold. Once the system reaches this surface,
the control law keeps it close to the manifold, ensuring the desired performance.[40]

Figure 4.1: The fundamental principle of sliding mode

4.2.1 Design and Synthesis of Sliding Mode Control

Consider the nonlinear system:

ẋ = f(t, x) + g(t, x)u
y = h(x)

(4.1)

where:

- x represents the state vector,

- u is the control input,

- f(t, x) and g(t, x) are nonlinear functions of the system dynamics,

- y is the system output.

Choice of the Sliding Surface

The design of the sliding surface is crucial and depends on the control objective. Slotine
introduced a commonly used scalar sliding function [41] :

S(x) =
(
d

dt
+ λ

)r−1

e(x) (4.2)
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where:

- e(x) = xd − x is the tracking error (difference between desired and actual state),

- λ is a positive constant influencing the convergence rate,

- r is the relative degree of the system.

This formulation ensures exponential convergence of the tracking error, meaning that:

lim
t→+∞

e = 0.

Once the system reaches S(x) = 0, it follows the desired trajectory.

Sliding Mode Existence Condition

To ensure that the system reaches and remains on the sliding surface, the attractivity
condition must be satisfied [42] :

Ṡ(x) > 0 if S(x) < 0,
Ṡ(x) < 0 if S(x) > 0.

(4.3)

This can be rewritten as a single condition:

S(x)Ṡ(x) < 0. (4.4)

This guarantees that the trajectory is attracted towards the sliding surface.

Control Law Design

The control input u must ensure that the system reaches and stays on the sliding sur-
face, even in the presence of disturbances and uncertainties. The control law consists of two
components :

u = ueq + uatt. (4.5)

- Equivalent Control (ueq): Ensures that the system follows the desired dynamics once in
sliding mode.

- Attracting Control (uatt): Forces the system towards the sliding surface.

Equivalent Control

The equivalent control is derived by imposing the invariance condition:

S(x) = 0
Ṡ(x) = 0

(4.6)
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This leads to:

ueq = −
(
∂S

∂x
g(x, t)

)−1 [
∂S

∂x
f(x, t)

]
. (4.7)

Attracting Control

The second term ensures the attractivity condition:

uatt = −K · sign(S), (4.8)

where K is a positive gain ensuring fast convergence.

Thus, the total control law is:

u = −
(
∂S

∂x
g(x, t)

)−1 [
∂S

∂x
f(x, t)

]
−K · sign(S). (4.9)

4.2.2 The Chattering Phenomenon

A perfect sliding mode requires infinite switching frequency, which is impractical due to actuator
limitations. In real applications, chattering occurs, leading to high-frequency oscillations around
the sliding surface. This degrades performance and may cause instability, [42].

Causes of Chattering

- Time delays in measurement and control execution.

- High-frequency switching of the control signal.

- Modeling imperfections and actuator constraints.

Chattering Reduction Techniques

Several methods have been proposed to mitigate chattering while maintaining robustness:

- Boundary Layer Method (Saturation Function)
Instead of using the discontinuous sign function, we use a continuous approximation:

sat(S, δ) =

sign(S), if |S| ≥ δ,
S
δ
, if |S| < δ.

(4.10)

This allows smooth convergence to the sliding surface.

- Pseudo-Sign Function
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Another smooth approximation is:

v(S, δ) = S

|S|+ δ
. (4.11)

- Arctangent Function
A more gradual transition can be achieved using:

v(S, δ) = 2
π

arctan
(
S

δ

)
. (4.12)

- Hyperbolic Tangent Function
This provides another smooth approximation:

v(S, δ) = tanh
(
S

δ

)
. (4.13)

Each of these methods introduces a small trade-off between robustness and chattering reduc-
tion. The choice depends on the application and the desired balance between control accuracy
and actuator constraints.

4.3 Sliding Mode Control of the TRMS

4.3.1 Selection of the Sliding Surface

The design of the sliding surface is a fundamental step in the development of a sliding mode
control strategy for the Twin Rotor MIMO System [43]. We adopt Slotine’s sliding surface,
which is defined as:

S(x) =
(
d

dt
+ λ

)r−1

e(x) (4.14)

For the TRMS, we define two sliding surfaces for each subsystem:

Sv =
(

d
dt

+ λv

)rv−1
ev

Sh =
(

d
dt

+ λh

)rh−1
eh

(4.15)

where rv and rh are the relative degrees of the vertical and horizontal subsystems, respec-
tively.

Relative Degree of the Vertical Subsystem

The vertical subsystem is modeled by the state-space representation:
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
ẋ1 = Avx2

ẋ2 = Fv(x3)−Gv(x1)−Bvx2

ẋ3 = −Cvx3 +Dvuv

y = x1

(4.16)

where:
Av = 1

Jv

, Bv = kv

Jv

, Cv = 1
Tmr

, Dv = kmr

Tmr

And
Fv(x3) = lmSfFv(Pv(x3)), Gv(x1) = g((A−B) cos(x1)− C sin(x1)).

By differentiating y until the control term uv appears:



ẏ = ẋ1 = Avx2

ÿ = Avẋ2 = Av(Fv(x3)−Gv(x1)−Bvx2)
...
y = Av

(
∂Fv(x3)

∂x3
ẋ3 − ∂Gv(x1)

∂x1
ẋ1 −Bvẋ2

)
= Av

∂Fv(x3)
∂x3

(−Cvx3 +Dvuv)− A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2

(4.17)

Since the control input uv appears in the third derivative of y, the relative degree of the
vertical subsystem is rv = 3.

Relative Degree of the Horizontal Subsystem

Similarly, the horizontal subsystem is given by:


ẋ1 = Ahx2

ẋ2 = Fh(x3)−Bhx2

ẋ3 = −Chx3 +Dhuh

y = x1

(4.18)

where:

Ah = 1
Jh(αv0)

, Bh = kh

Jh(αv0)
, Ch = 1

Ttr

, Dh = ktr

Ttr

, Fh(x3) = ltSfFh(Ph(x3)).

Differentiating y until uh appears:
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

ẏ = ẋ1 = Ahx2

ÿ = Ahẋ2 = Ah(Fh(x3)−Bhx2)
...
y = Ah

(
∂Fh(x3)

∂x3
ẋ3 −Bhẋ2

)
= Ah

∂Fh(x3)
∂x3

(−Chx3 +Dhuh)− AhBhẋ2

(4.19)

Since uh appears in the third derivative of y, the relative degree of the horizontal subsystem
is rh = 3.

Since both subsystems have a relative degree of 3, the sliding surfaces are:

Sv = ëv + 2λvėv + λ2
vev

Sh = ëh + 2λhėh + λ2
heh

(4.20)

4.3.2 Control Law Calculation

Computation of uv

The total control law consists of:

uv = uv,eq + uv,att.

To derive the equivalent control uv,eq, we start from:

Ṡv = λ2
vėv + 2λvëv + ...

e v = 0. (4.21)

where the tracking error is defined as:

ev = y − yd = x1 − xd
1. (4.22)

Expanding Ṡv, we obtain:

Ṡv = λ2
vėv + 2λvëv + ...

x 1 −
...
x d

1

= λ2
vėv + 2λvëv −

...
x d

1 + Av
∂Fv(x3)
∂x3

(−Cvx3 +Dvuv)− A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2
(4.23)

To satisfy Ṡv = 0, the equivalent control uv,eq is:
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uv,eq =− 1
AvDv

∂Fv(x3)
∂x3

λ2
vėv + 2λvëv −

...
x d

1

− AvCv
∂Fv(x3)
∂x3

x3 − A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2

.
(4.24)

To ensure the attractiveness condition SvṠv < 0, we add the term uv,att, leading to the total
control law:

uv = − 1
AvDv

∂Fv(x3)
∂x3

λ2
vėv + 2λvëv −

...
x d

1 − AvCv
∂Fv(x3)
∂x3

x3

− A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2 +Kv sign(Sv)
.

(4.25)

By substituting this control law into SvṠv, we easily obtain:

SvṠv = −SvKv sign(Sv) < 0,

Computation of uh

Similar to the derivation of uv, the control law for uh is given by:

uh = uh,eq + uh,att.

To determine uh,eq, we start by defining the tracking error:

eh = y − yd = x1 − xd
1.

By differentiating Sh, we obtain:

Ṡh = λ2
hėh + 2λhëh + ...

e h

= λ2
hėh + 2λhëh + ...

x 1 −
...
x d

1

= λ2
hėh + 2λhëh −

...
x d

1 + Ah
∂Fh(x3)
∂x3

(−Chx3 +Dhuh)− AhBhẋ2

(4.26)

Setting Ṡh = 0 leads to the equivalent control:

uh,eq = − 1
AhDh

∂Fh(x3)
∂x3

[
λ2

hėh + 2λhëh −
...
x d

1 − AhCh
∂Fh(x3)
∂x3

x3 − AhBhẋ2

]
. (4.27)
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To ensure the attractivity condition ShṠh < 0, we add the term uh,att to the equivalent
control uh,eq. The total control law for uh is then given by:

uh = − 1
AhDh

∂Fh(x3)
∂x3

[
λ2

hėh + 2λhëh −
...
x d

1 − AhCh
∂Fh(x3)
∂x3

x3 − AhBhẋ2 +Kh sign(Sh)
]
. (4.28)

The convergence condition can be verified as:

ShṠh = −ShKh sign(Sh) < 0.

To avoid the chattering phenomenon, the sign function in the control law can be
replaced with the hyperbolic tangent function. The updated control laws for uv and uh become:


uv = − 1

AvDv
∂Fv(x3)

∂x3

[
λ2

vėv + 2λvëv −
...
x d

1 − AvCv
∂Fv(x3)
∂x3

x3 − A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2 +Kv tanh(Sv)
]

uh = − 1
AhDh

∂Fh(x3)
∂x3

[
λ2

hėh + 2λhëh −
...
x d

1 − AhCh
∂Fh(x3)
∂x3

x3 − AhBhẋ2 +Kh tanh(Sh)
]

4.3.3 Simulation Results

This section presents the simulation results of the Twin Rotor MIMO System under Sliding
Mode Control (SMC). The objective is to stabilize the system around the equilibrium point
(αv, αh) = (0, 0) rad, starting from an initial condition of (−0.5,−0.5) rad. To determine the
optimal control parameters [Kh, Kv, λh, λv], we employ the Particle Swarm Optimization (PSO)
algorithm introduced in the previous chapter.

By applying PSO, the estimated values of the parameters are obtained and summarized in
Table 4.1.

Table 4.1: Optimized SMC parameters using PSO

Parameter K λ

Vertical Subsystem 4.0127 2.4736
Horizontal Subsystem 1.685 1.8975

Initially, the sign function is incorporated into the attracting control term to examine the
chattering phenomenon (figure 4.2), a common issue in sliding mode control. Once the chat-
tering effect is observed and, the sign function is replaced with the tanh function to mitigate
its impact while preserving control robustness (figure 4.3).
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Figure 4.2: Simulation with an Attracting Function: −K sign(S)

Figure 4.3: Simulation with an Attracting Function: −K tanh(S)
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Observations from the Results

From the simulation results, the following observations can be made:

Sign Function Results (figure 4.2):

- The system angles (αv, αh) successfully converge to their reference values.

- The control signals (uv, uh) exhibit high-frequency oscillations (−2.5 ≤ Uv, Uh ≤ 2.5).

- Chattering is clearly visible in the control efforts, leading to large variations in the control
signal.

Tanh Function Results (figure 4.3):

- The system angles (αv, αh) still converge to the reference without deviation.

- The control signals (uv, uh) are significantly smoother compared to the sign function case.

- Chattering is greatly reduced, making the control signal more stable.

Comparison:

- The sign function introduces high-frequency oscillations in the control effort.

- The tanh function leads to a smoother control effort while maintaining system stability.

4.3.4 Robustness Testing of the SMC Control

To evaluate the robustness of the SMC control, we conducted tests by modifying key parameters
of the Twin Rotor MIMO System. Specifically, we changed the weight and the position
of the counterweight.

Changing the position of the counterweight

We modified the position of the counterweight by 7 cm. The results are shown in Figures
( 4.4 and 4.5)
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Figure 4.4: Modified Vertical Subsystem (lcb) Stabilization Using SMC

Figure 4.5: Modified Horizontal Subsystem (lcb) Stabilization Using SMC

Changing the mass of the counterweight

We modified the mass of the counterweight by adding 20g. The results are shown in Figures
( 4.6 and 4.7)

Figure 4.6: Modified Vertical Subsystem (mcb) Stabilization Using SMC
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Figure 4.7: Modified Horizontal Subsystem (mcb) Stabilization Using SMC

Observations on the Robustness Test

During the robustness tests, we first altered the position of the counterweight, then modified
its mass. In both scenarios, we observed similar results, highlighting the robustness of the
control strategy.

Vertical Subsystem Response

- The vertical angle (αv) of the modified system successfully converges to its reference value,
and there is no significant difference between it and the vertical angle (αv) of the original
system.

- This confirms the controller’s robustness and ability to adapt to variations in system
parameters while maintaining stability.

- The control effort Uv shows nearly identical voltage profiles between the modified and
original systems, indicating equivalent energy requirements for vertical stabilization.

Horizontal Subsystem Response

- The horizontal angles (αh) are perfectly superposable, demonstrating identical dynamic
responses and tracking performance in the horizontal orientation.

- The response remains stable, demonstrating the robustness of the control strategy despite
the changes in system parameters.

- The control effort Uh shows no difference between the original system and the two modified
systems.

4.4 Fractional-Order Sliding Mode Control for the TRMS

System

To enhance the performance already achieved by the previous control strategy, Slotine’s formula
is extended using fractional-order derivatives [44]. This leads to the development of a Fractional-
Order Sliding Mode Control (FOSMC), which builds upon conventional Sliding Mode Control
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(SMC) by incorporating fractional calculus. This integration increases both the robustness and
precision of the control system, particularly for the Twin Rotor MIMO System.

4.4.1 Fractional Sliding Surfaces Development

Building upon conventional sliding mode control, we develop fractional-order sliding surfaces
for both TRMS axes using Slotine’s formulation with fractional derivatives [44] :

Sv = (Dα1
t + λv)rv−1 ev

Sh = (Dα2
t + λh)rh−1 eh

(4.29)

Given the relative degrees rv = rh = 3, these surfaces simplify to:

Sv = D2α1
t ev + 2λvD

α1
t ev + λ2

vev

Sh = D2α2
t eh + 2λhD

α2
t eh + λ2

heh

(4.30)

Applying the switching property from Eq. (2.12), we obtain the implementable forms:

Sv = D
2(α1−1)
t ëv + 2λvD

α1−1
t ėv + λ2

vev

Sh = D
2(α2−1)
t ëh + 2λhD

α2−1
t ėh + λ2

heh

(4.31)

4.4.2 Control Laws Derivation

Vertical Control Law (uv)

The equivalent control is derived from Ṡv = 0:

Ṡv = D
2(α1−1)
t

...
e v + 2λvD

α1−1
t ëv + λ2

vėv = 0 (4.32)

To solve the equation Ṡ = 0 and determine the equivalent control uveq , we multiply both
sides of the equation by the fractional derivative operator D2(1−α1)

t :

D
2(1−α1)
t Ṡv = 0

Applying this operation to the original equation:

D
2(1−α1)
t

[
D

2(α1−1)
t

...
e v + 2λvD

α1−1
t ëv + λ2

vėv

]
= 0 (4.33)

Using the semi-group property of fractional derivatives (2.11):

D
2(1−α1)
t D

2(α1−1)
t = D0

t = Identity operator
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This simplifies to:

Av
∂Fv(x3)
∂x3

[
− Cvx3 +Dvuveq

]
− A2

v

∂Gv(x1)
∂x1

x2 − AvBvẋ2 −
...
x 1d

+ 2λvD
1−α1
t ëv + λ2

vD
2(1−α1)
t ėv = 0

(4.34)

Equivalent Control Solution

Solving for uveq yields:

uveq = −1
AvDv

∂Fv

∂x3

− CvAv
∂Fv

∂x3
x3 − A2

v

∂Gv

∂x1
x2 − AvBvẋ2 −

...
x 1d

+ 2λvD
1−α1
t ëv + λ2

vD
2(1−α1)
t ėv

 (4.35)
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Total Control Law with Attractive Term

To ensure convergence to the sliding surface Sv, the Lyapunov stability condition must be
satisfied:

SvṠv < 0

The total control input uv is designed as:

uv = −1

AvDv
∂Fv(x3)
∂x3

[
− CvAv

∂Fv(x3)
∂x3

x3 − A2
v

∂Gv(x1)
∂x1

x2 − AvBvẋ2 −
...
x 1d

+ 2λvD
1−α1
t ëv + λ2

vD
2(1−α1)
t ėv +KvD

2(1−α1)
t tanh(Sv)

] (4.36)

This control law always satisfies the convergence condition:

SvṠv = −SvKv tanh(Sv) < 0

Horizontal Control Law (uh)

Similarly, the horizontal control is derived as: The equivalent control is derived from The
equivalent control is derived from Ṡh = 0:

Ṡh = D
2(α2−1)
t

...
e h + 2λhD

α2−1
t ëh + λ2

hėh = 0 (4.37)

To solve Ṡh = 0 and determine uheq , we multiply both sides by D2(1−α2)
t :

D
2(1−α2)
t Ṡh = 0

Applying the operation to the original equation:

D
2(1−α2)
t

[
D

2(α2−1)
t

...
e h + 2λhD

α2−1
t ëh + λ2

hėh

]
= 0 (4.38)

Using the semi-group property of fractional derivatives ((2.11)):

D
2(1−α2)
t D

2(α2−1)
t = D0

t = Identity operator

This simplifies to:

Ah
∂Fh(x3)
∂x3

[
−Chx3 +Dhuheq

]
− AhBhẋ2 −

...
x 1d + 2λhD

1−α2
t ëh + λ2

hD
2(1−α2)
t ėh = 0 (4.39)
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Equivalent Control Solution

Solving for uheq yields:

uheq = −1

AhDh
∂Fh(x3)
∂x3

− ChAh
∂Fh(x3)
∂x3

x3 − AhBhẋ2 −
...
x 1d

+ 2λhD
1−α2
t ëh + λ2

hD
2(1−α2)
t ėh


(4.40)

Total Control Law with Attractive Term

We must finally verify the convergence condition:

ShṠh < 0

To do so, we define the total control uh as follows:

uh = −1

AhDh
∂Fh(x3)
∂x3

[
− ChAh

∂Fh(x3)
∂x3

x3 − AhBhẋ2 − x1d

+ 2λhD
1−α2
t ëh + λ2

hD
2(1−α2)
t ėh +KhD

2(1−α2)
t tanh(Sh)

] (4.41)

This control law always satisfies the convergence condition:

ShṠh = −ShKh tanh(Sh) < 0

4.4.3 Simulation Results

This section presents the simulation results of the Twin Rotor MIMO System under Fractional
Order Sliding Mode Control.

The control objective is to stabilize the system around the equilibrium point (αv, αh) =
(0, 0) rad, starting from an initial condition of (−0.5,−0.5) rad.

The sliding surface dynamics are defined by fractional orders α1 and α2. The control law
incorporates these fractional orders to enhance robustness and reduce chattering effects. To
determine the optimal control parameters [Kh, Kv, λh, λv, α1, α2], we use the Particle Swarm
Optimization (PSO) algorithm, as introduced in the previous chapter.

By applying PSO, the optimal values of the FOSMC parameters are obtained and summa-
rized in Table 4.2.
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Table 4.2: Optimized FOSMC parameters

Parameter K λ α

Vertical Subsystem 3.6852 2.4806 0.9624
Horizontal Subsystem 2.013 2.0263 0.9501

Figures( 4.8) and ( 4.9) present the closed-loop simulation results of the FOSMC control
for the TRMS.

Figure 4.8: simulation results of FOSMC control for the vertical subsystem

Figure 4.9: simulation results of FOSMC control for the horizontal subsystem

Observations from Simulation Results

Vertical Subsystem Response (αv)

- The system starts from an initial condition of αv = −0.5 radians and quickly converges
to the desired setpoint at 0 radians.

- The overshoot is negligible, reflecting enhanced damping and precision in tracking.

- The transient response is smooth, with a fast settling time and no noticeable oscillations.

- The control effort uv is bounded and smooth, with chattering effectively eliminated.

Horizontal Subsystem Response (αh)
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- Starting from αh = −0.5 radians, the system rapidly reaches the equilibrium point with
a clean, monotonic trajectory.

- The overshoot is very low, and the system shows excellent stability and accuracy.

- The settling time is short, and the response is free from abrupt variations.

- The control input uh is smooth and continuous.

4.4.4 Robustness Testing of the FOSMC Control

To evaluate the robustness of the FOSMC control, we conducted tests by modifying key pa-
rameters of the Twin Rotor MIMO System (TRMS). Specifically, we changed the weight
and the position of the counterweight.

Changing the position of the counterweight

We modified the position of the counterweight by 7 cm. The results are shown in Figures
( 4.10 and 4.11)

Figure 4.10: Modified Vertical Subsystem (lcb) Stabilization Using FOSMC

Figure 4.11: Modified Horizontal Subsystem (lcb) Stabilization Using FOSMC

Changing the mass of the counterweight

We modified the mass of the counterweight by adding 20g. The results are shown in Figures
( 4.12 and 4.13)
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Figure 4.12: Modified Vertical Subsystem (mcb) Stabilization Using FOSMC

Figure 4.13: Modified Horizontal Subsystem (mcb) Stabilization Using FOSMC

Observations on the Robustness Tests

During the robustness tests, we first altered the position of the counterweight, then modified
its mass. In both scenarios, we observed similar results, highlighting the resilience of the control
strategy.

Vertical Subsystem Response

- Both modified systems show successful convergence of αv to reference values

- No significant difference observed versus the original system’s αv response

- The control effort Uv shows nearly identical voltage profiles between the modified and
original systems, indicating equivalent energy requirements for vertical stabilization.

Horizontal Subsystem Response

- Horizontal angles (αh) are perfectly superposable across all systems

- Identical dynamic responses in original and modified configurations

- Control signals Uh show no measurable differences
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4.5 Comparative Study Of SMC and FOSMC Control

In this section, we will conduct a comparison and qualitative analysis of the two controllers,
SMC and FOSMC. The various simulations will cover several aspects, such as reference tracking,
and rejection of external disturbances.

We begin our comparative study with a tracking test, where the input is changed to a square
signal of the form:

0.4 · square(0.2t)

4.5.1 Simulation Results

The following results are obtained (Figure 4.14 for the vertical subsystem and Figure 4.15 for
the horizontal subsystem):

Figure 4.14: Response of the Vertical Subsystem for Both Controllers to a Square Trajectory

Figure 4.15: Response of the Horizontal Subsystem for Both Controllers to a Square Trajectory

Interpretation of the Results

Vertical Subsystem Response

- The FOSMC controller achieves better reference tracking of the square signal, with re-
duced overshoot compared to the standard SMC.

- Despite both controllers stabilizing around the desired reference,
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- The control signal under SMC exhibits high-frequency chattering, particularly at transi-
tion points of the square signal.

- The control signal under FOSMC significantly reduces sharp peaks, resulting in a smoother
control effort and enhanced energy efficiency.

Horizontal Subsystem Response

- the FOSMC controller exhibits faster response and better alignment with the square
reference

- While SMC demonstrates acceptable reference tracking.

- The control input Uh is smooth and continuous for both controllers.

4.5.2 disturbance rejection Analysis

To evaluate the disturbance rejection capability of both controllers, we introduce an external
disturbance in the form of two impulse signals applied at T = 0s and T = 30s with an amplitude
of 0.3. This disturbance simulates sudden external forces or unexpected system variations, as
shown in Figure 4.16.

Figure 4.16: impulse disturbances at T = 0s and T = 30s.

Simulation Results

We get the following Results (figures 4.17 and 4.18)
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Figure 4.17: Response of the Vertical Subsystem for SMC and FOSMC

Figure 4.18: Response of the Horizontal Subsystem for SMC and FOSMC

Discussion on Disturbance Rejection

Vertical Subsystem Response

- Both controllers show noticeable deviation after impulse disturbances

- FOSMC demonstrates smoother recovery with minimal oscillations

- The control signal under SMC exhibits high-frequency, particularly at transition points
of the square signal.

Horizontal Subsystem Response

- The FOSMC controller offers better synchronization with the square reference trajectory,
achieving faster and more stable performance

- SMC demonstrates acceptable reference tracking

- The control input Uh is smooth and continuous for both controllers

4.5.3 Applying the Controllers to the Coupled System

The SMC and FOSMC controllers are now applied to the coupled Twin Rotor MIMO System.
Unlike previous tests where each subsystem was considered independently, the coupling effects
between the vertical and horizontal subsystems are now taken into account.
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The coupling between the two subsystems is treated as an external disturbance affecting
both dynamics. This allows us to evaluate the controllers ability to maintain stability, and
ensure reference tracking.

The controllers are now tested with a square signal as the input, with an amplitude of 0.2
and a frequency of 0.15 rad/sec.

Simulation Results

The following results are obtained ( Figures 4.19 and 4.20):
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Figure 4.19: Vertical Response of the Coupled System: SMC vs. FOSMC
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Figure 4.20: Horizontal Response of the Coupled System: SMC vs. FOSMC
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Coupled System Response Analysis

Vertical Subsystem Response

1. FOSMC Controller:

- Provides accurate tracking of the square reference input with minimal steady-state
error.

- Ensures a smooth and stable response with fast settling time.
- The control signal Uv is nearly chatter-free, indicating reduced switching activity.
- Maintains performance despite the coupling effect from the horizontal subsystem.

2. SMC Controller:

- Exhibits tracking oscillations and notable steady-state error.
- The control effort Uv shows strong chattering throughout the simulation.
- Aggressive switching leads to inefficient energy usage and potential actuator wear.
- Susceptible to disturbances from horizontal subsystem dynamics.

Horizontal Subsystem Response

1. FOSMC Controller:

- Achieves accurate reference tracking with minor overshoot.
- Control signal Uh is smooth and stable with minimal chattering.
- Demonstrates robustness against coupling effects from the vertical axis.
- Maintains efficient control performance during signal transitions.

2. SMC Controller:

- Shows overshoot and slower convergence to the reference.
- The control effort Uh includes high-frequency oscillations and chattering.
- Response is sensitive to inter-axis disturbances, reducing stability.
- Less energy-efficient due to excessive control effort.

These observations confirm that the FOSMC controller significantly outperforms the SMC
controller in handling the coupled TRMS system, offering better stability, disturbance rejection,
and tracking performance.

4.6 Conclusion

This comparative study between SMC and FOSMC for the Twin Rotor MIMO System reveals
clear advantages of the fractional-order approach. While both controllers achieve reference
tracking, FOSMC demonstrates superior performance with smoother control signals, faster
response, and minimal chattering compared to conventional SMC.

The FOSMC controller shows exceptional disturbance rejection capabilities and maintains
stability despite coupling effects between subsystems. In contrast, SMC exhibits noticeable
oscillations and energy-inefficient chattering,
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Chapter 5

Experimental TRMS Control through

PID and FOPID

Experiments are essential to validate the observations and conclusions drawn from theo-
retical studies. Establishing a connection between theory and its practical implementation is
crucial for understanding and applying control strategies in engineering systems. Therefore, a
series of experiments were conducted on the real Twin Rotor MIMO System (TRMS) to assess
the effectiveness of the PID and FOPID controllers in stabilizing the system at the origin,
in tracking desired reference trajectories, and in ensuring robustness against disturbances and
model uncertainties.

The parameters of the PID and FOPID controllers were obtained through simulation studies
based on the nonlinear mathematical model of the TRMS, as discussed in Chapter 3. In this
experimental validation, we focus on three aspects of controller performance:

- Stabilization: Bringing the system to the equilibrium point (origin) from an initial
condition.

- Trajectory Tracking: Following a time-varying reference trajectory, such as a sinusoidal
signal, to evaluate the controller’s tracking capability.

- Robustness: Testing the system’s ability to maintain stability and performance in the
presence of external disturbances and model uncertainties.

The designed PID and FOPID controllers were implemented on the physical TRMS, and
the experimental results are analyzed to assess their practical effectiveness under different
conditions.

5.1 Pre-Experiment Configuration

Before proceeding to the different experiments, let us outline some key instructions to ensure
that the data exported from the experiments accurately reflects the actual system behavior.
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First, we used MATLAB 6.1 to create the pid and fopid structure as a Simulink file, which
required specific settings adjustments. To ensure smooth execution of the program, follow these
steps:

1. Open the settings window of the Simulink file and:

- Set the numerical solver to ode1 (Euler method) with a fixed step size of 0.001.
- Deselect all selected options in the I/O Workspace tab.
- Verify that the target is set to rtwinfeedback.tlc in the Realtime Workshop tab.

2. In the Tools → Drag menu, set the control panel mode to External.

3. Use the built-in Microsoft C++ compiler to build the Simulink file by pressing the Ctrl+B
shortcut.

Once the software setup is complete, it is ready to be transmitted to the hardware. For this,
the TRMS was held and maintained at ψ = φ = 0 rad, and the Simulink file was connected
to the system for experimental testing. the actual system by tapping at the following key: the

Figure 5.1: TRMS Connection button using Matlab 6.1

reason that the connection was done in this specific position is that the sensor (i.e. position
encoders) needed to be initialized at zero so that it best reflects the behavior of the physical
plant. Now, the system can be let go of and the simulation is started by pressing the start
button and clicking on the run command of the system simultaneously. All that rest now is
opening the scope and observing the closed-loop behavior. This process is the same and needs
to be repeated for every single experiment, except for building the Simulink file which is done
only when it is edited.
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Figure 5.2: Real TRMS Experimentation

5.2 Experimental Scenarios

This section provides an overview of the experimental procedures conducted on the Twin Rotor
MIMO system to evaluate the performance of PID and FOPID controllers. The experiments
aim to validate the controllers under different scenarios, both in the decoupled and coupled
configurations.

The first test focuses on stabilizing the decoupled system around a zero reference using
PID and FOPID controllers. A step input signal is applied, setting the desired horizontal and
vertical angles to zero. The stabilization performance is evaluated using metrics such as Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Overshoot, Steady-State Error,
Settling Time, Integral of Absolute Error (IAE), and Integral of Squared Error (ISE).

The second test involves trajectory tracking, where the system follows a sinusoidal reference
signal of amplitude 0.2 and frequency 0.07 Hz on both the horizontal and vertical angles.
Tracking accuracy is assessed based on the correlation between the reference and output signals,
as well as the phase delay.

A robustness test is also performed by manually introducing a wind disturbance to assess
the controllers’ ability to reject external perturbations. The system’s deviation and recovery
time under these conditions are analyzed.

Finally, the same experimental scenarios are repeated for the coupled system configuration,
where the interaction between horizontal and vertical dynamics introduces additional challenges
such as cross-axis effects and nonlinearities.
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5.3 Decoupled System stabilization using PID and FOPID

Controllers

(a) Vertical angular response αv (b) Vertical control signal Uv

Figure 5.3: Response of the Vertical Subsystem for PID and FOPID Controllers.

(a) Horizontal angular response αh (b) Horizontal control signal Uh

Figure 5.4: Response of the Horizontal Subsystem for PID and FOPID Controllers.

Table 5.1: Performance Metrics for Vertical (Pitch) and Horizontal (Yaw) Angles

vertical angle Metrics

Metric PID FOPID
RMSE 0.2790 0.2281
MAE 0.2067 0.1729
Overshoot 2.7978 2.4651
Steady-State Error 0.1232 0.1230
Settling Time (s) 5.4300 3.2500
IAE 10.3321 8.6413
ISE 3.8878 2.5988

Horizontal angle Metrics

Metric PID FOPID
RMSE 0.4331 0.2308
MAE 0.2847 0.1696
Overshoot 2.3703 3.1962
Steady-State Error 0.1539 0.1268
Settling Time (s) 4.7100 5.7200
IAE 14.2267 8.4775
ISE 9.3687 2.6593

Observations:The results clearly highlight the superiority of the FOPID controller over
the classical PID in most performance metrics for both pitch and yaw angles. In partic-
ular, the FOPID significantly reduces the Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), Integral Absolute Error (IAE), and Integral Square Error (ISE) in both
axes—indicating better tracking accuracy and disturbance rejection. For the vertical (pitch)
angle, FOPID also improves the settling time and slightly lowers the overshoot compared to
PID.

However, in the horizontal (yaw) axis, while FOPID offers better tracking performance
(lower RMSE, MAE, IAE, ISE), it shows a slightly higher overshoot and longer settling time,
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which may reflect a trade-off between speed and stability in that direction. Overall, the FOPID
demonstrates more robust and efficient control behavior, particularly in reducing cumulative
errors.

5.4 decoupled System trajectory tracking using PID and

FOPID Controllers

(a) Vertical angular response αv (b) Control signal Uv

Figure 5.5: Response of the Vertical Subsystem for PID and FOPID Controllers to a Sinusoidal
Trajectory.

(a) Horizontal angular response αh (b) Control signal Uh

Figure 5.6: Response of the Horizontal Subsystem for PID and FOPID Controllers to a Sinu-
soidal Trajectory.

Table 5.2: Correlation and Phase Delay Metrics for Vertical (Pitch) and Horizontal (Yaw)
Angles

Vertical Angle (Pitch) Metrics

Metric PID FOPID
Correlation 0.7710 0.9353
Phase Delay (s) 0.9100 -0.1000

Horizontal Angle (Yaw) Metrics

Metric PID FOPID
Correlation 0.1162 0.7771
Phase Delay (s) -38.3000 0.4700

Observations:The correlation and phase delay metrics demonstrate that the FOPID con-
troller offers superior tracking performance compared to the classical PID. It ensures better
signal alignment and responsiveness in both pitch and yaw axes, with notably improved corre-
lation and reduced phase lag—especially in the yaw axis, where the PID fails to track effectively.
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5.5 Coupled System Stabilization using PID and FOPID

Controllers

(a) Vertical angular response αv (b) Control signal Uv

Figure 5.7: Response and control signal of the Vertical Subsystem for PID and FOPID Con-
trollers

(a) Horizontal angular response αh (b) Control signal Uh

Figure 5.8: Response and control signal of the Horizontal Subsystem

Table 5.3: Performance Metrics for Vertical (Pitch) and Horizontal (Yaw) Angles

Vertical Angle (Pitch) Metrics

Metric PID FOPID
RMSE 0.2402 0.1930
MAE 0.1894 0.1529
Overshoot 1.9305 2.6373
Steady-State Error 0.1229 0.1236
Settling Time (s) 5.8900 2.6700
IAE 9.4667 7.6383
ISE 2.8821 1.8577

Horizontal Angle (Yaw) Metrics

Metric PID FOPID
RMSE 0.2171 0.1695
MAE 0.1814 0.1423
Overshoot 1.5346 2.3585
Steady-State Error 0.1299 0.1199
Settling Time (s) 4.9700 1.9200
IAE 9.0657 7.1124
ISE 2.3549 1.4343

Observations:The FOPID controller demonstrates superior overall performance compared
to PID, with lower tracking errors (RMSE, MAE), faster settling times, and reduced cumulative
errors (IAE, ISE) on both pitch and yaw axes. However, this improved responsiveness comes at
the cost of a slightly higher overshoot—notably 2.64% vs. 1.93% for pitch, and 2.36% vs. 1.53%
for yaw. While the overshoot is slightly increased, it remains within acceptable bounds and is
outweighed by the gains in speed and accuracy, making FOPID a more effective controller for
stabilization.
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5.6 Coupled System Trajectory Tracking using PID and

FOPID Controllers

(a) Vertical angular response αv (b) Control signal Uv

Figure 5.9: PID and FOPID Vertical Subsystem Response and Control Signal to Sinusoidal
Trajectory in Coupled System.

(a) Horizontal angular response αh (b) Control signal Uh

Figure 5.10: PID and FOPID Horizontal Subsystem Response and Control Signal to Sinusoidal
Trajectory in Coupled System.

Table 5.4: Correlation and Phase Delay Metrics for Vertical (Pitch) and Horizontal (Yaw)
Angles

Vertical Angle (Pitch) Metrics

Metric PID FOPID
Correlation 0.4880 0.8075
Phase Delay (s) -0.2500 -0.1900

Horizontal Angle (Yaw) Metrics

Metric PID FOPID
Correlation 0.8303 0.8620
Phase Delay (s) -0.3800 0.2000

Observation:The tracking performance in the coupled TRMS system confirms the advan-
tage of the FOPID controller over the classical PID. As shown in Figures5.9 and 5.10, FOPID
provides smoother and more accurate responses in both vertical and horizontal subsystems
when following a sinusoidal reference, with reduced phase lag and more stable control signals.

The metrics in Table5.4 reinforce this observation. For the vertical (pitch) axis, FOPID
improves the correlation from 0.4880 to 0.8075 and slightly reduces the phase delay (0.19s vs.
0.25s). For the horizontal (yaw) axis, both controllers perform well, but FOPID maintains a
higher correlation (0.8620 vs. 0.8303) and achieves a positive phase delay (0.20s), indicating a
faster and more synchronized response.
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Overall, FOPID enhances trajectory tracking accuracy and reduces lag in both axes under
coupled dynamics.

5.7 Coupled System Stabilization using PID and FOPID

Controllers under Perturbation

(a) Vertical angular response αv (b) Control signal Uv

Figure 5.11: PID and FOPID Vertical Subsystem Response and Control Signal in Coupled
System under Perturbation.

(a) Horizontal angular response αh (b) Control signal Uh

Figure 5.12: PID and FOPID Horizontal Subsystem Response and Control Signal in Coupled
System under Perturbation.

Observation:The results show that the PID controller becomes unstable under perturba-
tion, leading to a limit cycle and persistent oscillations, particularly in the vertical subsystem.
In contrast, the FOPID controller effectively damps the disturbances, providing a more stable
response and smoother control signal in both axes. It thus offers greater robustness, better
disturbance rejection, and enhanced stability, confirming its relevance for strongly nonlinear
coupled systems subjected to real-world perturbations.
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5.8 Coupled System Stabilization using PID and FOPID

Controllers under Parameter Variation

(a) Vertical angular response αh (b) Control signal Uv

Figure 5.13: PID and FOPID Vertical Subsystem Response and Control Signal in Coupled
System under Parameter Variation.

(a) Horizontal angular response αh (b) Control signal Uh

Figure 5.14: PID and FOPID Horizontal Subsystem Response and Control Signal in Coupled
System under Parameter Variation.

Observation:Both controllers perform well under parameter variation, ensuring system
stability. However, the FOPID controller shows slightly better transient behavior and smoother
control signals, offering a small but consistent advantage over the classical PID.

5.9 Conclusion

his chapter presented a comprehensive experimental validation of PID and FOPID controllers
applied to the Twin Rotor MIMO System (TRMS). Through a series of tests conducted on
the real system including stabilization, trajectory tracking, and robustness assessment under
perturbations and parameter variations—we evaluated the practical effectiveness of both con-
trollers in handling complex, nonlinear, and coupled dynamics.

The experimental results confirm that while the classical PID controller achieves acceptable
performance in many scenarios, it exhibits clear limitations under challenging conditions such as
external disturbances and system uncertainties. In contrast, the FOPID controller consistently
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demonstrates superior performance across all tested scenarios. It provides more accurate stabi-
lization, better trajectory tracking, faster convergence, smoother control actions, and enhanced
robustness—especially in the presence of perturbations and parameter deviations.

Overall, the FOPID controller proves to be a more reliable and efficient solution for real-
world control of nonlinear and coupled systems like the TRMS. These findings reinforce the
theoretical advantages of fractional-order control and validate its practical applicability in mod-
ern control engineering.
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General conclusion

The work presented in this thesis focuses on the modeling and control of the Twin Rotor
MIMO System (TRMS), with the implementation of fractional-order control strategies and the
use of Particle Swarm Optimization (PSO) for tuning.

Fractional calculus extends the integral-differential operator to any positive real order, offer-
ing a broad range of applications and several advantages across various scientific fields—particularly
in control theory, which is the main focus of this study. As such, we introduced the fundamental
properties and tools necessary to transition from classical integer-order control theory to its
fractional-order counterpart.

The application part of this work includes two main control strategies: PID control and
Sliding Mode Control (SMC). For each strategy, two versions of the controller were synthe-
sized—one based on classical integer-order design, and the other on fractional-order design.
Due to the nonlinear nature of the TRMS, the PSO algorithm was employed to determine op-
timal parameters for all controllers. This optimization included PID gains, the sliding surface
constants for SMC, and the fractional orders

and

, yielding the best possible performance for the proposed control laws.

For the PID and FOPID controllers, a detailed comparative study was conducted. The
results demonstrated the superiority of the fractional-order approach in several aspects: im-
proved stability, better oscillation damping, enhanced robustness to modeling errors, and strong
rejection of external disturbances.

Regarding Sliding Mode Control, we contributed to the development of a fractional-order
sliding mode law, which showed, in most cases, higher performance than its classical counter-
part. While both SMC controllers exhibited strong robustness to model uncertainties—often
exceeding that of PID and FOPID—the fractional-order SMC proved to be more effective in
trajectory tracking, especially under strong disturbances. In contrast, the classical SMC tended
to diverge under such conditions.

Throughout this study, fractional-order controllers have consistently demonstrated their
effectiveness in controlling complex nonlinear systems like the TRMS. They also offer increased
design flexibility, particularly due to their smoother input signals, which are better suited to
real-world actuators. Furthermore, these controllers have shown excellent performance across
multiple evaluation criteria.

A practical validation of the PID and FOPID controllers was carried out on the physical
TRMS platform. Experimental results confirmed the findings from simulation studies: the
FOPID controller consistently achieved better stabilization, faster convergence, smoother con-
trol efforts, and superior tracking performance compared to the classical PID. These results
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demonstrate the practical feasibility and benefits of fractional-order control in real-time em-
bedded systems.

Future perspectives:

- Extending other classical control methods (e.g., LQR, H-infinity, adaptive control) to
their fractional-order counterparts.

- Exploring alternative sliding surface definitions to further enhance the performance and
flexibility of sliding mode control strategies.

- Implementing both classical Sliding Mode Control (SMC) and its fractional-order ver-
sion (FOSMC) on the real TRMS platform to validate their practical robustness against
disturbances and coupling effect.

In conclusion, this work confirms that fractional-order controllers are not only theoreti-
cally promising but also experimentally viable, offering robust, flexible, and high-performance
solutions for nonlinear and coupled system control.
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Business Model Canvas

1. Customer Segments
- Aerospace R&D departments (e.g.,

drones, helicopters)

- Robotics and automation companies

- Academic institutions and research labs

- Industrial control integrators

- Control system hardware vendors

2. Value Proposition
- Robust fractional-order controllers

(FOPID, FOSMC)

- Improved disturbance rejection and
adaptability

- Simulation and real-time deployment on
TRMS

- Ready-to-integrate modules for educa-
tion and R&D

3. Channels
- Direct industry partnerships

- Academic and industrial conferences

- Online distribution platform (API/Soft-
ware)

- Pilot projects and demos

4. Customer Relationships
- Co-development and integration sup-

port

- Technical maintenance contracts

- Training and certification programs

- Free trials for academic use

5. Revenue Streams
- Software library licensing

- Consulting and engineering services

- Sale of TRMS-based platforms

- Training and workshops

6. Key Resources
- Proprietary FOPID/FOSMC algo-

rithms

- TRMS demo platform

- Expertise in fractional control and opti-
mization

- Research and industrial network

7. Key Activities
- Control algorithm development

- Hardware/software integration

- Simulation and experimentation

- Marketing and customer support

8. Key Partnerships
- National Polytechnic School (ENP)

- Aerospace research centers

- TRMS manufacturers

- Incubators and innovation hubs

9. Cost Structure
- R&D and prototyping

- Hardware maintenance and testing

- Personnel and consulting

- Marketing and outreach
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