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Résumé

Ce projet étudie I'utilisation des signaux neurophysiologiques, notamment 'EEG, 'ECG et le
PPG, pour I'évaluation du stress chez 23 participants effectuant différentes taches, chacune
étant associée a un niveau de stress spécifique. Les signaux sont segmentés, filtrés, puis convertis
en images selon deux méthodes distinctes : la représentation par graphe de visibilité et la
représentation par champ angulaire de Gramian. Ce traitement multimodal permet de
capturer des informations complémentaires provenant de différentes modalités physiologiques.

L’extraction de caractéristiques repose sur deux approches complémentaires : la transformée
en paquets d’ondelettes, combinée aux moments de Zernike et de Hu, et ’analyse
semi-classique des signaux (SCSA). Une fois les signaux transformés et les caractéristiques
extraites, un modele d’apprentissage supervisé est entrainé a ’aide des étiquettes de stress afin
d’évaluer et de comparer 'efficacité des différentes méthodes d’extraction.

Pour chaque type de signal, ’approche la plus performante est sélectionnée. Ces meilleures con-
figurations sont ensuite combinées afin d’améliorer les performances du systéme d’évaluation
du stress, en tirant parti de la complémentarité offerte par la multimodalité.

Mots-clés : Stress — Signaux neurophysiologiques — Multimodalité — Apprentissage au-
tomatique — Traitement d’image — Classification.

Abstract

This project investigates the use of neurophysiological signals, specifically EEG, ECG, and
PPG, for stress assessment in 23 participants performing various tasks, with corresponding
stress levels recorded for each activity. The signals are segmented and filtered, then converted
into images using two distinct techniques: Visibility Graph and Gramian Angular Field
Image Representations.



This multimodal approach enables the integration of diverse and complementary information
from different physiological sources. Feature extraction is subsequently performed using two
complementary strategies: Wavelet Packet Transform combined with Zernike and Hu
Moments, and Semi-Classical Signal Analysis (SCSA).

Once the full processing pipeline is completed, a supervised machine learning model is trained
using the stress labels in order to evaluate and compare the performance of each feature ex-
traction method. For each signal type, the most effective strategy is selected, and their outputs
are then fused to enhance the overall performance of the stress assessment system by
leveraging the benefits of multimodality.

Keywords: Stress — Neurophysiological Signals — Multimodality — Machine Learning —
Image Processing — Classification.
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General Introduction

“Integrating multiple modalities provides a more comprehensive understanding of
stress, given that stress manifests differently across different people.”

Hosseini et al., Multimodal Stress Detection Using Facial Landmarks and
Biometric Signals, 2023

Stress is a pervasive condition that significantly impacts both mental and physical health,
contributing to cognitive decline, cardiovascular diseases, and reduced quality of life [45]. Tradi-
tional stress assessment methods, such as self-reported questionnaires, are subjective and often
fail to capture real-time physiological responses. Recent advances in wearable technology and
signal processing have enabled the use of neurophysiological signals, such as electroencephalog-
raphy (EEG), electrocardiography (ECG), and photoplethysmography (PPG), to objectively
quantify stress levels. However, relying on a single modality can lead to incomplete or biased
assessments due to the complex, multisystem nature of stress responses.

This thesis addresses the critical need for a robust, multimodal approach to stress detection
by integrating EEG, ECG, and PPG signals. Our work leverages modern signal processing
techniques, machine learning, and data fusion strategies to improve classification accuracy and
enable real-time stress monitoring. The proposed methodology not only advances the state-of-
the-art in stress assessment but also lays the foundation for practical applications in healthcare,
workplace wellness, and human-computer interaction.

Despite extensive research on stress detection, existing systems face several limitations:

- Unimodal Bias: Most studies focus on a single signal type (e.g., EEG or ECG), ignoring
the complementary information provided by multimodal data.

- Class Imbalance: Real-world stress datasets are often skewed, leading to models that
perform poorly on underrepresented classes.

- Real-Time Constraints: Many methods rely on computationally expensive features,
making them unsuitable for embedded or wearable devices.

Our work bridges these gaps by:

- Developing a multimodal fusion framework that combines EEG, ECG, and PPG signals
for higher accuracy.

- Introducing data augmentation and balancing techniques to improve model generalizabil-
ity.

- Optimizing feature extraction and classification pipelines for future real-time deployment
on hardware such as FPGAs.
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General Introduction

Project Objectives

The primary objective of this work is to develop a high-accuracy multimodal stress classification
system that integrates EEG, ECG, and PPG signals. With:

- Achieving robust performance in both binary (stress/non-stress) and three-class (low/medi-
um/high stress) scenarios.

- Addressing dataset imbalance through downsampling and SMOTE-based augmentation.

- Optimizing the pipeline for future deployment on FPGA hardware to enable real-time
and low-latency stress monitoring.

By combining advanced signal processing with multimodal machine learning, this research
contributes to the development of wearable, real-time stress detection systems with applications
in healthcare, occupational safety, and mental wellness.

Contributions

This thesis makes the following contributions:

Novel Signal Processing Pipeline
- Advanced filtering techniques (methods from neurokit ) to improve signal quality.

- Transformation of 1D signals into 2D representations (Visibility Graphs and Gramian
Angular Fields) to capture temporal and structural patterns.

Feature Engineering

- Hybrid feature extraction using spectral methods (SCSA) and image descriptors (Zernike
moments, Hu moments, wavelet packets transform coefficients).

- Dimensionality reduction and significant feature selection via correlation analysis and
ANOVA test.

Multimodal Fusion

- Integration of best feature’s paths from EEG, ECG, and PPG data to enhance stress
classification performance.

- Comparative analysis of unimodal vs. multimodal approaches, demonstrating the supe-
riority of fusion.

Data Balancing and Augmentation

- Application of SMOTE to address class imbalance, significantly improving recall for mi-
nority classes.

- Validation of augmentation techniques in both binary and three-class stress classification.

16



General Introduction

Machine Learning Optimization

- Evaluation of multiple classifiers (Random Forest, XGBoost, Neural Networks) for stress
detection.

- Permutation tests to confirm the statistical significance of results.

Methodology Overview

Our methodology is structured into four stages:

1. Data Acquisition and Preprocessing: Using the PASS dataset [41], we segment and
filter EEG, ECG, and PPG signals to remove noise and artifacts.

2. Signal-to-Image Representation: Convert time-series signals into 2D images (VG and
GAF) to leverage spatial and temporal correlations.

3. Feature Extraction and Fusion: Extract discriminative features from each modality
and fuse them for multimodal classification.

4. Model Training and Validation: Train machine learning models on both balanced
and imbalanced datasets and evaluate performance using accuracy, precision, recall, and
F1-score.

Thesis Structure

This dissertation is organized as follows:

- Chapter 1: Reviews the state-of-the-art in stress assessment, covering definitions, phys-
iological impacts, and existing multimodal techniques.

- Chapter 2: Details the acquisition and processing of neurophysiological signals, including
preprocessing, feature extraction, and machine learning methods.

- Chapter 3: Presents the implementation and experimentation, including dataset prepa-
ration, classification pipelines, and results.

Finally a conclusion with essential findings, limitations, and future directions for real-time
stress monitoring systems.
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Chapter 1. State-of-the-Art on Stress Assessment

1.1 Introduction

In the first chapter, we will explore stress, its impact on health, and the classical methods used
to assess it. After that, we will examine the contribution of neurophysiological signals to stress
evaluation, review several multimodal databases, and conclude with a discussion on the concept
of multimodality.

1.2 Definition of Stress

According to Papathanasiou et al.[40], stress is a universal phenomenon that can be defined in
multiple ways depending on the theoretical approach. It can be understood as a reaction, a
stimulus, or a transaction between an individual and their environment.

1.2.1 Stress as a Reaction

For this case, stress is a biological and psychological response of the body to an internal or
external demand. This reaction involves specific physiological changes that can affect an in-
dividual’s well-being. The human body activates defense mechanisms when facing stressful
events. This activation manifests through hormonal changes, increased heart rate, muscle ten-
sion, and other physiological responses [48]. Stress is therefore seen as an adaptive reaction
that helps the body cope with potentially threatening situations.

1.2.2 Stress as a Stimulus

In this approach, stress is defined as a series of events or environmental changes that trigger a
reaction in the individual. These events, known as stressors, can be acute (sudden and intense
events such as accidents or bad news), chronic (long-term stressors such as work pressure or
family conflicts), recurrent (periodic stressful events such as exams or deadlines), or cumula-
tive (the buildup of small stressors leading to mental and physical exhaustion) [22]. In this
framework, stress is considered an external force that disrupts an individual’s psychological
and physiological balance

1.2.3 Stress as a Transaction

This model, developed by Lazarus and Folkman [14], views stress as an interaction between an
individual and their environment. It emphasizes the subjective perception of stress rather than
stress itself. The same event may be stressful for one person but insignificant for another. How
a person evaluates an event and their available resources to cope with it determines whether
they experience stress. The evaluation process involves three stages: primary appraisal, where
the individual determines whether the event is a threat, a challenge, or irrelevant; secondary
appraisal, where they assess their resources to handle the situation; and third appraisal, where
they adjust their perception based on new information or experiences.
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1.3 Impact of Stress on Health and Cognition

Stress aggravates health issues, contributing to cognitive decline and significantly increasing
the risk of Alzheimer’s disease and dementia.[45].

It’s not uncommon to feel disorganized and forgetful when under significant stress. However,
long-term stress may alter brain function in ways that impair memory. Studies in both animals
and humans demonstrate that stress can affect cognitive processing. According to Dr. Kerry
Ressler, chief scientific officer at McLean Hospital and professor of psychiatry at Harvard Med-
ical School, stress—whether real-life or experimentally induced—impairs cognition, attention,
and memory.

Beyond its effects on memory, stress influences various brain functions, including mood and
anxiety regulation. It also promotes inflammation, negatively impacting cardiovascular health.
Additionally, research suggests that stress may affect men and women differently [45].

To understand why stress affects cognition, it is essential to consider brain function (Fig 1.1a).
The brain consists of multiple interconnected regions (Fig 1.1b) responsible for different tasks.
Under stress, the amygdala—responsible for survival instincts—becomes highly active, diverting
resources away from memory-related areas such as the hippocampus. This shift explains why
stress can cause forgetfulness and memory lapses, particularly in high-pressure or traumatic
situations.

These findings highlight the critical role of stress management in preserving cognitive function
and overall brain health.
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(a) Brain functions [12] (b) Brain regions [26]

Figure 1.1: Interconnected regions responsible for different tasks

1.4 Classical Stress Measurement Methods

Stress measurement methods can be broadly categorized into subjective questionnaires and
objective biomarkers.

1.4.1 Questionnaires

Questionnaires are widely used to assess stress levels based on self-reported data. These meth-
ods rely on individuals’ perceptions of their stress levels, which can be influenced by personal
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biases and external factors. Despite their limitations, they remain a simple and accessible
means of stress evaluation.

NASA Task Load Index (NASA-TLX)

The NASA-TLX is a subjective workload assessment tool commonly used in psychological and
human performance studies. It evaluates six subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration [41].

BORG Rating of Perceived Exertion (BORG Scale)

The BORG scale measures perceived exertion, which is often correlated with physiological
stress responses. Participants rate their exertion levels on a scale from 6 (no exertion) to 20
(maximum exertion). This method is particularly useful in physical and occupational stress
research [41].

State-Trait Anxiety Inventory (STAI)

The STAT assesses both temporary (state) and long-term (trait) anxiety levels. Stress is strongly
linked to anxiety, making this tool valuable for stress research. It consists of two 20-item sub-
scales that measure how individuals feel at a particular moment versus their general tendency
toward anxiety [5].

Perceived Stress Scale (PSS)

The PSS is a widely used psychological instrument for measuring the perception of stress. It
assesses how unpredictable, uncontrollable, and overloaded respondents find their lives. This
scale helps identify chronic stress levels in everyday life [44].

1.4.2 Biomarkers

Biomarkers provide objective measures of stress by analyzing physiological responses. These
methods help overcome the subjectivity of self-reported questionnaires and offer insight into
the biological impact of stress.

Salivary Cortisol

Cortisol, the primary stress hormone, is released by the adrenal glands in response to stress.
Measuring salivary cortisol levels provides a non-invasive way to assess stress responses over
time [34].

Salivary Alpha-Amylase (SAA)

Alpha-amylase is an enzyme that increases in response to stress, particularly in acute stress sit-
uations. Salivary alpha-amylase levels correlate with the activation of the sympathetic nervous
system, making it a reliable biomarker for stress assessment [34].

Heart Rate Variability (HRV)

HRYV refers to the variation in time intervals between consecutive heartbeats (Fig 1.2). A lower
HRV is associated with higher stress levels and reduced autonomic nervous system flexibility.
Stress-related changes in HRV are commonly assessed using electrocardiography (ECG) [41].

Electrodermal Activity (EDA)

EDA, also known as galvanic skin response (GSR), measures sweat gland activity controlled by
the sympathetic nervous system. Increased skin conductance is a well-established physiological
response to stress [41].
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Figure 1.2: HRV

Functional Near-Infrared Spectroscopy (fNIRS)
fNIRS is a non-invasive method that measures changes in cerebral oxygenation related to stress.

This technique is often combined with EEG to assess stress-related brain activity in real time
[4].

Thermal Imaging

Stress can cause peripheral vasoconstriction, reducing temperature in the extremities while
increasing facial temperature. Thermal imaging (Fig 1.3) detects these temperature changes
and has been used in stress assessment, particularly in security and military applications.

Figure 1.3: Thermal imaging

Face Images

When a person is under stress, eye, mouth, and head movements are different from normal
situations, and research on stress recognition using general images is also being conducted.
In these studies, many methods were used to recognize stress such as extracting hand-crafted
features from the eyes, nose, and mouth areas or using eye size, mouth movements, and head
movements as features [40].
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Fig 1.4 shows a part from a database that used to evaluate stress with three levels

Figure 1.4: Face images for stress level detection [40]

Table 1.1, summarizes the comparison between classical stress measurement methods,

Table 1.1: Comparative Analysis of Classical Stress Measurement Methods

Method Advantages Disadvantages

Questionnaires

NASA-TLX Easy to administer; assesses Subjective; prone to response
multiple stress dimensions bias.
(mental, physical).

BORG Scale Simple, quick; useful for physical | Limited to perceived exertion,
stress assessment. not cognitive/emotional stress.

STAI Distinguishes between temporary | Self-reported; may not correlate
and chronic anxiety (linked to with physiological stress markers.
stress).

PSS Measures perceived stress in Subjective; lacks real-time or
daily life; widely validated. biological validation.

Biomarkers

Salivary Cortisol | Objective; reflects HPA axis Delayed response (peaks 20-30
activity; non-invasive collection. | mins post-stress); diurnal

rhythm affects levels.

Salivary Rapid response (sympathetic Sensitive to food/drink; less

Alpha-Amylase | activation); non-invasive. specific to stress alone.

HRV Real-time; indicates autonomic Requires precise ECG
nervous system balance. measurement; confounded by

physical activity.

23



Chapter 1. State-of-the-Art on Stress Assessment

EDA Directly measures sympathetic Affected by temperature,
arousal; high temporal humidity, and motion artifacts.
resolution.

fNIRS Non-invasive; measures brain Expensive; limited spatial
oxygenation during stress tasks. | resolution compared to fMRI.

Thermal Contactless; captures Sensitive to environmental

Imaging stress-induced temperature conditions; requires controlled
changes. settings.

Face Image Non-invasive; uses standard Privacy concerns; accuracy

Analysis cameras; potential for real-time depends on lighting/pose
apps. variability.

1.5 Contribution of Neurophysiological Signals to Stress
Assessment

In recent years, neurophysiological signal-based methods have gained attention due to their
reliability in tracking stress responses in real-time. These include cardiovascular activity mon-
itoring through electrocardiography (ECG) and photoplethysmography (PPG), cognitive and
cerebral activity tracking using electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS), as well as skin conductance and temperature monitoring. Recent ad-
vancements have focused on portable, real-time stress monitoring systems that integrate ma-
chine learning models with physiological signals [4]. These developments aim to improve stress
detection accuracy, especially in non-laboratory settings, enabling practical applications in ev-
eryday life.

A valuable contribution in this domain is the SAM40 dataset, which consists of EEG recordings
from 40 subjects undergoing various cognitive tasks designed to induce stress, such as the Stroop
color-word test, arithmetic problem-solving, and mirror image recognition [21]. This dataset
provides a structured approach to evaluating stress responses using EEG signals and serves as
a benchmark for developing machine learning models for stress classification.

Methodology and Data Collection

The SAM40 dataset was collected using a 32-channel Emotiv Epoc Flex gel kit, with data
recorded at a sampling rate of 128 Hz. Participants were exposed to the following stress-
inducing tasks:

- Stroop Color-Word Test: Measures cognitive interference and response inhibition by
asking subjects to name the color of words, which can be either congruent or incongruent.

- Mirror Image Recognition Task: Requires participants to identify whether two pre-
sented images are symmetric or asymmetric, inducing cognitive load.

- Arithmetic Problem Solving: Subjects mentally solve mathematical problems and
indicate whether a displayed solution is correct, increasing cognitive stress.

Each task was performed for 25 seconds, followed by a short relaxation period. EEG signals
were preprocessed using Savitzky-Golay filtering to remove baseline drifts and wavelet
thresholding to eliminate artifacts.

24



Chapter 1. State-of-the-Art on Stress Assessment

EEG data plays a crucial role in stress assessment due to its high temporal resolution and direct
measurement of brain activity. The SAM40 dataset enables researchers to analyze stress-related
patterns in EEG signals and offers several advantages for stress detection:

- Identification of Stress-Related Frequency Bands: EEG signals reveal that stress is
associated with increased beta and gamma activity (high cognitive load and alertness),
while relaxation correlates with enhanced alpha and theta activity (reduced cognitive
load and relaxation).

- Objective Stress Measurement: Unlike self-reported stress assessments, EEG pro-
vides a continuous and quantitative measure of stress levels by analyzing brainwave pat-
terns.

- Real-Time Monitoring: The fast response time of EEG allows for real-time tracking of
stress variations, which is crucial for applications in workplace monitoring, mental health
tracking, and cognitive load assessment.

- Machine Learning Integration: The EEG data from SAM40 can be used to train deep
learning models for automated stress classification, improving accuracy over traditional
questionnaire-based methods.

1.6 Databases

In this section, we will briefly discuss several databases identified during our research.

1.6.1 SAM 40

SAM 40 is a dataset consisting of EEG recordings from 40 subjects (14 females, 26 males,
with a mean age of 21.5 years) collected to monitor stress induced by cognitive tasks. The
tasks performed include the Stroop color-word test, arithmetic problem-solving, and mirror
image recognition. EEG signals were recorded using a 32-channel Emotiv Epoc Flex gel kit at
a sampling frequency of 128 Hz. The data were processed to remove artifacts using wavelet
thresholding and the Savitzky-Golay filter [21].

The primary objective of this dataset is to analyze short-term stress responses elicited by
cognitive tasks. Subjects were exposed to different stress-inducing stimuli, and their EEG
signals were segmented into 25-second epochs for further analysis. Behavioral stress ratings
on a scale of 1 to 10 were also collected, allowing for a correlation between EEG patterns and
perceived stress levels [21].

1.6.2 PASS

PASS (Physical Activity and Stress) is a multimodal database designed to support research on
stress assessment in mobile environments. The dataset comprises data from 48 participants who
performed tasks under varying stress levels while engaging in different levels of physical activity.
To induce stress, participants played video games designed to evoke either calmness (TIME-
frame) or stress (Outlast). Physiological signals, including EEG, electrocardiography (ECG),
electrodermal activity (EDA), respiration, and skin temperature, were recorded throughout the
experiment [41].

This dataset is particularly valuable for investigating the impact of movement artifacts and
physical activity on stress detection. By incorporating wearable sensors, PASS provides a
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realistic approach to stress monitoring in everyday scenarios, contributing to the advancement
of mobile passive body/brain-computer interfaces [41].

1.6.3 Face Landmark-Based Stress Recognition Dataset

This dataset was developed for stress recognition using face images and facial landmarks. Un-
like traditional stress detection methods that rely on biological signals or thermal imaging,
which require specialized equipment, this dataset allows stress recognition using general camera-
acquired images. A deep neural network was designed to process facial landmarks, focusing
on eye, mouth, and head movements, which change under stress. Experimental results demon-
strated the effectiveness of this approach in stress recognition [28].

1.7 Multimodal Signal Analysis

The assessment of stress through physiological and behavioral signals has gained significant
attention in recent years. While single-modal approaches, such as EEG-based or ECG-based
stress detection, provide valuable insights, multimodal signal analysis has demonstrated su-
perior accuracy and robustness. By combining multiple physiological and behavioral signals,
researchers can extract complementary information and improve stress recognition systems.

1.7.1 Multimodal Neurophysiological Signals

Multimodal approaches leverage a combination of neurophysiological and peripheral physiolog-
ical signals, such as:

- Electroencephalography (EEG): Captures brain activity and provides insight into
cognitive load and emotional states. Stress is often associated with increased beta and
gamma power and reduced alpha power in specific brain regions [21].

- Electrocardiography (ECG): Measures heart rate variability (HRV), where lower HRV
is typically linked to higher stress levels [41].

- Electrodermal Activity (EDA): Reflects changes in skin conductance caused by au-
tonomic nervous system activation during stress responses.

- Respiration and Skin Temperature: Variations in breathing rate and peripheral
temperature can indicate stress-induced physiological changes.

Several datasets, such as SAM 40 [21] and PASS [41], have been developed to facilitate multi-
modal stress analysis, providing EEG, ECG, EDA, and other signals recorded under controlled
experimental conditions.

1.7.2 Multimodal Behavioral Analysis

Beyond physiological measurements, behavioral signals also play a crucial role in stress detec-
tion. These include:

- Facial Expressions and Microexpressions: Stress alters facial muscle activity, which
can be analyzed using deep learning models applied to face images [28].

- Posture and Body Movements: Stress-induced changes in posture and movement
patterns can be detected using motion sensors and cameras.

26



Chapter 1. State-of-the-Art on Stress Assessment

- Speech and Voice Features: Variations in pitch, speech rate, and vocal tremors are
indicative of emotional and physiological stress responses.

The Face Landmark-Based Stress Recognition Dataset [28] provides a novel approach
by utilizing facial landmarks to detect stress, eliminating the need for specialized biosensors.

1.7.3 Fusion of Multimodal Data

Multimodal stress assessment integrates multiple data streams using various fusion techniques:

- Feature-Level Fusion: Extracted features from different modalities are combined into
a single feature vector before classification.
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Figure 1.5: Features fusion

- Decision-Level Fusion: Independent classifiers are applied to each modality, and their
outputs are combined to improve accuracy.
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- Deep Learning-Based Fusion: Convolutional and recurrent neural networks are in-
creasingly used to automatically learn multimodal feature representations.

27



Chapter 1. State-of-the-Art on Stress Assessment

Filter 1

1st modality
Filter 2

2nd modality
Filter 3 Final Filter

nth modality Filter 4

Filtern

Figure 1.7: Deep Learning-Based Fusion

Recent studies have demonstrated that deep learning models trained on multimodal physiologi-
cal and behavioral data can achieve higher stress detection accuracy than unimodal approaches.

1.7.4 Some multimodal signal analysis approaches

To assess stress using neurophysiological signals, research suggests that combining multiple
signals yields better results than using them individually.

Starting with Cognitive Stress Detection during Physical Activity using Simultane-
ous, Mobile EEG and ECG signals (Maria et al.)[46], after segmenting the PASS EEG
and ECG signals, a visibility graph representation was applied. Subsequently, shape-based
features (Hu’s moments and Zernike’s moments) and frequency-based features (wavelet packet
features) were extracted to train a machine learning model. The models used include Light-
GBM (LGBM), Random Forest (RF), and Gaussian Naive Bayes (GNB). The classification
results are summarized in Table 1.8.

Model

Signal LGBM RF GNB
Accuracy Fl-score  Accuracy Fl-score  Accuracy Fl-score
EEG 0.91 0.90 .81 0.77 0.77 0.69
ECG .85 0.89 0.75 0.74 0.73 0.71
EEG+ECG 0.93 0.92 0.85 0.85 0.582 0.82

Figure 1.8: Stress classification results for Cognitive Stress Detection during Physical Activity
using Simultaneous Mobile EEG and ECG signals [46].

From these results, it is evident that combining signals leads to the highest accuracy. Among
the tested models, LGBM achieved the best performance, confirming its effectiveness in this
stress classification method.

Now, with Stress Recognition using Face Images and Facial Landmarks (Jung et
al.) [27], the proposed algorithm begins with face and facial landmark detection for stress
recognition. A deep learning-based three-stage network enhances face detection accuracy, while
facial landmarks are extracted using a cascade method combining random-fern features and a
regression tree classifier. The overall framework is illustrated in Fig 1.9.
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Figure 1.9: Flowchart of the overall framework from the stress recognition using face images

[27]

The network classifies stress into three levels: no stress, weak stress, and strong stress (Fig 1.10).
To optimize performance, shortcut mapping enhances deep network training, while a bottleneck
architecture reduces internal parameters and computational cost without sacrificing accuracy.
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Figure 1.10: Structure of the proposed network of stress recognition using face images [27]

Performance evaluation was conducted using k-fold cross-validation, where one subject’s data
was used for testing while the remaining subjects’ data trained the model. Results demonstrated
that including facial landmarks significantly improved accuracy, with the best performance
achieved using grayscale face images of an optimal size (Table 1.11).
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Input (Image Size) Accuracy
Color face image (84) 33.68 %
Color face image (84) and facial landmarks 56.14 %
Gray face image (84) 57.92 %
Gray face image (84) and facial landmarks 63.29 %
Gray face image (140) and facial landmarks 64.63 %

Figure 1.11: Accuracy from Jung et al. [27]

Jung et al. [27] confirmed that facial landmarks enhance stress recognition by capturing key
stress-related facial movements, such as those of the eyes, mouth, and head. Their findings also
highlight the effectiveness of grayscale images in improving classification accuracy by better
isolating stress-related features, but, the Maria et al [46] method shows better accuracy than
the Jung et al. [27] method, in this case, we can absolutely confirm that neurophysiological
signals play the best role in stress assessment, especially when it is multimodal.

1.8 Conclusion

Numerous studies have explored stress detection and assessment using various modalities. As
highlighted in this chapter, neurophysiological signals have demonstrated the highest accuracy
for cognitive stress evaluation, particularly when combined in a multimodal approach. The inte-
gration of multiple physiological and behavioral signals enhances the reliability and robustness
of stress recognition systems.

In the next chapters, we will focus on signal acquisition and processing methods, along with
implementation and experimental validation. By refining feature extraction techniques and
exploring the potential of incorporating additional modalities, we aim to further improve stress
classification accuracy and advance real-time stress assessment methodologies.
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2.1 Introduction
Previously, we explored stress, its various types, and its impact on health and cognition. We
examined how stress negatively affects our well-being, daily life, mood, and mental processes,

as well as its influence on neurophysiological signals in the human body. Additionally, we
discussed classical methods for assessing and measuring stress and reviewed existing databases

that aid in stress evaluation.
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Figure 2.1: Methodology’s full pipeline

In this chapter, we will explore existing techniques for noise reduction and artifact removal,
methods for signal representation through imaging, and feature extraction strategies. Fur-
thermore, we will delve into multimodal data fusion and the application of machine learning
models.

Fig 2.1 shows the full pipeline of detailed process in this chapter.

2.2 Preprocessing Methods

In this section, we will discuss the commonly used methods for signal preprocessing, noise
removal, filtering, and artifact correction for neurophysiological signals, specifically EEG, ECG,
and PPG. In the next chapter, we will explain why these three signals were chosen for stress
assessment.

2.2.1 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a statistical technique used for separating multi-
variate signals into independent non-Gaussian components as shown in Fig 2.2. ICA is widely
applied in fields like audio, image processing, and biomedical signal analysis such as EEG signal
to isolate distinct sources from mixed signals and to remove artifacts such as eye blinks, muscle
movements, and power line noise.[17]
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2.2.1.1 Basic concepts

Statistical independence refers to the idea that two random variables, X and Y, are independent
if knowing one does not affect the probability of the other. Mathematically, this means the
joint probability of X and Y is equal to the product of their individual probabilities:

P(X and Y) = P(X) - P(Y) (2.1)

or equivalently,

P(XNY) = P(X)- P(Y) (2.2)

In addition, ICA operates under some key assumptions, the source signals are statistically inde-
pendent of each other, they have non-Gaussian distributions, propagation delay is negligible,the
signals at the sensors are different linear combinations of the sources and finally the number of
sources is equal to the number of sensors. These assumptions allow ICA to effectively separate
mixed signals into independent components, a task that traditional methods like PCA cannot
achieve.

2.2.1.2 The ICA algorithm for EEG signal

Data Preprocessing, EEG signals are bandpass filtered (typically 0.5-50 Hz) to remove low-
frequency drifts and high-frequency noise before ICA is applied.

Signal Model (Linear Mixing), the observed EEG signals are modeled as a linear mixture

of independent sources:
x = As (2.3)

where:

T

- X = [x1, 29, ..., x,|" are the observed signals,

- 8 = [s1, 589, ...,5,)7 are the independent source signals,
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- A is the unknown mixing matrix.
Whitening the Data, to decorrelate the signals, we first center the data:
x' =x — E{x} (2.4)
Then, we whiten the data using the covariance matrix:
VDV’ = E{x'x"} (2.5)
where:
- V is the matrix of eigenvectors,
- D is the diagonal matrix of eigenvalues.
The whitening transformation matrix is:
P =VD/2VT (2.6)

The whitened signals are:
x" = Px’ (2.7)

Finding Independent Components, we need to estimate a separation matrix M such that:
s = Mx” (2.8)

This is done by maximizing the non-Gaussianity of s. A common measure of non-Gaussianity
is Kurtosis:

Kurt(y) = B{y"} — 3(E{y*})’ (2.9)
Iterative Algorithm for ICA, the FastICA algorithm by Hyvérinen and Oja is used:[37]

1. Choose an initial random weight vector m.

2. Update m using a nonlinear function g(y):

m" = F{x*¢(m"x*)} — E{¢'(m"x*)}m (2.10)
3. Normalize m:
m” (2.11)
m=_—— :
[t

4. Repeat until convergence (when the weight vector change is below a threshold).

Reconstructing Independent Sources, after estimating M, the independent components

are:
s = Mx” (2.12)

These sources correspond to the original EEG signals without artifacts, as we can see in Fig 2.3.
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Figure 2.3: Example of ICA application for the PASS dataset

However, according to a study [11], ICA alone is not sufficient for artifact removal. In fact,
it may also eliminate parts of the neural signal, leading to distortions. To address this issue,
the article introduces wICA, an enhanced method specifically designed for preserving neural
activity while effectively suppressing artifacts. In the next subsection, we will explore this
approach in detail.

Fig 2.3 shows clearly that ICA is not sufficent, and we need to improve it by using wlCA, so
what is wICA.

2.2.2 wavelet-enhanced independent component analysis wICA

Let us now present the wICA method, which leverages Wavelet technique to enhance the
performance of the ICA artifact suppression technique.[11]

When working with real EEG data, ICA (Independent Component Analysis) often estimates
independent components that not only capture strong artifacts but also frequently include a
significant amount of cerebral activity. This issue can arise due to factors such as the limita-
tions on the maximum number of independent sources, temporal independence constraints, or
suboptimal application of the algorithm [11]. Rejection of such components supposes a loss of
a part of the cerebral activity and, consequently, distortion of the artifact free EEG

According to ICA assumptions, this component should not contain any artifacts independent
of ocular sources. The component can be divided into a high-amplitude artifact, a(f) and a
low-amplitude residual neural signal, n(t)

s1(t) = a(t) + n(t) (2.13)

In the conventional ICA algorithm, the entire component is set to zero, i.e., s1(t) = 0, before the

35



Chapter 2. Computational Methods for Biomedical Signal Processing and Classification

signal recomposition, as shown in Eq. 2.12. As a result, in the ICA-corrected EEG, a portion
of the cerebral activity is lost:

(1) = ry(t) — myin(0), (2.14)

where 7,(t) = z;(t) — mjia(t) represents the artifact-free signal, and mj; is the corresponding
weight from the mixing matrix, M.

From Eq. 2.13, the decomposition of the independent component into artefactual and neural
activity is unknown. However, using properties of the signals a(t) and n(t) we can estimate
them.

The artifact, a(t), has high magnitude (power) and is localized in the time and/or in frequency
domains, while n(t) is of low amplitude and has a broad band spectrum. These properties fit
well with the wavelet decomposition technique that provides an optimal resolution both in the
time and frequency domains, without requiring the signal stationarity, (we define in details the
wavelet decomposition, in appendices).

The method begins with the equation :

Wi(d, b) = Wa(d, b) + W, (d, b) (2.15)
where the wavelet transform of a signal s;(¢) is defined by:

W) = oo s v = (") (216

And Wg(d,b) is the wavelet transform of s;(t), and W,(d,b) and W,(d,b) are the wavelet
coefficients obtained by the transformation (2.16) of the artificial and neural parts of the com-
ponent, respectively. The function v represents the mother wavelet, with b and d defining the
time localization and scale.
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Figure 2.4: Example of wavelet representation of the independent component s;(¢) (A) and its

parts: artefactual a(t) (B), and neural n(t) (C).Gray intensity codifies the absolute value of
wavelet coefficients. [11]

As shown bellow, in Fig 2.4A which is Wy(d, b), the wavelet representation of s(t), Fig 2.4B is
W, (d,b), which is the wavelet representation of the artefactual a(t) and Fig 2.4C is W,,(d, b),
which is the wavelet representation of the neural signal n(t). Artifacts are suppressed by thresh-
olding high-amplitude coefficients, allowing better preservation of the low-amplitude neural
signal.

The selection of the threshold value, K, is a crucial element of the algorithm. Here, we use the
simplest fixed-form threshold:

K =/2log N o, (2.17)

where N is the length of the data segment to be processed, and

,  median(|W(d,b)|)
_ 2.1
g 0.6745 (2.18)

is the estimator of the magnitude of the neural wide-band signal part.
In resume, this is the steps for wICA algorithm:

1. ICA Decomposition: Apply conventional ICA to the raw EEG signals to obtain the
mixing matrix M and a set of N independent components:

{s1(t), s2(t),...,sn(t)}.

2. Wavelet Transformation: Compute the wavelet transform of each independent com-
ponent, obtaining the wavelet representations W (j, k) for each s;(t).
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3. Thresholding: Suppress artifact-dominated wavelet coefficients by setting:

W(j, k) =0, forall [W(j k) > K.

4. Reconstruction of Neural Components: Perform the inverse wavelet transform
on the thresholded coefficients to reconstruct components containing primarily neural

| (i (®), ms(t), -, (£))

5. Recomposition of EEG Signals: Reconstruct the artifact-suppressed EEG by applying
the mixing matrix M to the cleaned neural components:

X =M -[ni(t),na(t), ..., nn)]".

Here is an example of the wICA application for an EEG data from the PASS database,

Original EEG Signals wlICA Cleaned EEG Signals

1500 1 —— Original EEG (Ch 1) 500 4 —— Cleaned EEG (Ch 1)
1] L]
T 1000 - T
k=] £ 0
a =3
500 |
& % —500 |
0 L T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
200
o 1000 - v
k=] b=] 04
2 2
= B -200 4
£ 500 A £
- —400 1
—— Original EEG (Ch 2) —— Cleaned EEG (Ch 2)
0 T T T T T T T T T —600 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
1500 4 —— Original EEG (Ch 3) —— Cleaned EEG (Ch 3)
o o 200+
=] =
2 1000 2 ol
a =
& 500 | £ =200 1
T T T T T T T T T —400 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
1500 —— Original EEG (Ch 4) — Cleaned EEG (Ch 4)
3 g 500 |
3 1000 2 o4
a a
500
& & —500 4
0 A T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Time (samples)

Figure 2.5: Example of wICA application for the PASS dataset

2.2.3 Semi-Classical Signal Analysis (SCSA)

The Semi-Classical Signal Analysis (SCSA) is a spectral decomposition method based on the
Schrodinger operator. It has been widely applied for signal denoising and feature extraction in
biomedical signals, particularly in ECG and PPG data processing [32, 33].

The main idea behind SCSA is to represent a signal s(x) as a potential function in a Schrédinger
operator:

@) = 2D e = xpia), (2.19)
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where:

Hy, is the Schrodinger operator,

- s(x) is the input signal,

h is the semi-classical parameter controlling the decomposition,

A are the eigenvalues, and ¢ (z) are the corresponding eigenfunctions.

Instead of using Fourier transforms, SCSA reconstructs the signal from the only negative eigen-
values of the Schrédinger operator.

Algorithm for 1D-SCSA
The SCSA algorithm consists of the following steps:

1. Construct the Schrodinger Operator: Using for example the ECG signal s(x) as the
potential function, and here is the discretised Schrodinger operator:

Hy, = —h*’D, — S, (2.20)

where Ds is the second derivative operator, and S is the diagonal matrix s(x).

2. Solve the Eigenvalue Problem: Compute the eigenvalues and eigenfunctions:

Select only the eigenfunctions corresponding to negative eigenvalues A, < 0.

3. Reconstruct the Signal s,(z): The reconstructed signal is given by:

(o) = 3 U ) (222)

where N}, is the number of selected eigenfunctions.
4. Select Optimal h: Adjust h to balance noise removal and feature preservation.
The parameter h plays a crucial role in SCSA:
- Low h (0.05 - 0.1): Preserves more signal details with minimal denoising.

- Medium % (0.2 - 0.5): Provides a balance between noise reduction and detail
retention.

- High h (0.5 - 1.0): Stronger noise filtering but may smooth out fine details.

The Semi-Classical Signal Analysis (SCSA) method not only denoises signals but also enables
feature extraction by analyzing the eigenvalues and eigenfunctions of the Schrédinger operator.
These extracted features can be applied to classification, pattern recognition, and biomedical
signal analysis, such as PPG and ECG analysis [32, 33].

2D-SCSA for images [29]

The Two-Dimensional Semi-Classical Signal Analysis (2D-SCSA) is a spectral method based on
the decomposition of an image using the Schrodinger operator and its associated eigenfunctions.
It exploits the semi-classical quantization approach to extract relevant features while reducing
noise and improving contrast.
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Mathematically, the 2D-SCSA is formulated through the semi-classical Schrédinger operator
eigenvalue problem:

Ho(V)Ukn = pepthun, with Hy(V) = —h*A -V, (2.23)

where:

- V(x,y) represents the input image (positive potential),

-A= 88—;2 + g—;: the 2D Laplacian operator,

- h is the semi-classical parameter controlling the spectral resolution,
- p,n are the negative eigenvalues (1, < -+ < pgarj < ),

- ¢y 5 are the associated L?-normalized eigenfunctions.

The image reconstruction is performed by summing a weighted subset of eigenfunctions through
the spectral expansion formula:

x ™
) h2 Kp
V(LL', y) =—-A+ }111{}% ﬂ kz:()\ - Mk,h)'y%z,h(x; y) ) (224)
Y =1

cd _ 1 T(+1)
where Ls ) = 42 1(12)

is a semi-classical constant and I" is the Gamma function,
heR**, ~yeR", MeR~

Algorithm Implementation:
1. Operator Splitting: The 2D problem is decomposed into 1D operators for rows and columns:

1
Aip = —h*Dy — diag(il[i, 1)), (row operator) (2.25)

1
Bjj = —h*Dy — diag(§l[:,j]), (column operator) (2.26)
where Dy is the 1D Laplacian discretization matrix.

2. Figenvalue problem Solution: For each row ¢ and column 7, solve:
Ai,hgbi,n,h = /ii,n,hgbi,n,ha (227)
Bj,hgbj,m,h = pj,m,h¢j,m,h' (228)

3. Tensor Product Reconstruction: Reconstruct each pixel (1, j) via:

T

9 N) M
Irec[ia j] =—-A + Tl Z Z ()‘ - (’{i,n,h + pj,m,h))’ygbz%n,h[j]gb?,m,h[i] : (229)

h
c
L27’7 n=1m=1

The main advantages of this method are:

- Noise reduction: By truncating small eigenvalues, high-frequency noise is filtered while pre-
serving structural information (PSNR improvements of 4-6 dB reported in [29]).

- Contrast enhancement: The spectral representation naturally highlights edges and textures
through dominant eigenfunctions.

- Data compression: Efficient representation using O(v/N) eigenmodes for N x N images.

This approach has been successfully applied in biomedical imaging (e.g., MRI denoising with
34.5 dB PSNR) and pattern recognition tasks. The semi-classical parameter h (typically €
[0.1,0.5]) provides a trade-off between reconstruction accuracy and computational cost, while
v =1 is commonly used for general applications.
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Parameter Value
Optimal A 0.2

0 4
PSNR improvement | 3 - 8 dB
N} = M} ~ 400

Table 2.1: Typical 2D-SCSA performance on 512x512 images [29]

2.3 Signal-to-Image Representation

Signal-to-image representation is a technique used to transform time-series signals into visual
formats, enabling the application of image-based deep learning models for classification and
feature extraction. This transformation helps leverage convolutional neural networks (CNNs)
and other vision-based AI models for stress assessment and biomedical signal analysis.

2.3.1 Visibility Graph

The Visibility Graph (VG) is a nonlinear time-series analysis method that converts a signal
into a graph representation, where each data point in the time series is mapped to a node, and
edges are formed based on a visibility criterion. This method enables the characterization of
complex physiological patterns and enhances feature extraction for classification tasks.

Graph Construction: Each point in the time-series signal is considered a node, and edges
are formed between nodes that have direct visibility based on a geometric criterion. Two data
points and in a time series are visible to each other if every intermediate point satisfies:[46]

tc_ta

2.
P— (2.30)

Ye < Yo+ (Yo — Ya)

With this equation we can easily generate a visibility graph from time series as Fig 2.6 shows

Time Series Visibility Graph
10 . 3 y Py
\ ¢ Py ¢ L ] [ s
0.8 4 T 1 | 9 ]
. . .
¢ ; ¢ < ? . 2 ® b >
0.6 &
[ - >

a0 PR

0.0 aa — — — — '
012345678 91011121314151617181920212223242526272829

Figure 2.6: Illustration of Visibility Graph network mapped from an analytically generated
time-series [46]

Limited Penetrable Visibility Graph (LPVG) Approach:

Based on the study from the IFAC stress paper, LPVG is an advanced version of VG that
allows connections between nodes even if one or more intermediate data points exist between
them. This makes LPVG more robust to noise in biomedical signals like EEG and ECG.[46]

41



Chapter 2. Computational Methods for Biomedical Signal Processing and Classification

Limited Penetration Parameter (p):The parameter allows two nodes to be connected even
if some points exist between them, improving robustness to noise. Higher values of help to ignore
intermediate data points that might be noise while maintaining essential signal structure.

Adjacency Matrix Representation: The adjacency matrix is constructed, where if two
nodes are connected and otherwise. This matrix encodes the graph topology and is used for
image-based analysis. The adjacency matrix is visualized as an image, enabling CNN-based

analysis. The LPVG representation enhances the ability to detect stress-related patterns in
EEG and ECG data.

Figure 2.7: Visibility graph image representation [46]

Feature Extraction: Graph-based metrics such as degree distribution, clustering coefficient,
betweenness centrality, and entropy are extracted to quantify the complexity of the physiological
signal.

Finally, the LPVG approach, as detailed in the IFAC stress paper, has demonstrated effective-
ness in stress classification by transforming physiological signals into structured images. This
method captures long-term dependencies and non-linear interactions, making it highly suitable
for analyzing cognitive stress states.

2.3.2 Gramian Angular Field

The Gramian Angular Field (GAF) is a technique for encoding time-series data as images
by representing temporal correlations through an angular transformation [51]. This method
converts a 1D time-series into a 2D matrix, enabling the application of computer vision and
deep learning techniques for pattern recognition.

The GAF method transforms a normalized time series into a polar coordinate system to
preserve the temporal dependencies in a geometric form.

Each time-series value is rescaled between and and then mapped to an angle in the polar
coordinate system using:
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, x; — min(X)
= max(X) — min(X) (2.31)

¢; = arccos(x}) (2.32)

where:

x}: is the normalized time-series value.

¢;: is the angular representation.

There is two types of Gramian Angular Fields (GAFs) can be constructed:
1. Gramian Angular Summation Field (GASF)

GASF;'J‘ = COS(d)i + ¢]) (233)
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Figure 2.8: Gramian Angular Summation Field (GASF)

In Fig 2.8, we see an application of the Gramian Angular Summation Field in one of the ECG
signals.

2. Gramian Angular Difference Field (GADF)

These matrices encode the temporal relations between different time steps.
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Figure 2.9: Gramian Angular Difference Field (GADF)

In Fig 2.9, we see an application of the Gramian Angular Difference Field in one of the ECG
signals.

2.4 Feature Extraction

What’s feature engineering? and feature extraction?

Feature engineering is the process of transforming raw data into meaningful features that
improve machine learning model performance, involving techniques like scaling, encoding, and
creating new variables. Feature extraction, a subset of feature engineering, focuses on auto-
matically reducing data dimensionality by extracting the most relevant information from raw
inputs, often converting complex data into compact, representative numerical formats.

2.4.1 Feature Extraction with SCSA

The spectral properties of the Schrodinger operator provide a unique way to extract meaningful
features from signals. The key features derived from SCSA include:

- Negative Eigenvalues )\,
o These eigenvalues represent the energy levels of the signal.
o The distribution of )\, gives insight into signal complexity and structure.
o Useful for EEG pattern classification (e.g., distinguishing normal vs. seizure signals).

- Sum of Negative Eigenvalues A global descriptor of the signal:

Np

> 1Al (2.35)

n=1

o Represents the total spectral energy of the signal.

o Helps in signal comparison and classification.
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Number of Negative Eigenvalues N,
o Indicates the complexity of the signal.
o A higher N, means the signal contains more oscillatory components.

Weighted Eigenvalues Moments We compute higher-order moments of the eigenval-
ues:

Np,
My = > |A" (2.36)
n=1

o k =1 represents the total spectral energy.

o k = 2 describes the spectral spread (how distributed the eigenvalues are).

Eigenfunction Norms

o The Lo-norm of eigenfunctions reflects how much an eigenfunction contributes to
the signal:

@) = [ ln(o)Pda (2:37)

o Helps in identifying dominant signal components.

Spectral Entropy

[An

——— (2.38)
Sy Al

Np
H=-> p,logp,, wherep,=
n=1

o Measures how spread out the eigenvalues are.
o Higher entropy indicates more randomness in the signal.
o Lower entropy suggests a more structured signal.

- Invariants for eigenvalues

These invariants are spectral moments derived from the negative eigenvalues \; ; = —k?
of the semi-classical Schrodinger operator used in the SCSA method.

INVI= 5> (4hz K,-J) (2.39)
(1?’ > n;ﬁj) (2.40)

INVy = <> (7 >, m;j) (2.41)

o INV; captures the overall spectral energy.
o INV, is sensitive to nonlinearities and sharper features.

o INVj3 accentuates fine-scale peaks and detailed structures.
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- Invariants for eigenfunctions

These invariants are derived from the eigenfunctions v ; ; of the semi-classical Schrodinger
operator.

1 B 1 M N
INV, = — — 4h i 2.42
= (s () 20
1 & (1 Efeh &

INV; = ; 3 (]\14 3 (2576h > wZ,Z-,jD (2.44)

i=1
o INV; reflects the general spatial content of the eigenfunctions.
o INV, captures more pronounced nonlinear features and sharp transitions.
o INV3; focuses on fine-scale and detailed structure in the eigenfunctions.

- Skewness :

o For the eigenvalues :
SR I R A A
kew — YO Z) 2.4
Skew N E [ E < 5 } (2.45)

o For the eigenfunctions :

1 &1 &1 & (z/)k-»—wk)g
Skew = — — — RELLE 2.46
- Kurtosis :
o For the eigenvalues :
1 N 1 M g 71‘ 4
Kurtosis = I ; [M; (T) ] (2.47)
o For the eigenfunctions:
RN B A R AN
Kurtosis = — — — s u 2.4
urtosis A}; B;(C;( o ) (2.48)

SCSA provides unique signal features based on eigenvalues and eigenfunctions. These
features can be used for biomedical signal classification, such as EEG-based brain activity
analysis and brain-computer interfaces (BClIs).
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2.4.2 Moments
2.4.2.1 Basic concepts and background

Moments are scalar quantities used to characterize the shape and intensity distribution
of an image. They can be defined for both continuous and discrete images.

1. Raw Moments

For a continuous image with intensity function f(z,y), the raw moment of order
(p+ q) is defined as:

Mpq = jf 2Py’ f(z,y) dx dy

For a digital (discrete) image, the raw moments are given by:

Mpg = Z Z xpyqf(xa y)

where:
o x,y: pixel coordinates,
o f(x,y): intensity at pixel (z,v),
o myo: the total intensity (i.e., area for binary images).
2. Image Centroid

The centroid (Z,y) of the image is the center of mass, calculated as:

p=_20 5o (2.49)
Moo Moo

3. Central Moments

Central moments are invariant to translation and are defined as:

fpg =YY (x—2)"(y — i)' f(x,y) (2.50)

4. Normalized Central Moments

To achieve scale invariance, the central moments are normalized as follows:

o =12 withy =219 (2.51)
Hoo 2

These normalized moments 7, form the basis for constructing Hu'’s invariant moments,
which are designed to be invariant under translation, scaling, and rotation.
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2.4.2.2 Hu’s moments

Hu (1962) introduced seven moment invariants derived from the normalized central mo-
ments 7),,, which are invariant under image translation, scaling, and rotation as as Huang
and Leng explain in their paper[24]. These invariants are defined as follows:

¢1 = 120 + Moz (2.52)
G = (20 — 102)* + 417, (2.53)
b3 = (130 — 3m2)* + (3121 — 103)” (2.54)
ba = (N30 + M2)? + (M21 + 103)* (2.55)

¢s5 = (130 — 3m12) (130 + M2) [(7730 +12)* — 3(n21 + 7]03)2]
+(3n21 — 103) (121 + 703) {3(7730 +112)” — (121 + 7703)2] (2.56)

P6 = (7720 - 7702) [(7730 + 7712)2 - (7721 + ?703)2]

+4111 (N30 + m12) (M21 + Nos) (2.57)

¢ = (3m21 — no3) (N30 + Mi2) [(7730 + 112)% — 3121 + ?703)2]
—(n30 — 3m12) (121 + 103) [3(7730 +12)* = (21 + 7703)2] (2.58)

From (Rao et al.,2013)[43], we see that they calculate the Hu’s moment for Fig 2.11, and
they gave the results which we are showing in the table 2.2

Indices of invariants 1 2 3 4 5 6 7
Hu’s seven moment | 1.0441 | 0.61145 | 0.48121 | 0.71147 | 1.0638 | 1.0399 | 0.012835

Table 2.2: Hu’s seven moment invariants for the Telugu Alphabet,(Table 3 from Rao et al.,
2013)[43]

Simple Python code for Hu’s moments

import pyfeats

import cv2

img = cv2.imread(’image.png’, cv2.IMREAD_GRAYSCALE)
features_hu, _=pyfeats.hu_moments(img)

2.4.2.3 Zernike’s moments

From (Rao et al.,2013)[43],Zernike’s moments are computed using a set of orthogonal
polynomials defined over the unit disc(x?+y? <= 1). They are known for being rotation-
invariant and robust to noise, with minimal redundancy in shape representation.

1. Zernike Polynomials

Zernike polynomials V™(p,0) are a set of complex polynomials orthogonal on the
unit disk p < 1, defined in polar coordinates (p,#) by:

Vi (p,0) = R (p) 2™ (2.59)
where:
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oneN meZ, |m|<n,

o n — |m| is even,

0 j=vT,

o pel0,1],0e 0,2,

o Rnm(p) is the radial polynomial.
2. Radial Polynomial

The radial polynomial R,,,(p) is defined as:

n—|m|
R -

3. Zernike’s Moments
For a digital image f(z,y) defined over a finite set of pixels inside the unit disk, the

Zernike moments are approximated as:

Anm%n+1

DX flay) Vi (p,0) (2.61)

T

where:
o D= {(z,y) [2*+y* <1},
o (p,0) are the polar coordinates of (x,y),
o Az and Ay are the pixel resolutions.
oV (p,0) is the complex conjugate of the Zernike polynomial.

To calculate the Zernike’s moments, the algorith first binarize the input image, normalize
the image to the unit disk (translation and scale normalization), map image coordinates
to polar form (p, #),compute Zernike moments using the above formula 2.61.

Fig 2.10 shows the Block diagram of computing Zernike moments from Rao et al.[43]

Binarization Normalisation Normalisation

Image ) Translation ) Scale _‘

Compute the 3 Mask the Image to ) Zernike
Unit Disk the Unit Disk Moments

Figure 2.10: Block diagram of computing Zernike moments[43]
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From Rao et al.[43], the table 2.3 shows the Zernike’s moments of Fig 2.11, which is a
binary image where the authors extracted the Zernike’s moments.

Zernike Moment values
28.966
0.49656 + 2.5592:
—8.6967
—5.2529 + 0.22689:
—0.25528 — 5.3013¢
0.87071 — 4.35251
—17.969
6.9765 — 1.2463:
—5.975 4 0.243561
—0.51687 4 0.10042:
—1.745 4 7.6192¢
0.622 — 0.60109:

(O S o e N R S R R I VR e R el
glwlr|~lv|o|lw|~|lvlo|~|o|B

Table 2.3: Zernike Moments for Telugu Alphabet (Table 3 from Rao et al., 2013)[43]

Figure 2.11: TELUGU from Rao et al., 2013 [43]

Simple Python code for Zernike’s moments calculation

import pyfeats

import cv2

img = cv2.imread(’image.png’, cv2.IMREAD GRAYSCALE)
features_z,_= pyfeats.zernikes_moments(img, radius=9)

This code will calculate the Zernike’s moments for the image.png

2.4.3 Wavelet Packet Transform (WPT)

The Wavelet Packet Transform (WPT) is a generalization of the standard discrete wavelet
transform (DWT) in which both low-frequency (approximation) and high-frequency (de-
tail) components are recursively decomposed [35]. In the context of 2D image processing,
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WPT allows for a more flexible and detailed multiresolution representation of images,
where every subband (including horizontal, vertical, and diagonal details) can be further
analyzed at finer scales.

Given an image z(m,n) € RV the WPT is constructed by recursively applying 2D
separable filter banks. At each stage of decomposition, the image (or subimage) is con-
volved with a pair of 1D analysis filters ho(n) (lowpass) and hi(n) (highpass) along both
rows and columns as shown in Fig 2.12.

Ro(m) — 21 —e
ho(n) {2l {
mm) — 2l —e
— hy () — 2l
#o(m) — 21 —m
By |— 2t {
mim) — 21 —w=
x(m,n) —
ho(m) — 2] —a
ho(n) (— 2l —|i
mim) — 21 —e
— ohym) — 1l
ho(m) — 21 —=
hi(n) B 2t —|:
mm) |— 21 —=

Figure 2.12: Filter bank of wavelet packet transform [30].

This results in four subbands (Fig 2.13):

o LL: low-frequency content in both dimensions (approximation),
o LH: low in rows, high in columns (horizontal details),
o HL: high in rows, low in columns (vertical details),
o HH: high-frequency content in both dimensions (diagonal details).
N vertical
approximation detail
*(m, n) » »
horizontal diagonal
detail detail

Figure 2.13: Resulting decomposition of wavelet packet transform [30].

In contrast to the standard wavelet transform, where only the LL subband is decomposed
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recursively, the WPT recursively applies the same filtering and downsampling procedure
to all subbands. The recursive scheme creates a full quad-tree of subbands, Fig 2.13.

Let x,(f )(nl, ns) denote the image block at level j and node k in the wavelet packet tree.
Each subband is obtained by:

23 (na,na) = 303 ho(ma)ho(ms) - 2 (201 — my, 2ny — my) (2.62)
mi1 me

xf;iill)(”ly ne) = > ho(mi)hi(ms) - w;(gj)(in —my, 2Ny — My) (2.63)

5’751]1;12) (n1,m2) = > Y hi(ma)ho(ms) - 29 (201 — my, 2ns — ms) (2.64)
mi ma

51551]1;113)(”17 ne) =Y > hi(my)hi(my) - Jrﬁf)(in —my, 2ny — Mmo) (2.65)
mi meo

Each of the resulting subbands corresponds to a specific spatial frequency band and
orientation. This fine-grained decomposition enables enhanced analysis of textural and
structural content in images.

Each subimage x,(g ) (n1,n2) in the wavelet packet tree contains a block of wavelet packet
coefficients. These coefficients represent the correlation of the image with a localized
wavelet packet basis function w,(f )(nl, na):

C](gj)(n:b na) = (x(n1,ng), Q/J;(gj)(nl, na)) (2.66)

The set of coefficients {c,(gj )} provides a tiling of the image in both spatial and frequency
domains, offering a complete and adaptive representation of image content [35].

Here we have this code in Python, which is an application of the wavelet packet transform
for an image named image.png

import pyfeats

import cv2

img = cv2.imread(’image.png’, cv2.IMREAD_GRAYSCALE)

features_wp, labels_wp=pyfeats.wp_features(img, mask, maxlevel=3)

Where:
o img: The input image (likely a gray-scale or single-channel image).

o mask: A binary mask specifying the region of interest in the image where features
should be extracted. Pixels where the mask is True (or 1) are considered for feature
extraction.

o maxlevel=3: The maximum level of decomposition for the wavelet packet trans-
form. A higher level means more detailed decomposition but increases computational
cost.

2.4.4 CNN based feature extraction

CNN is a model that’s composed of neurons in the form of filters applied following layers
called convolutional layers as defined in [6]

Feature extraction using Convolutional Neural Networks (CNNs) refers to the process of
automatically learning hierarchical representations from input data (typically images or
time-series) through successive convolutional layers [55].
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These learned features capture spatial patterns, edges, textures, and abstract concepts,
enabling effective classification, detection, or regression tasks without the need for manual
feature engineering.

In image processing, machines perceive images differently than humans do. While we see
images as visual scenes (Fig 2.14a), machines interpret them as grids of pixels, where each
pixel is represented by a numerical value, as illustrated in Fig 2.14b
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(a) What a humans see [6] (b) What machines see [6]

To extract features from images, we typically perform image filtering, where convolution
is used to apply filters (or kernels) to the image. The concept of convolution in the context
of images is a mathematical operation that involves sliding a small matrix, called a kernel
or filter, across the image to produce a transformed output as shown in Fig 2.15.

2D Convolution

(Filtering) .. )
Filter

*

 —

Convolution

Image
(Gray scale)

Output Image

Figure 2.15: 2D convolution|6]

Below are examples of common 3 x 3 filters used for different tasks such as edge detection,
sharpening, and smoothing [6]

1. Impulse (Neutral) Filter:

(2.67)

o o O
S = O
o o O
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2. Sharpening Filter:

0 -1 0
-1 5 -1 (2.68)
0 -1 0
3. Averaging Filter:
111
1
9 111 (2.69)
111
4. Gaussian Filter:
. 1 21
il 2.70
16 2 4 2 (2.70)
1 21
5. Edge detection
1 0 -1 0 1 0 -1 -1 -1
0 0 Or |1 -4 1] Or |-1 8 -1 (2.71)
-1 0 1 0 1 0 -1 -1 -1

An example of applying a 2D convolution on a gray scale image is shown in Fig 2.16
where:

o X is the input 6 x 6 image,
o K is the applied 3 x 3 filter with a stride equal to 1,
o Y is the output feature map,

o +1 is the bias added to the convolution

X
Y
7|23 |3|8]a
6|3 |5|1]|2]0 K e
124|813 0 &= 00|95
a|ls(3][2]1]a * 0 +1 =[5 4|25
1|1 0|3 |42 g 5 1 -4 3
2(o0/o0|l1|3]a
(Stride=1)
4x4
6x6

Figure 2.16: 2D convolution applied on a gray scale image[6]

And the mathematical formulation for the convolution is :

k—1k—1
Yij = (Z > Xitajrs X Ka,b> + bias (2.72)

a=0 b=0
Where k x k is the size of the filter.
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After the filtering, a ReLU activation function is applied(see Fig 2.17), in order to intro-
duce non-linearity into the network.

ReLLU

0 0 9 5

—_— —_—
2 5 0 0 2 5
- 5 1 0 0

Figure 2.17: ReLU Activation function|6]

o|lo| w
Lo &
©
w

Where ReLU is defined as:
f(z) = max(0, x) (2.73)

So the output will be :

k—1k—1
Yij = RelLU <<Z > Xitajrs X Ka,b> + bias> (2.74)

a=0 b=0

Fig 2.18 illustrate the features extracted using both convolution and activation function.

Filter 1

Convolution + Activation

Filter 2| :>

Ouiput
Feature Maps

Filter 3

Figure 2.18: Extracted features using convolution + activation function|6]

For the multimodal approach, we utilize Multi Feature Map channels. As demonstrated
in Prof. Berrani’s course [6], an RGB image consists of three channels, which we treat
independently with filters. After applying the filters to each channel, we fuse them and
pass them through the activation function.

Fig 2.19 illustrates this concept of multimodal signal fusion. In our case, the red channel
corresponds to the image representation of the EEG signal, the blue channel corresponds
to the image representation of the ECG signal, and the green channel corresponds to
the image representation of the PPG signal. By leveraging this architecture, we are
able to perform multimodal neurophysiological signal fusion, enabling us to effectively
differentiate between various levels of stress.

We can resume the architectre in Fig 2.19 by this equation:

C—1k—1k—1
Y;,j = RGLU <<Z Z Z Xc,i+a,j+b X Kc,a,b) + bias) (275)

c=0 a=0 b=0

Where:
o (C: Number of channels

o k x k: Filter size
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o ReLU: Activation function

Ohatput
Channel 1
—
Input RGE Image * E
Dutput Feature Map
Add the 3 autput o
Activation

channels

Filter 1 Output (ReL17)
| Channel 2 I
* N T - @ - - :"f:l -
‘."'d\‘ * | 3x3
“,
o

(28x28x3) (3x3x3) (26x26) (26126)

Chatput
Channel 3
* 3x3

(26%26)

{28x28)

Figure 2.19: Multi Channel Input [6]

After the convolution and activation function layers, the output is passed through a
pooling layer, also known as downsampling, which reduces the dimensionality of the
data while preserving the most relevant features.

Fig 2.20 illustrates one of the commonly used pooling methods, namely Max Pooling,
where a pooling window of size (2 x 2) is applied to the input. For each window, the
output corresponds to the maximum value among all the elements within the selected

region.
3|0 i 2y - .
olofos| [3]°
olo|2|s]| ] < |5
5 1 0 0
2x2
4x4 Down Sampling

>

Pooling window
size: 2x2

Figure 2.20: MaxPooling [6]

In this case, note that the size of the pooling window (2 x 2) has nothing to do with the
size of the output feature map (here 2 x 2)

Yann LeCun et al. proposed LeNet-5 which is a CNN model, Fig 2.21 describes the
architecture of it.
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Convolution-Rel.U MaxPooling Convolution-ReLU MaxFPooling Flatten
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Figure 2.21: Architecture of the LeNet-5 CNN model [6]

2.5 Machine Learning Techniques for classification

From the PASS dataset[31], we selected three physiological signal modalities: EEG, ECG,
and PPG. Each signal was segmented according to the experimental protocol, and each
segment was assigned a corresponding stress level label derived from the subjective re-
sponses to the PASS questionnaire. As our objective is to predict stress levels based on
these labeled segments, we employ supervised machine learning techniques.

In this section, we provide an overview of supervised learning, along with a review of
related work that has applied these methods to physiological signal classification.

So what is Supervised machine learning?

Supervised machine learning refers to the process of learning a function that maps
inputs to desired outputs based on a set of labeled training data. It involves supplying
algorithms with input-output pairs from which the algorithm learns to generalize to new,
unseen data. The primary objective is to create models that can make accurate predictions
or classifications for future instances based on learned patterns [3].

INPUT LOGIC NPUT QUTPUT
— . - e
—3 |Algorithm — > —Logic —

TRAINING TESTING

Figure 2.22: Train and test data for ML [18]

In the Fig 2.22, training phase involves feeding the algorithm labeled data, where each
data point is paired with its correct output. The algorithm learns to identify patterns and
relationships between the input and output data, where testing phase involves feeding the
algorithm new, unseen data and evaluating its ability to predict the correct output based
on the learned patterns.

According to Akinsola et al.[3], supervised classification is one of the most frequently
carried out tasks in intelligent systems. The effectiveness of these algorithms depends
heavily on factors such as the size of the dataset, the number of features (attributes), and
the tuning of model parameters. Algorithms such as Support Vector Machine (SVM),
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Naive Bayes, Random Forest, Decision Tree, and Neural Networks are commonly used in
supervised learning tasks.

1. Decision Tree

A Decision Tree is a model that splits data into subsets using decision rules based on
feature values. Each internal node represents a test on a feature, each branch a result of
the test, and each leaf node a class label [3, 47].

Decision Tree
Root Node
s 3
Internal Node Internal Node
Leaf Node Leaf Node Leaf Node Leaf Node

Figure 2.23: Decision Tree Structure [18]

Fig 2.23 shows the decision tree structure where its components are :

o Root Node: This is the initial node that represents the complete dataset from
which the decision tree begins.

o Branches: These are the connections between nodes, indicating the path or flow
from one decision to the next.

o Internal Nodes: These are decision points within the tree where choices are made
based on specific input features.

o Leaf Nodes: These are the final nodes at the ends of branches, representing the
ultimate outcomes or predictions.

the process in decision tree starts with a main question based on one of these features,
this is called the root node.

The tree then asks a series of yes or no questions, each designed to split the data based on
a specific feature and a threshold. For instance, the first question might be: “Is feature
12 less than 0.767” Depending on the answer, the data follows one branch or another.

This process continues, with each new node asking another question about a different
feature, dividing the data further and further. Eventually, we reach the end of a branch,
known as a leaf node. At this point, the tree makes a final decision.
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The goal of the tree is to split the data in such a way that each group becomes as pure as
possible, meaning the samples in each group mostly belong to the same class. This step-
by-step questioning allows the model to make accurate predictions based on the patterns
it finds in the features.

2. Random Forest

Random Forest is an ensemble method that builds multiple decision trees during training
and outputs the mode of the classes (classification) or mean prediction (regression) of the
individual trees [3, 47].

Single Decision Tree Random Forest
Ensemble of trees for more Prediction from a single
accurate and robust prediction decision path

A
i\

class 1

R class1 I ﬁsz I

Figure 2.24: Difference between Random Forest and Decision Tree [18]

Random Forest Algorithm P
in Machine Learning

e Training Data
Instance

Model
Training

Decision
Trees

Class B

—

Bagging (voting majority) J

Model
Testing

Y

o Prediction output

Class A

Figure 2.25: Random Forest algorithm|[18§]

Fig 2.24 shows the difference between a decision tree algorithm and a random forest,
where the decision tree algorithm is a single learner, while the random forest algorithm
is a collection of decision trees that vote together, making it more accurate and stable.

As we can see in Fig 2.25, the algorithm constructs multiple decision trees, each trained
on a randomly selected subset of the data, resulting in slightly different trees. During the
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construction of each tree, only a random subset of features is considered at each split,
which encourages diversity among the trees and reduces overfitting. Once the trees are
built, each one independently makes a prediction based on the data it has seen. For
classification tasks, the final prediction is determined through majority voting, where the
class chosen by most trees becomes the overall output of the model.

3. Support Vector Machines (SVMs)

SVMs find the optimal hyperplane that separates data into different classes with the
maximum margin (see Fig 2.27).

They are effective in high-dimensional spaces and are versatile with different kernel func-
tions [3, 47].

Fig 2.26, shows the hyperplanes that separates different classes, in this case they separate
three classes.

Support Vector A @
Machines (SVM)

Hyperplanes that Best *

Separates Different Classes

Figure 2.26: Hyperplanes that separate different classes [39]

Fig 2.27, illustrate the separation of classes with the optimal hyperplane maximising the
margin.

SVMs Maximise Decision Margin

Support Vector .,/ Optimal Hyperplane

Figure 2.27: Optimal hyperplane and maximised margin [39]
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4. Nearest centroid classifier

In machine learning, a nearest centroid classifier or nearest prototype classifier is a classi-
fication model that assigns to observations the label of the class of training samples whose
mean (centroid) is closest to the observation. [42]

Training phase :
Given labeled training samples

{(fb 1/1)7 ('7_527 y2)7 (537 3/3)7 sy (fn7 yn>}
with class labels y; € Y, compute the per-class centroids
/’Lf Z Z;
|C£ 1€Cy

where (Y} is the set of indices of samples belonging to class £ € Y.
Prediction phase (Test) :

The class assigned to an observation 7 is

~

g = argmin /i, — 7.

5. Neural Networks

Neural Networks consist of layers of interconnected nodes (neurons) that process data
in a way inspired by the human brain. They are capable of learning complex nonlinear
mappings and are powerful in handling large and complex datasets [3, 47].

Fig 2.28 shows a basic neural network architecture, with n inputs, n outputs and hidden
layers between them.

Input layer | Hidden layers i Output layer

i h, h, h, 0

- t' t’

Input 2 . w w( V .
| " i"i 4"” )

Figure 2.28: Basic neural network architecture [53]

An artificial neuron receives multiple inputs and produces an output using a linear com-
bination followed by a non-linear activation function, Fig 2.29 illustrate the structure of
a neuron. It can be mathematically described:
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Inputs
Let the inputs to the neuron be:

xo =1 (bias input), z1,x9,..., T, (2.76)

Weights
Each input is associated with a weight:

wo = b (bias weight), wy,ws, ..., wy, (2.77)

Linear Combination
The neuron computes a weighted sum of the inputs:

z= Zwixi (2.78)
i=0

Linear
Function

Activation
Function

Figure 2.29: artificial neuron [19]

Activation Function
A non-linear activation function f(-) is applied to z:

y=f(2) (2.79)

Output
The final output of the neuron is:

y—f (ijo wm) (2.80)

Common Activation Functions
Some commonly used activation functions include:

o Sigmoid: f(z) = [T o

o Hyperbolic tangent: f(z) = tanh(z)

o ReLU (Rectified Linear Unit): f(z) = max(0, 2)
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2.6 Conclusion

In this chapter, we explore the full processing pipeline of neurophysiological signals
(Fig 2.1), begining with noise reduction and artifact removal techniques, such as:

o Independent Component Analysis (ICA) and its wavelet-enhanced variant
wlICA for EEG signal purification.

o Semi-Classical Signal Analysis (SCSA) for ECG and PPG signals.
o Or, we will use classic filters.

Furthermore, we discussed signal-to-image representation methods, including:

o Visibility Graph (VG) and Limited Penetrable Visibility Graph (LPVG)
for transforming time-series signals into graph-based images.

o Gramian Angular Fields (GAF) encode temporal correlations into 2D matrices,
facilitating the application of deep learning models.

For feature extraction, we examine:
o SCSA-based spectral features (eigenvalues, entropy).

o Image-based descriptors (Hu’s moments, Zernike moments, and wavelet packet trans-
form).

Finally, we reviewed supervised machine learning techniques (e.g., nearest centroid
classifier, Random Forests and Neural Networks) and their relevance to stress classification
tasks.

The methodologies presented here lay the groundwork for the next chapter, where we will
apply these techniques to multimodal stress classification for different combinations,
leveraging the synergies between EEG, ECG, and PPG signals to improve detection ac-
curacy. By combining advanced signal processing, image-based representations, and ma-
chine learning, we aim to develop a robust framework for real-time stress monitoring in
dynamic environments.
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Chapter 3. Multimodal Stress Classification: Implementation and Experimental Validation

3.1 Introduction

The PASS database, which includes physical activity and multimodal physiological sig-
nals, was selected for this study to support the segmentation and processing of neu-
rophysiological data. This choice enables the design and evaluation of a robust stress
classification system based on physiological signals, leveraging advanced 1D-to-2D trans-
formation techniques, relevant feature extraction methods, and multiple machine learning
classifiers.

The first step involves parsing the data from the database. This includes organizing files
by participant, processing markers associated with experimental tasks, and structuring
physiological data (PPG, ECG, and EEG) for further use. An initial segmentation is
then performed according to the tasks (12 segments per participant), followed by filtering
adapted to each type of signal, and a second segmentation specific to 2D representations.

The resulting segments are converted into Visibility Graphs (VG) and Gramian Angu-
lar Field (GAF) matrices, allowing one-dimensional signals to be represented in a two-
dimensional space while preserving their temporal dynamics and structural patterns.

Two types of descriptor are extracted from these 2D representations:
o Features derived from the SCSA method;

o Descriptors based on Zernike moments, Hu moments, and wavelet packet transform
features.

A multiple machine learning classification models are used to exploit these different types
of features, enabling a coherent comparison of performance according to the representation-
feature combination. The objective is to determine, for each type of signal (EEG, ECG,
PPGQG), the optimal path, i.e., the most effective combination of representation and feature
extraction method with a view toward a final multimodal fusion.

This part presents in detail the data parsing and structuring process, the construction of
the classification pipeline, the model development, the adopted evaluation protocols, as
well as the obtained results and evaluate them.

Fig 3.1 represents the project pipeline from signal acquisition to classification step.
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Figure 3.1: Project pipeline
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3.2 Presentation of the PASS database

The PASS database (Physical Activity and StresS) is a multimodal dataset designed for
research on stress assessment and body/brain-computer interfaces (B/BCls) in real-world
conditions. It was developed to address challenges in automated stress monitoring, par-
ticularly in mobile settings where physical activity can interfere with physiological stress
markers.

3.2.1 Data Collection Modalities

For the data collection setup, the experiment involved 48 participants, each exposed to

six different conditions combining two video games and three levels of physical activity
(0, 18, and 24 km/h).

Figure 3.2: Experimental setup from the front (left). Experimental setup from the back (right).
BioHarness 3 not shown since worn under the shirt.[41]

The stress-inducing game, Outlast (Fig 3.3b), was selected to create a high-stress condi-
tion, while TIMEframe (Fig 3.3a) was used as a non-stressful control game. Each par-
ticipant played both games under all three physical activity levels, ensuring that stress
responses could be analyzed across different movement intensities. This design allowed
researchers to investigate the interaction between stress and physical activity on physio-
logical signals.

Fig 3.3 shows both video games.

66



Chapter 3. Multimodal Stress Classification: Implementation and Experimental Validation

(a) TIMEframe video game [16] (b) OUTLAST video game [54]

Figure 3.3: video games TIMEframe and OUTLAST

Following the diagram in Fig3.4, which explains the experimental sequence of the entire
experiment.

Initial

|—'— 2 minutes baseline |--|— 5 minutes break
’ P Vo P
| TIMEframe Outlast |
| | 3 training
@ L b
— p .

oy P
i K &, W \J
I-—-I— 5 to 15 minutes trainings ! ! 10 mi experimental conditions

Outlast
training

Figure 3.4: Diagram showing the experimental sequence.[41]

Using three sensors for data acquisition:

1. The Muse Headband(Fig 3.5), developed by Interaxon (Canada), is a compact
and wireless EEG device designed for real-time brain activity monitoring. It cap-
tures EEG signals with a sampling rate of 220 Hz, which is sufficient for detailed
brainwave analysis.

It is composed of several essential components:

EEG Sensors (four dry electrodes) the emplacement is as shown in Fig 3.6
o AFT7 & AF8 (Frontal Lobe - Prefrontal Cortex).
o TP9 & TP10 (Temporal Lobe - Near the Ears).

o Reference Electrode: Fpz (center of forehead).
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Adjustable 2 SmartSense Conductive
3 Reference Sensors Rubber Ear Sensors

Power/Pairing Button

LED Lights

Charging Port

2 Forehead Sensors

Figure 3.5: the Muse headband [50]

Nasion (front)

Inion (back)

Figure 3.6: EEG sensors TP9, AF7, AFS8, and TP10 of the Muse headband on the international
standard EEG placement system [7]

Wireless Transmission: Bluetooth Low Energy (BLE) for real-time data transfer.

Battery: Rechargeable lithium-ion battery, lasting up to 10 hours per charge.

Charging Port: Micro-USB.

2. The BioHarness 3 (Zephyr/Honeywell) Fig 3.7 is a wearable physiological
monitoring device designed to be worn on the chest. It integrates an embedded
sensor module and a flexible strap with conductive pads for signal acquisition. The
device supports wireless data transmission via Bluetooth and is compatible with
various data collection software.
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It measures multiple physiological parameters, including: [23]
- Heart rate: 0-240 beats per minute (BPM)

- Breath rate: 0-120 breaths per minute (BPM)

- Posture: 0-180 degrees

- Activity level: Measured in vector magnitude units

- Skin temperature: 33-41°C

- Electrocardiogram (ECG): Sampled at 250 Hz

The BioHarness 3 features onboard data storage for offline logging and real-time
transmission via Bluetooth with an approximate range of 10 meters. Its rechargeable
battery provides up to 24 hours of continuous operation. These specifications are
illustrated in Fig 3.8 [23].

Figure 3.7: BioHarness 3 chest-strap [49]

Sensor Module Size 1.85" x 0.46" (28mm x 7mm)

Sensor Module Weight 0.6350z (18g)

Strap Fabric Washable conductive smart fabric

Operating Temperature -22° to 140° F (-30° to 60° C)

Humidity 0% to 95% relative humidity (non-condensing)

Battery 4.2V Li-lon rechargeable

Run Time 12 to 28 hours

Charging Time 3 hours

IP Rating IP-55

Wireless Up to 2 miles (refer to RAELInk3 datasheet for complete details)

GPS Accuracy (via RAELInk3)  Within 5 meters

Figure 3.8: the BioHarness 3 specifications [23]

3. The E4 wristband (Empatica) is a wearable sensor designed like a smartwatch,
equipped with flash memory and Bluetooth for data transmission to a computer. It
features four sensors that capture different physiological signals: skin temperature
(4 Hz), galvanic skin response (4 Hz), blood volume pulse (PPG) (64 Hz), and
acceleration (32 Hz). These specifications are illustrated in Fig 3.9.
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Battery life - s Certification
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Figure 3.9: the E4 wristband [60]

For the software, the MuSAE Lab EEG Server (MuLES), a LabVIEW-based plat-
form, was utilized for real-time recording of EEG and other physiological signals,
ensuring synchronized data acquisition.

Additionally, MATLAB was employed for comprehensive data processing, including
signal filtering, feature extraction, and statistical analysis. A custom-made script
was specifically developed to handle experiment markers, enabling precise segmen-
tation and analysis of physiological responses to different experimental conditions.

Subjective measures[41]: PASS database also contains subjective data (question-
naires), which were collected from a NASA-TLX and BORG tests, rating from 0 to
21,

o NASA-TLX (Task Load Index): NASA-TLX was used to assess different as-
pects of workload. The following six dimensions were measured:
Mental demand, Physical demand, Temporal demand, Performance, Effort, Frustra-
tion.

o In addition, two extra stress-related questions were included:
x How stressful was the task?
x How scary was the task?

o BORG Scale (Perceived Physical Effort): The BORG Scale was used to mea-
sure the perceived physical effort of participants.
Ratings were collected after each condition and after breaks.
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3.2.2 Types of Recorded Signals & Preprocessing of Raw Data

The PASS database is characterized by being multimodal; it contains several types of
data or neurophysiological signals, starting from the EEG, ECG, PPG, EDA | etc. In
this part, we will explain each type of data separately.

3.2.2.1 EEG signal

EEG measures electrical activity in the brain using electrodes placed on the scalp as
shown in Fig 3.10. The Muse headband used in this project records EEG signals at a
sampling rate of 220 Hz, capturing brainwave activity across four main electrodes: TP9,
AF7, AF8, and TP10, with a reference electrode at Fpz.

Electroencephalogram (EEG)

Figure 3.10: Electroencephalogram (EEG) [§]

The EEG signals are transmitted wirelessly via Bluetooth Low Energy (BLE) to a record-
ing system.

EEG Frequency Bands Measured: [1]
The Muse headband records frequency bands including delta, theta, alpha, beta, and
gamima.

o Delta (0.5 — 4 Hz): the slowest EEG waves, normally detected during the deep
and unconscious sleep

o Theta (4 — 8 Hz): observed during some states of sleep and quiet focus.

o Alpha (8 — 14 Hz): originates during periods of relaxation with eyes closed but
still awake.

o Beta (14 — 30 Hz): originates during normal consciousness and active concentra-
tion.

o Gamma (over 30 Hz): are known to have stronger electrical signals in response
to visual stimulation.
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Fig 3.11 shows the five frequency bands of EEG signal
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Figure 3.11: The five frequency bands of EEG signal [1]

Noise removal techniques for EEG signals include Independent Component Analysis (ICA)
and wavelet decomposition to minimize movement artifacts.

The features extracted were relative to stress:

Absolute power in alpha, theta, and gamma bands, Prefrontal asymmetry (AF7-AFS)
linked to stress levels, coherence in TP9-TP10 for stress evaluation, amplitude mod-
ulation features such as beta-delta and gamma-delta interactions.

After feature extraction, they were used to train and test machine learning models for
stress classification.

3.2.2.2 ECG signal

ECG records the electrical activity of the heart, providing critical insights into heart rate
variability (HRV), a key biomarker of stress.

Technician

ECG J
machine E
L ")

Chest
electrode

Ankle
electrode

Figure 3.12: ECG Procedure Image [38]
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As shown in Fig 3.12, the technician is measuring the electrical activity of the heart for a
person using an ECG machine that provides a trace like the theoretical trace in Fig 3.13a.

A typical ECG waveform includes a P-wave, QRS complex, and T-wave, representing
the heart’s electrical activity during depolarization and repolarization(Fig 3.13b), as il-
lustrated in Figure 3.13a. The P-wave reflects atrial depolarization, the QRS complex
(largest amplitude) corresponds to ventricular depolarization, and the T-wave repre-
sents ventricular repolarization. Up to 12 leads can be used to capture ECG signals
from different angles. A normal sinus rhythm ensures coordinated heart function, while
disruptions in this pattern indicate arrhythmias, caused by abnormal electrical impulses.
ECG is the primary tool for detecting and diagnosing various arrhythmias cite Farag2023.
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(a) ECG of a heart in normal sinus (b) ECG of a heart in normal sinus rhythm depolariza-
rhythm [13] tion and repolarization[9]

Figure 3.13: ECG of a heart

In the PASS database, the BioHarness 3 chest strap collects ECG data at a sampling rate
of 250 Hz.

After data acquisition, the Pan-Tompkins algorithm (a widely used method for detecting
R-peaks in ECG signals) was applied to extract the interbeat interval (IBI) time series.

From ECG data, we extract key features associated with stress, including heart rate
(HR), interbeat intervals (IBI), and the standard deviation of normal-to-normal
intervals (SDNN) for heart rate variability (HRV) analysis. Additionally, we compute
the low-frequency (LF) to high-frequency (HF) power ratio, a critical marker for
autonomic nervous system activity and stress quantification.

3.2.2.3 Electrodermal activity (EDA)

Electrodermal activity (EDA; sometimes known as galvanic skin response, or GSR) refers
to the variation in the electrical conductance of the skin due to sweat secretion. It reflects
sweat gland activity, which is controlled by the autonomic nervous system, making it a
valuable indicator of stress.

The EDA data was captured using the E4 wristband at 4 Hz using skin electrodes, by
applying a low, undetectable, and constant voltage to the skin and then measuring how
the skin conductance varies
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Applying Filtering using a low-pass Chebyshev filter (1 Hz, 8th order) to remove noise,
the data was normalized by computing the average of baselines.

The features extracted from EDA data in this case was the EDA Level which mea-
sures the overall conductance of the skin due to sweat gland activity, EDA Responses
which counts the number of short-term electrodermal responses and the relative Low-
Frequency (LF) Power which represents power in the 0.045-0.15 Hz band, linked to
stress response.

3.2.2.4 Breathing rate

Breathing patterns are directly influenced by stress and can be analyzed for physiological
monitoring, recorded by the BioHarness 3 at 25 Hz using chest expansion sensors.

Downsampled from 18 Hz to 6 Hz and filtered using a low-pass Chebyshev filter (2 Hz,
8th order) to remove noise.

The features extracted were breathing Rate, which is the number of breaths per
minute,breathing Variability, which quantifies irregularities in breathing using sam-
ple entropy, and the sigh Rate, which identifies deep breaths exceeding one standard
deviation of normal breathing amplitude.

3.2.2.5 Skin temperature

Skin temperature is the temperature measured at the surface of the skin, which can fluc-
tuate due to environmental conditions, physical activity, and autonomic nervous system
responses (such as vasoconstriction under stress).

It was recorded using an E4 wristband at a sampling rate of 4 Hz.

Unlike other signals, such as ECG or EDA, no specific filtering or noise reduction was
applied to the raw skin temperature data. Since stress affects temperature, the average
temperature level was computed, and a delta temperature (difference between the initial
and final temperature of a condition) was determined.

The features extracted here are the temperature, which is the absolute value of skin
temperature, and the temperature Delta, which represents the change in temperature
over time, often used to assess stress responses.

3.2.2.6 Blood volume pulse (BVP)

PPG measures blood volume changes using optical sensors and is commonly used to assess
heart rate and vascular responses.

In this dataset, the optical sensor in the E4 wristband was used to record PPG signals at
a sampling rate of 64 Hz.

Blood Volume Pulse (BVP), derived from PPG, serves as an indicator of autonomic
nervous system activity.

The feature extracted here was the minimum BVP, which corresponds to diastolic
pressure, which may be affected by stress. and the maximum BVP, which corresponds
to systolic pressure, which varies with autonomic nervous system activity.

Finally, the PASS database is publicly available at the MUSAELAB website.[31]
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3.3 From raw data to segmented and labelled data

Data preparation constitutes a key step in our work. Its purpose is to parse, structure,
segment, and label the neurophysiological signals in a rigorous manner in order to make
them exploitable for subsequent processing and classification phases.

3.3.1 Parsing and Participant Selection

Parsing was performed using MATLAB, automating the extraction of signals and mark-
ers from the .mat files. A hierarchical structure per participant was then established,
facilitating processing by signal and task.

The PASS database [31] contains neurophysiological recordings (PPG, ECG, EEG) from
48 participants. However, only a portion of them completed all six intended experimen-
tal tasks correctly. Specifically, 23 participants completed all tasks with well-structured
metadata. These participants were selected for the main training and testing phase of
the machine learning models.

For the remaining 25 participants, the metadata presented irregularities, including missing
files, incorrect markers, or incomplete durations. Despite these limitations, we were able
to parse, restructure, and process their data in a controlled manner in order to use them
for an external validation phase. This strategy allows for evaluating the generalization
capability of the models on partially heterogeneous data.

3.3.2 Segmentation Based on Task Markers

Each signal contains 24 markers (12 start and 12 end), corresponding to 6 active tasks
interleaved with 6 rest periods (Practice(0)). These conditions are summarized in the
following table:

Experimental condition | Condition start code | Condition end code
Practice (0) 10 20
Timeframe (1) 11 21
Timeframe (2) 12 22
Timeframe (3) 13 23
Outlast (4) 14 24
Outlast (5) 15 25
Outlast (6) 16 26

Table 3.1: Experimental conditions with corresponding start and end codes.

The active phases last on average 10 minutes, while the intermediate rest periods (Prac-
tice(0)) last on average 2 minutes. This temporal segmentation enables us to divide each
complete recording into 12 distinct segments per participant.

3.3.3 Stress Label Assignment

Stress labels are derived from the PASS Subjective Database.csv file, which contains
subjective responses of participants regarding their perceived stress during each experi-
mental task. These responses are expressed on a scale from 1 to 21.
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For the active phases, stress values are directly assigned to the segments without modifi-
cation.

For the rest phases (Practice(0)), a label of 0 is assigned, indicating the absence of stress
during these recovery periods.

The tasks associated with the Timeframe and Outlast games yielded differentiated stress
values. Timeframe tasks generally generated low to moderate stress levels, while Outlast
tasks, designed to induce higher stress, produced higher stress values.

3.4 The stress classification pipeline

In this section, we detail the stress classification pipeline used for the analysis of neu-
rophysiological signals. This pipeline is structured in several steps, ranging from data
pre-processing to machine learning model validation.

3.4.1 Data pre-processing

Before any classification step, the signals must be pre-processed to ensure their quality
and compliance. This step includes:

o Second segmentation : For each type of signal, we chose the sampling frequency
value as the window size for the segments: PPG used a window size of 64 samples,
EEG used 220 samples, and ECG used 250 samples.

o Noise filtering: A basic filtering is applied (neurokit2 library for Python) to remove
artifacts and high-frequency noise. For this, filtering methods suited to each type of
signal (PPG and ECG) we used.

PPG Clean Function

neurokit2.ppg clean(ppg signal, sampling rate=1000,
heart rate=None, method="elgendi")

This function cleans raw PPG signals using the Elgendi method, which applies a
bandpass Butterworth filter (typically 0.5-8 Hz) to remove motion artifacts, baseline
drift, and high-frequency noise. When a heart rate is provided, the filter can adapt
by centering around it to improve peak detection and pulse analysis.

ECG Clean Function

neurokit2.ecg clean(ecg signal, 250, method="vg")

This function cleans ECG signals using the VG (Visibility Graph) method by ap-
plying a 4.0 Hz high-pass Butterworth filter (order 2), which effectively removes
low-frequency baseline wander. It enhances R-peak detection, making it especially
suitable for heart rate variability (HRV) analysis and other ECG-based measure-
ments.

The selection of the 'vg’ method was intentional and based on the observation that
frequency components below 4 Hz do not contribute significantly to the features
relevant in our study.
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o Normalization: Each signal is normalized to make the data comparable across
different participants and trials. Normalization is performed on the values of each
signal by adjusting the mean and standard deviation.

Taking an example of an ECG signal (250 samples), illustrated in Fig 3.14a, we filtered
it using the neurokit?2 library. The result is shown in Fig 3.14b, where we can observe
that the baseline wander and low-frequency noise have been significantly reduced, making
the key features of the ECG (such as the QRS complex) more prominent and easier to
analyze.
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Figure 3.14: Filtering ECG signal

3.4.2 Signal to Image Representation Using VG and GAF

Once the signals are preprocessed, they are transformed into 2D representations that
enhance the structure of the information and allow for the extraction of more relevant
features. Two main techniques are used: Visibility Graphs (VG) and Gramian Angular
Fields (GAF) image representations.

3.4.2.1 Visibility Graphs (VG) image representation

The visibility graph method transforms a one-dimensional signal into a graph, where each
point of the signal becomes a node, and the edges are established between nodes according
to a temporal visibility rule.
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Figure 3.15: Visibility graph of a random selected PPG window

Fig 3.15 shows, on the left, the PPG (photoplethysmographic) signal represented as a
time series, with the edges of the visibility graph overlaid in orange. Each point of the
signal is treated as a node, and an edge is drawn between two nodes if the line connecting
them does not intersect any intermediate point of the signal (the principle of the Natural
Visibility Graph (NVG)).

On the right, the associated visibility graph is shown: each node corresponds to a point
in the signal, and the connections represent the visibility relationships between them.
This representation transforms a time series into a graph structure, enabling topological
analysis of the signal that is useful for feature extraction.

From this graph, we generate a weighted adjacency matrix (Fig 3.16). Unlike a classical
binary matrix, we use a weighting called 'abs h distance’, which represents the absolute
horizontal distance between two connected nodes. Thus, each cell (7, j) of the matrix takes
the value |7 — ¢| if the nodes i and j are connected. This weighting explicitly encodes the
temporal reach of each connection in the original signal, capturing both the topological
structure and temporal dynamics of the signal.
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Figure 3.16: Visibility graph image representation of a random selected PPG window

3.4.2.2 Gramian Angular Field (GAF)

In parallel, the signals are also transformed into images using the GAF method (Fig
3.17), which relies on an angular projection of the time series. Each point of the signal
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x; is converted into a trigonometric angle (arccos(z;)), and a matrix is then computed
from the cosine summation of these angles, generating a symmetric image that captures
temporal correlations.

GAF Image for PPG signal
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Figure 3.17: Gramian Angular Field of a random selected PPG window

Note that the images generated from both methods were resized to reduce processing time
in subsequent steps for ECG and EEG images, originally sized at 250x250 and 220x220
respectively, were downscaled to 100x 100 and 64 x64. The images derived from the PPG
signals, initially at 64 x64, were kept at their original size.

These image representations (VG and GAF) are used in the extraction of relevant features
for classification afterward.

3.4.3 Feature extraction methods

To compare different feature extraction strategies, two types of approaches have been
applied to our transformed representations (VG and GAF). Each method aims to capture
specific properties of the signals from their 2D representations.

3.4.3.1 2D SCSA Applied for images

To apply the SCSA method on our VG and GAF representations, we used an indirect 2D
approach, which involves applying 1D SCSA on each row and column of the 2D matrix.
Specifically, each row (or column) is treated as an independent 1D signal on which the
SCSA decomposition is applied. The features obtained for all the rows and columns are
then aggregated (e.g., via averaging or concatenation) to construct a final feature vector
for each representation.

This method leverages the 2D structure of the image while relying on the robustness of 1D
SCSA, providing a balance between spatial expressiveness and computational efficiency.

Given the symmetry of visibility graph (VG) and gramian angular field (GAF) image rep-
resentations, we limit our computations to the columns only (or rows, as they are equiva-
lent). For each column, we apply the one-dimensional Semi-Classical Signal Analysis (1D
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SCSA), which yields the negative eigenvalues x;; and their associated eigenfunctions 1);;,
where 7 indexes eigenvalues/eigenfunctions, j indexes columns (signals position) of the
image (Fig 3.18 shows how the eigenvalues and eigenfunctions are organized).
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Figure 3.18: Eigenvalues s and their associated eigenfunctions

Features from Eigenvalues & :

From the eigenvalue matrix x € RY*M (where N is

the number of eigenvalues per column and M is the number of the image’s columns), we
compute the following statistical and spectral features:

Mean:

Standard Deviation:

First Invariant:

Second Invariant:

Third Invariant:

Number of Negative Eigenvalues:

First Eigenvalue Squared:

First Eigenvalue Ratio:

First Eigenvalue Median:

Skewness:

Kurtosis:

Entropy:

First-Order Difference:

E; [E;[ri;]]
E; [?tdz' (Kij)]
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Features from Eigenfunctions v¢: From the 3D array ¢ € RV*I*M e compute:
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Mean: Ej [Ez[Ek [wzjk]]]
StandardDeviation: E; [E;[stdy(¢x)]]
First Invariant: E; |E; |4k wwkH

Second Invariant:

Third Invariant:

[ [16h
Ej Ez Z¢z]k‘|‘|

E; -Ei @ ZT/)zng

First Eigenfunction Squared: (Ej7k[¢0jk])
First Eigenfunction Ratio: Ejk[hw
dian. .
First Eigenfunction Median: — lanljl’k(%]k)
Skewness: E; [E; [Skew ()]
Kurtosis: E; [E; [Kurtg(¢ix)]]
Entropy: E; [E; [Entropy,()]]
First-Order Difference: E; [E; [Ax(v))]]

All computed features from eigenvalues and eigenfunctions are concatenated into a final
feature vector that compactly characterizes the structural and spectral content of the
visibility graph image (or Gramian angular field image) using the SCSA framework.

3.4.3.2 Zernike Moments + Hu Moments + Wavelet Packet Transform

The 2D VG and GAF representations are also analyzed using a combination of classical
image descriptors, let f(x,y) denote the 2D VG or GAF representation of a 1D time
series signal, where (z,y) indexes the image pixels. The following features are extracted
from this image:

o Zernike Moments: Capture global shape features using a basis of orthogonal
polynomials on the unit disk. First, map (z,y) to polar coordinates (p, #) within the

unit circle:
n—+1

= Zfocy p,0)

(p)e’™? and R, is the radial polynomial.

where V,,,(p,0) = Rum

o Hu Moments: Describe shape using central moments, invariant to translation,
scale, and rotation:

pq:zzxpyqf(xvy)» Hpg
Ty

mio 5, — mOl
moo mo

=3 > (e—2)"(y—9)"f(z,y)

. From these, 7 Hu invariant moments ¢; to ¢7 are computed,

G1 =10 + Moz, P2 = (M0 — No2)® + 407,

with 7,, being normalized central moments.
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o Wavelet Packet Features: Enable hierarchical frequency analysis. The VG or
GAF image is recursively decomposed into frequency subbands using wavelet packet
decomposition. At each level j, the image is split into subbands and features (mean
and standard deviation) are computed from the coefficients:

=

1 Y 1 |
WP coif mean = N E ¢i, WP coif std = N\l (i — —= g ¢i)? (3.1)
i=1 ;

i=1

where ¢; are the wavelet coeflicients.

This combination yields a rich and complementary feature vector, capturing both geo-
metric structure and textural details, the list is in Table 3.2.

Table 3.2: Zernike Moments + Hu Moments + Wavelet Packet Transform features list

Feature Category

Feature Names

Zernike Moments (radius=9)

Zernikes Moments radius 9 O, Zernikes Moments radius 9 1,
Zernikes Moments radius 9 2, Zernikes Moments radius 9 3,
Zernikes Moments radius 9 4, Zernikes Moments radius 9 5,
Zernikes Moments radius 9 6, Zernikes Moments radius 97,
Zernikes Moments radius 9 8, Zernikes Moments radius 9 9,
Zernikes Moments radius 9 10, Zernikes Moments radius 9 11,
Zernikes Moments radius 9 12, Zernikes Moments radius 9 13,
Zernikes Moments radius 9 14, Zernikes Moments radius 9 15,
Zernikes Moments radius 9 16, Zernikes Moments radius 9 17,
Zernikes Moments radius 9 18, Zernikes Moments radius 9 19,
Zernikes Moments radius 9 20, Zernikes Moments radius 9 21,
Zernikes Moments radius 9 22, Zernikes Moments radius 9 23,

Zernikes Moments radius 9 24

Hu Moments

Hu Moment O, Hu Moment 1, Hu Moment 2,
Hu Moment 3, Hu Moment 4, Hu Moment 5,

Hu Moment 6

Wavelet Packet (coifl) Features

WP _coifl aah mean, WP coifl aah std, WP_coifl aav mean,
WP coifl aav std, WP coifl aad mean, WP coifl aad std,
WP_coifl aha mean, WP_coifl aha std, WP_coifl ahh mean,
WP coifl ahh std, WP coifl ahv mean, WP coifl ahv std,
WP_coifl ahd mean, WP coifl ahd std, WP_coifl ava mean,
WP coifl ava std, WP coifl avh mean, WP coifl avh std,
WP_coifl avv mean, WP _coifl avv std, WP_coifl avd mean,
WP coifl avd std, WP coifl ada mean, WP coifl ada std,
WP _coifl adh mean, WP coifl adh std, WP_coifl adv mean,
WP coifl adv std, WP coifl add mean, WP coifl add std,
WP_coifl haa mean, WP_coifl haa std, WP_coifl hah mean,
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WP coifl hah std, WP coifl hav mean, WP coifl hav std,
WP_coifl had mean, WP coifl had std, WP_coifl hha mean,
WP _coifl hha std, WP_coifl hhh mean, WP_coifl hhh std,
WP_coifl hhv mean, WP_coifl hhv std, WP_coifl hhd mean,
WP coifl hhd std, WP coifl hva mean, WP coifl hva std,
WP_coifl hvh mean, WP coifl hvh std, WP_coifl hvv mean,
WP _coifl hvv std, WP_coifl hvd mean, WP_coifl hvd std,
WP_coifl hda mean, WP_coifl hda std, WP _coifl hdh mean,
WP coifl hdh std, WP coifl hdv mean, WP coifl hdv std,
WP_coifl hdd mean, WP coifl hdd std, WP_coifl vaa mean,
WP _coifl vaa std, WP_coifl vah mean, WP_coifl vah std,
WP_coifl vav mean, WP _coifl vav std, WP _coifl vad mean,
WP coifl vad std, WP coifl vha mean, WP coifl vha std,
WP_coifl vhh mean, WP coifl vhh std, WP_coifl vhv mean,
WP coifl vhv std, WP coifl vhd mean, WP coifl vhd std,
WP_coifl vva mean, WP coifl vva std, WP _coifl vvh mean,
WP coifl vvh std, WP coifl vvv mean, WP coifl vvv std,
WP coifl vvd mean, WP coifl vvd std, WP coifl vda mean,
WP coifl vda std, WP coifl vdh mean, WP coifl vdh std,
WP_coifl vdv mean, WP_coifl vdv std, WP_coifl vdd mean,
WP coifl vdd std, WP_coifl daa mean, WP coifl daa std,
WP_coifl dah mean, WP coifl dah std, WP_coifl dav mean,
WP coifl dav std, WP coifl dad mean, WP coifl dad std,
WP_coifl dha mean, WP_coifl dha std, WP _coifl dhh mean,
WP coifl dhh std, WP coifl dhv mean, WP coifl dhv std,
WP_coifl dhd mean, WP coifl dhd std, WP_coifl dva mean,
WP coifl dva std, WP coifl dvh mean, WP coifl dvh std,
WP_coifl dvv mean, WP_coifl dvv_std, WP _coifl dvd mean,
WP coifl dvd std, WP_coifl dda mean, WP coifl dda std,
WP_coifl ddh mean, WP coifl ddh std, WP_coifl ddv mean,
WP _coifl ddv std, WP_coifl ddd mean, WP coifl ddd std

3.4.4 Features engineering

At this stage, each signal (PPG, ECG, and the four EEG channels) is processed through
two distinct 2D representations: the Visibility Graph (VG) and the Gramian Angular
Field (GAF). For each representation, two types of feature vectors are extracted:

o Features from the Semi-Classical Signal Analysis (SCSA) method (29 type of fea-
tures).

o Concatenated image descriptors from Zernike moments, Hu moments, and Wavelet-
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packet transform (159 type of features).
This results in four distinct feature paths per signal:
o VG_SCSA: Features from SCSA applied on the VG image.
o VG_Moments: Concatenated moment-based features from the VG image.
o GAF_SCSA: Features from SCSA applied on the GAF image.
o GAF_Moments: Concatenated moment-based features from the GAF image.

Each feature path is independently used to train a classifier. However, prior to classifi-
cation, a feature selection process is performed to retain only the most relevant features.
This process includes:

o Computing the correlation between features to eliminate redundancy.
o Applying the ANOVA test to assess the statistical significance of each feature.

These steps ensure that only the most informative and discriminative features are used
for model training.

3.4.4.1 Correlation Between Features

Correlation between features refers to the statistical relationship or dependency between
two variables. In the context of feature selection, it is important to identify and remove
highly correlated (redundant) features, as they provide overlapping information and can
negatively affect the performance and generalization of the classifier. By computing a
correlation matrix (e.g in Fig 3.19 of a correlation matrix), features that exhibit strong
linear relationships (e.g., Spearman correlation coefficient close to 1 or -1) can be detected
and filtered out, ensuring a more compact and informative feature set.

In our case we choose to use Spearman correlation, with threshold equal to 0.75 (remove
one of the features that have a correlation coefficient higher than 0.75), after that, we
keep only the uncorrelated features in order to remove redundancy and as a result, we
will obtain a reduced number of features.
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Figure 3.19: Correlation matrix of the Zernike + Hu + wavelet features from VG image for the
ECG signal

Fig 3.20 shows the correlation matrix after removing correlated features for Zernike +
Hu + wavelet features from VG image of the ECG signal, we notice that the
correlation matrix get smaller and some features are not existing, due to the first step of
features engineering.
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Figure 3.20: Correlation matrix of the Zernike + Hu + wavelet features from VG image for the
ECG signal after removing the correlated features

It is important to note that we performed this step for all paths.

3.4.4.2 ANOVA Test

The ANOVA (Analysis of Variance) test is a statistical method used to determine whether
there are significant differences between the means of three or more independent groups.
In the context of feature selection, the ANOVA test evaluates each feature by measuring
how well it separates the classes. A higher ANOVA score indicates that the feature con-
tributes significantly to distinguish between different classes, making it a strong candidate
for inclusion in the classification model.

Let X, denote the j* feature across N total samples, and suppose the dataset is parti-
tioned into C' classes. Let n. be the number of samples in class c¢. Define:

— X;: the overall (global) mean of feature X over all samples.
- X jc: the mean of feature X; within class c.

— Xj;: the value of feature X; for sample i.
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To assess how well feature X; discriminates between the classes, we compute its ANOVA
F-score, defined as the ratio of between-class variance to within-class variance:

Between-Class Variance

;= 3.2
7 Within-Class Variance (3:2)
1 & _
o1 > ne(Xje — Xj)
c=1
F; = ! XC: Z - (3.3)
(X — ;o
N-C c=1 iec ! ’
Alternatively, this can be written as:
MSg
F; = 3.4

where:

— MSp is the between-class mean square (variation of class means from the global
mean),

— M Sy is the within-class mean square (variation of samples within each class).
Interpretation:

— A higher F} indicates that the feature X; exhibits significantly different means across
the classes, implying strong discriminative power.

— A lower F} suggests that the feature is not helpful for class separation.

Following the initial feature selection step using a correlation matrix, we removed redun-
dancy by eliminating one of each pair of features with a correlation coefficient greater than
or equal to 0.75. This ensured that the remaining features were sufficiently uncorrelated,
minimizing multicollinearity and preserving interpretability.

In the second step, we applied an ANOVA (Analysis of Variance) test to the reduced
feature set. This test assesses the statistical significance of each feature in differentiating
between the predefined stress classes. From the set of uncorrelated features, we selected
the top k features, specifically £ = 10 before fusion, based on their F-scores, identifying
those most relevant for distinguishing between stress levels (As shown in Table 3.3, only
the top three features out of the ten most significant ones are presented for illustration).

This two-step approach balances the removal of redundancy (via correlation analysis)
with the retention of statistically informative features (via ANOVA), thereby optimizing
the quality of the feature set used for model training.

Table 3.3: The three first significant Features after ANOVA test

Feature F-value
Zernikes Moments radius 9 15 | 4.030560
Zernikes Moments radius 9 18 | 3.985633
Zernikes Moments radius 9 2 | 3.155824
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The procedure works as follows:
1. Compute the F-statistic Fj for each feature X, using the ANOVA formulation above.
2. Rank all features based on their F-scores.

3. Select the top k features with the highest scores.

Table 3.4: Comparison of Random Forest and Extra Trees Classifiers

File SAC SAA  RF Accuracy ET Accuracy
ECG Features

VG _ECG _P1 (138, 24) (138, 10) 0.4524 0.4524
VG ECG SCSA (138,2) (138, 2) 0.5238 0.5238
GAF _ECG P1 (138, 10) (138, 10) 0.5238 0.5238
GAF _ECG _SCSA (138,2) (138, 2) 0.5238 0.5476
PPG Features

VG PPG P1 (138, 10) (138, 10) 0.5000 0.5000
VG PPG SCSA (138,2) (138, 2) 0.5714 0.4524
GAF _PPG P1 (138,9) (138, 9) 0.5000 0.5000
GAF PPG _SCSA (138,4) (138, 4) 0.5714 0.5000

EEG Features

VG _EEG _C1 P1 (138,7) (138, 7) 0.4762 0.5476
VG EEG C1 SCSA (138, 3) (138, 3) 0.5000 0.4762
GAF_EEG C1 P1 (138,7) (138, 7) 0.5476 0.5238
GAF_EEG C1 SCSA (138,4) (138, 4) 0.5476 0.4762
VG _EEG C2 P1 (138,5) (138, 5) 0.4762 0.5238
VG EEG C2 SCSA (138, 5) (138, 5) 0.5238 0.4524
GAF_EEG C2 P1 (138,8) (138, 8) 0.5238 0.4524
GAF_EEG C2 SCSA (138,3) (138, 3) 0.4762 0.5238
VG _EEG _C3 P1 (138, 22) (138, 10) 0.5000 0.5476
VG EEG C3 SCSA (138, 4) (138, 4) 0.5000 0.4048
GAF_EEG C3 P1 (138,7) (138, 7) 0.4762 0.4762
GAF_EEG C3 SCSA (138,3) (138, 3) 0.3810 0.4524
VG _EEG C4 P1 (138,7) (138, 7) 0.5238 0.5000
VG EEG C4 SCSA  (138,3) (138, 3) 0.4524 0.5000
GAF_EEG C4 P1 (138,7) (138, 7) 0.5238 0.5714
GAF_EEG C4 SCSA (138,4) (138, 4) 0.5238 0.4524

The outcomes of all feature extraction paths for each neurophysiological signal are illus-
trated through a representative example in Table 3.4. This table does not aim to cover
all conducted experiments, but rather provides an illustrative instance of the detailed
information on the shape of the resulting datasets, the number of samples, and the di-
mensionality of the feature vectors, both after correlation-based selection (denoted as
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SAC) and after the subsequent ANOVA-based selection (denoted as SAA).

Each feature set in this example was then used to train two different classifiers: Random
Forest and Extra Trees. The corresponding classification accuracies obtained with both
models are also reported in Table 3.4, enabling a comparative assessment of the illustrated
feature extraction strategies.

3.4.5 Binary classification

 Gomelation q
L I Classes

B bl v
L f stressed
] H ; SCSA based kM E
TR A e Not stressed
NN

Features engineering Binary classification

Signal aquisition Parsing & segmentation GAF & VG representations Features extraction

Figure 3.21: Binary classification pipeline

In our case, as shown in Fig 3.21, we started with a binary classification (stress/non-
stress), the histogram of the original labels is shown in Fig 3.22

Frequency histogram of the original labels
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Figure 3.22: Frequency histogram of the original labels

3.4.5.1 Unbalanced classes (original split)

Afterward, the stress levels are grouped into two distinct classes:
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Figure 3.23: Frequency histogram of the two new classes

This regrouping is based on the participants’ self-reported stress ratings and the nature of
the tasks. As shown clearly in Fig 3.24, there is a noticeable threshold at a stress rating
of 7 (for the case of two classes).

The first three conditions (TIMEFRAME (no bike), TIMEFRAME (14 km/h), and
TIMEFRAME (28 km/h)) all yielded stress ratings below this threshold, indicating that
the video game was not perceived as stressful (as it should be). Therefore, these instances
were assigned to Class 0 (non-stress).

In contrast, the remaining conditions (OUTLAST (no bike), OUTLAST (14 km/h), and
OUTLAST (28 km/h)) resulted in stress ratings consistently above 7, reflecting a clear
stress response. These were accordingly grouped into Class 1 (stress).

Stress Levels Across Conditions for Selected Participants

—— L

1: Timeframe 2: Timeframe 3: Timeframe 4: Outlast 5: Qutlast 6: Outlast
{no bike) (14 km/h) (28 km/h) (no bike) (14 kmy/h) (28 km/h)

Condition

Figure 3.24: Stress levels across conditions for selected participants

After training the dataset using LazyClassifier, and getting the best model in each path,
the table 3.5 summarizes the results for each path,
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Path Model Accuracy Balanced Accuracy F1 Score
ECG Features

VG ECG P1 SGDClassifier 0.62 0.62 0.62
VG _ECG _SCSA DecisionTreeClassifier 0.60 0.57 0.55
GAF ECG P1 BernoulliNB 0.62 0.58 0.55
GAF ECG SCSA Perceptron 0.64 0.65 0.64
PPG Features

VG PPG P1 LabelPropagation 0.57 0.56 0.56
VG _PPG_SCSA PassiveAggressiveClassifier 0.64 0.62 0.63
GAF PPG P1 AdaBoostClassifier 0.67 0.65 0.65
GAF _PPG SCSA BaggingClassifier 0.74 0.73 0.73
EEG Features

VG_EEG C1 _P1 NuSVC 0.69 0.67 0.68
VG EEG C1 SCSA  Perceptron 0.60 0.58 0.58
GAF EEG C1 P1 LabelPropagation 0.67 0.65 0.65
GAF EEG C1 SCSA RandomForestClassifier 0.55 0.52 0.50
VG EEG C2 P1 DecisionTreeClassifier 0.60 0.58 0.58
VG _EEG C2 SCSA  ExtraTreeClassifier 0.60 0.58 0.59
GAF EEG C2 P1 XGBClassifier 0.62 0.61 0.62
GAF EEG C2 SCSA ExtraTreesClassifier 0.60 0.57 0.55
VG_EEG C3 P1 NuSVC 0.60 0.58 0.59
VG EEG C3 SCSA  LGBMClassifier 0.60 0.57 0.57
GAF EEG C3 P1 DecisionTreeClassifier 0.67 0.66 0.66
GAF_EEG _C3 SCSA BernoulliNB 0.57 0.53 0.47
VG EEG C4 P1 BernoulliNB 0.69 0.66 0.66
VG EEG C4 SCSA  NuSVC 0.64 0.63 0.64
GAF EEG C4 P1 AdaBoostClassifier 0.64 0.62 0.63
GAF_EEG C4 SCSA XGBClassifier 0.62 0.62 0.62

Table 3.5: Best accuracy for paths

Note that the rows highlighted in yellow represent the feature extraction paths that
yielded the highest accuracies. To further improve classification performance, we adopted
a multimodal approach by combining features from all these high-performing paths. We
then applied feature engineering techniques, including correlation analysis and ANOVA
feature selection, to reduce dimensionality and keep only the relevant features.

For the multimodal classification step, the XGBoost Classifier was selected, achieving
an accuracy of 73%, which equals the highest accuracy observed across all individual
feature extraction paths.

This choice was motivated by using the LazyClassifier to compare various models on our
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best-performing feature sets, where XGBoost classifier consistently delivered the most
promising results.

The confusion matrix below, Fig 3.25, illustrates the performance of the classifier on a
binary classification task

18

16

True label

Predicted label

Figure 3.25: Confusion Matrix of the binary classification without downsampling

From this matrix, we can compute the following metrics:

TP TP
Precision = ’I'_P-|-—_F1P7 Recall = m—m (35)
Precision x Recall

Precision + Recall

F1l-score = 2 x

o For Class O:

19 19
Precision = or7 "~ 0.731, Recall = i 0.826, Fl-score ~ 0.775 (3.7)

o For Class 1:

12 12 ~
Precision = o1d- 0.750, Recall = 7~ 0.632, Fl-score ~ 0.685 (3.8)

These results show that the classifier performs slightly better on class 0, with higher
recall and Fl-score compared to class 1. However, the recall for class 1 is relatively
low, indicating that several positive instances were incorrectly classified. The model’s

poor ability to detect class 1 may be due to the imbalance in our dataset, as class 0
contains significantly more samples.
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3.4.5.2 Balanced classes using downsampling

To address the issue observed when using the original dataset as it was, we considered
making the dataset more balanced by applying downsampling. As a result, we ob-
tained this new histogram (Fig 3.26) showing the new distribution of classes 0 and 1 after

downsampling.

Remark:

We consider the new distribution to be balanced, even though the number of samples in
each class is not exactly the same in Fig 3.26. The difference is minimal, with 60 samples
in class 0 and 57 in class 1.

Frequency histogram of the two new classes after downsampling

60 4

8
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8
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Figure 3.26: Frequency histogram of the two new classes after downsampling

Path

ECG Features
VG _ECG P1

VG _ECG _SCSA
GAF _ECG P1
GAF _ECG SCSA
PPG Features
VG PPG P1

VG PPG SCSA
GAF PPG P1
GAF PPG SCSA
EEG Features
VG _EEG C1 P1
VG _EEG C1 SCSA

Classes

Model

LogisticRegression
Perceptron
KNeighborsClassifier
SGDClassifier

KNeighborsClassifier
SGDClassifier

QDA
CalibratedClassifierCV

LinearSVC
AdaBoostClassifier
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Accuracy Balanced Accuracy F1 Score

0.64
0.67
0.61
0.61

0.58
0.61
0.61
0.69

0.61
0.64

Table 3.6: Best accuracy for paths after downsampling

0.64
0.63
0.61
0.61

0.61
0.64
0.57
0.70

0.61
0.64

0.64
0.62
0.61
0.61

0.57
0.58
0.54
0.70

0.61
0.64
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GAF EEG C1 P1 RidgeClassifier 0.72 0.72 0.72
GAF EEG C1 SCSA ExtraTreesClassifier 0.69 0.70 0.70
VG EEG C2 P1 ExtraTreeClassifier 0.69 0.71 0.69
VG EEG C2 SCSA ExtraTreeClassifier 0.67 0.66 0.66
GAF EEG C2 P1 CalibratedClassifierCV 0.61 0.62 0.61
GAF EEG C2 SCSA GaussianNB 0.75 0.73 0.74
VG EEG C3 P1 QDA 0.72 0.73 0.72
VG EEG C3 SCSA  DecisionTreeClassifier 0.67 0.67 0.67
GAF _EEG C3 P1 SVC 0.67 0.66 0.66
GAF _EEG C3 SCSA QDA 0.69 0.68 0.69
VG _EEG C4 P1 NuSVC 0.69 0.71 0.69
VG EEG C4 SCSA NearestCentroid 0.67 0.66 0.66
GAF EEG C4 P1 LabelPropagation 0.72 0.72 0.72
GAF EEG C4 SCSA KNeighborsClassifier 0.64 0.66 0.63

Once again, it is important to highlight that the rows marked in yellow correspond to the
feature extraction paths that yielded the highest classification accuracies. Notably, the
average accuracy across the top-performing paths before downsampling was 67.5%. After
applying downsampling, the average increased to 70.66%, reflecting a clear improvement.
This enhancement can be attributed to the balancing of the dataset, which helped mitigate
class imbalance and improve model performance.

After that, we adopted a multimodal strategy by combining the features of all these top-
performing paths. We then applied feature engineering techniques, including correlation
analysis and ANOVA feature selection, to reduce dimensionality and retain only the most
relevant features.

For the classification stage, we selected the Random Forest Classifier, which achieved
an accuracy of 78%, exceeding the highest score obtained among all individual feature
extraction paths (with 5%).

The confusion matrix shown in Fig 3.27 illustrates the classifier’'s performance on the
binary classification task.
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Figure 3.27: Confusion Matrix of the binary classification with downsampling

From this matrix, we compute the following metrics:

o For Class 0:

16 16
Precision = 643 ~ 0.842, Recall = T 0.800, Fl-score ~ 0.820 (3.9)
o For Class 1:
13

Precision = 1

Wi 0.765, Recall = 513"~ 0.812, Fl-score ~ 0.788 (3.10)

These results demonstrate a significant improvement in the classifier’s ability to detect
both classes compared to the model trained without downsampling. In particular, the
recall for class 1 increased from 0.632 to 0.812, showing that downsampling successfully
addressed the data imbalance and helped the model better detect the minority class.

Permutation test:

Fig 3.28 illustrates the results of the permutation test conducted on the test set. The
histogram represents the distribution of classification accuracies obtained when the labels
were randomly shuffled 500 times, simulating the scenario in which there is no real rela-
tionship between features and labels. The red dashed line indicates the actual accuracy
score achieved by the model on the correctly labeled data.

The model obtained an accuracy of 72%, while the majority of permutation scores are
concentrated around lower values. The computed p-value of 0.0319 indicates that fewer
than 4% of the random permutations reached or exceeded the actual model accuracy,
providing evidence that the model performs significantly better than chance.
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Although the red line is not extremely far from the distribution of random scores, it still
lies on the tail of the histogram. This suggests that while the model does learn meaningful
patterns, the signal in the data might be relatively weak or the classes are not perfectly
separable (subjective questionnaire). Nevertheless, the result remains statistically signif-
icant (p < 0.05), justifying confidence in the model’s predictive power.

Permutation Test (p-value=0.0319)

 Permutation scores
=== Actual score

Frequency

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy score

Figure 3.28: Permutation Test

3.4.5.3 Balanced classes using data augmentation in feature space

To improve the performance (which is closely tied to the number of training samples), we
will apply data augmentation to the minority class instead of downsampling the majority
class. Specifically, we will use the SMOTE technique to generate synthetic samples for
class 1, while keeping class 0 unchanged.

SMOTE (Synthetic Minority Oversampling Technique) is a widely used statistical method
for addressing class imbalance in classification problems. It works by generating synthetic
instances for the minority classes, rather than simply duplicating existing samples. Im-
portantly, SMOTE does not modify or reduce the number of instances in the majority
class.

The algorithm operates in the feature space by selecting each minority instance and
generating new, synthetic samples based on its nearest neighbors. For a given minority
sample z;, the algorithm identifies its k-nearest neighbors {@pn,, ..., Zny, } from the same
class. Then, new samples are created by linear interpolation between z; and a randomly
selected neighbor x,,, using the formula:

Tnew = i + )\(xnn - xi)a A~ U(Oa 1)7 (311)

where (0, 1) denotes the continuous uniform distribution over [0, 1]. This process allows
SMOTE to synthesize new points that lie along the line segments connecting a minority
sample and its neighbors, thereby producing more diverse and generalized samples.

SMOTE Algorithm
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Let D = {(x;,v;)} be the original dataset, where x; € R? and y; € {class labels}.

Let T be the desired number of samples per class (the target for balancing).

1. Count samples per class For each class ¢, define:

ne={i:y; =c}|.

In our case n. = {81,57}

Build the set of classes to oversample: (T = 81)

sampling strategy = {c | n. < T'} = {classl = 57}.

2. Determine k-nearest-neighbors Let:

Npin = MIN_ N,
cne<T

k = max (1, min(5, Nmyin —

(3.12)

(3.13)

(3.14)

1). (3.15)

3. Generate synthetic samples for each class ¢ with n. < T Let:

G.=T—n,={81—57}

Let the original feature vectors for class ¢ be:

Sc:{xi|yi:c}CRd.

(number of new samples to generate).

(3.16)

(3.17)

For each z; € S, (cycled as needed), repeat until G. new points are generated:

a. Find the k nearest neighbors of x; within S, \ {x;}, call this set NN(z;).

b. Randomly select one neighbor z,, € NNg(z;).

c. Generate new point:

Tnew = Ti + M@nn — x;), where A~ U(0,1) (3.18)
d. Assign label ypew = € t0 Thew.
4. Final dataset The final, balanced dataset is:
Dbalanced = {(xza Z/z)} U {(xneW7 C)}a (319)
where for each targeted class ¢, we now have:
n.+ G.=T samples. (3.20)
..l : l-l .’
. . New synthetic data given by:
[ ] -.... m | ....- O //ﬁ’ §1= x1 + (rand(0,1) * xz—x1)/
e mE o e Ll
EmE g EmE g
HEg N Eg B
g . g
o
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Figure 3.29: SMOTE algorithm
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Fig 3.29 illustrates how SMOTE algorithm creates new samples from the original
ones.

After applying data augmentation, each class in the feature dataset contains 81 samples.
We then proceed with the feature engineering steps, including correlation analysis and
ANOVA testing, to select the most relevant features. This refinement of the dataset leads
to a noticeable improvement in the model’s training accuracy. The data augmentation is
applied to the selected best paths (after concatenation of their features).

Based on several trials, we find that Random Forest Classifier gives the best perfor-
mance with test accuracy equal to 88%, and Fig 3.30, shows the confusion matrix for this
case.

confusion_matrix: RandomForestClassifier

25

True label

- 10

Predicted label

Figure 3.30: Confusion matrix for 2 classes after data augmentation

From this matrix Fig 3.30, we compute the following metrics:

o For Class O:

25
Precision = T 0.833, Recall = T 0.893, Fl-score ~ 0.862 (3.21)
o For Class 1:
Precisi 27 0.900, Recall 27 0.843, F1 0.871 (3.22)
recision = —— = 0. ecall = ——— =~ 0. -score = 0. :
27+ 3 ’ 27+5 ’

From these metrics, we can clearly observe a consistent enhancement in all evaluation
metrics (precision, recall, and Fl-score) when using the augmented dataset compared to
the unbalanced and downsampled versions.
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This improvement is primarily due to the use of SMOTE-based data augmentation, which
addresses the class imbalance not by reducing the number of samples in the majority class
(as in downsampling), but by synthetically generating new, plausible samples for the
minority class. This technique helps the model to better learn the decision boundaries for
the underrepresented class without losing valuable information from the majority class.

As a result, the classifier becomes more balanced in its predictions, leading to better
generalization and fairness across classes, especially noticeable in the significant gain in
Class 1’s Fl-score and in the test accuracy increase from 73% (unbalanced) and 78%
(downsampling) to 88% (data augmentation).

Permutation test:

Permutation Test (p-value=0.0020)

I Permutation scores
504 —=- Actual score

Frequency
&

P
o
I

10 ~

0.3 0.4 0.5 0.6 0.7
Accuracy score

Figure 3.31: permutation test for the data augmentation with 2 classes

The permutation test results in Fig 3.31 show that the red line (representing the model’s
actual performance) lies far from the distribution of scores obtained under the null hy-
pothesis. With a p-value of only 0.2%, this indicates that the likelihood of achieving such
performance by random chance is extremely low. Therefore, we can confidently conclude
that the model’s predictions are statistically significant and not due to randomness.

Neural network model

We now proceed with training a neural network using the architecture detailed in Ta-
ble 3.7, which provides a comprehensive summary of the model’s structure.
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Accuracy
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Layer (type) Output Shape | Param #
Dense (dense) (None, 64) 45,312
BatchNormalization (batch normalization) (None, 64) 256
Dropout (dropout) (None, 64) 0
Dense (dense 1) (None, 32) 2,080
BatchNormalization (batch normalization 1) (None, 32) 128
Dropout (dropout 1) (None, 32) 0
Dense (dense 2) (None, 16) 528
BatchNormalization (batch normalization 2) (None, 16) 64
Dropout (dropout_2) (None, 16) 0
Dense (dense 3) (None, 1) 17

Table 3.7: Model architecture summary

Madel Accuracy

Model Loss

The training process demonstrates stable convergence (Fig 3.32), with the model showing
neither underfitting nor overfitting, as evidenced by a validation accuracy of approxi-
mately ~ 87%

1.0
—— Train Accuracy

val Accuracy
0.9 1

0.8 1

P

0.7 4

Loss

ruf\“VJ

0.5

Mg

iy

—— Train Loss

Val Loss

| 0.4 1
A A f‘ A
/ "o WINye
0 20 40 60 80 100 : 20 40 60 80 100

Epoch

Epoch

Figure 3.32: Training and validation accuracy and loss curves for the neural network.

3.4.5.4 Conclusion

In this study, we explored binary classification for stress detection using neurophysiological
signals (ECG, PPG, and EEG). Initially, the dataset exhibited class imbalance, leading
to biased model performance favoring the majority class (non-stress) as shown in the case
of unbalanced classes where we achieved 73% accuracy with XGBoost but with poor
recall for the minority class (stress). Addressing this, we evaluated two approaches:

o Downsampling: Address the majority class to have balanced classes with improved
performance, yielding 78% accuracy with Random Forest and better recall for both

classes.

o SMOTE-Based data augmentation: Synthetic oversampling of the minority
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class further enhanced results, achieving 88% accuracy with Random Forest and
balanced precision-recall metrics.

Statistical validation (permutation tests) confirmed the significance of these results.

A neural network trained on augmented data also demonstrated strong performance
(~87% validation accuracy).

3.4.6 Three-class classification
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Figure 3.33: Three-class classification pipeline

Fig 3.33 illustrates the complete pipeline for the three-class classification task, which is
similar to the previous one, except for a modification in the final step, the classification
stage.

Figure 3.34 shows the relationship between physical effort (BORG scale) and self-reported
stress levels under different conditions. Two thresholds (levels 7 and 14) divide the data
into three stress classes: low, medium, and high.

Stress Level vs Physical Effort
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Figure 3.34: Stress level vs physical effort

These thresholds allow for a clear segmentation of the dataset and reflect the experimental
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design:

o Class 0 (Low Stress): Mainly from Timeframe conditions 1 to 3, where physical
effort did not induce stress.

o Class 1 (Medium Stress): Primarily from Outlast Condition 1, with moderate
stress due to cognitive demand.

o Class 2 (High Stress): From Outlast Conditions 2 and 3, marked by intense
psychological stress.

The visualization confirms that physical effort alone does not explain stress; rather, psy-
chological context plays a key role. This justifies the use of the selected thresholds, which
capture the intended experimental distinctions.

3.4.6.1 Unbalanced classes (original split)

Frequency histogram of the three new classes
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Figure 3.35: Unbalanced classes (original split)

After regrouping, each individual path was trained independently of the others. Prior to
training, all paths were evaluated using correlation and ANOVA tests. Table 3.8 presents
the results obtained using the LazyClassifier. The yellow-highlighted rows indicate the
best-performing paths for each signal type.

Table 3.8: All models’ performance for each feature path for the three classes distribution

Path Model Accuracy Balanced Acc F1 Score
ECG Features

VG _ECG P1 CalibratedCV 0.55 0.33 0.39
VG ECG SCSA LGBM 0.57 0.45 0.47
GAF ECG P1 SGD 0.57 0.36 0.44
GAF _ECG _SCSA Bagging 0.62 0.52 0.55

PPG Features

Continued on next page
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Table 3.8 — continued from previous page

Path Model Accuracy Balanced Acc F1 Score
VG PPG P1 Dummy 0.55 0.33 0.39
VG PPG SCSA RandomForest 0.55 0.45 0.48
GAF _PPG P1 PassiveAggressive 0.57 0.39 0.47
GAF PPG SCSA AdaBoost 0.62 0.52 0.59
EEG Features

VG EEG C1 _P1 BernoulliNB 0.55 0.33 0.39
VG_EEG C1 SCSA  BernoulliNB 0.55 0.33 0.39
GAF EEG C1 P1 PassiveAggressive 0.62 0.44 0.55
GAF EEG C1 SCSA Bagging 0.60 0.47 0.52
VG EEG C2 P1 CalibratedCV 0.55 0.33 0.39
VG _EEG C2 SCSA  Bagging 0.55 0.45 0.48
GAF_EEG C2 P1 RidgeCV 0.55 0.33 0.39
GAF EEG C2 SCSA QDA 0.57 0.36 0.44
VG EEG C3 P1 SVC 0.55 0.33 0.39
VG EEG C3 SCSA  Dummy 0.55 0.33 0.39
GAF_EEG C3 P1 XGBoost 0.57 0.45 0.48
GAF EEG C3 SCSA CalibratedCV 0.55 0.33 0.39
VG EEG C4 P1 GaussianNB 0.60 0.44 0.51
VG _EEG C4 SCSA QDA 0.55 0.37 0.48
GAF_EEG C4 P1 AdaBoost 0.60 0.44 0.54
GAF _EEG C4 SCSA LDA 0.57 0.36 0.44

We selected all the best-performing paths and concatenated their features using a multi-
modal approach. After applying correlation and ANOVA tests, we evaluated the combined
feature set using the LGBM Classifier, which gave the best performance in this scenario.
The balanced accuracy after multimodality was 59%, which is greater than the perfor-
mance from the best individual path, indicating that performance gain was increased
relatively to the unimodal performance. This is due to multimodality.

However, this accuracy is so low, and this lack of improvement is likely due to the severe
class imbalance.
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confusion_matrix: LGBMClassifier
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Figure 3.36: Confusion matrix of unbalanced three classes
From the confusion matrix in Fig 3.36 we calculated these metrics:
o For Class 0:
Precisi 19 0.633, Recall 19 0.826, F1 0.716
recision = —— ~ 0. ecall = —— =~ 0. -score = 0.
194447 ’ 19+4 ’
(3.23)
o For Class 1:
Precisio 5 0.333, Recall 5 0.429, F1l-score ~ 0.375
recision = —— =~ (. = —=0. -score = ().
3+4+2 ’ 3+4 ’
(3.24)
o For Class 2:
Precisi 5 1.000, Recall 5 0.250, F1 0.400
recision = ——— = 1. ecall = —— = 0. -score =~ 0.
34+0+0 ’ 3+7+2 ’
(3.25)

From the classification results, we observe that:

o Class 0 is relatively well predicted with a high recall of approximately 82.6% and
a moderate precision of 63.3%. This indicates that most actual instances of Class 0
are correctly identified, although some instances from other classes are mistakenly
classified as Class 0.

o Class 1 suffers from both low precision (33.3%) and low recall (42.9%). This sug-
gests that the model has difficulty distinguishing this class both in terms of correct
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identification and avoiding misclassification. This class may require more represen-
tative features or balanced samples.

o Class 2 achieves perfect precision (100%) but has a very low recall (25%). This
means that while all predicted Class 2 instances are correct, the model fails to detect
most of the true Class 2 samples, leading to many false negatives. This behavior is
typical in imbalanced classification, where the model becomes overly conservative in
predicting minority classes.

Overall, these metrics highlight a performance imbalance across classes. While Class 0
is handled reasonably well, Classes 1 and especially 2 require further attention. This
raises the question: If we apply data augmentation in the feature space of the
concatenated data from the best-performing paths, can we achieve a similar
performance gain as observed in the binary classification case?

3.4.6.2 Balanced classes using data augmentation in feature space

By applying SMOTE for data augmentation (to the concatenated data from the best-
performing paths of the original split), we increased the number of samples in the minor-
ity classes (Class 1 and 2) to match the majority class (Class 0), resulting in 81 samples
per class. Using the Extra Trees Classifier, which demonstrated the best performance
in this case, we achieved an improved test accuracy ~ 84%.

As illustrated in Fig 3.37, the confusion matrix exhibits a clearly defined diagonal with
strong blue intensity, indicating that the model performs significantly better in this bal-
anced scenario compared to the previous unbalanced case.

confusion_matrix: ExtraTreesClassifier
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Figure 3.37: Confusion matrix of balanced three classes using data augmentation
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Based on the confusion matrix shown in Fig 3.37, we computed the classification metrics:

o For Class 0:

15 15
Precision = —— ~ (0.714 1l = ~ 0. F1- ~ 0. 2
recision = - 6 0.714, Reca 544 0.789, score =~ 0.750 (3.26)
o For Class 1:
Precisi 23 0.885, Recall 23 0.767, F1 0.821 (3.27)
recision = ——— = 0. ecall = —— ~ 0. -score =~ 0. .
234+ 3 ’ 23+ 7 ’
o For Class 2:
Precisi 23 0.885, Recall 23 0.958, F1 0.920 (3.28)
recision = ——— ~ 0. ecall = ~ 0. -score ~ 0. .
23+ 3 ’ 23+1 ’
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Permutation test:

Permutation Test (p-value=0.0020)
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Figure 3.38

Figure 3.38 presents the results of the permutation test. The histogram shows the dis-
tribution of accuracy scores obtained under the null hypothesis, where class labels are
randomly shuffled. The red dashed line represents the actual model accuracy (approxi-
mately 79%), which lies far in the tail of the distribution. The associated p-value is 0.002,
meaning that only 0.2% of the randomized models achieved a performance equal to or
greater than the original model. This very low p-value strongly suggests that the model’s
performance is statistically significant and not due to random chance.

neural network model The same neural network architecture used for the binary
classification task was employed here; however, in this case, the final dense layer uses a
softmax activation function with three output units corresponding to the three classes. As
illustrated in Fig 3.39, both the training and validation accuracy curves show excellent
performance, converging towards approximately 90%, which demonstrates the model’s
strong generalization capability in this multi-class scenario.
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Figure 3.39: Accuracy and loss curves for 3 augmented classes

3.4.6.3 Conclusion

Based on our results, applying data augmentation in the feature space of the
concatenated data from the best-performing paths does lead to a significant
performance improvement, closely mirroring the gain observed in the binary classi-
fication scenario. This confirms the effectiveness of feature-space augmentation even in
the more challenging multi-class context. However, while augmentation improves per-
formance, it remains a surrogate for real-world variability. Therefore, collecting and
processing more real data is essential to further enhance the model’s generalization
and robustness under realistic conditions.

3.5 Results and discussion

Table 3.9: Summary of results for two classes

Signal best path in the signal | Accuracy
ECG only GAF with SCSA 65%
PPG only GAF with SCSA 73%
EEG channel 1 only VG with P1 67%
EEG channel 2 only GAF with P1 61%
EEG channel 3 only GAF with P1 66%
EEG channel 4 only VG with P1 66%
Multimodality (unbalanced) Fusion 73%
Multimodality (balanced with downsampling) Fusion 78%
Multimodality (balanced with SMOTE) Fusion 88%
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Table 3.10: Summary of results for three classes

Signal best path in the signal | Accuracy
ECG only GAF with SCSA 52%
PPG only GAF with SCSA 52%
EEG channel 1 only GAF with SCSA 47%
EEG channel 2 only VG with SCSA 45%
EEG channel 3 only GAF with P1 45%
EEG channel 4 only VG with P1 44%
Multimodality (unbalanced) fusion 59%
Multimodality (balanced with SMOTE) fusion 84%

From Table 3.9, it is evident that the multimodal approach significantly improves clas-
sification performance, especially when applied to a balanced dataset. In the case of
downsampling, the accuracy increases from 73% to 78%, marking a 5% gain. When data
augmentation is applied using SMOTE, the accuracy further rises to 88%, highlighting
the effectiveness of combining multiple signals. Similarly, in Table 3.10, even with an un-
balanced dataset, the use of multimodality improves the accuracy from 52% (best single
modality) to 59%. With data augmentation, the performance reaches 84%. These results
demonstrate that leveraging the complementary information from ECG, EEG, and PPG
signals through a multimodal fusion strategy leads to more robust and accurate stress
classification outcomes.

Table 3.11: Evaluation metrics for each class in different dataset configurations for two class

distributions
Dataset Type Class | Precision | Recall | F1-Score | Test accuracy
Class 0 0.731 0.826 0.775 73% (XGBoost)
Unbalanced
Class 1 0.750 0.632 0.685
Class 0 0.842 0.800 0.820 78% (RF
Balanced (Downsampling) s o (RF)
Class 1 0.765 0.812 0.788
Class 0 0.833 0.893 0.862 88% (RF
Balanced (Augmentation) s 0 (RE)
Class 1 0.900 0.843 0.871 87% (NN)

Table 3.12: Evaluation metrics for each class in different dataset configurations for three class

distributions

Dataset Type Class | Precision | Recall | F1-Score | Test accuracy
Class 0 0.633 0.826 0.716

Unbalanced ass
Class 1 0.333 0.429 0.375 59% (LGBM)
Class 2 1.000 0.250 0.400
Class 0 0.714 0.789 0.750 84% (ET

Balanced (Augmentation) s o (ET)
Class 1 0.885 0.767 0.821
Class 2 0.885 0.958 0.920 90% (NN)
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From Tables 3.11 and 3.12, it is evident that class imbalance significantly deteriorated
the model’s performance. In both two-class and three-class settings, unbalanced datasets
led to lower precision, recall, and F1-scores, particularly for minority classes. Addition-
ally, the limited amount of data negatively impacted the classifier’s ability to generalize,
especially in the unbalanced configurations.

Conversely, the use of data balancing strategies, such as downsampling and augmentation,
substantially improved the performance across all classes. This improvement is reflected
in both individual metrics (precision, recall, and F1-score) and overall test accuracy, with
the best results obtained using data augmentation combined with either Random Forest
or Neural Network classifiers. These results highlight the importance of addressing class
imbalance and data scarcity to build robust and fair models.

The performance achieved by all models was not due to chance. This was validated using
permutation tests, which consistently yielded p-values below 0.05 across all experiments,
confirming the statistical significance of the results. Furthermore, the training curves
of accuracy and loss from the neural network models demonstrated stable and consis-
tent learning behavior, with no signs of underfitting or overfitting. This reinforces the
reliability and generalization capability of the proposed models.

3.6 Conclusion

This chapter presents the key contributions and findings of our project. The core of
our work demonstrated that a multimodal approach is effective for neurophysiological
signal processing and classification. By combining multiple signal sources, we observed
clear performance improvements, even in complex classification scenarios.

Our proposed pipeline begins with signal filtering using the NeuroKit2 library’s meth-
ods, ensuring cleaner and more reliable data. This preprocessed signal is then transformed
into image representations through techniques such as VG and GAF, capturing both
spatial and temporal features that are not evident in raw time series data.

Following this, we applied feature extraction methods including SCSA and P1, which
effectively highlighted informative patterns from the signal-derived images. The feature
engineering stage employed statistical techniques such as Spearman correlation and
the ANOVA test to select the most relevant and discriminative features, significantly
reducing dimensionality while retaining meaningful information.

Next, we incorporated multimodality, which proved to be a key factor in improving
classification accuracy. The fusion of data from different signal sources enhanced the
model’s ability to generalize across diverse physiological conditions and stress levels.

Model training followed these stages, leveraging the engineered features and benefiting
from the structured pipeline. The results demonstrated that this end-to-end approach is
highly effective in both binary and three-class classification tasks.

A major challenge faced was the issue of dataset imbalance, which led to biased learning
favoring the majority class and a higher misclassification rate for underrepresented classes.
To address this, we applied several strategies:

o Downsampling the majority class,

o Data augmentation using the SMOTE algorithm.

110



Chapter 3. Multimodal Stress Classification: Implementation and Experimental Validation

These techniques helped mitigate the imbalance to some extent, though our results high-
light the need for more diverse and representative datasets. We recommend expanding
datasets with a larger number of participants and improving metadata quality.

In summary, the pipeline, starting from signal filtering, through signal-to-image represen-
tation, feature extraction and engineering, multimodal integration, and concluding with
model training, proved to be a robust and effective framework for stress level classification
based on neurophysiological signals.
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General Conclusion and Perspectives

Cognitive stress has emerged as a critical modern challenge, impairing performance in
high-stakes domains while increasing risks of cardiovascular and neurological disorders.
Traditional assessment methods like subjective surveys or single-modality biosensors are
limited due to recall bias, temporal delays, and inability to capture stress complexity.
Wearable neurotechnology now enables breakthrough multimodal monitoring through
synchronized EEG, ECG, and PPG measurements. Our research demonstrates that this
integrated approach overcomes unimodal limitations by providing comprehensive, real-
time stress quantification, a vital capability for adaptive interventions in workplaces,
athletics, and healthcare. The fusion of complementary biosignals creates a robust phys-
iological stress fingerprint, transforming our ability to detect and manage cognitive load
dynamically.

At the heart of our contribution is a novel processing pipeline that transforms raw neu-
rophysiological signals into actionable stress classifications. By employing advanced tech-
niques from neurokit2 library, we’ve achieved significant improvements in signal quality.
The innovative conversion of 1D time-series data into 2D representations through Visibil-
ity Graphs and Gramian Angular Fields has allowed us to capture both temporal dynamics
and structural patterns that conventional methods might miss. This approach, combined
with careful feature extraction using both spectral methods and spatial descriptors and
features engineering using correlation analysis and ANOVA test, has yielded a system ca-
pable of distinguishing not just between stress and non-stress states, but between varying
degrees (3) of stress intensity.

Our results speak to the effectiveness of this multimodal fusion. The framework achieved
88%, 87% accuracy in binary stress classification and 84%, 90% accuracy in the more
challenging three-class differentiation (low, medium, and high stress), outperforming uni-
modal approaches by significant margins. Particularly noteworthy is our handling of
class imbalance through SMOTE augmentation, which addressed a common pitfall in
stress detection systems and improved minority-class recall by &~ 30%. These advances
are not merely academic, they represent concrete progress toward practical, real-world
stress monitoring solutions.

What sets this work apart is its pioneering combination of three distinct signal modalities
for fine-grained stress classification, coupled with innovative signal-to-image transforma-
tion techniques. To our knowledge, this is the first system to successfully classify three
stress levels by fusing EEG, ECG, and PPG data while leveraging the unique strengths
of SCSA-based feature extraction. The richness of the PASS dataset, with its inclusion
of both cognitive tasks and physical activity, has been instrumental in developing and
validating these methods under conditions that approximate real-world variability.

Looking ahead, this framework opens numerous exciting possibilities. Future work may
include:
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o Replacing handcrafted features with deep learning techniques, particularly convolu-
tional neural networks (CNNs), which can be optimized for processing the GAF and
VG representations developed in this work.

o Developing software tools based on these models to facilitate broader usage and
evaluation, particularly in portable and mobile environments.

o Implementing the system on FPGA hardware, which could significantly acceler-
ate computationally intensive tasks such as signal-to-image transformation, feature
extraction, and real-time classification, thereby enabling deployment in wearable
devices.

o Applying the framework in various domains, including athletic training optimization,
workplace wellness monitoring, and clinical stress disorder detection.

o Expanding dataset collection efforts by ensuring balanced, diverse, and representa-
tive data from different demographic groups. This will help reduce bias and improve
the generalizability and fairness of the models.

o Addressing ethical considerations, including data privacy and security concerns,
which are critical as physiological monitoring systems transition toward real-world
use.

o Improving accessibility and inclusivity, ensuring that developed tools are effective
and usable across a wide range of populations and contexts.
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Appendix 1:
Tools used in the PASS dataset
collection

1. Timeframe

TIMEframe was originally created for the Ludum Dare 27 game jam competition by
Random Seed Games, inspired by games like Proteus and Dear Esther. After a very
positive reception an updated version was created for commercial release to expand on the
themes of the prototype.In TIMEframe you will discover a world in slow motion. Explore
the remnants of a mysterious civilization on the brink of destruction. A melancholy
soundtrack will accompany you on your journey, highlighting each location you visit with
its own unique theme...culminating in a world-changing event. [15].

Figure 0.40: TIMEFRAME [15]
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2. OUTLAST

Figure 0.41: OUTLAST [59]

Outlast ( 0.41) is a 2013 first-person psychological survival horror video game developed
and published by Red Barrels. It revolves around freelance investigative journalist Miles
Upshur, who decides to investigate Mount Massive Asylum, a remote psychiatric hospital,
located deep in the mountains of Lake County, Colorado.

In Outlast, players control Miles Upshur, a journalist investigating the sinister Mount
Massive Asylum in Colorado. The game is a first-person survival horror experience em-
phasizing stealth over combat. Players can move, hide, and use the environment to evade
dangerous patients, as there are no weapons or health bars. Darkness dominates the
asylum, requiring a camcorder’s night vision to see, which consumes limited batteries
scattered around the facility. Jump scares, audio cues, and collected documents enhance
the game’s tension and reveal deeper story elements [59].

3. MuSAE Lab EEG Server (MuLES):

The MuSAE Lab EEG Server (MuLES) is an open-source software tool developed by the
Multimedia/Multimodal Signal Analysis and Enhancement Laboratory (MuSAE Lab)
at INRS in Montreal. MuLES is designed to simplify the acquisition, recording, and
real-time streaming of electroencephalography (EEG) data from various consumer-grade
portable EEG devices. It provides a standardized interface that allows users to work
with different EEG headsets without needing to delve into each device’s specific software
development kits (SDKs) or application programming interfaces (APIs) [10].

4. NASA-TLX & BORG tests
NASA-TLX

A subjective assessment tool for evaluating mental workload (MWL) during task
performance. Measures workload across six dimensions:

o Mental Demand : Cognitive effort (e.g., thinking, calculating).
o Physical Demand : Intensity of physical activity required.
o Temporal Demand : Time pressure experienced.
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o Effort : Perceived exertion to maintain performance.
o Performance : Self-rated success in task completion.
o Frustration Level : Emotional state (e.g., insecurity vs. contentment).

In NASA-TLX, Participants rate each dimension on a scale from 1 (low) to 20 (high)
post-trial, uses paired comparisons (15 pairwise combinations) to identify dominant
workload factors, reducing inter-rater and task variability.

The main purpose of this test is to quantify overall workload by weighting individual
scores based on pairwise preferences, ensuring a tailored and reliable assessment.[2]

BORG test

Developed by Swedish psychophysiologist Gunnar Borg in the 1960s, the Borg Scale is a
simple numerical tool for quantifying an individual’s perceived exertion during exercise.

While stress assessment is crucial in sports training, rehabilitation, and physiotherapy,
BORG test enables adjustment of workout intensity based on individual objectives and
capabilities, helps avoid both overload and underload situations, reducing injury risks,
allows tracking of improvements over time and training adaptation and provides tangible
feedback to help maintain motivation and achieve fitness goals.[36]
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Appendix

1. MATLAB

MATLAB (Fig 0.42) is a programming and numeric computing
platform used by millions of engineers and scientists to analyze
data, develop algorithms, and create models [52]. Used for process-
ing the collected data, including a custom-made script to handle
experiment markers and analyze physiological signals.

2. VScode

Visual Studio Code, commonly referred to as VS Code, is an inte-
grated development environment developed by Microsoft for Windows,
Linux, macOS and web browsers. Features include support for debug-
ging, syntax highlighting, intelligent code completion, snippets, code
refactoring, and embedded version control with Git. Users can change
the theme, keyboard shortcuts and preferences, as well as install exten-
sions that add functionality.

Visual Studio Code is proprietary software released under the "Microsoft
Software License", but based on the MIT licensed program named "Vi-
sual Studio Code — Open Source" (also known as "Code — OSS"), also
created by Microsoft and available through GitHub.

In the 2024 Stack Overflow Developer Survey, out of 58,121 responses,
73.6% of respondents reported using Visual Studio Code, more than
twice the percentage of respondents who reported using its nearest al-
ternative, Visual Studio. [58]

3. Python

Python is a high-level, general-purpose programming language. Its
design philosophy emphasizes code readability with the use of sig-
nificant indentation.

Python is dynamically type-checked and garbage-collected. It sup-
ports multiple programming paradigms, including structured (par-
ticularly procedural), object-oriented and functional programming.
It is often described as a "batteries included" language due to its
comprehensive standard library.

Guido van Rossum began working on Python in the late 1980s as
a successor to the ABC programming language, and he first re-
leased it in 1991 as Python 0.9.0. Python 2.0 was released in 2000.
Python 3.0, released in 2008, was a major revision not completely
backward-compatible with earlier versions. Python 2.7.18, released
in 2020, was the last release of Python 2.

Python consistently ranks as one of the most popular program-
ming languages, and it has gained widespread use in the machine
learning community.[57]
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4. Scikit-learn

scikit-learn (formerly scikits.learn and also known as sklearn) is

a free and open-source machine learning library for the Python

programming language. It features various classification, regres-

sion and clustering algorithms including support-vector machines, . emn
random forests, gradient boosting, k-means and DBSCAN, and is

designed to interoperate with the Python numerical and scientific Figure 0.45: Scikit-

libraries NumPy and SciPy. Scikit-learn is a NumFOCUS fiscally learn
sponsored project.

5. Neurokit2

NeuroKit ("nk") is an open source toolbox for physiological signal processing. The most
recent version, NeuroKit2, is written in Python and is available from the PyPI package
repository. NeuroKit2 includes tools to work with cardiac activity from electrocardiogra-
phy (ECG) and photoplethysmography (PPG), electrodermal activity (EDA), respiratory
(RSP), electromyography (EMG), and electrooculography (EOG) signals.

It enables the computation of Heart Rate Variability (HRV) and Respiratory Variability
(RRV) metrics.

It also implements a variety of different algorithms to detect R-peaks and other QRS
waves, including an efficient in-house R-peak detector.

For neurophysiological signals such as EEG, it supports microstates and frequency band
analysis.

It also includes a comprehensive set of functions used for fractal physiology, allow-
ing the computation of various measures of complexity (including entropy and fractal
dimensions).[56]

6. Lazy Classifier (Lazy Predict)

Lazy Predict is the one tool you need for your predictive modeling projects. It is a simple
and efficient tool that makes your predictive modelling projects easier and faster. Lazy
Predict is a Python library that provides a simple and efficient way to make predictions.
It is easy to use and easy to install. Lazy Predict is open source and is released under the
MIT license. Lazy Predict is a great tool for predictive modelling projects. It is simple
to use and easy to install. It is open source and released under the MIT license[20].
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