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Résumé

Ce mémoire traite deux défis majeurs en traitement du signal acoustique : l'estimation des
parametres de mouvement via l’effet Doppler, et la localisation de sources sonores avec des
réseaux de microphones. La premiere partie explore comment la fréquence instantanée (IF)
induite par l'effet Doppler permet d’estimer la vitesse, l'altitude et la fréquence d’émission
d’une source mobile a partir d’un seul microphone, a I'aide d’une solution en forme fermée
validée par simulation. La seconde partie porte sur la localisation et la séparation de locu-
teurs via des méthodes de filtrage spatial (SRP-PHAT, MVDR, LCMV). Un systéme temps
réel est implémenté avec une matrice de microphones MiniDSP UMA-16 et une caméra pour
la projection visuelle.

Mots-clés : effet Doppler, fréquence instantanée, estimation de mouvement, localisation de
source sonore, réseaux de microphones, filtrage spatial, SRP-PHAT, MVDR, LCMV, suivi
de locuteur, intégration audio-visuelle.

Abstract

This thesis addresses two major challenges in acoustic signal processing: motion parameter
estimation using the Doppler effect, and sound source localization with microphone arrays.
The first part explores how the instantaneous frequency (IF) shift induced by the Doppler
effect enables the estimation of a moving source’s velocity, altitude, and emission frequency
using a single microphone, through a closed-form solution validated by simulation. The
second part focuses on speaker localization and separation using spatial filtering methods
(SRP-PHAT, MVDR, LCMV). A real-time system is implemented with a MiniDSP UMA-16
microphone array and a camera for visual projection.

Keywords: Doppler effect, instantaneous frequency, motion estimation, sound source lo-
calization, microphone arrays, beamforming, SRP-PHAT, MVDR, LCMV, speaker tracking,
audio-visual integration.



Dedication

To my younger self—who kept pushing for what he loved the most, discovered unknown
roads,
without fearing regret, and making every necessary sacrifice.

To my family—who supported me unconditionally, no matter what path I chose.

To those who saw potential in me and guided me toward a brighter future.

To all who gifted me good memories, and helped shape who I am today—
and continue to Inspire what I strive to become.

To all Vniversers, for the greatest memories and people who shaped a second a home to me.

Thank you all.



Acknowledgments

First and foremost, I would like to express my deepest gratitude to Pr. Adel Belouchrani, whose
unwavering support and belief in my potential have guided me throughout this journey. His knowl-
edge, mentorship, and life advice continue to inspire me to this day.

I would also like to sincerely thank the jury members—Prof. Mourad Adnane and Dr. Nesrine
Bouadjenek—for their thoughtful evaluation and the kind words they shared about my work and
academic journey over the past three years.

To my family, thank you for the incredible opportunity and constant support that allowed me to
reach this milestone. Your encouragement has been the foundation of all my achievements.

Looking back, I once regretted not reaching my initial goal. But ENP welcomed me in an unex-
pected way. I arrived as a boy who believed he could be the best, and now I leave as a man who
still believes it—with deeper perspective and maturity. Throughout, I often underestimated the
value of what I was living, until now, in reflection, I see it clearly: it was the best decision, chosen
for me by Allah. If I had to make that choice a hundred times, I would choose it 101 times.

A heartfelt thank you goes to all the people who have contributed to my journey—whether as
friends, mentors, supporters, or sources of inspiration.

To my closer circle: Ibrahim, Labbas, Adoula, Sido, and Lhadi—thank you for the amazing ex-
periences and memories we’ve created during these three years. Through every adventure and
challenge, we grew together. Each of you brought unique strengths, and together we formed a
circle that constantly inspired one another.

I also want to extend this gratitude to Serine, Houda, Ilham, and all of our ELN classmates who
brightened difficult times with unforgettable moments. To Nadjib—an endless source of motivation
and inspiration; Nazim—for the crazy night drives discussions; Samy, Walid, Bahi, Aymen, Foutia,
Abdelbaki and all of ELN, from 2023, to 2025.

To Vniverse—thank you for being a home to us (special thanks to Ascem). To the IEEE family,
and to those who stood by me during its darkest days—Madina, Rayan, Aymen, and Ilyes, my
binéme from the prepa years.

To the Chakawi Gang—especially Zaki and Said—thank you for being such inspirations and great
friends. Always there to listen to the curious annoying kid who always wanted to know more.

To the younger generation: Meskali, Rached, Aymen, Ahmed, and Rayan (again), whose presence
in the department made it an ever greater experience, with all their talent and competence, I wish
them the very best in their upcoming final year.

To Freedom—thank you for being there during the final dance of this journey. To Taleb Bot, for
the amazing journey we went through.

I hope won’t an end to anything, but only a start of something way bigger.



Contents

List of Tables

List of Figures

List of Acronyms

General Introduction

1 State of the Art

1.1
1.2
1.3

1.4

1.5

1.6

2 DMotion Parameter Estimation exploiting Doppler Effect

2.1
2.2

2.3

2.4
2.5

Introduction
Microphone Array Design
Classical Methods

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6

Geometric Localization Methods
Signal-Derived Estimation Techniques
Beamforming and SRP-PHAT
Subspace Methods

GCC and Cross-Correlation Techniques
Summary of Trade-offs

Multimodal and AI-Based Approaches

1.4.1
1.4.2

Audio—Visual Fusion
Machine Learning and Deep Learning

Applications and Commercial Systems

1.5.1  Military Applications
1.5.2  Civilian Applications
Conclusion

Introduction

Signal Model

2.2.1  Hypotheses

2.2.2  Received Signal Model

2.2.3 Instantaneous Frequency and Motion Parameters
Closed Loop Form Solution

2.3.1 Mathematical Derivation

2.3.2  Estimation Algorithm

Signal Conditioning and Filtering
Instantaneous frequency estimation

2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

Definition and Theoretical Background
Phase difference method

Adaptive instantaneous frequency estimation
Extended Kalman Filter

Kalman Least Squares (KLS) Method

Time frequency Distribution

14

17
17
17
18
18
18
19
19
20
20
20
20
20
22
22
22
22

25
25
25
25
26
26
27
27
28
29
29
29
30
31
31
31
31



2.6

2.7

2.8

2.5.7

Comparison of Instantaneous Frequency Estimation Methods

Derivative Filter

2.6.1

Filter Design

Performance Evaluation

2.7.1  Simulation Setup

2.7.2  Performance Results

2.7.3  Computational Performance
2.7.4  Discussion of Limitations
2.7.5  Recommended Improvements
Conclusion

Acoustic Source Localization Using Microphone Arrays
Narrowband Signal Model

3.1

3.2

3.3

3.4

3.5

3.1.1
3.1.2
3.1.3

Uniform Linear Array Model and Generalization to URA
Signal Model for Uniform Rectangular Arrays
Spatial Aliasing and Microphone Spacing

Narrowband Localization Methods

3.2.1
3.2.2
3.2.3
3.2.4

Beamforming for Source Localization
Delay-and-Sum Beamforming

Spectral Beamformers: Bartlett and Capon
High-Resolution Subspace Method: MUSIC

Wideband Acoustic Localization

3.3.1
3.3.2

Time Delay Estimation (TDE)
Pairwise vs. Multi-Microphone Frameworks

Generalized Cross-Correlation (GCC) Methods

3.4.1  Frequency-Domain Cross-Correlation

3.4.2  Weighting Functions in GCC

3.4.3  Performance in Reverberation and Noise

3.4.4 Simulation Results at Different Noise Levels
3.4.5  Steered Response Power Mapping (SRP-PHAT)
3.4.6 Beamforming-Based Wideband Localization
3.4.7  Wideband Subspace-Based Localization
Conclusion

Sound Source Separation
Introduction
Signal Model

4.1
4.2

4.3

4.4

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Time-Domain Convolutive Mixing Model
STFT-Domain Model and Narrowband Approximation
Relative Transfer Function (RTF) Representation
Wideband FIR-Based Model

Statistical Spatial Covariance Models

Reverberation Modeling

Noise and Interference Models

Model Selection and Impact

Beamforming-Based Spatial Filtering

4.3.1
4.3.2

Fixed Beamformers
Adaptive Beamformers

Robust Spatial Filtering Architectures

4.4.1
4.4.2
4.4.3

Generalized Sidelobe Canceller (GSC)
Adaptive Enhancements
Nested GSC and Multichannel Postfilters

4.5 Parameter Estimation for Beamforming

32
34
34
35
35
36
37
37
37
37

38
39
39
40
42
43
43
43
44
46
46
47
47
48
48
49
50
o1
56
o8
99
61

62
62
63
63
63
64
65
65
65
65
66
66
66
67
71
71
72
73
73



4.6

4.7

4.8

4.5.1  Steering Vector Estimation

4.5.2  Spatial Covariance Matrix Estimation
Blind and Hybrid Source Separation Approaches
4.6.1 Integration of BSS and Beamforming
4.6.2 Model-Based and Learning-Based Extensions
Evaluation of Beamformers

4.7.1  Simulation Setup

4.7.2  Processing Algorithm

4.7.3  Mixing Model

4.7.4  Beamformer Algorithms

4.7.5 Beampattern Visualization

4.7.6  Discussion and Insights

4.7.7  Offline Evaluation on Real Recordings
Conclusion

5 Speaker Detection and Spatial Separation Using Microphone Arrays

0.1
5.2

2.3

5.4
9.5

5.6

2.7

5.8

Introduction

Speaker Detection Algorithm

5.2.1  Audio Input from Microphone Array

5.2.2  Voice Activity Detection (VAD)

SRP-PHAT with Hierarchical Spatial Search

5.3.1  Uniform Grid Search

5.3.2  Hierarchical SRP (HSDA)

5.3.3  Directional Resolution

Post-Processing and Direction Filtering

Tracking Using the Modified 3D Kalman Filter (M3K)
5.5.1 Kalman Filter

5.5.2  Modified 3D Kalman Filter (M3K)
Visualization Module

5.6.1 Camera-Based Overlay

5.6.2  Camera Calibration Tools

Experimental Setup

5.7.1  Hardware Setup

5.7.2  Algorithm Implementation: Single-Source Tracking
5.7.3  System Evaluation

Conclusion

Conclusion

Bibliography

73
74
74
75
75
76
76
76
76
77
78
80
80
81

82
82
82
83
84
86
86
87
88
90
92
92
94
99
99
99
104
104
107
108
110

112

114



List of Tables

1.1

1.2

3.1

4.1

5.1
5.2
5.3

Military acoustic source detection and localization applications. The tilde ( ) indi-

cates approximate values. Adapted from [56]. 23
Civilian acoustic source detection and localization applications. Tilde ( ) indicates

approximations; < denotes maximum error. Adapted from [56]. 24
Summary of GCC Weighting Functions 50
SNR Gain (dB) for Each Beamformer 80
Comparison of calibration approaches 101
UMA-16 v2 USB: Key Technical Specifications 105

Average Module Execution Times (ms) With and Without Camera Projection 110



List of Figures

2.1 Aircraft in Uniform Motion Model 26
2.2 Block diagram of the full closed-form motion parameter estimation pipeline. 28
2.3 Instantaneous frequency estimates at different SNR levels (0-40 dB). The true IF
trajectory is shown in black. Each subplot corresponds to one SNR value. 33
2.4 Frequency response of the five-point central difference derivative filter [59]. 34
2.5 Result of the derivative of the IF estimated through the Kay Estimator 35

2.6 Estimation accuracy versus SNR showing: (a) Velocity RMSE drops dramatically
above 25 dB SNR, (b) Frequency estimates exhibit consistent bias, (c) Altitude
requires >30 dB SNR for reliable estimation. Shaded regions indicate 4+1 standard
deviation. 36

3.1 Narrowband signal model for a plane wave impinging on a Uniform Linear Array
(ULA). The direction of arrival 6 creates a fixed time delay 7 = dLCne between sensors. 40

3.2 Uniform rectangular array (URA) [70] 41
3.3 Structure of Delay-and-Sum Beamformer. Each signal is delayed based on hypoth-
esized direction, then summed to form the beamformer output. 44
3.4 GCC-PHAT correlation functions under different SNR conditions. 52
3.5 GCC-SCOT correlation functions under different SNR conditions. 53
3.6 GCC-ROTH correlation functions under different SNR conditions. 54
3.7  GCC-ML correlation functions under different SNR, conditions. 55
3.8 SRP-PHAT power map over a spatial grid. Peaks correspond to detected source
directions. 56
4.1  Generalized Sidelobe Canceller (GSC) structure [84]. 72
4.2 Beampatterns of Delay-and-Sum beamformer at 500, 1000, 2000 Hz. 79
4.3 MVDR beamformer beampatterns across frequency. 79
4.4 LCMYV beamformer with null constraints on interfering source. 80

5.1 Real-time speaker detection and localization algorithm using SRP-PHAT and M3K

tracking. 83
5.2 Energy-based VAD block diagram. The average energy across channels is computed
and compared to a fixed threshold to detect speech activity. 85

5.3 Overview of GCC-PHAT processing. Time-delay estimates are derived from phase-
transformed cross-correlations of microphone pairs and used in SRP-PHAT spatial
mapping. 86

5.4 Visualization of SRP-PHAT spatial energy distribution over a candidate grid. Bright
spots correspond to potential source directions, later refined via hierarchical search. 88

5.5 Problem of Matching Directional Observations to Source Tracks 95

5.6 Example of a checkerboard used for camera calibration. The square size must be
precisely known and consistently used across multiple views to enable accurate es-
timation of intrinsic and extrinsic parameters. 100



5.7

5.8
2.9

5.10

5.11

Schematic overview of the visualization pipeline. The system integrates acoustic
DoA estimates with visual input using geometric calibration. Face detection aids
depth approximation, enabling accurate projection of tracked audio sources onto
the image plane in real time.

MiniDSP UMA-16 v2 USB microphone array with central camera hole.

Top view of the UMA-16 array with an integrated webcam at its center, connected
via USB to the processing unit.

Example frame showing the DoA marker projected onto the live video stream with-
out depth correction. The source is assumed to lie on a fixed unit sphere around
the array.

DoA marker projected onto the face-detected region, enabling monocular depth
correction based on the estimated face size. This enhances 3D alignment between
the acoustic source direction and its visual projection.

103

105

106

108

109



List of Acronyms

- SSL: Sound Source Localization

- DoA: Direction of Arrival

- TDoA: Time Difference of Arrival

- AoA: Angle of Arrival

- FDoA.: Frequency Difference of Arrival

- ToA: Time of Arrival

- ToF': Time of Flight

- RSS: Received Signal Strength

- FFT: Fast Fourier Transform

- STFT: Short-Time Fourier Transform

- SNR: Signal-to-Noise Ratio

- SRP: Steered Response Power

- PHAT: Phase Transform

- GCC: Generalized Cross-Correlation

- MVDR: Minimum Variance Distortionless Response
- LCMYV: Linearly Constrained Minimum Variance
- MWF: Multichannel Wiener Filter

- MSDW-MWF': Multiple Speech Distortion Weighted Multichannel Wiener Filter
- GSC: Generalized Sidelobe Canceller

- NCLMS: Norm-Constrained Least Mean Squares
- AMC: Adaptive Mode Control

- RTF: Relative Transfer Function

- VAD: Voice Activity Detection



MB3K: Modified 3D Kalman Filter
CRNN: Convolutional Recurrent Neural Network
CNN: Convolutional Neural Network
FFNN: Feedforward Neural Network
ResNet: Residual Network

VAE: Variational Autoencoder
EKF: Extended Kalman Filter

KLS: Kalman Least Squares

URA: Uniform Rectangular Array
ULA: Uniform Linear Array

RIR.: Room Impulse Response

TFD: Time-Frequency Distribution
RMSE: Root Mean Square Error

HSDA: Hierarchical SRP Direction Assignment



General Introduction

Acoustic signal processing plays an important role across a wide range of domains—from early
military applications like sonar and artillery sound ranging to modern fields such as telecommuni-
cations, robotics, assistive technologies, and immersive multimedia. Two of the most fundamental
challenges in this domain are sound source localization (SSL)—the estimation of a sound’s
spatial origin—and motion parameter estimation—the inference of the dynamic behavior of
moving sound-emitting objects.

This thesis addresses both challenges by developing methods that span from single-microphone
motion analysis using the Doppler effect to multichannel systems for real-time local-
ization, speaker tracking, and spatial audio enhancement. These contributions are unified
under a broader objective: building proprietary, interpretable, and modular platforms for
spatial acoustic analysis.

Motivations

In recent years, there has been increasing demand for spatially aware auditory systems, driven
by applications such as teleconferencing, smart homes, mobile robotics, and augmented or virtual
reality. While high-performance solutions do exist, they are often locked behind proprietary
ecosystems, specialized hardware, or prohibitive costs, limiting accessibility and experi-
mentation.

This thesis is motivated by two core aims:
- To explore theoretically sound but computationally efficient techniques for estimating
spatial and motion-related acoustic parameters.

- To develop a reproducible end-to-end platform for localization and tracking using af-
fordable, off-the-shelf components, with an emphasis on interpretability and deploya-
bility.

14



Problem Context

The thesis is structured around two major research axes, reflecting both the diversity and comple-
mentarity of the proposed contributions:

Doppler-Based Motion Parameter Estimation

The first axis focuses on how motion characteristics of a sound-emitting object can be inferred from
the acoustic signal captured by a single microphone. By analyzing instantaneous frequency
(IF) variations induced by the Doppler effect, it becomes possible to estimate parameters such
as velocity, altitude, and time of closest approach. This part builds upon a closed-form
solution introduced in [1] and evaluates its performance through simulations under varying motion
profiles and signal-to-noise conditions.

Microphone Array Processing for Localization and Separation

The second and more extensive part of the thesis targets real-time spatial processing using
microphone arrays. Here, we design and implement a comprehensive system capable of:

- Wideband direction-of-arrival (DoA) estimation using SRP-PHAT with hierarchical
spatial search.

- Speaker tracking using exponential smoothing and a Modified 3D Kalman Filter
(M3K).

Visual integration, projecting spatial estimates onto a calibrated video stream in real time.

Incorporation of beamforming for spatial filtering and source enhancement.

The system is validated using the MiniDSP UMA-16 microphone array and a standard USB
webcam, demonstrating real-time operation on commodity hardware.

Objectives and Expected Contributions

The goal of this work is to develop a functional and interpretable platform for spatial acoustic
signal processing that:

Operates in real time, providing live feedback on speaker direction.

Supports interactive user control, such as speaker selection in multi-speaker scenarios.

Bridges audio and visual cues via camera-based 3D—2D projection.

Offers open-source MATLAB implementations for academic and prototyping use.

15



From a research perspective, the main contributions include:

1. A theoretical and simulation-based study of closed-form Doppler motion estimation.
2. A real-time SRP-PHAT-based localization system.
3. A live audio—visual integration using face detection and projection overlays.

4. An evaluation of beamforming strategies for multi-source separation in dynamic scenes.

Thesis Structure

The thesis is structured into five main chapters, each building upon the previous in complexity and
system integration:

Chapter 1 reviews the state of the art in sound source localization, covering classical, subspace,
and learning-based methods. It also introduces common applications and commercial sys-
tems.

Chapter 2 investigates motion parameter estimation using Doppler effect analysis with a sin-
gle microphone, including signal modeling, closed-form solutions, and robust instantaneous
frequency estimators.

Chapter 3 introduces acoustic source localization using microphone arrays, presenting narrow-
band and wideband signal models, TDOA methods, beamforming, and SRP-PHAT formula-
tions.

Chapter 4 focuses on source separation via spatial filtering. It details beamforming architec-
tures—both fixed and adaptive—and integrates blind source separation with beamforming
for enhanced robustness.

Chapter 5 presents the real-time implementation of multi-speaker tracking. It includes voice ac-
tivity detection, hierarchical SRP-PHAT search, M3K tracking, camera-based visualization,
and experimental evaluation.

This structure reflects a progressive development—starting with foundational background, then
moving through single-sensor and array-based analysis, before culminating in a real-world system
for spatial localization and tracking.

The next chapter surveys the current state of the art in sound source localization, array design,
signal processing algorithms, and deep learning approaches, laying the foundation for the
techniques explored throughout this work.
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Chapter

State of the Art

1.1 Introduction

Sound source localization (SSL) is the process of determining the position or direction of acoustic
sources in a physical space using one or more microphones. It has become an integral technology
across numerous fields, including robotics, videoconferencing, augmented reality, surveillance, and
assistive devices. The foundational problem of SSL involves identifying the direction-of-arrival
(DoA) or full 3D position of a sound, often in noisy or reverberant environments.

Inspired by the natural echolocation abilities of animals such as bats and dolphins [2], SSL systems
leverage differences in time, phase, frequency, and amplitude between microphone signals. Over
the past century, SSL has evolved from military applications like artillery tracking to modern real-
time multimodal systems. This chapter reviews the major methods, array designs, algorithmic
strategies, and emerging trends.

1.2 Microphone Array Design

The geometry of a microphone array strongly impacts the accuracy, resolution, and robustness of
SSL [2]. Common architectures include:

- Linear arrays: Suitable for 1D azimuthal tracking, often used in automotive or conference
setups [3].

- Circular arrays: Enable 360° azimuth coverage, common in smart speakers and meeting
systems [4].

- Spherical arrays: Provide full 3D DoA estimation (e.g., Eigenmike EM64).
- Hexagonal arrays: Offer a balance between azimuth and elevation precision [5].
- Ad-hoc arrays: Irregular microphone configurations offering flexibility in complex environ-

ments [6].

SSL systems can also be classified by spatial resolution (1D, 2D, 3D), number of detectable sources,
or the distinction between passive and active methods [7, 8, 9].
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State of the Art

1.3 Classical Methods

Classical sound source localization (SSL) techniques rely on well-established physical principles and
have been widely adopted due to their conceptual simplicity, robustness, and real-time feasibility.
These methods generally estimate source location based on time, frequency, angle, or energy char-
acteristics of the arriving sound waves. This section groups classical SSL methods into two broad
categories: geometric localization approaches and signal-derived parameter estimation.

1.3.1 Geometric Localization Methods

Geometric methods determine the sound source location by solving systems of equations derived
from physical constraints. The most common techniques include:

- Triangulation estimates the position of the sound source by intersecting two or more angle-
of-arrival (AoA) estimates. At least two microphones are required for 2D localization, and
three for 3D positioning. Directional microphones or algorithms like MUSIC and ESPRIT
improve angular precision [10]. Increasing the number of microphones generally enhances
accuracy [11].

- Trilateration estimates the sound source location by computing distances to at least three
non-collinear microphones, typically using Time of Arrival (ToA) information. Each distance
defines a circle centered at a microphone, and the source is located at the intersection of these
circles [12]. This method relies less on microphone directivity, offering greater flexibility in
array design.

- Multilateration generalizes trilateration to four or more microphones. By overconstraining
the problem, it improves localization accuracy and robustness to measurement noise [13].
However, it increases the complexity of the solution, especially in noisy or reverberant con-
ditions.

These methods are only as accurate as the underlying physical parameters they rely on—commonly
extracted through the following signal-based techniques.

1.3.2 Signal-Derived Estimation Techniques

- Time of Arrival (ToA) measures the absolute travel time of the sound from source to
microphone [14]. It requires tight synchronization between source and sensors and precise
knowledge of sound velocity. ToA is highly sensitive to synchronization errors but offers
accurate ranging when conditions are controlled.

- Time Difference of Arrival (TDoA) measures the relative delay between signals received
at different microphones. It is robust to absolute timing offset, making it suitable for un-
synchronized systems [15]. TDoA estimation often employs Generalized Cross-Correlation
(GCC), particularly with Phase Transform (PHAT) weighting to increase peak sharpness
and noise resilience. However, moving sources introduce Doppler shifts, complicating delay
estimation [16].

- Angle of Arrival (AoA) estimates the direction from which a sound wave reaches the
array. It can be computed via time-delay estimation, spectral methods (e.g., MUSIC [17],
ESPRIT [18]), or spatial correlation. AoA methods do not require time synchronization, but
performance depends heavily on microphone array geometry and signal coherence.
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- Frequency Difference of Arrival (FDoA) captures the Doppler shift of a sound arriving
at microphones in motion relative to the source [19]. It is suitable for moving sources and
observers but requires knowledge of relative velocities and is limited by frequency resolution
and bandwidth.

- Time of Flight (ToF) includes the ToA plus any signal processing latency [20, 21], often
modeled as a constant system delay. While less accurate than pure ToA, it is sometimes used
in practical systems where delays can be calibrated out.

- Received Signal Strength (RSS) infers distance from the sound intensity attenuation,
assuming a known propagation model [22]. It avoids the need for synchronization but suffers
from multipath fading and energy variability.

- Energy-Based Localization estimates the source position by analyzing acoustic energy
patterns across the sensor array. It is low-cost and does not require synchronization, but has
limited spatial resolution and is sensitive to reverberation [23].

1.3.3 Beamforming and SRP-PHAT

Beamforming methods apply spatial filtering to enhance signals from a desired direction while
suppressing others. These include:

- Delay-and-Sum (DAS) aligns signals from a target direction and sums them. It is easy to
implement but suffers from poor resolution and generates false source peaks (ghosts) in mul-
tipath environments [24]. Techniques like Clean-SC and DAMAS deconvolve the beamformer
output to enhance resolution [25].

- Minimum Variance Distortionless Response (MVDR) minimizes output energy while
preserving the signal from a given direction. It suppresses interference and noise more effec-
tively than DAS, but requires accurate covariance estimation [26].

- Steered Response Power with Phase Transform (SRP-PHAT) is a robust and widely
used beamforming method for sound localization [27]. It sums the weighted GCC-PHAT
responses across all microphone pairs over a spatial grid. The grid point with the maximum
energy indicates the most probable direction. SRP-PHAT is resilient to reverberation but
computationally intensive due to exhaustive search [28].

Optimizations such as hierarchical grid refinement, Gaussian interpolation, and adaptive spatial
sampling have been proposed to reduce the computational load of SRP-PHAT.

1.3.4 Subspace Methods

- MUSIC (MUltiple SIgnal Classification) exploits the eigenstructure of the covariance
matrix to separate signal and noise subspaces, achieving high-resolution DoA estimation
under favorable conditions [17]. However, it requires a well-calibrated array and precise
knowledge of the number of sources.

- ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)
provides high-resolution DoA estimation with lower computational cost than MUSIC. It
leverages the shift invariance property of uniform arrays and does not require a search over
the entire angular space [18].
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1.3.5 GCC and Cross-Correlation Techniques

The Generalized Cross-Correlation (GCC) framework is the foundation for many TDoA-
based techniques. It computes the cross-correlation between microphone pairs, often using PHAT
weighting to emphasize phase consistency over magnitude [29]. The peak of the correlation function
corresponds to the estimated delay, which can then be mapped to a direction.

1.3.6 Summary of Trade-offs

Each classical method offers different trade-offs:

ToA /TDoA: High accuracy, synchronization required (ToA), sensitive to noise.
- AoA: No sync needed, performance depends on SNR and array geometry.

- Beamforming: Robust to noise, low resolution (DAS), high cost (SRP-PHAT).
- Subspace methods: High resolution, sensitive to array calibration.

Energy-based: Simple, low-precision, useful for low-cost systems.

Selection depends on hardware capabilities, desired accuracy, and environmental conditions.

1.4 Multimodal and AI-Based Approaches

1.4.1 Audio—Visual Fusion

Combining microphone arrays with visual input (e.g., lip motion, face direction) enhances DoA
reliability, especially in reverberant or noisy settings [2]. Hybrid audio—visual architectures often
rely on dual neural network designs, with separate branches handling audio and visual input. For
example, SSLNet [30] fuses raw 1D audio waveforms and video frames by first converting them
to spectrograms and 2D images, then feeding them to modality-specific networks. Another model
in [31] allows autonomous robots to detect and localize multiple speakers by combining 360° visual
data with multichannel audio.

1.4.2 Machine Learning and Deep Learning

Artificial intelligence methods for sound source localization (SSL) have grown rapidly in recent
years. These approaches learn directly from data and often outperform classical techniques in
noisy or reverberant environments [32]. Unlike physics-based methods, Al systems use pattern
matching and feature extraction for sound detection and DoA estimation. Various architectures
have been proposed, which can be broadly categorized as follows:

Feedforward Neural Networks (FFNN).

In [33], a FFNN was trained on noise-free energy features to outperform traditional energy-based
localization in reverberant environments. Another model in [34] estimated source positions from
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TDoA measurements, showing strong performance even under noise and close sensor spacing [35,
36].

Convolutional Neural Networks (CNN).

CNNs have been used for DoA estimation from STFT phase components [37] and phase maps [38].
CNNs also perform well in spectrogram-based classification [39, 40], and a hybrid CNN-Random
Forest model using Mel-log energy features showed superior results compared to classic meth-
ods [41].

Convolutional Recurrent Neural Networks (CRNN).

CRNNs combine CNNs’ spatial learning with RNNs’ temporal modeling. A CRNN in [42] localized
up to three sources simultaneously. CRNNs using MFCC, LMS, and RASTA-PLP input features
achieved detection accuracy near 90

Residual Networks (ResNet).

ResNets address vanishing gradient issues [43, 44]. In [45], a ResNet trained on single-microphone
simulations achieved effective localization. Another hybrid model (ResCNN) used SE blocks for
feature recalibration [46]. Combining ResNet with channel attention modules yielded nearly 98%
localization accuracy [47].

Transformer Networks.

Originally developed for NLP [48], transformers now appear in SSL. The BAST model [49] ap-
plied multi-head attention to spectrogram patches, improving azimuth estimation over CNNs in
reverberant conditions. Transformers also excelled when using GCC-PHAT with speech masking
in robotics localization [50].

Autoencoders and VAEs.

Autoencoders (AEs) have been used to identify the most likely source direction by comparing
latent representations from different candidate locations [51]. Dual-decoder architectures further
disentangle reverberation and location features [52]. VAEs, including convolutional versions trained
on inter-microphone phase data, offer strong performance with limited labeled data [53, 54].

Hybrid Audio—Visual Networks.

Several systems combine sound and image representations. For example, SSLNet [30] processes 1D
raw waveforms and video frames via spectrogram-based networks. A 360-degree robot perception
model in [31] can detect multiple speaking individuals and identify who is speaking based on
combined visual and acoustic signals.
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Discussion.

Al-based SSL models offer impressive performance gains, particularly in complex environments.
However, generalization remains a key issue — most models experience performance drops when
evaluated on unseen datasets. This challenge is compounded by the difficulty of acquiring large,
labeled, and diverse audio datasets. Still, CNNs, CRNNs, and hybrid models remain dominant in
detection tasks due to their effectiveness in spectrogram feature extraction [55].

Al systems continue to evolve, and unlike static algorithms, they benefit from online learning
and continual adaptation. This makes them well-suited for dynamic acoustic environments and
real-world deployments.

1.5 Applications and Commercial Systems

Sound source detection and localization have wide-ranging applications across both military and
civilian domains. This section reviews practical implementations found in the literature, classified
accordingly. Tables 1.1 and 1.2 summarize recent systems, including their methods and performance
metrics such as detection accuracy, distance, or angular error. In some multimedia applications,
metrics like cloU and AUC are also reported.

1.5.1 Military Applications

Military applications are particularly common in the literature, notably for gunshot detection,
UAV tracking, underwater acoustics, and aircraft monitoring. Table 1.1 compiles representative
examples, highlighting the techniques used, including both classic (TDoA, DoA, MUSIC) and Al-
based models (DNNs, CNNs, CoNNs).

1.5.2 Civilian Applications

Civilian use cases are equally rich and diverse, including robotics, IoT devices, pipeline monitoring,
teleconferencing, multimedia, and healthcare. Notably, visual metrics like cloU and AUC are used
in some applications such as videoconferencing. Table 1.2 summarizes the relevant literature.

1.6 Conclusion

The field of sound source localization (SSL) has evolved significantly—from classical geometry-based
methods like triangulation and TDoA to sophisticated beamforming techniques, inverse problem
formulations, and modern deep learning frameworks. While traditional methods remain fundamen-
tal due to their interpretability and simplicity, contemporary research increasingly favors hybrid
and data-driven approaches to tackle challenges posed by reverberation, noise, and dynamic envi-
ronments.

Throughout this chapter, we surveyed a wide spectrum of localization strategies, highlighted their
respective trade-offs, and discussed how real-world systems balance between accuracy, computa-
tional efficiency, and environmental adaptability. The emergence of open-source, low-cost, and
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Table 1.1: Military acoustic source detection and localization applications. The tilde ()
indicates approximate values. Adapted from [56].

Application Ref Method Detection Distance Direction
Acc.

Gunshot [124] DNN 93.84% 91.5% 93.1%
[49] | EML - 99.95% -
[125] CNN ~90% - -
[126] | TDoA - - -

UAV [127] - - - 1.47°
[128] DNN 94.7% - -
[129] | NN 92.63% - -
[130] CoNN 96.3% - -
[131] SRP-PHAT - - -

Aircraft [132] SE-MUSIC - - -
[133] | TDoA + DoA - - -

Underwater [134] DNN - 0.13 m -
[135] | TDoA - - ~18°
[136] TDoA + ToA + | 96.4% - -

ML
[137] DoA - - -
[138] STDoA - 4.92 m -
[139] | GCC-PHAT + | - 0.5-2 m -
TDoA

[140] | TDoA - - -
[141] Beamforming - ~1m -

interpretable SSL platforms underscores a growing trend toward democratized spatial audio tech-
nology.

In the remainder of this thesis, we build upon the core concepts reviewed here to develop a complete
SSL system. We begin by analyzing the theoretical underpinnings of classical Doppler-based mo-
tion estimation, derive a closed-form solution, and subsequently design and implement a real-time
microphone array-based SRP-PHAT localization pipeline. This sets the stage for the contributions
in acoustic tracking, spatial filtering, and visual integration discussed in the following chapters.
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Table 1.2: Civilian acoustic source detection and localization applications. Tilde
approximations; < denotes maximum error. Adapted from [56].

() indicates

Application Ref Method Detection Distance Direction
Acc.
Robotics [142] | DNN - 97% 97%
[122] | DNN 85% - -
[143] | TDoA - <0.24 m <1.5°
[144] | DoA - <0.07 m <1.15°
Healthcare [32] Beamforming - - -
Pipeline leak [145] | TDoA - 95.7% -
[146] | TDoA - 92.68% -
[147] | MUSIC - - <2.5°
IoT [148] | CNN ~90% - -
[149] | DoA . ; .
[15] | SRP-PHAT - - -
Partial discharge [150] | TDoA - 97.27% -
[151] | TDoA - <15cm -
Underground [152] SRP-PHAT - ~0.77 m -
Underwater meas. [153] | - - - ~30°
Wildlife [154] | TDoA . ; .
[155] ToA/TDoA/DoA | - - -
Videoconferencing [156] DNN cloU (77), | - -
AUC (60.5)
[121] | SSLNet cloU  (85), | - -
AUC (78)
[84] | ODB-SRP- ~95% - -
PHAT
[157] | DNN cloU (75.2), | - .
AUC (57.2)
[158] | SRP-PHAT . : .
Sport [159] Beamforming - <3 cm -
Disaster victims [12] GCC-PHAT - - <2°
Authentication [160] | TDoA ~99% - -
Hearing aids [161] SVD - - <3°
Multimedia [162] Gauss filter + | - - -
surveillance TDoA
8] TDoA,  SRP- | - : .
PHAT
Noise monitoring [163] | TDoA - <0.5 m -
[164] Beamforming - - -
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Chapter

Motion Parameter Estimation exploiting
Doppler Effect

2.1 Introduction

This chapter presents a Doppler-based motion estimation algorithm for narrowband acoustic sources
using a single stationary microphone [1]. The method extracts velocity, altitude, and emission
frequency directly from the instantaneous frequency (IF) [57] trajectory of a received tone, without
requiring array geometries or iterative optimization.

The approach builds upon the closed-form solution framework introduced in [1].

The chapter is organized as follows: Section 2.2 establishes the Doppler shift model underlying
the approach. Section 2.3 details the algorithmic implementation and practical considerations.
Section 2.7 presents quantitative performance results under varying noise conditions and algorithmic
validation through simulation of a moving acoustic source.

2.2 Signal Model

2.2.1 Hypotheses

The proposed model relies on the following assumptions:

- The source emits a pure tone (narrowband signal).

- The source trajectory is linear with constant motion parameters.

The receiver is stationary and located on the ground.

- Atmospheric conditions (e.g., wind) are negligible and sound speed ¢ is constant.
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2.2.2 Received Signal Model

Consider a narrowband acoustic source emitting a tonal signal x(7) = A cos(27 foT + ¢o) as shown
in 2.1.

ﬁ Microphone

Figure 2.1: Aircraft in Uniform Motion Model

Due to the Doppler effect, the signal received at the microphone at time ¢ can be expressed as [58,
59]:
y(t) = a(t) cos (2m f(t)t + ¢(t)) (2.1)

where f(t) is the instantaneous frequency (IF) ! modulated by Doppler effects, and a(t) is the
time-varying amplitude from geometric attenuation.

The emission and reception times are related through the propagation delay:
=7+ —= (2.2)

where d(t) is the source-sensor distance at time ¢.

2.2.3 Instantaneous Frequency and Motion Parameters

The key insight is that the time-varying IF f(¢) encodes motion information. For a source moving
at constant speed v along a straight trajectory at altitude h with closest point of approach (CPA)
at tc, the IF follows [58, 59]:

c? vt —t.)
2 —v? (2 —v2)/h2(2 —v?) + A(t — )2

f@) = fo (2.3)

This nonlinear relationship? captures how the Doppler shift evolves with:

- fo: Emitted frequency (Hz)

- v: Source speed (m/s)

!The instantaneous frequency (IF) of a real signal is defined as the time derivative of the phase of its

1 do(t)

analytic signal: f(t) = 5-=g~. Further explanations are given in 2.6.

2The derivatiion of 2.3 could be found in [59]
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- h: Altitude (m)
- te: CPA time (s)

The term (t—t.) introduces temporal asymmetry around CPA, while h and v scale the Doppler shift
magnitude. This model has been validated through both simulations and field experiments [59].

2.3 Closed Loop Form Solution

2.3.1 Mathematical Derivation

We begin by recalling the Doppler-based instantaneous frequency (IF) model introduced in Eq. (2.3).
At the closest point of approach (CPA), where the time is ¢ = t., the observed frequency becomes:

2 (2.4)

This expression captures the Doppler shift due to source motion, expressed in terms of the emitted
frequency fy, propagation speed ¢, and source velocity v. To isolate the time-varying behavior, we
define the normalized IF ratio:

& _ (t —te)
f(te) Vh2(Z —v2) + 22 (t — t.)2

This highlights how the frequency evolves around the CPA based on the altitude h and relative
motion.

(2.5)

Differentiating Eq. (2.5) with respect to time yields:

f'(t) _ v2h2(02 — vz)
f(tc) T [h2(02 _ U2) + ’0202(t _ tc)2]3/2 (2.6)

At the CPA (t = t.), this simplifies significantly:

f,(tc) B UZ

flte)  h/e2 — o2

Rearranging this gives a closed-form expression for velocity:

= ol P 1 27)

([(E = te) f'(te)]? = [f(te) = F(D)]?) f(te)?

To improve robustness in noisy conditions, we average over multiple time samples (excluding ¢ = t.):

> (= te) ()P (L) — f(O))
02 = t#te (2.8)

t; ([(t = te) f'(te)]? = [f(te) = F(O)]) £(Ee)?

Once the velocity is estimated, the remaining motion parameters are derived algebraically:
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Emitted frequency:

Altitude:

2.3.2 Estimation Algorithm

To ensure accurate estimation across a range of signal-to-noise ratios (SNRs), we embed the
closed-form derivation into a complete estimation algorithm. This algorithm includes preprocess-
ing stages such as signal smoothing, instantaneous frequency estimation, derivative filtering, and
post-estimation refinement. A summary of this structure is shown in Fig. 2.2.

Acoustic Source Band Pass Filter Instantaneous Smoothing Filter
Frequency

W) — X i

— R

Derivative Filter

Peak Detection
\ 4

Speed
¢ ¢ Estimation
Frequency Altitude
Estimation Estimation

Figure 2.2: Block diagram of the full closed-form motion parameter estimation pipeline.

The algorithm’s computational efficiency stems from its closed-form nature, avoiding iterative op-
timization while maintaining physical interpretability through the parametric Doppler model. This
makes it particularly suitable for embedded implementations where resources are constrained.

Two components require careful implementation:

- Estimation of the instantaneous frequency f(t)
- Numerical computation of its derivative f’(t)
The accuracy of these components directly affects the motion parameter estimates. Our analysis

will establish implementation guidelines for resource-constrained platforms while maintaining the
theoretical guarantees of the closed-form solution.
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2.4 Signal Conditioning and Filtering

The first stage of the proposed Doppler-based motion parameter estimation pipeline involves pre-
processing the raw acoustic signal to isolate relevant spectral content and suppress noise.

The input signal y(t), captured by an acoustic sensor, is first passed through a bandpass filter to
isolate the frequency range of interest. The filter is centered around the expected source frequency
fo, with a bandwidth that accounts for Doppler shifts:

- Filter Type: 4th-order Butterworth

- Typical Band: fy £ 50 Hz

This stage corresponds to the top portion of the algorithm in Fig. 2.2, encompassing the acoustic
sensor and bandpass filter.

2.5 Instantaneous frequency estimation

The methods for estimating instantaneous frequency :

2.5.1 Definition and Theoretical Background

If we consider a pure sinusoidal (monochromatic) signal, described as s(t) = acos(wt + ¢). This
signal is defined by three parameters: the amplitude a, the pulsation w (where the frequency f is
related by w = 27 f), and the initial phase ¢.

The source signal is written as:
s(t) = a(t) cos(w(t)t + 6)

- Gabor Concept:
Gabor [60] proposed a method to generate a unique complex signal from a real one using the
Hilbert transform:

z(t) = s(t) + jH[s(t)]
2(t) = a(t)e??®

where H is the Hilbert transform. The instantaneous frequency is defined as:

fi(t) = 217rdg2it)

- Ville Concept:
Ville [61] unified the above approaches and defined the instantaneous frequency of a signal
s(t) = a(t) cos(w(t)t + 0) as:
1 d

filt) = 5 arg(sa(®)

where s4(t) denotes the analytic signal.
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2.5.2 Phase difference method

Based on Ville’s formulation, the instantaneous frequency of the analytic signal s(t) is:

fi(t) = 217rdg2§t)

To implement the IF in discrete time, we approximate the derivative using finite differences:

Forward finite difference (FFD) [62]:

Backward finite difference (BFD) [62]:

1
o

fi(n) [¢(n) — d(n —1)]

Central finite difference (CFD) [62]:

film) = 5-[6(n+ 1) — pln — 1)

For higher precision, generalized forms of finite difference can be used:

. 1 q/2
f(n) = G k:%/Q brop(n + k)

where by are differentiation coefficients and ¢ is even. These are unbiased for polynomial phase

signals up to order ¢ [62].

The CFD estimator is unbiased for linear FM signals but suffers from high variance in noisy

conditions. Variance reduction strategies include:

- Bandlimiting the signal to a known bandwidth B,

- Applying smoothing filters before or after differentiation [62].

Smoothed Phase Difference (Kay Estimator) [63, 62]:

1 N-2

fitn) = 5= > hilo(k +1) — (k)]

k=0

1.5N k—N/2+172
hk‘m(“[wﬁf”

with smoothing window:

This reduces variance by approximately % times.
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2.5.3 Adaptive instantaneous frequency estimation

1. Least Mean Squares (LMS) [64, 65, 62]:
Griffiths introduced an adaptive IF estimator based on linear prediction [64], updated using the
LMS algorithm by Widrow and Hoff. The data vector and coefficient update are given by:

* T
Apt1 =&y — 21eny12Z, and epi1 = Zpy1 + 2z,

The IF estimate is obtained from the argument of the first predictor coefficient:

filn) = 5 arglat(n)

2. Recursive Least Squares (RLS) [65, 62]:
The RLS algorithm improves convergence using a forgetting factor:

ap41 = ap — 2Pn€n+1zrp €n+l = Zn+1 + Zgana P, = [OZP,;_H + Z;ZZZ]_I

It achieves better tracking and noise suppression than LMS, especially for varying IF.

2.5.4 Extended Kalman Filter

Kalman-based IF estimation formulates the phase dynamics in a nonlinear state-space model [62]:

Xn-i-l = AXn + Wn, Yn =an COS<07L) +Un

where: i
A
1A Ao
- 01 A O
Xn = [enygnyenaan]T7 A=
0O 0 1 0
0 O 0 1

Jacobian matrix used in updates:

_on [—an sin(6,,),0,0, cos(0,,)]

H,=—— =
X

2.5.5 Kalman Least Squares (KLS) Method

Nizampatnam and Kumar proposed a hybrid approach combining Least Squares and Kalman fil-
tering for robust IF estimation [66]. In our Doppler tracking application, we reverse their approach:
LS is applied first, followed by Kalman filtering. This preserves frequency trends and avoids phase
distortions.

2.5.6 Time frequency Distribution

Time-frequency representations allow energy localization in time and frequency. The total energy

is conserved:
E = //P(t,w)dwdt
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with marginal conditions:

/P(t,w) dw = |2(D)2, /P(t,w) dt = | X (w)|?

Cohen’s class distributions [67]:

Clt.w) = o Zﬂj (u+ ) (u—2> 6(0, 7) 03T Gy dr df

where ¢(0,7) is the kernel function defining the specific member of the Cohen’s class.

Wigner-Ville Distribution (WVD):
Wa?<t7 f) = /$ (t + ;) x* (t — 72—) 6_27rjde7'

Instantaneous Frequency Estimation from TFDs:
1. First Moment Method [62]:

ffP(t, )

2. Peak Method [62]:
fit) = arg max P(t, f)

3. Advanced Tracking Methods [62, 68]: Viterbi-based ridge tracking or MAP-based
smoothing offer robust multi-component IF estimation.

These methods enable precise localization of IF even in the presence of non-linear frequency vari-
ations or overlapping components, making TFDs valuable tools for Doppler signal analysis and
motion parameter estimation.

2.5.7 Comparison of Instantaneous Frequency Estimation Meth-
ods

To evaluate the performance of different instantaneous frequency (IF) estimation techniques, we
simulate a Doppler-modulated acoustic signal corrupted by additive white Gaussian noise at varying
signal-to-noise ratios (SNRs). The true IF trajectory is analytically defined and compared against
estimated IF curves produced by four methods:

instfreq: MATLAB’s built-in instantaneous frequency function using analytic signal differ-
entiation.

- TF Toolbox: A time-frequency ridge extraction approach from the MATLAB Time-Frequency
Toolbox.

- Kay Estimator: A smoothed phase-difference-based maximum likelihood estimator.

Kalman: An Extended Kalman Filter tracker of phase and frequency.
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Figure 2.3 summarizes the estimation results across SNR levels ranging from 0 dB to 40 dB. All
methods are evaluated on the same signal realization to ensure comparability.

Instantaneous Frequency Estimates at Different SNR Levels

Time (s)

Figure 2.3: Instantaneous frequency estimates at different SNR levels (040 dB). The true
IF trajectory is shown in black. Each subplot corresponds to one SNR value.

At high SNR (higher to 30 dB), all estimators closely follow the true IF curve, with minimal
variance. However, as the SNR decreases, significant differences in performance become evident:

- Kalman Filter: While smooth, it tends to lag during fast frequency transitions (see 5-10 s
window), especially at 0-10 dB. It preserves trend but may oversmooth dynamic events.

- Kay Estimator: Offers the best accuracy-variance trade-off, especially under moderate
noise (10-20 dB), confirming robustness results.

- TF Toolbox: Suffers from high-frequency noise, particularly at low SNRs, though it gener-
ally tracks the IF trend.

- instfreq: Shows large fluctuations at low SNR due to its sensitivity to instantaneous phase
noise.

Overall, the Kay estimator maintains low variance without excessive smoothing and shows superior
robustness to noise across SNR levels. It is therefore selected as the primary IF estimator in the
Doppler tracking module of this work.
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2.6 Derivative Filter

To estimate the time derivative of the instantaneous frequency (IF) at the point of closest approach
(CPA), direct numerical differentiation is avoided, as it tends to amplify noise in the signal. Instead,
a dedicated digital filter is designed and applied to provide a more robust and smooth estimate of the

IF derivative. This approach enhances stability and accuracy, especially under low signal-to-noise
ratio (SNR) conditions.

2.6.1 Filter Design

A five-point central difference filter is used to approximate the derivative of the instantaneous
frequency:

F(t) ~ —ft+2)+8f(t+1)—=8f(t—1)+ f(t—2)
12At
where At is the time step between consecutive samples.

This formulation is derived from a second-order Taylor series expansion and provides a good balance

between accuracy and noise suppression. It can be interpreted as a band-limited differentiator with
linear phase response, as shown in Fig. 2.4.

_10_

Magnitude (dB)
&
=

|
D
o
T

10’ 10°
Frequency (Hz)

Figure 2.4: Frequency response of the five-point central difference derivative filter [59].

This stage directly follows the IF estimation block in the algorithm and produces the necessary
input f/(¢) for parameter estimation.
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Raw Derivative

ive (Hzs)

IF Derivati

Figure 2.5: Result of the derivative of the IF estimated through the Kay Estimator

The pseudocode in Algorithm 1 formalizes this pipeline into a practical estimation routine.

Algorithm 1 Complete Motion Parameter Estimation

Input: Raw acoustic signal y(t), sampling rate f;

Output: Estimated parameters (fo, v, h, t.)

Apply 4th-order Butterworth bandpass filter centered at f;
Estimate IF f(¢) using selected method (e.g., Kay, LMS, Kalman)
Compute f'(t) via five-point difference filter

Detect t. < arg max | f'(t)|

Compute v using Eq. (2.8)

Compute h, fy from derived expressions

return (fo,v, h,t.)

2.7 Performance Evaluation

Through systematic Monte Carlo simulations across 10-50 dB SNR, we assess the algorithm’s
accuracy and robustness. The results reveal distinct performance characteristics for each estimated
parameter.

2.7.1 Simulation Setup

Signal Parameters: fy = 2kHz, f; = 8kHz

Scenario: v =60m/s, h = 80m

Noise Levels: 10-50 dB SNR in 5 dB increments

- Trials: 500 runs per SNR condition
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Figure 2.6: Estimation accuracy versus SNR showing: (a) Velocity RMSE drops dramatically
above 25 dB SNR, (b) Frequency estimates exhibit consistent bias, (c¢) Altitude requires >30

dB SNR for reliable estimation. Shaded regions indicate +1 standard deviation.

2.7.2 Performance Results

Velocity Estimation

- Noise-Dominated (10-20 dB): RMSE 49.8m/s to 41.5m/s

- Transition (25-30 dB): RMSE improves to 7.1m/s

- High-SNR (354 dB): Achieves 0.34 m/s RMSE

Frequency Estimation

- Persistent 60 Hz bias across all SNRs

- Variance reduces from 200 Hz (10 dB) to 0.1 Hz (50 dB)

Altitude Estimation

- Unreliable below 25 dB (RMSE > 100 m)

- Stabilizes to 2.5 m RMSE above 35 dB
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2.7.3 Computational Performance

The algorithm demonstrates very low computation time:

- Average processing time: 10.9(12) ms per trial

- Dominated by IF estimation (70% of runtime)

2.7.4 Discussion of Limitations

- Frequency Bias: Suggests need for calibration in IF estimation.
- Altitude Sensitivity: Requires >30 dB SNR for usable results.

- Real-Time Margin: Current ~10ms latency allows for 100 Hz update rates.

2.7.5 Recommended Improvements

- Develop adaptive filtering for low-SNR, conditions.
- Optimize IF estimation for faster execution.

- Improve robustness to noise

2.8 Conclusion

In this chapter, we presented an analytical solution for motion parameter estimation based on
the Doppler effect. The approach allows for the estimation of source velocity, emission frequency,
and altitude using the time-varying instantaneous frequency (IF) of a Doppler-shifted tone. Sev-
eral IF estimation methods were reviewed—ranging from classical to adaptive and time—frequency
approaches—as they form the core of the algorithm’s accuracy and robustness. This foundation en-
ables non-array-based localization using a single receiver, paving the way for low-cost and efficient
Doppler-based tracking systems.
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Chapter

Acoustic Source Localization Using
Microphone Arrays

Introduction

Acoustic source localization using microphone arrays consists in estimating the direction of arrival
(DOA) of one or more sound sources based on spatial sampling of the acoustic field. The present
chapter focuses on the design and implementation of localization algorithms for both narrowband
and wideband signals using a compact, real-time capable 16-element microphone array.

The spectral characteristics of the source—whether narrowband (e.g., tonal signals) or wideband
(e.g., speech or environmental noise)—influence the modeling assumptions and localization strate-
gies. In narrowband conditions, frequency-invariant propagation delays permit the use of classi-
cal methods such as delay-and-sum beamforming, Bartlett, Capon (MVDR), and subspace-based
approaches like MUSIC. However, wideband signals exhibit frequency-dependent phase shifts, ren-
dering narrowband assumptions invalid in the time domain.

To address this, many wideband localization frameworks adopt a time—frequency representation
of the signal, where narrowband models are applied within each frequency bin of the Short-Time
Fourier Transform (STFT). This approach, enables the use of narrowband-based spatial filters and
high-resolution techniques in wideband scenarios, while introducing challenges such as frequency-
bin alignment and coherence loss.

This chapter is organized to progressively introduce, compare, and justify the localization methods
used in our system. After presenting the narrowband signal and propagation model, we generalize to
the wideband case and review key estimation strategies. Both offline and real-time implementations
are discussed, with a focus on techniques that are robust to reverberation and computationally
feasible in embedded contexts. The chapter concludes with the integration of localization outputs
into an acoustic camera framework for real-time visualization, and sets the stage for the source
separation techniques addressed in the next chapter.

The remainder of the chapter is structured as follows:

- Section 3.1 introduces the narrowband signal model, spatial aliasing constraints, and clas-
sical DOA estimation techniques such as beamforming (DAS, Bartlett, MVDR) and high-
resolution methods like MUSIC.
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- Section 3.3 generalizes the signal model to wideband sources and highlights the limitations
of directly applying narrowband methods to such signals.

- Sections 3.3.1-3.4 present time-delay estimation methods for wideband localization, including
Generalized Cross-Correlation (GCC), its spectral weighting variants (PHAT, SCOT, etc.),
and the SRP-PHAT algorithm for spatial likelihood mapping.

- Section 3.4.6 extends narrowband beamforming techniques to the wideband case using STFT-
based frequency-domain processing, and introduces multichannel enhancement-based local-
ization using MWF and SDW-MWF.

- Section 3.4.7 provides an overview of wideband subspace-based localization techniques, clas-
sified into coherent (e.g., CSSM, TCT), incoherent (e.g., IMUSIC, TOFS), and hybrid (e.g.,
TOPS, S-TOPS) methods.

3.1 Narrowband Signal Model

Despite the inherently wideband nature of real-world acoustic sources such as speech and environ-
mental sounds, the narrowband signal model remains a cornerstone of array signal processing. Its
mathematical tractability and foundational role in beamforming and high-resolution methods make
it highly relevant, especially when applied in the time—frequency domain via Short-Time Fourier
Transform (STFT) decomposition. In this context, each time—frequency bin is treated as a lo-
cally narrowband segment, enabling the use of classical narrowband techniques within a wideband
processing framework

We consider a single far-field source emitting a narrowband signal centered at frequency fy, captured
by a calibrated array of M microphones with known positions {I‘m}%zl € R3. A signal is considered
narrowband if its bandwidth B satisfies B < fj, allowing uniform approximation of propagation
delays across its spectral components.

The following assumptions are adopted:

- Far-field propagation: wavefronts impinging on the array are planar.

- Free-field environment: no reverberation or multipath; propagation is linear and homo-
geneous.

- Sensor calibration: microphone positions and timing are accurately known.

These conditions underpin most narrowband DOA estimation algorithms, including beamforming
and subspace-based techniques [69].

3.1.1 Uniform Linear Array Model and Generalization to URA

To build up to the general Uniform Rectangular Array (URA) model, we begin with the simpler 1D
Uniform Linear Array (ULA) case. As illustrated in Figure 3.1, a narrowband plane wave arriving
from direction 6 induces a relative delay between adjacent microphones spaced by d. This delay is
given by:

_ dsin@

o

T

Page 39



Acoustic Source Localization Using Microphone Arrays

where c is the speed of sound. This fundamental relationship underpins most array signal processing
methods, including delay-and-sum beamforming and the construction of steering vectors.

yn (k) y2 (k) y1 (k)

Figure 3.1: Narrowband signal model for a plane wave impinging on a Uniform Linear Array
(ULA). The direction of arrival § creates a fixed time delay 7 = 2% hetween sensors.

This 1D formulation extends naturally to two-dimensional arrays, such as the Uniform Rectangular
Array (URA), where microphones are distributed along both z- and y-axes. We now present the
full spatial model for a URA.

3.1.2 Signal Model for Uniform Rectangular Arrays

We assume a Uniform Rectangular Array (URA) as shown in 3.2 with M = M, x M, microphones
spaced uniformly by d, and d, along the z- and y-axes, respectively. The spatial coordinates of a
sensor indexed by (mg, m,) are given by:

Tmgmy = (my — 1)dy (31)
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Figure 3.2: Uniform rectangular array (URA) [70]

Assuming a far-field source located in the direction (6, ¢) (azimuth and elevation), the unit direction
vector is:

cos(¢) cos(#)
u(f, ¢) = |cos(¢)sin(9) (3.2)
sin(¢)
The delay at microphone (mg,m,) is:
ey = < ey 0(6,6) = [(m — 1)y cos(6) cos(6) + (my — Ddycos(6)sin(®)] (3.3

The received time-domain signal is modeled as:
Tm(t) = s(t — ) + 1 (1) (3.4)

where s(t) is the source signal, 7, is the propagation delay, and n,,(t) is an additive noise.

In the frequency domain, assuming a narrowband source centered at fp, the model becomes:

Xin(fo) = S(fo)e 2™o™ + Nou(fo) (3.5)

Stacking all microphone signals into a vector yields:

X(fo) = 5(fo) v(0,¢) + N(fo) (3.6)
with the steering vector:
e—J2mfor
o~ 32 for2
v(0,¢) = : (3.7)
e—J2mfotm

This vector encodes the phase differences across the array as a function of the source direction.
While the derivation is given for a URA, the model generalizes to other array geometries, including
ULAs, circular arrays, and arbitrary configurations, by adjusting the delay vector 7,, accordingly.
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3.1.3 Spatial Aliasing and Microphone Spacing

To avoid spatial aliasing and ensure unambiguous localization, the microphone spacing must satisfy

the spatial Nyquist criterion:
Amin c
d< = 3.8
2 2 fimax (3:8)
where Ay is the minimum wavelength corresponding to the highest signal frequency fiax. Ex-
ceeding this limit introduces grating lobes, which cause ambiguity in DOA estimation and degrade

localization performance.

The choice of d, and d,, must therefore reflect the spectral content of the expected sources, balancing
spatial resolution against array size and sensor placement constraints.
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3.2 Narrowband Localization Methods

In this section, we present a series of direction-of-arrival (DOA) estimation techniques grounded in
the narrowband signal model. While many real-world acoustic sources—such as human speech or
UAV noise—exhibit wideband characteristics, narrowband localization methods remain fundamen-
tal to array processing and are frequently employed within time—frequency frameworks. Specifically,
when a Short-Time Fourier Transform (STFT) is applied to a wideband signal, each time—frequency
bin can be treated as locally narrowband, allowing these methods to be applied per frequency bin
and then aggregated. This decomposition justifies the use of narrowband algorithms even in wide-
band contexts.

3.2.1 Beamforming for Source Localization

Beamforming is a spatial filtering technique widely used for direction-of-arrival estimation. It
enhances signals arriving from a specific direction while attenuating interference and noise from
others. This directional selectivity makes beamforming a powerful tool in applications such as UAV
detection, speaker tracking, and human-robot interaction [71].

The core principle involves steering the array’s sensitivity toward candidate directions and eval-
uating the output power. For a given direction (6, ¢), the beamformer output at frequency fy
is:

Y (fo;0,9) = w'(6,9)X(fo), (3.9)

where w (0, ¢) is a direction-dependent weight vector and X( fp) is the vector of sensor observations.
The corresponding spatial power spectrum is:

P(8,6) = E[|Y (fo:6,0)I°] . (3.10)

and DOA estimation is achieved by identifying the direction that maximizes this quantity:

(05, ¢s) = argma))(P(H, ?). (3.11)

)

This general formulation underlies various beamforming strategies, from simple delay-and-sum to
advanced high-resolution techniques such as MVDR and MUSIC [69].

3.2.2 Delay-and-Sum Beamforming

Delay-and-Sum (DAS) beamforming is a straightforward method that delays each sensor signal
to compensate for propagation time from a hypothesized direction, then sums them. The block
diagram of this process is illustrated in Figure 3.3, where each input is delayed according to the
estimated direction of arrival, then coherently summed to enhance the signal from that direction.

M
Y(t:0,6) = 3 Bt + 1 (0, 6) (3.12)
m=1
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The estimated source direction is obtained by scanning over all possible directions and selecting
the one that maximizes the output power:

_ . 2
(6s: ) = arg max / (60, 6)|2dt (3.13)

r(n) ay

formed signal

-

Figure 3.3: Structure of Delay-and-Sum Beamformer. Each signal is delayed based on hy-
pothesized direction, then summed to form the beamformer output.

DAS requires no prior knowledge of the signal statistics and is robust and simple to implement.
However, it suffers from limited angular resolution and high sidelobe levels, particularly when the
number of microphones is small or the SNR is low.

3.2.3 Spectral Beamformers: Bartlett and Capon

To address the limitations of DAS, spectral-domain beamformers exploit second-order statistics of
the observed signals.

Bartlett Beamformer

Also called conventional beamforming, Bartlett projects the sensor data onto a steering vector

v(0,9):

PBartlett(97 d)) = VH(07 ¢)RV(97 ¢) (314)

where R = E[X(fo)X*(f)] is the spatial covariance matrix. While simple, it does not adapt to
the spatial interference structure and offers limited resolution.

Capon (MVDR) Beamformer

The Minimum Variance Distortionless Response (MVDR) beamformer, introduced by Capon [72],
minimizes output power while maintaining a fixed gain in the look direction:
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min wiRw  subject to wv(0, ¢) =1 (3.15)

This yields the optimal weights:

(3.16)

and the MVDR spectrum:

(3.17)

Pyvor(0, ¢) = vl (0, 9)R-1v(0, ¢)

MVDR offers enhanced spatial resolution and better interference suppression compared to Bartlett,
but depends critically on the quality of covariance estimation and array calibration [73].
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3.2.4 High-Resolution Subspace Method: MUSIC

The MUTItiple SIgnal Classification (MUSIC) algorithm [74] is a high-resolution technique based on
eigenspace decomposition of the covariance matrix:

R = U, A, U 1 U, A, UH (3.18)
The noise subspace U, is orthogonal to the steering vector v(6, ¢), leading to the pseudo-spectrum:

1
vi(0,0)U,UlIv(0, 9)

Pyusic (0, ¢) = (3.19)

DOAs correspond to peaks of this spectrum. MUSIC offers superior resolution, even with closely
spaced sources, but requires prior knowledge of the number of active sources and sufficient SNR.
It is computationally demanding and sensitive to model mismatch.

The methods described above assume frequency-invariant propagation delays, which holds under
narrowband conditions. However, most acoustic sources are wideband. Applying these methods
directly in the time domain can lead to bias and degraded performance. Nonetheless, by decom-
posing wideband signals using the STFT and applying narrowband localization algorithms in each
frequency bin, one can preserve their utility. This strategy underlies wideband extensions such
as Steered Reponse Power with Phase Transform (SRP-PHAT) and coherent subspace methods,
which are discussed in the following sections.

3.3 Wideband Acoustic Localization

As discussed earlier, narrowband DOA estimation techniques assume frequency-independent phase
shifts, an assumption violated in real-world settings involving wideband signals such as speech,
UAV noise, and environmental acoustics. These sources exhibit significant energy across a broad
frequency range, and as a result, their propagation delays introduce frequency-dependent phase
variations across the array. Consequently, narrowband localization methods become inadequate,
and dedicated wideband approaches must be employed.

A signal is considered wideband when its bandwidth B is not negligible compared to its center fre-
quency fo, or when it lacks a well-defined center frequency altogether. For instance, human speech
typically spans 300 Hz to 8 kHz, while drones generate tonal and broadband aerodynamic noise.
In this context, inter-microphone phase differences vary with frequency, and modeling requires
frequency-dependent steering vectors.

To address this, wideband localization systems often use a time—frequency representation via the
Short-Time Fourier Transform (STFT). The time-domain signal at microphone m is decomposed
as:

Xon(f,1) = / Em(T)h(t — T)e 2T dr, (3.20)

where h(t) is a temporal window function centered at time ¢. This decomposition permits narrow-
band models to be applied per frequency bin.

The frequency-domain model becomes:

X(fvt) :V(f7 0, d))S(fa t) +N(fvt)> (3'21)
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where:

X(f,t) € CM: observed signal vector at frequency f,

v(f,0,¢): frequency-dependent steering vector,

- S(f,t): source spectrum, and

N(f,t): additive noise.

Wideband localization then proceeds by estimating either time delays or spatial responses in each
frequency bin and aggregating the results. The next section presents a time-domain strategy based
on Time Delay Estimation (TDE), followed by its frequency-domain formulation using Generalized
Cross-Correlation (GCC) methods.

3.3.1 Time Delay Estimation (TDE)

Time Delay Estimation, or Time Difference of Arrival (TDOA) estimation, is a fundamental tech-
nique for wideband localization. The arrival time difference between microphones encodes spatial
information about the source.

For a source at position p, € R?, and microphones at r; and r;, the propagation delays are:

_ ps=xill s — 15l

7 . ; - (3.22)
yielding a TDOA of:
Ay =75~ 7=~ (Ips — %3]~ Ips il (3.23)
Under the far-field assumption, where ||ps|| > ||r; — rj]|, this simplifies to:
Ariy =~ (r; — )T u(0,6), (3.24)

where u(6, ¢) is the unit direction vector. This relation enables grid search algorithms such as
Steered Response Power (SRP) to evaluate spatial hypotheses based on predicted TDOAs.

3.3.2 Pairwise vs. Multi-Microphone Frameworks

Two major modeling strategies exist for utilizing time-difference-of-arrival (TDOA) in acoustic
localization:

Pairwise Approaches

In this class, TDOAs are estimated independently between microphone pairs. The most common
method is the Generalized Cross-Correlation (GCC), which is discussed in the following section.
Once all pairwise delays are estimated, geometric or grid-based triangulation methods (e.g., SRP-
PHAT) are used to infer the source location. This approach is relatively simple and scalable, but
may suffer from redundancy and inconsistency between pairwise estimates, especially in noisy or
reverberant environments.
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Multi-Microphone Approaches

These methods exploit the full spatial structure of the array, processing all channels jointly. They
include wideband extensions of beamformers, subspace methods (e.g., MUSIC, CSSM), and coher-
ent signal processing techniques. While these require more complex matrix operations and a higher
computational load, they often offer better robustness and accuracy in challenging conditions.

We will review now the Steered Reponse Power method, which effectively bridges both approaches.
It begins by estimating TDOAs using GCC-PHAT for each microphone pair, then aggregates the
resulting information into a global spatial power map using a delay steering model. This hybrid
strategy combines the simplicity of pairwise delay estimation with the robustness of beamforming.

3.4 Generalized Cross-Correlation (GCC) Methods

Time Delay Estimation (TDE) plays an important role in applications such as source localization,
beamforming, and acoustic tracking. The most fundamental technique is classical cross-correlation
(CC), which estimates the time delay between two received signals by locating the maximum of
their correlation function.

However, in realistic environments—where noise, reverberation, and multipath effects are signifi-
cant—the peak of the correlation function is often broadened, distorted, or masked. To address
these limitations, Knapp and Carter [75] introduced the Generalized Cross-Correlation (GCC)
framework, which enhances classical cross-correlation by applying a frequency-domain weighting
function to pre-whiten or shape the spectrum before correlation. This improves peak sharpness
and delay estimation accuracy.

3.4.1 Frequency-Domain Cross-Correlation

Let 71(t) and ra(t) be the signals received at two microphones, modeled as:

r1(t) = hi(t) * s(t) + ni(t), (3.25)
ro(t) = ha(t) x s(t) + na(t), (3.26)

where hq(t) and ha(t) are the acoustic impulse responses, * denotes convolution, and ny(t), na(t)
are additive noise terms.

Under free-field propagation, the model simplifies to:

r1(t) = s(t) + na(t), (3.27)
ro(t) = as(t — 1) + na(t), (3.28)

where « is an attenuation factor and 7 is the inter-microphone delay.

The classical cross-correlation is:
Ruia(7) = / r1(8) ro(t + 7) dt, (3.29)

and the estimated delay is:
7 = argmax Rya(7). (3.30)
T
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In the GCC framework, correlation is computed in the frequency domain:

R = [ )G, (331)

—0o0

where G12(f) = R1(f)R3(f) is the cross-power spectral density (CPSD)!, and ¥(f) is a frequency-
domain weighting function that enhances the sharpness and reliability of the delay estimate.

3.4.2 Weighting Functions in GCC

Different choices of W(f) yield different GCC variants, each with specific robustness properties.
Let:

Pu(f) = [Ri(f)I?, Pa(f) = |Ra()*, (3.32)
2
Y(f) = %3. (3.33)

Phase Transform (PHAT)

PHAT whitens the cross-spectrum by discarding amplitude information and emphasizing phase
alignment:
1 Gi2(f) jo
Upnar(f) = 1, Ris (1) = | o are??™7df. 3.34
D=t = eu) (331

Here, “whitening” refers to flattening the spectrum by equalizing its magnitude across frequen-
cies, which sharpens the autocorrelation peak and improves delay estimation accuracy [76]. This
improves robustness under reverberation [77].

Smoothed Coherence Transform (SCOT)

SCOT uses auto-spectral normalization to preserve amplitude:

1
Yscor(f) = - (3.35)
V() Pa(f)
It performs better than PHAT under low-SNR and model mismatch conditions [78].
ROTH Filter
ROTH uses a single-channel normalization:
Trom(f) = 57 (330)
O = —0. .
Ot Pi(f)

It is simple but may yield broader peaks in noisy settings [79].

Here, R1(f) and Ra(f) are the Fourier transforms of the signals 71 (¢) and ra(t). The cross-power spectral
density is defined as G12(f) = Ri(f)R5(f).
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Maximum Likelihood (ML)

ML is derived from optimal estimation theory:

1 - [y(H)I?
U (f) =~ 3.37
D= Ten0) 337
It emphasizes frequency bins with high inter-signal coherence [75, 78, 80].
Modified Cross-Spectral Phase (M-CSP)
M-CSP introduces tunable whitening:
1
\I/Mcsp(f) = O<a<l. (3.38)

|Gra(f)|>

It interpolates between PHAT and unweighted correlation, allowing trade-offs between robustness
and resolution [81]. For full derivations and theoretical justifications of the weighting functions
presented in Table 3.1, the reader is referred to the works of Knapp and Carter [75], Roth [79], and
the comparative analysis by Boora and Dhull [78].

Table 3.1: Summary of GCC Weighting Functions

Method U(f) Description

PHAT m Maximally whitens the spectrum. Robust to
reverberation. Discards magnitude.

SCOT —— Normalizes by auto-spectra. Retains ampli-

Pi(f)P2(f) .

tude. Better in low SNR.

ROTH Pll( 7 Uses reference channel’s power spectrum.
Sensitive to noise asymmetry.

ML % Coherence-weighted.  Emphasizes reliable
bins. Statistically optimal.

M-CSP m, 0 < a <1 | Tunable whitening. Interpolates between

PHAT and unweighted.

3.4.3 Performance in Reverberation and Noise
Boora and Dhull [78] provide a comparative study of GCC variants:

- PHAT: Highly robust to reverberation, but sensitive to impulsive noise.
- SCOT: Better performance in low-SNR and mismatched conditions.
- ML: Statistically optimal but sensitive to inaccurate coherence estimates.

ROTH: Effective for low-SNR suppression, but yields wider correlation peaks.

- M-CSP: Adaptable to various conditions by tuning «.

Despite the optimality of ML and flexibility of M-CSP, PHAT remains widely used due to its
simplicity, effectiveness in reverberant environments, and independence from SNR estimation.
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3.4.4 Simulation Results at Different Noise Levels

To evaluate the robustness of different GCC weighting functions, we simulate time delay estimation
using a real speech signal recorded at 16 kHz, injected at a known direction of arrival (DOA =
50° azimuth) with an inter-microphone spacing of 20 cm. Additive white Gaussian noise (AWGN)
is introduced at various SNR levels: {+00,20,10,0,—5} dB. The goal is to estimate the inter-
microphone delay using each GCC variant and assess the sharpness and accuracy of the correlation
peak.

The GCC correlation functions for each method (PHAT, SCOT, ROTH, and ML) are shown in
Figures 5.3-3.7. In each subfigure, the vertical lines denote the ground-truth delay (black dashed)
and the estimated delay (red dotted).
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Figure 3.4: GCC-PHAT correlation functions under different SNR conditions.
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Figure 3.5: GCC-SCOT correlation functions under different SNR, conditions.
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Figure 3.6: GCC-ROTH correlation functions under different SNR conditions.
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Figure 3.7: GCC-ML correlation functions under different SNR conditions.
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3.4.5 Steered Response Power Mapping (SRP-PHAT)

Steered Response Power with Phase Transform (SRP-PHAT) is a robust wideband DOA estima-
tion method that aggregates GCC-PHAT wvalues across all microphone pairs for a hypothesized
source direction. Unlike classical TDOA-based localization, which estimates time delays and then
triangulates the source position, SRP-PHAT directly evaluates spatial likelihood over a grid of
directions.

Given a candidate direction u(f,¢) € S?, the theoretical time delay between microphones i and j
is:

r,—r; Tu
Tij(ea ¢) — ( 1 ]) (97 (;5) (339)

)
C

where r;,r; € R3 are the positions of microphones i and j, and c is the speed of sound.

Time-Domain Formulation

The SRP-PHAT value at direction u is computed by summing the PHAT-weighted cross-correlation
functions evaluated at the predicted delays:

P(u) = Z RIPAT (735 (w)). (3.40)
1<J

This results in a spatial map whose peaks indicate potential source locations.

SRP-PHAT Map

40

SRP-PHAT Energy

80
80

-20 2 0
» - 10
40 40

Elevation (°) -80 80 Azimuth (%)

Figure 3.8: SRP-PHAT power map over a spatial grid. Peaks correspond to detected source
directions.
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Frequency-Domain Formulation

Alternatively, using the GCC-PHAT definition in the frequency domain, the SRP power becomes:

=5~ [ FDRD) oo
P( )_;/|Ri(f)R;(f)| ’ df, (3.41)

where R;(f) is the STFT of the signal at microphone 4, and Gi;(f) = Ri(f)R;(f) is the cross-power
spectral density.

Interpretation as GCC Aggregation

As formalized by DiBiase et al. [82], SRP-PHAT can be interpreted as an aggregation of all GCC-
PHAT functions across microphone pairs, evaluated at direction-dependent delays:

P(u) =" R (135(n)), (3.42)

1<j

This generalizes pairwise delay estimation into a global spatial search framework that leverages
array geometry.

The resulting spatial energy map P(u) exhibits peaks at locations corresponding to potential source
directions. Each local maximum is interpreted as a candidate source, and the global maximum
yields the most likely direction of arrival:

0 = arg max P(u). (3.43)

The performance of SRP-PHAT depends not only on its core formulation but also on the strate-
gies used to extract peaks from the spatial response, which vary depending on the scenario (e.g.,
single vs. multiple sources). In our project, we investigate several grid search techniques—from
brute-force scanning to hierarchical and peak-suppression approaches—to improve localization per-
formance under real-time constraints. SRP-PHAT itself is well-suited for such applications due to
its effectiveness with short analysis windows and its balance between accuracy, computational cost,
and robustness in reverberant or noisy environments [82, 83|. Its implementation, along with pre-
processing steps, parameter precomputations, and post-filtering methods, will be detailed in the
Application Chapter. The extension to multi-source scenarios will be addressed in the final chapter

5.
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3.4.6 Beamforming-Based Wideband Localization

While SRP-PHAT is a time-domain approach based on GCC aggregation, wideband source lo-
calization can also be tackled using frequency-domain beamforming. This strategy generalizes
narrowband beamforming methods—such as Delay-and-Sum (DAS), Bartlett, and MVDR—by ap-
plying them independently to each STF'T frequency bin and then recombining the results across
frequency.

Let X(f,t) € CM denote the STFT of the microphone array signals at frequency f and frame ¢,
and let v(f,0,¢) € CM denote the frequency-dependent steering vector corresponding to direction
(0,¢). A spatial filter w(f,0, ¢) is applied in each bin to compute the beamformer output:

Y(f,t:0,0) = w (f,0,6)X(f,1). (3.44)

The total output power for a candidate direction is then computed by integrating across frequency:

P(8,¢) = Y E|[[Y(f,1:6,0)]], (3.45)

fer

where F denotes the set of relevant frequency bins.

This wideband formulation allows direct extension of classical narrowband beamformers:

- Wideband Delay-and-Sum (DAS): For each frequency, set

WDAS(f70>¢)) = (f707¢) (346)

1
—v
M
This aligns and sums the phase-delayed microphone signals assuming a plane wave from

direction (6, ¢), generalizing the narrowband DAS presented in Section 3.2.

- Wideband MVDR (Capon): Compute the spatial covariance matrix for each frequency:

R(f) =E [X(f,HX"(£,1)], (3.47)

then define the MVDR, weights as:

R (f)v(/.9, ?) . (3.48)

[0, 0)RI(F)v(f,0,9)

This formulation suppresses interfering sources while maintaining unit gain in the look di-
rection.

WMVDR(fa 97 ¢) = VH(

As described in Section 3.2, narrowband beamformers assume frequency-invariant steering vectors.
In wideband scenarios, this assumption is violated due to the frequency-dependent nature of propa-
gation delays. The use of the STFT provides a framework where each time—frequency bin is locally
narrowband, allowing traditional narrowband beamformers to be applied piecewise across bins.

This method ensures physical consistency by explicitly modeling the phase delay at each frequency
via the frequency-dependent steering vector v(f, 0, ).

While this approach is less commonly used than SRP-PHAT or MUSIC, it integrates naturally into
pipelines where source separation and enhancement are required in addition to localization. This
flexibility makes MWF-based localization a viable option for speech-centric applications, as noted
in [84].
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3.4.7 Wideband Subspace-Based Localization

Beyond beamforming approaches, wideband direction-of-arrival estimation can also be achieved
using subspace-based methods originally developed for high-resolution spectral estimation. These
techniques generalize the classical MUSIC algorithm to the wideband case using different strate-
gies for aggregating frequency-dependent covariance matrices and subspaces. They are generally
classified into three families: coherent, incoherent, and hybrid methods.

Coherent Processing: Subspace Alignment via Focusing

Coherent methods aim to align the signal subspaces across frequency bins into a common refer-
ence frame before averaging. This process, called subspace focusing, allows the construction of
a frequency-independent covariance matrix to which narrowband techniques like MUSIC can be
applied.

Let Ryz(w;) € CM*M  denote the sample covariance matrix at frequency bin w;. A focusing
transformation T(w;) is applied such that:
Rz (wi) = T(wi)Rae (wi) TH (w;), (3.49)
where the focusing matrix satisfies:
T(w;)A(w;, 0) =~ A(wg, 0),

with A(w, 0) the frequency-dependent array manifold, and wy a chosen reference frequency.

The focused covariance matrices Rm(wz) are then averaged across all K frequencies to yield:

_ 1 K
R,, = i ;Rm(wi), (3.50)

which is subsequently processed using a narrowband estimator.

Coherent Signal Subspace Method (CSSM)
CSSM [85] computes the focusing matrix using singular value decomposition (SVD) of the cross-
manifold product:

AAl = v, WH - TEM — v wH (3.51)
Although effective in low-SNR conditions, CSSM is sensitive to initial DOA estimation errors, as
it requires approximate knowledge of the signal directions to define Ay.

Two-sided Correlation Transformation (TCT)
TCT [86] avoids the need for initial focusing angles by defining the transformation via eigenvectors
of the signal subspaces:

T T = Vv, (3.52)
where V and V; are the eigenvector matrices of Ry (wp) and Ry (w;), respectively. TCT provides
unbiased DOA estimates and is generally more robust than CSSM in practice.

Incoherent Processing: Independent Frequency Estimation

Incoherent methods estimate DOAs independently for each frequency and then aggregate the results
across bins. They require no subspace alignment but may suffer from degraded resolution in noise
or reverberation.
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Incoherent MUSIC (IMUSIC)
IMUSIC [74] applies the classical MUSIC estimator at each frequency bin and sums the resulting
spatial spectra:

K
1
Pusic(6) = ; al (w;, 0)F (w)) FH (wy)a(w;, 0)’ (3.53)

where F,,(w;) denotes the estimated noise subspace at frequency w;, and a(w;,#) is the steering
vector.

Test of Orthogonality of Frequency Subspaces (TOFS)
TOFS [87] constructs a matrix of steering vector projections onto noise subspaces:

aH(wl, H)Fn(wl)
D(9) - z , (3.54)
a (wre, 0)Fy (wi)
and estimates the DOA by finding the direction where this matrix becomes rank-deficient:

0 = arg nbin omin(D(0)). (3.55)

While TOFS suppresses spurious peaks, it is not robust under low-SNR conditions.

Hybrid Processing: Projected Subspace Methods

Hybrid methods exploit partial subspace consistency across frequencies without full alignment.
They provide a compromise between the coherence of CSSM/TCT and the flexibility of IMU-
SIC/TOFS.

Test of Orthogonality of Projected Subspaces (TOPS)
TOPS [88] projects signal subspaces from a reference frequency onto others using a diagonal phase
correction matrix:

W (wi, ) = eI %8Sm0y =9 M, (3.56)

which forms the projected subspace:
U;5(0) = ¥(wi, 0)Fs(w)), (3.57)
where F; is the estimated signal subspace.

DOA estimation is performed by testing the orthogonality of these projected subspaces with the
noise subspaces:

UL (0)F s (w2)
D(0) = : . (3.58)
UiHK (0)Fy(wk)

Squared-TOPS (S-TOPS)
S-TOPS [89] enhances TOPS by summing the squared projection error:

K
Z(0) = UL (0)F(wi)FE (wi)Uni(0). (3.59)
=2
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It includes reference frequency selection (choosing the most informative bin) and subspace projec-
tion for improved noise suppression.

Comparative simulations in the literature [90] highlight the following;:

- TCT achieves the best performance under low-SNR and avoids spurious peaks common in
other methods.

- TOPS and S-TOPS excel in mid-SNR conditions with no need for prior DOA estimates
but may be sensitive to reference frequency selection.

- IMUSIC is effective at high SNR but vulnerable to poor frequency bins.
- CSSM requires accurate focusing and performs poorly for closely spaced sources.

- TOF'S avoids false peaks but is unstable in noisy environments.

The methods above from this section are here for reference and documentation for future works.

3.5 Conclusion

In this chapter, we surveyed a wide range of direction-of-arrival (DOA) estimation techniques appli-
cable to microphone array processing. We began by analyzing time-delay estimation (TDE) meth-
ods, focusing in particular on the Generalized Cross-Correlation (GCC) framework and its weighted
variants (PHAT, SCOT, ROTH, ML, M-CSP), which serve as the foundation for SRP-PHAT. We
then presented SRP-PHAT as a robust, spatial-domain technique that aggregates GCC-PHAT
results across microphone pairs to construct energy maps suitable for real-time source localization.

We subsequently extended the discussion to wideband beamforming-based localization approaches,
which apply classical narrowband beamformers (such as Delay-and-Sum and MVDR) to each STFT
bin and recombine the results to estimate source direction. Advanced multichannel beamformers
like the Multichannel Wiener Filter (MWF) and SDW-MWF were also introduced as potential
alternatives, especially when joint source enhancement and localization are desired.

Finally, we examined wideband subspace-based methods, classifying them into coherent, incoher-
ent, and hybrid approaches. Techniques such as CSSM, TCT, IMUSIC, TOFS, and TOPS were
reviewed, along with their comparative advantages and limitations in varying SNR and reverberant
conditions.

Despite the diversity of high-resolution and adaptive techniques available, we will rely primarily
on SRP-PHAT in our project due to its simplicity of implementation, robustness in reverberant
environments, and its natural compatibility with real-time processing pipelines. SRP-PHAT avoids
the need for covariance matrix estimation, subspace decomposition, or complex spectral whitening
mechanisms, while still offering reliable localization accuracy.

In the upcoming implementation chapters, we will detail the practical aspects of SRP-PHAT,
including its hierarchical search structure, multi-source extension, and real-time integration with
our microphone array system and camera-based visualization.
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Chapter

Sound Source Separation

4.1 Introduction

This chapter addresses the problem of sound source separation using spatial filtering techniques
based on microphone arrays. The objective is to extract speech of each speaker from a multi-
speaker acoustic scene by exploiting spatial characteristics. These methods form the foundation
of the real-time separation system developed in this work and are tightly integrated with the
direction-of-arrival (DOA) estimation techniques presented in the previous chapter.

The focus is placed on separation techniques that are based on spatial filtering and beamforming,
particularly those relying on explicit propagation models and the estimation of spatial covariance
matrices. While blind source separation (BSS) methods are acknowledged and briefly reviewed, the
focus remains on beamforming-based approaches due to their real-time feasibility and compatibility
with online localization systems.

This chapter provides a comprehensive study of multichannel sound source separation using spatial
filtering techniques. Section 4.2 introduces the acoustic signal models underlying spatial filtering,
including both time-domain and time—frequency domain formulations, and formalizes the separation
problem. Section 4.3 presents beamforming-based spatial filtering methods, classified into fixed
and adaptive designs and analyzed under different implementation domains. Section 4.4 describes
robust spatial filtering architectures, including the Generalized Sidelobe Canceller (GSC) and its
adaptive extensions. Section 4.5 details the estimation of spatial parameters—steering vectors,
relative transfer functions (RTFs), and spatial covariance matrices—that serve as critical inputs
to beamformer design. Section 4.6.1 explores blind and hybrid source separation approaches and
their integration with spatial filtering techniques. Section 4.7 describes the experimental evaluation
framework, simulation setup, metrics, and results for different beamformers implemented in this
work. Finally, Section 4.8 summarizes the findings and outlines directions for future research.
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4.2 Signal Model

The signal received at each microphone is modeled as a superposition of contributions from multiple
acoustic propagation paths, including direct sound, early reflections, reverberation, and additive
noise. Adopting the unified modeling framework proposed by Gannot et al. [84], we categorize
signal models according to their domain of formulation (time, frequency, or time—frequency), the
assumptions made about acoustic transfer functions, and their treatment of noise and reverberation
components.

The formulation of an appropriate signal model is critical in most spatial audio applications, as it
enables the system to accurately capture both the spatial and temporal characteristics of the sound
field under realistic environmental conditions.

4.2.1 Time-Domain Convolutive Mixing Model

Let s,(t) denote the clean signal emitted by source s, and z,,(t) the signal observed at microphone
m of an array with M microphones. The most general model is a linear time-invariant (LTT)
system, where propagation is represented as a convolution with the acoustic impulse response
(AIR) hyps(t)!, plus additive noise ny, (t):

S

T (t) = Z(hms % 85)(t) + nm(t). (4.1)

s=1

The AIR is often modeled as a finite impulse response (FIR) filter of length L, which can span
hundreds to thousands of taps depending on room characteristics. Recent formulations introduce
sparsity? -inducing priors — such as ¢;-penalties or exponential decay constraints — to model the
dominance of early reflections and the decaying energy envelope of reverberation [84].

4.2.2 STFT-Domain Model and Narrowband Approximation

To enable efficient processing, signals are often transformed into the short-time Fourier transform
(STFT) domain. Let X,,(f,n) and Ss(f,n) denote the STFTs of z,,(t) and ss(t), respectively.
Under the narrowband approximation which assumes that the STFT window is longer than
the AIR, allowing the convolution to be approximated by a product in each frequency bin. , the
convolutive mixing simplifies to:

S

Xm(fyn) = Z Hyp s(f)Ss(fin) + Nin(f,n), (4.2)

s=1

where H,, s(f) is the frequency-domain acoustic transfer function (ATF)? from source s to
microphone m.

! An acoustic impulse response (AIR) characterizes how sound travels from a source to a microphone,
capturing effects such as delays, attenuation, reflections, and reverberation.

2Sparsity refers to the assumption that, in the time—frequency (TF) domain, only a small number of
sources are active at each TF bin. This property enables blind estimation methods by allowing target-
dominant bins to be distinguished from interference or noise.

3The acoustic transfer function (ATF) H,, .(f) is the Fourier transform of the AIR, representing
frequency-dependent attenuation and phase shifts between a source and microphone.

Page 63



Sound Source Separation

Alternatively, the observed multichannel signal can be expressed as a sum of spatial images, where
each spatial image models the contribution of one source across the microphone array:

J
X(n7 f) = ZC]'(TL, f)7 with Cj(n7 f) :aj(n7 f)sj(nu f) (43)
=1

The vector ¢;j(n, f) € CM is the spatial image of source j, i.e., the multichannel mixture component
attributable to that source. The vector a;(n, f) € CM is the acoustic transfer function (ATF) vector
from source j to the M microphones at time—frequency bin (n, f), characterizing the acoustic path
including direct sound and early reflections. The scalar s;j(n, f) € C is the STFT coefficient of the
clean signal emitted by source j. This decomposition underlies most narrowband spatial filtering
approaches and is central to models such as the local Gaussian model (LGM) [84].

This model enables frequency-wise spatial filtering but assumes frame length exceeds the reverber-
ation time. When this assumption fails (e.g., with short windows or in highly reverberant spaces),
the approximation breaks down and leads to modeling errors.

Inter-frame and inter-frequency coupling.

When the AIR is longer than the STFT window, the convolution in time does not map to multi-
plication in frequency. Instead, it results in inter-frame and inter-band filtering®, requiring
more complex models:

Xm(nv f) = ZZHm,S(Tv fa fl)SS(n -7, f/) + Nm(na f)? (44)
frT

which are rarely used due to high dimensionality, but better approximate the time-domain behavior.

4.2.3 Relative Transfer Function (RTF) Representation

The relative transfer function (RTF) is a normalized spatial representation that eliminates the
source spectrum. For a given source s, it is defined as:

Hn,s(f)
Hys(f)’
where r is the index of a reference microphone. The RTF preserves the spatial filtering properties

while discarding the absolute magnitude and phase. It is widely used in MVDR and multichannel
Wiener filters [84].

Rs(f) = (4.5)

Spatial cue interpretation.

The RTF encodes useful spatial features such as:

ILD;;(f) = 20logyq [ Ri,s(f)] , (4.6)
IPD;;(f) = arg (Ris(f))

_ arg(Ris(f))
ITD;;(f) = i (4.8)

“Inter-frame and inter-frequency filtering refers to the case where the STFT-domain representation
of convolution spans multiple frames and frequencies, violating the narrowband independence.

Page 64



Sound Source Separation

representing the interchannel level difference (ILD), interchannel phase difference (IPD),
and interchannel time difference (ITD)’.

4.2.4 Wideband FIR-Based Model

When the narrowband approximation is invalid, an alternative is to work with a wideband, time-
domain FIR model:

L-1

S
2 = 30 b o (0)55(t — £) + 1 (8), (4.9)
s=1 /=0

/=

This supports more accurate modeling of reverberation and enables filter-and-sum and time-domain
adaptive beamformers [91]. However, it entails a high parameter count and computational load.

4.2.5 Statistical Spatial Covariance Models

To address modeling inaccuracies from narrowband assumptions, recent work adopts a Local
Gaussian Model (LGM), where source signals are modeled as Gaussian-distributed, and rever-
beration is captured by a full-rank spatial covariance matrix Rs(f). The source image covariance
becomes:

Ye, (n7 f) - 03 (na f) RS(f)a (4'10)

with o2(n, f) denoting the power of the clean signal in each time-frequency bin. This model enables
more flexible spatial filtering and accounts for coherence loss due to late reverberation.

4.2.6 Reverberation Modeling

The AIR hy, s(t) is typically decomposed into:

- Early reflections (0-50 ms): deterministic, directionally informative;

- Late reverberation: modeled as exponentially decaying diffuse noise, often spatially cor-
related.

The energy decay can be characterized by the direct-to-reverberant ratio (DRR)7, and is
critical for dereverberation and multichannel postfilters [84].

4.2.7 Noise and Interference Models

The noise term n,,(t) includes:

SILD, IPD, and ITD represent differences in magnitude, phase, and arrival time of a sound signal
between pairs of microphones, providing directional information.

5The Local Gaussian Model assumes that STFT coefficients are zero-mean Gaussian random variables
with time-varying variance and spatial covariance.

"The DRR is the ratio of energy in the direct path and early reflections to that in the late reverberation,
used to assess reverberant severity.
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- Spatially white noise (e.g., microphone self-noise),
- Diffuse or correlated noise (e.g., HVAC, crowd babble),

- Interfering speakers or transients.

Noise models define the noise covariance ¥, (f), which is explicitly used in MVDR, LCMV, and
MWF beamformers to minimize output power [84, Sec. V].

4.2.8 Model Selection and Impact

The choice of signal model affects algorithm design:

Narrowband models are computationally efficient but sensitive to reverberation.
- Wideband FIR models offer better realism at the cost of more parameters.
- RTF models are robust to spectral variations and enable relative-phase based filtering.

Full-rank covariance models handle diffuse and reverberant sources but require more
estimation effort.

In this project, we primarily adopt the narrowband approximation due to its conceptual simplicity
and computational efficiency, which are well-suited to our application. In addition, we consider
relative transfer function (RTF) models to capture spatial characteristics in a way that is robust
to source spectral variations.

4.3 Beamforming-Based Spatial Filtering

Beamforming is a spatial filtering technique that enhances signals arriving from a desired direction
while suppressing noise, reverberation, and interferers arriving from other directions. This section
reviews fixed and adaptive beamforming techniques as categorized in Gannot et al. [84], covering
both time-domain and STFT-domain formulations, design criteria, and robustness strategies.

4.3.1 Fixed Beamformers

Fixed beamformers rely on precomputed spatial filters that are independent of signal statistics.
They assume prior knowledge of the target direction or spatial transfer characteristics and are
typically applied in environments with known geometry or calibrated arrays.

Delay-and-Sum Beamformer

The delay-and-sum (DS) [69] beamformer aligns and sums microphone signals to reinforce wave-
fronts arriving from a target direction:

M
y(t) = Y mmlt +7im), (4.11)

m=1
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.
r.u . . . . . .
where 7, = === is the geometric delay between source direction u and microphone m, assuming

far-field propagation.

In the STFT domain, the beamformer becomes:

M
Y(f,t) =Y Xp(f t)e 2 mm =vH ()X (f,1), (4.12)

m=1

where v(f) is the frequency-dependent steering vector. This is optimal for coherent plane waves in
white noise fields.

Matched Filter Beamformer

The Matched Filter Beamformer [92] aims to maximize the signal-to-noise ratio (SNR) in white
noise by exploiting the known room impulse responses (RIRs) between the source and the micro-
phones. In the time domain, the beamformer output is obtained by convolving each microphone
signal with a time-reversed conjugate of its corresponding RIR:

M
Y1) = 3 wlt) i (—1), (4.13)
m=1
where z,,(t) is the signal received at microphone m, hy,(t) is the RIR from the source to microphone
m, and * denotes convolution.

This structure implements a matched filter that optimally aligns and combines the source images
received across channels, assuming additive white Gaussian noise and perfect knowledge of the
RIRs. While optimal in theory, the beamformer’s performance deteriorates if the estimated RIRs
are inaccurate or the acoustic environment changes dynamically.

In the frequency domain, using the Short-Time Fourier Transform (STFT) representation, the
matched filtering operation becomes a multiplication:

M
Y(fit) =Y Ho()Xm(f1), (4.14)
m=1

where X,,,(f,t) is the STFT of x,,(t), and H,,(f) is the acoustic transfer function (ATF) corre-
sponding to hn,(t). The conjugation H, (f) applies a phase-reversed filter per frequency bin.

Matched filtering is optimal in terms of SNR in the presence of uncorrelated, spatially white
noise [92]. However, in realistic reverberant and dynamic environments, this approach is highly
sensitive to model mismatch, and alternative robust beamformers are generally preferred unless
precise system calibration is available.

4.3.2 Adaptive Beamformers

Adaptive beamformers dynamically compute spatial filters using second-order statistics of the mul-
tichannel input. Unlike fixed beamformers, which rely solely on array geometry and assumed source
direction, adaptive methods exploit spatial covariance structure to suppress interference and noise
while preserving the desired signal [84, 93].

Given the multichannel STFT-domain observation x(n, f) € CM, the output of a narrowband
adaptive beamformer is:

Y(n, f) =w(f)x(n, f), (4.15)
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where w(f) € CM is the frequency-dependent beamforming vector computed to satisfy a design
criterion at frequency bin f.

Minimum Variance Distortionless Response (MVDR)

The MVDR beamformer, also known as the Capon beamformer, minimizes the output power under
a distortionless constraint for the target source [72, 84]:

wyvpr(f) = argminw! (f) S () w(f) st a’(f)w(f) =1, (4.16)

where:

- 3. (f) is the spatial covariance matrix of the interference and noise,

- a(f) is the steering vector or RTF of the target source.

The closed-form solution is:

1 a
=M Pal) w1

WMVDR(f) =

MVDR achieves optimal interference suppression while maintaining unit gain in the desired direc-
tion, making it particularly effective in directional noise environments.

Multichannel Wiener Filter (MWF)

The multichannel Wiener filter (MWF) estimates a linear combination of the target sources by
minimizing the mean square error (MSE) between the beamformer output and a desired reference
signal [93]. Let

d(”? f) = qHS(TL, f)v
denote the desired signal, where s(n, f) € C’7 is the vector of target source STFTs and q € C’»
selects a linear combination (e.g., one image).

Civen the multichannel mixture model:
x(n, f) = A(f)s(n, f) +u(n, f),
the MWF solution minimizing the MSE E[|w (f)x(n, f) — d(n, f)|?] is:
wawr(f) = (Z:(f)) " Ze(f) a, (4.18)

- 3.(f) = Ex(n, f)x" (n, f)] € CM*M is the total covariance matrix,
- Bo(f) = A(f) Zs(f) AH(f) is the covariance of the spatial images of the desired sources,

- X(f) = diag(o?,,...,02, ) € R7»*J» assumes source independence.
P

Alternatively, if ¥, (f) = Ze(f) + Zu(f), this can be expressed as:

wawr(f) = (Ze(f) + Zu(f) " Ze(f) a- (4.19)

This formulation allows optimal trade-off between noise reduction and distortion. To recover a
specific spatial image (e.g., at a reference microphone), q is chosen accordingly.
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Multiple Speech Distortion Weighted MWF (MSDW-MWF)

The Multiple Speech Distortion Weighted Multichannel Wiener Filter (MSDW-MWF) [94] extends
the SDW-MWF to the multi-source case, allowing different distortion-reduction trade-offs for each
target speaker.

Let x(n, f) € CM be the multichannel STFT-domain observation at time-frequency bin (n, f),
modeled as:

x(n, f) = A(f)s(n, f) +ua(n, f), (4.20)

where:

- A(f) =lai(f),-..,az,(f)] € CM*/r contains the ATF vectors of the J, sources of interest,
- s(n, f) € C’» holds their STFT coefficients,

- u(n, f) € CM models additive interference and noise.

The desired output is a linear combination d(n, f) = qfs(n, f), where q € C’» defines the reference
image (e.g., first microphone image of a specific source).

The MSDW-MWF minimizes the expected distortion—noise trade-off:

wyspwwr (f) = argmin (W o ()w + la — A7 ()Wl z.) - (4.21)

where:

- X.(f) € CMXM i the interference+noise covariance,

- 3s(f) = diag(agl, 02 Jp) is the diagonal speech covariance matrix (assuming uncorrelated
sources),
- A(f) = diag(\1,...,Ay,) controls the distortion tolerance per source.

The closed-form solution is:

wysowawe () = (ADANZ(HAT () +Bu(f)  ANALS(Pa.  (422)
This formulation generalizes several beamformers:

- Setting A = I recovers the standard multichannel Wiener filter (MWEF).
-IfJ,=1and \ = w1, it reduces to the SDW-MWF.

- Taking A = '3, ! and letting 1 — 0 yields the linearly constrained minimum variance
(LCMV) beamformer:

wionv(f) = 3. () A (AT () =D AY))  a

Thus, the MSDW-MWPF provides a flexible and interpretable framework for spatial filtering under
varying distortion—noise trade-offs across sources.
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Linearly Constrained Minimum Variance (LCMYV)

The LCMV beamformer generalizes MVDR by enforcing multiple linear constraints [91, 95]:

wioav(f) = argminw! (HZ,(Hw(f) st AY(Hw(f) =, (4.23)

where:

- A(f) € CM*K contains multiple constraint vectors (e.g., desired and interfering RTFs),

- q € CX is a desired response vector.

The solution is given by:

wiewv(f) = 57 () A (AT 7 (D AD)  a (4.24)

The LCMV formulation provides a solid method that includes MVDR as a special case (single con-
straint) and enables spatial nulling of interferers, making it a cornerstone for robust beamforming
architectures. In Section 4.4, we build upon this formulation to develop the Generalized Sidelobe
Canceller (GSC) and its postfiltered variants.
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4.4 Robust Spatial Filtering Architectures

This section reviews robust spatial filtering architectures that extend the classical LCMV beam-
former to improve performance under adverse acoustic conditions such as reverberation, microphone
mismatch, and nonstationary interference. These methods build upon the LCMV method by de-
composing constraint enforcement from adaptive filtering (as in the Generalized Sidelobe Canceller,
GSC), introducing adaptation control mechanisms, and adding postfiltering stages. All derivations
and theoretical foundations follow the unified treatment in [84].

4.4.1 Generalized Sidelobe Canceller (GSC)

The Generalized Sidelobe Canceller (GSC) [95] reformulates the LCMV beamformer into a struc-
ture that separates constraint satisfaction from adaptive noise cancellation. The block diagram of
this modular architecture is shown in Figure 4.1, which highlights the decomposition into a fixed
beamformer, a blocking matrix, and an adaptive noise canceller.

Let A(f) € CM*E be the matrix of constraint vectors (e.g., RTFs of target and interferers), and
q € C¥ the corresponding constraint response vector. The optimal LCMV beamformer is:

-1
wiomv(f) = DA (AT (HEHDAWD)  a (4.25)
This beamformer can be equivalently expressed in GSC form as:

wasc(f) = wo(f) — B(f)g(f), (4.26)

where:

- wo(f) € CM is a fixed beamformer that satisfies the constraints: A (f)wo(f) = q,
- B(f) € CM*(M=K) jg a blocking matrix that satisfies A7 (f)B(f) =0,

- g(f) € CM~K is an unconstrained adaptive filter that minimizes residual interference.

The total output of the GSC is:

Y(n, f) =wh (f)x(n, f) — g (/)BZ(f)x(n, f). (4.27)

This decomposition enables modular adaptation: the fixed beamformer ensures distortionless re-
sponse, while the adaptive path suppresses interference.
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Figure 4.1: Generalized Sidelobe Canceller (GSC) structure [84].

4.4.2 Adaptive Enhancements

Despite its structure, the GSC may suffer from signal leakage into the blocking matrix output,
especially in reverberant or mismatched environments. To address this, several enhancements have
been proposed:

Norm-Constrained LMS (NCLMS)

To prevent over-adaptation and distortion, the norm of the adaptive filter g(f) is constrained:

lg(NIZ <, (4.28)

where v > 0 is a regularization parameter. This constraint improves robustness against leakage of
the target signal into the adaptive path.

Multiple Canceller Structures

To improve interference suppression, multiple ANC filters may be employed in parallel using de-
layed, filtered, or subbanded versions of the blocking matrix output. This increases modeling
flexibility and helps target spectrally colored noise [84].

Adaptive Mode Control (AMC)

Adaptive Mode Control monitors the correlation between the reference signal and error output,
pausing adaptation when speech is active. This prevents divergence and signal cancellation under
dynamic acoustic conditions [84].
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4.4.3 Nested GSC and Multichannel Postfilters
Nested GSC

The GSC architecture can be recursively applied to the output of the blocking matrix. Each
stage isolates additional spatial components and applies localized adaptation. This structure is
particularly effective in reverberant or multi-interferer environments.

Multichannel Postfiltering

To further suppress residual noise and late reverberation, a postfilter can be applied to the GSC
output. A typical approach uses a multichannel Wiener filter (MWF') based on estimated output
covariances:

Wpost (f) = Egl(f)Zs(f), (4.29)

where 3, (f) is the output covariance and X4(f) the target signal covariance. In practice, scalar
gains may be derived from these matrices and applied to the beamformer output as postfiltering
factors.

The GSC offers modularity and flexibility for real-time implementations. However, its performance
depends on:

- Accurate design of the blocking matrix B(f),
- Robust estimation of X,(f),

- Stability and convergence of adaptive filters g(f).

Enhancements such as norm constraints, adaptive control, and nested processing mitigate these
limitations. These architectures are widely used in speech enhancement systems for hearing aids,
conferencing systems, and far-field voice interfaces.

4.5 Parameter Estimation for Beamforming

Beamforming relies on accurate estimation of spatial parameters such as steering vectors and spatial
covariance matrices. These parameters describe the acoustic geometry of the scene and determine
the beamformer’s ability to preserve the target source while suppressing interference. In this work,
we assume that the direction of arrival (DOA) of the target source is estimated using the SRP-PHAT
method, and no explicit source or noise reference signals are available. The parameter estimation
procedure therefore combines geometric modeling and blind statistical estimation, following the
unified framework of [84].

4.5.1 Steering Vector Estimation

The steering vector a(f) € CM at frequency f represents the multichannel array response to a unit
amplitude signal arriving from a given direction. In our case, the target DOA 6 is obtained using
SRP-PHAT, and the steering vector is constructed under the far-field, free-field model as:

a(f) = [e2rin®), . emizmim@)] (4.30)
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where 7,,,(6) is the propagation delay from the source direction 6 to microphone m, computed from
array geometry and assumed speed of sound. This model-based approach is standard when only
DOA is available [84].

4.5.2 Spatial Covariance Matrix Estimation

Adaptive beamformers such as MVDR and MWF require estimation of the spatial covariance matrix
Y. (f) of interference and noise at each frequency bin. Since speech and noise components are not
observed separately, we use recursive averaging of the multichannel observations:

S.(fn) =aS.(fin—1)+ (1 —a)x(n, )x(n, f), (4.31)

where a € [0,1] is a forgetting factor, and x(n, f) € CM is the observed STFT frame at time n,
frequency f.

To estimate the noise covariance ¥, (f), one can rely on:

- Recursive estimation assuming speech sparsity in the STF'T domain;
- Use of time-frequency masks or DOA-based consistency tests to detect speech-inactive bins;

- Online tracking with adaptive smoothing.

These estimates enable beamformers to adapt to non-stationary conditions without explicit voice
activity detection or source separation.

Our choice avoid reliance on measured impulse responses or reference signals, and instead uses a
combination of geometric modeling (for the steering vector) and blind statistical estimation (for
spatial covariance matrices). Parameter estimation errors may still degrade performance, particu-
larly under reverberation, but the robustness of SRP-PHAT and recursive covariance tracking helps
mitigate such effects.

4.6 Blind and Hybrid Source Separation Approaches

While we focus on beamforming-based spatial filtering, it is essential to acknowledge the broader
family of multichannel separation techniques, particularly those arising from Blind Source Sepa-
ration (BSS). Classical BSS aims to recover individual sources from observed mixtures without
explicit knowledge of the source positions or array geometry. These methods exploit statistical
independence, sparsity, or nonstationarity of source signals, with prominent techniques including
Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF), and Time-
Frequency Masking frameworks.

As detailed by Gannot et al. [84], the historical divide between beamforming and BSS has gradu-
ally narrowed. Modern formulations often adopt a common representation in the time-frequency
domain, leveraging Relative Transfer Function (RTF) models or spatial covariance matrices. This
shared foundation facilitates hybrid approaches that integrate spatial filtering with statistical sep-
aration for improved robustness in complex environments.
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4.6.1 Integration of BSS and Beamforming

Hybridization of BSS and beamforming seeks to combine the spatial selectivity of beamformers
with the statistical separation capabilities of BSS. Several strategies have been proposed:

- BSS-informed GSC: Blind methods such as ICA or time-frequency clustering can estimate
interference subspaces, which are then incorporated into the blocking matrix of a Generalized
Sidelobe Canceller (GSC) to improve interference rejection.

- Post-filtering of BSS outputs: Beamformers (e.g., MVDR or LCMV) can be applied to
signals separated by BSS to enhance spatial consistency and suppress residual artifacts.

- Joint optimization: Some approaches formulate unified objective functions combining spa-
tial constraints (e.g., linear distortionless response) with statistical independence criteria.

A notable example is the M-NICA algorithm, which applies multiplicative nonnegative ICA fol-
lowed by spatial filtering to refine source separation, particularly in underdetermined scenarios.
Similarly, TRINICON-based extensions to GSC structures use higher-order statistics for dynamic
and reverberant environments [84].

4.6.2 Model-Based and Learning-Based Extensions

Beyond classical methods, recent work incorporates model-based priors and deep learning to en-
hance source separation. Learning-based approaches can estimate time-varying spatial covariance
matrices, directional masks, or even directly predict beamformer weights from mixture features.
These methods can be interpreted as data-driven enhancements of traditional statistical or spatial
models.

In particular, Deep Clustering (DC), Deep Attractor Networks (DANet), and neural beamformers
with embedded DoA estimation are increasingly used in conjunction with spatial models, either
as mask estimators or in hybrid multichannel front-ends. When combined with MVDR or LCMV
constraints, these systems demonstrate improved generalization and noise robustness.

The convergence of BSS, beamforming, and learning-based methods presents a compelling direction
for future work. Hybrid architectures provide a principled framework for integrating statistical,
spatial, and learned representations, particularly in real-world, reverberant, and non-stationary
acoustic environments.
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4.7 Evaluation of Beamformers

This section presents a controlled evaluation of the beamformers introduced in Section 4.3. We use
synthetic mixtures of speech and noise convolved with room impulse responses (RIRs) to simulate
realistic acoustic conditions. The goal is to assess the spatial selectivity, interference suppression,
and robustness of Delay-and-Sum, MVDR, LCMV, and GSC beamformers using objective and
visual metrics.

4.7.1 Simulation Setup

We simulate a uniform rectangular array (URA) consisting of 4 x 4 = 16 omnidirectional micro-
phones with 4.2 cm spacing. Two speech signals (speakerl.wav and speaker2.wav) are placed at
known directions and convolved with RIRs generated using the RIR toolbox® to simulate a room
with Tgp =~ 0.4s. Directional noise is added at a third angle.

The multichannel mixture x,,(t) is constructed as:

1. Convolution of each source with its corresponding RIRs across the M = 16 microphones;
2. Summation of the resulting multichannel source signals;

3. Addition of spatially uncorrelated white noise at a fixed SNR (e.g., 10 dB).

4.7.2 Processing Algorithm
The signals are processed using the following pipeline:

- STFT Analysis: Multichannel signals are transformed to the STFT domain (window =
1024, overlap = 50%);
- DoA Estimation: Using SRP-PHAT with hierarchical refinement;

- RTF /Steering Vector Estimation: Computed analytically from array geometry and es-
timated DoA;

- Covariance Estimation: Estimated from speech+noise segments and noise-only regions
using recursive averaging;

- Beamforming: Delay-and-Sum, MVDR, LCMV, and GSC are applied;

- Evaluation: Output is compared to clean sources.

4.7.3 Mixing Model

Let s1(t), s2(t) be the speech sources and h,, s(t) the RIR from source s to microphone m. The
multichannel observation is:

Zm(t) =3 (hns * ) () + 1 (£), (4.32)

8https://github.com/ehabets/RIR-Generator
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where n,(t) is white Gaussian noise.

In the STFT domain, the narrowband model is:
2
x(n, f) =Y a;(f)s;j(n, f) +u(n, f), (4.33)
j=1

with a;(f) the steering vector for source j.

4.7.4 Beamformer Algorithms

We implement the following methods. Pseudocode is given below.

Delay-and-Sum Beamformer

Algorithm 2 Delay-and-Sum Beamforming

: for each frequency bin f do
Compute steering vector a(f) from target DoA
Set weights: wps(f) = 7a(f)

end for

: for each time frame n and frequency f do
Output: Y(n, f) = whs(f)x(n, f)

end for

NGk W

MVDR Beamformer

Algorithm 3 MVDR Beamforming
1: for each frequency bin f do
2: Estimate noise covariance matrix 3, (f)
3: Compute weights:

_E(Hal)
WMVDR(f) - aH(f) E;l(f) a(f)
4: end for
5: for each time frame n and frequency f do
6: Output: Y'(n, f) = w{iypr(f) x(n, f)
7: end for
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LCMYV Beamformer

Algorithm 4 LCMV Beamforming

1: for each frequency bin f do

2 Define constraint matrix A(f) and desired response q
3: Estimate noise covariance matrix 3, (f)

4 Compute weights:

wiowv(f) = 27 (N A (AN (D AL)  a

5: end for

6: for each time frame n and frequency f do
7. Output: Y(n, f) = witwy (f) x(n, f)
8: end for

GSC Beamformer

Algorithm 5 GSC with Adaptive Noise Canceller

1: Initialize fixed beamformer weights wy(f) and blocking matrix B(f)
2: Initialize adaptive filter g(f) < 0
3: for each time frame n and frequency f do

4 yoln, f)=wl(f)x(n, f) > Beamformer output
5 z(n, f) =BA(f)x(n, f) > Interference estimate
6: Update adaptive filter:

g(f) < g(f) — pzn, f) (wo(n, f) — g" (Fz(n, f))*

7: Output: Y(n, f) = yo(n, f) — gH(f) z(n, f)
8: end for

4.7.5 Beampattern Visualization

For each method, we plot the array beampattern at representative frequencies (e.g., 500 Hz, 1000
Hz, 2000 Hz) to visualize spatial selectivity.
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Figure 4.2: Beampatterns of Delay-and-Sum beamformer at 500, 1000, 2000 Hz.
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Figure 4.3: MVDR beamformer beampatterns across frequency.
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LCMV Beampatterns Across Frequencies
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Figure 4.4: LCMV beamformer with null constraints on interfering source.

Table 4.1: SNR Gain (dB) for Each Beamformer

Method Input SNR  Output SNR  Gain

Delay-and-Sum 10 dB 14.2 dB +4.2 dB
MVDR 10 dB 17.8 dB +7.8 dB
LCMV 10 dB 18.5 dB +8.5 dB
GSC 10 dB 18.2 dB +8.2 dB

4.7.6 Discussion and Insights

Delay-and-Sum provides uniform gain toward the target but limited suppression;
- MVDR offers optimal spatial filtering under good covariance estimation;
- LCMV effectively enforces multiple constraints (e.g., nulling interferers);

- GSC decouples constraint and adaptation, relies heavily on covariances estimation which
needs to be pretty accurate otherwise estimation fails

4.7.7 Offline Evaluation on Real Recordings

To complement our simulation-based experiments, we conducted a practical offline evaluation using
real microphone array recordings. In this setup, we recorded a multichannel signal using the UMA-
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16 array, where two speakers were active at different times and located at significantly separated
angles (greater than 60° apart). The goal was to evaluate the ability of spatial filtering methods to
isolate these sources using real-world acoustics.

The processing pipeline followed these steps:

1. The audio was normalized and segmented to isolate speech-active portions;

2. SRP-PHAT with hierarchical refinement was used to estimate the direction-of-arrival (DoA)
of each speaker;

3. The resulting DoAs were used to construct steering vectors for MVDR, LCMV, and Delay-
and-Sum beamformers;

4. The beamformed output was compared qualitatively against the original speech signals.

Despite the clear angular separation between sources, none of the beamformers succeeded in achiev-
ing meaningful separation. The failure is attributed primarily to the reverberant conditions of the
recording environment, which introduced significant spatial smearing and corrupted the estimated
steering vectors. This confirms the sensitivity of these algorithms to real-world propagation effects
such as multipath and late reflections.

These results suggest that conventional beamforming, while effective under ideal or simulated con-
ditions, may be insufficient for practical separation in typical indoor spaces. Free-field testing
and post-filtering enhancements remain necessary to validate spatial separation under controlled
conditions.

4.8 Conclusion

In this chapter, we explored the theoretical foundations and practical implementation of spatial
filtering techniques for sound source separation. Beginning with a formal signal model and DoA
estimation pipeline, we implemented and compared classical beamformers including Delay-and-
Sum, MVDR, LCMV, and the Generalized Sidelobe Canceller (GSC). Evaluation through simulated
room impulse responses and reverberant mixing conditions provided insight into their relative
strengths.

Beampattern visualizations and objective SNR metrics confirmed the superiority of adaptive tech-
niques like MVDR and LCMYV over simpler Delay-and-Sum filtering, particularly in well-modeled
environments. However, we also observed that these methods are highly sensitive to reverberation
and inaccuracies in the estimated covariance matrices.

To investigate this further, we conducted an offline real-world test using audio recorded from the
UMA-16 array with two spatially separated speakers. Despite clearly distinct directions-of-arrival,
none of the beamforming methods succeeded in isolating the sources due to reverberation and im-
perfect steering. This highlights the limitations of classical beamforming in practical environments
and motivates the need for more robust post-filtering or data-driven separation strategies.

The findings from this chapter establish a realistic understanding of spatial filtering limits in re-
verberant conditions, setting the stage for real-time processing strategies, such as source tracking
and localization, discussed in the following chapter.
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Chapter

Speaker Detection and Spatial Separation
Using Microphone Arrays

5.1 Introduction

In this chapter, we present our application: a system capable of detecting and separating mul-
tiple speakers, particularly in scenarios such as panel discussions, roundtable meetings, or multi-
participant conferences. The objective is to localize all active speakers in real time and enable
selective focus on one of them—whether for audio enhancement, transcription, or targeted beam-
formed extraction.

To accomplish this, we build upon the SRP-PHAT (Steered Response Power with Phase Transform)
method introduced in Chapter 3 for direction-of-arrival (DoA) estimation. The goal is to have a
complete multi-source detection and localization algorithm is developed based on SRP-PHAT,
incorporating hierarchical search, spatial peak suppression, and Kalman-based tracking for robust
and stable localization over time.

For speaker separation, we rely on the methods detailed in Chapter 4, which enables spatial filtering
and signal extraction from a specific direction.

This application targets realistic constraints, including simultaneous speech, speaker movement,
and reverberant environments. The implementation is carried out in MATLAB, using the miniDSP
UMA-16 microphone array for multichannel audio acquisition, and a low-cost webcam co-located
with the array for optional visual feedback and spatial source projection.

5.2 Speaker Detection Algorithm

To detect active speakers in a scene, we implemented a real-time localization and tracking system
using a 16-microphone array. The core idea is to continuously estimate the Direction of Arrival
(DoA) of dominant sound sources based on their Time Difference of Arrival (TDOA) across micro-
phone pairs.

Figure 5.1 illustrates the architecture of the algorithm, which includes audio acquisition, voice
activity detection, SRP-PHAT-based DoA estimation, hierarchical spatial filtering, and Kalman-
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based tracking.
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Figure 5.1: Real-time speaker detection and localization algorithm using SRP-PHAT and
MS3K tracking.

5.2.1 Audio Input from Microphone Array

Microphone arrays consist of multiple spatially distributed acoustic sensors that capture sound
signals arriving from different directions. Each microphone m;, for i =1,..., M, receives a delayed
and attenuated version of the original source signals, due to the different propagation paths from
the source(s) to each microphone.

Assuming free-field propagation and a reverberant environment, the signal x;(t) at microphone i

can be modeled as: 5

zi(t) = S (B sO) (1) + ni(t),

s=1

where:

- 5(9)(t) is the s-th source signal,

hl(s) (t) is the acoustic impulse response (AIR) from source s to microphone i,

* denotes convolution,

- n;(t) is additive noise.

To enable real-time processing, the continuous-time microphone signals are discretized and seg-
mented into overlapping frames of fixed length N samples. Instead of processing each incoming
sample individually (sample-by-sample), we operate on these short-time frames x;[n], where:

xi[n] = {zi(nL),z;(nL +1),...,z;(nL+ N — 1)}
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Here, L is the hop size!. (frame shift), typically L < N to allow overlap and ensure temporal
continuity. This frame-based approach is crucial for frequency-domain processing (e.g., GCC),
noise robustness, and computational efficiency.

Each frame represents a short segment of the multichannel observations and constitutes the funda-
mental processing unit across the entire pipeline, encompassing cross-correlation, source localiza-
tion, and tracking. This segmentation strategy enables the application of time—frequency analysis
tools, such as the Short-Time Fourier Transform (STFT), and supports the deployment of adaptive
filtering and spatial signal processing techniques.

5.2.2 Voice Activity Detection (VAD)

Voice Activity Detection (VAD) refers to a class of algorithms that determine whether an audio
signal segment contains speech or not [96]. VAD is a fundamental pre-processing step in many
speech processing pipelines, including speech recognition, enhancement, source separation, and
coding. It serves both computational efficiency and signal quality by suppressing non-speech frames
or avoiding their use in further processing.

A related but more general concept is Speech Presence Probability (SPP), which estimates the
probability that speech is present in a frame. VAD decisions can be derived from SPP by applying
a decision threshold.

The operational goals of VAD vary with application:

- In speech coding, VAD is used to avoid transmitting silent frames, thereby reducing bitrate.
- In speech enhancement, non-speech segments are used to estimate noise statistics.

- In keyword spotting and automatic speech recognition, VAD limits processing to
speech-active frames, improving both performance and energy efficiency.

Classical VAD Methods
Early approaches rely on simple signal characteristics, including:

- Energy-based VAD: Detects speech based on short-time frame energy [97]. Though in-
tuitive and computationally cheap, it is highly sensitive to background noise and requires
careful threshold selection.

- Zero-Crossing Rate (ZCR): Measures the rate of sign changes in a signal. Noise tends to
yield higher ZCR than voiced speech.

- Spectral Features: Includes entropy, spectral tilt, autocorrelation, and linear prediction
residuals [96]. These features can improve discrimination between speech and noise.

Learning-Based VAD

Advanced systems employ statistical or machine learning classifiers:

!The hop size is the number of samples between successive STFT frames. It determines the temporal
resolution and overlap of the analysis. For example, a 50% overlap corresponds to a hop size of half the
window length.
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- Linear classifiers or decision trees use weighted feature combinations or rule-based thresh-
olds.

- Gaussian Mixture Models (GMMs) and neural networks (e.g., DNNs, RNNs) allow
modeling of complex decision boundaries and adapt well to non-stationary noise.

- Pre-whitening and feature normalization are used to balance feature scales and remove
correlations before classification.

Post-Processing and Smoothing

VAD decisions are often refined through post-processing such as:
- Hangover schemes: Extend speech labels slightly past low-energy offsets to prevent pre-
mature cutoffs.

- Hysteresis rules: Base decisions on surrounding frames to reduce flicker between speech /non-
speech labels.

- Sigmoid mapping: Converts linear classifier outputs to soft scores, interpreted as speech

presence probability [96].

In our system, we adopt a global, low-complexity energy-based VAD:
The average frame energy across all microphone channels is computed as:

1 M N
_ 2
Eframe - m ; nz::l €Z; [TL]

where x;[n] is the signal at microphone i, M is the number of microphones, and N the frame length.
A fixed threshold #yap determines activity:

frame active <= FEfame > 0vAD

This method offers a trade-off between performance and simplicity, and is sufficient for controlled
conditions with moderate noise and reverberation.

This process is illustrated in Figure 5.2.

no voice
[ detected
Power
Computation
x[n]
"1 & 2 ’
~ > [xmn]
n=1 .
L voice
detected

Figure 5.2: Energy-based VAD block diagram. The average energy across channels is com-
puted and compared to a fixed threshold to detect speech activity.
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5.3 SRP-PHAT with Hierarchical Spatial Search

After computing GCC functions for each microphone pair, the next step is to estimate the directions
of arrival (DoAs) by applying the SRP-PHAT algorithm over a discrete grid of potential source
locations.

The standard SRP-PHAT algorithm evaluates the following score at each grid point (6, ¢):

SRP(6,¢) = > Rij(7i;(0.¢))
(i.d)

where 7;;(6, ¢) is the expected TDOA between microphones ¢ and j given the direction (6, ¢).

x[n] R X®
T Wi:c?owing — FFT

SFST (Short Time Fourier Transform)
For Each Mic Pair

v
PHAT Cross-Power
Centring & Reconstuction Weighting Spectrum
Normalisation & Inverse-FFT 1 ¢ *
Y/ AY Al X(HX
XOX{0)| (DX(D

Elevation
Iy
List of GCC-PHAT for all mic pairs Q
used for TDOA estimation
Pair indexes

Azimuth 6
Figure 5.3: Overview of GCC-PHAT processing. Time-delay estimates are derived from

phase-transformed cross-correlations of microphone pairs and used in SRP-PHAT spatial
mapping.

5.3.1 Uniform Grid Search

Traditional SRP-PHAT implementations perform an exhaustive uniform search over a dense 2D
angular grid (e.g., 5° resolution in azimuth and elevation), requiring evaluation of thousands of
spatial hypotheses per frame. For example, a 5° x 5° resolution over 360° x 90° yields:

860 90 _
0,90 _

72 x 18 = 1296 directions
This results in a computational complexity of:
O(M?*- D)

where D is the number of grid points. On embedded platforms or real-time systems, such cost is
prohibitive.
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5.3.2 Hierarchical SRP (HSDA)

To overcome this, we implemented the SRP-PHAT-HSDA algorithm as proposed in ODAS [98].
This method drastically reduces computational cost by applying a hierarchical two-level search:

1. Coarse Search: First pass over a sparse grid (e.g., 30° resolution), yielding 60-80 candidate
points,
2. Fine Search: Second pass around the peaks using a fine local grid (e.g., 5° resolution)

within a small angular neighborhood.

The SRP map is smoothed using a 2D Gaussian filter before peak detection:
SRPgmooth = imgaussfilt(SRP, o)
where o is typically set between 82% reduction 1.0 and 1.5 for coarse maps.

As reported in [98], hierarchical search yields:

- 82% reduction in the number of directions scanned per frame (from 320 to 58),

- Comparable DoA accuracy (within 3° RMS error vs. full SRP).
In addition to hierarchical search, our implementation includes:
- SRP peak suppression: previously found peaks are suppressed in GCC and SRP maps to

detect multiple sources,

- Gaussian smoothing: SRP maps are smoothed before peak picking to reduce spurious
detections,

- Minimum separation constraint: DoAs are rejected if angular distance between peaks is
below a threshold (e.g., 20°),

- Real-time execution: the entire algoirthm runs in less than 50 ms per frame on desktop
MATLAB.

Gaussian Interpolation of GCC Peaks

To improve localization precision beyond the native grid resolution, we apply a Gaussian-weighted
interpolation technique directly in the GCC domain. Rather than evaluating the SRP score using
only the integer delay corresponding to the estimated TDOA 7;;, we extract a small window of
cross-correlation values around this delay and apply a Gaussian kernel:

' w
rnP0,0) = Y Gol(k) - rij(7ii(0, ) + k)
k=W
where:

- 135(n) is the GCC-PHAT signal between microphones ¢ and j,

- 7;5(0, ¢) is the expected delay for direction (6, ¢),
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- Go(k) = exp (—%) is a normalized Gaussian kernel,

- W is the window radius (typically W = 4).

This interpolated value Ti;-lterp replaces the traditional point-wise lookup in the SRP computation,
providing a smoother and more accurate energy estimate that captures nearby sub-sample infor-

mation.

The result is an SRP map that more accurately reflects the underlying acoustic evidence, especially
in the fine search stage. This is particularly beneficial when source directions fall between grid
points, enabling sub-grid localization accuracy without requiring interpolation in angular space.

In practice, the Gaussian-weighted energy is computed for each direction as:
SRP(0,¢) = > ;" (0. ¢)
(4,5)

This method maintains the phase structure of the GCC function and avoids artifacts from linear
or parabolic interpolation.

5.3.3 Directional Resolution

Let Geoarse and Ggpe denote the number of directions in the coarse and fine grids respectively. The
total number of evaluations is:
|Gcoarse’ + Np . |Gﬁne‘

where N, is the number of detected peaks in the coarse stage. For example:

60+ 220 =100 <« 1296

The actual grid mapping from coarse to fine directions is precomputed and stored in a look-up
structure to allow fast refinement of spatial peaks. Figure 5.4 illustrates the spatial energy distri-
bution computed by SRP-PHAT across candidate directions, forming the basis for peak detection
and refinement.

IF —————————— =
|
Coarse SRP 2D Gaussian | | Fine SRP Peak |
Map Filter | Map Detection | |
| |
| |
| |
TDOA Lookup Intrepolate | L ., DOA
Table 1}-]'(9;4’) TDOA axis | Intrepolate | ©.9
. = } >
Smoothing TDOA axis |
| r——-~
| |
e e e e o —— -

Figure 5.4: Visualization of SRP-PHAT spatial energy distribution over a candidate grid.
Bright spots correspond to potential source directions, later refined via hierarchical search.

The hierarchical search process is formalized in Algorithm 77?7, which significantly reduces compu-
tational cost while preserving accuracy.
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Algorithm 6 SRP-PHAT with Hierarchical Spatial Search

Require: Microphone positions, GCC-PHAT functions R;;, coarse grid G, fine grid Gy,
number of sources N,
Ensure: Estimated DoAs {(6,,, ¢,)}22,
1: Precompute TDOA table 7;;(6, ¢) for all (0,¢) € G.U Gy
2: Initialize empty list of DoAs D < ()
— Coarse Search —
3: for all (0,¢) € G. do
: Compute interpolated SRP score:

w

SRP(0,¢) «+ > > G,(k)- Rij(tij + k)

(i.g) k=W

5: end for

6: Smooth SRP map with 2D Gaussian filter

7. Detect N, coarse peaks { (6, ¢x)} with angular suppression
— Fine Search —

8: for all coarse peak (0, ¢r) do

9: for all (¢, ¢') € Gy around (6, ¢;) do

10: Compute refined SRP score via Gaussian interpolation
11: end for

12: Find local maximum (6*, ¢*) in fine neighborhood

13: if Minimum angular separation from existing D then

14: Add (0%, ¢*) to D

15: end if

16: end for

17: return D
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5.4 Post-Processing and Direction Filtering

Following spatial spectrum analysis methods such as SRP-PHAT, multiple candidate directions of
arrival (DoAs) may emerge within a single frame. While some correspond to true acoustic sources,
others result from spatial sidelobes, multipath reflections, sensor noise, or transient interference.
A post-processing stage is therefore applied to refine the set of detected directions and retain only
the most reliable ones for downstream tasks such as tracking and beamforming.

The goals of DoA post-processing are:

Suppress false or spurious detections,

Enforce minimum angular separation between sources,

Prioritize temporally stable and high-energy peaks,

Improve robustness of subsequent tracking and filtering stages.

1. Energy-Based Thresholding

The spatial response map SRP(d), where d denotes a candidate direction (typically a unit vector
in 3D), is thresholded to retain only dominant peaks. A direction d; is retained if:

SRP(d;) > 5 - max SRP(d),

where 5 € [0.3,0.6] is a sensitivity threshold chosen empirically. This removes noise-like peaks that
are far below the dominant source level.

2. Minimum Angular Separation

Let D = {dy,...,dg} C S? be the set of selected directions on the unit sphere. To avoid redundant
or overlapping detections, each new candidate d; is accepted only if:

Vi <k, cos (did;) > Abmin,

where Afpy, is a fixed angular exclusion zone (typically 10° to 30°).

3. Microphone and Propagation Uncertainty Modeling

Following the probabilistic model used in [98], both the speed of sound ¢ and microphone positions
My € R? are modeled as Gaussian random variables to capture environmental and calibration
uncertainties. Specifically:
¢~ N(pe, ?), tp ~ N (g, ).
The time-difference of arrival (TDOA) between microphones p and ¢ for direction u € S? is then
approximated as:
Tpg(1) ~ N(MT,PQ(u>7 Uf,pq(u)),

with:
firpg(0) = {;(up — ) ', (5.1)
fs T T 2 0(2;
Trpa(w) = (0T (% Sg)u+ |, = pag) T 5. (5.2)
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This uncertainty defines the window size for a mazimum sliding window (MSW) filter:
qu[n] = maX{TPQ[n - AL ce ,qu[n + A]}v

where A = [0, 4], and rpg[n] is the cross-correlation value at lag n. The MSW allows tolerance
around the peak location and increases robustness to mismatch.

4. Temporal Filtering

Spurious frame-wise variations in DoA estimates are suppressed by temporal smoothing. Common
strategies include:

- Exponential averaging: smoothing SRP values or directions over time;

- Majority voting: retaining directions that persist across consecutive frames;

- Recursive Bayesian filtering: e.g., Kalman filters or particle filters that model velocity
and continuity of source motion.

5. Spatial Clustering

When multiple peaks are retained within the same frame, clustering algorithms such as DBSCAN
or mean-shift are used to group neighboring directions on the sphere. Each cluster is then treated
as a single source hypothesis. This suppresses diffuse or redundant detections due to reverberation
or multipath interference.
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5.5 Tracking Using the Modified 3D Kalman Filter
(M3K)

5.5.1 Kalman Filter

The Kalman filter is a recursive Bayesian estimator that provides optimal state estimation of a
discrete-time linear dynamical system subject to Gaussian noise. It is widely used for tracking,
control, and sensor fusion problems.

Mathematical Formulation

Consider the following discrete-time linear state-space model:

xXp = Fxp 1 +wWg_1 (5.3)
zr = Hxy + vy (5.4

Where:

- x; € R™: hidden state vector at time k,

- 2z € R™: observation (measurement) at time £,
- F: state transition matrix,

- H: observation matrix,

- wi_1 ~ N(0,Q): process noise, modeled as a zero-mean Gaussian distribution with covari-
ance Q,

- v ~ N (0,R): observation noise, modeled as a zero-mean Gaussian distribution with covari-
ance R.

Kalman Filter Equations

The Kalman filter operates recursively in two stages at each time step: the prediction stage and
the update stage. These equations estimate the state X, € R™ and its covariance P;, € R"*", based
on a linear Gaussian model.

Prediction Step:
This stage propagates the state and covariance forward from time k—1 to k using the state transition
model:

%, = F&_ (5.5)

P, =FP, ,F' +Q (5.6)

Where:
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- X, is the predicted state (a priori estimate),

P, is the predicted error covariance,

F is the state transition matrix,

Q is the process noise covariance matrix.

Update Step. Upon receiving a new observation z; € R™, the state and covariance are updated:

-1
K =P;H (HP,H  +R) (5.7)
% = %, + Ky (2 — HX; ) (5.8)
P, = (- K,H)P; (5.9)

Where:

K is the Kalman gain matrix,

X}, is the updated (posterior) state estimate,

Py is the updated error covariance,

H is the observation matrix,

R is the observation noise covariance matrix,

I is the identity matrix of appropriate dimension.

Properties and Assumptions

The Kalman filter provides the optimal linear minimum mean-square error (MMSE) estimate under
the following conditions:

- The system dynamics are linear,
- Process and measurement noise are Gaussian and white,

- The initial state Xg and covariance Py are known.

In the context of DoA tracking, the state vector xj typically includes the direction vector and
possibly its velocity, while observations z; are unit vectors derived from localization algorithms
such as SRP-PHAT.

Although the classical Kalman filter provides a good approach for linear-Gaussian state estimation,
it is not directly suited to DoA tracking in 3D, where the state space is constrained to the unit
sphere and angular velocities lie in the tangent space.

To address these limitations, we adopt the Modified 3D Kalman Filter (M3K) proposed in [98].
M3K extends the classical filter with unit-vector normalization, velocity projection, probabilistic
assignment, and track management, enabling efficient and accurate real-time tracking of one or
multiple concurrent speakers in 3D space.
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5.5.2 Modified 3D Kalman Filter (M3K)
State-Space Model

Each tracked sound source i at frame [ is modeled by a 6-dimensional state vector:

0]
dy
(i |
X, = =
sk S
Sy
_SZ
- d! € R3: direction vector (DoA)
- sé € R3: angular velocity
The prediction follows a constant velocity model:
xé = Fxffl + Wé
Is AT I
F=|” YWl N(0.Q)
03 I3

Where AT = AN/ f; is the frame hop in seconds, and Q is the process noise covariance, applied
to the velocity subspace:

03 03
03 O'Q . 13
Measurement Model
The observations are direction vectors z! € R? (DoAs from SRP-PHAT), modeled as:
I _ l l _ l
Zy = Hxi + Vo, H= |::[3 03} VY N<07R)

Where R = 0%% - Is models measurement uncertainty.

Spherical Normalization and Tangent Projection

Since DoAs must lie on the unit sphere, the predicted direction and velocity vectors are normalized:
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detection-1 track-1
detection-2 track-2
detection-3 track-3
detection-4 track-4

Figure 5.5: Problem of Matching Directional Observations to Source Tracks

d = d;
|

(3

This ensures that (A:l; lies on the unit sphere and §] is tangential.

Detection-to-Track Assignment

Tracking multiple moving sound sources requires not only estimating their instantaneous positions
but also maintaining their identities consistently over time. This introduces the data association
problem: given a set of newly observed directions-of-arrival (DoAs) at each frame, we must deter-
mine which ones correspond to existing tracks, which ones may belong to new sources, and which
should be discarded as spurious detections. Incorrect associations can lead to track switches, ghost
sources, or missed detections, all of which degrade system performance. To address this, we ex-
plore two assignment strategies: a deterministic method based on the Hungarian algorithm, and a
probabilistic Bayesian approach inspired by ODAS.

1. Deterministic (Hungarian Algorithm)

The tracking system must solve a fundamental challenge: determining which observed direction-of-
arrival (DoA) measurement z; corresponds to which existing track d;. This is known as the data
association problem. Our initial implementation addresses this using the Hungarian algorithm, a
classic combinatorial optimization solution.

For N existing tracks and M new DoA observations (M < N in our case), we construct an N x M
cost matrix where each element represents the "dissimilarity" between track ¢ and observation j:

d; is the predicted direction vector for track i (unit vector)

z; is the observed DoA vector (unit vector)

The dot product El;-rzj = cos 0;; measures angular similarity

Cost thus ranges from 0 (perfect alignment) to 2 (opposite directions)
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Developed by Harold Kuhn in 1955 [99], the algorithm solves the assignment problem in O(n?)
time:

1. Row Reduction: Subtract the minimum value in each row.

2. Column Reduction: Subtract the minimum value in each column.

3. Covering: Find the minimum number of lines to cover all zeros.

4. Adjustment: Modify the cost matrix and repeat until optimal assignment emerges.

To prevent implausible associations:
Assignment accepted if(fl;r zZ; >0

where J = 0.8 corresponds to a maximum angular separation of cos™!(0.8) ~ 37°. This rejects:

- Physically impossible rapid speaker movements
- Spurious noise-induced DoAs

- Cross-talk between adjacent sources
While computationally efficient, this deterministic approach has drawbacks:

- No uncertainty modeling: Treats all measurements as equally reliable.
- Fixed population: Assumes the number of sources is known.

- Hard decisions: Thresholding may discard valid associations near the boundary.

2. Probabilistic Bayesian Assignment
To model the association between current observations and known sources in a statistically grounded
manner, we adopt a Bayesian assignment formulation, following the approach in [98].

Let there be V' candidate observations at frame [, denoted as:
W= {l, e}, where gl = (AL, AL

Each observation v, consists of:

- AL: the estimated direction of arrival (e.g., azimuth-elevation pair or 3D unit vector),

- AfJ: the associated energy or confidence measure.

Each observation is assigned to one of the following hypotheses using an assignment function
fo:{1,....,V} = {-2,-1,1,...,I}:

- fg(v) = —2: the observation is a false alarm,
- fg(v) = —1: the observation corresponds to a new, yet untracked source,
- fg(v) =i e {l,...,I}: the observation is associated with existing tracked source 1.
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The full assignment vector is:
fy = [f9(1), f9(2),.... fo(V) € {-2,-1,1,.... 1}
yielding G = (I + 2)V possible assignment configurations.

Likelihood Model
Given o) = (AL, Al), the likelihood under a hypothesis fg(v) is:

PALIT)-POL D) it fg(v) = —2
Py}, | fg(v)) = { P(AL | A)- P(A, | D) if fg(v) = —1
P(Ai’A)P(/\i;‘Cfg(v)) iffg(U)E{l,...,I}

Where:

A denotes the class of active (real) sources,

I denotes inactive or background noise class,

- D is a uniform distribution over the visible hemisphere,

- C; denotes the predicted direction distribution of source ¢ from the Kalman filter.

The energy model is:

v

Al N(pa,0%) if active (source)
N(ur,0?)  if inactive (background)

The spatial likelihood is:
PN, | Ci) = N (MG 1, 5F)

where pt and X! are the predicted mean and covariance from the Kalman filter for source i. For

untracked sources, the likelihood is uniform:
K
POL D)= —
(% 1 D) dr K

where K is the number of candidate directions and K is a normalization constant for hemisphere
coverage.
The total likelihood over all observations is:

1%
P | £,) = [ P& | fe(v))

v=1

Assignment Prior
We define the prior probability of each hypothesis:

Pfalse if fg(U) = -2
P(fg(v)) = Prew if fg(v) =—-1
Ptrack iffg(U)E{l,...,I}

Assuming independence across observations:

P(fy) = [] P(fg(v))
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Posterior Probability
Applying Bayes’ rule:

P(Y' | ) - P(f,)
g1 P(U! | £y) - P(fy)

P(fy | W) =
From this, the marginal probability that observation v belongs to source ¢ is:

G
=Y P(fy | V') - 5[fg(v) — i]

g=1

where 0[] is the Kronecker delta.

Algorithm 7 Bayesian Assignment of Observations to Sources

1: Input: Observations W! = {¢t, ... !} number of sources I

2: Output: Marginal probabilities P(i | 4!) for all sources and observations
3: Generate all assignment functions f, : {1,...,V} —» {-2,-1,1,..., I}

4: for all assignments f, do

5: Compute likelihood P(¥' | f,)

6 Compute prior P(f,)

7 Compute posterior P(f, | ') oc P(V'| f,) - P(f,)

8

9

: end for
. Normalize posterior P(f, | U') over all G assignments
10: for each observation v=1,...,V do
11: for each source 2 =1,...,1 do
2 PG|l e 5y P, |9 () — )
13: end for
14: end for

Kalman Filter Update Equations

For each track ¢, the Kalman gain is:

K. =PH (HP.H' +R)™!

The weighted update becomes:

xt =%l 4+ P9 - Kl(z! — HX))

P! =P. - P(i|¥') - K!HP!

Track Management

Tracks are created when the likelihood P(new|¢f]) > Ohew, and confirmed after a probation time

Nprob- Tracks are removed after Ngeaq frames of inactivity. In our system, we currently track two

sources and perform assignment using the Hungarian algorithm with cosine distance cost:
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Cost(i,j) =1 —d; z;
If cost exceeds threshold & = 0.8, assignment is rejected. This allows clean one-to-one matching
between detections and existing tracks.
Our implementation directly follows the M3K approach described in ODAS [98], with some MATLAB-
specific improvements:
- Unified prediction + projection step,
- Optional exponential smoothing layer,

- Configurable number of tracks and gating thresholds.

5.6 Visualization Module

The visualization module serves both as an evaluation tool and a correction mechanism for the
overall system. It allows real-time inspection of the estimated direction-of-arrival (DoA) outputs,
enabling intuitive assessment of tracking performance, while also compensating for the lack of direct
distance information in the DoA-only framework through image-based cues.

In particular, we integrate monocular visual information using MATLARB’s
vision.CascadeObjectDetector for face detection. This allows us to approximate the speaker’s
depth based on the size of the detected face, providing a rough but effective estimate of the source-
camera distance for proper 3D-to-2D projection. The face detection module runs at a reduced
frame rate (e.g., once every 5 frames) to ensure real-time performance, and the estimated distance
is cached for reuse when no face is detected in subsequent frames.

5.6.1 Camera-Based Overlay

For enhanced situational awareness, we project acoustic tracks onto a co-located camera view. The
geometric calibration ensures accurate spatial registration between acoustic and visual modalities.

5.6.2 Camera Calibration Tools

The system supports calibration through two established frameworks, each offering distinct advan-
tages for audio-visual alignment:

MATLAB Camera Calibrator

The MATLAB Computer Vision Toolbox provides an interactive calibration workflow:

Calibration relies on capturing multiple views of a printed checkerboard pattern, as illustrated in
Figure 5.6, under varied orientations across the field of view.

- Input Requirements:
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o Minimum 10 checkerboard images (recommended 20-30)
o Checkerboard square size must be specified (e.g., 25.4mm)

o Varied orientations covering the field of view
- Key Processing Steps:

1. Corner detection with subpixel refinement:

[imagePoints, boardSize] = detectCheckerboardPoints(imgs);

2. World point generation:

squareSize = 25.4; % mm
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

3. Parameter estimation:

[params, ~, errors] = estimateCameraParameters(...
imagePoints, worldPoints,
’NumRadialDistortionCoefficients’, 3,
’EstimateTangentialDistortion’, true);

- Output Parameters:

o Intrinsic matrix K € R3*3

o Radial distortion coefficients [k, k2, k3]

o Tangential distortion [p1, po]

o Mean reprojection error (typically < 0.5 pixels)

Figure 5.6: Example of a checkerboard used for camera calibration. The square size must be
precisely known and consistently used across multiple views to enable accurate estimation
of intrinsic and extrinsic parameters.
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OpenCV Calibration

For embedded deployments, we provide an alternative calibration pipeline using OpenCV (v4.5+):

- Feature Detection:

ret, corners = cv2.findChessboardCorners(
image, pattern_size,
flags=cv2.CALIB_CB_ADAPTIVE_THRESH +
cv2.CALIB_CB_NORMALIZE_IMAGE)

- Subpixel Refinement:

corners = cv2.cornerSubPix(
gray_image, corners, (11,11), (-1,-1),
criteria=(cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX ITER,
30, 0.001))

- Calibration Routine:
ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(
object_points, image_points,

image_size, None, None,
flags=cv2.CALIB_FIX_PRINCIPAL_POINT)

Table 5.1: Comparison of calibration approaches

Feature MATLAB OpenCV
Distortion Model 3 radial + 2 tangential | 4-5 radial + 2 tangential

Optimization Method | Levenberg-Marquardt | Sparse bundle adjustment

Reprojection Error 0.2-0.5 px 0.3-0.6 px

Microphone-Camera Extrinsic Calibration

The transformation between microphone array and camera coordinates is computed using:

Tmic —_ R t
cam 0 1

where R is estimated via SVD-based point cloud alignment of calibration source positions. For a
set of N known positions {p]*“} and their detected image coordinates {p{*™}:

1. Solve PnP problem:
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success, rvec, tvec = cv2.solvePnP(
mic_positions, image_points, K, dist)

2. Convert rotation vector to matrix:

R, _ = cv2.Rodrigues(rvec)

Validation Protocol:
Calibration quality is verified through:

- Reprojection test: Known sound sources placed at 1m distance should project within £5
pixels of expected positions

- Temporal stability: Repeated measurements should yield < +0.5° variation in azimuth/el-
evation estimates

- Cross-validation: Alternate between MATLAB and OpenCV pipelines

Calibration Protocol:

The calibration process follows Zhang’s method [100] implemented via MATLAB’s Computer Vision
Toolbox:

1. Capture 20 checkerboard images at varying orientations
2. Detect corners with subpixel refinement (o = 0.5px)

3. Solve for intrinsic parameters via maximum likelihood estimation:

Jo 0 c
K=10 f, ¢, withd=[ky,k,p1,p2 ks]
0 0 1

4. Estimate extrinsic microphone-camera transform using known array geometry
Typical reprojection errors remain below 0.3 pixels after nonlinear optimization.
Projection from 3D to 2D
Each unit direction vector d; undergoes transformation:

d;
pi =7 | K[R|t]
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where R € SO(3) and t € R? define the rigid transformation between array and camera coordinate
systems. The perspective division 7([x,y, 2]") = (2/2,y/z) yields image coordinates in normalized
device space.

As illustrated in Figure 5.7, the visualization pipeline combines acoustic DoA tracking with camera-
based projection through a calibrated transformation, providing an intuitive interface for real-time
spatial feedback.

Filtred Azimuth 6 & Depth Estimate Z calculated
Elevation ¢ Angles with face detection

. . Scaling & 3D to 2D ~
Spherical to Cartesian Camera Projection Visualization & 3D

Conversion Projection

Cartesian Image
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Figure 5.7: Schematic overview of the visualization pipeline. The system integrates acoustic
DoA estimates with visual input using geometric calibration. Face detection aids depth
approximation, enabling accurate projection of tracked audio sources onto the image plane
in real time.

sagie Coords
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5.7 Experimental Setup

This section presents the experimental configuration used to validate our real-time direction-of-
arrival (DoA) tracking system. The evaluation is conducted under a controlled single-speaker
scenario to assess the core pipeline components: detection, smoothing, and visual projection.

5.7.1 Hardware Setup

The experimental platform comprises a MiniDSP UMA-16 microphone array and a USB webcam,
both connected to a host computer running MATLAB R2024a. The system is designed for syn-
chronized audio-video acquisition and real-time processing.

Microphone Array: MiniDSP UMA-16

The MiniDSP UMA-16 (shown in 5.8) is a 16-channel USB microphone array arranged in a uni-
form 4 x 4 rectangular configuration with inter-element spacing of 42 mm. It is specifically designed
for spatial audio applications such as beamforming, direction-of-arrival (DoA) estimation, source
separation, and acoustic camera systems. With its compact form factor, high-fidelity MEMS sen-
sors, and plug-and-play USB Audio Class 2.0 support, the UMA-16 is a practical and cost-effective
choice for real-time multichannel audio capture and algorithm development.

At its core, the UMA-16 consists of two tightly integrated subsystems:

- A microphone PCB housing 16 Knowles SPH1668LM4H MEMS microphones, arranged
in a square URA (Uniform Rectangular Array). The board includes a central cutout to
accommodate an optional USB camera, facilitating synchronized audiovisual applications
such as speaker tracking or human-robot interaction.

- An XMOS MCHStreamer Lite board that handles Pulse Density Modulation (PDM) to
Pulse Code Modulation (PCM) conversion and provides USB streaming. This embedded DSP
ensures synchronized audio capture across all channels with 24-bit resolution and sampling
rates up to 48 kHz.

The MEMS microphones exhibit excellent acoustic performance, with a typical SNR of 65dB and
an acoustic overload point of 120dB SPL. The array’s geometry is carefully selected to satisfy the
spatial Nyquist criterion for frequencies up to 4 kHz:

4
__¢ _ 343m/s o s75mm

d< 2 = -
= 2 fmax 2 - 4000 Hz

| >

Thus, the chosen spacing of d = 42 mm avoids spatial aliasing and ensures accurate localization in
the voice frequency range.

The UMA-16 is powered via USB and requires no external supply. It is supported natively on
macOS and Linux and includes a custom ASIO driver for Windows. In MATLAB, it can be
accessed through the audioDeviceReader interface for real-time acquisition.

Key Features:
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16 synchronized MEMS microphones (Knowles SPH1668L.M4H)

USB-powered with 24-bit, 48 kHz multichannel streaming

- Central cutout for USB camera integration

Open hardware schematics and sample MATLAB code available

Table 5.2: UMA-16 v2 USB: Key Technical Specifications

Parameter

Specification

Mic Configuration
Microphones
Sampling Rate
Interface
Supported OS
USB Port
Dimensions
Mounting

Power Supply

4 x 4 URA, 42 mm spacing

16 x SPH1668LM4H (MEMS)

8 to 48kHz (24-bit)

USB Audio Class 2.0 (XMOS Xcore200)
Windows (ASIO), macOS, Linux
Mini-B (data + power)

132 x 202 x 18 mm

4 x M3 threaded holes, front panel

5V USB bus-powered

Figure 5.8: MiniDSP UMA-16 v2 USB microphone array with central camera hole.
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Camera: USB Webcam

A generic USB webcam is physically integrated into the central aperture of the UMA-16 array
(as shown in 5.9. This coaxial alignment ensures that the camera’s optical axis is approximately
colinear with the array’s acoustic axis, thereby simplifying the projection of directional estimates
onto the image plane. The webcam captures video at a resolution of 640x480 pixels, enabling live
visualization of detected source directions.

Host System

The UMA-16 array and the webcam are connected via USB to a laptop running 64-bit Windows
10 and MATLAB R2024a. Audio and video are acquired concurrently using MATLAB’s built-in
toolboxes, facilitating seamless real-time integration.

!
wen
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Figure 5.9: Top view of the UMA-16 array with an integrated webcam at its center, connected
via USB to the processing unit.
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5.7.2 Algorithm Implementation: Single-Source Tracking

Algorithm 8 Real-Time Single-Source DoA Tracking with Camera Overlay

— =
= O

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Initialize: load cfg, microphone positions, TDOA table, SRP grid, camera parameters
Create audio input (audioDeviceReader) and video input (webcam)

Initialize face detector and projection depth Z < 1.0

Set frameCounter < 0

while GUI window is open do

Capture audio frame x and normalize amplitude
Capture video frame [
frameCounter < frameCounter + 1
if voice activity detect(z) then
Compute GCC-PHAT: gcc + compute_gcc(z,cfqg)
Estimate DoA using hierarchical Gaussian SRP:

A A

(0, ¢) < hierarchical_search_gaussian(gce, cfg)
Apply EMA filtering:
(0,0) update_filtered_doa(é, b, ema’)

Convert (6, ¢) to 3D unit vector d
if mod(frameCounter, 5) = 0 then
Resize image: I’ <— imresize(/,0.5)
Detect face: bboxes «— faceDetector(I’)
if face detected then
Estimate depth: Z < fTW using face width w
Clamp Z to [0.4,2.0]
end if
end if
Project Z - d to image plane using worldToImage ()
Clamp pixel coordinates to image bounds
Draw DoA marker and update annotation text
else
Hide marker and display “no speech detected”
end if
Render updated frame to GUI

29: end while

The algorithm proceeds through the following key blocks:

Initialization: Load system configuration, microphone geometry, and TDOA lookup tables. Set

up audio/video devices and camera calibration parameters.

Frame Acquisition: In each loop, an audio frame and a corresponding video frame are acquired

and normalized.

Voice Activity Detection: An energy-based detector filters out silent frames, reducing false pos-

itives and computation.
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Localization (SRP-PHAT): When speech is detected, GCC-PHAT features are computed and
passed to a two-stage hierarchical SRP-PHAT localization block with Gaussian smoothing.

Temporal Filtering: Estimated DoA angles are smoothed using an exponential moving average
(EMA) filter to ensure stability in the overlay.

3D Projection: The DoA vector is converted to camera coordinates and scaled using monocular
depth estimation from face bounding box width, then projected into 2D via worldToImage ().

Visualization: The DoA estimate and face detection results are rendered as overlays on the live
video feed.

5.7.3 System Evaluation

Visual Accuracy:

Qualitatively, the projected DoA marker aligns consistently with the speaker’s face across test
sequences. Figure 5.10 shows a projection without depth correction, where the direction vector
is assumed to lie on a unit sphere. In contrast, Figure 5.11 demonstrates the benefit of face
detection: by estimating the speaker’s distance from the array, the system adjusts the 3D projection
accordingly, improving spatial consistency. When face detection succeeds, the projected point lands
within or near the detected facial bounding box, validating the projection model.

.

Figure 5.10: Example frame showing the DoA marker projected onto the live video stream
without depth correction. The source is assumed to lie on a fixed unit sphere around the
array.
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Figure 5.11: DoA marker projected onto the face-detected region, enabling monocular depth
correction based on the estimated face size. This enhances 3D alignment between the acoustic
source direction and its visual projection.

Timing and Latency:

The system’s runtime performance was measured over multiple frames. With full camera integra-
tion—including monocular face detection for dynamic depth estimation—the average computation
times (in milliseconds) were as follows:

VAD: 0.1 ms

- GCC computation: 20.3 ms (avg)

SRP-PHAT localization: 20.6 ms (avg)
EMA filtering: 0.0 ms (negligible)

Projection: 1.1 ms normally, up to 110 ms when face detection is triggered

- GUI rendering: 9.4 ms (avg)

The total per-frame latency remains below 70-80 ms on average, with rare spikes (140-160 ms)
caused by face detection. To mitigate this, face detection is downsampled and executed only once
every five frames.

Camera-Free Performance. When face detection is disabled (or omitted), the projection
step completes in under 1.2 ms consistently, and total frame latency drops to 45—60 ms. This
confirms that real-time tracking and visualization is maintained even on commodity hardware.
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Table 5.3: Average Module Execution Times (ms) With and Without Camera Projection

Module With Camera | Without Camera
Voice Activity Detection (VAD) 0.1 0.1
GCC-PHAT Computation 20.3 20.3
SRP-PHAT Localization 20.6 20.6

EMA Filtering 0.0 0.0
Projection (avg) 1.1 0.8
Projection (w/ face detection) 93.5 (peak) —

GUI Rendering 9.4 9.1

Total (avg) 52—-80 45-60

The system demonstrates perceptually accurate, low-latency tracking of a single speaker using
real-time audio-visual fusion. Camera-based face detection enables basic depth adaptation without
sacrificing responsiveness, and visual output is stable and aligned. The processing pipeline proves
suitable for live demos or deployment in controlled indoor environments.

5.8 Conclusion

In this chapter, we presented the design and implementation of a complete real-time sound source
localization system based on SRP-PHAT, integrated with a monocular video stream for visual
feedback. The system supports online audio acquisition from a 16-channel microphone array and
overlays the estimated source direction onto a live camera feed using a calibrated projection pipeline.

We first described the signal processing pipeline, which includes voice activity detection, GCC-
PHAT computation, hierarchical SRP-PHAT search, and exponential moving average (EMA) fil-
tering. These modules work in tandem to produce stable azimuth and elevation estimates under
real acoustic conditions. The system further includes face-based monocular depth estimation to
refine the 3D direction vector prior to projection into the image plane. The resulting localization
marker is visually overlaid in real time.

To support accurate projection, we leveraged camera calibration data from an OpenCV routine,
converted into MATLAB’s camera model. The use of face detection every 5 frames, along with
image downsampling, significantly reduces the computational cost of the visual subsystem while still
providing dynamic depth awareness. A fallback mechanism maintains a persistent depth estimate
when no face is detected, ensuring stable visualization.

Performance evaluation showed that the entire system operates within real-time constraints, with
average frame processing times ranging between 50-80 ms. When face detection is triggered,
occasional spikes occur (up to 140-160 ms), but do not compromise responsiveness due to frame
skipping and persistence mechanisms. Visually, the system reliably aligns the estimated source
direction with the speaker’s face in the video stream, confirming the effectiveness of the spatial
localization and projection pipeline.

While we have already implemented and tested beamforming-based source separation in controlled
settings, its integration into the real-time framework remains a future step — particularly in chal-
lenging reverberant environments where its performance can degrade. To address this, we plan to
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incorporate Blind Source Separation (BSS) methods, already developed and validated in simulation,
and fuse them with spatial cues from the DoA tracker.

Overall, this application forms a robust foundation for our project, already providing an effective
and scalable framework for detecting and tracking acoustic sources using cost-effective hardware
like the UM A-16 microphone array. It will serve as a core component in future extensions, including
real-time source separation, adaptive beamforming, and integration into interactive, audio-visual
systems.
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Conclusion

This final project has explored a wide range of techniques in acoustic signal processing with the
goal of developing robust and real-time systems for sound source localization, motion tracking, and
spatial audio enhancement.

We began by investigating a single-microphone method based on Doppler shift analysis for esti-
mating motion parameters such as velocity and altitude. While real-world implementation posed
challenges—particularly in instantaneous frequency (IF) estimation under low signal-to-noise ra-
tios—simulation results validated the proposed closed-form algorithm. This early study laid the
theoretical groundwork for motion sensing with minimal hardware.

The second phase shifted toward multichannel processing using microphone arrays. We imple-
mented and evaluated sound source localization algorithms including generalized cross-correlation
(GCC), steered response power with phase transform (SRP-PHAT), and hierarchical spatial search.
Among these, SRP-PHAT demonstrated robustness under moderate reverberation, confirming its
practical value for indoor environments.

In the area of sound source separation, we tested classical beamforming strategies such as Delay-
and-Sum (DAS), Minimum Variance Distortionless Response (MVDR), and Linearly Constrained
Minimum Variance (LCMV). These methods performed well in simulated anechoic conditions, but
their effectiveness deteriorated in realistic environments due to strong reverberation and overlapping
impulse responses. This limitation was highlighted through offline tests on recorded mixtures of
spatially separated speakers.

To overcome the lack of distance information in direction-only localization, we integrated a monoc-
ular visual subsystem. Using a calibrated webcam and MATLAB’s vision toolbox, we estimated
speaker depth via face detection and implemented 3D-to-2D projection using a pinhole camera
model. The tracked DoAs were successfully projected onto the live video feed, enabling intuitive
visualization and user interaction.

The final system is a modular real-time framework capable of:

Capturing 16-channel audio via the MiniDSP UMA-16 USB microphone array,

Performing hierarchical SRP-PHAT search over azimuth and elevation,

Smoothing DoA estimates using either an EMA+median approach or a Modified 3D Kalman
Filter (M3K),

Projecting tracked directions onto the video feed using calibrated camera parameters,

Visualizing polar localization maps and camera-space overlays in real time.
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With all modules enabled, the system achieves an average frame processing time under 90 ms,
confirming its real-time feasibility on commodity hardware. Without the visual processing, latency
drops below 50 ms per frame.

Future work may extend this platform in several directions:

Integration of multi-speaker tracking via probabilistic data association or clustering,

Deep learning-based enhancement and separation techniques for reverberant scenes,

Blind Source Separation (BSS) integration to handle overlapping speech without known
DoAs,

Deployment on embedded or low-power systems for smart conference rooms or assistive
devices.

This work lays a strong foundation for research and development in spatial auditory processing.
By combining Doppler-based motion estimation, multichannel beamforming, and visual spatial
grounding, we offer a flexible and extensible system design. The result is a prototype platform
that bridges theoretical signal models and practical user-facing applications in audio-visual scene
analysis and interactive listening.
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