RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Ecole nationale polytechnique

Ecole Nationale Polytechnique
Département de Génie Civil

Département de Génie Civil

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Civil

CONCEPTION ET ÉTUDE D'UN PONT FERROVIAIRE MIXTE AU PK 23+550 LIGNE MINIÈRE TEBESSA – ANNABA

Asma BOUTAGHOU & Asma BOUGUENARA

Sous la direction de:

M. Brahim-Khalil BENAZZOUZ

Professeur

Présenté et soutenu publiquement le 24 /06/2025

Composition de jury:

Président : M. Abdelkrim BOURZAM Professeur ENP
Encadrant : M. Brahim-Khalil BENAZZOUZ Professeur ENP
Examinatrice : Mme. Messouada CHERRAK MCA ENP
Invité : M. Toufik SIOUANI Ingénieur SAPTA

Ecole nationale polytechnique

Département de Génie Civil Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Civil

CONCEPTION ET ÉTUDE D'UN PONT FERROVIAIRE MIXTE AU PK 23+550 LIGNE MINIÈRE TEBESSA - ANNABA

Asma BOUTAGHOU & Asma BOUGUENARA

Sous la direction de :

M. Brahim-Khalil BENAZZOUZ

Professeur

Présenté et soutenu publiquement le 24 /06/2025

Composition de jury:

Président:	M. Abdelkrim BOURZAM	Professeur	ENP
Encadrant:	M. Brahim-Khalil BENAZZOUZ	Professeur	ENP
Examinatrice	: Mme. Messouada CHERRAK	MCA	ENP
Invité:	M. Toufik SIOUANI	Ingénieur	SAPTA

A mes très chers parents

'BOUTAGHOU MENOUAR'

'BOUTOUABA FARIDA'

Leurs mérites, leurs sacrifices et leurs qualités humaines m'ont permis d'atteindre ce moment précieux de ma vie. Les mots me manquent pour exprimer toute la reconnaissance, la fierté et l'amour profond que je leur porte. Je prie Dieu de leur accorder une bonne santé et une longue vie.

A mes Frères

'Sidali, Ayoub et Yasser' vous faites partie de ces présences qui rendent la vie plus vivante, plus drôle, plus forte. Merci pour les moments partagés, les souvenirs gravés, et cette relation unique qui ne ressemble à aucune autre. Votre manière d'être, sans artifices, a toujours compté pour moi. Ce travail, je le partage avec vous, de tout cœur.

A mes meilleures amies

'Chiraz, Hidaya, Soumi, Raouia, Kheira, Hiba, Meriem' Merci pour votre présence, votre bonne humeur et tous les moments partagés qui ont embelli ce parcours. Votre amitié sincère a rendu cette aventure plus légère et plus belle Je vous dédie une part de cette réussite avec toute mon affection.

A mon binôme Soumi

Avec qui j'ai partagé chaque étape depuis le début. Merci pour ton engagement, ta rigueur et ta disponibilité tout au long de ce travail. Ensemble, nous avons surmonté les défis et voici le fruit de notre travail.

Entin, Je dédie ce modeste travail à ceux que j'aime.

Aspa

'BOUGUENARA NACEREDDINE'

' MOUHOUB DJAMILA'

Je tiens à dédier ce travail en premier lieu à **mes parents**, pour tout ce qu'ils ont fait pour moi. Leur patience, leurs efforts, leur soutien moral et surtout matériel ont été essentiels à chaque étape de mon parcours. Rien de tout cela n'aurait été possible sans leur présence.

A mes Frères

Djalal, Mohamed, Zakaria, Youcef, Merci à vous quatre pour votre présence constante tout au long de ce parcours. Entre les échanges, les conseils et les moments de détente, vous avez chacun, à votre manière, apporté du soutien et de la légèreté à cette aventure.

Youcef, une pensée particulière pour toi : merci d'avoir toujours été là, même dans les moments les plus compliqués. Ton soutien a vraiment compté.

A mes meilleures amies

Anfel, Besma, Wissal, Asma, Hidaya, Raouia et Khadidja Merci d'avoir été là, tout simplement. Vos sourires, vos remarques spontanées, vos petites distractions au bon moment ont souvent suffi à alléger la pression.

Une mention spéciale à **Anfel**, qui a supporté mes plaintes, mes doutes et mes humeurs pendant cinq ans — merci pour ta patience et ta fidélité.

À mon binôme, ASMA

Merci d'avoir été présente à chaque étape, depuis le début. Ta rigueur, ton engagement et ton soutien ont beaucoup compté. Ce travail, c'est le fruit de nos efforts partagés.

Coupi

Nous tenons avant tout à exprimer notre profonde gratitude à Allah tout-puissant, pour nous avoir guidés tout au long de ces années d'études, et pour nous avoir donné la volonté, la patience et le courage nécessaires pour mener à bien ce travail.

Nous exprimons notre profonde gratitude à nos parents pour leur soutien moral constant, leur amour inconditionnel et leurs encouragements tout au long de notre parcours.

Nous souhaitons remercier sincèrement « M. BENAZZOUZ Khalil Brahim », enseignant à l'Ecole Nationale Polytechnique et notre encadrant, pour nous avoir donné l'opportunité de réaliser ce projet et pour son accompagnement et ses conseils tout au long de ce travail.

Nos remerciements les plus chaleureux vont également à « M. SIOUANI Toufik », ingénieur de SAPTA, pour son engagement et sa disponibilité. Grâce à ses conseils avisés, son expérience et sa pédagogie, il a été un pilier essentiel à l'élaboration et à la réussite de ce mémoire.

Nous adressons enfin nos remerciements aux membres du jury pour l'attention portée à notre travail dans un cadre professionnel.

Et pour conclure, nous tenons à nous féliciter, en tant que binôme, pour tous les efforts fournis, la rigueur et la collaboration dont nous avons fait preuve tout au long de ce mémoire.

ملخص:

يهدف هذا العمل، الذي يندرج ضمن إطار مشروع نهاية الدراسة، إلى تصميم ودراسة جسر يقع بين النقطة الكيلومترية 20+50.00 والنقطة الكيلومترية 23+30.00 أي بطول إجمالي يقدر بـ 150 متر. ويأتي هذا المشروع في سياق إعادة تهيئة وتحديث خط السكة الحديدية المخصصة لنقل المعادن التي تربط بين عنابة وتبسة. تشمل دراستنا الجوانب النظرية والتطبيقية المتعلقة بالجسور، لا سيما تصميم جسر لسكة حديدية، وتخطيطه، وحساب أبعاده، وتحديد العناصر المكونة له مثل الجزء العلوي والأساسات. وقد اعتمدنا على نموذج حسابي قائم على طريقة العناصر المحدودة باستخدام برنامج "ميداس سيفيل". تم إجراء دراسة الحسابات والتحقق منها لهذا الجسر وفقًا للمعايير المعمول بها.

الكلمات المفتاحية : جسر السكة الحديدية، جسر مختلط، البنية التحتية، التجهيزات، جسر ثنائي الروافد.

Abstract:

This work, carried out as part of a final year project, aims to design and study a bridge located between kilometer points 23+550.000 and 23+699.300, with a total length of 150 meters. The project is part of the rehabilitation and modernization of the railway line used for mineral transport between Annaba and Tébessa. Our study covers both theoretical and practical aspects related to bridges, specifically the design of a railway bridge, its layout, the dimensioning of its structural components such as the superstructure and foundations. A calculation model based on the finite element method was used, with the help of the MIDAS Civil software. The study and verification of the calculations for this bridge were carried out in accordance with the applicable standards

Key words: Railway bridge, composite bridge, infrastructure, equipment, double-girder bridge,

Résumé:

Ce travail, réalisé dans le cadre du projet de fin d'études, a pour objectif la conception et l'étude d'un pont situé entre les points kilométriques 23+550.000 et 23+699.300, soit une longueur totale de 150 mètres. Ce projet s'inscrit dans le cadre de la réhabilitation et de la modernisation de la voie ferrée destinée au transport de minerais entre Annaba et Tébessa. Notre étude porte sur les aspects théoriques et pratiques liés aux ponts, notamment la conception d'un pont ferroviaire, sa modélisation, le dimensionnement de ses éléments structuraux tels que le tablier supérieur et les fondations. Pour ce faire, nous avons utilisé un modèle de calcul basé sur la méthode des éléments finis, à l'aide du logiciel MIDAS Civil. L'étude et les vérifications des calculs sur ce pont ont été effectuées conformément aux normes en vigueur.

Mots clés: Pont ferroviaire, pont mixte, infrastructure, équipements, pont bipoutre.

Table Des matières

Liste de	es table	eaux	•••••
Listes d	les fig	ures	•••••
Liste de	es abré	viations	•••••
INTRO	DUC	TION GENERALE	15
I. CHA	PITR	E I : Présentation de projet	17
I.1.	Intro	duction	18
I.2.	Prés	entation de projet	18
I.3.	Don	nées de projet	19
I.3	3.1.	Données Fonctionnelles	19
I.3	3.2.	Données géotechniques	20
I.3	3.3.	Données topographiques	21
I.3	3.4.	Sismicité du site	21
I.3	3.5.	Température	23
I.4.	Cone	clusion	23
II. CH	APITI	RE II : Conception et prédimensionnement	24
II.1.	Intro	duction	25
II.2.	Crite	eres de choix de type d'ouvrage	25
II.3.	Prés	entation des variantes	25
II.4. par p		ante1 « Viaduc à travées Indépendantes à Poutres Préfabriquées précontransion VIPP. »	
II.	4.1.	Conception longitudinale	26
II.	4.2.	Conception transversale	27
II.	4.3.	Critique de la variante	28
II.5.		ante 2 « Pont voussoir en béton précontraint construit par encorbellement	
II.	5.1.	Conception longitudinale	28
II.	5.2.	Découpage des voussoirs	29
II.	5.3.	Conception transversale	29
II.	5.4.	Critique de la variante	30
II.6.	Varia	ante 3 « pont mixte bi poutres »	31
II.	6.1.	Conception longitudinale	31
II.	6.2.	Conception transversale	31
II.	6.3.	Critique de la variante	35
II.7.	Ana	lyse multicritère	35
II.8.	Cone	clusion	36
III.CH	APIT	RE III : Caractéristiques des matériaux	37

III.1.	Introduction	38
III.2.	Normes et règles de calcul	38
III.3.	Caractéristiques des matériaux	38
III.3.	1. Béton	38
III.3.	2. Les aciers	41
III.4.	Conclusion	42
IV.CHAP	ITRE IV : Charges permanentes et surcharges d'exploitation	43
IV.1. P	résentation de trafic ferroviaire	44
IV.2. E	Evaluation des actions	44
IV.2.	1. Surcharges dues au trafic ferroviaire	44
IV.2.2	2. Transmission des charges au structure	46
IV.2.3	B. Effets dynamiques	47
IV.2.4	4. Forces horizontales	47
IV.2.5	5. Actions dues aux variations de température	48
IV.2.6	5. Evaluation des actions hors trafic	49
IV.2.7	7. Actions accidentelles	51
IV.3. C	Groupes des charges	52
IV.4. C	Combinaisons d'actions	53
IV.5. C	Conclusion	54
V.CHAPI	TRE V : Modélisation du tablier	55
.V.1 I	ntroduction	56
V.2. L	ogiciel de calcul	56
V.2.1	. Modélisation	56
V.2.2	. Vue du modèle en 3D	57
V.2.3	. Modélisation des charges et surcharges	57
V.2.4	Résultats obtenus	59
V.3. C	Conclusion	61
VI.CHAP	ITRE VI : Etude de la section mixte	62
VI.1.	Introduction	63
VI.2.	Hypothèses de calcul d'une section mixte	63
VI.2.	1. Caractéristiques géométriques de la section mixte	64
VI.2.	2. Le retrait de béton	68
VI.2.	3. Hypothèse de calcul des contraintes dues aux retraits	70
VI.2.	4. Vérification des contraintes de cisaillement	73
VI.2.	5. Vérification des contraintes normales	73
Etape	es de vérification	73
VI.2.	6. Classe de Résistance des sections	75

V I.2.7.	Résistance en section	75
VI.3. Les	phénomènes d'instabilité élastique :	77
VI.3.1.	Le voilement	77
VI.3.2.	Le déversement	78
VI.4. Etu	de des entretoises	78
VI.5. Les	Connecteurs	79
V I.5.1.	Type des goujons utilisés	79
VI.5.2.	Résistance d'un goujon a tête	80
VI.6. Flè	che maximal	80
VI.6.1.	Contreflèche	81
VI.7. Véi	rification de résonance	82
VI.8. Ass	semblages	85
VI.8.1.	Introduction	85
VI.8.2.	Soudage	85
VI.8.3.	Principe de Soudage	85
VI.8.4.	Types des soudures	85
VI.8.5.	Calcul des soudures	87
VI.8.6.	Cordons entre âme et semelle d'une poutre PRS	87
VI.8.7.	Soudage des entretoises	88
VI.8.8.	Nettoyage des Soudures	89
VI.9. Etu	de de la dalle	89
VI.10. Cal	cul des moments	90
VI.10.1.	Dalle centrale	90
VI.10.2.	Dalles en encorbellements	92
VI.10.3.	Ferraillage de la dalle	93
VI.11. Con	nclusion	96
VII.CHAPITI	RE VII : Etude sismique	97
VII.1. Intr	oduction	98
VII.2. App	pareils d'appuis	98
VII.2.1.	Evaluation des efforts normaux appliqués sur les appareils d'appuis.	98
VII.2.2.	Dimensionnement des Appareils d'Appuis	98
VII.2.3.	Aire de l'appareil d'appui	99
VII.2.4.	Calcul de l'épaisseur de l'appareil d'appui Tb	
VII.2.5.	Evaluation des efforts horizontaux	100
VII.2.6.	Vérification de dimensionnement	102
VII.2.7.	Dés d'appuis	
VII.3. Eva	luation de raideur du système	107

VII.4.	Cal	cul sismique	. 107
VII.5.	Ana	llyse spectrale monomodale	. 108
VII.5	.1.	Domaine d'application	. 108
VII.5	.2.	Evaluation des efforts sismiques longitudinaux	. 108
VII.5	.3.	Evaluation des efforts sismiques transversaux	. 110
VII.5	.4.	Composante verticale du séisme	. 111
VII.6.	Cor	nbinaison des composantes de l'action sismique	. 111
VII.7.		iclusion	
VIII.CHA	APIT	RE VIII : Etude de l'infrastructure	. 114
VIII.1.	Intr	oduction	115
VIII.2.	Etuc	de de la culée	115
VIII.2	2.1.	Caractéristiques de la culée	115
VIII.2	2.2.	Evaluations des efforts	116
VIII.2	2.3.	Calcul des sollicitations	117
VIII.2	2.4.	Calcul sismique du la culée	. 120
VIII.2	2.5.	Calcul des réactions des pieux	. 121
VIII.2	2.6.	Ferraillage des pieux	. 122
VIII.2	2.7.	Ferraillage de la semelle	. 124
VIII.2	2.8.	Ferraillage du mur frontal	. 127
VIII.2	2.9.	Ferraillage du mur garde grève.	. 128
VIII.2	2.10.	Ferraillage mur en retour	. 130
VIII.3.	Etuc	de de la pile	. 131
VIII.3	3.1.	Caractéristiques de la pile étudiée	. 132
VIII.3	3.2.	Poids de pile	. 132
VIII.3	3.3.	Evaluation des efforts de surcharges	. 132
VIII.3	3.4.	Vérification de la portance de sol	. 134
VIII.3	3.5.	Calcul sismique de la pile	. 134
VIII.3	3.6.	Calcul des réactions des pieux	. 134
VIII.3	3.7.	Ferraillage des pieux	. 135
VIII.3	3.8.	Ferraillage de la semelle	. 135
VIII.3	3.9.	Vérification de poinçonnement semelle-pieu	. 137
VIII.3	3.10.	Ferraillage de pile type creuse	. 137
VIII.3	3.11.	Vérification de flambement de fut	. 138
VIII.3	3.12.	Ferraillage de chevêtre	. 140
		clusion	
CONCLU	JSIO	N GENERALE	. 141
BIBLIOG	GRAI	PHIE	. 143
ANNEXE	S		145

Liste des tableaux :

Tableau I-1 : Classification des ponts selon R.P.O.A 2008.	
Tableau I-2 : Coefficient d'accélération de zone 'A' selon R.P.O.A 2008	22
Tableau II-1 : Dimensions de la section transversale selon VIPP	
Tableau II-2 : Découpage des voussoirs	29
Tableau II-3 : Dimensions de la section transversale de variante 2.	30
Tableau II-4 : Dimensions de la section transversale de variante 3.	32
Tableau II-5: Analyse des sections	33
Tableau II-6: Dimensions des entretoises	34
Tableau II-7: Analyse des variantes.	36
Tableau IV-1 : Valeurs caractéristiques des charges verticales pour les schémas des charge	es SW/0 et
SW/2	45
Tableau IV-2: Poids des poutres	
Tableau IV-3: Actions permanentes CP	
Tableau IV-4 : Les compléments des charges permanentes CCP.	51
Tableau IV-5 : Les groupes des charges.	53
Tableau V-1: Les combinaisons de charges.	61
Tableau VI-1 : Valeurs de coefficient d'équivalence n en fonction de charge appliquée	63
Tableau VI-2 : Caractéristiques géométriques des sections	64
Tableau VI-3 : Calcul de largeur efficace de la dalle sur appui	65
Tableau VI-4 : Calcul de largeur efficace de la dalle à mi travée	
Tableau VI-5 : Récapitulatif de la section mixte 3.	67
Tableau VI-6 : Récapitulatif des contraintes dues aux retrait et température de section3 à n	ni-travée.
	72
Tableau VI-7:Les résultats des contraintes à mi- travée.	<i>75</i>
Tableau VI-8: Classe de résistance des sections	
Tableau VI-9: Paramètre dépendant de la nuance d'acier $(t \le 40 \text{ mm})$	
Tableau VI-10: récapitulatif des moments fléchissant	
Tableau VI-11 : Vérification résistance au non poinçonnement de la dalle	
Tableau VII-1: Dimensions d l'appareil d'appui	100
Tableau VII-2:Efforts horizontaux dus au tablier	101
Tableau VII-3: récapitulatif des efforts dynamiques	102
Tableau VII-4: Vérifications des appareils d'appui	102
Tableau VII-5 : Raideurs longitudinales et transversales des appuis.	107
Tableau VII-6: Force et le déplacement dans la direction longitudinale	110
Tableau VII-7: force et déplacement dans la direction transversale	111
Tableau VII-8: calcul de la réaction verticale	111
Tableau VII-9: Les composantes sismiques	112
Tableau VIII-1: Récapitulatif de caractéristiques des différents éléments de la culée	115
Tableau VIII-2: Tableau récapitulatif des sollicitations dû au poids propres	117
Tableau VIII-3: récapitulatif des sollicitations des surcharges ferroviaires	119
Tableau VIII-4 : Extrait de tableau des combinaisons de la culée a l'ELU	119
Tableau VIII-5 : Extrait de tableau des combinaisons de la culée a l'ELS	120
Tableau VIII-6: Récapitulatif des sollicitations dû au poids propre en cas d'un séisme	121
Tableau VIII-7 : Valeurs de Rmax et Rmin selon chaque état limite	122
Tableau VIII-8 : Vérifications des efforts des pieux.	122
Tableau VIII-9: calcul d'effort tranchant	123
Tableau VIII-10: Calcul des armatures transversales des pieux.	124
Tableau VIII-11 : Récapitulatif de calcul des moments de semelle	124
Tableau VIII-12:Les moments de mur en retour	

Tableau	VIII-13 : Poids de la pile	132
Tableau	VIII-14: Détails de calcul de réaction de surcharge UIC sur pile	133
Tableau	VIII-15 : détails de calcul de surcharge SW2 sur pile	133
Tableau	VIII-16: Les efforts de surcharges ferroviaires.	133
Tableau	VIII-17: Extrait du tableau de combinaison a l'ELU	134
Tableau	VIII-18 : Extrait de tableau de combinaison a l'ELS	134
Tableau	VIII-19: sollicitations dû aux poids propre de la pile en cas de séisme	134
Tableau	VIII-20 : Réactions des pieux	135
Tableau	VIII-21: Sollicitation sur semelle	135
Tableau	VIII-22 : sollicitations sur pile	138

Listes des figures :

Figure I-1: Situation de projet sur google earth.	
Figure I-2:Tracé en plan	
Figure I-3 : Profil en traverse	
Figure I-4: Profil en long	20
Figure I-5: Carte topographique (SAPTA)	
Figure I-6 : Carte de zonage sismique en Algérie selon R.P.O.A 2008	22
Figure I-7: Température de TEBESSA	
Figure II-1: Morphologie générale d'un pont a poutre en béton précontraint	26
Figure II-2 : Schéma de variante 1 : pont VIPP	26
Figure II-3: Dimensions des sections des poutres de variante 1	28
Figure II-4: Schéma de variante2: pont voussoir en béton précontraint	
Figure II-5: Notations en dimensions	
Figure II-6: Schéma de variante 3 : pont mixte bi poutre	
Figure II-7: Dimensions des différentes sections de poutre	
Figure II-8: Console en porte a faux	
Figure II-9: Un goujon	
Figure III-1 : Diagramme parabole rectangle de béton	
Figure III-2 : Diagramme contrainte-déformations des armatures	
Figure IV-1 : Modèle de charges UIC71 et valeurs caractéristiques pour les charges verticales	
Figure IV-2 : Schéma de charge SW/0 et SW/2	
Figure IV-3 : Schéma de charges train à vide	
Figure IV-4 : Répartition due au ballast et aux deux rails	
Figure IV-5 : Répartition due au ballast et au deux rails	
Figure IV-6: Rails UIC60	
Figure IV-7: Charges équivalente qA1d	
Figure IV-8 : Charge équivalente qA2d	
Figure V-1: Logiciel MIDAS CIVIL 2022	
Figure V-2: Vue de model en 3D	
Figure V-3: Charges de Ballast	
Figure V-4 : Charges des rails et traverses	
Figure V-5: Charges de corniche et garde-corps	
Figure V-6 : Charges de température	
Figure V-7 : Affectation des charges type SW/2 et UIC71	
Figure V-8: Moment fléchissant max a l'ELU	
Figure V-9: Moment fléchissant max à l'ELS	
Figure V-10: Effort tranchant max a l'ELU	
Figure V-11 : Effort tranchant max a l'ELS	
La figure VI-1 montre les dimensions des trois sections de la poutre :	
Figure VI-3 : Définition de la largeur efficace.	
Figure VI-4: Calcul de largeur efficace selon l'Eurocode 4.	
Figure VI-5 : Caractéristiques géométriques de section mixte	
Figure VI-6 : Effets de retrait de béton dans la section mixte	
Figure VI-7:charge sur entretoise d'about	
Figure VI-8: vérification PRS 1500	
Figure VI-9: vérification HEB 800	
Figure VI-10: flèche sous poids propre.	
Figure VI-11: flèche sous CCP.	
Figure VI-12: l'intervalle des fréquences propres	82

Figure VI-13: tablier sous flexion	83
Figure VI-14: niveau de confort en fonction de l'accélération vertical	83
Figure VI-15: accélération verticale avec V=120km/h	84
Figure VI-16: Accélération verticale avec V=200km/h	84
Figure VI-17: Assemblage bout à bout	85
Figure VI-18: Assemblage en T	85
Figure VI-19: Liaison d'âme.	86
Figure VI-20 : Détails de soudure de semelle supérieure	86
Figure VI-21: Gorge d'une soudure d'angle	87
Figure VI-22: Vue en plan de la dalle	89
Figure VI-23 : Schéma statique de la dalle	89
Figure VI-24: Moment Ma et Mb au centre de dalle	90
Figure VI-25 : Répartition des charges UIC sur 2 bandes de largeurs	91
Figure VI-26: moment de la dalle centrale	91
Figure VI-27: dalle en encorbellement sous charges permanentes	92
Figure VI-28: Moment de la dalle en encorbellement	92
Figure VI-29 : Dalle en encorbellement sous la surcharge de trottoir	92
Figure VI-30 : Schéma de situation de déraillement	94
Figure VI-31: Ferraillage dalle centrale - dalle en encorbellement	96
Figure VII-1 Schéma d'appareil d'appui	98
Figure VII-2 : Appareil d'appui avec taquets d'arrêt	105
Figure VII-3: Joint sous ballast	106
Figure VII-4 : Séisme longitudinal	108
Figure VII-5:Spectre de réponse verticale	112
Figure VII-6 : Spectre de réponse horizontale	
Figure VII-7: Déplacement dans la direction Ex.	113
Figure VII-8: Déplacement dans la direction Ey	113
Figure VIII-1 : Schéma de la culée	116
Figure VIII-2: modélisation de pieu sur robot	122
Figure VIII-3: Valeurs des moments sur pieu a l'ELU, l'ELA, l'ELS	123
Figure VIII-4 : Ferraillage des pieux sous culée	124
Figure VIII-5: Files 1 et 3 des pieux	125
Figure VIII-6 : Ferraillage de semelle sous culée	126
Figure VIII-7: Ferraillage mur frontal	127
Figure VIII-8 : Ferraillage mur garde-grève	129
Figure VIII-9: Moment Myy a l'elu	130
Figure VIII-10: Moment Mxx a l'ela	130
Figure VIII-11 : Ferraillage mur en retour.	131
Figure VIII-12 : Schéma de la pile	132
Figure VIII-13 : Schéma de surcharge UIC 71 sur pile	133
Figure VIII-14 : schéma de surcharge SW2 sur pile	133
Figure VIII-15: Ferraillage semelle sous pile.	136
Figure VIII-16: Ferraillage pile creuse	138

Liste des abréviations :

CP: charges permanentes.

CCP: charges complémentaires permanentes.

SETRA: Service d'études techniques des routes et autoroutes.

BAEL: Béton armé aux Etats limites.

HA: Haute adhérence.

B : Aire d'une section de béton.

 E_{ij} : Module de Young instantané à l'âge de j jours.

 E_{vj} : Module de Young différé à l'âge de j jours.

PRS: profilé reconstitué soudé.

fe: Limite d''élasticité de l'acier.

 γ_s : Coefficient partiel de sécurité sur l'acier.

 γ_b : Coefficient partiel de sécurité sur le béton.

 h_w : hauteur de l'âme.

 t_w : épaisseur de l'âme.

 t_i : épaisseur de la semelle inférieure.

 t_s : épaisseur de la semelle supérieure.

 b_i : largeur de la semelle inférieure.

 b_s : largeur de la semelle supérieure.

n : Coefficient d'équivalence acier-béton.

 b_{eff} : largeur efficace de la dalle.

RPOA: Règles Parasismiques applicables au domaine des Ouvrages d'art.

Ex : composante longitudinale de séisme.

Ey: composante transversale de séisme.

Ez: composante verticale de séisme.

INTRODUCTION GENERALE

Introduction générale

Le projet de fin d'études constitue l'aboutissement du parcours de formation en ingénierie, en offrant l'opportunité de mettre en pratique les connaissances théoriques et techniques acquises au cours des cinq années d'études. Dans ce cadre, nous avons opté pour un projet portant sur la conception et l'étude d'un pont ferroviaire, afin de renforcer nos compétences dans ce domaine spécifique.

Un pont est un ouvrage d'art conçu pour franchir un obstacle, qu'il soit naturel (tels qu'une vallée, un oued ou une rivière) ou artificiel (comme un barrage ou une autre infrastructure de transport). L'étude d'un pont requiert une attention particulière, en raison de son importance non seulement sur le plan technique, mais aussi pour ses dimensions esthétiques, socio-économique et stratégique. Le dimensionnement d'un pont est un travail de synthèse intégrant plusieurs disciplines, telles que la statique, la dynamique, la résistance des matériaux, et le calcul des fondations.

Dans ce cadre, une nouvelle ligne ferroviaire minière qui va relier Djebel El Onk et la gare de Tébessa sur un tronçon de 107 km. Cette ligne compte un pont rail au PK 23+550.00, qui fera l'objet de notre projet de fin d'études, dont l'intitulé est « Conception et étude d'un pont ferroviaire mixte au PK23+550.00 ligne minière Tébessa – Annaba ».

Notre travail est organisé de la manière suivante :

Après une brève introduction générale, nous traiterons les huit chapitres suivants :

Chapitre 01: Présentation du projet.

Chapitre 02: Conception et Prédimensionnement.

Chapitre 03 : Caractéristiques des matériaux.

Chapitre 04: Charges permanentes et surcharges d'exploitation.

Chapitre 05 : Modélisation de tablier.

Chapitre 06: Etude de la section mixte.

Chapitre 07: Etude sismique.

Chapitre 08 : Etude de l'infrastructure.

Et on finira par une conclusion générale.

CHAPITRE I PRESENTATION DE PROJET

I.1. Introduction:

La région de Tébessa, dotée d'importantes ressources minières, a besoin d'infrastructures de transport robustes et performantes pour favoriser son essor économique. Dans cette optique, la réalisation d'un pont ferroviaire entre les points kilométriques PK 23+550.000 et PK 23+699.300 sur la ligne minière de Tébessa (Tenoukla) constitue un projet d'envergure stratégique. Ce pont vise à optimiser la logistique du transport des minerais, en réduisant les coûts opérationnels, en renforçant la sécurité et en améliorant l'efficacité globale du réseau de transport.

Pour répondre efficacement aux besoins de franchissement et de performance, la conception d'un pont doit prendre en compte plusieurs exigences fonctionnelles, comme les données du tracé ferroviaire ou routier, ainsi que les contraintes naturelles liées à son environnement. Il est également essentiel d'aligner ces éléments avec les attentes et les exigences du maître d'ouvrage afin d'assurer une réalisation adaptée et optimale.

I.2. Présentation de projet :

Le projet est localisé sur la ligne ferroviaire minière qui relie Annaba à Bled El Hedba, en traversant Bouchegouf, Tébessa et Djebel ONK. Il se concentre plus spécifiquement sur un tronçon de 43 km conçu pour contourner la ville de Tébessa jusqu'à Tenoukla. L'emplacement du projet se situe au chef-lieu de Tenoukla, dans la wilaya de Tébessa. L'ouvrage d'art prévu sera implanté au point kilométrique PK 23+550.000. La figure I-1 présente la situation d'ouvrage d'art sur google earth.

Figure I-1: Situation de projet sur google earth.

I.3. Données de projet :

I.3.1. Données Fonctionnelles :

Ces informations représentent l'ensemble des caractéristiques nécessaires pour que le pont puisse remplir sa fonction d'ouvrage de franchissement dès sa mise en service. Elles se divisent en deux catégories principales :

- Les données liées à la voie portée, incluant le tracé en plan, le profil en long et le profil en travers.
- Les données relatives à l'obstacle à franchir.

I.3.1.1. Tracé en plan:

Les caractéristiques du tracé en plan de l'axe principal de l'ouvrage sont :

• Du PK 23+550.000 au PK 23+699. 300 : alignement droit de longueur L= 150 m.

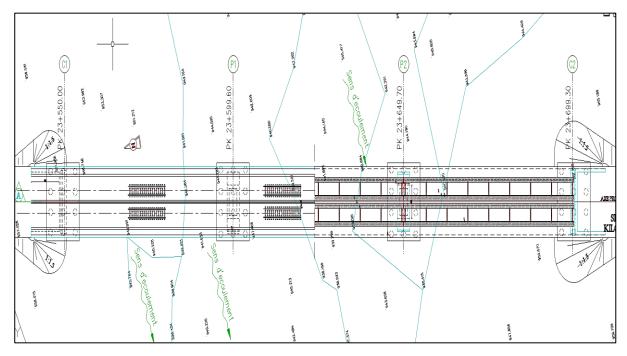


Figure I-2: Tracé en plan

I.3.1.2. Profil en travers:

Le profil en travers (Figure I-3) est l'ensemble des éléments qui définissent la géométrie et les équipements de la voie dans le sens transversal :

La largeur totale: 12.6 m

Nombre des voies : 2.

Ecartement des rails : 1.50 m.

Pente transversale en toit : 1%.

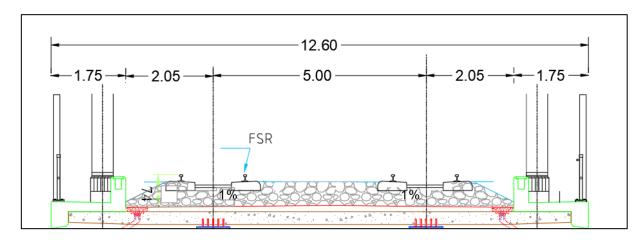


Figure I-3: Profil en travers

I.3.1.3. Profil en long:

Le profil en long de l'axe de roulement définissant en élévation le tracé en plan, c'est en fonction des paramètres liés aux contraintes fonctionnelles de l'obstacle à franchir ou aux contraintes naturelles que l'on définit le profil en long. Le profil en long de notre ouvrage présente un dévers constant de 1%. En partant de PK 23+550.000 au PK 23+699.300 (Figure I-4).

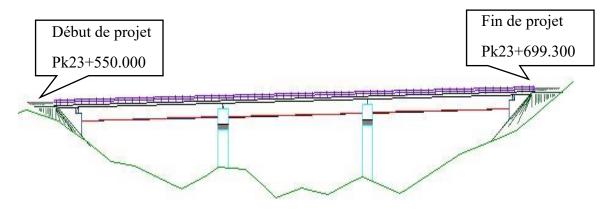


Figure I-4 : Profil en long

I.3.2. Données géotechniques :

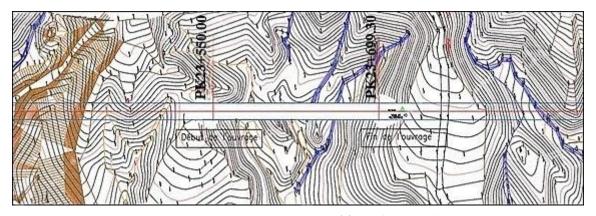
Les investigations géotechniques, qu'elles soient effectuées in situ ou en laboratoire, sont indispensables à tout projet de génie civil. Elles permettent de caractériser précisément les sols et d'évaluer leurs propriétés physiques et mécaniques, essentielles aux calculs de dimensionnement. Ces études se répartissent en deux grandes catégories :

Les essais in situ :

Sondages carottés selon la norme XP 94-202 : Deux (02) sondages carottés d'une profondeur d'investigation de **30.00 m** ont été réalisés, dont les sondages sont équipés par des tubes piézométriques. Les échantillons prélevés sont soumis aux différents essais en laboratoire.

Les résultats des sondages proviennent du rapport géotechnique réalisé par le Laboratoire National de l'Habitat et de la Construction (LNHC). Ce rapport a été commandé par la SAPTA afin de mener l'étude géotechnique du terrain destiné à la construction de l'ouvrage d'art.

> Les essais au laboratoire :


Les échantillons de sol prélevés des sondages carottés ont été soumis aux essais classiques de laboratoire à savoir :

- ✓ Essais physiques : analyse granulométrique, limites d'Atterberg.
- ✓ Essais mécaniques : essai de cisaillement, essai odométrique.
- ✓ Analyses chimiques de sols, sulfates, chlorures, carbonates.

Le sol a été classifié selon le règlement RPA 2003, dans la catégorie S2 (site ferme).

I.3.3. Données topographiques :

Il convient de disposer d'un levé topographique aussi précis que possible, avec l'indication des repères de niveau. Le site de notre projet se trouve selon la carte géographique dans la wilaya de TEBESSA.

Figure I-5: Carte topographique (SAPTA)

I.3.4. Sismicité du site :

Le Règlement Parasismique Algérien des Ouvrages d'Art (R.P.O.A 2008) a défini des normes basées sur l'intensité de l'action sismique d'une région, afin de prendre en compte la probabilité de survenue d'un séisme dans une zone d'étude.

La zone est classée comme étant de sismicité faible « zone I ». Figure I-6 est la carte de zonage sismique en Algérie selon R.P.O.A2008.

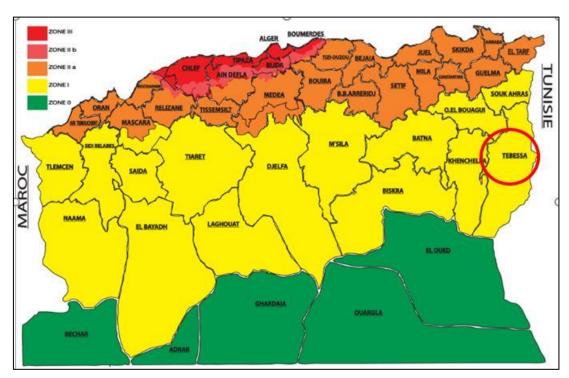


Figure I-6: Carte de zonage sismique en Algérie selon R.P.O.A 2008

 Les ouvrages d'art de cette ligne sont à reporter au Groupe 1 (Ponts stratégique) vu que la liaison constitue une « Liaisons ferroviaires », la classification des ponts est donnée par RPOA2008 (tableau I-1)

Tableau I-1: Classification des ponts selon R.P.O.A 2008.

Groupe de pont	Importance	
Groupe 1	Pont stratégique	
Groupe 2	Pont important	
Groupe3	Pont d'importance moyenne	

• Le coefficient d'accélération de la zone à considérer est A = 0,15 conformément au règlement R.P.O.A 2008

Tableau I-2: Coefficient d'accélération de zone 'A' selon R.P.O.A 2008

Groupe de	Zone sismique			
pont	I	IIa	IIb	III
1	0.15	0.25	0.30	0.4
2	0.12	0.20	0.25	0.30
3	0.10	0.15	0.20	0.25

I.3.5. Température :

La période de forte chaleur s'étend sur trois mois, du 10 juin au 8 septembre, avec des températures maximales quotidiennes dépassant les 30 °C. Juillet est le mois le plus chaud de l'année, affichant des températures moyennes de 34 °C en journée et 19 °C la nuit.

À l'inverse, la saison fraîche dure environ 3,9 mois, du 18 novembre au 15 mars, avec des températures maximales inférieures à 16 °C. Janvier est le mois le plus froid, avec des moyennes de 12 °C en journée et 2 °C la nuit.

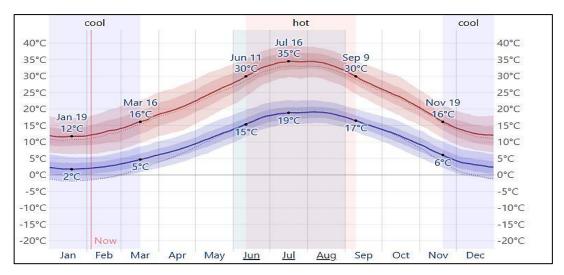


Figure I-7: Température de TEBESSA.

I.4. Conclusion:

Le pont sert à franchir un obstacle naturel, dans ce chapitre nous avons présenté la situation géographique du projet, les données naturelles, ainsi que les données relatives au tracé ferroviaire à savoir : le profil en long, tracé en plan et le profil en travers. Afin de pouvoir proposer par la suite les variantes les mieux adaptées au site.

CHAPITRE II CONCEPTION ET PREDIMENSIONNEMENT

II.1. Introduction:

La conception d'un pont résulte, le plus souvent, d'une démarche itérative dont l'objectif est l'optimisation technique et économique de l'ouvrage de franchissement projeté vis-à- vis de l'ensemble des contraintes naturelles et fonctionnelles imposées, tout en intégrant un certain nombre d'exigences de qualité architecturale ou paysagère. L'étude d'un projet est conduite par un ingénieur expérimenté, possédant une bonne connaissance des divers types d'ouvrages, de leur prédimensionnement et de leurs sujétions d'exécution, et capable d'une hardiesse réfléchie dans la recherche de solutions à la fois économiques et originales lorsque se posent des problèmes de complexité inhabituelle.

II.2. Critères de choix de type d'ouvrage :

Le choix du type d'ouvrage repose sur plusieurs critères essentiels, permettant d'assurer à la fois sa faisabilité technique et sa rentabilité économique. Parmi ces critères, on retrouve :

- L'aspect économique et la faisabilité de l'exécution.
- L'implantation et la disposition des appuis.
- Le tracé en plan ainsi que le profil en long de la voie portée.
- La fonction et l'utilité de l'ouvrage.
- La configuration géométrique des appuis par rapport à l'axe de l'ouvrage.
- La nature du sol en fond de cours d'eau ou de rivière.
- Les conditions topographiques et géotechniques du site.
- La hauteur disponible sous l'ouvrage.
- Le coût du tablier et des remblais d'accès.

Cette analyse permet d'orienter le choix vers une solution optimale, répondant aux exigences structurelles, environnementales et économiques du projet.

II.3. Présentation des variantes :

On a opté pour trois variantes les mieux adaptées de notre point de vue, qui sont :

- Variante 1 : Viaduc à travées Indépendantes à Poutres Préfabriquées précontraintes par post-tension VIPP.
- ➤ Variante 2 : Pont voussoir construit par encorbellements successifs.
- ➤ Variante 3 : Pont mixte bi-poutre.

II.4. Variante1 « Viaduc à travées Indépendantes à Poutres Préfabriquées précontraintes par post-tension VIPP. » :

Les ponts à poutres précontraintes de type VIPP (Viaduc à travées Indépendantes à Poutres Préfabriquées précontraintes par post-tension) font partie de la famille des ponts à poutres sous chaussée en béton. Le procédé de la poste tension consiste à tendre les câbles de précontrainte, après coulage et durcissement du béton. Cette technique est utilisée pour les ouvrages importants est, généralement, mise en œuvre sur chantier.

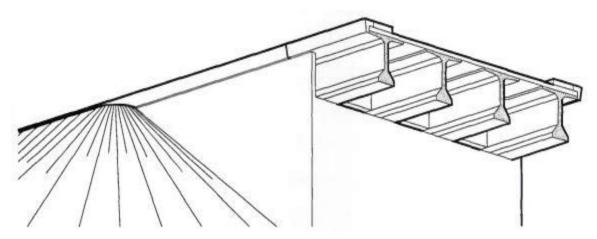


Figure II-1: Morphologie générale d'un pont a poutre en béton précontraint

II.4.1. Conception longitudinale:

Le domaine d'emplois de telle structure correspond à des portées optimales de 30 à 40 m. pour cette variante on propose un pont de 4 travées isostatiques à poutres précontraintes de 37.5m avec une longueur totale de tablier de 150m.

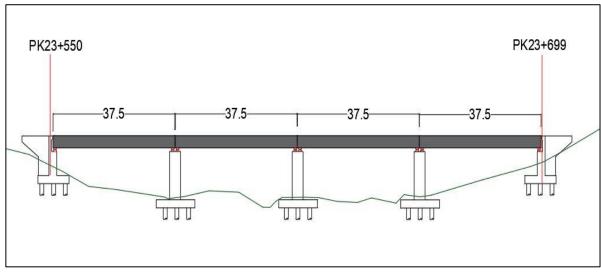


Figure II-2 : Schéma de variante 1 : pont VIPP

II.4.2. Conception transversale:

Le prédimensionnement a été fait selon le guide de conception (SETRA : pont a poutre préfabriquées précontraints par post tension VIPP,1996), le tableau II.1 présente les détails de prédimensionnement de la section transversale de cette variante.

Tableau II-1: Dimensions de la section transversale selon VIPP.

L'élément	Ration usuel	Valeur retenu
Longueur de poutre	35-40m	37.5m
Hauteur totale de tablier	$\frac{l}{20} < H_t < \frac{l}{17}$	2.2 <i>m</i>
Epaisseur de la dalle	20 < e < 30cm	20 <i>cm</i>
Hauteur de poutre	$H_p = H_t - e$	2 <i>m</i>
Entraxe des poutres	$1.4 < \lambda < 2m$	1.75 <i>m</i>
Entraxe des poutres de rive 'La'	/	10.5
Nombre des poutres	$N = \frac{La}{\lambda} + 1$	7 poutres
Largeur de table de compression	$b > 0.6 \times H_p$	b = 1.2m
Épaisseur de table de compression	e > 10cm	e = 15cm
Largeur de talon	$60 < b_t < 90cm$	$b_t = 60cm$
Épaisseur de talon	$10 < e_t < 20cm$	$e_t = 20cm$
Epaisseur de l'âme b0 à mi-travée	b0 > 3Ø gaine de précontrainte	30 <i>cm</i>
Epaisseur de l'âme b0 en zone d'about	b0 > 30cm	50 <i>cm</i>
Epaisseur d'entretoise	25 < e < 30cm	e = 0.3m
Hauteur d'entretoise	$H_p - 0.8$	1.2 <i>m</i>

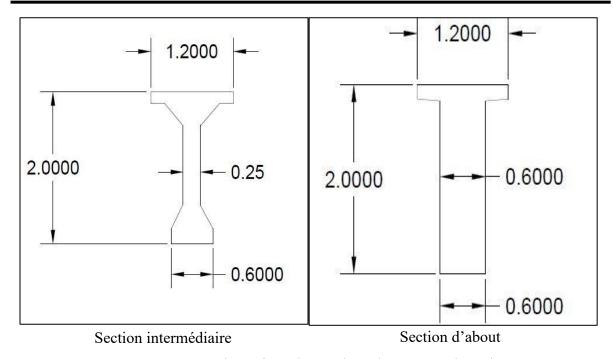


Figure II-3: Dimensions des sections des poutres de variante 1

II.4.3. Critique de la variante :

Les avantages sont :

- -La préfabrication permet d'éviter l'encombrement des échafaudages gênant, souvent le fonctionnement du chantier.
- -Facilité d'étude et d'exécution.
- -La possibilité d'avoir n'importe quelle forme grâce au béton.

Les inconvénients sont :

- -La multiplication du nombre des appuis nuit à l'esthétique et au coût total de l'ouvrage.
- -La portée de ce type d'Ouvrage limitée à 50 m.
- -Le coût des joints de chausses de liaison de travée (cout d'entretien et cout initiale).
- -Poids très important

II.5. Variante 2 « Pont voussoir en béton précontraint construit par encorbellements successifs » :

Ce mode de construction consiste à exécuter l'essentiel du tablier d'un pont sans cintres ni échafaudages au sol, en opérant par tronçons successifs dénommés voussoirs, chacun de ces éléments étant construit en encorbellement par rapport à celui qui le précède. Après exécution d'un voussoir, les câbles de précontrainte qui aboutissent à ses extrémités sont mis en tension, ce qui permet de les plaquer contre les voussoirs précédents et de constituer ainsi une console autoporteuse pouvant servir d'appui pour la suite des opérations.

II.5.1. Conception longitudinale:

Pour cette variante nous proposons un pont composé de trois travées, la principale travée est de 70 m de longueur et celles de rive sont de 40 m (presque 60% de la travée principale)

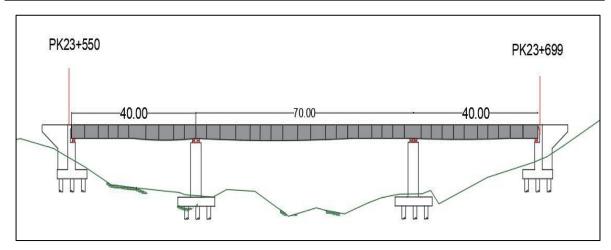


Figure II-4 : Schéma de variante2 : pont voussoir en béton précontraint

II.5.2. Découpage des voussoirs :

D'après le guide (SETRA pont en béton précontraint construits par encorbellement successifs,2003) pour un ouvrage dont les voussoirs coulés sur place, on distingue 3 types de voussoirs :

Type de voussoir	Ration usuel	Valeur retenue	Nombre de voussoirs
Voussoirs courants	2.5 a 4m	3m	44
Voussoirs sur pile	7 à 9m	8m	2
Voussoirs de	1.5 à 2.5	2m	1

Tableau II-2 : Découpage des voussoirs

En utilisant ce découpage on obtient un nombre total de voussoirs N = 47.

II.5.3. Conception transversale:

Le prédimensionnement est basé sur le guide (SETRA pont en béton précontraint construits par encorbellements successifs,2003).

La fig. II-5 définit les différentes notations des dimensions de la section transversale de caisson. Le tableau II-3 présente les détails de prédimensionnement de la section transversale de cette variante

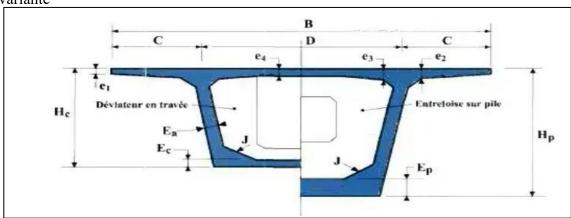


Figure II-5: Notations en dimensions

Tableau II-3: Dimensions de la section transversale de variante 2.

L'élément		Ration usuel	Valeur retenu
Largeur de voussoir		В	12.6m
Largeur d'encorbellement		C = B/4	3.15 <i>m</i>
Entraxe des âmes		D = B - 2C	6.3 <i>m</i>
	e1	<i>e</i> 1 ≥ 24 <i>cm</i>	0.25m
Epaisseur de l'hourdis	e2	$C/8 \le e2 \le C/7$	0.45m
supérieur	e3	$e3 = 0.1 + \frac{D}{25}$	0.4 <i>m</i>
	e4	$e4 = \frac{D}{25}$	0.25 <i>m</i>
L'inclinaison des âmes		10% < <i>a</i> < 30%	15%
Gousset supérieur		$30^{\circ} \le \alpha \le 45^{\circ}$	35°
Gousset inférieur		$40^{\circ} \le \alpha \le 45^{\circ}$	40°
Epaisseur de l'âme	;	$Ea \ge 0.26 + \frac{L}{500}$	40 <i>cm</i>
Épaisseur de l'hourdis inf. Sur pile		35 < Ep < 80cm	60 <i>cm</i>
Épaisseur de l'hourdis inf. à la clef		Ec ≥ 18 à 22cm	25 <i>cm</i>
Hauteur de voussoir sur pile		$\frac{L}{hp} = 14 + \frac{L}{45}$	4.5 <i>m</i>
Hauteur de voussoir à la clef		$\frac{L}{hc} = 19 + \frac{L}{7}$	2.4 <i>m</i>

II.5.4. Critique de la variante :

Les avantages sont :

- -Accepte des géométries très variées.
- -Ouvrage élancé ayant une bonne qualité esthétique.
- -Franchir des vallées très profondes.
- -Réduire le nombre des appuis à réaliser.

Les inconvénients sont :

- -Le poids est très important, ce qui conduit à envisager des appuis et fondations importantes
- -L'exécution nécessite une main d'œuvre qualifiée et un matériel adéquat important
- -Le procédé est lent avec un cout élevé.

II.6. Variante 3 « pont mixte bi poutres » :

Un pont mixte acier/béton comporte des éléments structurels en acier et en béton armé ou précontraint, dont la particularité réside dans le fait de faire fonctionner ces matériaux selon leurs aptitudes optimales, notamment en compression pour le béton et en traction pour l'acier,

Le tablier bipoutre mixte est constitué d'une dalle (de couverture) en béton, connectée à 2 poutres métalliques principales (poutres sous chaussée), Les poutres métalliques sont en général de hauteur constante à âme pleine. Elles sont entretoisées par des entretoises ou des pièces de pont.

II.6.1. Conception longitudinale:

La conception longitudinale de cette variante est caractérisée par la projection d'un pont de trois travées principales de 50 m, 12.6m de largeur.

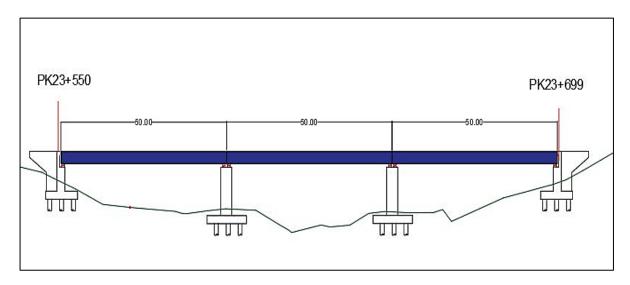


Figure II-6: Schéma de variante 3 : pont mixte bi poutre

II.6.2. Conception transversale:

Le prédimensionnement est fait selon le guide (SETRA, pont mixte acier béton,1990), le tableau (II-4) présente les dimensions de la section transversale de la variante 3.

Tableau II-4: Dimensions de la section transversale de variante 3.

L'élément		Ration usuel	Valeur retenu
	Entraxe des poutres		
	Hauteur des po	outres	3900mm
Epaisseu	r de la dalle en béton armé	240 à 350mm	300mm
	Epaisseur de l'âme	tw ≥ 0,005hw	40mm
SECTIC	Epaisseur semelle inferieure	$20\leqt_i\leq150$	70mm
SECTION 1 (sur 10m)	Epaisseur semelle supérieure	$20 \le ts \le 150$	40mm
10m)	Largeur semelle inférieur	$500 \text{ mm} \leq b_i \leq 12 00 \text{ mm}$	1000mm
	Largeur semelle supérieur	$400 \text{ mm} \leq b_s \leq 1000 \text{ mm}$	900mm
	Epaisseur de l'âme	$t_w \geq 0.005 h_w$	40mm
SECTI	Epaisseur semelle inferieure	20 ≤ t _i ≤ 150	80mm
SECTION 2 (sur 9m	Epaisseur semelle supérieure	$20 \le ts \le 150$	50mm
ır 9m)	Largeur semelle inférieur	$500 \text{ mm} \le b_i \le 12 00 \text{ mm}$	1000mm
	Largeur semelle supérieur	400 mm ≤ bs ≤ 1000 mm	900mm
	Epaisseur de l'âme	tw ≥ 0,005hw	40mm
SECTION 3 (sur 12m)	Epaisseur semelle inferieure	$20 \le t_i \le 150$	90mm
	Epaisseur semelle supérieure	20 ≤ ts ≤ 150	80mm
r 12m)	Largeur semelle inférieur	$500 \text{ mm} \leq b_i \leq 12 00 \text{ mm}$	1000mm
	Largeur semelle supérieur	400 mm ≤ bs ≤ 1000 mm	900mm

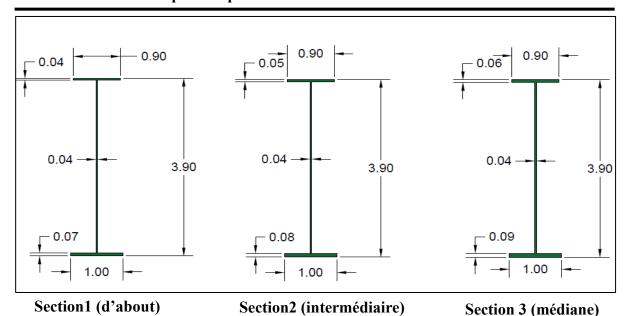


Figure II-7: Dimensions des différentes sections de la poutre.

- Justification de choix des poutres :

L'entraxe choisi est de 5 mètres entre les poutres, il permet une bonne répartition des charges entre elles, assurant rigidité et économie de matériaux. L'axe des rails est aligné sur l'axe des poutres pour transmettre directement les charges, faciliter la diffusion des efforts, réduire les torsions et garantir la stabilité de la structure.

Le choix final des poutres PRS s'est appuyé sur une démarche progressive de vérification, à la fois en termes de résistance structurelle et de comportement dynamique. Plusieurs sections (PRS 3200, 3600, etc.) ont été analysées afin d'évaluer leur capacité à supporter les efforts induits par les charges ferroviaires. Bien que certaines sections aient satisfait aux critères de résistance, elles n'ont pas vérifié le critère de résonance, essentiel pour éviter les phénomènes vibratoires. La section PRS 3900 a finalement été retenue, car elle répond de manière satisfaisante à l'ensemble des exigences, en offrant à la fois une capacité portante suffisante et une fréquence propre éloignée des fréquences d'excitation. Le tableau suivant présente les sections analysées :

Tableau II-5: Analyse des poutres.

Sections PRS	Résistance	Résonance	Remarque
PRS3200	Non vérifiée	Non vérifiée	Section insuffisante en résistance et non conforme en résonance.
PRS3600	Vérifiée	Non vérifiée	Résistance acceptable mais fréquence propre trop proche des excitations.
PRS3900	Vérifiée	Vérifiée	Section conforme aux critères de résistance et de résonance

Entretoises:

Les entretoises sont des poutres secondaires qui relient les poutres principales, leur rôle est de rigidifier la charpente et de reprendre et transmettre les forces horizontales.

On utilise pour les entretoises courantes des profilés IPE600 alors que pour les entretoises sur appuis on utilise 2 entretoises de profilés HEB800, L'espacement des entretoises est 4m, (le tableau III.4) donne les dimensions des profilés IPE600 et HEB800.

Elément	IPE600(mm)	HEB 800(mm)
Hauteur principales	600	800
Epaisseur de l'âme	12	17.5
Epaisseur semelle inférieure	19	33
Epaisseur semelle supérieure	19	33
Largeur semelle inférieure	220	300
Largeur semelle supérieure	220	300

Tableau II-6: Dimensions des entretoises

@ Consoles:

Pour ce projet les consoles en porte-à-faux du tablier mesurent 3,40 mètres de longueur. Elles sont conçues pour soutenir les parties latérales en encorbellement du tablier, qui accueillent les trottoirs ou des équipements tels que les glissières de sécurité. Ces consoles sont réalisées à l'aide de poutres en PRS (Profils Reconstitués Soudés), présentant une section variable, dont la hauteur varie de 1,20 m à 0,60 m, du côté de l'encastrement vers l'extrémité libre.

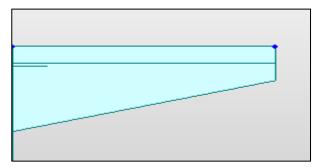


Figure II-8: Console en porte a faux

La connexion entre la dalle et la charpente métallique :

La dalle en béton doit être liée à la structure métallique par des éléments de liaison, appelés connecteurs, dont le rôle d'éviter tous glissements relatifs du tablier par rapport aux poutres. Un goujon : Un goujon est un élément composé d'une tige cylindrique de petit diamètre, dotée d'une tête et soudée sur la membrure supérieure de la poutre (Figure III-8). Sa résistance Individuelle est inférieure à celle des autres types de connecteurs, ce qui nécessite d'en utiliser un plus grand nombre. Toutefois, son installation est particulièrement rapide.

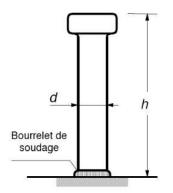


Figure II-9: Un goujon

II.6.3. Critique de la variante :

Les avantages sont :

- -La possibilité de franchir des grandes portées
- -La légèreté de la superstructure (le tablier mixte est léger par rapport à un tablier à poutre).
- -La qualité architecturale qui s'attache à la netteté.
- -La rapidité d'exécution.
- -Des possibilités d'extension et de réparation.

Les inconvénients sont :

- Le phénomène de la fatigue dans les assemblages et celui de la corrosion de l'acier.
- La demande d'une main-d'œuvre qualifiée surtout pour l'opération du soudage.
- Un cout élevé.
- -La demande d'un entretien périodique.

II.7. Analyse multicritère :

L'analyse multicritères se présente comme un outil précieux dans le processus décisionnel, permettant d'évaluer les différentes variantes en fonction de critères préalablement convenus. Les trois variantes seront soumises à une comparaison, tenant compte des aspects esthétiques, économiques, d'entretien, techniques d'exécution, et des délais de réalisation.

L'exécution : (/6 points) : En termes d'exécution, le pont mixte est le plus avantageux grâce à la préfabrication en atelier et à la rapidité de montage sur site. À l'inverse, le pont voussoir nécessite une mise en œuvre complexe et longue, tandis que le pont post-tensionné demande un coffrage important et une mise en tension soignée.

L'entretien : (/5 points) : En termes d'entretien, le pont voussoir est le plus exigeant en raison de ses nombreux joints et de la complexité de la précontrainte. Le pont post-tensionné est le

CHAPITRE II: Conception et prédimensionnement

plus simple à entretenir grâce à sa structure monolithique, tandis que le pont mixte nécessite une surveillance régulière de la corrosion de l'acier.

L'esthétique : (/4 points) : Le pont mixte et post-tensionné ont une forme relativement naturelle et s'intègrent de manière satisfaisante dans le paysage, mais le pont voussoir a une forme beaucoup plus esthétique, qui rajoute une beauté à l'espace.

L'économie : (/5 points) : en termes de cout, la première variante de pont post tensionné est généralement la moins coûteuse.

A partir de cette analyse, on attribue une note pour chaque critère et on détermine la moyenne afin d'obtenir le choix définitif :

Tableau II-7: Analyse des variantes.

	Pont de type VIPP	Pont voussoirs par encorbellement	Pont mixte	
Economie	Economie 5/5		3/5	
Entretien	4/5	3/5	4/5	
Esthétique	Esthétique 2/4		4/4	
Exécution et délai	Exécution et délai 5/6		6/6	
Moyenne	16/20	13/20	17/20	

II.8. Conclusion:

D'après l'analyse des points de comparaison, tout en se basant sur les critères mentionnés cidessus et en prenant en considération toutes les contraintes, le choix définitif pour notre ouvrage d'art est porté sur un pont bipoutre mixte en PRS3900.

CHAPITRE III CARACTERISTIQUES DES MATERIAUX

III.1. Introduction:

La conception et le calcul des éléments d'un pont sont étroitement liés au choix et à la qualité des matériaux de construction, qui influencent directement la résistance et la durabilité de l'ouvrage. Ces calculs prennent également en compte les charges appliquées, ainsi que les hypothèses définies selon les normes en vigueur et les exigences du maître d'ouvrage, garantissant ainsi une conception optimisée et conforme aux attentes.

III.2. Normes et règles de calcul :

Les normes et les règlements qui seront utilisés sont :

- Eurocode 1 bases de calcul et actions sur les structures
- Eurocode 2 projet des structures de béton
- **②** Eurocodes 3 et 4 − construction mixte
- Eurocode 8 indications établies pour la résistance sismique des structures.
- Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites BAEL 91 révisé 99.
- Règles parasismiques applicables au domaine des ouvrages d'art RPOA 2008
- Livret 2.01 règles techniques de conception et de calcul des ouvrages et construction en béton, en métal, ou mixtes.
- **@** Guides SETRA.

III.3. Caractéristiques des matériaux :

III.3.1.Béton:

La qualité du béton dépend de plusieurs facteurs, notamment la qualité des matériaux utilisés, les méthodes de fabrication, et la mise en œuvre sur le chantier. La résistance à la compression à l'âge de 28 jours est un critère fondamental pour définir la qualité du béton.

Résistance à la compression :

- La résistance caractéristique à la compression à 28 jours (fc28) est de 30 MPa, que ce soit pour la superstructure ou l'infrastructure.
- Pour des âges inférieurs ou égaux à 28 jours ($j \le 28$ jours), la résistance à la compression f_{cj} du béton peut être estimée à l'aide de la relation suivante : $f_{cj} = \frac{j}{4.76 + 0.83j} f_{c28(MPa)}$

Résistance à la traction :

• La résistance à la traction à un âge j f_{tj} suit la relation suivante :

$$f_{tj} = 0.6 + 0.06 f_{tj}$$

Cela implique que : $f_{t28} = 2.4 \, MPa$ pour la superstructure et l'infrastructure.

Contraintes admissibles :

Les contraintes admissibles sont les valeurs maximales des contraintes qui ne doivent pas être dépassées en aucun cas à n'importe quel point de l'ouvrage. Ces contraintes définissent les limites de résistance du matériau dans la structure.

♣ Contrainte de calcul à L'ELS :

La contrainte limite de compression du béton à l'ELS σ_b est définie par les formules suivantes :

 $0.5 f_{c28}$ En service

 $0.6 f_{c28}$ En construction

♣ Contrainte de calcul à L'ELU :

Le comportement du béton en compression est modélisé par le diagramme parabole-rectangle :

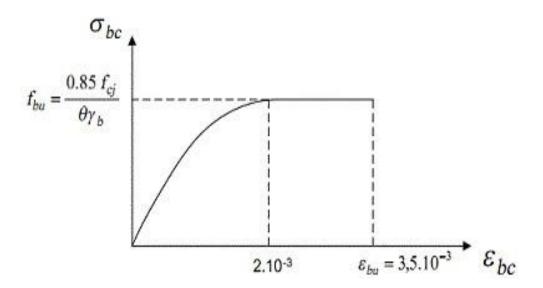


Figure III-1 : Diagramme parabole rectangle de béton

La valeur de la contrainte admissible à la compression à l'état limite ultime est donnée comme suit (BAEL 91 révisé 99) :

$$f_{bu} = \frac{0.85 f_{c28}}{\theta. \gamma_b}$$

Avec:

- ❖ Le coefficient **0.85** est un facteur de minoration visant à compenser l'erreur due à la négligence du fluage du béton.
- Le Coefficient θ prend en compte la durée probable t d'application de la combinaison des charges il vaut :
 - \circ 1 si t > 24h
 - \circ 0.9 si 1h < t < 24h
 - \circ 0.85 si t < 1h
- \diamond γ_b Coefficient de sécurité égale a :
 - o 1.50 en situation durable ou transitoire (SDT)
 - o 1.15 en situation accidentelle (SA)

Module d'élasticité :

Le module d'élasticité du béton caractérise sa rigidité et sa capacité à se déformer sous l'effet des charges. Il exprime la relation entre la contrainte et la déformation dans la phase élastique du matériau.

Pour un chargement appliqué sur une durée inférieure à 24 heures, le module de déformation instantanée du béton, noté E_{ij} , est égal à :

$$E_{ij}=11000\sqrt[3]{f_{cj}}$$

Les déformations différées du béton incluent le retrait et le fluage. La déformation finale du béton, résultant de la déformation instantanée additionnée aux effets du fluage, est déterminée en utilisant le module d'élasticité suivant :

$$E_{\nu j}=3700\sqrt[3]{f_{cj}}$$

Module de cisaillement du béton :

Le module de cisaillement du béton est donné par la formule suivante :

$$G = \frac{E_{ij}}{2(1+\vartheta)}$$

CHAPITRE III : Caractéristiques des matériaux

Coefficient de poisson :

Le coefficient de Poisson (ϑ) est le rapport entre la déformation transversale et la déformation longitudinale d'un matériau soumis à une charge. Pour le béton, il est d'environ 0,3 en chargement instantané et diminue à 0,2 avec le temps. En cas de fissuration, il devient nul.

On retiendra pour les calculs du béton les valeurs suivantes :

- 0.2 en zone non fissurée (ELS)
- 0 en zone fissurée (ELU)

III.3.2. Les aciers :

Les aciers passifs :

Le type des aciers utilisés pour les armatures du béton sont les aciers à haute adhérence dont les caractéristiques sont :

- Nuance FEe500
- Limite d'élasticité (contrainte limite élastique) fy = 500 MPa.
- Contrainte de rupture fu = 550 MPa
- Module d'élasticité longitudinale de l'acier est de Es = 210000 MPa

Dans les calculs à l'état limite ultime, on introduit le coefficient de sécurité γ s, tel que la contrainte admissible dans les aciers est :

$$\sigma_{s} = \frac{fe}{\gamma_{s}}$$

Avec γs égale :

- 1.00 pour les situations accidentelles
- 1.50 pour les situations normales

L'allongement des aciers est limité a 10 ‰

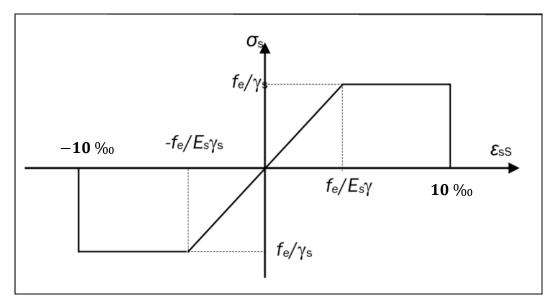


Figure III-2 : Diagramme contrainte-déformations des armatures

A l'état limite de service la contrainte $\overline{\sigma s}$ est déterminé par la formule suivante :

$$\overline{\sigma s} \leq \min \left\{ \frac{2}{3} fe; \left[\max 0.5 f_e; 110 \sqrt{1.6 f_{t28}} \right] \right\}$$

Aciers de construction « PRS »:

-L'acier utilisé pour les poutres PRS et les connecteurs est le S355 la limite élastique est donc :

$$\sigma = fy = 355MPa$$

-La masse volumique d'acier : $7800kg/m^3$

-Le coefficient de poisson : $\theta = 0.3$

-Le module de cisaillement :

$$G_a = \frac{E}{2(1+\vartheta)}$$

III.4. Conclusion:

À partir des données abordées dans ce chapitre, nous déterminerons les charges appliquées pour notre projet, tout en intégrant progressivement des facteurs complémentaires.

CHAPITRE IV CHARGES PERMANENTES ET SURCHARGES D'EXPLOITATION

IV.1. Présentation de trafic ferroviaire :

Le trafic ferroviaire est principalement pris en compte à travers la circulation des trains, ces derniers étant modélisés par leurs caractéristiques spécifiques, telles que les charges verticales, l'espacement des essieux et la vitesse. Le nombre de trains, leur composition et le volume du trafic ne sont généralement considérés que dans les analyses de fatigue. Pour évaluer les effets maximaux de la circulation ferroviaire, trois schémas de charge sont utilisés : UIC71, SW et Train à vide. Ces schémas permettent de définir trois chargements fondamentaux (UIC71+SW/0, SW/2 et train à vide), qui, après majoration dynamique, intègrent les efforts horizontaux associés afin de représenter les actions de circulation ferroviaire.

Ce point concerne le trafic ferroviaire sur voies à écartement normal et large. Les schémas de charge définis ici ne représentent pas des charges réelles, mais ont été conçus de manière à reproduire fidèlement les effets du trafic en service. Si un trafic différent de ceux spécifiés doit être pris en compte, il est nécessaire de définir des modèles de charge alternatifs adaptés au projet. Ce point ne s'applique pas aux actions générées par :

- Les chemins de fer à écartement étroit.
- Les tramways et autres réseaux ferroviaires légers.
- Les chemins de fer historiques.
- Les chemins de fer à crémaillère et ceux équipés de petites roues.

IV.2. Evaluation des actions :

IV.2.1. Surcharges dues au trafic ferroviaire :

IV.2.1.1. Schéma de charge UIC71:

Le schéma de charge UIC71 est un modèle standardisé représentant l'effet statique des charges verticales induites par le trafic ferroviaire normal (Livret2.01, article1.3, partie1.3.1.2). Il est utilisé pour l'évaluation des ponts ferroviaires, garantissant une conception adaptée aux sollicitations réelles. La figure suivante donne la disposition et les valeurs caractéristiques des charges verticales.

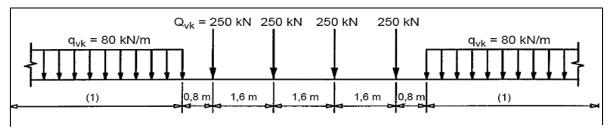


Figure IV-1: Modèle de charges UIC71 et valeurs caractéristiques pour les charges verticales

IV.2.1.2. Schémas de charges SW/0 et SW/2

Les schémas de charge SW/0 et SW/2 sont des modèles utilisés pour représenter les effets statiques du trafic ferroviaire sur les structures. (Livret2.01, article1.3, partie1.3.1.3) Le modèle SW/0 correspond à l'impact d'un trafic ferroviaire normal, particulièrement adapté aux poutrelles continues, tandis que le modèle SW/2 simule les effets d'un trafic ferroviaire lourd, exerçant des sollicitations plus importantes sur l'ouvrage. La disposition des charges est celle indiquée sur la figure avec des valeurs caractéristiques des charges verticales conformes à celles mentionnées dans le tableau.

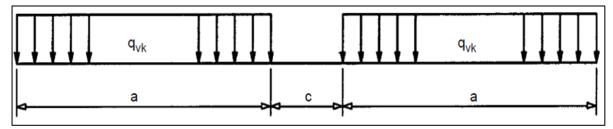


Figure IV-2: Schéma de charge SW/0 et SW/2

Tableau IV-1: Valeurs caractéristiques des charges verticales pour les schémas des charges SW/0 et SW/2

Classe de charge	$q_{vk}(KN/m)$	a(<i>m</i>)	c(m)
SW/0	133	15	5.3
SW/2	150	25	7

IV.2.1.3. Modèle de charges "Train à vide" :

Le modèle de charge "Train à vide" est utilisé pour certaines vérifications. Il se caractérise par une charge verticale uniformément répartie sur la structure, avec une valeur caractéristique de 12.5 kN/m (Livret2.01, article1.3, partie1.3.1.4), comme indiqué sur la figure.

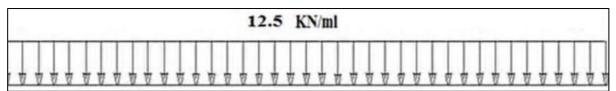


Figure IV-3 : Schéma de charges train à vide

IV.2.2. Transmission des charges au structure :

- Pose de voie ballastée :

On tient compte de la répartition due au ballast et aux rails en considérant successivement les deux répartitions suivantes, quel que soit le type de traverse retenu (le livret2.01, article 1.3, partie1.3.1):

La force d'essieu ponctuelle de 250 kN se répartit sur une bande longitudinale continue de largeur $\mathbf{a1} = 2,25 + e/2$ où (e) défini sur le schéma ci-dessous (e en m).

La charge sur la bande est uniforme et égale à : $P = \frac{250}{1.6 \times a1} (kN/m^2)$.

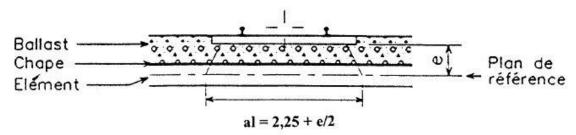


Figure IV-4 : Répartition due au ballast et aux deux rails

Avec: a1 = 2,25 + 0.58/2 = 2,54 m donc:
$$P = \frac{250}{1.6 \times 2.54} = 61.5 kN/m^2$$

La force d'essieu ponctuelle de 250kN se répartit sur 2 bandes longitudinales continues de largeur $\mathbf{a2} = 0.30 + e/2$ où (e) est défini sur le schéma ci-dessous (e en m). La charge sur la bande est supposée uniforme et égale à : $P = \frac{250}{1.6 \times 2a2} (kN/m^2)$

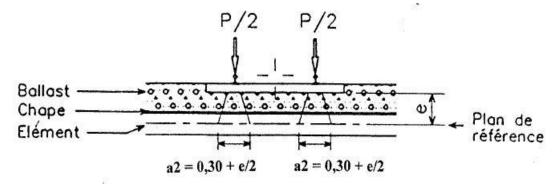


Figure IV-5 : Répartition due au ballast et au deux rails

Avec:
$$a2 = 0.3 + 0.58/2 = 0.59 \text{ m}$$
; $P = \frac{250}{1.6 \times 2(0.59)} = 132.4 \text{ kN/m}^2$

IV.2.3. Effets dynamiques:

Les effets dynamiques résultent de l'interaction entre le train en mouvement et la structure du pont. Ces effets peuvent amplifier les charges statiques et doivent être pris en compte pour garantir la sécurité et la durabilité des infrastructures (Livret2.01, article 1.3, partie1.3.2).

Facteurs influençant le comportement dynamique :

- La fréquence propre de la structure
- L'espacement des essieux
- La vitesse de trafic sur le pont
- L'amortissement de la structure
- Les défauts de roues (méplats)
- Les défauts verticaux de la voie

Les effets dynamiques sont pris en compte dans la conception des ponts ferroviaires au moyen de coefficients dynamiques $\phi 2$ et $\phi 3$

IV.2.3.1. Coefficient dynamique:

Le coefficient dynamique ϕ est utilisé pour amplifier les effets des charges statiques dans les modèles de charges ferroviaires (comme UIC71, SW/0, SW/2). Il est défini comme ϕ 2 ou ϕ 3, en fonction de la qualité de l'entretien de la voie.

$$\phi 2 = \frac{1.44}{\sqrt{L_{\odot}} - 0.2} + 0.82 = 1.03$$

$$\phi 3 = \frac{2.16}{\sqrt{L_{\emptyset}} - 0.2} + 0.73 = 1.047$$

 L_{\emptyset} = 49m est la portée mécanique du pont qui désigne généralement la distance entre les appuis (Livret2.01, article1.3, partie1.3.2.2.3).

IV.2.4. Forces horizontales:

IV.2.4.1. Effort de lacet :

L'effort de lacet est une force horizontale exercée par le train sur les rails, perpendiculairement à la voie, et appliquée au niveau supérieur des rails. (Livret2.01, article 1.3, partie1.3.3.2) Sa valeur de base est de 100 kN, mais pour tenir compte de certaines conditions spécifiques, comme l'état de la voie, la vitesse du train et les effets dynamiques, on applique un coefficient $\alpha = 1.1$, l'effort de lacet réel devient 110 kN.

IV.2.4.2. Forces de démarrage et de freinage :

Les forces de freinage et de démarrage agissent au niveau supérieur des rails suivant l'axe longitudinal de la voie (Livret2.01, article 1.3, partie1.3.3.3).

Force de démarrage :

Pour le schéma de charges UIC 71 et les schémas de charges SW :

$$Q_{lak} = 33 (kN/m) \times L(m) \le 1000 (kN)$$

$$Q_{lak} = 1000kN$$

• Force de freinage :

➤ Pour le schéma de charges UIC 71 et le schéma SW/0 :

$$Q_{lbk} = 20 (kN/m) \times L(m) \le 6000 (kN)$$

$$Q_{lbk}$$
= 860 kN

➤ Pour le schéma de charges SW/2 :

$$Q_{lbk} = 35 \times L = 1505 \text{ kN}$$

IV.2.4.3. Effet du vent :

 $P = 1.5 kN/m^2$ pour les ouvrages avec circulation.

 $P = 2 kN/m^2$ pour les ouvrages en phase de construction.

Le vent souffle horizontalement dans une direction normale à l'axe longitudinal de la voie (Livret2.01, article 1.4, partie1.4.2).

IV.2.5. Actions dues aux variations de température :

Variation de température :

- Température extérieure maximale : Te max = +45°C.
- Température extérieure minimale : Te min = -15°C.

@ Gradient thermique:

Le tablier de notre ouvrage est mixte (acier + béton). Les gradients thermiques verticaux à considérer sont :

- Phase de construction : ±15°C
- Phase de service : $\pm 8^{\circ}$ C

Le gradient est appliqué uniformément sur toute la longueur de l'ouvrage, avec une variation linéaire de température sur la hauteur de la section.

IV.2.6. Evaluation des actions hors trafic :

IV.2.6.1. Charges permanentes (CP):

Le poids propre des sections est déterminé en considérant une masse volumique de 78 kN/m^3 pour les éléments en acier et de 25 kN/m^3 pour les éléments en béton armé, les détails de calcul de poids sont donnés dans les tableaux suivants.

Tableau IV-2: Poids des poutres

	Surface (m^2)	Longueur (m)	Nombre	Volume (m ³)	P(kN)
Section 1	0.2576	10	4	10.304	803.712
Section 2	0.2758	9	4	9.928	774.446
Section 3	0.2940	12	2	7.056	550.368

Tableau IV-3: Actions permanentes CP

Elément	$S(m^2)$	longueur (m)	Nombre	P(Kn)
Entretoises d'appui (HEB800)	0.031	5	2	24.18
Entretoises courantes (IPE600)	0.015	5	11	64.35
Consoles	0.0249	3.4	34	224.51
Dalle BA	3.78	50	1	4725
	2128.53			
	7166.57			

IV.2.6.2. Les compléments de charges permanentes CCP :

Les charges complémentaires permanentes désignent des actions durables et quasi permanentes appliquées à la structure, mais dont l'intensité peut évoluer dans le temps ou dépendre de conditions spécifiques.

Rails: 2 rails UIC 60 = 1.2kN/m

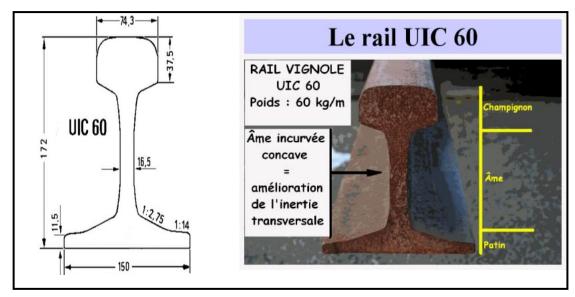


Figure IV-6: Rails UIC60

Traverses:

Les traverses utilisées sont en béton bi-blocs, avec une longueur variante de 2,24 à 2,50 m et un poids compris entre 245 kg et 300 kg (Livret2.01) ces traverses sont posées à une densité de 1666 unités par kilomètre.

$$N = \frac{50 \times 1666}{1000} = 83.3$$

On prend 84 unités chacune pèse environ 280 kg:

$$P_{travers} = 2.8 \times 84 = 235.2kN$$

$$P_{travers} = 9.4 \text{ kN/m}$$

➤ Ballast:

Le poids de ballast normal est de 20kN/m3 (Eurocode 01 - actions sur les structures) prenons une épaisseur de 48cm :

$$P_{ballast} = 20 \times 0.48 \times 1.3 = 12.48 \, kN/m^2$$

 $P_{ballast} = 12.48 \times 9.1 = 113.56 \, kN/m$

Etanchéité:

L'imperméabilisation de notre ouvrage est composée de deux couches :

- Une chape de protection de 11 cm d'épaisseur.
- Une chape d'étanchéité de 1 cm d'épaisseur, avec un poids volumique de 22kN/m³.

$$P_{\text{\'etanchi\'et\'e}} = (0.11 + 0.01) \ 22 = \ 2.64 kN/m^2$$

$$P_{\text{\'etanchi\'et\'e}} = 2.64 \times 9.1 = 24.02 kN/m$$

> Caténaire:

La caténaire est un système utilisé pour soutenir les fils électriques qui alimentent les locomotives. Elle exerce une charge linéique de 2,4 kN/m sur la structure.

> Gard corps:

Le poids linéaire du Garde-corps est 1 kN/m. (SETRA – garde-corps, guide technique)

Le tableau suivant présente les valeurs obtenues des compléments de charges permanentes.

Tableau IV-4: Les compléments des charges permanentes CCP.

Elément	Poids (kN/m)	Poids (kN)
Rails	1.2	60
Traverses	9.40	470
Ballast	113.56	5678
Revêtement	24.04	1202
Caténaire	4.80	240
Gard corps	2	100
Corniche + trottoir	10	500
TOTAL	165	8250

IV.2.7. Actions accidentelles:

IV.2.7.1. Action dues au déraillement d'un train sur le pont :

Le déraillement du trafic ferroviaire sur un pont doit être considéré comme une situation accidentelle de conception, (Livret2.01, article 1.5, partie1.5.1.1) deux situations doivent être prises en compte :

- Cas 1 : Déraillement de véhicules ferroviaires, les véhicules déraillés restant dans la zone de voie sur le tablier du pont.
- Cas 2 : les véhicules déraillés demeurent dans la zone de la voie sans tomber du pont mais restant en équilibre sur le bord.

Pour le cas 1, l'effondrement d'une partie majeure de la structure doit être évité. Des dommages locaux peuvent cependant être tolérés. Les parties de la structure concernées doivent être dimensionnées à l'ELU pour les charges équivalentes suivantes : Deux charges linéaires d'intensité, qA1d = 50 KN/ml disposées sur une longueur de 6.40m, écartées de 1.40m parallèles à la voie et se trouvant dans la position la plus défavorable dans une zone de largeurs égale 1.5 fois l'écartement des rails, s'étendant de part et d'autre de l'axe de la voie.

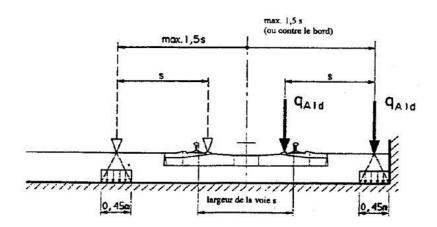


Figure IV-7: Charges équivalente qA1d

Pour le cas 2, Le pont ne doit pas se renverser ou s'effondrer. Il y a lieu de prendre comme charge équivalente une charge linéaire verticale, d'intensité qA2d = 80 KN/ml, disposée sur une longueur totale de 20m et située transversalement : soit à une distance maximale de 1.5 fois l'écartement des rails, soit sur le bord de la structure concernée comme indiqué sur la figure suivante

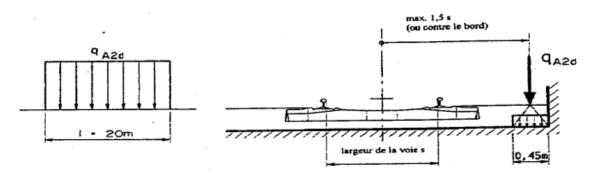


Figure IV-8 : Charge équivalente qA2d

IV.3.Groupes des charges:

Après avoir défini les actions élémentaires dues aux circulations pour une voie, on procède à leur assemblage. Les actions composées résultantes sont appelées groupes de charges ; ils tiennent compte d'une simultanéité des diverses charges élémentaires sur une et deux voies. Chacun de ces groupes de charges, qui s'excluent l'un l'autre, doit être considère comme

définissant une action d'exploitation pour les combinaisons avec les charges autres que de circulation ferroviaire. En se limitant à deux voies, comme c'est le cas pour l'ouvrage étudié, les groupes de charges à considérer sont décrits ci-dessous (UIC 776-1 charge à prendre dans le calcul des pont rails) :

Tableau IV-5: Les groupes des charges.

Nombre de voies	Groupe	Voie	Forces verticales		Force horizontales	
chargées	de charge	chargée	UIC71 SW/0	SW/2	Accélération	Freinage
1	Gr11	V1	1	0	0.5	1
1	Gr16	V1	0	1	0.5	1
1	Gr17	V1	0	1	1	0.5
2	Gr21	V1	1	0	0.5	1
2	0121	V2	1	0	0.5	1
2	Gr22	V1	1	0	1	0.5
2	G122	V2	1	0	1	0.5
2	Gr26	V1	0	1	0.5	1
	G120	V2	1	0	0.5	1

IV.4. Combinaisons d'actions :

Les actions doivent être combinées conformément aux exigences des normes internationales et nationales applicables, avec des valeurs de calcul déterminées à l'aide de coefficients partiels appropriés (UIC 776-1 charge à prendre dans le calcul des pont rails, partie 3.4)

Pour l'état limite ultime ELU, la forme de combinaison fondamental s'écrit comme suit :

$$\sum_{j\geq 1} \gamma_{GJ} G_{kj} + \gamma_p P_k + \gamma_{q1} Q_{K1} + \sum_{i\geq 1} \gamma Q_i \Psi_{0i} Q_{ki}$$

Pour l'état limite de service ELS, la forme de combinaison caractéristique s'écrit comme suit :

$$\sum_{j \ge 1} G_{kj} + P_k + Q_{K1} + \sum_{i \ge 1} \Psi_{0i} Q_{ki}$$

Avec:

G: actions permanentes

P: précontrainte

CHAPITRE IV: Charges permanentes et surcharges d'exploitation

Q : actions variables : \rightarrow Q1 : actions de base

 \rightarrow Qi: actions d'accompagnement

 Ψ : Coefficient pour les actions variables .

IV.5.Conclusion:

Dans ce chapitre, nous avons analysé les différentes charges et surcharges conformément aux réglementations en vigueur pour le calcul des ponts rails. En effet, une meilleure compréhension des charges réellement appliquées permet d'évaluer plus précisément la sécurité de l'ouvrage.

CHAPITRE V MODELISATION DU TABLIER

V.1. Introduction:

Ce chapitre se concentre sur la modélisation du tablier de l'ouvrage. La modélisation est la partie la plus importante dans l'étude d'une structure afin d'élaborer un modèle capable de décrire de manière plus ou moins approchée le fonctionnement de l'ouvrage sous différentes conditions.

V.2. Logiciel de calcul:

Dans le cadre de notre projet, nous avons opté pour l'utilisation du logiciel MIDAS CIVIL 2022, un outil de calcul structurel spécialement conçu pour les ouvrages d'art. Ce logiciel propose une large palette de fonctionnalités, permettant une modélisation en trois dimensions ainsi que des analyses complètes.

Figure V-1: Logiciel MIDAS CIVIL 2022

V.2.1. Modélisation:

Idéalisation des différents éléments du système comme suit :

- Implantation dans l'espace des points nodaux de l'ouvrage.
- Définition des différentes sections.
- Le tablier est modélisé par les éléments Beam.
- Les appuis et supports sont positionnés à leurs emplacements réels avec des éléments Supports.
- L'élément rigide reliant le tablier aux appuis est représenté par Rigid link.
- Définition des charges statiques et roulantes avec leurs combinaisons, selon exigences de l'UIC.
- Calcul et exploitation des résultats.

V.2.2. Vue du modèle en 3D:

A l'aide de logiciel MIDAS, on a élaboré un modèle de tablier étudié :

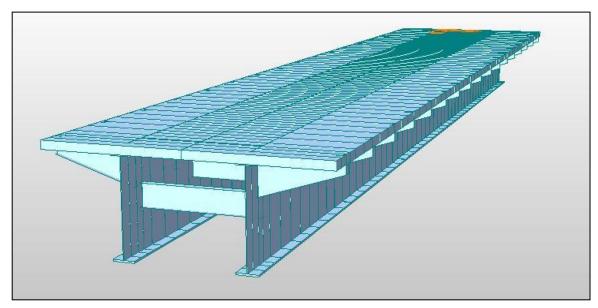


Figure V-2 : Vue de model en 3D

V.2.3. Modélisation des charges et surcharges :

a- Affectation des charges :

Les charges appliquées à l'ouvrage sont dues aux :

- -Poids propre PP.
- -Charges complémentaire CCP.
- -Surcharges ferroviaires UIC71, SW2.

Les figures suivantes montrent la répartition de quelque cas de charges :

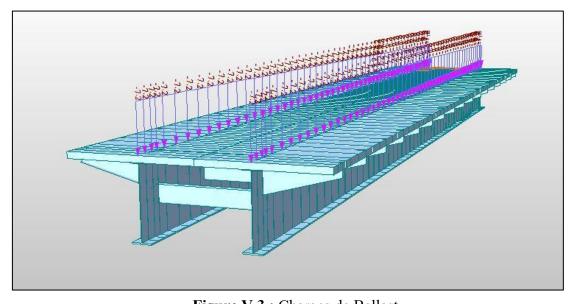


Figure V-3 : Charges de Ballast

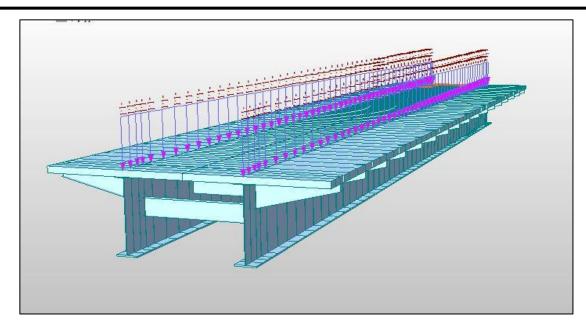


Figure V-4 : Charges des rails et traverses

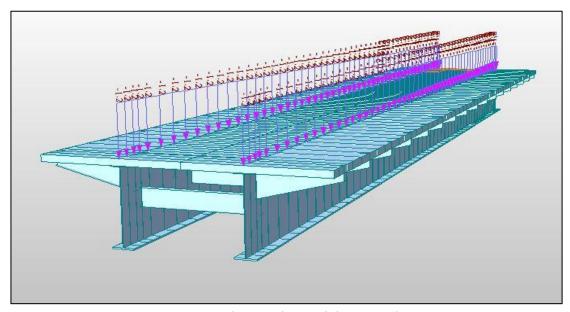


Figure V-5 : Charges de corniche et garde-corps

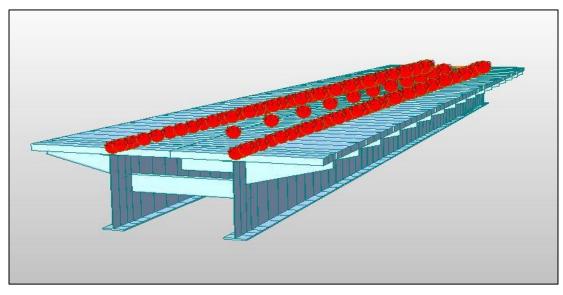


Figure V-6 : Charges de température

b- Charges mobiles:

Les charges UIC71, SW sont appliquées suivant les lignes de circulation qui ont été définies en relation avec l'axe des voies. Les figures montrent la définition des surcharges ferroviaires.

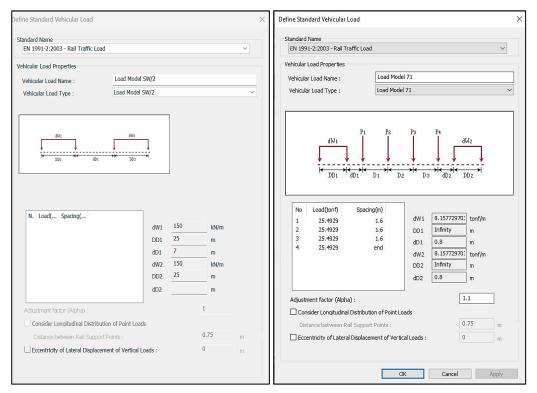


Figure V-7: Affectation des charges type SW/2 et UIC71

V.2.4. Résultats obtenus :

Les résultats obtenus par le logiciel sont donnés ci-dessous, les figures représentent quelques diagrammes des moments de flexion et d'effort tranchant les plus défavorables :

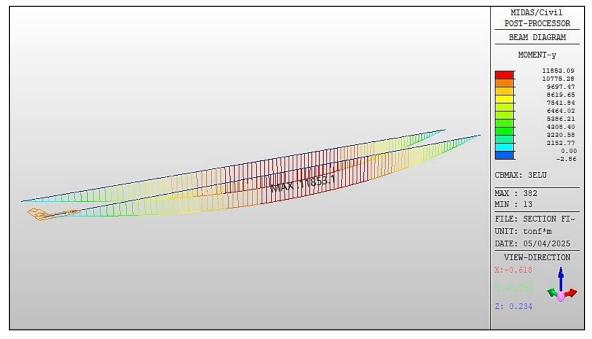


Figure V-8: Moment fléchissant max a l'ELU

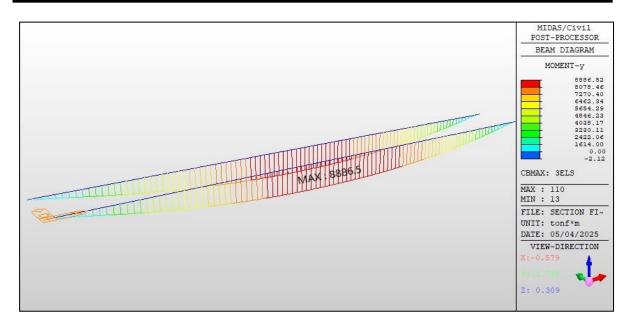


Figure V-9: Moment fléchissant max a l'ELS

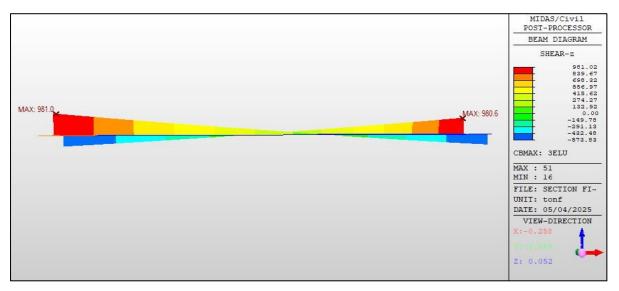


Figure V-10: Effort tranchant max a l'ELU

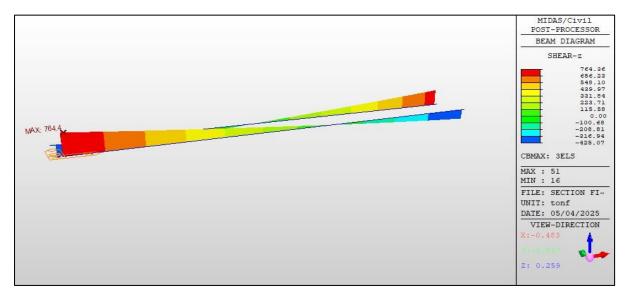


Figure V-11: Effort tranchant max a l'ELS

- Tableau récapitulatif :

Le tableau VI-1 présente les résultats numériques obtenus à l'aide de logiciel MIDAS CIVIL :

Tableau V-1: Les combinaisons de charges.

	Combinaison	Moment (t.m)	Effort tranchant(t)	Effort normal(t)
	1.35G + 0.9T	7053.3	574.05	43.34
Z	1.35G + 1.35SW2 + 0.9T	11657	1031.9	43.42
LU	1.35G + 1.2SW2 + 1.45UIC71 + 0.9T	11853.1	981	53.2
	1.35G + 1.45UIC71 + 1.45UIC71 + 0.9T	11498.5	978	30.37
	G + 0.6T	5224.7	425.2	29.1
ELS	G + UIC71 + SW2 + 0.6T	8886.5	764.36	36
	G + UIC71 + UIC71 + 0.6T	8290	711.4	35.9

La Combinaison la plus défavorable :

A'ELU:

$$1.35G + 1.2SW2 + 1.45UIC71 + 0.9T$$

A'ELS:

$$G + UIC71 + SW2 + 0.6T$$

V.3. Conclusion:

Une bonne modélisation avec une bonne estimation des charges nous amène à des résultats d'efforts les plus réels que possible. Par la suite nous procédons au calcul de la section mixte.

CHAPITRE VI ETUDE DE LA SECTION MIXTE

VI.1.Introduction:

Ce chapitre est consacré à l'étude du tablier de l'ouvrage. Cette partie consiste à dimensionner et à vérifier tous les éléments du tablier (les poutres, les entretoises, la section mixte, la dalle, et les assemblages). On se basera sur les résultats du logiciel de calcul MIDAS CIVIL2022.

VI.2. Hypothèses de calcul d'une section mixte :

Avant de calculer une section mixte, deux hypothèses clés sont posées (Eurocode 4 – calcul des structures mixtes acier béton) :

- Liaison rigide acier-béton : Aucun déplacement relatif entre les deux matériaux, grâce aux connecteurs assurant une fixation parfaite.
- Comportement élastique L'acier et le béton sont supposés être des matériaux élastiques, ils suivent donc la loi de Hook. Le calcul des contraintes se fait à l'ELS.

La variation relative de la longueur de deux fibres, l'une dans l'acier l'autre dans le béton est :

Pour l'acier :
$$\left(\frac{\delta l}{l}\right)_a = \frac{\sigma_a}{E_a}$$

Pour le béton :
$$\left(\frac{\delta l}{l}\right)_{h} = \frac{\sigma_{b}}{E_{h}}$$

D'après la première hypothèse
$$\left(\frac{\delta l}{l}\right)_a = \left(\frac{\delta l}{l}\right)_b$$
 alors $\frac{\sigma_a}{\sigma_b} = \frac{E_a}{E_b} = n$

Avec:

n : coefficient d'équivalence qui varie en fonction de Eb. Ce dernier croît avec la résistance du béton et décroît lorsque la durée du chargement augmente.

- La résistance en traction du béton est négligée.
- ➤ La section mixte peut être transformée en une section équivalente et homogène d'acier, l'aire du béton comprimé sera remplacée par une aire équivalente d'acier Bn = B/n, de même centre de gravité.

Tableau VI-1: Valeurs de coefficient d'équivalence n en fonction de charge appliquée.

Sollicitations	Champ d'application	n
Charge instantanée	Surcharge	6
Charge de longue durée	ССР	18
Effets différés Retrait		15
Charge de longue durée	СР	∞

VI.2.1. Caractéristiques géométriques de la section mixte :

• Caractéristiques géométriques des poutres :

La figure VI-1 montre les dimensions des trois sections de la poutre :

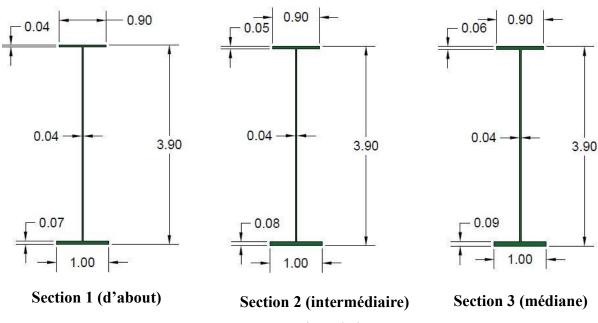


Figure VI-2 : Sections de la poutre

Le tableau suivant présente les différentes caractéristiques géométriques des sections :

SECTION 1 SECTION 2 SECTION 3 Surface $S = 0.2576m^2$ Surface $S = 0.2758m^2$ $S = 0.294m^2$ **Surface** Centre de Centre de Centre de $Y_{ga} = 1.709m$ $Y_{aa} = 1.708m$ $Y_{aa} = 1.727m$ gravité gravité gravité $I_x = 0.5573m^4$ $I_x = 0.615m^4$ $I_x = 0.687m^4$ Moment Moment Moment $I_y = 0.0097 m^4$ d'inertie $I_y = 0.0083 m^4$ d'inertie $I_y = 0.0112 \text{m}^4$ d'inertie

Tableau VI-2 : Caractéristiques géométriques des sections.

• Caractéristiques géométriques de la dalle :

- calcul de la largeur efficace de la dalle :

Pour les membrures mixtes, y compris les dalles mixtes, on peut supposer une largeur efficace constante sur la totalité de chaque portée égale a :

$$b_{eff}=b_0+\beta 1b_{e1}+\beta 2b_{e2}$$

Où:

 b_0 : la distance entre les axes des connecteurs.

 $b_{ei} = min\left\{\frac{L_e}{8}; bi\right\}$ Où : Le : portée équivalente dans la section considérée, bi est la largeur géométrique réelle de la dalle associée à la poutre maitresse.

 $\beta i=1$, Sauf Pour les sections transversales situées sur les appuis d'extrémité ($\beta i=0.55+0.025 \times \frac{Le}{\mathit{bei}} \le 1$) les figures suivantes présentent la définition de la largeur efficace et comment se calcule selon l'Eurocode 4.

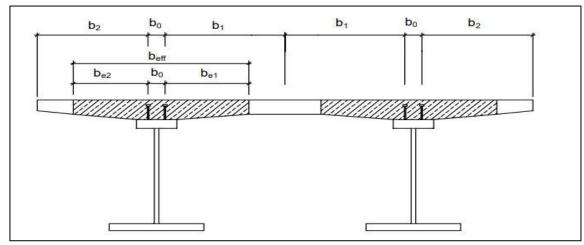


Figure VI-3 : Définition de la largeur efficace.

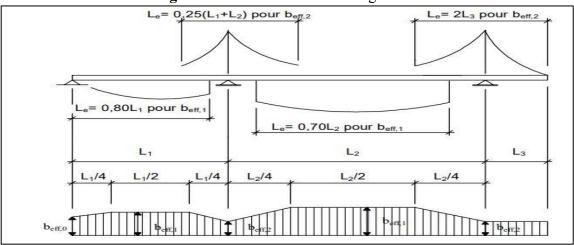


Figure VI-4: Calcul de largeur efficace selon l'Eurocode 4.

• beff (sur appui):

Tableau VI-3: Calcul de largeur efficace de la dalle sur appui.

Paramètre	Valeurs(m)
b_0	0.48
L_e	25
b_1	2.26
b_2	3.16
b_{e1}	2.26
b_{e2}	3.125
b_{eff}	5.86

• beff (mi-travé):

Tableau VI-4 : Calcul de largeur efficace de la dalle à mi travée

Paramètre	Valeurs(m)
b_0	0.48
L_e	35
b_1	2.26
b_2	3.16
b_{e1}	2.26
b_{e2}	3.16
b_{eff}	5.9

On considère une largeur efficace constante le long de la surface entière de chaque travée :

$$b_{eff} = 5.9m$$

c)- Caractéristiques de section mixte :

-Section a mi travée S3:

$$Sn = Sa + \left(\frac{Sb}{n}\right) \Longrightarrow \left\{\begin{array}{l} Sa = 0.2940 \text{ m}^2\\ Sb = 1.770 \text{ m}^2 \end{array}\right\}$$

Où:

Sa = Section d'acier.

Sb: section du béton.

n : coefficient d'équivalence.

Position du centre de gravité de la section mixte :

$$\int_{S}^{S} y ds = \int_{Sh}^{S} y \left(\frac{dS_b}{n} \right) + \int_{Sa}^{S} y dS_a = 0$$

On a:

$$\begin{cases} b.\left(\frac{Sb}{n}\right) + a.Sa = 0 \\ a+b=0 \end{cases} \rightarrow \begin{cases} a_n = \frac{S_b.c}{n.S_n} \\ b_n = \frac{S_a.c}{S_n} \end{cases}$$

Où:

c : distance entre le centre de gravité de la section du béton et celui de l'acier.

L'inertie de la section mixte :

L'inertie de la section mixte par rapport à son centre de gravité G se donne par la formule suivante : $I = I_A + \left(\frac{I_B}{n}\right) + \left(\frac{S_a.S_b}{n.S}\right).c^2$

Avec:

 I_A : inertie propre de l'acier par rapport à Ga. I_B : inertie propre du béton par rapport à Gb.

$$\mathbf{V} \begin{cases} V_{bn} = b_n + Y_{gb} \\ V_{sn} = b_n - Y_{gb} \\ V_{in} = a_n + Y_{ga} \end{cases} \qquad \mathbf{W} \begin{cases} W_{bn} = \frac{I}{V_{bn}} \\ W_{sn} = \frac{I}{V_{sn}} \\ W_{in} = \frac{I}{V_{in}} \end{cases}$$

Avec:

 V_{bn} : Distance de CG global à la fibre supérieure de béton.

 V_{sn} : Distance de CG global à la fibre inférieure de béton.

 V_{in} : Distance de CG global à la fibre **inférieure d'acier.**

W : Module de résistance de la fibre considérée.

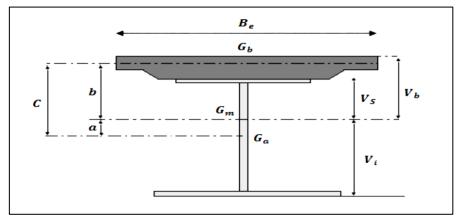


Figure VI-5 : Caractéristiques géométriques de section mixte

Tableau VI-5: Récapitulatif de la section mixte 3.

n	6	18	15	∞
$S_a(m^2)$	0.2940	0.2940	0.2940	0.2940
$S_b(m^2)$	1.770	1.770	1.770	1.770
C (m)	2.3230	2.3230	2.3230	2.3230
$S_n(m^2)$	0.5890	0.3923	0.4120	0.2940
$a_n(m)$	1.1635	0.5822	0.6653	0.00
$b_n(m)$	1.1595	1.7408	1.6577	2.3230
$I_a(m^4)$	0.6870	0.6870	0.6870	0.6870
$I_b(m^4)$	0.0133	0.0133	0.0133	0.0133
$I_n(m^4)$	1.4838	1.0854	1.1423	0.6870
$V_{bn}(m)$	1.3095	1.8908	1.8077	2.4730
$V_{sn}(m)$	0.9595	1.5408	1.4577	2.1230
$V_{in}(m)$	2.8905	2.3092	2.3923	1.7270
$w_{bn}(m^3)$	1.1331	0.5740	0.6319	0.2778
$W_{sn}(m^3)$	1.5464	0.7044	0.7863	0.3236
$w_{in}(m^3)$	0.5133	0.4700	0.4774	0.3977

[→] Les récapitulatifs des sections 1 et 2 se trouvent dans les annexes.

VI.2.2.Le retrait de béton :

Selon (l'Eurocode2- conception et calcul des structures en béton, partie 1), Le retrait est défini comme la diminution de volume qui se produit au cours de temps, on trouve :

VI.2.2.1. Retrait endogène :

Le retrait endogène est un type de retrait qui se produit sans échange d'humidité avec l'environnement extérieur. Il est lié à la consommation d'eau interne par les réactions d'hydratation du ciment.

$$\varepsilon_{ca}(t) = \beta_{ca}(t). \, \varepsilon_{ca}(\infty)$$

$$\varepsilon_{ca}(\infty) = 2.5 (f_{ck} - 10). \, 10^{-6} = 2.5 (30 - 10). \, 10^{-6} = 5 \times 10^{-5}$$

Avec $f_{ck} = 30MPa$ β_{ca} : l'évolution de retrait en fonction de temps.

$$\beta_{ca} = 1 - e^{-0.2(t)^{0.5}} = 1 - e^{-0.2(28)^{0.5}} = 0.65$$

On trouve:

$$\varepsilon_{ca}(t) = 0.65 \times 5 \times 10^{-5} = 3.25 \times 10^{-5}$$

VI.2.2.2. Retrait de dessication :

Le retrait de dessiccation est une déformation volumique qui se produit lors du séchage du béton, sans contrainte extérieure, liée à la perte d'eau libre contenue dans les pores du matériau.

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s). K_{h.} \varepsilon_{cd.0}$$

$$\frac{f_{ck}}{f_{ck,cube}} \rightarrow RH \ (humidit\'e \ relative) \rightarrow \varepsilon_{cd.0}$$

Avec:

$$f_{ck} = 30MPa$$
, $f_{ck.cube} = 37MPa$

On trouve : RH=70% , $~\varepsilon_{cd.0}=0.35\times 10^{-3}$

 K_h : Coefficient qui dépend de rayon moyen h_0 :

$$h_0 = \frac{2Ac}{u}$$

Avec:

Ac Section de béton, u Périmètre exposé à la dessication

$$u = 24.2 - (11.8 - 1.4) = 13.8 \text{ m}$$

$$h_0 = \frac{2 \times 3.54}{13.8}$$

$$h_0 = 513mm \ge 500mm \rightarrow K_h = 0.7$$

Par hypothèse, l'évolution dans le temps de retrait de dessiccation avec ts = 1jour, se traduit par la formule suivante :

$$\beta ds(t, ts) = \frac{t - t_s}{t - t_s + 0.04\sqrt{h_0^3}} = \frac{28 - 1}{27 + 0.04\sqrt{513^3}} = 0.0549$$

D'où:

$$\varepsilon_{cd}(t) = 0.0549 \times 0.7 \times 0.35 \times 10^{-3}$$

$$\varepsilon_{cd}(t) = 1.35 \times 10^{-5}$$

VI.2.2.3. Retrait à la mise en service :

$$\varepsilon_{cs}(t) = \varepsilon_{ca}(t) + \varepsilon_{cd}(t) = 3.25 \times 10^{-5} + 1.35 \times 10^{-5}$$
$$\varepsilon_{cs}(t) = 4.6 \times 10^{-5}$$

VI.2.2.4. Retrait thermique:

On prend en compte le retrait thermique qui est dû à la différence de température ΔT entre l'acier de charpente et le béton au moment du bétonnage, la valeur de ΔT est recommandée à 20° C mais peut être modifiable.

$$\varepsilon_{th} = \alpha_{th,c} \cdot \Delta T$$

Avec:

 $\alpha_{th,c} = 10^{-5}$ Coefficient de dilatation thermique.

On obtiendra:

$$\varepsilon_{th} = 10^{-5}.20 = 2 \times 10^{-4}$$

On considère que l'effet thermique sur la section mixte est réduit à la moitié :

$$\varepsilon_{th} = \alpha_{th,c} \cdot \frac{\Delta T}{2} = 10^{-4}$$

• Bilan retrait à court terme :

$$\varepsilon_{cs}(t) = \varepsilon_{ca}(t) + \varepsilon_{cd}(t) + \varepsilon_{th} = 3.25 \, \times 10^{-5} + 1.35 \times 10^{-5} + 10^{-4} = 1.46 \times 10^{-4}$$

• Calcul du retrait au temps infini :

L'âge du béton est alors infini. En faisant tendre t vers l'infini dans les expressions du paragraphe précédent, on déduit :

$$\beta_{as}(\infty) = 1$$
, $\beta_{ds}(\infty, t_s) = 1$

Par suite:

$$\varepsilon_{cs}(\infty) = \varepsilon_{ca}(\infty) + \varepsilon_{cd}(\infty) = \varepsilon_{ca}(\infty) + \beta_{ds}(\infty, t_s).K_{h.}\varepsilon_{cd.0}$$
$$\varepsilon_{cs}(\infty) = 5 \times 10^{-5} + 0.7 \times 0.35 \times 10^{-3}$$
$$\varepsilon_{cs}(\infty) = 2.95 \times 10^{-4}$$

VI.2.3. Hypothèse de calcul des contraintes dues aux retraits :

- On suppose que la poutre à une inertie constante pour simplifier les calculs.
- Un coefficient d'équivalence n=15 est appliqué, reflétant la faible participation de la dalle dans le comportement global de la structure mixte.
- & Si la dalle était désolidarisée de la poutre métallique, elle subirait un raccourcissement unitaire Δdx dû au retrait, sans contrainte (voir figures a et b).
- En réalité, la liaison entre la dalle et la poutre est rigide, empêchant tout déplacement relatif aux surfaces de contact.

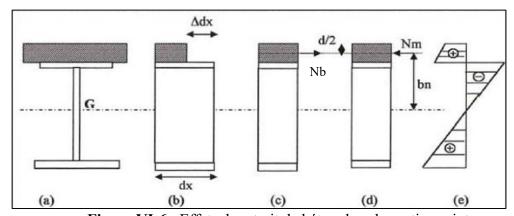


Figure VI-6: Effets de retrait de béton dans la section mixte

La condition de compatibilité est satisfaite, ce qui signifie que les déformations de la dalle et de la poutre sont cohérentes avec la liaison rigide entre les deux éléments. Un effort normal de traction (fictif) est appliqué au centre de gravité de la dalle. Cet effort engendre une contrainte dans le béton, donnée par : $\sigma_b = E_b \times \varepsilon_r$.

Avec : $E_b = \frac{E_a}{n}$. En considérant que : $\Delta_{dx} = \varepsilon_r$. d_x Avec ε_r qui représente l'allongement relatif unitaire de retrait égal à : $\varepsilon_r = 1.4 \times 10^{-4}$.

CHAPITRE VI: Etude de la section mixte

On applique à la section mixte avec une excentricité b_n (n=15) une force de réaction (figure d) afin d'avoir l'équilibre :

• Un effort normal de compression : $N_m = -N_b$

• Un moment de flexion (positif) : $M_m = -N_m b_n = \sigma_b \omega$

Ces efforts sont les mêmes sur toute la longueur de la poutre, les contraintes dans la poutre métallique sont données par les relations suivantes :

• Contrainte due à l'effort : $N_m = -N_b \implies \sigma_{a_1} = -\text{ n. }\beta. \sigma_b$

• Contrainte due à l'effort : $M_m = -N_m b_n \Longrightarrow \sigma_{a_2} = -\text{ n.} \left(\sigma_b \times \frac{\omega}{I}\right) V_a$

Même les contraintes dans la section du béton sont données par les relations :

• Contrainte due à l'effort : $N_m = -N_b \Longrightarrow \sigma_{b_1} = -\beta \sigma_b$

• Contrainte due à l'effort : $M_m = -N_m b_n \Longrightarrow \sigma_{b_2} = -\left(\sigma_b \times \frac{\omega}{l}\right) V_b$

Contraintes normales sollicitant l'acier : $\sigma_a = -\text{n. }\beta$. $\sigma_b - \text{n.} \left(\sigma_b \times \frac{\omega}{I}\right) V_a$

Contraintes normales sollicitant le béton : $\sigma_b = -\beta \sigma_b - \left(\sigma_b \times \frac{\omega}{I}\right) V_b$

Avec:

n=15 (Coefficient d'équivalence).

$$\beta = \frac{B_n}{B_n + A} = \frac{B_{15}}{B_{15} + A}$$

B : section de béton.

A: section d'acier.

 ω : Moment statique de la section du béton rendue homogène par rapport au centre de gravité de la section mixte pour n = 15, $\omega = b_{15} \times B_{15}$.

I : Moment d'inertie de la section mixte pour n = 15.

$$\beta = \frac{B_n}{B_n + A} = \frac{B_{15}}{B_{15} + A} = \frac{\frac{1.77}{15}}{\frac{1.77}{15} + 0.294} = 0.286$$

$$\omega_{15} = b_{15} \times B_{15} = 2.323 \times \frac{1.77}{15} = 0.195 m^3$$

$$\sigma_b = E_b \times \varepsilon_r = \frac{E_a}{n} \times \varepsilon_r = \frac{2.1 \times 10^5}{15} \times 1.4 \times 10^{-4} = 1.96 \text{MPa}$$

$$M_{15} = \sigma_b \times \omega_{15} = 1.96 \times 0.195 = 0.383 MN.m$$

VI.2.3.1. Contraintes résultantes :

■ Dans le béton :

$$\sigma_{br} = \sigma_b (1 - \beta) - \frac{M}{W_b} = 1.96(1 - 0.286) - \frac{0.383}{0.6319} = 0.79MPa$$

Dans l'acier :

$$\sigma_{sr} = -n\sigma_b\beta - n\left(\frac{M}{W_s}\right) = -15 \times 1.96 \times 0.286 - 15\left(\frac{0.383}{0.7836}\right) = -15.75MPa$$

$$\sigma_{ir} = -n\sigma_b\beta + n\left(\frac{M}{W_i}\right) = -15 \times 1.96 \times 0.286 + 15\left(\frac{0.383}{0.4774}\right) = 3.62MPa$$

VI.2.3.2. Contraintes pondérées dues au retrait :

$$\alpha = 1.32$$

 $\rightarrow \alpha$ est un facteur d'amplification ou de répartition des contraintes dues au retrait.

$$\sigma_{br} = 1.32 \times 0.79 = 1.043MPa$$

$$\sigma_{sr} = 1.32 \times (-15.75) = -20.79MPa$$

$$\sigma_{ir} = 1.32 \times 3.62 = 4.77MPa$$

Tableau VI-6 : Récapitulatif des contraintes dues aux retrait et température de section3 à mitravée.

effet	retrait	$\Delta T(+)$	$\Delta T(-)$
n	15	6	6
ε_r	0.00014	0.0001	0.0001
B_n	1180	2950	2950
β	0.286	0.50	0.50
ω_n	0.195	0.34	0.34
E_a	210000	210000	210000
E_b	14000	35000	35000
σ_b	1.96	3.5	-3.5
M_n	0.383	1.197	-1.197
σ_{br}	1.043	0.1476	-0.1476
σ_{sr}	-20.79	-19.65	19.65
σ_{ir}	4.77	4.52	-4.52

VI.2.4. Vérification des contraintes de cisaillement :

La contrainte de cisaillement due à l'effort tranchant T doit satisfaire cette condition :

$$\tau_{max} = \frac{T}{h.\,e} \le \tau_{adm}$$

Avec:

e : épaisseur de l'âme ; h : hauteur de l'âme.

On a: T = 9.81MN

$$\tau_{max} = \frac{9.81}{3.75 \times 0.04} = 65.4 MPa \le \tau_{adm} = 0.6 \times 355 = 213 MPa$$

 $\rightarrow \tau_{max} \le \tau_{adm}$ Condition vérifiée.

VI.2.5. Vérification des contraintes normales :

À chaque phase de construction de l'ouvrage, une vérification des contraintes sera effectuée au niveau de la semelle inférieure (σa inf), de la semelle supérieure (σa sup) ainsi qu'à la contrainte σ_b dans le béton, laquelle doit respecter les limites usuelles admissibles. À chaque étape de la construction, ces contraintes seront comparées aux valeurs limites de résistance de l'acier et du béton.

Acier:

 $\sigma_{a \ sup} \leq \sigma_{ac}$ (σ_{ac} la contrainte admissible dans le cas de compression de semelle). $\sigma_{a \ inf} \leq \sigma_{at}$: (σ_{at} la contrainte admissible dans le cas de traction de semelle).

$$\sigma_{ac} = \frac{2}{3}\sigma e = \frac{2}{3} \times \frac{355}{1.1} = 215.15MPa$$

$$\sigma_{at} = \frac{4}{3}\sigma e = \frac{4}{3} \times \frac{355}{1.1} = 242.04MPa$$

Béton :

$$\sigma_b \le 0.6 f_{cj} = 0.6 \times 30 = 18 MPa$$

Etapes de vérification:

Les contraintes générées au cours des différentes étapes sont cumulées progressivement jusqu'à l'étape où les surcharges sont prises en compte. Quatre (04) étapes de calcul sont considérée pour l'évaluation des contraintes, chacune correspondant à une phase spécifique de la construction de l'ouvrage.

CHAPITRE VI: Etude de la section mixte

Etape (1):

Mise en place de l'ossature métallique : $(n = \infty)$

$$\begin{cases} \sigma_{b1} = 0 \\ \sigma_{s1} = \frac{M_{cp}}{W_s} \\ \sigma_{i1} = -\frac{M_{ccp}}{W_s} \end{cases}$$

Étape (2) :

Dans cette étape le béton a durci, la section travaille en mixte. (n = 18)

$$\begin{cases} \sigma_{b2} = \frac{M_{ccp}}{nW_b} \\ \sigma_{s2} = \sigma_{s1} + \frac{M_{cp}}{W_s} \\ \sigma_{i2} = \sigma_{i1} - \frac{M_{ccp}}{W_i} \end{cases}$$

Étape (3) :

Sous l'effet du CCP n = 18 et retrait n = 15

$$\begin{cases} \sigma_{b3} = \sigma_{b2} + \sigma_{retrait} \pm \sigma_{temp\'erature} \\ \sigma_{s3} = \sigma_{s2} + \sigma_{retrait} \pm \sigma_{temp\'erature} \\ \sigma_{i3} = \sigma_{i2} + \sigma_{retrait} \pm \sigma_{temp\'erature} \end{cases}$$

Étape (4):

On considère l'effet des surcharges avec n=6 moments positifs. Ces moments provoquent des contraintes de compression dans le béton et dans l'acier.

$$\begin{cases} \sigma_{b4} = \sigma_{b3} + \frac{M}{nW_b} \\ \sigma_{s4} = \sigma_{s3} + \frac{M}{W_s} \\ \sigma_{i4} = \sigma_{i3} + \frac{M}{W_i} \end{cases}$$

VI.2.5.1. Vérification des contraintes sur la section mi-travée :

Tableau VI-7:Les résultats des contraintes à mi-travée.

Charge	n	M (MN .m)	$\sigma_{\scriptscriptstyle S}$	σ_i	σ_b
CP	∞	13.57	41.93	-32.08	0.00
ССР	18	21.04	29.87	-42.77	2.03
Retrait	15	0.38	-20.79	4.77	1.04
Température	6	1.67	21.22	-4.16	-0.96
Surcharge	6	47.99	48.49	-140.87	11.03
	σ_1 (Mpa)		41.93	-32.08	0.00
	$\sigma_2(\text{Mpa})$		71.80	-76.84	2.03
	$\sigma_3(\text{Mpa})$		72.23	-76.23	2.10
	$\sigma_4(\text{Mpa})$		120.72	-215.11	13.14
$\sigma_{admissible}({ m Mpa})$			215.15	242.02	18
Vérification			Condition vérifiée	Condition vérifiée	Condition vérifiée

VI.2.6. Classe de Résistance des sections :

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{355}} = 0.814$$

Avec:

 ε : Coefficient de réduction plastique.

fy : valeur nominale de la limite élastique.

Tableau VI-8: Classe de résistance des sections

Section	Classe de résistance
Section 1	Classe 3
Section 2	Classe 3
Section 3	Classe 3

[→] Les détails de calcul se trouvent dans les annexes.

VI.2.7. Résistance en section :

> Vérification de la Poutre :

Les vérifications présentées dans cette section sont effectuées à l'État Limite Ultime (ELU), conformément aux exigences de l'Eurocode, afin de garantir que la section résiste aux sollicitations maximales.

Vérification effort normale - moment :

Selon l'Eurocode 3 - EN 1993-1-1, la vérification de la section sous sollicitations combinées d'effort normal et de moment fléchissant s'effectue à l'aide de la formule d'interaction N + M, permettant de s'assurer que la résistance combinée de la section n'est pas dépassée, on a la formule suivante :

$$\frac{N_{Sd}}{\chi \times Nc, rd} + \frac{Msd}{\chi_{Lt} \times Mc, rd} \le 1$$

$$N_{sd} = 0.532 \text{MN}, M_{sd} = 118.53 \text{MN}, N_{c,rd} = 104.37 \text{MN}, M_{c,rd} = 141.21 \text{MN}.$$

 $0.84 \le 1$ Condition vérifiée.

Avec:

 χ tend vers 1 \rightarrow le risque de flambement est quasi inexistant.

 $\chi_{Lt} = 1 \rightarrow \text{le déversement est empéché.}$

Dans le cas présent, la poutre est principalement sollicitée en flexion. L'effort normal N_{sd} appliqué est relativement faible et a donc une influence négligeable sur la résistance globale de la section.

Le risque de flambement est quasi inexistant dans cette configuration. En effet, la poutre est un élément horizontal rigide, solidarisé avec une dalle béton qui agit comme un contreventement efficace. Cela empêche les instabilités latérales et longitudinales.

> Vérification de l'effort tranchant :

- Section a mi travée :

$$\frac{V_{SD}}{V_{pl,rd}} \le 1$$

$$V_{pl,rd} = \frac{A_v \times f_y / \sqrt{3}}{\gamma_{M0}}$$

Avec:

 A_v : l'aire de cisaillement.

$$A_v = \left(\mathbf{H} - \left(t_{fi} + t_{fs} \right) \right) \cdot t_w = 0.15 \, m^2$$

$$V_{SD} = 9.81 \, et \, V_{pl,rd} = \frac{0.15 \times \frac{355}{\sqrt{3}}}{1} = 30.74 MN$$

$$\frac{V_{SD}}{V_{pl,rd}} = 0.32 \le 1$$
 Condition vérifiée

Interaction moment – effort tranchant : Le moment résistant plastique d'une section transversale est réduit par la présence de cisaillement.

$$\frac{V_{SD}}{V_{pl,rd}} = 0.32 \le 0.5$$
 interaction négligeable.

VI.3.Les phénomènes d'instabilité élastique :

Les grandes déformations affectent les zones comprimées des pièces, qui peuvent présenter deux types de comportement caractéristiques, dénommés phénomènes d'instabilité, qui sont :

- Le voilement : déformation des âmes des pièces fléchies sous compression.
- Le déversement : instabilité des semelles comprimées des pièces fléchies avec déformation latérale accompagnée d'une torsion.

VI.3.1.Le voilement :

Le voilement est le phénomène d'instabilité relatif aux plaques minces soumises à des efforts dans leurs plans moyens (compression, cisaillement).

Les âmes cisaillées sont considérées sans risque du voilement si leur élancement géométrique respecte la condition suivante (polycopiée de cours structures métallique, ENP2024) :

$$\frac{d}{tw} \le 30. \varepsilon. \sqrt{k_{\tau}}$$

Avec:

 k_{τ} : Coefficient de voilement par cisaillement, égale : $\left\{ \begin{array}{ll} 4 + \frac{5.34}{\left(\frac{a}{d}\right)^2} & si \quad \frac{a}{d} \leq 1 \\ 5.34 + \frac{4}{\left(\frac{a}{d}\right)^2} & si \quad \frac{a}{d} > 1 \end{array} \right\}$

a: espacement entre deux raidisseurs

d: hauteur de l'âme

$$\frac{a}{d} = \frac{4}{3.75} = 1.06 > 1 \quad et \quad k_{\tau} = 5.34 + \frac{4}{\left(\frac{4}{3.75}\right)^2} = 8.85$$

$$\frac{d}{tw} = \frac{3.75}{0.04} = 93.75$$

$$30. \, \varepsilon. \, \sqrt{k_{\tau}} = 72.64$$

$$\frac{d}{tw} > 30. \, \varepsilon. \, \sqrt{k_{\tau}} \rightarrow \text{Risque de voilement}$$

On doit vérifier que l'effort tranchant sollicitant de calcul est inférieur, ou égal à l'effort tranchant résistant au voilement par cisaillement :

$$V_{sd} \leq V_{ba,Rd}$$

Avec:

$$V_{ba.Rd} = \frac{(d.tw).\tau_{ba}}{\gamma_{M1}}$$

 τ_{ba} : la valeur de résistance au cisaillement

$$\overline{\lambda_w} = \frac{\frac{d}{tw}}{37.4 \times \varepsilon \sqrt{k_\tau}} = \frac{93.75}{37.4 \times 0.814 \times \sqrt{8.85}} = 1.03$$

$$0.8 < \overline{\lambda_w} < 1.2$$

Donc:

$$\tau_{ba} = \left[1 - 0.625(\overline{\lambda_w} - 0.8)\right] \frac{fy}{\sqrt{3}} = \left[1 - 0.625(1.03 - 0.8)\right] \times \frac{355}{\sqrt{3}} = 175,5 Mpa$$

$$V_{ba.Rd} = 3,75 \times 0,04 \times \frac{175,5}{1.1} = 23,93 MN$$

$$V_{sd} = 9,81 MN \le V_{ba.Rd} = 23.93 MN (condition \ v\'erifi\'ee)$$

VI.3.2. Le déversement :

Le déversement est un phénomène qui se produit lorsqu'une poutre subit une déformation latérale accompagnée d'une torsion, moments fléchissant positifs entraînent une compression dans la semelle supérieure qui est souvent libre donc une vérification du déversement est nécessaire.

Dans ce cas du pont mixte étudié, la zone sollicitée est en moment positif, la dalle est connectée rigidement à la poutre via des goujons d'ancrage elle agit comme un maintien latéral rigide de la fibre comprimée (le haut de la poutre en flexion positive). Donc, elle empêche la poutre de se vriller ou de décaler latéralement. Ainsi, le risque de déversement est très fortement réduit ou pratiquement nul dans ce cas. Conformément à l'Eurocode l'EN 1993-1-1 aucune vérification spécifique du déversement n'est requise lorsque la semelle comprimée est correctement stabilisée.

VI.4.Etude des entretoises :

La vérification se fait au niveau des entretoises d'about en cas de vérinage, qui signifie l'opération de soulever l'ouvrage avec des vérins pour changer les appareils d'appuis, on vérifie ce cas sur Midas civil afin d'assurer leur résistance pendant cette opération, la charge de tablier vide est devisée sur quatre, on applique deux charges ponctuelles aux extrémités de chaque entretoise d'about comme montre la figure suivante :

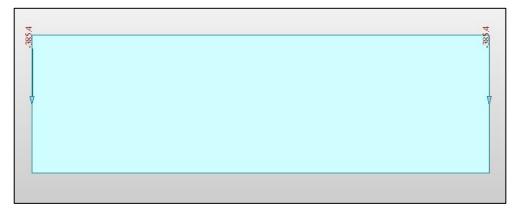
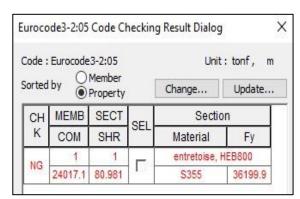



Figure VI-7: charge sur entretoise d'about

Apres avoir lancer l'analyse on trouve que l'entretoise de type HEB 800 ne va pas résister alors on augmente la hauteur, on choisit un PRS 1500 :

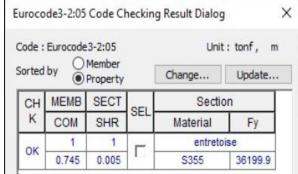


Figure VI-9: vérification HEB 800

Figure VI-8: vérification PRS 1500

Avec:

COM : rapport de compression, et SHR : rapport de cisaillement, un rapport < 1 signifie que l'élément est satisfaisant.

Pour les entretoises courantes on prend PRS 1000.

VI.5.Les Connecteurs:

Les connecteurs remplissent deux fonctions essentielles, ils limitent les déplacements relatifs entre la dalle et la poutrelle métallique, empêchant ainsi le glissement à l'interface acier-béton et ils préviennent la séparation verticale entre la dalle et la poutre métallique.

Dans notre projet on utilise des goujons à tête, puisque l'utilisation de ce type de connecteur est cependant de loin le plus courant, grâce à la facilité et la rapidité de pose.

VI.5.1. Type des goujons utilisés :

h=180mm, d=22mm.

- Goujons Nelson ST37 3K « selon les documents de SAPTA »

- Limite élastique $\sigma e = 355Mpa$

VI.5.2. Résistance d'un goujon a tête :

Selon l'EN 1994-2, on distingue deux modes de ruine pour ce type de connecteurs :

➤ La ruine par cisaillement de l'acier en pied : vis à vis de laquelle on a une résistance caractéristique :

$$P_{rk1} = 0.8 fu \frac{\pi d^2}{4} = 0.8 \times 450 \times \frac{\pi \times 0.022^2}{4} = 0.136 MN$$

➤ La ruine par écrasement du béton : vis-à-vis de laquelle on a une résistance caractéristique :

$$P_{rk2} = 0.29\alpha d^2 \sqrt{fckEcm} = 0.29 \times 1 \times 0.022^2 \times \sqrt{30 \times 34179.56} = 0.142 \text{ MN}$$

Avec:

✓ d : diamètre du goujon.

 \checkmark f_u : résistance ultime à la traction de l'acier du goujon, mais sans être supérieure à 500MPa.

 \checkmark f_{ck} : résistance caractéristique à la compression du béton.

✓ E_{cm} : module d'élasticité du béton.

$$\checkmark \quad \alpha = 0.2 \left(\frac{h}{d} + 1\right) \text{ si } (3 < \frac{h}{d} \le 4) \text{ Sinon } \alpha = 1.$$

La résistance caractéristique d'un goujon s'écrit alors :

$$P_{rk} = \min(P_{rk1}; P_{rk2}) = \min(0.136; 0.142) = 0.136 MN$$

 $A \, l'ELU: P_{rd}^{ELU}: 0.8P_{rk} = 0.8 \times 0.136 = 0.1088MN$

$$A \ l'ELS: P_{rd}^{ELS}: Ks. P_{rd}^{ELU} = 0.6 \times 0.1088 = 0.0652MN$$

Avec Ks un coefficient fixé à 0.6

VI.6.Flèche maximal:

Les figures suivantes montrent la flèche du tablier sous poids propre et charges complémentaires permanentes (CCP).

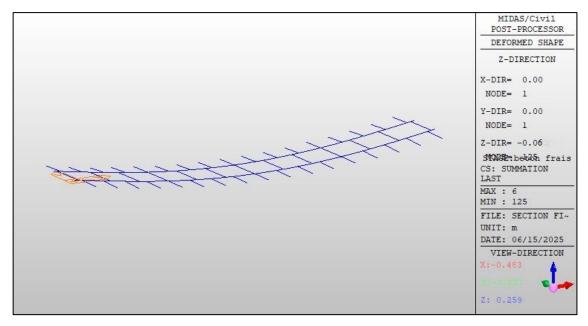


Figure VI-10: flèche sous poids propre.

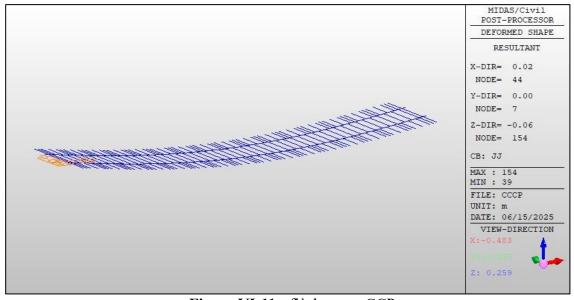


Figure VI-11: flèche sous CCP.

VI.6.1. Contreflèche:

La contreflèche est dimensionnée pour annuler la flèche totale en phase d'exploitation sous poids propre et charge complémentaire permanentes. Les charges variables (trafic, etc.) ne sont pas incluses, car elles sont intermittentes. En revanche, les charges permanentes agissent en continu et doivent être neutralisées pour garantir une géométrie horizontale en service et éviter des désordres esthétiques et fonctionnels comme l'écoulement des eaux.

La contreflèche totale retenue pour compenser les déformations sous charges permanentes et complémentaires permanentes est de 12cm. Cette valeur correspond à la flèche maximale.

VI.7. Vérification de résonance :

Lorsqu'un train circule sur un pont ferroviaire, il génère des charges mobiles qui varient dans le temps et dans l'espace. Ces charges peuvent exciter la structure du pont à certaines fréquences. Si l'une des fréquences propres du pont notamment la fréquence propre fondamentale n_0 correspond ou est proche de l'une des fréquences d'excitation induites par le passage du train il peut se produire un phénomène de résonance. Ce phénomène peut amplifier fortement les déplacements et les efforts internes de la structure, conduisant à un comportement non sûr, et des dégradations prématurées de la structure ou un inconfort pour les usagers.

Selon la norme (EN 1991-2 Actions sur les structures – Ponts ferroviaires), il est exigé que la conception des ponts ferroviaires évite toute résonance significative. Pour cela, il est imposé que la fréquence propre fondamentale de flexion d'un tablier n_0 soit significativement différente des fréquences d'excitation des trains, et donc il propose que la fréquence propre fondamentale n_0 soit dans un intervalle borné par une limite supérieure et une limite inférieure avec une vitesse maximale < 200 km/h.

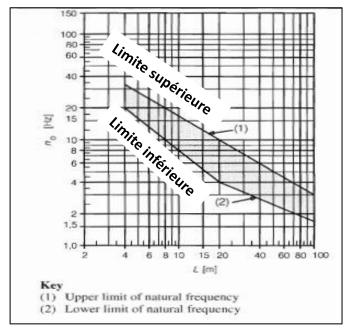


Figure VI-12 : l'intervalle des fréquences propres

Pour le cas étudié:

$$94.76L^{-0.478} \ge n_0 \ge 23.58L^{-0.592}$$

$$94.76L^{-0.478} = 5.15Hz \ge n_0 \ge 23.58L^{-0.592} = 2.35Hz$$

A partir de MIDAS CIVIL, on trouve $n_0 = 2.50$

 $5.15Hz \ge 2.5Hz \ge 2.35Hz \rightarrow condition \ v\'{e}rifi\'{e}e.$

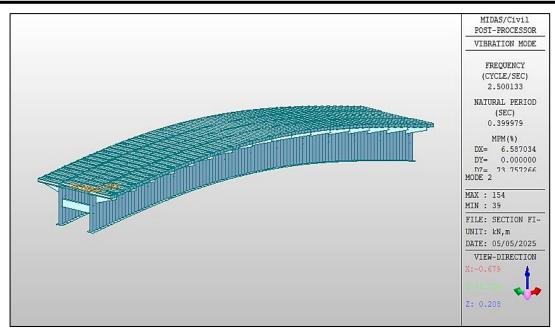


Figure VI-13: tablier sous flexion

- Accélération verticale du tablier :

Lors du passage du train, la structure vibre sous l'effet des charges dynamiques. Ces vibrations génèrent des accélérations verticales qui peuvent être ressenties par les passagers comme des secousses.

Si ces accélérations sont trop élevées, les passagers peuvent ressentir de l'inconfort, voire des pertes de contact avec le sol (micro-sauts).

C'est pourquoi les normes (EN 1991-2 et UIC) imposent des limites d'accélération verticale pour garantir le confort des usagers.

Niveau de confort	Accélération verticale b_{v}
Très bon	1,0 m/s ²
Bon	1.3 m/s^2
Acceptable	2,0 m/s ²

Figure VI-14: niveau de confort en fonction de l'accélération vertical.

A l'aide de logiciel MIDAS CIVIL 2022, on détermine l'accélération verticale sous des vitesses différentes, pour notre cas on a testé les vitesses 120km/h, 200km/h,250km/h.

Le graphe suivant montre l'accélération verticale du au passage de convoi avec V = 120km/h.

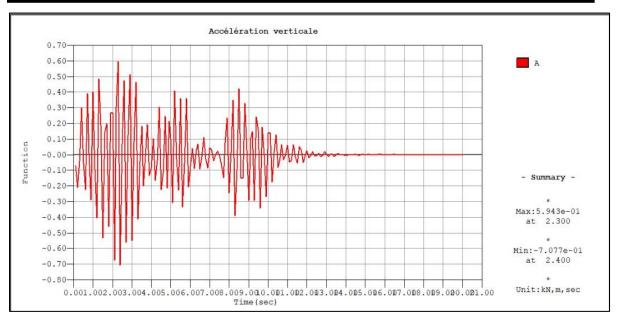


Figure VI-15: accélération verticale avec V=120km/h.

→ Accélération verticale = $1.39 \text{ m/s}^2 \rightarrow \text{confort bon}$

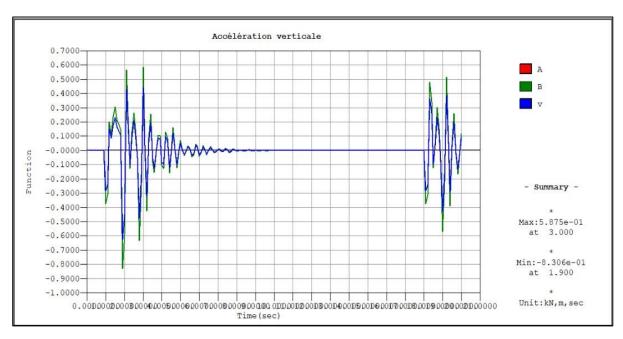


Figure VI-16: Accélération verticale avec V=200km/h.

 \rightarrow Accélération verticale = 2.50 $m/s^2 \rightarrow$ confort acceptable.

À partir d'une vitesse de 250 km/h, l'accélération du tablier (3.09 m/s^2) se rapproche de la valeur limite. Par conséquent, la vitesse critique à partir de laquelle le tablier ne satisfait plus à l'exigence est également proche de 250 km/h. (accélération verticale $< 3,50 \text{ m/s}^2 \rightarrow \text{Pour les}$ tabliers à voie ballastée, il convient de retenir la valeur limite de $0,35 \times g$).

VI.8. Assemblages:

VI.8.1. Introduction:

Le montage est une étape essentielle dans la construction d'un pont, influençant directement la sécurité et la résistance finale des différentes sections de l'ouvrage. Un assemblage désigne un système conçu pour assurer la continuité mécanique entre plusieurs éléments structuraux. Son rôle est de transmettre et de répartir efficacement les différentes sollicitations (efforts, moments, etc.) tout en limitant au maximum l'apparition de contraintes parasites.

VI.8.2. Soudage:

Le soudage est un procédé d'assemblage qui consiste généralement à déposer un cordon de métal fondu entre deux pièces afin de les lier de manière permanente.

On distingue deux principaux types de soudage :

- Soudage homogène : utilisé lorsque les pièces à assembler ont une composition chimique identique, et que le métal d'apport possède également une composition proche.
- Soudage hétérogène: Employé lorsque les pièces ont des compositions chimiques différentes ou lorsque le métal d'apport est distinct. Dans ce cas, le métal d'apport est généralement un alliage dont le point de fusion est inférieur à celui des pièces à assembler.

VI.8.3. Principe de Soudage :

Le soudage consiste à unir deux pièces métalliques en créant une continuité de matière par fusion locale. Un arc électrique de forte intensité, établi entre une électrode (métal d'apport) et les pièces, provoque leur fusion partielle ainsi que celle de l'électrode. Le mélange des métaux en fusion forme, après solidification, un cordon de soudure assurant une liaison aussi résistante que le matériau de base.

VI.8.4. Types des soudures :

Les assemblages en bout et en T représentent des configurations courantes dans la réalisation de joints soudés. L'assemblage en bout consiste à relier deux pièces par leurs extrémités, tandis que l'assemblage en T consiste à souder une pièce perpendiculairement à une autre.

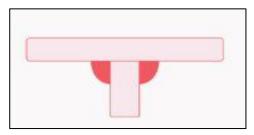


Figure VI-18: Assemblage en T

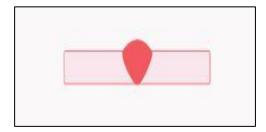


Figure VI-17: Assemblage bout à bout

VI.8.4.1. Joint d'âme :

Joint d'âme est une soudure en bout réalisée entre deux tôles verticales, alignées bout à bout. Pour garantir une bonne pénétration et résistance, le joint utilise :

- Chanfrein en X (double V), avec un angle de $50^{\circ} \pm 5^{\circ}$.
- Épaisseur > 15 mm, pour laquelle ce chanfrein est nécessaire.
- Un espacement de 9 mm entre les tôles.
- Cette préparation assure une fusion complète, donnant une soudure solide et résistante, équivalente à la résistance de l'âme.

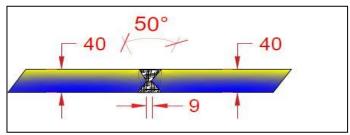


Figure VI-19: Liaison d'âme.

VI.8.4.2. Joint de semelle :

Le joint de semelle est utilisé pour l'assemblage de deux tôles de différentes épaisseurs, positionnées bout à bout horizontalement. Les caractéristiques géométriques de ce joint sont les suivantes :

- Un chanfrein en X (double V) est appliqué lorsque l'épaisseur des tôles dépasse 15mm.
- L'angle du chanfrein est de $60^{\circ} \pm 5^{\circ}$.
- L'espacement entre les tôles doit être compris entre 9 et 10mm.

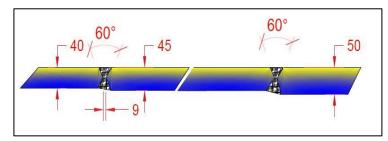


Figure VI-20 : Détails de soudure de semelle supérieure

VI.8.4.3. Joint de l'âme avec les semelles

L'assemblage entre l'âme et les semelles peut être réalisé à l'aide de soudures d'angle lorsque les faces des pièces forment un angle compris entre 60° et 120°. Les angles inférieurs à 60° sont également acceptés, mais dans ce cas, la soudure doit être traitée comme une soudure bout à bout à pénétration partielle.

VI.8.5. Calcul des soudures :

Sorge utile:

La gorge utile « a » correspond à la partie efficace de la soudure, celle qui transmet réellement les efforts entre les pièces assemblées, c'est cette hauteur "a" qui détermine la capacité de la soudure à résister aux forces. Plus la gorge est grande, plus la soudure est résistante.

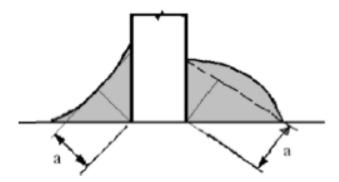


Figure VI-21: Gorge d'une soudure d'angle

VI.8.6. Cordons entre âme et semelle d'une poutre PRS :

Il convient de déterminer la résistance de calcul d'une soudure d'angle soit par la méthode simplifiée soit par la méthode directionnelle. Les forces transmises par une longueur unitaire de soudure sont décomposées en composants parallèles et transversaux à l'axe longitudinal de la soudure et perpendiculaires et transversaux au plan de sa gorge.

$$\sqrt{\left[\sigma_{\perp}^2 + 3\left(\tau_{\perp}^2 + \tau_{//}^2\right)\right]} \le \frac{f_u}{\beta_w \gamma_{Mw}}$$

$$\sigma_{\perp} \le \frac{f_u}{\gamma_{Mw}}$$

 σ_{\perp} , τ_{\perp} , et $\tau_{//}$ Composantes de la contrainte moyenne rapportée à la section de gorge de la gorge.

 σ_{\perp} Composantes perpendiculaires à la section.

 τ_{\perp} Composante dans le plan a la section perpendiculaire à l'axe longitudinal du cordon.

 $\tau_{//}$ Composante dans le plan a la section parallèle à l'axe longitudinal du cordon.

 $\beta_w \gamma_{Mw}$ Coefficient dépendant de la nuance d'acier.

L'attache de la tôle de fond sur l'âme sur les deux côtes, donc : $\sigma_{\perp} = \tau_{\perp} = 0$ et $\tau_{//} = V \cdot \frac{\mu}{2 \sigma L}$

V: L'effort tranchant.

 μ : Moment statique de la semelle.

I : Moment d'inertie de la section.

La résistance de la soudure d'angle sera suffisante si les deux conditions suivantes sont satisfaites

Avec:

$$\frac{\beta_w V \mu \sqrt{3}}{2aI} \le \frac{f_u}{\gamma_{Mw}}$$

L'épaisseur utile du cordon de soudure :

$$a \ge \frac{\beta_w \gamma_{Mw} t_w}{2} = 1.2 \times \frac{40}{2} = 24mm$$

Tableau VI-9: Paramètre dépendant de la nuance d'acier ($t \le 40 \ mm$)

$f_{\mathcal{Y}}$	f_u	γ_{Mw}	eta_w	$\gamma_{Mw}\beta_w$
355Mpa	510Mpa	0.9	1.35	1.2

VI.8.7. Soudage des entretoises :

La résistance d'une soudure d'angle peut être supposée appropriée si, en chaque point de sa longueur, la résultante de tous les efforts par unité de longueur transmis par la soudure satisfait le critère suivant : $F_{w,Ed} \leq F_{w,Rd}$

Avec:

 ${\cal F}_{w,Ed}\;$: valeur de calcul de l'effort exercé dans la soudure par unité de longueur.

 $F_{w,Rd}$: résistance de calcul de la soudure par unité de longueur

$$F_{w,Rd} = F_{v,Rd} \times a$$

a: cordon de soudure.

 $F_{v,Rd}$: résistance de calcul au cisaillement de la soudure.

On trouve: $F_{v,Rd} = \frac{f_u/\sqrt{3}}{\gamma_{Mw}\beta_w} = \frac{510}{\sqrt{3} \times 1.2} = 245.37 \text{N/mm}^2$.

 $F_{w,Rd} = 245.37 \times a$

Entretoises d'about : $F_{w,Ed}$ (PRS1500) = 355 × 0.02 × 1.5 = 10.65MN \rightarrow a \geq 43mm

Entretoises courantes : $F_{w,Ed}$ (PRS1000) = 355 × 0.02 × 1 = 7.1MN \rightarrow a \geq 28.93mm

VI.8.8. Nettoyage des Soudures :

Lors de la préparation et de la pré-peinture des pièces de charpente avant usinage, il est essentiel de laisser une zone dégagée au niveau des soudures, généralement sur une largeur de 50mm. Les couches de peinture existantes peuvent être éliminées par sablage ou polissage. Le nettoyage des soudures ne se limite pas uniquement à la soudure elle-même, mais doit également inclure l'élimination des dépôts alcalins laissés par certains procédés de soudage, ainsi que les projections et gouttelettes de métal présentes à proximité des soudures.

VI.9. Etude de la dalle :

Le hourdis, composé d'une dalle en béton armé, est un élément qui recouvre le tablier du pont et assure la transmission des charges d'exploitation aux poutres, permettant ainsi la flexion transversale. Ces poutres, à leur tour, transfèrent les forces aux appuis, induisant une flexion générale. Il est supposé que le béton contribue à la flexion globale de la structure. L'objectif de l'analyse est de déterminer les moments Mx et My afin de concevoir les armatures nécessaires. La dalle en question a une largeur de 11,80 m, avec deux encorbellements de 3,40 m chacun.

- ♦ Dalle centrale : Appuyée sur 4 cotés a = 5 m b = 49 m
- ◆ Dalle en encorbellement : Appuyée sur 1 seul côté a = 3.4 m b = 49 m

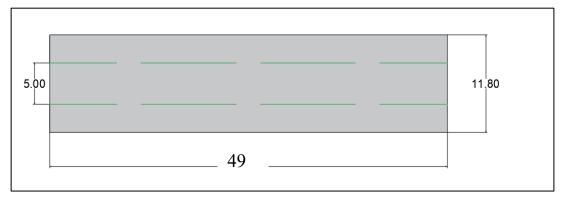


Figure VI-22: Vue en plan de la dalle

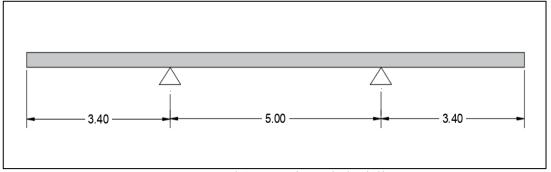


Figure VI-23 : Schéma statique de la dalle.

VI.10. Calcul des moments:

Les abaques de Pigeaud (cours de structures en béton, ENP2024) permettent de déterminer les moments fléchissant maximaux au centre d'une dalle rectangulaire, simplement appuyée sur ses quatre côtés, soumise à une charge uniformément répartie.

Les abaques fournissent deux moments unitaires :

- Ma (moment transversal) : moment fléchissant dans une bande unitaire parallèle à la petite portée (OX).
- Mb (moment longitudinal) : moment fléchissant dans une bande unitaire parallèle à la grande portée (OY).

Ces moments permettent d'analyser la flexion de la dalle dans les deux directions principales.

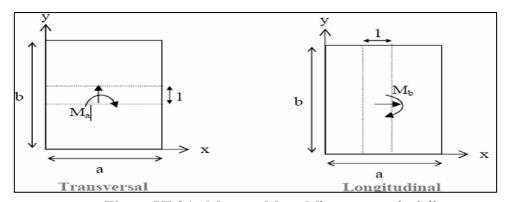


Figure VI-24: Moment Ma et Mb au centre de dalle

VI.10.1. Dalle centrale:

VI.10.1.1. Evaluation Des Charges:

• Dalle: $0.3 \times 2.50 = 0.75 \text{ t/}m^2$

• Chape d'étanchéité : $0.11 \times 2.50 = 0.275 \text{ t/}m^2$

• Ballast (0.48 m): $0.48 \times 2.00 = 1.277 \text{ t/}m^2$

• Rail et traverse : $Q = 0.147 \text{ t/}m^2$

• D'où la charge permanente répartie $Q = 2.449t/m^2$

• La charge totale $P = 2.449 \times 5 \times 49 = 599.96t$

a = 5m et b = 49.00 m avec $\rho = \frac{a}{b} = 0.1 < 0.4$ la dalle travail dans un seul sens : sens de petite portée (a), Soit $\frac{1}{\rho} = \rho' = 10$

On trouve sur les abaques de Pigeaud :

M1 : moment fléchissant rapporter à l'unité de longueur du hourdis dans le sens de la petite portée a. $M_1 = f(\rho = 0.1) = 0.012$

M2 : moment fléchissant rapporter à l'unité de longueur du hourdis dans le sens de la grande portée b $M_2 = f(\rho = 10) = 0.003$

- On calcul les valeurs des moments fléchissant unitaires au centre :
 - Ma = $(M1 + vM2) \times P = (0.012 + 0.2 \times 0.002) \times 599.96 = 7.559 \, tm/ml$
 - Mb = $(M2 + \nu M1) \times P = (0.002 + 0.2 \times 0.012) \times 599.96 = 2.88 \text{ tm/ml}$

Avec : ν Coefficient de poisson de béton : 0.2 a l'ELU

VI.10.1.2. Calcul des effets de la dalle sous surcharge UIC71:

Coefficient de majoration dynamique : $\varphi_3 = 1.047$

Coefficient de réduction pour encastrement partiel sur appuis : 0.8

- la surcharge P = 25 T d'un essieu se répartie sur deux bandes de largeur e + 25cm

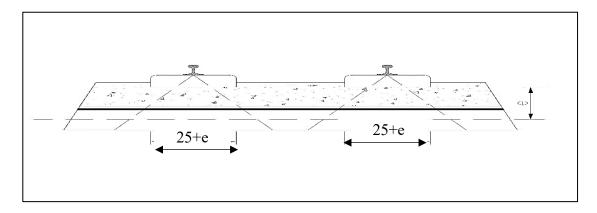


Figure VI-25 : Répartition des charges UIC sur 2 bandes de largeurs.

La charge répartie est $P = \frac{25}{2 \times (1.6 \times 0.25 + 0.66)} = 8.585 t/m^2$ sur une largeur de 0,91 m

On applique le coefficient de majoration dynamique sur cette charge, on trouve :

$$\rightarrow P = 8.585 \times 1.047 = 8.929 t/m^2$$

Le moment calculé est M = 7.76t/m

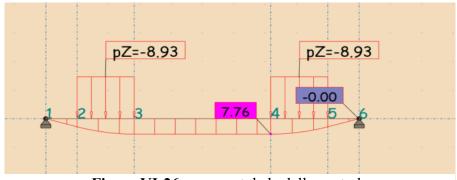


Figure VI-26 : moment de la dalle centrale

VI.10.2. Dalles en encorbellements :

VI.10.2.1. Calcul de moment du au poids propre :

• Dalle: (e = 30 cm) $0.75 \text{ t/}m^2$

• Charge concentrée du au garde-corps et caténaire : 0.38 t/ml

• Ballast : $0.864 \text{ t/}m^2$

• Etanchéité : $0.275 \text{ t/}m^2$

• Trottoir :0.625 t/m^2

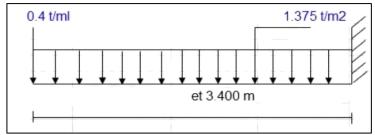


Figure VI-27: dalle en encorbellement sous charges permanentes

Calcul du moment d'encastrement au droit de la poutre :

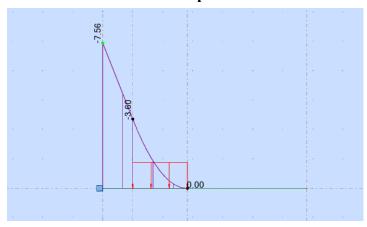


Figure VI-28: Moment de la dalle en encorbellement

$$M_{e1} = 7.56t. m/ml$$

VI.10.2.2. Calcul de moment du au surcharge de trottoir :

Calcul du moment d'encastrement du a la surcharge de trottoir :

$$M_{e1} = 0.5 \times \frac{1.1^2}{2} = 0.3t. m/ml$$

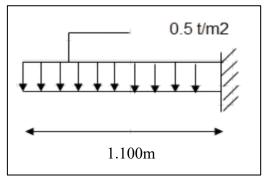


Figure VI-29 : Dalle en encorbellement sous la surcharge de trottoir

Tableau VI-10: récapitulatif des moments fléchissant.

Charge	Dalle centrale	Dalle en encorbellement
Charge	Bane contrare	Largeur = 3.4m
Charges permanente	$M_a = 7.56$ $M_b = 3.25$	$M_{e1} = 9.58$
Surcharge UIC	7.76	7.56
Surcharge sur trottoir	/	0.30

VI.10.3. Ferraillage de la dalle :

1-Dalle centrale:

Armatures principales:

La valeur de moment sur dalle centrale est déterminée par la combinaison suivante :

$$M = 1.35G + 1.45UIC71 = 21.47t. m/ml$$

Le calcul de ferraillage se fait par la méthode de calcul de section en flexion simple, section rectangulaire de $(1m \times 0.3m)$

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}} = \frac{21.47}{100 \times 0.27^2 \times 17} = 0.173$$

 $\mu_{bu} \leq 0.173 \rightarrow pivot A \text{ (pas d'aciers comprimés)}$

$$A_u = \frac{M_u}{z \times \sigma_s}$$

Avec:

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2 \times \mu_{bu}}) = 0.240$$

$$z = d \times (1 - 0.4\alpha) = 0.244m$$

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{500}{1.15} = 348MPa$$

On trouve : $A_u = 25.27cm^2$

- Condition de non fragilité :

$$A_{cnf} = 0.23 \times b_0 \times d \times \frac{f_{tj}}{fe} = 2.98cm^2$$

$$A_s = \max(A_u; A_{cnf})$$

On prend une section $A_s = 25.27cm^2$, soit un ferraillage:

Nappe inférieure : 7 HA 25 avec un espacement e = 15cm

Nappe supérieure : 7 HA20 avec un espacement e = 15cm

2-Dalle en encorbellement :

Armatures principales:

La valeur de moment est déterminée par la combinaison suivante :

$$M = 1.35G + 1.6Surcharge_{trottoir} + 1,45UIC = 24.69 t. m/ml$$

En suivant la même méthode précédente, on trouve :

 $A_s = 29.60cm^2$, soit un ferraillage:

Nappe supérieure 6HA25 avec un espacement e = 16cm

Nappe inférieure : 6HA20 avec un espacement e = 16cm

Vérification de la dalle sous déraillement :

La vérification vise à s'assurer que la dalle de couverture résiste mécaniquement à une situation exceptionnelle de déraillement d'un train, ce qui implique des charges exceptionnellement élevées dues à un essieu sortant de la voie normale et une répartition ponctuelle des efforts sur une petite surface. (Dans le cas des tabliers ballastés, on peut admettre que les forces ponctuelles sont réparties sur un carré de 450 mm de côté à la surface du tablier).

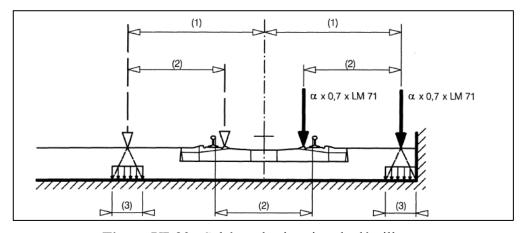


Figure VI-30 : Schéma de situation de déraillement

On détermine la charge UIC71 pour une largeur de 0.45m :

$$P = \frac{0.7 \times 1.1 \times 12.5}{0.45 \times 1} = 21.4t/m^2$$

Ferraillage principale transversale:

La valeur de moment est déterminée par la combinaison suivante :

$$M = 1.35G + 1.45UIC + 1.6Surcharge_{trottoir} = 26.92 t. m/ml$$

Le calcul de ferraillage nous donne :

 $A_s = 32.70 \ cm^2$, soit un ferraillage:

Nappe supérieure : 7HA25 avec un espacement e = 15cm.

Nappe inférieure : 7HA20 avec un espacement e = 15cm.

Ferraillage longitudinale:

Sachant que la dalle travaille dans un sens unique transversale, donc le ferraillage longitudinal se fait selon (Livret 2,01, l'article 4a.5.1):

'Le ferraillage longitudinal de la dalle comportera une section minimale correspondante a 1% de la section de la dalle sur toute la longueur de l'ouvrage'

Alors:

$$A_s = 0.01 \times (0.3 \times 1) \times 10^4 = 30 cm^2/ml$$

➤ Nappe supérieure :7 HA20 /ml avec un espacement e =15cm

➤ Nappe inférieure : 7 HA25 /ml avec un espacement e =15cm

- La résistance au poinçonnement de la dalle :

La résistance au poinçonnement d'une dalle est la capacité de celle-ci à résister à l'effort concentré exercé autour d'un appui ponctuel, sans subir une rupture localisée en forme de cône ou de pyramide inversée, appelée **rupture par poinçonnement**.

Selon (le règlement BAEL 91 révisées 99) On doit vérifier si cette condition est satisfaite : $Q_u < 0.045 \times U_c \times h \times \frac{fc_{28}}{\gamma_h}$

Avec:

 ${\it Q}_u$: charge concentrée (à l'ELU elle vaut 1,6 P) ${\it Q}_u=1.6\times 12.5=20t$; ${\it h}$: hauteur de la dalle = 0,30 cm.

 $U_c = 2(u + v)$ Périmètre de la surface d'impact projetée sur le plan moyen.

Tableau VI-11 : Vérification résistance au non poinçonnement de la dalle.

CHARGES	Qu(t)	u(m)	v(m)	Uc(m)	0,045. Uc. h. $\frac{\text{fc28}}{\gamma_b}$
UIC	20.00 t	0.9	1.6	5	135

 $Q_u = 20t < 135t \rightarrow \text{condition v\'erifi\'ee}.$

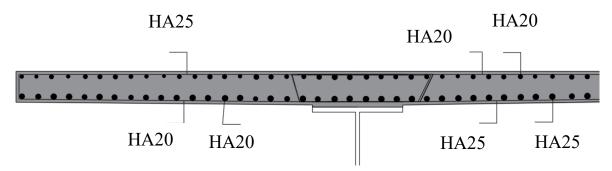


Figure VI-31: Ferraillage dalle centrale - dalle en encorbellement.

VI.11. Conclusion:

Les calculs effectués dans ce chapitre nous ont permis de dimensionner et de vérifier la superstructure qui va résister aux sollicitations en restant dans la stabilité. L'ensemble forme une structure stable et résistante grâce au comportement mixte acier-béton, répondant aux exigences de performance et de durabilité.

CHAPITRE VII ETUDE SISMIQUE

VII.1. Introduction:

Le calcul sismique permet d'évaluer la réponse d'un ouvrage aux mouvements du sol provoqués par un séisme, notamment en termes de sollicitations, déplacements, vitesses et accélérations. Ce calcul, issu de la dynamique des structures, est rendu complexe par le caractère aléatoire des séismes. Ces derniers sont causés par une libération brutale d'énergie dans les roches, générant des ondes sismiques qui atteignent la surface.

VII.2. Appareils d'appuis :

L'appareil d'appui est un élément structurel situé à l'interface entre la superstructure (tablier) et son infrastructure (piles ou culées). Sa fonction principale est de transmettre les charges du tablier vers les appuis tout en permettant les mouvements du tablier (dilatation, retrait, rotation, etc.). Pour l'ouvrage étudié, des appareils d'appui en élastomère fretté sont utilisés. Ils sont constitués de feuillets d'élastomère (généralement en néoprène) empilés, avec des tôles d'acier intercalées servant de frettes, assurant la cohésion et la résistance de l'ensemble.

VII.2.1. Evaluation des efforts normaux appliqués sur les appareils d'appuis :

Les réactions appliquées seront calculées à l'ELU:

 $N_{max} = 10.67$ MN pour la combinaison : 1.35G + 1.2SW2 + 1.45UIC71 + 0.9T

VII.2.2. Dimensionnement des Appareils d'Appuis :

On utilise les appareils d'appui du type B, ils comportent n+1 frettes métalliques et n feuillets d'élastomère d'épaisseur constante (SETRA, appareilles d'appui en élastomères frettes,2007)

La définition géométrique de l'appareil d'appui est donnée sur la figure suivante :



Figure VII-1 Schéma d'appareil d'appui

a (a') : dimension de l'élastomère (de frette) dans la direction longitudinale du pont.

b (b') : dimension de l'élastomère (de frette) dans la direction transversale ($a \le b$).

Avec:

Tb= n(ti + ts) + ts + 2e: épaisseur nominale totale d'appareil.

CHAPITRE VII: Etude sismique

Te = n ti + 2 e: épaisseur nominale totale d'élastomère, Épaisseur initiale totale moyenne d'élastomère en cisaillement.

$$Te = n \times ti + 2 e si e > 2.5 mm$$

Te =
$$n \times ti \text{ si e} \leq 2,5 \text{ mm}$$

Avec:

n : nombre de feuillets élémentaires d'élastomère.

ti : épaisseur nominale d'un feuillet élémentaire d'élastomère.

ts : épaisseur d'une frette élémentaire. e : enrobage.

VII.2.3. Aire de l'appareil d'appui :

La condition de non-cheminement est :

$$\frac{N_{max}}{a'b'} \le \sigma_{adm} = 20 Mpa$$
 $N_{max} = 10.67 \text{ MN}$, $a' \times b' = 5335 \text{cm}^2$, $a \times b \ge 5335 \text{cm}^2$

On prend a \times b = $800 \times 800 \ mm^2$

VII.2.4. Calcul de l'épaisseur de l'appareil d'appui Tb :

Condition de non flambement : $\frac{a}{10} \le T_b \le \frac{a}{5}$

$$\frac{800}{10} = 80mm \le T_b \le \frac{800}{5} = 160mm$$
 On prend $T_b = 116mm$

VII.2.4.1. Dimensionnement des frettes :

L'épaisseur de la frette doit respecter les deux conditions suivantes :

$$t_{s} > \frac{a \times \sigma_{m}}{\beta \times \sigma_{e}} \text{ Et } t_{s} > 2mm$$

$$\text{Avec } \sigma_{e} = 235kg/mm^{2} \text{ et G} = 0.9 \text{ MPa}$$

$$\sigma_{m} = \frac{N_{max}}{a \times b} = \frac{10.67}{0.8 \times 0.8} = 16.68\text{MPa}$$

$$\beta = \frac{a \times b}{2 \times G \times (a + b)} = \frac{0.8 \times 0.8}{2 \times 0.9 \times (0.8 + 0.8)} = 22.22$$

$$t_{s} = \frac{0.8 \times 16.68}{22.22 \times 235} \ge 2.5mm$$

$$\rightarrow \text{On prend } t_{s} = 4mm$$

Nous allons opter pour le choix des dimensions suivant :

Tableau VII-1: Dimensions d l'appareil d'appui

R_{max}	10.67(MN)
$a \times b$	$800 \times 800 (mm^2)$
T_b	116mm
T_e	88mm
Détails	 - 6 feuilles d'élastomère d'épaisseur : ti =13 mm. - 7 frettes métalliques d'épaisseur : t_s = 4mm - Enrobage extérieur = 5 mm.
	- Enrobage des chants = 4 mm.
$(a \times b \times T_b)$	800 × 800 × 114

VII.2.5. Evaluation des efforts horizontaux :

VII.2.5.1. Efforts dus aux actions statiques : L'effort statique en tête de chaque appui est donné par la formule suivante :

$$H_{statique} = \frac{n \times \Delta_x \times G \times a \times b}{T_e}$$

G: module de déformation transversale d'appareil d'appui, G = 0.9 MPa.

Δx : déformation due à la force considérée.

a × b : dimensions de l'appareil d'appuis.

Te : épaisseur des feuillets d'élastomère.

n: nombre d'appareils d'appuis.

• Action due à la variation de la température :

$$H_T = \frac{n \times \Delta_T \times G \times a \times b}{T_e}$$

Avec:

$$\Delta_T = \varepsilon_T \times |X_i|$$

$$\varepsilon_T = \Delta T \times \lambda$$

$$\Delta T = 35^{\circ} \text{C}$$
 ; $\varepsilon_T = 4 \times 10^{-4}$

• Action due au retrait dans chaque appareil appui :

$$H_r = \frac{n \times \Delta_r \times G \times a \times b}{T_e}$$

avec:
$$\Delta_r = \varepsilon_r \times |X_i|$$

 $\varepsilon_r = 1.38 \times 10^{-4}$

• Action due au fluage :

$$H_{fl} = \frac{n \times \Delta_{fl} \times G \times a \times b}{T_e}$$
$$\Delta_{fl} = \varepsilon_{fl} \times |X_i|$$
$$\varepsilon_{fl} = K_{fl} \times 10^{-4}$$

 K_{fl} : Coefficient du fluage à t = 0 au moment où il subit la contrainte σ_b est de 2 à 3.

On prend : $K_{fl} = 2$ alors $\varepsilon_{fl} = 2 \times 10^{-4}$

Tableau VII-2: Efforts horizontaux dus au tablier.

	Xi	Ki(MNm)	Température(MN)	Retrait(MN)	Fluage(MN)
	(m)				
C 1	-74.5	17.44	0.520	0.179	0.259
P1	-25.4	38.88	0.395	0.136	0.170
P2	25.4	38.88	0.395	0.136	0.170
C2	74.6	17.44	0.520	0.179	0.261

VII.2.5.2. Efforts dus aux actions dynamiques :

L'effort dynamique en tête de chaque appareil d'appui est donné par la formule suivante :

$$H_{dyn} = \frac{H_i R_i}{\sum R_i}$$

Avec *Hi*: Effort horizontal développé sur le tablier.

• Effort dû au vent :

$$H_v = P_v \times L_T \times H_T$$

Avec:

$$- Pv = 2 \times 10^{-3} MN/m^2$$

-
$$L_T$$
: Longeur du pont = 150m

-
$$H_T$$
: Hauteur d tablier = $3.9 + 0.3 = 4.2m$

On trouve : Hv = 1.26MN

• Effet de freinage et de démarrage :

Les effets de freinage et de démarrage sont développés seulement par UIC71 et SW/2.

$$H_{fuic}$$
=1.08 MN. H_{duic} = 1.1 MN. H_{fSW2} = 1,47 MN. H_{dSW2} =0.83 MN.

	$\frac{k_i}{\sum K_i}$	Hv(MN)	$H_{duic}(MN)$	$H_{fuic}(MN)$	$H_{dSW2}(MN)$	$H_{fSW2}(MN)$
C1	0.1550	0.1951	0.0851	0.0857	0.0641	0.1131
P1	0.3450	0.4352	0.1890	0.1863	0.1432	0.2518
P2	0.3450	0.4352	0.1890	0.1863	0.1432	0.2518
C2	0.1550	0.1951	0.0851	0.0857	0.0641	0.1131

Tableau VII-3: récapitulatif des efforts dynamiques.

VII.2.6. Vérification de dimensionnement :

Il y a des vérifications aux Etats Limites Ultimes qui doivent être faits pour les appareils d'appui en élastomère fretté quel que soit leur type (R.P.O.A2008) :

- La distorsion totale maximale en tout point de l'appareil d'appui est limitée
- La stabilité de l'appareil d'appui doit être assurée à la rotation, au flambement et au glissement.

Vérification	Formule
Résistance à la compression	$\sigma_m < \sigma_{adm} = 20MPa$
Stabilité au flambement	$\gamma_s \times P_u < P_c$
Limite de la distorsion	$\delta < \delta_c$
Non-glissement	$F_h < f \times N$

Tableau VII-4: Vérifications des appareils d'appui.

VII.2.6.1. Résistance à la compression :

Une pression verticale trop élevée peut faire écraser l'appui, dépasser la limite de compression de l'élastomère, provoquer un décollement ou une rupture, afin d'éviter ce problème on doit vérifier :

$$\sigma_{M} = \frac{N_{max}}{a \times b} < \sigma_{adm} = 20MPa$$

$$\sigma_{M} = \frac{10.67}{0.8 \times 0.8} = 16.82MPa$$

 $\sigma_{M} < \sigma_{adm} = 20 \text{MPa} \rightarrow \text{condition v\'erifi\'ee}$

VII.2.6.2. Stabilité au flambement :

Pour s'assurer que l'appui reste stable sous charge verticale sans risque de flambement des éléments internes on doit vérifier :

$$\gamma_s \times P_u < P_c$$

Avec:

 $\gamma s = 3$: le coefficient de sécurité.

Pu : la valeur maximale des charges verticales à l'ELU.

Pc : la charge critique de flambement.

$$Pc = 4 \times G \times B \times S^2 \times \frac{h}{d}$$

Avec:

B: l'aire nominale de l'appui.

d : la somme d'une épaisseur de fret (13mm) et d'une épaisseur de caoutchouc (4mm).

h : la hauteur totale de l'appareil d'appui.

S: le facteur de forme

$$S = \frac{a \times b}{2 \times t \times (a+b)}$$

Application numérique :

$$S = \frac{0.8 \times 0.8}{2 \times 0.013 \times (0.8 + 0.8)} = 15.38$$

 $d = 0.013 + 0.04 = 0.017m \ h = 0.116m \ B = 0.64m^2$

$$Pc = 4 \times 0.9 \times 064 \times 15.38^2 \times \frac{0.016}{0.117} = 80MN$$

$$\gamma_s \times P_u = 3 \times 10.67 = 32.04 \le Pc = 80MN \rightarrow condition vérifiée$$

VII.2.6.3. Limite de la distorsion :

Sous une force trop élevée, l'appui s'écrase ou se déforme, perdant sa capacité à reprendre correctement la charge verticale ce qui provoque une instabilité, pour limiter la rotation angulaire excessive on doit vérifier cette condition :

$$\delta = \frac{V_x}{T_b} < \delta_c$$

Avec:

 V_x : déplacement horizontale = 0.06m

$$\frac{Pu}{Pc} = \frac{10.67}{80} = 0.13 \le 0.25$$

Alors on a : $\delta_c = 0.7 + 4(\delta_0 - 0.7)(0.25 - P)$

Avec:

$$\delta_0 = \frac{b}{T_b}$$
borné par [0.7 < δ_0 < 2]

$$\delta_0 = \frac{800}{116} = 6.89 \rightarrow on \ prend \ \delta_0 = 2$$

$$\delta_c = 0.7 + 4(2 - 0.7)(0.25 - 0.13) = 1.33$$

$$\delta = \frac{60}{116} = 0.52 < \delta_c = 1.33 \ \rightarrow condition \ v\'erifi\'e$$

VII.2.6.4. Condition de non – glissement :

Si l'effort horizontal dépasse la force de frottement, l'appui peut glisser sur son support → perte d'alignement, rupture des ancrages ou instabilité globale :

$$F_h < f \times N$$

Avec:

 F_h : effort horizontal

 $N: effort\ verticale$

 $f: coefficient de frottement f = 0.1 + \frac{0.6}{\sigma_m}$

$$N = 5.75MN$$
 $\mu = 0.167$ $F_h = 1.0857$ $\sigma_m = 9$

Application numérique :

 $1.0857 > 0.960 \rightarrow condition non vérifiée$

Dans la pratique, cette condition est **rarement** satisfaite. Il est donc souvent nécessaire de prévoir un dispositif spécifique pour éviter le glissement, comme des taquets d'arrêt ou un ancrage de l'appareil d'appui.

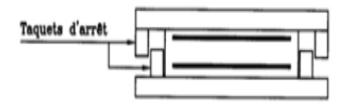


Figure VII-2 : Appareil d'appui avec taquets d'arrêt.

VII.2.7. Dés d'appuis :

Le dé d'appui permet de diffuser les charges localisées provenant directement du tablier vers l'élément porteur, ainsi que rattraper le dévers du tablier.

VII.2.7.1. Dimensionnement des dés d'appuis :

Les dimensions (a_1, b_1, h) seront choisies de façon à inclure les appareils d'appuis, on choisit les dimensions suivantes :

$$a1 \ge a + 200; b1 \ge b + 200$$

$$\Rightarrow \begin{cases} a1 \ge 800 + 200 = 1000mm \\ b1 \ge 800 + 200 = 1000mm \\ h = 350mm \end{cases}$$

$$(a1 \times b1 \times h1) = (1000 \times 1000 \times 350)mm$$

VII.2.7.2. Ferraillage des dés d'appuis :

Les déférentes sections d'armatures sont évaluées suivant le guide (SETRA Piles, Palées, appuis des tabliers PP.1973)

VII.2.7.2.1. Armatures de chainage :

La section d'armatures de chainage peut être déterminée par des règles analogues à la méthode des bielles ou la méthode de reprise des efforts d'équilibre général.

$$A_{chainage} = 0.25 \frac{N}{\sigma_s}$$

$$\sigma_s = \frac{fe}{1.15} = \frac{500}{1.15} = 434.8 MPa$$

$$A_{chainage} = 0.25 \frac{10.67}{434.8} = 61.35 cm^2 \rightarrow soit \ 13 \text{HA25}$$

VII.2.7.2.2. Armatures horizontales :

Pour limiter la propagation d'éventuelles fissures, l'ensemble des armatures horizontales placées sous le chainage, devra reprendre un effort égal à 12,5% de la même descente de charge.

$$A_h = \frac{0.125N}{\sigma_S} = \frac{0.125 \times 10.67}{434.8} = 30.6cm^2 \rightarrow soit\ 16HA16$$

Frettes ou armatures de confinement :

- **Frettes supérieures** : dont la section totale est capable de reprendre un effort égal à 0.04N, elles sont placées le plus près possible de la face supérieure de l'appui :

$$A_{sup} = \frac{0.04N}{\sigma_s} = \frac{0.04 \times 10.67}{434.8} = 9.81cm^2 \rightarrow soit \ 13HA10$$

- **Frettes inférieures** : une frette inférieure d'éclatement, disposé à une profondeur entre h/3 et h à partir de la face supérieure de l'appui.

$$A_{inf} = \frac{0.1N}{\sigma_s} = \frac{0.1 \times 10.67}{434.8} = 24.5 cm^2 \rightarrow soit \ 13 \text{HA} 25$$

VII.2.7.2.3. Joint sous ballast:

Les tabliers de ponts subissent des variations dimensionnelles longitudinales dues à des variations de température, du retrait, du fluage et des déformations d'exploitation. Il convient de rendre le tablier librement dilatable, donc de ménager un jeu à ses ou à une de ces extrémités.

- Type de joint :

Les joints de ponts ferroviaires, servent à absorber les effets de dilatation du tablier. Toutefois, ils doivent également garantir la continuité de la voie ferrée et du roulement. L'interaction entre la voie et l'ouvrage d'art est donc un élément essentiel dans la conception des projets ferroviaires. Ces joints sont surtout présents sur les ponts récents, les ouvrages anciens étant souvent en maçonnerie (sans joint) ou métalliques avec pose directe de la voie.

Dans les ponts modernes, généralement à voie ballastée, le type de joint utilisé dépend de la longueur du tablier pouvant se dilater. Certains joints doivent aussi permettre la dilatation de la voie elle-même, et parfois interrompre le ballast. Les solutions les plus simples, comme des porte-à-faux sur le mur de soutènement, suffisent pour de faibles longueurs.

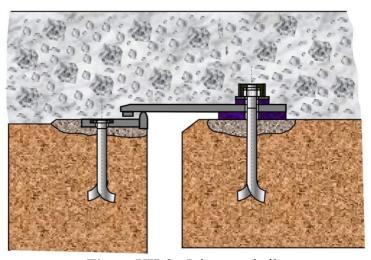


Figure VII-3: Joint sous ballast

VII.3. Evaluation de raideur du système :

La raideur du système comprend la raideur de la pile et la raideur des appareils d'appuis, pour les ouvrages courants, on néglige en général la souplesse des fondations pour la justification du tablier et des appuis en élévation (l'Eurocode 8 EN 1998-2). Cela a pour effet d'augmenter la raideur générale de l'appui et donc de réduire la période propre de l'ouvrage.

$$K_{appareil} = \frac{G.\,a.\,b}{e} \quad K_{pile} = \frac{3E.\,I}{h^3} \quad Et \quad K_{appuis} = \frac{1}{\frac{1}{K_{pile}} + \frac{1}{K_{appareil}}}$$

Avec:

- a, b, e: sont les dimensions des appareils d'appuis.
- G : module de cisaillement de l'appareil d'appui, G = 0.9 MPa en cas statique, et 1.2 MPa en cas dynamique.
- I = moment d'inertie de la section.

Pour notre ouvrage, on a deux piles de dimensions 3.5 m x 6 m avec :

$$H_{pile1} = 12 \text{m}$$
 $H_{pile2} = 15 \text{m}$

Tableau VII-5: Raideurs longitudinales et transversales des appuis.

Appuis	Kappuis longitudianle	K _{appareil}	K _{longitudinal}	K _{appuistransversal}	K _{transversal}
C1	Infinie	17.44	17.44	Infinie	17.44
P1	2480.39	34.88	34.39	983.25	32.61
P2	1269.96	34.88	33.94 503.42		33.68
C2	Infinie	17.44	17.44	Infinie	17.44

$$K_{sys\ longitudinal} = K_{pile1} + K_{pile2} + 2K_{cul\'ee} = 103.21MN/m$$

$$K_{sys\ transversal} = K_{pile1} + K_{pile2} + 2K_{cul\acute{e}e} = 101.20\ MN/m$$

VII.4. Calcul sismique :

La vérification des ouvrages face aux actions sismiques doit être réalisée de manière à ce que le risque de défaillance lors d'un séisme potentiel soit minimisé.

D'après le RPOA 2008, les caractéristiques relatives à notre ouvrage sont les suivantes :

- Le pont est classé en groupe 1 (Pont stratégique).
- Le sol est de catégorie S2 (site ferme), selon les résultats géotechniques donnés.
- L'ouvrage se trouve dans une zone sismique I.

• Accélération de zone : A = 0.15.

VII.5. Analyse spectrale monomodale:

De manière générale, l'analyse d'un pont se fait par la méthode spectrale monomodale dans cette méthode simplifiée, on fait l'hypothèse que les mouvements de la structure sont à tout instants proportionnels à une déformée privilégiée appelée mode fondamental.

Pour les ponts réguliers, on utilise un calcul spectral monomodal pour évaluer les effets du séisme global, qui suppose que la réponse du pont est dominée par son premier mode de vibration.

VII.5.1. Domaine d'application

Cette méthode ne s'applique pas aux ponts spéciaux elle s'applique aux ponts remplissant les critères suivants simultanément (R.P.O.A2008) :

- 1. Le premier mode de vibration doit mettre en mouvement au moins 70 % de la masse totale de la structure (tablier + piles + chevêtres) →condition vérifiée.
- 2. Le biais (Angle de l'axe du tablier avec l'axe de ses appuis) est supérieur à 70 grades et les raideurs longitudinale et transversale totales des appuis ne variant pas de plus de 10% par rapport aux valeurs calculées sans biais. → condition vérifiée.
- 3. La courbure (angle balayé en plan par la tangente à l'axe) doit être inférieure à 30 grades

 → condition vérifiée.
- 4. L'excentricité théorique entre le centre de masse du tablier et le centre élastique des appuis doit être ≤ 5 % de la distance entre appuis extrêmes. → Condition vérifiée. Car on a l'entraxe et les dimensions des poutres sont les mêmes sur le long de l'ouvrage.

VII.5.2. Evaluation des efforts sismiques longitudinaux :

Dans les ponts rectilignes, la déformation horizontale du tablier est négligeable face aux déplacements sismiques des piles. L'analyse sismique se fait alors avec un modèle à tablier rigide.

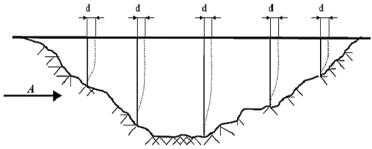


Figure VII-4 : Séisme longitudinal

On applique au tablier une force horizontale statique équivalente F donnée par l'expression :

$$F = M. Sa(T)$$

M : est la masse effective totale de la structure, égale à la masse du tablier.

Sa (T) : est l'accélération spectrale du spectre de calcul correspondant à la période fondamentale T.

Le spectre de réponse élastique (Sae) pour les deux composantes horizontales est donné en fonction de la période élastique (T) et du taux d'amortissement (ξ) de l'ouvrage par :

$$Sae (T, \xi)_{(m/s^2)} = \begin{cases} AgS \left(1 + \frac{T}{T_1} (2.5\eta - 1) \right) & 0 \le T \le T_1 \\ 2.5\eta AgS & T_1 \le T \le T_2 \\ 2.5\eta AgS \left(\frac{T_2}{T} \right) & T_2 \le T \le 3.0s \\ 2.5\eta AgS \left(\frac{3T_2}{T^2} \right) & T \ge 3.0s \end{cases}$$

- g : accélération de la pesanteur (=9.81m/s²)
- S : coefficient de site S=1.1
- T_1, T_2 : périodes caractéristiques associées à la catégorie de site $T_1 = 0.15$; $T_2 = 0.4$
- Accélération de zone : A = 0,15.
- ξ: taux d'amortissement.
- η : facteur de correction de l'amortissement $(\eta = \sqrt{\frac{7}{(2+\xi)}})$.
- T : la période fondamentale $T=2.\pi\sqrt{\frac{M}{K}}$ où $K=\sum K_i$ est la raideur du système, égale la somme des raideurs des éléments résistants dans le sens du séisme.

Application numérique :

$$T = 2 \pi \sqrt{\frac{5365.458}{52.8 \times 10^3}} = 1.42 s$$

$$Sae (T, \xi)_{(m/s^2)} = 2.5 \times 1 \times 0.15 \times 9.81 \times 1.1 \times \left(\frac{0.4}{1.42}\right) = 1.14$$

$$F_{longitudinal} = M. Sa (T) = 5365.458 \times 1.14 = 6116.62kN$$

• Le déplacement a pour expression :

$$d = \left(\frac{T}{2\pi}\right)^2 . S_a(T)$$

• La force horizontale se répartit sur chaque appui (i) au prorata des raideurs :

$$F_i = \frac{K_i}{K} F$$

Tableau VII-6: Force et le déplacement dans la direction longitudinale.

Appuis	$F_{longitudinal}(MN)$	d(cm)
C1	1028.88	5.8
P1	2020.58	5.8
P2	2038.28	5.8
C2	1028.88	5.8

VII.5.3. Evaluation des efforts sismiques transversaux :

En direction transversale, le tablier peut être supposé comme étant rigide si $\frac{L}{B} \le 5$, dans notre cas :

$$\frac{L}{B} = \frac{50}{11.8} = 4.23 \le 5$$
 La condition est vérifiée.

L = longueur du tablier

B= largeur de la dalle

On adopte la même démarche que pour le séisme longitudinal, à la différence que la moitié de la masse des piles est ajoutée à celle du tablier, et que la rigidité du système est également modifiée.

Application numérique :

$$T = 2 \pi \sqrt{\frac{6201.408}{101.93 \times 10^3}} = 1.55s$$

$$Sae (T, \xi)_{(m/s^2)} = 2.5 \times 1 \times 0.15 \times 9.81 \times 1.1 \times \left(\frac{0.4}{1.55}\right) = 1.04m/s^2$$

$$F_{transversal} = M.Sa (T) = 6201.408 \times 1.04 = 6449.46kN$$

Tableau VII-7: force et déplacement dans la direction transversale.

Appuis	$F_{transversal}(MN)$	d(cm)
C1	1045.85	8.6
P1	1984.96	8.6
P2	2035.94	8.6
C2	1045.85	8.6

VII.5.4. Composante verticale du séisme :

Méthode d'analyse pour la composante verticale du séisme :

Selon le guide (SETRA : ponts courants en zone sismique,2000) il est important de calculer les réactions d'appui sous séisme vertical pour vérifier les appareils d'appui et, en particulier, se prémunir contre des risques de soulèvement d'un appareil d'appui. Les vibrations verticales du tablier sont complexes lorsque le tablier repose simplement sur ses appuis (pas d'encastrement), les réactions d'appuis Ri peuvent être calculées à l'aide de la relation suivant :

$$Ri=a\times b\times \mu\times L$$

Avec:

- a : l'accélération du sol en fonction de la classe de l'ouvrage, de la zone sismique et de la géologie du site du projet
- b : paramétré dépendant de la réaction d'appui considérée et du rapport de travée
- L : longueur de travée
- μ : masse linéique du tablier

Dans notre cas le pont est isostatique et les travées sont identique, on calcul la réaction d'appui pour une travée.

Tableau VII-8: calcul de la réaction verticale

L	a	b	μ	Ri
50	1.4	0.41	35760	1026.31

 $R_{pile} = 2052.62 \ KN \qquad R_{cul\acute{e}e} = 1026.31 \ KN$

VII.6. Combinaison des composantes de l'action sismique :

D'après le R.P.O.A, il faut combiner les composantes sismiques dans deux directions perpendiculaires (longitudinale et transversale), pour tenir compte de l'incertitude sur la direction réelle du séisme.

$$E = E_x \pm 0.3E_y \pm 0.3E_z$$

$$E = E_y \pm 0.3E_x \pm 0.3E_z$$

$$E = E_z \pm 0.3E_y \pm 0.3E_x$$

On applique cette combinaison des efforts sismiques directement sur la pile, car c'est elle qui subit les sollicitations transmises par le tablier.

Appuis	Ex	Ey	Ez
C1	1028.88	1045.85	1026.31
P1	2020.58	1984.96	2052.62
P2	2038.28	2035.94	2052.62
C2	1028.88	1045.85	1026.31

Tableau VII-9: Les composantes sismiques.

Afin de vérifier les déplacements de l'ouvrage dans les cas des charges sismiques précédentes avec le logiciel MIDAS CIVIL, on définit les spectres de réponses horizontales et verticales avec le logiciel RPOA2008 en précisant la zone sismique, le site, et le groupe de l'ouvrage, et on obtient les spectres suivants :

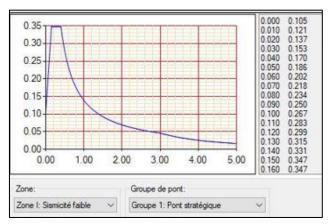


Figure VII-5: Spectre de réponse verticale

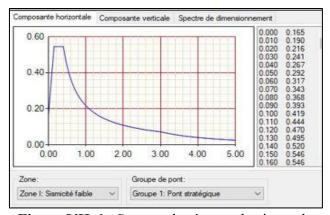


Figure VII-6 : Spectre de réponse horizontale

L'injection des spectres de réponses dans MIDAS CIVIL donne les résultats suivants :

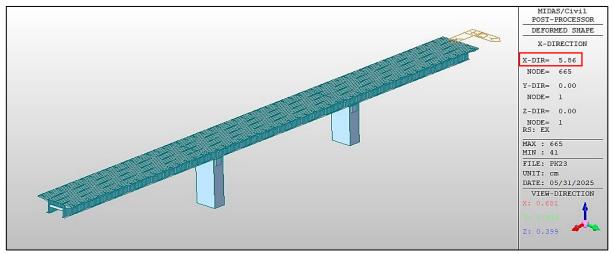


Figure VII-7: Déplacement dans la direction Ex.

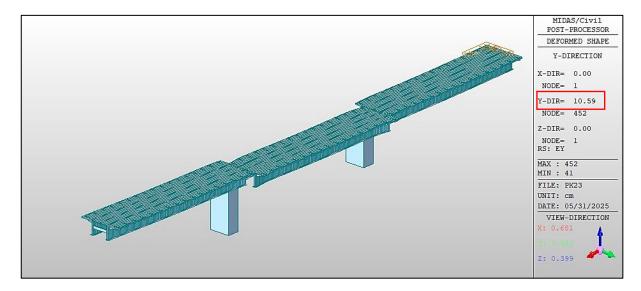


Figure VII-8: Déplacement dans la direction Ey

VII.7. Conclusion:

Dans ce chapitre, nous avons évalué les dimensions des appareils d'appuis (1000 × 1000 × 350)mm et les efforts qu'ils subissent statiques et dynamiques et la vérification de leur résistance. De plus l'étude sismique a permis de déterminer les efforts verticaux, longitudinaux et transversaux transmis aux appuis, qui seront utilisés pour le dimensionnement de l'infrastructure.

CHAPITRE VIII ETUDE DE L'INFRASTRUCTURE

VIII.1.Introduction:

L'analyse de l'infrastructure d'un ouvrage constitue une phase cruciale du processus de conception, en lien direct avec le comportement global de la structure. Le choix des appuis et des fondations repose sur une démarche rigoureuse, s'inscrivant dans un processus itératif tenant compte des contraintes géotechniques, structurelles et fonctionnelles. Dans ce chapitre, nous procéderons à l'étude détaillée des appuis et des fondations de l'ouvrage.

VIII.2. Etude de la culée :

La culée constitue l'extrémité d'un pont et assure la jonction entre l'infrastructure de l'ouvrage et le terrain naturel. Elle joue un rôle essentiel en servant à la fois de support au tablier, en reprenant ses charges, et de mur de soutènement, en retenant les terres et en s'opposant aux poussées exercées par les remblais et les surcharges situées à l'arrière.

VIII.2.1. Caractéristiques de la culée :

Le tableau suivant présente les dimensions de différents éléments constituants de la culée :

Tableau VIII-1 : Récapitulatif de caractéristiques des différents éléments de la culée.

Elément	Dimen	sion	Rôle
	Hauteur	4.65m	Protéger l'about du tablier, en retenant les
Mur garde grève	Épaisseur	0.4m	terres et assurer la fixation du joint de chaussée.
	Longueur	11.8m	chaussec.
Mur frontal	Hauteur	6m	Il assure la stabilité du remblai, et la
wui nontai	Épaisseur	2m	transmission des charges vers les fondations.
	Longueur	11.8m	
	Hauteur	10.65m	Complément latéral du mur frontal,
Mur en retour	Epaisseur	0.6m	essentiel pour retenir les remblais latéralement et soulager le mur frontal.
	Longueur	8.25m	american construinger to make meaning
	Hauteur	2m	Transmettre et répartir les charges au sol
Semelle	Largeur	13.2m	tout en assurant la stabilité contre le
	Longueur	9.6m	glissement, le renversement.

La figure suivante représente le schéma de la culée :

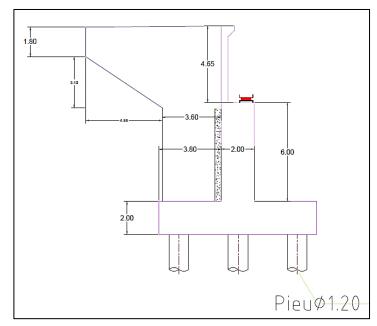


Figure VIII-1 : Schéma de la culée

VIII.2.2. Evaluations des efforts :

• Coefficient de poussée Kad :

Selon le RPOA 2008, le coefficient de poussée dynamique active peut être calculé selon la formule de Mononobe-Okabe.

$$K_{ad} = \frac{\cos^{2}(\varphi - \theta)}{\cos^{2}\theta \left[1 + \sqrt{(\sin\varphi \times \frac{\sin(\varphi - \beta - \theta)}{\cos\beta.\cos\theta})}\right]}$$

Avec:

 φ : angle de frottement interne ($\varphi = 30^{\circ}$)

 θ : angle entre la direction du séisme et la verticale : $\theta = Arctan\left(\frac{K_h}{1 \pm K_v}\right)$

 K_h : Accélération horizontale maximale = A= 0.15 m/s²

 K_v : Accélération verticale maximale $K_v = 0.3 \times K_h = 0.045 \text{ m/s}^2$

 K_a : Coefficient de poussée statique active $K_a = 0.333$

• Evaluation des efforts statiques de la culée :

Les efforts et les moments agissants sur la culée sont résumés dans le tableau suivant :

Tableau VIII-2: Tableau récapitulatif des sollicitations dû au poids propres.

Désignation	N	Н	M_N	M _H
Désignation	(t)	(t)	(t.m)	(t.m)
Poids propre du tablier	770.83	/	265.86	/
Mur garde grève	54.87	/	-43.90	/
Mur frontal	354.00	/	0	/
Mur en retour	162	/	-469.80	/
Semelle	633.6	/	0	/
Dés d'appui	0.68	/	0.24	/
Poids des terres patin arrière	781.40	/	-2266.06	/
Poids des terres patin avant	223.31	/	647.60	
Poussée des terres	/	397.49	/	1457.46
Total	2980.68	397.49	-1862.13	1457.46

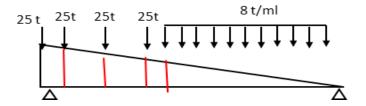
Avec

 M_N : moment des efforts verticales.

M_H: moment des efforts horizontaux.

VIII.2.3. Calcul des sollicitations :

Le poids total du tablier (1travée) =1541.66 t, la culée supporte 50 % du poids propre du tablier, donc la réaction sur culée est égale à : 770.83t

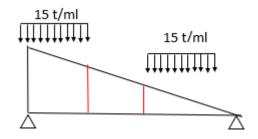

VIII.2.3.1. Calcul des surcharges ferroviaires :

Les valeurs caractéristiques des surcharges ferroviaires sont multipliées par un coefficient dynamique définie précédemment $\varphi_3=1.0473$

En utilisant la théorie des lignes d'influence, on détermine les cas les plus défavorables pour les charges UIC71, SW2 :

-Réaction sur culée :

Surcharge UIC71:


Xi	Yi	Pi	Pi Xi
49.1	1	25	25,00
47.5	0.9674	25	24,19
45.9	0.9348	25	23,37
44.3	0.9022	25	22,56

y	Ω (ml)	q (t/ml)	$\Omega \times q$
0.886	19.27	8	154.155

$$\sum Yi \times Pi + \Omega q = 249.267t$$

$$R_{uic}=249.267\times\varphi_3\times\alpha=287.167t$$

- Surcharge SW2:

Y1	Y2	Y3	$\Omega(ml)$	q(t/ml)	$\Omega q(t)$
1	0.491	0.348	21.613	15	324.197

$$R_{sw2} = 324.197 \times \varphi_3 = 339.54t.$$

- Force de démarrage :

 Q_{lak} = 33 kN/m. L[m] \leq 1000kN (pour le schéma de charges UIC 71 et SW).

$$N = 33 \times 49.1 = 1620.3KN > 1000 \text{ kN}.$$

Alors on prend $N = 1000 \times 1.1 = 1100 \text{kN} = 110 \text{t}$.

- Force de freinage :

 Q_{lb} = 20 kN/m. L[m] \leq 6000 kN (Pour le schéma de charges UIC 71 et SW/0).

$$N = 20 \times 49.1 \times 1.1 = 1080.2KN = 108.2t.$$

 Q_{lb} = 35 kN/m. L[m] (Pour le schéma de charge SW/2).

$$N = 35 \times 42 \times 1.1 = 1470KN = 147t.$$

→ La répartition des efforts freinage - démarrage est 50% sur la culée et 50% sur la pile.

- Effort de lacet :

La valeur caractéristique de l'effort de lacet est fixée à : Q_{sk} =10t.

Tableau VIII-3: récapitulatif des sollicitations des surcharges ferroviaires.

D' : "	N	Hdem	Hfr	M_N	M _{H1}	M _{H2}
Désignation	t	t	T	t.m	t.m	t.m
Surcharge UIC71	287.17	55	54.01	100.51	440.00	432.08
Surcharge SW2	339.54	50	73.50	118.84	400.00	588.00

VIII.2.3.2. Evaluation des sollicitations a l'ELU et l'ELS :

- Force statique des surcharges : $F_{cul\acute{e}e} = K_a \sigma (L_{cul\acute{e}e} 0.6 \times 2) = 43.01$.
- Moment statique des surcharges : $M = \frac{F \times h_{cul\'ee}}{2} = 272.04t. m.$

Avec:

 $\sigma=$ Surcharge sur remblai = 1 $t/m^2,~L_{cul\acute{e}e}$: Largeur de la culée = 11.8m $h_{cul\acute{e}e}$: hauteur de la culée = 12.65m

Tableau VIII-4: Extrait de tableau des combinaisons de la culée a l'ELU.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
1.35NG+1.45[UIC71+UIC71]	4856.71	0	0	0	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71]	4856.71	694.68	0	1228.31	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71] +1.45×0,5×(F lacet)	4856.71	694.68	7.975	1228.31	87.725
1.35NG+1.45[UIC71+UIC71] +1.45×0,5[FrUIC71+DémUIC71] +1.45F(lacet)	4856.71	615.64	15.95	596.05	175.45
1.35NG+1.2SW2+1,45UIC71	4847.76	0	0	0	0
1.35NG+1.2SW2+1,45UIC71+1,2 FrSW2+1,45DémUIC71	4847.76	764.19	0	1015.92	0
1.35NG+1.2SW2+1,45UIC71+1,2 FrSW2+1,45DémUIC71+1,45×0,5 (F lacet)	4847.76	764.19	7.975	1015.92	87.725
1.35NG+1.2SW2+1,45UIC71+1,2 ×0,5FrSW2+1,45×0,5DémUIC71 +1,45×(F lacet)	4847.76	680.21	15.95	344.12	175.45

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
NG+SW2+UIC71	3607.39	0	0	0	0
NG+SW2+UIC71+FrSW2+Dém UIC71	3607.39	525.99	0	842.68	0
NG+SW2+UIC71+FrSW2+Dém UIC71 +0,5(F lacet)	3607.39	525.99	5.5	842.68	60.5
NG+SW2+UIC71+0,5× (FrSW2+ DémUIC71) +F lacet	3607.39	461.74	11	250.72	121
NG+UIC71+UIC71	3555.02	0	0	0	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71]	3555.02	506.50	0	668.43	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71] +0,5× (F lacet)	3555.02	506.50	5.5	739.45	60.5
NG+[UIC71+UIC71] +0,5[FrUIC71+DémUIC71] +F lacet	3555.02	451.995	11	232.39	121

Tableau VIII-5: Extrait de tableau des combinaisons de la culée a l'ELS.

 $1.35NG + 1.45(UIC71 + UIC71) + 1.45(Fr\ UIC71 + D\'{e}mUIC71) + 1.45 \times 0.5 \times (F\ lacet\)$

$$\begin{cases} N_{MAX} = 4856.71(t) \\ M_{L\,corr} = 1228.31(t.m) \\ M_{T\,corr} = 87.725(t.m) \end{cases}$$

- La combinaison de charge la plus défavorable à l'ELS :

NG + SW2 + UIC71 + FrSW2 + DémUIC71 + 0.5Flacet

$$\begin{cases} N_{MAX} = 3607.39(t) \\ M_{L\,corr} = 842.68(t.m) \\ M_{T\,corr} = 60.5(t.m) \end{cases}$$

VIII.2.4. Calcul sismique du la culée :

Evaluation des charges sismiques due aux éléments de la culée seulement calculée par rapport au point située la base de la semelle. Chaque élément de la culée génère des charges sismiques verticales et horizontales dans le cas d'un séisme :

$$k_h = A = 0.15$$
 , $k_v = 0.045$

On a le tableau suivant présente les sollicitations dû au poids propre en cas d'un séisme, avec :

$$V_s = 0.045 \times N$$
 , $H_s = 0.15 \times H$, $M_N = Z_v \times V_s$, $M_H = Z_h \times H_s$

⁻ La combinaison de charge la plus défavorable à l'ELU :

	Vs	Hs	M_N	M_H
Désignation	t	t	t.m	t.m
Mur garde grève	2.47	8.23	-1.98	104.53
Mur frontal	15.93	53.10	0.00	345.15
Mur en retour	7.29	24.30	-21.14	157.95
Semelle	28.51	95.04	0	95.04
Dés d'appui	0.03	0.10	0.01	0.91
Poids des terres patin arrière	35.16	117.21	-101.97	0
Poids des terres patin avant	10.05	33.50	29.14	0
Poussée des terres	0.00	711.48	0.00	5040.84

Tableau VIII-6: Récapitulatif des sollicitations dû au poids propre en cas d'un séisme.

La combinaison la plus défavorable à l'ELA est :

Total

99.44

$$G + (Ez + 0.3 Ey + 0.3Ex) + 0.3UIC71 + 0.3SW2$$

$$\begin{cases} N_{max} = 3370.77(t) \\ M_{L \ corr} = 246.91(t.m) \\ M_{Tcorr} = 251.64(t.m) \end{cases} \begin{cases} M_{Lmax} = 5863.88(t) \\ N_{corr} = 3283.22(t.m) \\ M_{Tcorr} = 251.64(t.m) \end{cases} \begin{cases} M_{Tmax} = 838.8(t) \\ N_{corr} = 3298.93(t.m) \\ M_{Lcorr} = 246.91(t.m) \end{cases}$$

1042.96

-95.94

5744.42

⇒ Les détails des combinaisons des charges se trouvent dans les annexes.

VIII.2.5. Calcul des réactions des pieux :

Chaque pieu est soumis à un effort normal et un moment fléchissant, la réaction ainsi est donné par la relation suivante :

$$Ri = \frac{N}{n_{pieux}} \pm \frac{M_L}{W_L} \pm \frac{M_T}{W_L}$$

Avec:

 W_L Et W_T sont des coefficients calculés par ces formules :

$$W_L = \frac{n_1 \times d_1^2 + n_2 \times (-d_2)^2}{d_1}$$

$$W_T = \frac{n_2 \times d_2^2 + n_1 \times (-d_1)^2}{d_2}$$

 n_1 , n_2 : Nombre de pieu par file

 d_i : Distance entre centre de gravité de semelle et centre de gravité de pieu.

Tableau VIII-7: Valeurs de Rmax et Rmin selon chaque état limite.

L'état limite	ELU	ELS	ELA
Rmax(t)	449.81	327.97	484.20
Rmin(t)	358.89	265.31	63.00

Selon le rapport de sol, on trouve :

$$Q_{adm \, elu} = 561.76t$$

$$Q_{adm \ els} = 432.12t$$

$$Q_{adm\;ela}=655.38t$$

• Vérification des conditions :

Selon le (R.P.O.A.2008), on doit vérifier les efforts des pieux Rmax et Rmin pour les trois états limite pour couvrir tous les comportements possibles du pieu :

Tableau VIII-8: Vérifications des efforts des pieux.

L'état limite	ELU	ELS	ELA
$R_{max} < Q_{adm}$	449.81 < 561.76	327.97 < 432.12	484.20 < 655.38
	Vérifiée	Vérifiée	Vérifiée
$R_{min} > 0$	358.89 > 0	265.31 > 0	63.00 > 0
	Vérifiée	Vérifiée	Vérifiée
$R_{min} < \frac{Q_{adm}}{1.3}$	/	/	63.00 < 504.13 Vérifiée

→ D'après le rapport de sol, la profondeur de pieux ancré est : L = 18.00m.

VIII.2.6. Ferraillage des pieux :

La modélisation du pieu sur (Robot Structural Analysis ,2022) a permis de déterminer les sollicitations, notamment les moments fléchissant, nécessaires aux déterminations du ferraillage des pieux.

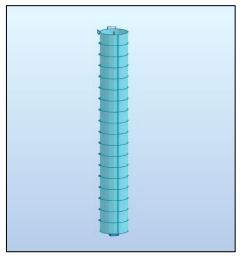


Figure VIII-2: modélisation de pieu sur robot

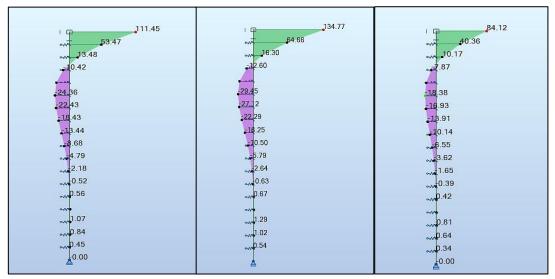


Figure VIII-3: Valeurs des moments sur pieu a l'ELU, l'ELA, l'ELS

$$ELU \ \begin{cases} N_{min} = 358.89 t/ml \\ M_y = 111.45 t. \ m/ml \end{cases} ELS \ \begin{cases} N_{min} = 265.31 t/ml \\ M_y = 84.12 t. \ m/ml \end{cases} ELA \ \begin{cases} N_{min} = 63.00 t/ml \\ M_y = 134.76 t. \ m/ml \end{cases}$$

Le ferraillage est effectué par ROBOT-Expert en considérant une section circulaire de diamètre D=120cm en flexion déviée composée, sous le cas de chargement le plus défavorable.

- Ferraillage principal : As = 113.1 cm² ; Soit : 25HA25, avec un espacement e = 15 cm.

-Vérification de l'effort tranchant en tête de pieu :

On assimile la section circulaire à une section rectangulaire (b0 x b0) :

Condition à vérifier : $\tau_{ela} = \frac{V_a}{b_0 d} \le \overline{\tau_{ela}}$

Tableau VIII-9: calcul d'effort tranchant.

D_{pieu}	Diamétre de pieu	1.20 m	Mpa
f_{c28}	Contrainte de béton à 28 jours	30	Mpa
f_e	Contrainte d'acier	500	Mpa
γ_b	Coefficient de sécurité de béton	1.15	-
γ_s	Coefficient de sécurité de l'acier	1	-
H_{ELA}	Effort de cisaillement en tête de pieu à l'ELA	67.86	t
b ₀		0.85	m
d	$d = 0.9 \times b_0$	0.76	m
$ au_{ELA}$	Contrainte de cisaillement	1.13	Mpa
$ar{ au}_{ELA}$	Contrainte limite de cisaillement	3.91	Mpa

Avec : Effort de cisaillement : $V_a = \frac{H_{ELA}}{n_{pieux}}$

$$\tau_{ela} = \frac{67.86}{0.85 \times 0.76} = 1.05 \le \overline{\tau_{ela}} = \min\left(\frac{0.15 f_{c28}}{\gamma_b}, 4 \ MPa\right) = 3.91 MPa \ \text{Condition v\'erifi\'ee}.$$

- Calcul des armatures transversales des pieux (cerces) :

Selon le RPOA nous devons vérifier la condition suivante : $V_a = L_{cerce} \times A_s$

La section As sera répartie sur la longueur 2D = Hcritique.

Tableau VIII-10 : Calcu	l des armatures transversal	les des pieux.
-------------------------	-----------------------------	----------------

D (m)	Diamètre des pieux	/	1.2
E(m)	Enrobage des pieux	/	0.07
Hcri(m)	Hauteur critique des pieux	2D	2.40
$Vb(m^3)$	Volume de béton pour pour $H_{ m critique}$	$\pi r_{pieux}^2 \times H_{critique}$	2.71
$Va(m^3)$	Volume d'acier pour H _{critique}	$\frac{0.01 \times 0.8 \times V_b}{\sqrt{D}}$	0.02
$L_{cerce}(m)$	Longueur d'une cerce	$\pi D - 2e$	3.33
$As(cm^2)$	Section d'acier des cerces	$rac{V_a}{L_{cerce}}$	59.53

Le Ferraillage transversale total requis sur 2.4 mètres de pieu : 25HA16

On prend des cerces de T16 avec un espacement e = 10cm

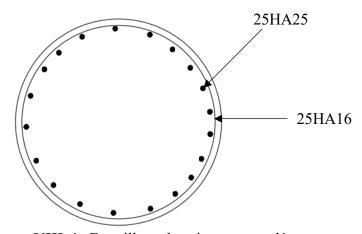


Figure VIII-4: Ferraillage des pieux sous culée.

VIII.2.7. Ferraillage de la semelle :

D'après le guide « SETRA piles et palées appareils d'appuis, (PP73) » :

Tableau VIII-11: Récapitulatif de calcul des moments de semelle.

Combinaison	N° FILE	Ri	Li	hs(m)	M (t.m)	M(t.m/ml)
ELU	1	449.81	3.10		1394.42	442.67
	3	358.89	3.10		1112.57	353.19
ELS	1	327.97	3.10	1.95	1016.71	322.76
	3	265.31	3.10	1.93	822.46	261.10
ELA	1	484.20	3.10		1501.01	476.51
	3	63.00	3.10		195.31	162.76

Avec:

 L_i = La distance entre 0.25 de mur frontal et l'axe de pieux.

Le moment est divisé sur une longueur de l'= $\varphi + h_s$ tel que l'= 3,20 m

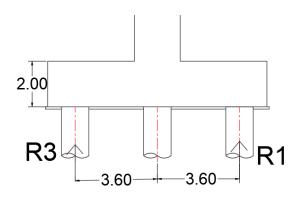


Figure VIII-5: Files 1 et 3 des pieux

Le ferraillage est effectué par (ROBOT-Expert2010) en considérant une section rectangulaire (1 × 2m) en flexion simple, sous le cas de chargement le plus défavorable.

Section théorique : $A_s = 71.6cm^2$

Condition de non fragilité :
$$A_{cnf} = \frac{0.23b_0df_{tj}}{f_e} = 21.53cm^2$$

$$0.15\%S \le A_2 \le 1.5\%S$$

$$30cm^2 \leq A_2 \leq 300cm^2$$

$$\rightarrow A = \max(A_s, A_{cnf}, A_2)$$

On prend une section : A = 71,6 (cm^2) \rightarrow 7HA32, 7HA20 avec un espacement e = 15cm.

Pour les armatures de répartition A_r :

On a:
$$\frac{A}{4} < A_r < \frac{A}{2} \rightarrow \frac{71.6}{4} < A_r < \frac{71.6}{2} \rightarrow 17.9 < A_r < 35.8$$

On prend un ferraillage de 7HA25 avec un espacement de 15cm.

Les armatures supérieures :

La section minimale d'acier est fixée a A/3 « selon le guide SETRA PP73 » :

$$A_t = \frac{A_s}{3} = \frac{71.6}{3} = 23.86cm^2$$

On prend un ferraillage de 7HA20 avec un espacement de 15cm.

Pour les armatures de répartition A_r :

$$A_r = \frac{A_t}{4} = 5.96cm^2$$

On prend un ferraillage de 7HA16 avec un espacement de 15cm.

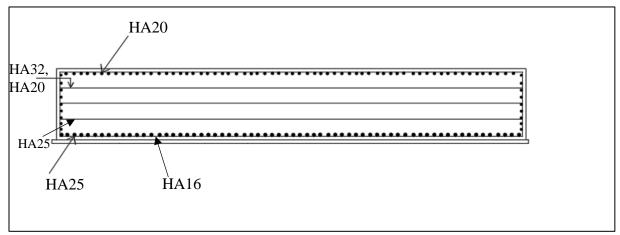


Figure VIII-6 : Ferraillage de semelle sous culée

VIII.2.7.1. Vérification de poinçonnement semelle-pieu :

Le poinçonnement est une rupture locale de la semelle à l'endroit où le pieu pénètre dans la semelle, on admet qu'aucune armature d'effort tranchant n'est requise, si cette condition est satisfaite (les Règles BAEL 91 révisées 99), :

$$Q_u < 0.045 \times U_c \times h \times \frac{f c_{28}}{\gamma_h}$$

Avec:

 Q_u La charge de calcul vis-à-vis de l'état limite ultime

 U_c Périmètre de contour fouille moyen $U_c = D_{pieu} + a + b + \frac{\pi^2 + D_{pieu}}{4} = 5.013$

a : débord de la semelle sens longitudinal : 0.7m.

b : débord de la semelle sens transversal 0.6m.

h: hauteur totale de la semelle 2m.

 γ_b Coefficient de béton a l'ELU =1.15, l'ELA = 1

$$Q_{elu} = R_{max} = 449.81t$$

$$Q_{ela} = R_{max} = 484.20t$$

Application numérique :

$$Q_{elu} = 449.81 < 1177.03t$$
 condition vérifiée

 $Q_{elg} = 484.20t < 1353.58t$ condition vérifiée

VIII.2.8. Ferraillage du mur frontal :

La combinaison la plus défavorable dans chaque état limite :

L'ELU: $1.35NG + 1.45(UIC71 + UIC71) + 1.45(FrUIC71 + DémUIC71) + 1.45 \times 0.5 \times Flacet$.

L'ELS: $NG + (UIC71 + UIC71) + (FrUIC71 + DémUIC71) + 0.5 \times F$ lacet.

L'ELA : G + (EZ + 0.3EX + 0.3EY) + 0.3UIC + 0.3UIC.

Avec NG = Poids total - (poids de la semelle + poids de terres avant et arriere).

$$\begin{split} & \text{ELU} \, \left\{ \begin{matrix} N_{max} = 224.15 t / \text{ml} \\ M_{corr} = 183.59 t \text{.m/ml} \end{matrix} \right. \\ & \text{ELU} \, \left\{ \begin{matrix} M_{max} = 183.59 t / \text{ml} \\ N_{corr} = 224.15 t \text{.m/ml} \end{matrix} \right. \\ & \text{ELS} \, \left\{ \begin{matrix} N_{max} = 166.87 t / \text{ml} \\ M_{corr} = 117.68 t \text{.m/ml} \end{matrix} \right. \\ & \text{ELS} \, \left\{ \begin{matrix} M_{max} = 124.81 t / \text{ml} \\ N_{corr} = 166.87 t \text{.m/ml} \end{matrix} \right. \\ & \text{ELA} \, \left\{ \begin{matrix} N_{max} = 135.26 t / \text{ml} \\ M_{corr} = 15.69 t \text{.m/ml} \end{matrix} \right. \\ & \text{ELA} \, \left\{ \begin{matrix} M_{max} = 312.76 t / \text{ml} \\ N_{corr} = 128.28 t \text{.m/ml} \end{matrix} \right. \end{split}$$

→Les tableaux des combinaisons se trouvent dans les annexes.

Le ferraillage est effectué par (ROBOT-Expert2010) en considérant une section rectangulaire (1 × 2m) en flexion composée, sous le cas de chargement le plus défavorable.

Section théorique $A_{s1} = 20 cm^2$

Condition de non fragilité :
$$A_{cnf} = \frac{0.23b_0df_{tj}}{f_e} = 21.53cm^2$$

$$0.15\% \ S \leq A_2 \leq 1.5\% S \ \rightarrow 30 cm^2 \leq A_2 \leq 300 cm^2$$

coté remblai :
$$A_s = 30cm^2 \rightarrow 7HA25/ml$$
 avec $e = 15cm$;
$$A_{st} = \frac{A_s}{3} = 10cm^2 \rightarrow 7HA14/ml$$
 avec $e = 15cm$

coté **tablier** : 7HA20/ml avec e=15cm ; $A_{st} \rightarrow 7HA16/ml$ avec e=15cm

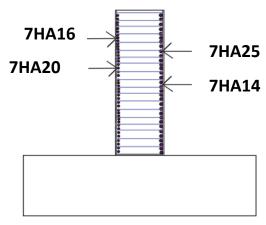


Figure VIII-7: Ferraillage mur frontal

-Vérification vis-à-vis de l'effort tranchant :

ELA:

$$\begin{split} \tau_a &= \frac{V_a}{b_0 d} = 34.15t = 0.34 MPa \\ \overline{\tau_a} &\leq \min \left(0.15. \frac{f \, c_j}{\gamma_b}; 4 MPa \right) = 3.46 MPa \\ \tau_a &< \overline{\tau_a} \to condition \ v\'erifi\'ee. \end{split}$$

VIII.2.9. Ferraillage du mur garde grève

Le mur garde-grève est principalement soumis à l'action des forces horizontales sur la face arrière en contact avec les terres :

- Poussée des terres.
- Poussée de la surcharge de remblai.
- Effort de freinage.

VIII.2.9.1. Calcul des sollicitations :

Le moment d'encastrement total dû aux forces horizontales appliquées sur le mur garde grève est la combinaison des sollicitations suivantes :

- Moment des poussées des terres :

$$M_p = \frac{P \times H}{3}$$

$$P = \frac{1}{2} K_{ah} \gamma H^2$$

Avec:

ka: coefficient de poussée des terres, ka = 0.33.

 γ : poids volumique du remblai, $\gamma = 1.8 \text{ t/}m^3$.

h: hauteur du mur garde grève, h = 4.65 m.

L: longueur du remblai, (L=11.8 m) on fait le calcul par 1 ml.

Résultats:

✓
$$M_p = 9.95t. m/ml$$

✓ $P = 6.42 t$

- Moment due à la force de freinage :

On considère l'effet de freinage d'une seule roue d'une charge exceptionnelle du convoi, dont le moment d'encastrement est donné par l'expression suivante :

$$M_f = \frac{2\mu \times P \times h}{0.25 + 2h}$$

Avec:

μ: coefficient de pondération, μ=1.6 à l'ELU et μ=1.2 à l'ELS.

P: charge d'une roue du convoi roulant, P = 12.5t.

H: Hauteur du mur, h = 4.65 m.

$$M_{felu} = 19.48t.m$$

$$\checkmark M_{fels} = 14.61t.m$$

- Poussée d'une charge locale située en arrière du mur :

Selon le RPOA, la norme relative à l'ouvrage d'art prescrive une surcharge à l'arrière d'une culée de pont rail de $3.6 \ t/m^2$ pour un essieu de $25 \ t$.

$$q = 3.6 t/m^{2}$$

$$Q = q \times Ka \times h = 3.6 \times 0.333 \times 4.65 = 5.52t$$

$$\checkmark M_{p} = Qh/2 = 12.84t. m/ml$$

Combinaisons d'actions:

$$A l'ELU: 1,35 MG + 1,45 MQ$$

$$M_{ELU} = 60.30t.m$$

$$A l'ELS: MG + MQ$$

$$M_{ELS} = 37.4 t.m$$

Le ferraillage principal se fait en flexion simple sur ROBOT-Expert en considérant une section rectangulaire $(1 \times 0.4) m^2$.

- Ferraillage principal (côté du remblai) : As =41.07cm² ; Soit 2 nappes : 7HA20, avec e = 15 cm.
- Armatures de construction (côté du tablier) : As' = $As/3 = 13.69cm^2$; Soit : 7HA16/ml, avec e = 13cm.
- Ferraillage transversal : $A_{st} = \text{As}/4 = 10.26 \ cm^2$; Soit : 7HA14/ml. $e = 13 \ cm$.

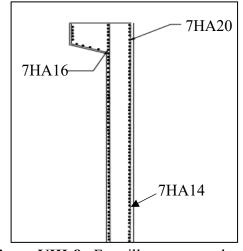


Figure VIII-8 : Ferraillage mur garde-grève

VIII.2.10. Ferraillage mur en retour :

Le mur en retour est sollicité par des charges verticales et horizontales :

- Poids propre
- Pousses des terres
- Pousses dynamiques
- Pousses des surcharges
- Charge superstructure
- Charge remblai

En utilisant le logiciel (Robot structural analysis), on trouve le diagramme des moments

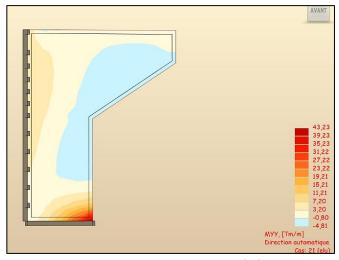


Figure VIII-9: Moment Myy a l'elu

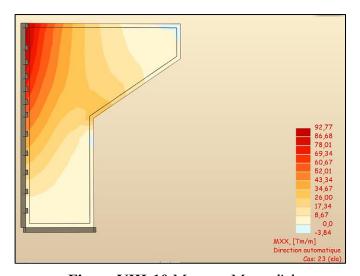


Figure VIII-10: Moment Mxx a l'ela

Le tableau suivant donne les valeurs des moments Mxx et Myy a l'ELU, l'ELS et l'ELA.

Tableau	VIII-12:Les	moments	de mur	en retour
---------	-------------	---------	--------	-----------

	Mxx t. m/ml	Myy t.m/ml
ELU	40,81	43,23
ELS	29,37	31,09
ELA	92,77	45,65

Ferraillage dans le sens vertical :

$$As1 = 24,7 \ cm^2 \ on \ prend \ un \ ferraillage \ de \begin{cases} \textit{Cot\'e Remblai} \ 7 \text{HA} \ 25, \ avec \ e = 15 \ cm. \\ \textit{Cot\'e tablier} \ 7 \text{HA} \ 20, \ avec \ e = 15 \ cm. \end{cases}$$

Ferraillage dans le sens horizontal :

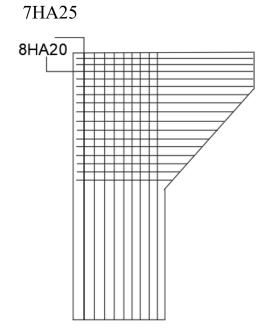


Figure VIII-11 : Ferraillage mur en retour.

VIII.3. Etude de la pile :

La pile est un élément vertical de l'infrastructure d'un pont, situé entre les fondations et le tablier. Elle a pour rôle principal de transmettre les charges verticales et horizontales du tablier vers les fondations, tout en assurant la stabilité de l'ouvrage. Elle est composée principalement

d'un fût qui assure la transmission des charges vers le sol, d'un chevêtre servant de zone d'appui pour le tablier, et d'une fondation assurant la stabilité de l'ensemble.

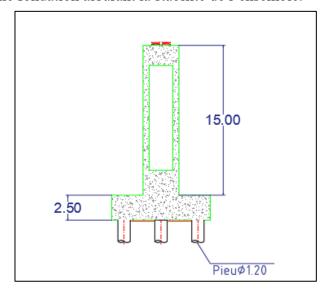


Figure VIII-12 : Schéma de la pile

VIII.3.1. Caractéristiques de la pile étudiée :

Les caractéristiques de la pile étudiée sont :

(Hauteur totale : 15m Hauteur évidée : 11m Hauteur bas de pile : 2m Hauteur semelle : 2.5m

VIII.3.2. Poids de pile :

Le tableau suivant présente le poids des différents éléments de la pile étudiée :

ELEMENTS POIDS (t) **Tablier** 1541.65 Dès d'appui 2.70 Chevêtre 183.75 Pile évidée 378.90 Semelle 828 Terres sur semelle 340.00 **TOTAL** 3275.00

Tableau VIII-13 : Poids de la pile.

VIII.3.3. Evaluation des efforts de surcharges :

En utilisant la théorie des lignes d'influence, on détermine les cas les plus défavorables pour les charges UIC71, SW2.

- Surcharge UIC71:

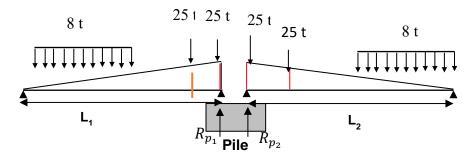


Figure VIII-13 : Schéma de surcharge UIC 71 sur pile.

Tableau VIII-14: Détails de calcul de réaction de surcharge UIC sur pile.

$X_i(m)$	$Y_i(m)$	Pi	$P_i \times Y_i$
49.10	1.00	25	25.000
47.50	0.97	25	24.185
49.10	1.00	25	25.000
47.50	0.97	25	24.185
Y	Ω (ml)	q (t/ml)	$\Omega q(t)$
0.951	44.42	8	355.338

La réaction du a la surcharge UIC71 : $R_{UIC} = (\sum P_i Y_i + \Omega_q) \times \varphi_3 \times \alpha = 523t$

- Surcharge SW2:

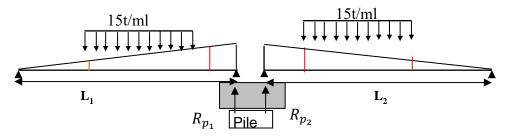


Figure VIII-14 : schéma de surcharge SW2 sur pile

Tableau VIII-15: détails de calcul de surcharge SW2 sur pile

y1	y2	у3	Ω (m2)	q (t/ml)	$\Omega q(t)$
0.93	0.420	0.000	33.707	15	505.601

La réaction dû à la surcharge SW2 : $R_{SW2} = (\sum \Omega_{
m q}) imes arphi_3 = {\sf 529,52} t$

Tableau VIII-16: Les efforts de surcharges ferroviaires.

	Nc[t]	Hdem[t]	Hfr[t]
Surcharges UIC	523	55	54.01
Surcharges SW2	529.52	41.25	43.75

VIII.3.4. Vérification de la portance de sol :

Selon le règlement UIC, les combinaisons à faire pour vérifier les structures sont les suivants :

Tableau VIII-17: Extrait du tableau de combinaison a l'ELU.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
1.35NG+1.45[UIC71+UIC71]	5937.06	0	0	0	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71]	5937.06	158.06	0	2687.09	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71] +1.45×0,5× (F lacet)	5937.06	158.06	7.975	2687.09	135.57
1.35NG+1.45[UIC71+UIC71] +1.45×0,5[FrUIC71+DémUIC71] +1.45F(lacet)	5937.06	79.032	15.95	1343.54	159.5

Tableau VIII-18: Extrait de tableau de combinaison a l'ELS.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
NG+[UIC71+UIC71]	4320.39	0	0	0	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71]	4320.39	109.01	0	1853.17	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71] +0,5× (F lacet)	4320.39	109.01	5.5	1853.17	93.5
NG+[UIC71+UIC71] +0,5[FrUIC71+DémUIC71] +F(lacet)	4320.39	54.50	11	926.585	187

VIII.3.5. Calcul sismique de la pile :

En suivant les mêmes étapes que la culée, on a le tableau suivant qui présente les sollicitations dû au poids propre en cas d'un séisme :

Tableau VIII-19: sollicitations dû aux poids propre de la pile en cas de séisme.

	Vs(t)	Hs(t)	$\mathbf{Mn}(t.m)$	Mh(t.m)
Semelle	37,26	124,2	0	155,25
Des d'appui	0.121	0.405	/	7.156
Pile évidée	17.05	56.83	0	560.83
Chevêtre	8.26	27.56	0	454.74
Terre sur semelle	15.3	51	/	191.25
Total	77.991	259.995	/	1369.226

VIII.3.6. Calcul des réactions des pieux :

En effectuant les mêmes calculs précédents que la culée, on trouve les réactions des pieux dans les différents états de limites, Les valeurs de Q_{adm} sont extraits de rapport géotechnique.

Combinaison	Rmax (t)	Rmin (t)	Q admissible
ELU	591.62	340.97	641.18
ELS	421.55	253.97	501.51
ELA	462.66	158.71	748.04

Tableau VIII-20: Réactions des pieux.

- Les conditions précédentes sont tous vérifiées :

$$\begin{array}{l}
\checkmark \quad R_{max} < Q_{adm} \\
\checkmark \quad R_{min} > 0 \\
\checkmark \quad R_{min} < \frac{Q_{adm}}{1.3}
\end{array}$$

Selon le rapport géotechnique la profondeur de pieux ancré est : L=20m

VIII.3.7. Ferraillage des pieux :

Après modélisation de pieu sur robot, on obtient les valeurs de moments My :

$$\begin{split} & \text{ELU} \left\{ \begin{aligned} N_{min} &= 340,97.89t/ml \\ M_y &= 26,62t.\,m/ml \\ \end{aligned} \right. \\ & \text{ELS} \left\{ \begin{aligned} N_{min} &= 253.97t/ml \\ M_y &= 18.35t.\,m/ml \\ \end{aligned} \right. \\ & \text{ELA} \left\{ \begin{aligned} N_{min} &= 158,71t/ml \\ M_y &= 34,00t.\,m/ml \end{aligned} \right. \end{split} \right. \end{split}$$

Le ferraillage est effectué par (ROBOT-Expert 2010) en considérant une section circulaire de diamètre D=120cm en flexion déviée composée, sous le cas de chargement le plus défavorable.

-Ferraillage principal : As =113,1 cm 2 ; Soit : 25HA25, avec e = 15 cm.

Pour les cerces on prend un ferraillage de 25HA16 sur une hauteur critique de 2.4m.

VIII.3.8. Ferraillage de la semelle :

D'après le guide (SETRA Piles et palées appuis des tabliers, 1973) :

Tableau VIII-21: Sollicitation sur semelle.

Combinaison	N° FILE	$\mathbf{R}_{\mathbf{i}}$	L_i	h_s	M (t.m)	M(t.m/ml)
ELU	1	591.62	2.73		1612.18	441.693
	3	340.97	2.73		930.84	255.024
ELS	1	421.55	2.73	2.45	1148.73	314.722
	3	253.97	2.73	2.43	692.07	189.609
ELA	1	380.25	2.73		1036.18	283.885
	3	290.43	2.73		791.42	659.518

Le ferraillage est effectué par (ROBOT-Expert 2010) en considérant une section rectangulaire $(1 \times 2.5 \text{m})$ en flexion simple, sous le cas de chargement le plus défavorable.

→Section théorique : $A_s = 54.50cm^2$.

Condition de non fragilité :

Selon le règlement BAEL, on vérifie la condition de non fragilité :

$$A_{cnf} = \frac{0.23b_0 df_{tj}}{f_e} = 21.53cm^2$$

$$0.15\%S \le A_2 \le 1.5\%S, S = 25000cm^2$$

$$37.5cm^2 \le A_2 \le 375.0cm^2$$

$$\rightarrow A = \max(A_s, A_{cnf}, A_2) = 54.50 (cm^2)$$

• On prend un ferraillage de deux nappes de 7 barres HA25 avec un espacement e=15cmPour les armatures de répartition A_r :

On a:
$$\frac{As}{4} < A_r < \frac{As}{2} \rightarrow \frac{54.5}{4} < A_r < \frac{54.5}{2} \rightarrow 13.62 cm^2 < A_r < 27.20 cm^2$$

• On prend un ferraillage de 7HA20 avec un espacement de 15cm

Les armatures supérieures :

La section minimale d'acier est fixée a A/3 (SETRA PP73) :

$$A_t = \frac{A_s}{3} = \frac{54.5}{3} = 18.16cm^2$$

• On prend un ferraillage de 7HA20 avec un espacement de 15cm.

Pour les armatures de répartition A_r :

On a:
$$\frac{A}{4} < A_r < \frac{A}{2} \rightarrow 4.54cm^2 < A_r < 9.08cm^2$$

• On prend un ferraillage de 7HA16 avec un espacement de 15cm.

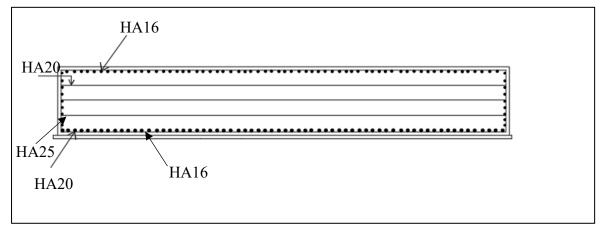


Figure VIII-15: Ferraillage semelle sous pile.

VIII.3.9. Vérification de poinçonnement semelle-pieu :

Vérification de condition : $Q_u < 0.045 \times U_c \times h \times \frac{fc_{28}}{\gamma_b}$

Avec:

 U_c Périmètre de contour fouille moyen $U_c = D_{pieu} + a + b + \frac{\pi^2 + D_{pieu}}{4} = 4.913m$

a : débord de la semelle sens longitudinal : 0.6m.

b : débord de la semelle sens transversal 0.6m.

h : épaisseur totale de la semelle 2.5m.

 γ_b Coefficient de béton a l'ELU =1.15, l'ELA = 1

$$Q_{ELU} = R_{max} = 591.62t \ Q_{ELA} = R_{max} = 380.25t$$

Application numérique :

On a:

$$Q_{ELU} = 591.62t < 1153.55t\ condition\ v\'erifi\'ee$$

$$Q_{ELA} = 380.25t < 1326.58t$$
 condition vérifiée

- Armatures minimales de l'effort tranchant :

Selon le RPOA, Des cadres calculés au minimum pour reprendre un cisaillement τ_a égal à 0,4 MPa sont disposés dans un maillage d'espacement maximal de 40 cm, de façon à tenir chaque armature longitudinale au moins un lit sur deux. On utilise des cadres de HA 16.

VIII.3.10. Ferraillage de pile type creuse :

Pour la méthode de ferraillage, On convertit la section creuse vers une section pleine à condition de garder l'inertie de la section creuse.

Le calcul de la section équivalente se fait comme suivant :

- L'inertie de la section creuse est : $I = \frac{hb^3}{12} = 41,80 \text{ m}^4$
- La Surface de la section Creuse est : $S = hb = 9.96m^2$
- Sachant que la section équivalente est pleine de dimension h' et b' Donc on résoudra les équations précédentes des deux inconnus et on trouve :

$$\checkmark h' = 1,40 \text{ m}$$

$$\checkmark$$
 b' = 7,09m

A partir des combinaisons on détermine les efforts suivants :

	N(t)	My(t.m)	Mz(t.m)
ELU	4177.05	2519.25	239.25
ELS	3108.61	1927.50	165.00
ELA EX	3728.18	3566.85	1068.84
ELA EY	3730.23	1070.06	3053.85

Tableau VIII-22: sollicitations sur pile.

Le ferraillage principal se fait en flexion déviée composée sur (ROBOT-Expert2010) en considérant une section rectangulaire (709×140) m^2 .

• Sens Longitudinal coté (b = 6,00 m):

On aura une section d'armatures $A_s = 211.8 cm^2$

Coté extérieur nappe 33HA25 espacement 15cm

Coté intérieur 33HA20 Espacement : 15 cm

■ Sens Transversale coté (a = 3,500 m):

On aura une section d'armatures $A_s = 99.3 cm^2$

Coté Extérieur HA25 Espacement e : 15 cm 21HA25

Coté Intérieur HA20 Espacement e : 15 cm

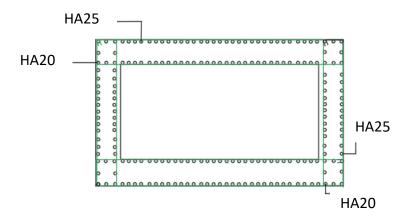


Figure VIII-16: Ferraillage pile creuse

VIII.3.11. Vérification de flambement de fut :

Selon (les Règles BAEL 91 révisées 99) L'effort normal agissant ultime Nu doit être au plus égal à la valeur suivante :

$$N_{ultim} = \alpha \left[\frac{B_r f c_{28}}{0.9 \gamma_h} + A \frac{f e}{\gamma_s} \right]$$

Avec:

A est la section d'acier comprimé prise en compte dans le calcul :

 B_r Est la section réduite du poteau obtenue en déduisant de sa section réelle un centimètre d'épaisseur sur toute sa périphérie.

 γ_b Coefficient de béton = 1.5 γ_s Coefficient de l'acier = 1.15

 α Est un coefficient fonction de l'élancement mécanique $\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2}$

Application numérique :

$$N_{ultim} = 0.847 \left[\frac{9.96 \times 30}{0.9 \times 1.5} + 283.69 \times 10^{-4} \frac{500}{1.15} \right] = 6664.96t$$

$$N_u = N_{max} = 4360.26t$$

 $N_u < N_{ultim}$ condition vérifiée.

VIII.3.11.1. Vérification vis-à-vis effort tranchant :

$$\tau_{\rm A} = \frac{1.4 \times V_a}{b_0 d} = \frac{1.4 \times 543.83}{1.4 \times 0.9 \times 7.09} = 0.85 MPa.$$

$$\tau_{A} \le \min \left[0.15 \frac{\text{fcj}}{\gamma_{b}}, 4\text{MPa} \right] = \min[3.46; 4\text{MPa}]$$

 $\tau_A = 0.85 \text{MPa} \le 3.46 \text{MPa} \rightarrow \text{condition satisfaite}.$

VIII.3.11.2. Calcul de section d'armatures :

La justification vis-à-vis de l'état limite ultime des armatures d'âme s'exprime par la relation (selon le règlement BAEL 91 révisées 99) :

$$\frac{A_t}{b_0 S_t} = \frac{\gamma_s(\tau_u - 0.3. f_{tj}. K)}{0.9 fe(\cos\alpha + \sin\alpha)}$$

Avec:

 $\alpha = 90^{\circ}$ Cas courant de flexion simple (armatures droits)

K coefficient empirique = 0 cas de reprise de bétonnage.

L'application numérique donne : $A_t = 18.89cm^2$

Les armatures minimales :

$$\frac{A_{min}fe}{b_0S_t} \ge 0.4MPa$$

$$A_{min} \geq 7.2cm^2$$

$$A = \max(A_t; A_{min}) = \max(18.89; 7.2) = 18.89cm^2$$

On prend ferraillage de 10HA16 avec un espacement e = 15cm

VIII.3.12. Ferraillage de chevêtre :

Les nappes sollicitées en traction doivent comporter au moins un pourcentage minimum égal à 1,4 / fe (0,28 % pour une nuance d'acier FeE 500) disposées sur la face tendue.

Pour les chevêtres non fléchis sur voile, aucune disposition de ferraillage minimum, autre que les prescriptions du BAEL, n'est requise en zone sismique.

$$A_s = 0.28\%S = 56cm^2$$
 pour 1m de chevetre

On prend un ferraillage inférieur :

Double nappe 7HA25+7HA20 avec espacement 15cm

Le ferraillage supérieur :

On prend 7HA25, espacement 15cm

Armatures transversales:

Elles doivent être disposées pour maintenir au moins un lit sur deux, chaque barre ou groupe de barres du ferraillage longitudinal et s'opposer à son flambement vers l'extérieur. L'espacement maximum entre deux cours d'armatures est de 400mm.

On prend un ferraillage des cadres de HA16 avec un espacement de 15cm.

VIII.4. Conclusion:

Ce chapitre a permis d'analyser en détail l'infrastructure de l'ouvrage, en se concentrant sur le dimensionnement et la stabilité des piles et des culées. L'étude du ferraillage a également été effectuée afin de vérifier la résistance des éléments porteurs. Ces démarches sont essentielles pour garantir la sécurité et la pérennité de la structure durant son exploitation.

CONCLUSION GENERALE

Conclusion Général:

Ce projet de fin d'études constitue une synthèse concrète des connaissances théoriques et pratiques acquises tout au long de notre formation à l'École Nationale Polytechnique. Il nous a offert l'opportunité de mettre en application les principes fondamentaux de la conception et du prédimensionnement des structures spécifiques, telles que les ponts mixtes bipoutres, dans le cadre d'un cas réel. La conception d'un tel ouvrage requiert réflexion, rigueur et une compréhension approfondie des bases techniques ainsi que des méthodes d'exécution. La modélisation et le dimensionnement reposent sur la maîtrise des principes de calcul des structures, appuyée par l'étude de références bibliographiques, la connaissance des normes en vigueur et l'utilisation d'outils de calcul performants.

Ce travail nous a permis de mieux appréhender les différentes phases d'exécution d'un ouvrage d'art, d'appliquer les réglementations techniques (BAEL, RPOA, Eurocodes, etc.), et de nous familiariser avec des logiciels professionnels tels qu'AUTOCAD, Robot, MIDAS, ainsi que les outils bureautiques de Microsoft Office.

Enfin, ce projet nous a permis de développer un esprit critique, un sens de l'analyse technique et une meilleure autonomie dans la conduite d'une étude complexe. Il constitue une étape essentielle dans notre parcours, renforçant notre préparation à intégrer le monde professionnel du génie civil avec confiance et compétence.

BIBLIOGRAPHIE:

- Autodesk. (2022). Robot Structural Analysis Professional 2022. San Rafael: Autodesk Inc.
- BAEL. (1999). Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites BAEL 91 révisé 99, paris.
- Baouche, N. (2024). Cours de structures en béton abaques de pigeaud. ENP.
- Benazzouz, B. (2024). Polycopié du cours de structure métallique. ENP.
- Bernard-Gély, A. &.-A. (1994). Conception des ponts. Cours de l'École nationale des Ponts et Chaussées. paris: Presses ENPC.
- CEN. (1991). Eurocode 1 actions sur les structures. bruxelles : Comité Européen de Normalisation (CEN).
- CEN. (2004). Eurocode 4 calcul des structures mixtes acier-béton Partie 2 : Règles générales et règles pour les ponts. bruxelles: CEN.
- CEN. (2005). Eurocode 3 calcul des structures en acier. Bruxelles: Comité Européen de Normalisation (CEN).
- CEN. (2005). Eurocode 8 indications établies pour la résistance sismique des structures. bruxelles.
- IT, M. (2022). Midas civil 2022. Seongnam: Midas Information Technology Co., Ltd.
- Latreche. Adja. (2023/2024). projet de fin d'etudes, conception et etude d'un pont ferroviare au pk28+958. ENSTP.
- Livret2.01. (1995). règles techniques de conception et de calcul des ouvrages et construction en béton en métal ou mixtes. paris: SNCF ,Direction de l'equipement et de l'aménagement SNCF.
- (s.d.). Règles parasismiques applicables au domaine des ouvrages d'art RPOA 2008. Algérie: Ministère des travaux publics.
- SETRA. (1973). Piles et palées Appuis des tabliers Guide P.P.73. bagneux: Service d'Études Techniques des Routes et Autoroutes.
- SETRA. (1990). Ponts mixtes acier-béton bipoutres, Guide de conception. france: service d'etude techniques des routes et autoroutes.
- SETRA. (1996). pont a poutre préfabriquées précontraints par post tension VIPP . Bagneux Cedex : Service d'etude technique des routes et autoroutes .
- SETRA. (1997). guide technique garde corps. france: service d'etude techniques des routes et autoroutes.
- SETRA. (2000). Ponts courants en zone sismique. france: Ministère de l'équipement, des transports, du logement, du tourisme et de la mer.
- SETRA. (2003). pont en béton précontraint construits par encorbellement successifs, Guide de conception. france: Ministère de l'équipement, des transports, du logement, du tourisme et de la mer.

SETRA. (2007). Appareils d'appui en élastomère fretté, utilisation pour les ponts, viaducs et structures similaires, guide technique,. France: Ministère de l'équipement, des transports, du logement, du tourisme et de la mer.

UIC. (2006). Code UIC 776-1 charge à prendre dans le calcul des pont rails.

ANNEXE A

Résultats géotechniques

Essai pressiométrique : L'essai pressiométrique est essentiellement un essai de chargement In-Situ effectué au sein même du terrain grâce à la réalisation préalable d'un forage.

Principe de l'essai : L'appareil pressiométrique est constitué d'une sonde cylindrique dilatable radialement que l'on descend dans le sol au niveau de l'essai et d'un appareillage de mesure restant en surface. A partir des diagrammes de chargement ainsi obtenu à chaque niveau, on calcule les caractéristiques mécaniques essentielles du terrain : mode de déformation, pression limite de rupture et pression de fluage ou limite élastique.

Essais pressiométriques: Sur site, il a été réalisé Quatre (04) forages avec (120) essais pressiométriques tous les 1.00 m.

Prof (m)	E (bars)		PL (bars)	Pf (bars)
01,00	205,68		19,14	13,67
02,00	474,01		24,49	16,92
03,00	409,80		19,93	13,85
04,00	329,25	SC04	17,09	10,80
05,00	356,30	SC03	19,87	14,90
06,00	280,75		16,99	10,69
07,00	421,03		23,06	14,95
08,00	371,25		18,99	13,31
09,00	544,65		23,23	17,66
10,00	397,49		20,36	14,42
11,00	365,53		22,49	15,94
12,00	471,43		19,57	12,21
13,00	325,66		22,47	12,21
14,00	456,23		19,67	12,65
15,00	404,51		24,17	14,81
16,00	371,25		19,91	13,42
17,00	591,62		24,04	15,62
18,00	349,38		21,00	14,90
19,00	569,68		24,27	16,93
20,00	387,70		21,41	13,99

Figure A-3 Récapitulatif de résultats

Essais œdométriques :

Pour l'évaluation des déformations sous les contraintes appliquées, nous avons réalisé des essais de compressibilité à l'odomètre selon la norme XP P94-090-1 Décembre 1997

Les essais œdométriques montrent que les sols sous fondations sont Gonflants.

ANNEXE B

Modélisation avec Logiciel Midas civil.

- Définition des matériaux :

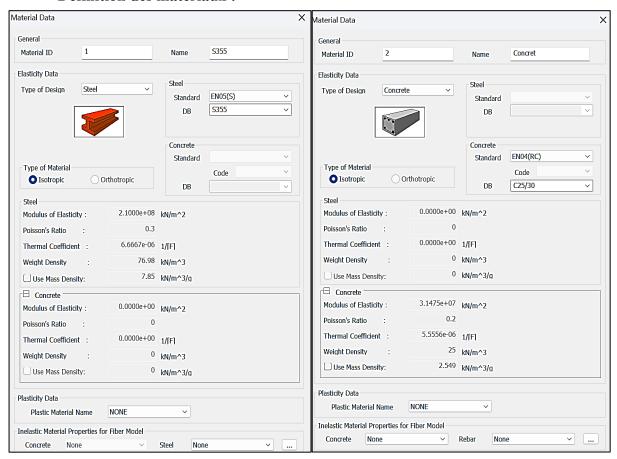


Figure B-1 Définition d'acier

Figure B-2 Définition de béton

- Définition de tablier :

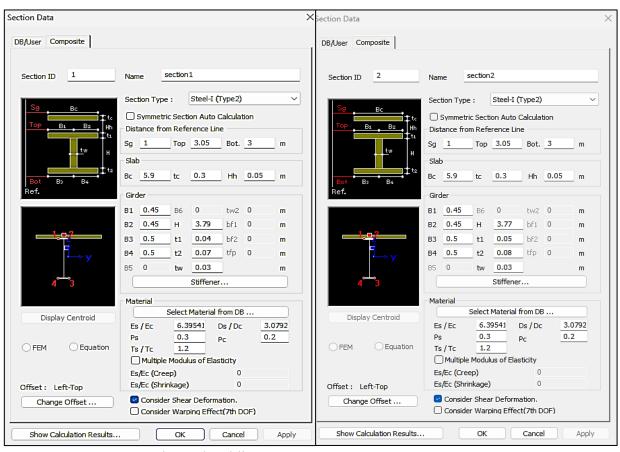


Figure B-3 Section 1 de tablier

Figure B-4 Section 2 de tablier

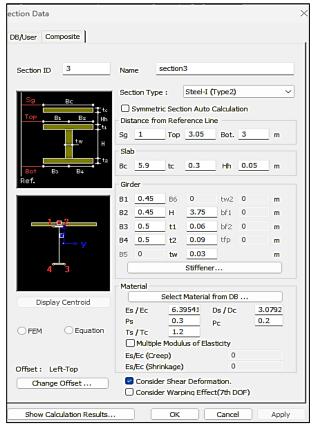


Figure B-5 Section 3 de tablier

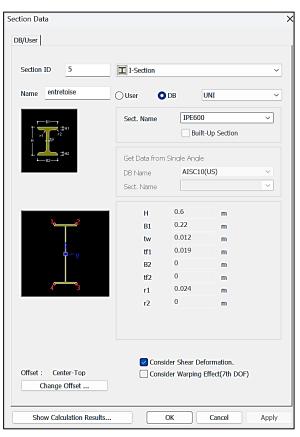


Figure B-6 Section transversale IPE600

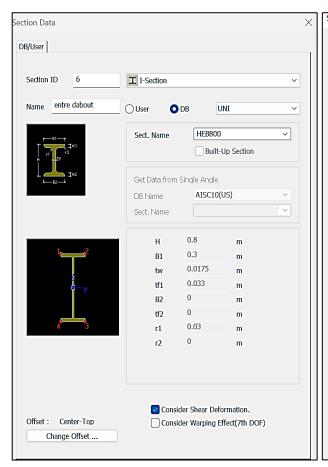


Figure B-7 Section transversale HEB800

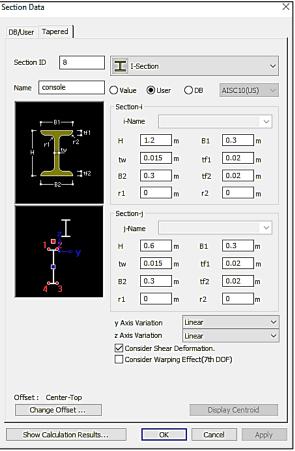


Figure B-8 Section des consoles.

ANNEXE C

Etude de la section mixte.

- Classe de résistance :

Section a mi-travée S3:

L'âme : tw = 40 ; d = 3750

$$\frac{d}{tw} = \frac{3750}{40} = 93.75 > 72\varepsilon = 58.608 \rightarrow l'$$
ame n'est pas de classe 1

$$\frac{d}{tw} = \frac{3750}{40} = 93.75 > 83\varepsilon = 67.562 \rightarrow l'$$
ame n'est pas de classe 2

$$\frac{d}{tw} = \frac{3750}{40} = 93.75 < 124\varepsilon = 100.936 \rightarrow l'$$
ame est de classe 3

La semelle supérieure :

$$c = \frac{b - tw}{2} = \frac{900 - 40}{2} = 430$$

$$\frac{c}{tf} = \frac{430}{60} = 7.16 < 9\varepsilon = 7.326 \rightarrow semelle \ de \ classe \ 1$$

La semelle inférieure :

$$c = \frac{b - tw}{2} = \frac{1000 - 40}{2} = 480$$

$$\frac{c}{tf} = \frac{480}{90} = 5.33 < 9\varepsilon = 7.326 \rightarrow semelle \ de \ classe \ 1 \rightarrow PRS \ de \ classe \ 3$$

Section a intermédiaire S2 :

L'âme : tw = 40 ; d = 3770 ;

$$\frac{d}{tw} = \frac{3770}{40} = 94.25 > 72\varepsilon = 58.608 \rightarrow l'$$
ame n'est pas de classe 1

$$s \frac{d}{tw} = \frac{3770}{40} = 94.25 > 83\varepsilon = 67.562 \rightarrow l'$$
ame n'est pas de classe 2

$$\frac{d}{tw} = \frac{3770}{40} = 94.25 < 124\varepsilon = 100.936 \rightarrow l'ame\ est\ de\ classe\ 3$$

La semelle supérieure :

$$\frac{c}{tf} = \frac{430}{50} = 8.6 > 9\varepsilon = 7.32 \rightarrow semelle \ n'est \ pas \ de \ classe \ 1$$

$$\frac{c}{tf} = \frac{430}{50} = 8.6 > 10\varepsilon = 8.1 \rightarrow semelle \ n'est \ pas \ de \ classe \ 2$$

$$\frac{c}{tf} = \frac{435}{50} = 8.6 < 14\varepsilon = 11.34 \rightarrow semelle \ de \ classe \ 3$$

La semelle inférieure :

$$\frac{c}{tf} = \frac{480}{80} = 6 < 9\varepsilon = 7.32 \rightarrow semelle \ de \ classe \ 1$$

 \rightarrow PRS de classe 3

- Section d'about S1 :

L'âme : tw = 40 ; d = 3790

$$\frac{d}{tw} = \frac{3790}{40} = 94.75 > 72\varepsilon = 58.608 \rightarrow l'$$
ame n'est pas de classe 1

$$\frac{d}{dt} = \frac{3790}{40} = 94.75 > 83\varepsilon = 67.562 \rightarrow l'$$
 ame n'est pas de classe 2

$$\frac{d}{tw} = \frac{3790}{40} = 94.75 < 124\varepsilon = 100.936 \rightarrow l'$$
ame est de classe 3

La semelle supérieure :

$$\frac{c}{tf} = \frac{430}{40} = 10.75 > 9\varepsilon = 7.32 \rightarrow semelle \ n'est \ pas \ de \ classe \ 1$$

$$\frac{c}{tf} = \frac{430}{40} = 10.75 > 10\varepsilon = 8.1 \rightarrow semelle \ n'est \ pas \ de \ classe \ 2$$

$$\frac{c}{tf} = \frac{430}{40} = 10.75 \le 14\varepsilon = 11.34 \rightarrow semelle de classe 3$$

La semelle inférieure :

$$\frac{c}{tf} = \frac{480}{70} = 6.85 \le 9\varepsilon = 7.32 \rightarrow semelle \ de \ classe \ 1$$

 \rightarrow PRS de classe 3

Vérification de la Poutre :

La vérification au moment fléchissant : Pour un élément soumis à la flexion, cette vérification consiste à prévenir la rupture de l'élément due à l'épuisement de la résistance de la section, au flambement ou au déversement. Nous analysons ci-dessous les conditions de résistance des sections des éléments fléchis.

• Section 1:

$$\frac{M_{SD}}{M_{pl,rd}} \le 1$$

$$M_{SD} = 117.3 \text{ MN.m}$$

$$W_{pl} = \frac{I_y}{y_G} = \frac{0.5090}{1.6639} = 0.3425$$

$$M_{pl,rd} = \frac{W_{pl}f_y}{\gamma_{M0}} = 121,60MN. m \frac{M_{SD}}{M_{pl,rd}} = 0.96 \le 1$$
 Condition vérifiée

• Section 2:

$$\frac{M_{SD}}{M_{pl,rd}} \le 1$$

$$M_{SD} = 117,3 \text{ MN.m}$$

$$W_{pl} = \frac{I_y}{\gamma_c} = \frac{0.5752}{1.6792} = 0.3425$$

$$M_{pl,rd} = \frac{W_{pl}f_y}{\gamma_{M0}}$$
 = 121,60MN. m $\frac{M_{SD}}{M_{pl,rd}}$ = 0.96 \le 1 Condition vérifiée

- > Vérification de l'effort tranchant :
 - Section 1:

$$\begin{split} \frac{V_{SD}}{V_{pl,rd}} &\leq 1 \\ V_{pl,rd} &= \frac{A_v \times \frac{f_y}{\sqrt{3}}}{\gamma_{M0}} \\ A_v &= \left(H \, - \, \left(t_{fi} + t_{fs} \right) \right). \, t_w = \, 0.1137 \, \, m^2 \\ V_{SD} &= 9.716 \, \, et \, \, V_{pl,rd} = \, 23.30 MN \, \frac{V_{SD}}{V_{pl,rd}} = \, \, 0.416 \leq 1 \end{split}$$

Interaction moment – effort tranchant : Le moment résistant plastique d'une section transversale est réduit par la présence de cisaillement.

$$\frac{V_{SD}}{V_{pl,rd}} = 0.416 \le 0.5$$
 interaction négligeable

• Section 2 :

$$\frac{V_{SD}}{V_{pl,rd}} \le 1$$

$$V_{pl,rd} = \frac{A_v \times \frac{f_y}{\sqrt{3}}}{\gamma_{M0}}$$

$$A_v = \left(H - (t_{fi} + t_{fs})\right) \cdot t_w = 0.1131 \ m^2$$

$$V_{SD} = 9.716 \ et \ V_{pl,rd} = 23.18MN \frac{V_{SD}}{V_{pl,rd}} = 0.419 \le 1$$

Interaction moment – effort tranchant : Le moment résistant plastique d'une section transversale est réduit par la présence de cisaillement.

$$\frac{V_{SD}}{V_{pl,rd}} = 0.419 \le 0.5$$
 interaction négligeable

Vérification de voilement :

Section 1:

$$\frac{d}{tw} \le 30. \, \varepsilon. \, \sqrt{k_{\tau}}$$

$$\frac{a}{d} = \frac{4}{3.79} = 1.05 > 1$$

$$k_{\tau} = 5.34 + \frac{4}{\left(\frac{4}{3.79}\right)^2} = 8.93$$

$$\frac{d}{tw} = \frac{3.79}{0.040} = 94.75$$

$$30. \, \varepsilon. \, \sqrt{k_{\tau}} = 72.97$$

$$\frac{d}{tw} > 30. \, \varepsilon. \, \sqrt{k_{\tau}} \text{ Risque de voilement}$$

On doit vérifier que l'effort tranchant sollicitant de calcul est inférieur, ou égal à l'effort tranchant résistant au voilement par cisaillement :

$$V_{sd} \le V_{ba.Rd}$$

$$V_{ba.Rd} = \frac{(d.tw).\tau_{ba}}{\gamma_{M1}}$$

$$\overline{\lambda_w} = \frac{\frac{d}{tw}}{37.4 \times \varepsilon \sqrt{k_\tau}} = \frac{94.75}{37.4 \times 0.814 \times \sqrt{8.93}} = 1.04$$

$$\tau_{ba} = \left[1 - 0.625(\overline{\lambda_w} - 0.8)\right] \frac{fy}{\sqrt{3}} = \left[1 - 0.625(1.04 - 0.8)\right] \times \frac{355}{\sqrt{3}} = 174.22Mpa$$

$$V_{a.Rd} = 3,79 \times 0,04 \times \frac{174.22}{1.1} = 24.01MN$$

$$V_{sd} = 9,71 \le V_{ba.Rd} = 24.63 \ (condition \ v\'erifi\'ee)$$

Section 2:

$$\frac{d}{tw} \le 30. \, \varepsilon. \, \sqrt{k_{\tau}}$$

$$\frac{a}{d} = \frac{4}{3.77} = 1.06 > 1$$

$$k_{\tau} = 5.34 + \frac{4}{\left(\frac{4}{3.77}\right)^2} = 8.89$$

$$\frac{d}{tw} = \frac{3.77}{0.040} = 94.25$$

$$30. \, \varepsilon. \, \sqrt{k_{\tau}} = 72.64$$

$$\frac{d}{tw} > 30. \, \varepsilon. \, \sqrt{k_{\tau}} \text{ Risque de voilement}$$

On doit vérifier que l'effort tranchant sollicitant de calcul est inférieur, ou égal à l'effort tranchant résistant au voilement par cisaillement :

$$V_{sd} \leq V_{ba.Rd}$$

Avec:

$$V_{ba.Rd} = \frac{(d.\,tw).\,\tau_{ba}}{\gamma_{M1}}$$

$$\overline{\lambda_w} = \frac{\frac{d}{tw}}{37.4 \times \varepsilon \sqrt{k_\tau}} = \frac{94.25}{37.4 \times 0.814 \times \sqrt{8.89}} = 1.03$$

$$\tau_{ba} = \left[1 - 0.625(\overline{\lambda_w} - 0.8)\right] \frac{fy}{\sqrt{3}} = \left[1 - 0.625(1.03 - 0.8)\right] \times \frac{355}{\sqrt{3}} = 175.5Mpa$$

$$V_{a.Rd} = 3.77 \times 0.04 \times \frac{175.5}{1.1} = 24.05MN$$

$$V_{sd} = 9.71 \leq V_{ba.Rd} = 24.05 \; (condition \; v\'{e}rifi\'{e}e)$$

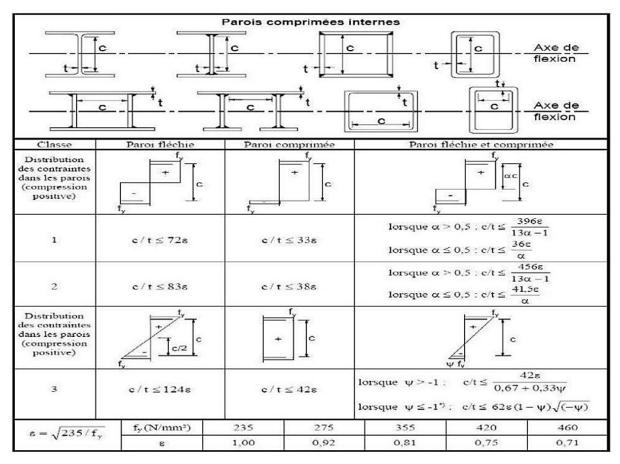


Figure C-1 Vérification de voilement pour parois internes

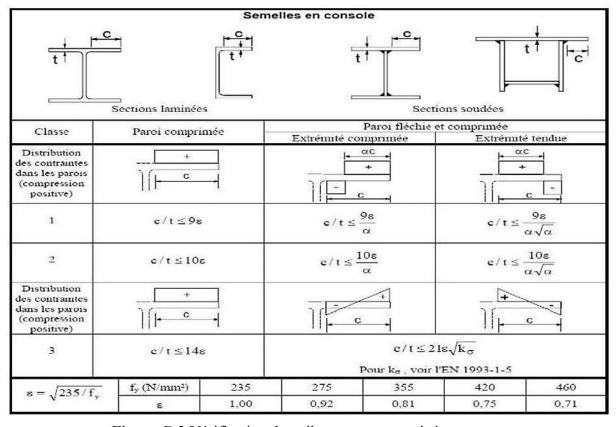


Figure C-2 Vérification de voilement pour parois internes

Tableau C-1 récapitulatif des caractéristiques mécaniques de section 1.

n	6	18	15	8
$S_a(m^2)$	0.2576	0.2576	0.2576	0.2576
$S_b(m^2)$	1.77	1.77	1.77	1.77
C (m)	2.3420	2.3420	2.3420	2.3420
$S_n(m^2)$	0.5526	0.3559	0.3756	0.2576
$a_n(m)$	1.2503	0.6470	0.7358	0.00
$b_n(m)$	1.0917	1.6950	1.6062	2.3420
$I_a(m^4)$	0.5573	0.5573	0.5573	0.5573
$I_b(m^4)$	0.0133	0.0133	0.0133	0.0133
$I_n(m^4)$	1.3138	0.9484	1.0021	0.5573
$V_{bn}(m)$	1.2717	1.8450	1.7562	2.4920
$V_{sn}(m)$	0.9417	1.5450	1.4562	2.1920
$V_{in}(m)$	2.9583	2.3550	2.4438	1.7080
$w_{bn}(m^3)$	1.0580	0.5140	0.5706	0.2236
$w_{sn}(m^3)$	1.3951	0.6139	0.6881	0.2542
$w_{in}(m^3)$	0.441	0.4027	0.4104	0.3263

Tableau C-2 récapitulatif des caractéristiques mécaniques de section 2.

n	6	18	15	8
$S_a(m^2)$	0.2758	0.2758	0.2758	0.2758
$S_b(m^2)$	1.7700	1.7700	1.7700	1.7700
C (m)	2.3410	2.3410	2.3410	2.3410
$S_n(m^2)$	0.5708	0.3364	0.3561	0.2381
$a_n(m)$	1.2099	0.6929	0.7856	0.0000
$b_n(m)$	1.1311	1.6779	1.5852	2.3708
$I_a(m^4)$	0.6150	0.5752	0.5752	0.5752
$I_b(m^4)$	0.0133	0.0133	0.0133	0.0133
$I_n(m^4)$	1.3984	0.9671	1.0196	0.5752
$V_{bn}(m)$	1.2811	1.8279	1.7352	2.5208
$V_{sn}(m)$	0.9811	1.5279	1.4352	2.2208
$V_{in}(m)$	2.9189	2.4019	2.4946	1.7090
$w_{bn}(m^3)$	1.0915	0.5291	0.5876	0.2282
$W_{sn}(m^3)$	1.4253	0.6330	0.7104	0.2590
$w_{in}(m^3)$	0.4791	0.4026	0.4087	0.336

Tableau C-3 : récapitulatif des contraintes due aux retrait et température pour la section.

effet	retrait	$\Delta T(+)$	$\Delta T(-)$
n	15	6	6
\mathcal{E}_r	0.00014	0.0001	0.0001
B_n	0.1180	0.2950	0.2950
β	0.31	0.53	0.53
ω_n	0.1895	0.322	0.322
E_a	210000	210000	210000
E_b	14000	35000	35000
σ_b	1.96	3.5	-3.5
M_n	0.3715	1.127	-1.127
σ_{br}	0.6932	0.566	-0.566
σ_{sr}	-17.33	-16.05	16.05
σ_{ir}	4.35	4.01	-4.01

Tableau C-4 : récapitulatif des contraintes due aux retrait et température pour la section

effet	retrait	$\Delta T(+)$	$\Delta T(-)$
n	15	6	6
\mathcal{E}_r	0.00014	0.0001	0.0001
B_n	0.1180	0.2950	0.2950
β	0.3	0.52	0.52
ω_n	0.1935	0.3337	0.337
E_a	210000	210000	210000
E_b	14000	35000	35000
σ_b	1.96	4.9	-4.9
M_n	0.379	1.635	-1.635
σ_{br}	0.737	0.869	-0.869
$\sigma_{\!\scriptscriptstyle ST}$	-16.73	-22.07	22.07
σ_{ir}	4.01	5.28	-5.28

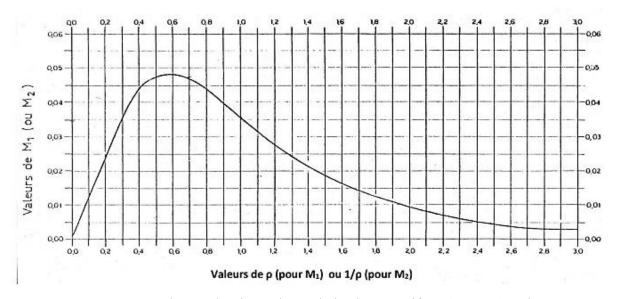


Figure C-2 : abaque de Pigeaud Cas de la charge uniformément répartie

Extrait de tableau des accélérations verticales pour V= 200 km/h :

Nede	Lond	DZ			
Node	Load	DZ (m/sec²)	Time/Step (sec)		
1	Vibration SW02(all)	-0.013188	2.2		
2	Vibration SW02(all)	0.252042	2.2		
3	Vibration SW02(all)	0.409073	2.2		
4	Vibration SW02(all)	0.413694	2.2		
5	Vibration SW02(all)	0.258725	2.2		
6	Vibration SW02(all)	-0.013127	2.2		
7	Vibration SW02(all)	2.53564	1.9		
8	Vibration SW02(all)	-0.483382	1.9		
9	Vibration SW02(all)	-0.781186	1.9		
10	Vibration SW02(all)	-0.78179	1.9		
11	Vibration SW02(all)	-2.45356	1.9		

Extrait de tableau des accélérations verticales pour V= 250 km/h :

200	Vibration SW02(all)	0	0.1
233	Vibration SW02(all)	0.234864	0.8
234	Vibration SW02(all)	0.429267	0.8
235	Vibration SW02(all)	0.627378	0.8
236	Vibration SW02(all)	0.80625	0.8
237	Vibration SW02(all)	0.954323	0.8
238	Vibration SW02(all)	1.052442	0.8
239	Vibration SW02(all)	3.098839	0.8
240	Vibration SW02(all)	1.102627	0.8

ANNEXE D

Etude de l'infrastructure

			ETAT LIMITES ULTIMES ETAT LIMITES DE SERVICE									
D(m)	Qc (t)	Qn (t)	Qtc (t)	QI (t)	fondamentales Qmin(t)	fondamentales Qmax(t)	accidentelles Qmin(t)	accidentelles Qmax(t)	rares Qmin (t)	rares Qmax (t)	quasi perma nentes Qmin (t)	quasi perman entes Qmax (t)
10.00	248.12	170.78	112.77	431.79	-115.07	308.42	-123.92	359.83	-80.55	225.56	0	177.23
10.50	259.28	178.72	123.19	448.16	-125.70	320.12	-135.37	373.47	-87.99	235.71	0	185.20
11.00	267.51	184.70	133.62	458.67	-136.34	327.62	-146.83	382.22	-95.44	243.19	0	191.08
11.50	277.29	191.72	144.06	472.27	-147.00	337.33	-158.30	393.55	-102.90	252.08	0	198.07
12.00	290.19	200.82	154.54	492.07	-157.70	351.48	-169.83	410.06	-110.39	263.81	0	207.28
12.50	301.82	209.07	165.03	509.33	-168.40	363.81	-181.36	424.44	-117.88	274.38	0	215.59
13.00	310.44	215.31	175.48	520.60	-179.06	371.86	-192.84	433.83	-125.34	282.22	0	221.74
13.50	319.56	221.90	185.98	532.85	-189.78	380.61	-204.37	444.04	-132.84	290.51	0	228.26
14.00	329.56	229.06	196.44	546.87	-200.45	390.62	-215.86	455.72	-140.31	299.60	0	235.40
14.50	337.24	234.68	206.94	556.24	-211.16	397.31	-227.41	463.53	-147.81	306.59	0	240.89
15.00	341.69	238.14	217.38	559.16	-221.82	399.40	-238.88	465.96	-155.27	310.63	0	244.06
15.50	347.45	242.48	227.89	564.67	-232.54	403.34	-250.43	470.56	-162.78	315.86	0	248.18
16.00	361.16	252.12	238.37	586.10	-243.23	418.65	-261.94	488.42	-170.26	328.32	0	257.97
16.50	380.75	265.67	248.56	619.47	-253.63	442.48	-273.14	516.22	-177.54	346.14	0	271.96
17.00	402.89	280.90	258.47	658.08	-263.74	470.06	-284.03	548.40	-184.62	366.26	0	287.78
17.50	431.74	300.76	271.53	708.32	-277.07	505.94	-298.39	590.26	-193.95	392.49	0	308.39
18.00	475.33	330.57	287.35	786.46	-293.21	561.76	-315.77	655.38	-205.25	432.12	0	339.52
18.50	497.57	346.26	305.41	820.63	-311.64	586.17	-335.61	683.86	-218.15	452.34	0	355.41

Figure D-1 : données géotechniques sur culée

						ETAT LIMITES ULTIMES				ETAT LIMITES DE SERVICE			
D(m)	Qc (t)	Qn (t)	Qtc (t)	QI (t)	fondamentales Qmin(t)	fondamentales Qmax(t)	accidentelles Qmin(t)	accidentelles Qmax(t)	rares Qmin (t)	rares Qmax (t)	quasi perma nentes Qmin (t)	quasi perman entes Qmax (t)	
10.00	243.26	167.10	103.40	427.44	-105.51	305.31	-113.63	356.20	-73.86	221.15	0	173.76	
10.50	252.53	173.78	113.98	439.92	-116.30	314.23	-125.25	366.60	-81.41	229.57	0	180.38	
11.00	262.20	180.68	123.57	453.78	-126.09	324.13	-135.79	378.15	-88.26	238.36	0	187.28	
11.50	273.96	189.03	134.15	471.27	-136.89	336.62	-147.42	392.72	-95.82	249.06	0	195.69	
12.00	283.67	195.96	143.89	485.12	-146.82	346.51	-158.12	404.26	-102.78	257.88	0	202.62	
12.50	298.13	206.23	157.06	506.52	-160.26	361.80	-172.59	422.10	-112.18	271.03	0	212.95	
13.00	327.00	226.15	171.04	556.27	-174.53	397.34	-187.95	463.56	-122.17	297.28	0	233.57	
13.50	342.74	237.33	185.60	579.42	-189.39	413.87	-203.96	482.85	-132.57	311.58	0	244.81	
14.00	338.01	234.48	191.89	566.37	-195.81	404.55	-210.87	471.98	-137.07	307.28	0	241.44	
14.50	352.51	244.65	202.51	589.29	-206.64	420.92	-222.54	491.08	-144.65	320.46	0	251.79	
15.00	367.06	254.83	212.67	612.60	-217.01	437.57	-233.71	510.50	-151.91	333.69	0	262.19	
15.50	383.80	266.64	226.14	638.38	-230.75	455.99	-248.50	531.99	-161.53	348.91	0	274.14	
16.00	415.39	288.41	241.07	693.03	-245.99	495.02	-264.91	577.52	-172.19	377.63	0	296.71	
16.50	436.06	303.04	258.93	724.16	-264.22	517.25	-284.54	603.46	-184.95	396.42	0	311.47	
17.00	447.85	311.42	269.77	741.55	-275.28	529.68	-296.46	617.96	-192.70	407.14	0	319.90	
17.50	466.39	324.62	287.68	768.39	-293.56	548.85	-316.14	640.32	-205.49	423.99	0	333.13	
18.00	478.39	333.16	298.89	785.9 9	-304.99	561.42	-328.46	654.99	-213.50	434.90	0	341.71	
18.50	496.17	345.87	316.87	811.28	-323.33	579.49	-348.20	676.07	-226.33	451.07	0	354.41	
19.00	507.12	353.71	328.24	826.67	-334.93	590.48	-360.70	688.89	-234.45	461.02	0	362.23	
19.50	526.59	367.55	346.20	855.36	-353.26	610.97	-380.44	712.80	-247.28	478.72	0	376.14	
20.00	543.49	379.36	357.84	882.49	-365.14	630.35	-393.23	735.41	-255.60	494.08	0	388.20	
20.50	568.49	396.89	375.82	922.23	-383.49	658.74	-412.99	768.52	-268.44	516.81	0	406.07	
21.00	583.90	407.72	387.64	946.29	-395.56	675.92	-425.98	788.57	-276.89	530.82	0	417.07	

Figure D-2 données géotechniques sur culée

Combinaisons de charges sur les pieux de la culée :

Tableau D-1 : sollicitations de combinaison de charge à l'ELS.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
NG+[UIC71+UIC71]	3555.02	0	0	0	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71]	3555.02	506.50	0	668.43	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71] +0,5*(F lacet)	3555.02	506.50	5.5	739.45	60.5
NG+[UIC71+UIC71] +0,5[FrUIC71+DémUIC71] +F lacet	3555.02	451.99	11	232.39	121

Tableau D-2 : sollicitations de combinaison de charge à l'ELA.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
G+(EX+0.3EY+0.3EZ) +0.3UIC+0.3UIC	3283.22	841.36	31.45	5863.88	251.64
G+(EX+0.3EY+0.3EZ) +0.3UIC+0.3SW02	3298.93	841.36	31.45	5863.88	251.64
G+(EY+0,3EY+0,3EX) +0,3UIC+0,3UIC	3283.22	244.31	104.85	246.91	629.10
G+(EY+0,3EX+0,3EZ) +0,3UIC+0,3SW02	3298.93	244.31	104.85	246.91	838.80
G+(EZ+0,3EX+0,3EY) +0,3UIC+0,3UIC	3355.06	244.31	31.45	246.91	251.64
G+(EZ+0,3EX+0,3EY) +0,3UIC+0,3SW02	3370.77	244.31	31.45	246.91	251.64

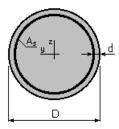
Les coefficients $W_L et W_T$:

Tableau D-3 : Récapitulatif des coefficients $W_Let\ W_T$.

	W∟ file 01								
n _{i1} =	$n_{i1} = d_{i1} = n_{i2} = d_{i2} = n_{i3} = d_{i3} = WL$								
4	3,6	4	0	4	3,6	28,80			
			W∟ file ()2					
n _{i1} =	n_{i1} = d_{i1} = n_{i2} = d_{i2} = n_{i3} = d_{i3} = WL								
4	3,6	4	0	4	3,6	28,80			

W _T file 01						
n _{i1} =	n _{i2} =	n _{i3} =	n _{i4} =	WT		
3	3	3	3			
d _{i1} =	d _{i2} =	d _{i3} =	d _{i4} =	36,00		
5,4	1,8	1,8	5,4			
	W _T file 02					
n _{i1} =	n _{i2} =	n _{i3} =	n _{i4} =	WT		
3	3	3	3			
d _{i1} =	d _{i2} =	d _{i3} =	d _{i4} =	108,00		
5,4	1,8	1,8	5,4			

Ferraillage des pieux de la culée :


Calcul de Section en Flexion Déviée Composée

1. Hypothčses:

Béton: fc28 = 30.0 (MPa) Acier: fe = 500.0 (MPa)

- Fissuration préjudiciable
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section:

D = 120.0 (cm) d = 5.0 (cm)

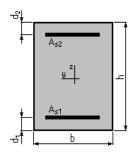
3. Efforts appliqués:

Cas N ^O	Туре	N (T)	$\mathbf{M_y}$ (T*m)	$\mathbf{M_z}$ (T*m)
1.	ELU	358.89	60.87	0.00
2.	ELS	265.31	41.90	0.00
3.	ELA	63.00	64.87	0.00

4. Résultats:

Sections d'Acier:

Ferraillage de la semelle de la culée :


Calcul de Section en Flexion Simple

1. Hypothčses:

Béton: fc28 = 30.0 (MPa) Acier: fe = 500.0 (MPa)

- * Fissuration préjudiciable
- * Prise en compte des armatures comprimées
- * Pas de prise en compte des dispositions sismiques
- * Calcul suivant BAEL 91 mod. 99

2. Section:

b = 100.0 (cm)

h = 200.0 (cm)

 $d_1 = 5.0 \text{ (cm)}$

 $d_2 = 5.0 \text{ (cm)}$

3. Moments appliqués:

	IVI _{max} (I °M)	Wi _{min} (1^m)
Etat Limite Ultime (fondamental)	442.67	335.19
Etat Limite de Service	322.76	261.10
Etat Limite Ultime (Accidentel)	476.51	162.76

4. Résultats:

Sections d'Acier:

Section théorique A_{s1} = 71.6 (cm2) Section théorique A_{s2} = 0.0 (cm2)

 $\begin{array}{ll} \text{Section minimum} & \text{A}_{\text{s min}} = 19.5 \text{ (cm2)} \\ \text{th\'eorique} & \rho = 0.37 \text{ (\%)} \\ \text{minimum} & \rho_{\text{min}} = 0.10 \text{ (\%)} \end{array}$

Sollicitation du mur frontal:

Tableau D-4 : sollicitations de combinaison de charge de mur frontal à l'ELU.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
1.35NG+1.45[UIC71+UIC71]	2644.98	0	0	0	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71]	2644.98	694.68	0	2166.30	0
1.35NG+1.45[UIC71+UIC71] +1.45[FrUIC71+DémUIC71] +1.45*0,5*(F lacet)	2644.98	694.68	7.975	2166.30	47.85
1.35NG+1.45[UIC71+UIC71] +1.45*0,5[FrUIC71+DémUIC71] +1.45*F lacet	2644.98	615.64	15.95	1692.11	95.7
1.35NG+1.2SW2+1.45UIC71	2636.03	0	0	0	0
1.35NG+1.2SW2+1.45UIC71+1.2 FrSW2+1.45DémUIC71	2636.03	982.95	0	1934.14	0
1.35NG+1.2SW2+1.45UIC71+1.2 FrSW2+1.45DémUIC71 +1.45*0,5(F lacet)	2636.03	982.95	7.97	1934.14	47.85
1.35NG+1.2SW2+1.45UIC71+1.2 *0,5*(FrSW2) +1.45*0.5DémUIC71) +1.45F lacet	2636.03	898.97	15.95	1430.29	95.7

Tableau D-5 : sollicitations de combinaison de charge de mur frontal à l'ELS.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
NG+[UIC71+UIC71]	1916.70	0	0	0	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71]	1916.70	417.82	0	1472.70	0
NG+[UIC71+UIC71] +[FrUIC71+DémUIC71] +0,5*(F lacet)	1916.70	417.82	5.5	1472.70	33
NG+[UIC71+UIC71] +0,5[FrUIC71+DémUIC71] +F lacet	1916.70	363.319	11	1145.67	66
NG+SW2+UIC71	1916.70	0	0	0	0
NG+SW2+UIC71+FrSW2+Dém UIC71	1916.70	671.83	0	1388.63	0
NG+SW2+UIC71+FrSW2+Dém UIC71 +0,5(F lacet)	1916.70	671.83	5.5	1003.13	33
NG+SW2+UIC71+0,5*(FrSW2+ DémUIC71) +F lacet	1916.70	607.58	11	1003.13	66

Tableau D-7: sollicitations de combinaison de charge de mur frontal à l'ELA.

Combinaison	N(t)	$H_L(t)$	$H_T(t)$	$M_{HL}(t.m)$	$M_{HT}(t.m)$
G+(EX+0.3EY+0.3EZ) +0.3UIC+0.3UIC	1513.75	785.83	31.45	3690.56	188.73
G+(EX+0.3EY+0.3EZ) +0.3UIC+0.3SW02	1524.22	785.83	31.45	3690.59	188.73
G+(EY+0,3EY+0,3EX) +0,3UIC+0,3UIC	1513.75	235.75	104.85	185.18	629.10
G+(EY+0,3EX+0,3EZ) +0,3UIC+0,3SW02	1524.22	235.75	104.85	185.18	629.10
G+(EZ+0,3EX+0,3EY) +0,3UIC+0,3UIC	1585.59	235.75	31.45	185.18	188.73
G+(EZ+0,3EX+0,3EY) +0,3UIC+0,3SW02	1596.06	235.75	31.45	185.18	188.73