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Résumé

Ce mémoire présente le développement d’un bras robotique collaboratif
autonome à 6 degrés de liberté, incluant la conception mécanique, l’analyse
cinématique et dynamique, l’impression 3D, ainsi que l’intégration complète du
système électrique. Le robot est contrôlé via ROS et Robodk pour la simu-
lation et la planification des mouvements. L’autonomie est obtenue grâce à
l’apprentissage supervisé, à l’apprentissage par renforcement, et à l’estimation
de pose basée sur les marqueurs ArUco. Le système final démontre un bras
robotique autonome, robuste et flexible, capable d’exécuter des tâches indus-
trielles.
Mots-clés : 6-DOF, bras robotique, conception mécanique, autonomie, ap-
prentissage supervisé, apprentissage par renforcement, ArUco, ROS, Robodk.

Abstract

This thesis presents the development of a 6-DOF autonomous collabora-
tive robotic arm, covering mechanical design, kinematic & dynamic analysis, 3D
printing, and full electrical system integration. The robot is controlled via ROS
and Robodk for simulation and motion planning. Autonomy is achieved through
supervised learning, reinforcement learning, and ArUco marker-based pose es-
timation. The final system demonstrates a robust and flexible autonomous
robotic arm capable of performing industrial tasks.
Keywords: 6-DOF, robotic arm, mechanical design, autonomy, supervised,
reinforcement, ArUco, ROS, Robodk.
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General Introduction

In the industrial sector, robotic arms have seen a meaningful evolution passing from classic
industrial robots to the collaborative ones, or Cobots. Unlike the industrial ones, the Cobots
are designed to be able to work alongside humans with no risk and full autonomy, which made
them suitable for various applications such as : surgery, factory loading and unloading, and
assisting workers in various tasks.

And since humanity is in continuous progress, we are working now on integrating Machine
learning and image processing on these collaborative robots in the purpose of making them
autonomous and able to take safe and secure decisions. One of the commonly used methods
we have : Reinforcement learning next to supervised and imitation learning for robotic arms.
This can help them integrate and adapt to any task in any work environment.

To this end, our final study project aims to design and develop a 6DOF autonomous
collaborative arm product using machine learning and image processing techniques under the
idea of creating our own startup company, making it intelligent and usable with different open-
source softwares like ROS (Robot operating system) and Robodk for all industrial tasks and
applications.

Problem statement

The main question here is : How can we first design this robot ? and what are the most
suitable techniques that can ensure a robust autonomy and meet the industrial requirements
at the same time ?

Work Methodology

In order to answer this question, we should firstly address the mechanical aspect involving
each design with Soldiworks, the cinematic and dynamic analyses, the torque calculations to
get a final designed model.

After that, we move to the simulation of the arm movements using the proposed softwares
that will be presented in the thesis in order to study the design feasibility before getting to the
realization part.

Once approved, we pass to the manufacturing or 3D printing of the arm components
alongside the electrical and electronics aspect, in which we address circuitry design and solder-
ing, the choice of the suitable motors, sensors, microcontroller and communication protocols,
as well as conducting the electrical analysis to get the required current and voltage to ensure
the proper power supply for best performance.
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Next, we will move to the assembly part that allows real life testing using the presented
softwares in the thesis on some basic tasks to ensure the secure movement for our robotic arm.

Finally, we are going to integrate the machine learning and images processing autonomy
based techniques proposed in the thesis and test them on the robot to compare their efficiency
and ability to be used in industrial and real-time applications.

Work Structure

To ensure a clear and coherent presentation of the thesis, and to make it easier for readers
to understand the different stages of our work, it will be organized as follows :

- Chapter 1 General definitions : covers basic concepts and definitions of robotic arms
and modeling, command softwares & different autonomy approaches.

- Chapter 2 State of the art : Exploring state of the art and related works in our field
of studies.

- Chapter 3 Mechanical Conception and Realization : Presents the process of de-
sign, modeling, conception and realization of our robotic arm.

- Chapter 4 ROS & Robodk Based Command and Electronic Integration of the
Autonomous Robotic Arm : Introduce different robotic arms command softwares as
well as conducting the electrical analysis and the hardware integration.

- Chapter 5 Robotic arm autonomy using machine learning : Focuses on the au-
tonomy based approaches we worked on, the performed tests and experiments and the
obtained results in simulation and reality.

- Chapter 6 Conclusion and Perspectives : Summarizes the global work, the obtained
results alongside future perspectives.
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General definitions

1.1 Introduction :

The following chapter representing the first chapter of the thesis, will handle the basic
definitions that the reader should know and keep in mind before being able to understand
and assimilate the explained work coming next. Taking into account both general aspects for
robotic arms, some basic mechanical concepts, general idea about the machine learning and
images processing techniques we went through and the softwares essential for the work.

1.2 Robotic arms

1.2.1 Definition of Robotic arm :

Based on the International Standard of Organization (ISO), a robotic arm is defined
as reprogrammable, multifunctional manipulator designed to move material, parts and tools
between 2 different positions through variable programmed motions for the performance of a
variety of tasks[1].

And in other terms, it can be defined as a simple open-structure composed of (n+1) rigid
body also called link denoted as Cn and (n) joint, starting from the base link which is the first
rigid body and ending with the end effector which is the hand of our manipulator. Each joint
Jn is made of the connection between 2 rigid bodies Cn−1 and Cn, and each one of them might
have either a rotational movement or a prismatic one based on the type of the joint, and the
number of these joints will define to us the degree of freedom of our robot.

Figure 1.1: Simple open-structure robotic arm[2].

1.2.2 Classification of robotic arms :

To understand the main subject of this thesis, we should know that robotic arms can be
classified based on their type, their geometry or finally their use. For our work the main part
of our robot is its use.

1.2.2.1 The use

Based on the task and the comportment, we can either define the industrial robots which
are the most common ones, known by their good efficiency but lack of safety especially if it
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required human interaction, but at the same time their high speed and precision too. Next
to them we have the Collaborative robots (Cobots), which were designed for better execution
alongside human-beings, they are characterized by their flexibility and adaptability. enabling
the fact of using them in different tasks with no problem.

Figure 1.2: Kuka industrial
arm[3].

Figure 1.3: Ur5
Collaborative
arm[4].

1.2.3 Modelisation of robotic arms

In order to control our arm’s hand position, we need to control the movement of each one
of its joints. This control can be done by applying some arm modeling techniques on our own
arm. But to understand these techniques, we should start by the fundamentals first.

1.2.3.1 Homogeneous transformation

A homogeneous transformation is defined as a 4 × 4 matrix that represents any
transformation (rotation or translation) from a coordinate frame Ri to a coordinate frame Rj:

T j
i =

sj
i nj

i aj
i pj

i

0 0 0 1

 =


sx nx ax px

sy ny ay py

sz nz az pz

0 0 0 1



where sj
i , nj

i , and aj
i are the unit vectors along the Xj, Yj, and Zj axes of frame Rj, respectively,

expressed in frame Ri. The vector pj
i represents the origin of frame Rj expressed in frame Ri.

1.2.3.2 Geometric modeling

The geometric modeling of a robotic arm is based on getting a mathematical representa-
tion of the robot’s physical structure and configuration. It relies on the geometry of the links,
the joints and the way they are interconnected. So the main idea is to find a relation between
the position of the end effector and the base link of the robot based on the movements applied
on each joint. For this purpose, we have to methods of this modeling :
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1.2.3.2.1 Forward geometric modeling : Computes the end-effector’s position based
on joint parameters using theDenavit-Hartenberg (D-H) Convention which simplifies the
assignment of coordinate frames through four transformation parameters by the following steps :

1.2.3.2.1.1 Assigning the joint frames : The z-axis is aligned with the joint motion
(rotation for revolute, translation for prismatic). The x-axis lies along the common normal
between consecutive z-axes, pointing from one joint to the next. The y-axis is determined
using the right-hand rule. This setup may lead to coordinate frame origins located outside the
joint itself for consistency[5].

1.2.3.2.1.2 Determining DH Parameters : The transformation between two joints is
then fully described by the following four parameters [5] :

1. The length a of the common normal between the z axis of two joints i and i − 1 (link
length).

2. The angle α between the z-axis of the two joints with respect to the common normal (link
twist), i.e., the angle between the old and the new z-axis, measured about the common
normal.

3. The distance d between the joint axes (link offset), i.e., the offset along the previous
z-axis to the common normal.

4. The rotation θ around the common axis along which the link offset is measured (joint
angle), i.e., the angle from the old x-axis to the new x-axis, about the previous z-axis.

1.2.3.2.1.3 Calculating the transformation matrix : The coordinate transform from
one link i − 1 to another i can now be constructed using the following matrix:

Ai =


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (1.1)

1.2.3.3 Dynamic modeling

Dynamic modeling is a robotic essential part for the design as it incorporates factors like
joint torques, gravity, and link masses. It helps determine the maximum torque needed for
smooth joint movements critical for selecting appropriate actuators.

1.2.3.3.1 Torque : It represents the required force to move an object with a linear or
angular acceleration. For robotic arms often denoted by the Greek letter tau τ , it represents
the required force in order to rotate an object around an axis or a pivot.
In general, it is defined as the product of the force (F) applied and the perpendicular distance
(r) from the axis of rotation to the point where the force is applied :
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τ = r · F · sin θ (1.2)
Where τ is the required torque, F is the applied force, r is the distance between the axis of
rotation and the point of force application and θ is the angle between them.
For robotic arm use, this formula can change a little bit, in our case we are going to calculate
it using this new one :

τ = g · m · r (1.3)
This time, the grepresents the gravity factor in (m/s), m represents the mass of all the links
related to that joint in (kg) and r remains the distance between the axis of rotation and the
gravity center of all the mass we need to rotate.
After doing this for each joint, we should take into account that not all the motors will be able
to provide us the required torques, for that many systems have been created to increase the
output torque of motors.

1.2.3.3.2 Torque increasing systems : For our case of work, for revolute joints there are
many systems that could be used to increase torque and we opted for the planetary gearbox
system :

1. Planetary gearbox :The commonly used system in rotational movements, it relies on
4 important elements which are :

- The sun gear : Which is the center of the movement, generally represents the
input of the movement so it is fixed with the rotation axis of the motor.

- The ring gear : An outer gear with internal teeth that mesh with the planet gears.
- The planetary gear : Usually three or more identical gears that mesh with the

sun gear externally and the ring gear internally. They rotate around their own axes
and revolve around the sun gear (hence the "planetary" name).

- The carrier : A structure that holds the planet gears in place and connects their
axes. As the planet gears revolve around the sun gear, they cause the planet carrier
to rotate, and is typically the output of the gearbox.

After assembling all these together, the planetary gearbox system will look like :

Figure 1.4: Planetary gearbox[6].

For this to work, 2 main important characteristics should be taken into considera-
tion. Each gear is defined by its number of teeth and the global system ratio is defined
by the combination we use, so it means we should define the input , the output and the
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fixed part in it. The following table will explain the impact of the combination on the
global ratio of the gearbox.

Figure 1.5: The impact of the combination on the global ratio of the gearbox[6].

After determining the ratio of the gearbox, the torque of the motor we choose will be
multiplied in order to reach the desired torque for each joint.

1.2.3.4 Actuators and sensors

1.2.3.4.1 Actuators : Starting with the actuators, which represents the main part respon-
sible for the movement of our structure. Generally we use one of the 2 well known motors
:

1. Stepper Motors : A stepper motor, also known as step motor or stepping motor, is a
brushless DC electric motor that rotates in a series of small and discrete angular steps.
Stepper motors can be set to any given step position without needing a position sensor for
feedback which is the best case of use since the are open loop motors. The step position
can be rapidly increased or decreased to create continuous rotation, or the motor can be
ordered to actively hold its position at one given step. Motors vary in size, speed, step
resolution, and torque[7].

Figure 1.6: Stepper motor[7].

In a stepper motor, discrete rotor movements are produced by selectively energizing
its stator windings: when you power one winding (Phase A), you generate a magnetic field
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that the permanent-magnet rotor aligns to; then you de-energize Phase A and energize
Phase B, causing the rotor to “jump” to the next position.

Figure 1.7: Stepper motor magnets[8].

2. Servo motors : A servo motor is a complete closed-loop system, integrating a motor, a
position sensor (like an encoder), and a controller. It operates by constantly comparing
the commanded position (the "setpoint") with the actual position reported by its feedback
sensor. The controller uses any difference, or "error signal," to drive the motor, dynam-
ically adjusting speed and torque to eliminate the error and maintain the target angle
with high accuracy.

Figure 1.8: Servo motor[9].

1.2.3.4.2 Sensors : In the robotic arm field, many types of sensors are used where each
one of them has a specific role in the execution of the task. But at the same time, their pres-
ence in the work is not necessary because it depends on the task and the construction of the arm.

- Limit Switch : A limit switch is an electromechanical sensor, called this way since it
detects the presence of an object from the contact with its limit.

Figure 1.9: Limit switch[10].
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In robotic arms, it can be used in order to detect a certain desired position for each
joint range of movement, either by detecting the initial position (mostly used in case of
joint’s initialization) , or can be used when we reach the limit of possible movement.
One of the easiest sensors to set, it has 3 pins to connect and based on that it can be
set to either normally opened (NO) or normally closed (NC), This 2 will be connected
to the ground (GND) with a pull-up or pull-down resistance and the desired pin at the
same time, while the 3rd pin which is the common (COM) will be connected to the power
source (+5V) as showing the figure.

Figure 1.10: Limit switch principle[10].

So whenever we get contact between the subject and the roller tip of the limit switch.
The switch will be activated and will read a high or low signal on the reading pin based
on the configuration we choose.

- Inertial Measurement Unit (IMU) : The inertial measurement unit is the most
common sensor used in order to measure the acceleration and orientation of a specific
object in space. It is mainly composed of 3 elements which are :

◦ Accelerometer : Which is used to measure the linear acceleration on the 3 axis.
◦ Gyroscope : That we use to measure the angular velocity this time on each axis.
◦ Magnetometer : Which is an optional part in most of the IMU’s available, which

is better used alongside the gyroscope for tuning and data filtering since it gives
information of the magnetic field of earth on each axis.

As the following figure shows, the most standard IMU is called MPU-6050.

Figure 1.11: MPU-6050[11].

- Encoders : Principally, it is a position sensor that we use in order to get the position
of a certain object in 2D space. Based on its type, it converts the mechanical movement
of the object to an electrical signal that will be used after to calculate the distance or the
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position of the subject.
The following figure shows us the 2 types of encoders available, either a magnetic

encoder attaches a magnetized disk or ring to the rotating shaft and uses stationary
Hall-effect or magneto-resistive sensors to “read” the changing magnetic field as the shaft
turns. The sensors generate two digital pulse trains (channels A and B) in quadrature
allowing both position counting and direction detection. Or an optical encoder, that has
a slotted disk rotates between an LED and photodiode array. So, as the disk turns, light
passes through slots and it’s interrupted, creating A/B pulse trains.

Figure 1.12: Types of encoders[12].

- RGB Camera : It is simply a visual sensor that collects images by assembling them
in 3 channels (Red, Green and Blue). Each camera is defined by some of its special
characteristics, such as: Spatial and temporal resolution (Fps and height*width), Lens
and factor of distortion and inclination, etc.

Figure 1.13: Havit RGB camera[13].
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1.3 Robot Operating System

1.3.1 Robot Operating System (ROS)

The robot operating system, also called ROS. It’s an open-source middle-ware framework
for robotics development tasks. Alone, it’s not really an operating system but it can be used
on real ones, specifically Linux.

Figure 1.14: Robot Operating System[14].

The main reason behind calling it an operating system even though it does not represent
a real one, is because ROS ensures a structured communication system alongside many useful
tools and packages that facilitates the visualization and study of robot comportment.

1.3.2 ROS Architecture

In order to maintain the communication system, ROS has a got special unsynchronised
architecture based on 2 important components :

1.3.2.1 Nodes :

Which represents simply the code or the function that executes a certain task, for example
reading from sensors or giving action for command. It might be a python, C or C++ code that
differentiates between each other by only the way of calling and setting up the node.
But in communication systems as clearly known, we should have 2 important pairs involved in
this communication; a sender and a receiver. In the ROS system these 2 has special names :

- Publisher : The part that sends information of a specific type in the ROS architecture,
it represents the sender in the communication systems.

- Subscriber : This one is supposed to receive the data sent by the publisher. And since
each one of them has got a certain role, each one of them has got a special architecture
in the code.
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1.3.2.2 Topics :

For the topics, it is simply the name we use to define the information or the variables
exchanged between the publisher and subscriber whatever the type of it. In the architecture it
is used to define the channel that transports data from the transmitter to the receiver.

So as a global definition, the main architecture of the robot operating system is based
on 2 nodes or more exchanging data under channels that have the same name of the variables
called Topics, where the parties involved in the communication system are classified between
publishers that send the data and subscribers that receive it. All this can be explained in the
following figure.

Figure 1.15: Simple example of ROS architecture[15].

1.3.3 ROS tools

In addition to the architecture property, as mentioned before the robot operating system is
commonly used thanks to the tools and packages that can be used easily for robot manipulation
and simulation.

1.3.3.1 Tools

Starting with the tools available within ROS. We should first understand that tools rep-
resent the set of applications and utilities that can be used for simulation specially in ROS.
The mainly 2 for robot simulation and visualization are :

1.3.3.1.1 Gazebo : The Gazebo tool is a 3D design simulator widely used for robotic
purposes. It gives the ability to study the kinematic and dynamic of any system in or outdoors
while simulating the environment at the same time. The next figure represents the general logo
of Gazebo.

Figure 1.16: Gazebo[16].
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This tool allows accurate simulation of rigid body physics, enabling robots to interact with
their surroundings for example, by picking up or pushing objects, rolling, or sliding on surfaces
while also being affected by physical forces such as gravity and collisions with obstacles. The
following figure shows an example of a simulated arm in its environment using Gazebo.

Figure 1.17: Gazebo world[17].

In the next sections, we will be explaining the possibility and how to set up a gazebo with your
own robot for accurate simulations.

1.3.3.1.2 RviZ : Standing for Ros visualizer, is a famous 3D simulation tool for ROS. Same
as the gazebo it gives the ability to simulate the movement of the robot with the ability to set
up the environment too.

Figure 1.18: Rviz logo[18].

In graphical comparison , Rviz is less convenient since it doesn’t really take into account
the graphical representation, it mainly focuses on the representation of the robot in a state that
will help us study its comportment. So we can say basically that it is less resource consuming
if compared to Gazebo. But at the same time, it gives the minimum required for graphical
visualization of the robots comportment so it might be sometimes better to use for basic sim-
ulation and work.
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1.3.3.2 Packages

Talking now about the ROS packages, they represent the set of programs and code folders
that we can use and set up directly for our use. Sometimes it might require some digging and
fixing in order to make it work with our project and sometimes it’s so easy to launch it with
no problem. In our case we have :

1.3.3.2.1 Rosserial : The rosserial package is a built-in function of ROS that ensures the
serial communication (UART, USB) between the publishers and subscribers. This package is
the most crucial part of the ROS since as previously mentioned it’s architecture relies principally
on ensuring that communication with no problems.
In a more detailed way, the rosserial protocol is aimed at point-to-point ROS communications
over a serial transmission line. We use the same serialization/deserialization as standard ROS
messages, simply adding a packet header and tail which allows multiple topics to share a
common serial link. This page describes the low-level details of the packet header and tail, and
several special topics used for synchronization[19].

1.3.3.2.2 MoveIt : The moveit package is the number 1 package of ROS for robotic arm
simulation, motion planning and manipulation. It has got many built-in function used for
trajectory planification , inverse kinematics solving next to its main important part which is
the moveit setup assistant package that helps for the integration of your own inside of it in
some few steps that will be explained after in the ROS chapter.
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1.4 Reinforcment learning

1.4.1 Reinforcement learning definition

Reinforcement learning is an approach used to train a specific agent the way to perform
a certain task, the agent is the entity doing the action in our case that represents the robotic
arm. The main idea is that the robot starts to learn based on its action and the reward or the
feedback that he gets from its external environment and its sensors [20].This whole approach
is known by the markov decision process.

1.4.2 Markov Decision Process (MDP)

The markov decision process or MDP, is a mathematical approach used in reinforcement
learning that relies on the feedback of the environment of the agent to give a rait on the action
performed. So basically, for each action the agent taks, we will have a reward or punishment
value for that and by accumulating these with the time the agent or the robot in this case will
know how to avoid prohibited movements so as to accomplish the task correctly and safely.

- The agent : Which is as explained the entity we are trying to teach how to perform a
certain task.

- The environment : Which is the surrounding space of the agent, in the case of a robotic
arm its workspace in the factory or a shop or whatever place it’s going to be used in.

- The action : The movement performed by the agent, either by joint rotations for a
robotic arm, for the displacement of a navigation robot or flying around the sky for
drones.

- The state : Which represents the current position of the agent after performing the
action.

- The reward : Which is the value or the feedback we give to that action taken based
on the current state, but this one should rely primarily on the reward tree which will be
explained afterwards.

As it’s shown in the figure, the agent will visualize its environment then decide to take an
action Ai. As a result, it will have a new state Si+1 and will get a reward value Ri+1 for the
action taken. And with that we go through a loop again and again until the end of the episode
or end of the training.

Figure 1.19: Markov decision process[21].
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So the MDP can be represented mathematically by a 4 elements tuple (s,a,P,R)[22]:

- States(S) : Which is a set of states possible for the robot, in our case can represent the
position of the end effector in its workspace.

- Actions(A) : Which are the possible movements of the agent, for our robot it’s the
rotation values for each joint that will lead to an end effector position.

- Transition probability function (P ) : It’s the probability P (s′ | s, a) that maps for
each action A at a certain state S the new state possible for the robot after taking that
action S ′.

- Reward function (R) : Which is the rewarding function R(s, a, s′) that gives for each
action taken a feedback value. These values are given based on the reward tree.

And the main purpose of this MDP is to maximize a π policy that accumulates the reward
values of the agent during the training[23].

π = E
[ ∞∑

t=0
γtR(st, at, st+1)

]
(1.4)

Where St and At are the state and action for the time t, and gamma is a factor between 0 and
1 that gives importance to the next reward in the training specially used in continuous space
of actions.

1.4.3 Reward Tree

The reward tree is an interpretable representation of the reward function R, it defines
rewards through a hierarchy of decisions based on features of states and actions. Used to
facilitate the interpretation of all possible reward values given to the action[24]. As the following
figure represents a 3 states reward tree and their probabilities.

Figure 1.20: Reward tree[22].
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1.4.4 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is an on-policy, model-free reinforcement learning
algorithm designed to facilitate stable and efficient policy learning[25]. The main idea behind
this PPO, is to use a ‘PPO-Clip’ variant to ensure stable policy improvement by preventing
overly large updates that could destabilize learning.

The main structure of the PPO relies on experience collection and evaluation by the
agent, then trying to maximize the clipped surrogate objective function given by :

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ) Ât

)]
(1.5)

Which takes into consideration a trust ratio rt(θ) that refers to the possibility of taking
an action a’ knowing that the previous one is a. In this case if we have a higher value then 1
means that the new policy would like to take this action, but if it’s lower than 1 so the policy
will be avoiding to take this kind of action in the future. And we have the main part of the
PPO − Clip which is ϵ which is used to define a range of how much can the policy change with
the time and avoid aggressive changes directly. So if the action taken was very good, we will
have the trust ratio very high but this will lead the policy to prioritise this action a lot, so it
is constrained with 1 + ϵ .The same way if its a very bad action , it doesnt let the policy con-
sider it as a prohibited one to enable the exploration of the environment by limiting it with 1−ϵ.

In essence, the main idea of PPO (specifically PPO-Clip) is to modify the policy func-
tion itself in a simple way (clipping) that implicitly constrains the policy updates, preventing
them from deviating too far from the previous policy, thereby ensuring more stable and reliable
learning with first-order optimization.
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1.5 Supervised learning

1.5.1 Supervised learning

Supervised learning is a branch of machine learning where an algorithm is trained on a
dataset comprising pairs of input features and their corresponding output labels. During train-
ing, the model learns the underlying patterns linking inputs to outputs. Once trained, it can
generalize this mapping to predict outcomes for new, unseen data[26].

1. Classification tasks involve predicting discrete labels (e.g., cat vs. dog).

2. Regression tasks involve predicting continuous values (e.g., house price).

Supervised learning relies on labeled training data to learn the relationship between input
features and their corresponding outputs. Data scientists prepare these datasets by assigning
known output labels to each input example. The goal of supervised learning is to train a model
that can accurately predict the correct output for new, unseen inputs based on the patterns
learned from the training data.

During the training process, the algorithm analyzes large amounts of input–output pairs to
identify correlations. The model’s performance is then evaluated using a separate test dataset
to ensure it generalizes well. Cross-validation is often used to assess model performance by
dividing the dataset into training and validation segments, allowing the model to be tested on
unseen data during training.

One of the most widely used optimization techniques in supervised learning is gradient
descent, including variants like stochastic gradient descent (SGD). These algorithms adjust
the model’s parameters to minimize the loss function, which quantifies the difference between
predicted and actual output values. The algorithm follows the gradient of the loss function to
find the parameter values that produce the most accurate predictions.

1.5.2 Convolutional Neural Network (CNN)

convolutional Neural Networks (CNNs), also known as ConvNets, are a type of feed-forward
neural network where data flows sequentially from input to output through multiple layers.
CNNs are particularly effective in tasks involving image recognition and classification due to
their ability to automatically detect and learn spatial hierarchies and patterns within visual
data
Unlike traditional neural networks, CNNs include specialized layers such as :

- Convolutional layers : Convolution is the first step in a convolutional Neural Network
(CNN) used to extract important features from an input image. In this layer, a small
matrix called a filter or kernel slides over the image and performs a mathematical opera-
tion to highlight specific patterns, such as edges, corners, or textures.
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- Pooling layers : which reduce the spatial dimensions of the data to highlight the most
significant features and reduce computational cost.

- Activation functions : enhance model performance and introduce non-linearity.

- Fully connected layers : used to connect every neuron in one layer to all the neurons
in another layer. We flatten our pooled feature map matrix into vector and then feed
that vector into a fully connected layer.

Figure 1.21: Convolutional neural network architecture[27].

CNNs learn to identify simple patterns (such as edges, curves, or textures) in the early
layers and progressively build up to more complex structures (like objects, faces, or scenes) in
deeper layers, making them highly suitable for tasks involving visual data.
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1.6 Aruco pose estimation

1.6.1 Aruco markers

1.6.1.1 Definition

An Aruco marker is a synthetic square marker composed by a wide black border and an
inner binary matrix which determines its identifier (id). The black border facilitates its fast
detection in the image and the binary codification allows its identification and the application
of error detection and correction techniques. The marker size determines the size of the internal
matrix. For instance a marker size of 4x4 is composed of 16 bits.
So each Aruco marker is specially composed of 2 main parts :

1. Thick black border : This is the most important feature. The solid black border makes
it extremely easy and fast for a computer vision algorithm to find the marker in an image,
even under different lighting conditions or at various angles.

2. Inner binary pattern : Inside the black border is a grid of smaller black and white
squares. This pattern represents a binary number, which is the marker’s unique ID. These
patterns come from a predefined dictionary that will be explained in the next point.

1.6.1.2 Types of classification

In Aruco, a dictionary is simply the collection of all marker patterns you’ll recognize
in your application. Each marker is defined by its unique binary grid (“codification”), and
dictionaries differ in two key ways:

1. Dictionary size : how many distinct markers it contains, so each dictionary contains a
certain number of markers so we make the difference between them in the use.

2. Marker size : the dimensions of each marker’s grid, exactly the size of the inner binary
part of the Aruco.

So as the following figure shows, we got different Aruco markers from different dictionaries. As
we can simply deduce, there is a difference in the shape of them, the quantity and the pattern
of the inner part so difference in the binary pattern we are using to define each one of them.

Figure 1.22: Different Aruco markers.
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We should know that the difference between these dictionaries has a serious reason, that will
be next explained.

1.6.2 Aruco tags detection

1.6.2.1 How to detect Aruco tags

In the robotics field, the Aruco marker detection is such a big need, because it will help
for position estimation of either the robot in its environment or a specific we reach to track
or localize in the robot frame. So we should principally understand that we are using visual
sensors for this work, mainly an RGB camera.

Now, this detection requires some important steps in order to detect the desired Aruco
marker in space.
Using an RGB camera or any type of cameras, we should capture the image frame and apply
some image processing techniques on it. Starting by converting the image in grayscale to
reduce the calculations and the resources, additionally because the Aruco are already in white
and black pixels, so the information from RGB channels is not required. Taking for an example
the captured image shown in the figure.

Figure 1.23: Captured images with RGB camera.

Next, we apply a binary threshold on it and that to detect the outer black border of the
Aruco tag. So we get the following figure from the previous one.

Figure 1.24: Binary threshold image.

After applying the threshold, we will be searching for squared contours that represent
to us the black border of the Aruco marker. Taking for example in the following figure, we
detected the Aruco marker of the image that we divide based on the predefined dictionary and
marker size we are using, as for the figure we used 8*8 Aruco markers.
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The first step The second step The third step

The last step

Figure 1.25: Aruco grid and matrix extraction.

1.6.3 Aruco pose estimation

Getting now to the importance of Aruco tags and all of this work. The main idea behind
the markers detection is to finally use them with position estimation techniques for 2 main
reasons :

1. Either localizing the robot position in its space using the predefined Aruco tags in its
area commonly used with navigation robots.

2. Localizing the Aruco itself in the robot space in order to perform a task on the object
linked with the Aruco, which is the most used case with robotic arms.

When we say pose estimation of an Aruco marker, we mean that we want to get its distance
from the visual source (The RGB camera), and using some frame transformation techniques
previously explained, while working with robotic arms we are going to use that for localizing
the required object in the robot general frame. So we are trying to get the X,Y,Z coordinates
and orientation of the desired object.
For Now this is all that we are going to explain about the Aruco pose estimation, since it is a
full approach that we are going to use and explain in the Autonomy chapter.

1.7 Conclusion :

As a conclusion for the chapter, all essential informations and basic concepts required for
the good comprehension of the thesis were clearly defined.
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2.1 Introduction

After discussing and explaining the main definition of our work, now we should explore
the state of the art and related work in the subject of machine learning techniques for robotic
arms. And after digging for related works, the main 2 promising techniques were either the su-
pervised learning or the reinforcement learning but for each one we have some special methods
and a global architecture for the work to be done.

In what’s coming next, we are going to explore and explain the main related works in
this field using both methods, explain the main points for each one and end it with a general
conclusion based on the informations collected from those works.

The main point of this part, is to get an idea about the most suitable techniques for our
case of use, try to understand the work done and use it for better results and even close to the
already done work.

2.2 Supervised learning

Supervised learning has shown significant promise in enabling robotic arms to learn com-
plex manipulation behaviors from data. In recent years, neural networks, particularly convo-
lutional and recurrent architectures, have been applied to predict robot control actions from
sensory data such as RGB images, proprioception, or both. These models are typically trained
on large datasets where robot actions are paired with observations.
Several notable datasets and benchmarks (e.g., RoboNet, RoboTurk, and DeepMind Control
Suite) have enabled supervised policy learning and behavioral cloning. These datasets con-
tain trajectories where robots perform various manipulation tasks such as pushing, grasping,
reaching, and object relocation.

2.2.1 Datasets

These datasets provide multimodal information such as RGB or RGB-D video, joint an-
gles, and actions from various robot platforms, enabling supervised and self-supervised learning
of motor policies. In Table 2.1, we summarize key characteristics of widely-used datasets in-
cluding RoboNet, RoboTurk, and the BAIR Robot Pushing dataset, which support different
tasks such as object pushing, grasping, and pick-and-place operations. These datasets form the
foundation for training models that generalize across environments and robot types.
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RoboNet RoboTurk BAIR Robot
Pushing

Authors Aravind Ra-
jeswaran et al.

Mandlekar et al. Finn, Levine et al.

Year 2019 2018 2017
Reference [28] [29] [30]
Data Modality RGB images,

depth, joints com-
mands, actions

RGB-D, joint
states

RGB video, robot
states

Robot Platforms Sawyer, WidowX,
Franka, UR5e,
Baxter

WidowX, UR5 Sawyer

Type of Task Pushing, reaching,
pick-and-place

Grasping, pushing,
real-world manipu-
lation

Pushing small ob-
jects on table

Table 2.1: Comparison of Robotic Arm Datasets for Manipulation Tasks

2.2.2 Pose estimation

This part provides an overview of significant advancements in the field of robot pose de-
termination from visual data. It highlights various methodologies, with a particular focus on
deep learning-based approaches, which offer promising solutions to the challenges of accuracy,
robustness, and real-time performance.

The core problem is to accurately estimate the joint angles of a robot manipulator from
visual input. This is critical for various applications, including robot control, human-robot
interaction, teleportation, and autonomous navigation, particularly in scenarios where tradi-
tional encoders might fail or where external sensing is preferred. The system aims to provide a
robust alternative or complement to joint encoders.
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Pose Determination System
Based on Neural Net-
works[31]

Accurate Robot Arm At-
titude Estimation Based
on Multi-View Images and
Super-Resolution Keypoint
Detection Networks[32]

Author Sergio Rodríguez-Miranda et al Ling Zhou et al
Year 2023 2022
Input RGB image of robot manipulator

and encoder values (for training)
Multi-view RGB images of the
robotic arm

Output Estimated robot joint angles
(pose)

3D joint keypoints and estimated
attitude

Approach
- CNN for pose classification

- MLP for regression

- Forward kinematics used
for final pose

- Super-resolution keypoint
detection

- Multi-view image fusion

- Deep learning-based 3D at-
titude estimation

Note Combines CNN and MLP for
classification and regression, us-
ing kinematics for pose estima-
tion

Uses super-resolution and multi-
view keypoint detection for pre-
cise pose estimation

Table 2.2: Comparison of Neural Network-Based Robot Pose Estimation Methods
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2.3 Reinforcement learning

For this section, we will be presenting some of the related works in reinforcement for
robotic arms tested on some known robots and personal designed ones for some.

2.3.1 Related works

Before talking about our own training structure for reinforcement learning on BRAS-DEL
robot, we will be exploring the related work in reinforcement learning for robotic arms shown
in the following table.

Name Year Author(s) Trainer
Type

Input Size Results

Inverse kinematics
solution and control
method of 6-DoF ma-
nipulator based on
deep reinforcement
learning[33]

2024 Zhao et al. PPO 16 6mm in position,
10° in orienta-
tion

PPO for 6-DoF
Grasping in Space
Robotics[34]

2023 Høgsbro et al. PPO 19 91.5% success
(standard),
88.7% (oc-
cluded)

Table 2.3: Summary of selected PPO-based approaches for robotic arm control and grasping

Here we explored previous work in reinforcement learning for robotic arms. As we can the
3 listed works used the PPO trainer since its the most suitable generally for continuous space
of action, and we can see that most of the work are really recent so it’s still under development.

In addition we can see different ways in result presentation, some of them explore the
efficiency of their work by calculating the mean error in distance and orientation from the end
effector of the robot to the goal object as in the Zhao et al. work[33], we can see that the work
of hogsbro et al[34]. presented their results in other form by giving the accuracy percentage
of task accomplishing correctly from various of tests.Last thing to mention,is that the works
differ from each other in the input space dimensions, so each one has included its available data
based on its case of training and simulation setup.

Page 51



State of the art

2.3.2 Overview of the previous work architectures and results

Aspect Zhao et al[33]. Høgsbro et al [34].
Robot 6-DoF industrial robot Franka Emika Panda (7-DoF)
Task Pick and place (IK solver

training)
Rock grasping in simulated
Mars terrain

Simulation Envi-
ronment

Unity ML-Agents Isaac Gym

Reward Function Based on distance and orienta-
tion error with penalties

3-phase reward: reaching,
grasping (50), lifting (variable)
+ success bonus

Input Size 16 (EE position/orientation,
goal pose, joint angles)

19 (joint positions/velocities,
object pose)

Output Joint angles 8 outputs (7 joint angles + 1
gripper command)

Trainer PPO PPO
Learning Rate 0.0002 0.0002
Max Steps 30 million 70 million
Special Configs Used ResNet as encoder, larger

buffer and batch size
Entropy 0.005, domain ran-
domization

Results Continuous improvement in re-
ward, distance error 6mm, ori-
entation error 10°

91.51% success rate over 100k
grasps, increasing reward

Table 2.4: Comparison of two DRL-based approaches for robotic manipulation

2.4 Conclusion

In our study of the state of the art for robotic arm autonomy using supervised learning,
we didn’t follow the existing works directly. Instead, we used them mainly to understand what
kinds of datasets are commonly used. One important dataset we chose is RoboNet, which
contains useful examples of robotic arms performing manipulation tasks.

We also looked at the neural networks used in pose estimation and found that CNNs
(Convolutional Neural Networks) are the most common, since they work well with visual input
like images.

Based on this, we proposed our own idea: instead of just estimating poses, our work will
be done to predict the next joint position Qposi+1 given the current joint position Qposi and
the current image Imgi. In simple terms, our model learns the pattern:Qposi+Imgi = Qposi+1.
This allows the robot to learn how to move like other robotic arms doing the same tasks, such
as pick and place, by cloning their behavior.

As for the reinforcement learning part, based on the cited papers we concluded that the
PPO trainer is the most suitable one for our case since it’s the most used one for continuous
space of actions, as for the reward tree we found out that their non general definition or function
to use, each work has got to define its own reward tree as long as it respects the desired work
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or objective we want to achieve. In addition to that, the input data can change based on the
available feedback and information in the scene.
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Mechanical Conception and Realization

3.1 Introduction

This chapter mainly focuses on the mechanical conception and realization of the robot.
In which we will be starting with the used software Solidworks, the links and end effector
conception, then we will talk about the motors choice and specifications. After we have the
gearboxes part in which we talk about their conception and torques then the general simulated
assembly of the robot. In addition we will have a section for the robot modeling, forward and
inverse geometric modeling and the dynamic study of the torques. We do have after a special
section for the realization in which we are going to explain the steps we went through for the
final assembly (the printing and all the required mechanical tools we needed). Then at the end,
we will have a general conclusion of the chapter.

The main idea of this work is to make an autonomous 6 DOF robotic arm that can be
used in different industrial and collaborative tasks. The idea of the work was inspired by the
Universal Robots company that is well known in the robotic arms industry. The design was
primarily inspired from the Ur3 model. It gave us the general idea of how the robot should
look, and we used our own inspiration to design the links one by one.

3.2 Robot Conception

3.2.1 SolidWorks

SOLIDWORKS is a 3D computer-aided design (CAD) software that runs on Windows. It
is used to develop mechatronic systems from start to finish. In the initial stage, the software is
used for planning, modeling, feasibility assessment, prototyping, and project management. The
software is then used for the design and construction of mechanical, electrical, and software
components. Finally, it can be used for device management, analysis, data automation, and
cloud services[35].

Figure 3.1: SolidWorks logo[36].

3.2.2 Links and end effector conception

Starting now with the conception and design of the links and the end effector of the robot.
As mentioned in the Introduction, we got inspired from the Universal Robot Ur3 model shown
in the following image.
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Figure 3.2: UR3 robotic arm[37].

Based on this model, we started designing our own robot. Our robot is a 6 DOF robotic
arm of 6 revolute joints, 4 of them horizontal and 2 are vertical.

3.2.2.1 Base Link :

Starting with the base link, which is the first link of the robot which is going to be fixed
on the operation table of the robot with a 188mm height, internal circle of 80mm diameter and
external one of 125mm diameter with 6 holes will be used for fixation with the table. Inside
of it, we have a place for the motor we are going to use, a nema23 stepper motor with a hole
from the bottom used for cables and a weight of 300g as shown in the following figures.

Figure 3.3: Base link face
view

Figure 3.4: Base link upper
view

3.2.2.2 Link1 :

This is the next link we worked on, it is a circle of 140mm diameter and 158 mm height.
At the top of it there is our robot name BRAS-DEL, from the bottom side we have 6 holes
that are going to be used after for connection with the base link to form the first joint J1.
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Figure 3.5: Link1 upper
view

Figure 3.6: Link1 bottom
view

Same as the previous link, the link1 has a special compartment for the stepper motor
we are going to use inside of it with a special hole too for cables. This can be shown in the
following image of the side view.

Figure 3.7: Link1 side view

And whit all this, we get a 700g wight for the link1.

3.2.2.3 Link2 :

This is composed principally of 2 parts connected with each other and moving along with
each other so can be considered as a 1 link after all with a height of 326.99mm as it is shown
in the following figure.
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Figure 3.8: Link2 side view

And the same as the link1, from the bottom it has 6 holes for connection with the output
of the link1 forming the joint 2 and from the upper side, we have the compartment of the
stepper motor we are going to use a nema17 giving us a link of 570g weight as it is shown in
this image.

Figure 3.9: Link2 face view

3.2.2.4 Link3 :

This link is kind of the same as the previous link2, but with some small changes as the
height is reduced to 292.01mm since it will carry less load and has less tension compared to the
previous one, as shown in the figure.
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Figure 3.10: Link3 side view

At the same time, we also have a compartment for the stepper using a nema17 on the top
of it but this time only 3 holes for the joint connection with the link2 since we just said it will
have less tension on it, giving us a 400g weight.

Figure 3.11: Link3 face view

The main idea behind the 3 or 6 holes is to distribute the load and tension in different
points to prevent torsions in the system. So for the 3 first joints since they are the ones resisting
much load we used 6 holes and for the oher 3 we only needed 3. The connection system will be
easier to understand when we explain the gearbox conception.
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3.2.2.5 Link4 :

For the link4, it is like a cylindre of 70mm diameter with a 147,72mm height. From the
side we have the robot name BRAS-DEL, the bottom we have the 3 holes we use for connection
with link3 forming the joint 4, and from the upper side we have the nema 17 compartment,
giving us a 212g weight link.

Figure 3.12: Link4 side view
Figure 3.13: Link4 upper
view

3.2.2.6 Link5 :

Same as before, we have a cylinder of 70mm diameter and 148mm height. It has the arm
name from the side, the 3 holes for connection with link5 forming joint5 and the stepper motor
nema 17 space from up with a total of 190g weight as can be shown in the following figures.

Figure 3.14: Link5 side view Figure 3.15: Link5 upper
view

3.2.2.7 Link6 :

Which is the final link, we call it the effector holder since it will be holding from its upper
side the hand or end effector of the robotic arm. Same as before, it is a cylinder of 70mm
diameter and 50mm height. As the 2 figures show, it has from its upper side the servo motor
compartment for end effector command and from the bottom side the 3 holes for connection
with link5.
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Figure 3.16: Link6 upper
view

Figure 3.17: Link6 bottom
view

This gives us a 61g weight for link6.

3.2.2.8 End effector :

For the end effector, we choose a prismatic movement gripper with 70mm fingers height
for object picking. This will be connected with the link6 or the effector hold, giving us a effector
of 50g weight.

Figure 3.18: End effector design

3.2.3 Actuators

For the actuators choice, as we previously mentioned we are going to use stepper motors
from two different families, nema 23 and nema 17 and for the end effector we choose a simple
servo motor.

In our choice, we took into consideration 2 main points, firstly we chose the stepper motor
since it is an open loop actuator, this will help us reduce the number of sensors that should
be used because we don’t need feedback information in the command process. Secondly, we
chose for each family of nema the model that has the highest torque output inorder to simplify
the work after when we need to increase the torque, having the simplest system possible. For
the gripper, we chose the servo motor since it has an integrated feedback sensor, and we don’t
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really need a high torque value for just grasping the desired object.

3.2.3.1 Nema 17 42HS48 :

The following figure shows the mechanical design and dimensions of the stepper motor.

Figure 3.19: Nema 17 motor conception

And we have the following table, that shows the electrical characteristics of the motor :

Model Step angle (°)
Nominal tension

(V)
Nominal current

(A)
Holding torque

(Kg.cm)
Motor torque
(g.cm max)

Motor weight
(kg)

42HS48 1.8 4.2 1.5 5.5 280 0.36

Table 3.1: Nema 17 stepper motor characteristics

So for 4 joints, we chose to work with the nema 17 stepper motor with 0.5N.m torque.

3.2.3.2 Nema 23 57HS112 :

The following figure shows the mechanical design and dimensions of the stepper motor.

Figure 3.20: Nema 23 motor conception
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And we have the following table, that shows the electrical characteristics of the motor :

Model Step angle
(°)

Nominal tension
(V)

Nominal current
(A)

Holding torque
(Kg.cm)

Motor torque
(g.cm max)

Motor weight
(kg)

57hs112 1.8 2.45 3.5 28 1200 1.7

Table 3.2: Nema 23 stepper motor characteristics

For the first 2 joints, we work with the nema23 since they are the ones that will have to
support more load so more torque is required, so they have a stepper motor of 2.7N.m torque.

3.2.3.3 Servo motor MG-90 :

We choose a simple servo motor reference MG-90 for the end effector command. The
following image shows its conception :

Figure 3.21: MG-90 servo motor

And this table, explain its important specifications :

Modèle Weight Max angle Stall torque (Kg/cm) Operating speed (sec/60°) Temperature (C°)
MG-90 15g 180° 2.0 28 55

Table 3.3: Caractéristiques du moteur MG-90

3.2.4 Gearboxes

After explaining the conception of the joints and the motors choice, we should explain
the chosen system for torque increasing. In our case we chose the planetary gearbox since it’s
easier to design and to realize in reality.

As it was explained in the general definitions chapter, it is composed of the 4 important
elements :
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3.2.4.1 The sun gear :

Which is the input of the movement so it is related to the axis of the motor. It is defined
by its number of teeth, and the following figure shows a sun gear example of one of the gearboxes
we designed.

Figure 3.22: Sun gear design

3.2.4.2 The ring gear :

For our system, we chose it to be the one fixed so the output will be taken from the
planetaries movement. The same as the sun gear, it is defined by its number of teeth and this
figure shows as an example of a ring gear we designed.

Figure 3.23: Ring gear design

3.2.4.3 The planetary gear :

For our system, we chose them to be the output of the movement. Using 3 similar
planetaries to transfer the movement of the input sun gear and increase its torque. This figure
shows an example of a planetary gear.
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Figure 3.24: Planetary gear design

3.2.4.4 The carrier :

Which is going to set the axis of rotation for the planetaries so they turn around them-
selves, and at the same time they transfer their movement to the carrier which is going to be
the output of the movement.

Figure 3.25: Carrier design

As we previously discussed about the holes, the output of the gearbox is going to be the
carrier, and it is going to be related to the next link to the joint. So from it we might have
3 or 6 holes made for 6 axes that are going to be connected to the next link to transfer the
movement from the gearbox to the next link.

By assembling all these together, we can make a 1 stage planetary gearbox as shown in
the figure.
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Figure 3.26: 1 stage planetary gearbox

In order to get better torque increase, we can work on a 2 stages gearbox, and that simply
by connecting the stages so they get to be cascading. Making this will multiply the torque by
itself, so by cascading a stage of 5:1 ratio with itself that will give us an output ratio of 25:1.
The following figure shows and example of a 2 stages gearbox.

Figure 3.27: 2 stages planetary gearbox

Now in-order to make sure that the movement will be transferred to the next link so we
create our joint, and to ensure that the structure of our gearbox remains fixed and no part
of it slips out of it. We are going to introduce the second carrier of the system that will be
connected to the 2nd stage of the gearbox, and the cover which is going to cover the gearbox
and make sure that it staies compressed so nothing move out of it.

3.2.4.5 The second carrier :

The second carrier has the same form as the first one, he will have the 6 or 3 holes for
connection with the next link, and in addition it will have a special part which is going to be
used for joint position initialization with the limit switch.

This following figure shows the second carrier format, and we can see that it has a part
getting out of it which is the one used in contact with the limit switch to know that we reached
the initialization position.
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Figure 3.28: Second carrier

3.2.4.6 The cover :

Which is in a spherical shape, has big hole in the middle to permit the axis getting out
of the holes of the second carrier to be fixed with the next link, it has 2 holes on the extremity
which will be used to fix the gearbox with the link and the stepper and 2 little holes in which
we are going to fix the limit switch in it’s initialization position. The following image shows
the design of the cover.

Figure 3.29: Gearbox cover

Based on what was just explained, the final structure of our gearbox of 2 stages and
positioned limit switch will look like as shown in the figure.

Figure 3.30: Full gearbox design
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3.2.5 General assembly

After explaining each link, the actuators choice and the chosen system for torque in-
creasing, we will go to the joint connections and general assembly of the robot. As previously
explained, the link is formed by the connection of 2 links or rigid bodies Cn−1 and Cn, in which
the Cn−1 will be called the parent link and the Cn called the child link. In the connection of
this 2, we are going to use the gearbox to increase the motor torque fixed in the parent link,
and the axis getting out of the second carrier will do the job of transmitting the movement to
the child link.

To simplify the arm composition, we will have the following table to resume the links and
their wights free from the motor then with added motors.

Link Weight (g) Motor used Link final weight (g)
Base link 300 Nema 23 2000

Link 1 700 Nema 23 2400
Link 2 570 Nema 17 930
Link 3 400 Nema 17 760
Link 4 212 Nema 17 572
Link 5 190 Nema 17 550
Link 6 61 MG-90 76

End effector 50 – –
Table 3.4: Robot links weight

Then we have the following table that will resume the joints, the parent and child link
for each one, the motor used, and the gearbox ratio used for each one.

Joint number Parent link Child link Motor used Motor torque (N.m) Gearbox ratio Final torque (N.m)
Joint 0 Base link Link1 Nema 23 2.7 49:1 132.3
Joint 1 Link1 Link2 Nema 23 2.7 25:1 67.5
Joint 2 Link2 Link3 Nema 17 0.5 36:1 18
Joint 3 Link3 Link4 Nema 17 0.5 25:1 12.5
Joint 4 Link4 Link5 Nema 17 0.5 14:1 7
Joint 5 Link5 Link6 Nema 17 0.5 5:1 2.5

Table 3.5: Robot Joints Structure

Based on what’s motioned in the table and previously explained, we have got a full 6
DOF robotic arm, of a 1m height and 7338g load with a max payload of 3Kg within a security
margin. And we have the following figure that shows the final assembly of the robot.
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Figure 3.31: Final robot assembly

3.2.6 BRAS-DEL URDF file

3.2.6.1 The unified robotics description format :

The unified robotics description format (URDF) is an extensible markup language (XML)
file type that includes the physical description of a robot. It is essentially a 3D model with
information around joints, motors, mass, etc. The files are then run through the Robot Oper-
ating System (ROS). The data from the file informs the human operator what the robot looks
like and is capable of before they begin operating the robot[38].

3.2.6.2 URDF generation :

Working with SolidWorks, it allows the generation of a basic URDF file using the “SW2URDF”
tool. This tool enables the definition of each robot link in hierarchical order (parent-child), spec-
ifying the joint types, rotation axes, origins, and the working environment.
Using this SOLIDWORKS extension, we can generate our robot URDF file by specifying the
axes of rotations, the relations parent child between links to create the joints and the limits of
the movement for each joint.

3.2.6.2.1 Parent child relation and axis of rotations : First step in URDF generation
using the SolidWorks extension is to setup the parent child relation in order to create the joints.
For this case we should remember that the parent represent the link Cn−1 and the child link is
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the next one Cn creating the joint Jn.
At the same step, we are going to setup the axis of rotation and the frames (noted

coordinate systems in SolidWorks) for each joint.
The following figure represents the first step using the urdf exporter.

Figure 3.32: Step1 of Urdf exportation

After that, we will have to set the movement constrains for each joint, so each joint has
its lower and higher limit of rotation alongside a maximum velocity possible. And that can be
shown in the following image.

Figure 3.33: Step2 of Urdf exportation

Then we have the last step in which u check for any mistakes. We should make sure that
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for each link a mass is attributed otherwise we didn’t set it correctly before saving the required
files as shown in the next image.

Figure 3.34: Step3 of Urdf exportation

At the end of it, we can use some of Vscode extensions in order to check if our URDF is
generated correctly. The following figure shows at the left side of it the generated folder from
the Urdf exporter which contains the meshes folder and the urdf file, in the middle we have the
URDF file of the robot and at the right part we have a visualization of the urdf using the urdf
viewer extension.

Figure 3.35: Urdf visualization in Vscode

Page 71



Mechanical Conception and Realization

3.3 Robot modeling

After designing our robotic model, and before being able to use it in reality, we should pass
the modeling of our robot using the technics we previously explained in the general definitions
section.

For our case of use, we only need the Forward geometrical modeling , we don’t need to
go through the kinematic or the inverse geometric one since our command methods which will
be explained later does not require it and the dynamic modeling was previously made in the
part where we discussed the torques and gearbox ratios for each joints.

3.3.1 Forward Geometric modeling

For the forward geometric modeling, we will be using the DH parameters that was ex-
plained previously and for that we should start by setting up the frames.
The following figure shows the joint frames we chose with respect to the DH convention.

Figure 3.36: Robot joint frames

From these frames and by following the DH parameters extraction steps, we got the
following table that resumes the DH parameters for BRAS-DEL robot.
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Joint (i) θi (rad) di (mm) ai (mm) αi (rad)
0 θ0 104 0 −π/2
1 θ1 11 206 π/2
2 θ2 9 172 π/2
3 θ3 72 0 −π/2
4 θ4 65 0 −π/2
5 θ5 48 0 0

Table 3.6: Extracted DH parameters

Now that we obtained DH values, we should calculates the transformation matrix for each
joint then the global one for the robot.

T 0
1 =


cos θ0 0 sin θ0 0
sin θ0 0 − cos θ0 0

0 1 0 107
0 0 0 1



T 1
2 =


cos θ1 0 − sin θ1 241 cos θ1

sin θ1 0 cos θ1 241 sin θ1

0 −1 0 0
0 0 0 1



T 2
3 =


cos θ2 0 − sin θ2 223 cos θ2

sin θ2 0 cos θ2 223 sin θ2

0 −1 0 0
0 0 0 1



T 3
4 =


cos θ3 0 − sin θ3 0
sin θ3 0 cos θ3 0

0 −1 0 96
0 0 0 1



T 4
5 =


cos θ4 0 sin θ4 0
sin θ4 0 − cos θ4 0

0 1 0 66
0 0 0 1


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T 5
6 =


cos θ5 0 − sin θ5 0
sin θ5 0 cos θ5 0

0 1 0 67
0 0 0 1


After calculating the transformation matrix for each joint, we can calculate the overall

trasnformation matrix T 0
6 where :

T 0
6 = T 0

1 · T 1
2 · T 2

3 · T 3
4 · T 4

5 · T 5
6

This will give us the full matrix :

T 0
6 =


A11 A21 A31 A14

A12 A22 A32 A24

A13 A23 A33 A34

0 0 0 1


With :

A11 = (− sin θ0 sin θ4 + cos θ0 cos θ4 cos(θ1 − θ2 + θ3)) cos θ5 − cos θ0 sin(θ1 − θ2 + θ3) sin θ5

A12 = (sin θ0 sin θ4 − cos θ0 cos θ4 cos(θ1 − θ2 + θ3)) sin θ5 − cos θ0 sin(θ1 − θ2 + θ3) cos θ5

A13 = sin θ0 cos θ4 + cos θ0 sin θ4 cos(θ1 − θ2 + θ3)

A14 = 67 sin θ0 cos θ4 + 96 sin θ0 + 67 sin θ4 cos θ0 cos(θ1 − θ2 + θ3)
− 66 sin(θ1 − θ2 + θ3) cos θ0 + 241 cos θ0 cos θ1 + 223 cos θ0 cos(θ1 − θ2)

A21 = (sin θ0 cos θ4 cos(θ1 − θ2 + θ3) + cos θ0 sin θ4) cos θ5 − sin θ0 sin(θ1 − θ2 + θ3) sin θ5

A22 = − (sin θ0 cos θ4 cos(θ1 − θ2 + θ3) + cos θ0 sin θ4) sin θ5 − sin θ0 sin(θ1 − θ2 + θ3) cos θ5

A23 = sin θ0 sin θ4 cos(θ1 − θ2 + θ3) − cos θ0 cos θ4

A24 = 67 sin θ0 sin θ4 cos(θ1 − θ2 + θ3) − 66 sin θ0 sin(θ1 − θ2 + θ3)
+ 241 sin θ0 cos θ1 + 223 sin θ0 cos(θ1 − θ2)
− 67 cos θ0 cos θ4 − 96 cos θ0

A31 = sin θ5 cos(θ1 − θ2 + θ3) + sin(θ1 − θ2 + θ3) cos θ4 cos θ5
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A32 = − sin(θ1 − θ2 + θ3) cos θ4 sin θ5 + cos(θ1 − θ2 + θ3) cos θ5

A33 = sin θ4 sin(θ1 − θ2 + θ3)

A34 = 241 sin θ1 + 67 sin θ4 sin(θ1 − θ2 + θ3) + 223 sin(θ1 − θ2) + 66 cos(θ1 − θ2 + θ3) + 107
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3.4 Robot Realization

3.4.1 3D printing

3D printing, also known as additive manufacturing, is a process of creating three-dimensional
objects by building them layer by layer from a digital 3D model. Unlike traditional manu-
facturing, 3D printing adds material only where needed, making it efficient for prototyping,
customization, and even final product production.

3.4.1.1 Materials :

During the printing process, we needed 2 types of filament where each one is going to be
used for special pieces of the robot due to the difference in characteristics of each one of them.

3.4.1.1.1 PLA : Polylactic Acid or PLA, and it is one of the most popular and widely
used 3D printing materials. It is commonly used for simple structures with no risk of high
temperatures is possible. Using this PLA, we are going to print only the parts that are not in
direct contact with the released heat from the stepper motors during the work so basically only
the links.

3.4.1.1.2 ABS : Acrylonitrile Butadiene Styrene or ABS , durable, strong, and impact-
resistant thermoplastic commonly used in 3D printing, especially for functional parts. Its main
characteristic that it resists the high temperatures during the work, so for that we are going to
use it for gearbox parts printing only.

The following table shows the difference in setup between the 2 types we are going to use :

Filament type Nozzle temperature Bed temperature Heat resistance
PLA 200◦C 60◦C High
ABS 250◦C 90◦C LOW

Table 3.7: Filament parameters

3.4.2 Required tools

During the assembly, we needed many mechanical tools that can be resumed in the fol-
lowing table :
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Tool Quantity
Screw M4 37
Screw M5 6
Screw M6 21
Nut M4 37
Nut M5 6
Nut M6 54

Threaded rod M6 2 meters

Table 3.8: Mechanical tools required

3.4.3 Real life Assembly

After putting together all the previously explained work from printing the different links
and gearboxes of the robot to assembling everything, we could get the final assembly of the
robot in real life shown in the following figures.

Figure 3.37: Final robot assembly

Page 77



Mechanical Conception and Realization

3.5 Conclusion

By the end of the chapter, all the essential parts of the mechanical work we done were
explained to facilitate readers to understand the work we have done and the reason behind
every step we took.

In addition to that, this was a crucial part for our work since it is intended for industry
and the main goal of this work is to present the idea as a startup idea. So it was a very hard
part we suffered a lot during the conception since the design was made by us, and even during
the printing we had to face severe problems such as the luck of material and 3D printers, so
we had to learn how to fix the available ones in FABLAB and the electronic department before
being able to start the real life assembly and which took from us too much time.

But even though all the problems we faced, we were able to deliver at the end a prototype
for our project in order to simulate and test the movements and be able to present it to the
jury the D-day.
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4.1 Introduction

After introducing our mechanical design and conception of our robotic arm, we will jump
now to the main part which includes the electrical circuit and design to make the previously
explained work true in reality.

In addition to that we are going to explain the 2 main approaches we worked on for the
robot command, we did rely on the most used based commands in robotics and industry as
explained in the definition part, but this time we are going to get through more details where
we’re going to explain each step of the work, the perfect setup steps required for the perfect
results.

4.2 Hardware and circuit design

4.2.1 Microcontroller

In our robotic arm, we used an STM32 Nucleo-64 F446 RE development board as the
main controller. The board served as an interface between the ROS or RoboDK system and the
physical hardware. It was responsible for receiving high-level motion commands and generating
low-level control signals to drive six stepper motors. Additionally, it monitored six input limit
switches to ensure accurate homing of the joints. The STM32’s powerful microcontroller,
flexible I/O options, and built-in debugging capabilities made it an ideal choice for real-time
robotic control applications.

Figure 4.1: STM32 Nucleo 64 F446RE[39].
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Feature Specification
Core ARM Cortex-M4 @ 180 MHz with FPU and DSP
Performance 225 DMIPS (Dhrystone 2.1)
Flash Memory 512 KB
SRAM 128 KB + 4 KB Backup SRAM
GPIOs Up to 114 I/O pins (5V tolerant, 90 MHz capable)
Timers 17 total (incl. 2 watchdogs, 2×32-bit, PWM support)
Communication Interfaces 4×USART, 2×UART, 4×SPI, 4×I2C, 2×CAN, USB FS/HS
Debug Interfaces SWD, JTAG, ETM Trace Macrocell
Package LQFP64 or LQFP48
Operating Voltage 1.7V to 3.6V
External Interface Support FSMC for SRAM/NOR/SDRAM, QuadSPI

Table 4.1: STM32 nucleo-64 F446 RE features
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4.2.2 Motors and Drivers

Our robotic arm is actuated using a total of six stepper motors: four Nema 17 (42HS48)
motors(used for joints 2,3,4 & 5) shown in figure 3.19, and two higher-torque Nema 23
(57HS112) motors (used for joint 0 & 1) also shown in figure 3.20, which require greater
torque.

Each motor is driven using a TB6600 stepper motor driver, which supports external
control using STEP and DIR signals from the STM32 microcontroller. The STEP pin re-
ceives a series of digital pulses that determine the number of steps the motor takes, while the
DIR pin determines the direction of rotation (high for one direction, low for the opposite).
The following connections are made for each TB6600:

- DIR+ is connected to a GPIO pin on the STM32 (for setting the motor direction).

- PUL+ (STEP+) is connected to another GPIO pin (for sending step pulses).

- DIR-, PUL-, and ENA- are all connected to GND.

Figure 4.2: Drive TB6600[40].

Figure 4.3: Stepper, drive and microcontroller wiring[41].
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To achieve high positioning accuracy and smooth motion, the TB6600 drivers are config-
ured for 3200 microsteps per revolution by adjusting the DIP switches on the driver. This
allows for finer angular resolution in our movement.
Furthermore, the current limit settings on the TB6600 are configured to the maximum al-
lowable current supported by each motor model. This ensures the stepper motors operate
with maximum available torque and performance.

4.2.3 Limit Switches

To home and init each joint of our robotic arm, we used six KW10 micro limit switches.
Each switch was configured for Normally Open (NO) logic, meaning the circuit is open (inactive)
when not pressed and closed (active) when pressed.

The wiring for each switch is as follows:

- Common (C) pin is connected to VCC (3.3V or 5V).

- Normally Open (NO) pin is connected to a GPIO input pin on the STM32.

- A pull-down resistor is connected between the GPIO pin and GND to ensure a defined
LOW state when the switch is open.

Logic in code : When the limit switch is pressed, the NO contact closes and the GPIO input
pin receives HIGH (VCC). so :

- HIGH signal = switch is activated (pressed)

- LOW signal = switch is inactive (not pressed)

4.2.4 Power supplies

To power our whole robotic arm we used 3 power supplies and based on tables 3.1 and
3.2 by respecting the maximal current of each stepper motor we powered the system like this :

AC Input DC Output Number of Outputs Powers
220V AC 24V / 20A 3 Outputs Joint 3 (NEMA 17), Joint 4 (NEMA 17), Joint 5 (NEMA 17)
220V AC 24V / 20A 3 Outputs Joint 2 (NEMA 17), VCC (for limit switches), Common GND(for steppers and limit switches)
220V AC 36V / 10A 3 Outputs Joint 0 (NEMA 23), Joint 1 (NEMA 23)

Table 4.2: Summary of power supplies and their assignments
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Figure 4.4: The first power
supply

Figure 4.5: The second power
supply

Figure 4.6: The third power
supply

Figure 4.7: Power supply inputs-
outputs

Page 84



ROS Robodk and electronics

4.2.5 Circuit Design

4.2.5.1 Final Circuit Design Summary

The complete wiring design integrating six stepper motors and six limit switches, con-
trolled and monitored by the STM32 microcontroller. Below is an overview of the major
components and their interconnections:

1. Stepper Motors (6 Total):

- Each motor is controlled via a TB6600 driver.
- Two control signals per driver are used: STEP+ and DIR+, connected to STM32 GPIO

pins.
- The STEP-, DIR-, and ENA- pins of each driver are connected to common GND.

2. Limit Switches (6 Total):

- Each switch is wired in Normally Open (NO) configuration.
- The Common (COM) terminal of each switch is connected to a shared VCC line.
- The NO terminal is connected to a dedicated STM32 GPIO input pin.
- A pull-down resistor is used between each GPIO pin and GND to stabilize the logic

level.

3. Power and Logic Reference:

- A shared VCC line is used to supply the limit switch COM terminals and optionally
ENA+ if required.

- A shared GND is used for all ENA-, DIR-, STEP- terminals and for GPIO ground
reference.

Figure 4.8: STM32 pinout[42].
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And now based on the STM32 F446 RE shown in figure 4.8, here’s a table that illustrates
the whole wiring and pins assignments.

Joint (Motor) DIR_PIN STEP_PIN LIMIT_PIN
G5 (Joint 5) PC12 PC10 PC8
G4 (Joint 4) PA14 PA13 PC6
G3 (Joint 3) PB7 PA15 PA11
G2 (Joint 2) PC3 PC2 PB15
G1 (Joint 1) PB0 PA4 PB13
G0 (Joint 0) PA1 PA0 PC4

Table 4.3: STM32 GPIO Pin Assignments for Stepper Control and Limit Switches

4.2.5.2 Real life electrical Assembly

For the real-world assembly of our robotic arm control system, we carefully organized the
hardware components in a compact and efficient setup that include :

- 3 power supplies.

- 6 TB6600 stepper drivers.

- VCC & common GND power board.

- STM32 control board.
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Figure 4.9: Power supplies Figure 4.10: Driver TB6600 setup

Figure 4.11: VCC & common GND
board

Figure 4.12: STM32 control board

All connections were made with proper cable management, ensuring safe, stable operation of
the motors and switches. The full assembled hardware are shown below :
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Figure 4.13: The final electrical assembly
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4.3 ROS-based motion planning with moveIt

4.3.1 ROS-based motion planning approach

In order to command our robotic arm, the first approach that we worked on is the ROS-
based planning using moveIt pkg which is a really robust method for robotic arms, the main
idea of this approach is :

1. Motion Planning (ROS MoveIt): The user provides a goal pose in the MoveIt RViz.
MoveIt computes a trajectory and publishes the joint angles over the /joint_states topic.

2. Trajectory buffering (Joint_cmd.py Node): A custom Python node Joint_cmd.py
listens to /joint_states, extracting the trajectory. This node:

- Buffers all trajectory waypoints.
- Samples the trajectory down to 10 intermediate waypoints for execution efficiency.
- For each sampled waypoint [joint1, joint2, ..., joint6], it publishes six float topics:

/joint1, /joint2, ..., /joint6, each corresponding to a motor joint angle.

3. Low-Level Execution (STM32 via rosserial): The STM32 board, interfaced via
rosserial, listens to the /jointX topics. Upon receiving a full set of joint angles, it:

- Commands each motor driver with the respective angle.
- Executes the movement to the specified positions.
- Publishes a /done flag (bool) set to true once the current waypoint is fully executed.

4. Synchronized Execution: The Joint_cmd.py node waits for /done == true before
sending the next waypoint, ensuring smooth, sequential motion execution.

Figure 4.14: ROS moveIt approach
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4.3.1.1 Reality vs Simulation testing

Now we move on to the best part of the whole process, which consists on testing the ROS
path planning and execution simulation in the real robot. Our test consists on sending the
robot from a init pose (starting pose) into the second and third pose passing by mid points and
try to match those poses with real life robot.

4.3.1.1.1 First target pose We sent our robot to the first target pose , and we see that
the real life robot is clearly following the simulation based on it poses (starting, mid and final
poses) as well as the trajectory.

Figure 4.15: The initial pose
on simulation

Figure 4.16: The initial pose in reality

Figure 4.17: The first target
pose mid trajectory on sim-
ulation

Figure 4.18: The first target pose mid tra-
jectory in reality

Figure 4.19: The first target
pose end trajectory on simu-
lation

Figure 4.20: The first target pose end tra-
jectory in reality
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4.3.1.1.2 The second target pose With the same logic and from the last checkpoint(the
final pose of the first target) we send our robot to a second target.

Figure 4.21: The initial pose
on simulation

Figure 4.22: The initial pose in reality

Figure 4.23: The second tar-
get pose mid trajectory on
simulation

Figure 4.24: The second target pose mid
trajectory in reality

Figure 4.25: The second tar-
get pose end trajectory on
simulation

Figure 4.26: The second target pose end
trajectory in reality

So at the end of both tests where we sent the robot from an initial pose on sim and reality to 2
consecutive target poses and we saw that the robot in reality matches the robot in simulation
in final poses and even in the followed trajectory
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4.4 Conclusion

As a conclusion for this chapter, we were able to integrate the actuators, sensors and
control board (The STM32) and realize the designed circuit in reality as shown by the pervious
figure 4.13, in addition to that we did the setup of our robotic arm using ROS and used it for
some movement simulations on the robot that gave great results.

Based on what was presented so far, we’re going to use it for next based autonomy
approaches specially the arUco pose estimation based approach.
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Robotic arm autonomy using machine learning

5.1 Introduction

Getting now the most interesting part, which is the machine learning based autonomy
approaches we worked on alongside the test and results we got for that.

As a first autonomy approach, we started with the supervised learning technique, in which
we tried to estimate the next joint angles for our robot joints based on the current frame image
and joint angles, working on that we’re trying to perform a pick and place task and specially
the goal reaching aspect. For this purpose, we got reference to some free available datasets
online and applied our approach on it in order to clone the behavior of the reference robotic
arms performing the same task efficiently.And to get the results on our case of use robotic arm
BRAS-DEL, we performed a motion transfer from the robot dataset we worked on which the
sawyer robot to our BRAS-DEL robot.

In addition to that, we worked on the reinforcement learning approach in which we tried
to teach our own robot on how to perform the task without the need of dataset of any external
robot. The main idea was to create our own IK solver without the need of using the available
ones on MoveIt or Robodk as previously explained.

As a final approach, since we want to work on the industrial aspect at the same time. We
proposed to work using the arUco tags since its the less consuming approach and the one with
higher rate of success specially for the industrial environment.
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5.2 Supervised learning

5.2.1 Introduction

Supervised learning is a type of machine learning where a model learns to map inputs
to outputs using a labeled dataset. In the context of robotics, supervised learning is often
used to train a robot to perform tasks by learning from recorded demonstrations. Each data
sample in the dataset consists of an input (such as an image from the robot’s camera) and a
corresponding output (such as a control command or action executed by the robot). The idea
here is to train our robotic arm based on the demonstrations of other well known robotic arms
performing similar tasks that we want to perform (Pick & place tasks), and then transforming
the results to ours.

5.2.2 Training process

The main idea is to learn a direct mapping from visual observations to joint-space control
commands using demonstrations collected from other robotic arms performing similar tasks.
We begin by selecting a dataset containing video demonstrations of robotic arms successfully
completing manipulation tasks. Each video represents a temporal sequence where the robot
transitions from an initial configuration to a final state that completes the task. Given that
the robot in the dataset at the end of the video performs the task successfully, our objective
is to replicate that behavior in our own robotic system. To train the model, each video is
decomposed into a sequence of image frames. For every image frame at time step i, we pair it
with the corresponding 7-dimensional vector of joint angles, denoted as Qposi. The supervised
learning task is then defined as predicting the next joint configuration, Qposi+1, based on the
current visual observation Imgi . So we have as input :

Input = Qposi + Imgi (5.1)
Output = Qposi+1 (5.2)
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5.2.3 Dataset

5.2.3.1 Dataset Description

The dataset used for training in our case is RoboNet, a large-scale robotic dataset collected
and maintained by researchers at the University of California, Berkeley and Pennsylvania.
RoboNet is publicly available and can be accessed through the RoboNet project website.

5.2.3.2 Dataset Overview

RoboNet contains over 15 million frames of robotic interaction data collected across mul-
tiple robot arms (e.g., Sawyer, WidowX, UR5e, etc.) using a variety of camera perspectives
and physical configurations.

Figure 5.1: Qualitative examples of
the various attributes in the RoboNet
dataset[28].

Figure 5.2: Quantitative overview of the various at-
tributes in the RoboNet dataset, including the 6 different
robot arms and 6 different grippers[28].
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5.2.3.3 Data structure

The dataset contains multiple robots and for each robot’s experiment is saved as
robotitrajectory.hdf5. Each datapoint.hdf5 typically consists of:

- RGB images observations from different camera angles.

- Robot states (e.g., joints efforts, velocities, positions and angles, eef position)

- Time series data for each trajectory and other metadata.

Figure 5.3: HDF5 file robot trajectory structure

5.2.4 Data Prepossessing

Before starting the training phase, we need to perform a crucial step which is the "Data
Preprocessing"

Parsing and frames extraction :
Each trajectory is stored as an HDF5 file containing multiple modalities such as RGB

frames, robot joint positions (qpos), actions, and metadata.

Resizing & Grayscaling :
All RGB frames were resized to a uniform dimension of 64×64×1 pixels to reduce com-

putational complexity, decrease memory usage and ensure consistent input size for the neural
network.

Normalization :
Each grayscale pixel value was normalized to the range [0, 1] by dividing by 255. This

normalization ensures faster convergence during training.
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Input/Output Pairing :
We created an input consisting of:

- The grayscale 64*64 image frame imgi.

- The corresponding joints angles vector Qposi (7-dimensional).

And the output as:

- The next joints angles vector Qposi+1.

Data Export :
All processed input-output pairs were saved in a CSV file format, which is more faster

and efficient during training.

Figure 5.4: Preprocessing architecture

5.2.5 Deep Learning model

The proposed network architecture is composed of two main parts. First, a CNN is used
for feature extraction, consisting of five convolutional layers, each followed by max pooling.
This deep convolutional structure increases the network’s capacity to learn multiple signifi-
cant feature maps from the input images. Second, the output feature map from the CNN is
concatenated with the current joint position vector Qposi, forming the input to a deep fully
connected network. This DNN is designed for predicting the next joint angles Qposi+1. To
improve prediction accuracy and reduce overfitting, the number of layers in both the CNN and
DNN parts was empirically adjusted to achieve the best performance.

Supervised learning Page 98



Robotic arm autonomy using machine learning

So this is our Deep learning model architecture that we used in this training phase :

Layer Type Kernel Size / Units
Reshape (64, 64, 1)
Conv2D (3,3) - 32 filters

MaxPool2D (2,2)
Conv2D (3,3) - 64 filters

MaxPool2D (2,2)
Conv2D (3,3) - 128 filters

MaxPool2D (2,2)
Conv2D (3,3) - 256 filters

MaxPool2D (2,2)
Conv2D (3,3) - 512 filters

Table 5.1: CNN architecture

Layer Type Kernel Size / Units
MaxPool2D (2,2)
Concatenate CNN + qpos_input

Dense 1028 units
Dense 512 units
Dense 256 units
Dense 128 units
Dense 64 units

Output 7 classes

Table 5.2: Fully Connected Layers

Figure 5.5 shows the Python code used to construct the CNN part of the model, including the
convolutional and pooling layers for feature extraction.

Figure 5.5: Convolutional layers code

Figure 5.6 presents the implementation of the fully connected layers (DNN), which takes the
CNN output concatenated with Qposi and predicts the next joint angles Qposi+1

Figure 5.6: Fully connected layers code
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5.2.6 Training phase

5.2.6.1 Train hyper-parameters

In this section, we present the final hyperparameters selected after multiple tuning during
the training phase of the neural network model used for our case of studies. Each hyperparam-
eter plays an important role in the training dynamics and the model’s generalization capability.
The learning rate determines how quickly the model adapts to the data, while the number of
epochs defines the total training iterations. The batch size influences both memory efficiency
and gradient stability during updates. Strategies such as dropout penalty was applied during
training to randomly deactivate 30% of neurons in specific layers, helping to prevent overfit-
ting. A rate of 0.3 provides a good trade-off between learning and regularization. The choice of
optimizer and loss function directly affects convergence behavior and training robustness and
they we choosed based on the literature; in this case, the Adam optimizer and Mean Squared
Error (MSE) loss function are well-suited for continuous value prediction. The fully connected
layers, organized in a gradually decreasing architecture, enable progressive feature abstraction,
transitioning from high-dimensional feature maps to the final joint angle outputs. The complete
set of hyperparameters is summarized in Table 5.3 after multiple tuning.

Hyper-parameters Value
Learning Rate 0.001

Epochs 80
Batch Size 512

Dropout Rate 30.0
L2 Regularization 0.0

Optimizer Adam
Loss Function Mean Squared Error

Activation Function (Conv/Dense) ReLU
Fully Connected Layers 1028, 512, 256, 128, 64

Table 5.3: Hyper-parameters Settings for the Deep Learning Model

Additionally, the dataset was split into 80% for training, 15% for validation, and 5%
for testing. This split allowed for efficient model evaluation and hyperparameter tuning while
ensuring a reliable test set for final performance assessment.
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5.2.6.2 Train results

5.2.6.2.1 Metric : Mean absolute error(MAE) :
In the context of a regression model training problem for predicting joint angles, the Mean

Absolute Error (MAE) is a common evaluation metric. When the target variable is joint angles
(typically in radians or degrees), the MAE measures the average absolute difference between
the predicted and true joint angles.

MAEtotal = 1
N · J

N∑
i=1

J∑
j=1

∣∣∣θ̂i,j − θi,j

∣∣∣ (5.3)

Where:N be the number of data samples and J the number of joints. The term θ̂i,j represents
the predicted angle (in radians or degrees) of joint j for sample i, while θi,j denotes the ground-
truth (true) angle of the same joint and sample. The notation | · | is used to indicate the
absolute value.

At the end of the training we got a test mean absolute error(MAE) :

Final Test MAE: 0.06 rad

- A final MAE of 0.06 radians ( 3.4 degrees) means the average prediction error per joint
is very low, which is quite good for robotic manipulation tasks.

- Validation MAE remains stable and closely follows the training MAE so no signs of
overfitting.

- The model learns quickly in the first 10 epochs.
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Figure 5.7: Train MAE Figure 5.8: Validation MAE

Figure 5.9: The combined MAEs

5.2.6.2.2 Loss : Mean squared error(MSE) :
The Mean Squared Error (MSE) serves as a common and effective loss function to evaluate

the model’s performance during training and testing.

MSEtotal = 1
N · J

N∑
i=1

J∑
j=1

(
θ̂i,j − θi,j

)2
(5.4)

Where:N be the number of data samples and J the number of joints. The predicted angle of
joint j for sample i is denoted by θ̂i,j, while θi,j represents the true (ground-truth) angle. The
notation (·)2 indicates the squared difference.

At the end of the training we got a test mean squared error(MSE):

Final Test Loss (MSE): 0.0045 rad2

- The training loss decreases rapidly and converges smoothly.

- Validation loss remains low and stable after early epochs, showing no signs of overfitting.

- A test loss (MSE) of 0.0045 indicates that the average squared error in predicting each
joint angle is very small.
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Figure 5.10: Train MSE Figure 5.11: Validation MSE

Figure 5.12: The combined MSEs
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5.2.7 Experiments and tests

To see the effectiveness and generalization capability of our model, we conduct experi-
ments on two different robotic platforms:

- The Sawyer robot, which is the source of the original dataset and serves as a benchmark
for evaluating the model under conditions similar to training.

- Our custom robot, which was not used in training but we will transfer the behaviour of
the sawyer robot which is the reference robot to our robot platform.

The evaluation focuses on comparing the ground-truth joint configurations and end-
effector (EEF) positions against those predicted by the model. This is done to evaluate both
joint-level accuracy and the resulting task-space performance.

5.2.7.1 Testing the result on Sawyer robot

The first set of experiments is conducted on the Sawyer robot—the same robot from the
dataset. We integrate the Sawyer robot into the ROS(Robot Operating System) environment
using its URDF description and generate a moveIt workspace for motion planning and control.

For each test case, we use a single image frame Imgi and then current joint config Qposi

from the dataset and feed it into the trained model to predict the next joint configuration
Qposi+1 We then perform two separate forward kinematics evaluations:

- One using the ground-truth Qposi+1 (from the dataset).

- One using the predicted Qposi+1 (from the model).

By comparing the resulting global poses and end-effector positions from both configura-
tions, we compare how accurately the model can replicate the behavior encoded in the dataset.
This evaluation provides insight into the model’s precision in reproducing learned trajectories.
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5.2.7.1.1 Test trajectory n° 1 first frame : The first test trajectory in the 40005th traj
that contains 31 frame and Qpos , we tested the predicted angles on the first frame (1st. And
this table showcase the ground-truth angles and the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.551 -0.163 -1.033 1.709 1.450 1.1017

Predicted (rad) 0.555 -0.185 -1.095 1.729 1.437 1.075
Error (rad) 0.004 0.022 0.062 0.020 0.013 0.0267
Error (deg) 0.229 1.261 3.553 1.146 0.745 1.53

Mean error (deg) 1.411

Table 5.4: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40005 frame 2

Figure 5.13: The ground-truth Qpos frame 2

Figure 5.14: The predicted Qpos frame 2

For the comparison, the predicted angles pose got a really close pose and behavior as the
real pose. And for the EEF position we got a difference of

- 0.609-0.5992=0.0098 m = 0.98 cm on the X axe.

- 0.0905-0.0823=0.0082 m = 0.82 cm on the Y axe.

- 0.1999-0.2322=-0.0323 m= 3.23 cm on the Z axe.
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5.2.7.1.2 Test trajectory n° 1 last frame :The second test that we will perform is on
40005th traj too, but we will test the results after 31 successive predictions (so we take the first
img (Img0) and the first Qpos (Qpos0) and keep predicting based on all the rest 30 frames to
see the cumulative error of the trajectory. And this table showcase the ground-truth angles and
the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.553 -0.060 -1.178 1.4125 1.417 1.193

Predicted (rad) 0.427 -0.037 -1.290 1.292 1.447 1.297
Error (rad) 0.126 0.023 0.112 0.1205 0.030 0.104
Error (deg) 7.22 1.32 6.42 6.90 1.72 5.96

Mean error (deg) 4.92

Table 5.5: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40005 frame 31

Figure 5.15: The ground-truth Qpos frame 31

Figure 5.16: The predicted Qpos frame 31

For the comparison, the predicted angles pose got a really close pose and behavior as the
real pose. And for the EEF position we got a difference of

- 0.681-0.7316= -0.0506 m = -5.06 cm on the X axe.

- 0.175-0.128= 0.047 m = 4.7 cm on the Y axe.

- 0.234-0.275= -0.041 m = 4.1 cm on the Z axe.
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5.2.7.1.3 Test trajectory n° 2 first frame : The third test trajectory in the 40007th traj
that contains 31 frame and Qpos too , we tested the predicted angles on the first frame (1st.
And this table showcase the ground-truth angles and the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.440 -0.116 -1.079 1.820 1.565 1.056

Predicted (rad) 0.291 -0.177 -1.176 1.730 1.4436 1.152
Error (rad) 0.149 0.061 0.097 0.090 0.1214 0.096
Error (deg) 8.54 3.50 5.56 5.15 6.96 5.50

Mean error (deg) 5.87

Table 5.6: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40007 frame 2

Figure 5.17: The ground-truth Qpos frame 2

Figure 5.18: The predicted Qpos frame 2

For the comparison, the predicted angles pose got a really close pose and behavior as the
real pose. And for the EEF position we got a difference of

- 0.576-0.5948= -0.0188 m = -1.88 cm on the X axe.

- -0.015+0.08352= 0.06852 m = 6.852 cm on the Y axe.

- 0.206-0.267= -0.061 m = -6.1 cm on the Z axe.
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5.2.7.1.4 Test trajectory n° 2 last frame :The fourth test that we will perform is on
40007th traj too, but we will test the results after 31 successive predictions (so we take the first
img (Img0) and the first Qpos (Qpos0) and keep predicting based on all the rest 30 frames to
see the cumulative error of the trajectory. And this table showcase the ground-truth angles and
the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.394 -0.016 -1.259 1.397 1.485 1.259

Predicted (rad) 0.168 0.017 -1.364 1.183 1.499 1.3607
Error (rad) 0.226 0.033 0.105 0.214 0.014 0.1017
Error (deg) 12.95 1.89 6.02 12.27 0.80 5.83

Mean error (deg) 6.62

Table 5.7: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40007 frame 31

Figure 5.19: The ground-truth Qpos frame 31

Figure 5.20: The predicted Qpos frame 31

For the comparaison, the predicted angles pose got a really close pose and behaviour as
the real pose. And for the EEF position we got a differnce of

- 0.7104-0.7739= -0.0635 m = 6.35 cm on the X axe.

- 0.0650+0.0284= 0.0934 m = 9.34 cm on the Y axe.

- 0.338-0.286= 0.052 m = 5.2 cm on the Z axe.
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5.2.7.1.5 Test trajectory n° 3 first frame : The fifth test trajectory in the 40009th traj
that contains 31 frame and Qpos too , we tested the predicted angles on the first frame (1st

and on the last 31th. And this table showcase the ground-truth angles and the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.828 -0.238 -1.00 2.03 1.583 0.952

Predicted (rad) 0.871 -0.255 -1.03 1.97 1.516 0.970
Error (rad) 0.043 0.017 0.03 0.06 0.067 0.018
Error (deg) 2.46 0.97 1.72 3.44 3.84 1.03

Mean error (deg) 2.24

Table 5.8: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40009 frame 2

Figure 5.21: The ground-truth Qpos frame 2

Figure 5.22: The predicted Qpos frame 2

For the comparison, the predicted angles pose got a really close pose and behavior as the
real pose. And for the EEF position we got a difference of

- 0.484-0.492= -0.008 m = -0.8 cm on the X axe.

- 0.197-0.165= 0.032 m = 3.2 cm on the Y axe.

- 0.209-0.198= 0.011 m = 1.1 cm on the Z axe.
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5.2.7.1.6 Test trajectory n° 3 last frame : The sixth test that we will perform is on
40009th traj too, but we will test the results after 31 successive predictions (so we take the first
img (Img0) and the first Qpos (Qpos0) and keep predicting based on all the rest 30 frames to
see the cumulative error of the trajectory. And this table showcase the ground-truth angles and
the predicted ones.

The frame Qpos[0] Qpos[1] Qpos[2] Qpos[3] Qpos[4] Qpos[5]
Ground-truth (rad) 0.878 -0.325 -1.216 1.821 1.303 1.156

Predicted (rad) 0.787 -0.263 -1.080 1.845 1.422 1.030
Error (rad) 0.091 0.062 0.136 0.024 0.119 0.126
Error (deg) 5.22 3.55 7.79 1.38 6.82 7.22

Mean error (deg) 5.33

Table 5.9: Comparison of angular values (in radians and degrees) between Ground-truth and
Predicted for traj40009 frame 31

Figure 5.23: The ground-truth Qpos frame 31

Figure 5.24: The predicted Qpos frame 31

For the comparison, the predicted angles pose got a really close pose and behavior as the
real pose. And for the EEF position we got a difference of

- 0.506-0.535= -0.029 m = -2.9 cm on the X axe.

- 0.219-0.174= 0.045 m = 4.5 cm on the Y axe.

- 0.324-0.251= 0.073 m = 7.3 cm on the Z axe.
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5.2.7.1.7 Results : Joints angles Mean Absolute Error We compare the joints angles
MAE results that we got from the 3 test experiments of the first frames only with the state of
the art proposed method.
Starting with MAE results of the [31] proposed method :

Joint 1 Joint 2 Joint 3
Joint angle MAE(degree) 0.75 0.69 1.69

Mean MAE (degree) 1.04

Table 5.10: Joints angles MAE[31].

From table 5.4,5.6 & 5.8 , we have our robot joints angles MAE in degrees:

Tests Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 MAE(degree)
Trajectory 40005 0.229 1.261 3.553 1.146 0.745 1.53 1.41
Trajectory 40007 8.54 3.50 5.56 5.15 6.96 5.50 5.87
Trajectory 40009 2.46 0.97 1.72 3.44 3.84 1.03 2.24

Mean MAE (degree) 3.17

Table 5.11: Our robot joints angles MAE

Table 5.10 shows that the method by Rodríguez-Miranda et al[31] achieved a low mean
error of 1.04° using a two-step process: first classifying the image into a pose group, then
refining it with a neural network.

Our method, shown in Table 5.11, had a higher error of 3.17°, but it works differently. Instead
of using pose groups, we train the model to directly predict the next joint angles using both
the current image and joint positions.

There are a few reasons why our error is higher:

- We work with a 6-joint robot, while theirs has only 3.

- We predict movement over time , not just static poses.

- We use both image and joint data, which makes the input more complex.
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5.2.7.1.8 Results : End Effector (EEF) position Mean Absolute Error Now we
compare the End Effector(EEF) pose MAE result that we got from the 3 test experiments of
the first frames only with the state of the art proposed method.

Test 1 Test 2 Test 3
MAE(cm) 0.245 0.5 0.552

Mean MAE(cm) 0.436

Table 5.12: EEF all axis MAE[31].

From table 5.4,5.6 & 5.8 , we have the robot end effector (EEF) in cm:

X axis Y axis Z axis All axis
Trajectory 40005 (cm) 0.98 0.82 3.23 1.67
Trajectory 40007 (cm) 1.88 6.852 6.1 4.94
Trajectory 40009 (cm) 0.8 3.2 1.1 1.7

Mean MAE(cm) 2.77

Table 5.13: Our robot all axis MAE

Based on tables 5.12 & 5.13, the [31] approach achieved a lower EEF mean error of 0.436
cm, while our method resulted in a mean error of 2.77 cm.

- The state-of-the-art method was tested on a 3-DOF robot, where only 3 joints contribute
to the final EEF position.

- In contrast, our robot is a 6-DOF robot, meaning twice as many joints influence the EEF,
each with its own prediction error. These errors accumulate, which can significantly affect
the final EEF position.

- Furthermore, our model performs direct regression from images Imgi and current joint
states Qposi to the next configuration Qposi+1. This includes temporal transitions (learn-
ing how the robot moves over time), making the task more complex than simply regressing
static positions from single images, as in the baseline method.
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5.2.7.1.9 Results : EEF position error after 31 successive predictions

- For the End Effector (EEF) pose error here’s a table that summarizes the cartesian axes
X,Y & Z absolute error between the ground-truth position and the predicted position if
the last frame of that trajectory because it holds the cumulative error for each prediction
from the first frame .

The trajectory EEF X
absolute error

EEF Y
absolute error

EEF Z
absolute error

Trajectory 40005 5.06 4.7 4.1
Trajectory 40007 6.35 9.34 5.2
Trajectory 40009 2.9 4.5 7.3

Mean absolute error 4.77 6.18 5.533

Table 5.14: EEF X,Y & Z positions absolute error of the last frame for each test trajectory

- The evaluation was conducted over a set of test trajectories from the original dataset. The
comparison focused on the positional accuracy of the EEF in Cartesian space. The mean
absolute error (MAE) between the predicted and ground-truth EEF positions across the
X, Y, and Z axes was found to be:

◦ X-axis: 4.77 cm.
◦ Y-axis: 6.18 cm.
◦ Z-axis: 5.53 cm.

So These results indicate that the model is capable of generating joint-space com-
mands that result in accurate and task-relevant EEF positioning.
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5.2.7.2 Testing the result on BRAS-DEL robot

The model was trained on the Sawyer robot, to test the model on the BRAS-DEL robot
we need to transfer the obtained result on the reference robot to ours.

5.2.7.2.1 Test setup The test setup requires this next important steps:

- Prediction (Keras Model): The first frame of the test trajectory, along with the initial
joint angles Qposi, is passed to the trained Keras model. The model predicts the next
joint configuration Qposi+1 for the Sawyer robot based on the visual input and current
joint state.

- Forward Kinematics on MoveIt (Sawyer Robot): The predicted joint angles are
applied to the Sawyer robot using its URDF and MoveIt configuration. MoveIt performs
forward kinematics to compute the resulting pose (position and orientation) of the end-
effector (EEF) in the global reference frame.

- Navigation to the Goal Pose: The pose obtained from Sawyer’s predicted configura-
tion is considered the target goal. This goal represents the desired EEF pose in Cartesian
space that the new robot (BRAS-DEL) must reach. It includes both the position (X, Y,
Z) and orientation (typically as a quaternion or rotation matrix).

- Transfer Node – Inverse Kinematics on MoveIt (BRAS-DEL): The goal pose
(from the Sawyer EEF) is sent to the MoveIt IK solver for BRAS-DEL. The solver com-
putes the corresponding joint angles Qposour_robot

i+1 that would result in the same EEF pose
on the new robot, considering its different kinematics.

- Predicted Angles for BRAS-DEL: The final output is a 7-dimensional joint angle
vector for BRAS-DEL. This vector can be executed directly on the new robot to achieve
the desired behavior inferred from the Sawyer robot’s demonstration.

Figure 5.25: BRAS-DEL test setup architecture
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5.2.7.2.2 Test setup on ROS We performed our experiment, we took a test image joined
by its current Qposi[6] and forward it into the trained model to get the predicted Qposi+1[6].
But the Qposi+1[6] are in the Sawyer robot reference, to transfer the result into our robot
(BRAS-DEL robot), we follow these steps :

5.2.7.2.2.1 ROS Workspace setup : In order to setup the test on ROS(Robot Operating
System), we need to add the both robots moveIt folders into our workspace.

Figure 5.26: ROS test workspace setup

- arm_sawyer : The pkg that contains the moveit setup of the sawyer robot(the refernce
robot).

- arm_BRAS-DEL : The pkg that contains the moveit setup of the BRAS-DEL robot(our
robot).

- sawyer_description : The pkg that contains the URDF (Unified Robot Description
File) in addition to the meshes of the sawyer robot.

- BRAS-DEL_description : The pkg that contains the URDF (Unified Robot Descrip-
tion File) in addition to the meshes of the BRAS-DEL robot.

- moveit_transfer_pose : The pkg that performs the result transfer from the sawyer
robot to the BRAS-DEL robot.
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Figure 5.27: Moveit_transfer_pose pkg

5.2.7.2.2.2 ROS rqt graph architecture :

- robot1_position_orientation_publisher(publisher.py):This node performs the given
Qpos[6](that we got from the model prediction) on the refernce robot (sawyer) using its
forward kinematics and then publishes the pose (position and orientation) of the EEF as
topics.

- robot1_position & robot_orientation (topics) : They contain the position and ori-
entation of the EEF published by the publisher.py node.

- robot1_position_orientation_subscriber(subscriber.py):This node subscribe to the
previous topics and set that pose as target pose for the second robot (BRAS-DEL robot
which is our robot) and then navigates to that point using the inverse kinematics solvers
to get the combinaison of joint angles in order to get to that EEF pose.

Figure 5.28: Test ROS architecture of nodes and topics
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5.2.7.2.2.3 Test result on RviZ Now we want to transfer the resulted pose from the
previously obtained joint angles shown in Table 5.7 of test trajectory n° 2 used in the sawyer
robot to our robot (BRAS-DEL robot):

Figure 5.29: The sawyer pose Figure 5.30: The BRAS-DEL pose

Here’s another point of view (POV) of this experiment :

Figure 5.31: The sawyer pose with another
POV

Figure 5.32: The BRAS-DEL pose with an-
other POV

As illustrated in the figure, although the two robots differ in their geometry and kinematic
structures, they both successfully reach the same end-effector pose (position and orientation)
and exhibit comparable motion behavior.

Supervised learning Page 117



Robotic arm autonomy using machine learning

5.2.7.2.2.4 Other Test results on RviZ We took random generated Qpos[6] and applies
them into the robot sawyer and then we perform the result transfer.

Figure 5.33: Our robot test 1 Figure 5.34: Reference robot test 1

We the same logic we performed another test with other joint angles configuration that
gives us another pose :

Figure 5.35: Our robot test 2 Figure 5.36: Reference robot test 2

The robot X position Y position Z position X orientation Y orientation Z orientation
Sawyer robot

test 1 0.119706 -0.416786 0.510996 0.922441 -0.109635 0.255989

BRAS-DEL robot
test 1 0.119685 -0.416729 0.511025 0.922469 -0.10943 0.256367

Sawyer robot
test 2 0.528995 -0.156029 0.316532 0.8647 0.479938 -0.138738

BRAS-DEL robot
test 2 0.528969 -0.155955 0.31659 0.864595 0.479986 -0.139082

Table 5.15: Table of comparison of the EEF X,Y & Z axes positions and orientations between
sawyer robot and our robot
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As shown in Table 5.15, figures 5.33, 5.34, 5.35 & 5.36 , the End Effector (EEF) positions
and orientations of the BRAS-DEL robot closely match those of the Sawyer robot across both
test scenarios. Despite differences in the robots’ physical structures and kinematics, the in-
verse kinematics solver applied to the BRAS-DEL robot successfully replicates the target EEF
poses. The positional and orientational differences are minimal, demonstrating the system’s
effectiveness in achieving accurate pose imitation.
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5.3 Reinforcement learning

5.3.1 The approach

After explaining the general idea of reinforcement learning and its most important com-
ponents, we will start now by explaining the first approach we used during our work. The main
idea of this approach is to teach our own robot model BRAS-DEL, on how to perform the
pick and place task for a certain object, so reaching the goal object by minimizing the distance
between the end effector and setting a good orientation too. The main goal of this approach is
to get a model that will be used instead of the standard IK solver previously explained in the
ROS and moveIt chapter.

5.3.2 Unity framework

Unity is a powerful and widely-used cross-platform game engine and real-time development
platform, providing a comprehensive framework and integrated development environment (IDE)
for creating interactive 2D and 3D content. Unity provides a robust set of tools and a structured
environment (the "framework") that handles many of the complex underlying technical aspects
of interactive content creation, allowing developers to focus more on the creative and design
elements of their projects.

Figure 5.37: Unity framework logo

5.3.3 Scene setup

Working with the Unity framework, the first thing we need to do is setting up the simula-
tion environment. In our case, the most important elements are the robot itself, the object we
need to pick up and finally the ground space. But we should understand how to create these
elements in the scene?
Starting by downloading the Unity editor, in our case we used the 2020.2.1f1 that gives us the
following interface to start with an empty world.

Figure 5.38: Unity 2020.2.1f1 editor interface
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So basically, the editor gives you the interface to set up your scene by providing pre-
created shapes (circles, squares, etc..), it provides a folder interface where u can access your
codes and designs, where u can also save your created scenes too.
Now for us to create our own scene, we start by loading the STL files of our robot that we
already saved during the conception part and upload them into unity.

Next, we need to set the ground space which is going to be just a simple flat square. And
the required object to lift which is going to be a small square too. Using the predefined shapes
and available colors in the editor, this will be an easy task to do.
For now, we just created the scene but we still need to add some modifications before we save
it and start the simulation. We need to know that each elements in unity should be defined by
:

- Meshes : This is the one we already created that represents the 3D/2D geometry of the
elements in the scene.

- The mesh colliders : The Mesh collider builds its collision geometry to match an
assigned Mesh, including its shape, position and scale. The benefit of this is that you can
make the shape of the collider exactly the same as the shape of the visible Mesh for the
GameObject, which creates more precise and realistic collisions[7].

- The configurable joint : Used to customize the movement of a ragdoll and enforce
certain poses on your characters. You can also use them to adapt joints into highly
specialized joints of your own design[8], using this u can set the center and axe of rotation
alongside the movement limitations.

So we are going to add for the goal object, ground and each link of the robot a mesh
collider in order to detect the collision between them, then we set the rotatif movement of each
joint using the configurable joints. At the end, we will be getting the following figure result for
our robot scene which is going to be saved for later work and simulation, where the green cube
is the goal object to reach, the black space is the ground, our robotic arm and the green space
around the links represented the mesh colliders.

Figure 5.39: BRAS-DEL scene setup
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This same scene can be used when we start the training. Using it, we are going to create a
training farm that contains many of the same scenes running in parallel. This method can help
us save some time since we have more than just one robot training to reach the goal object and
each one independently from the others, but this method requires high computational resources
to be done. So at the end it gives us the following farm of 9 scenes for our case.

Figure 5.40: Training farm of 9 scenes

5.3.4 Training in unity

In order to start the training, we will need to go by a Unity library called ML-Agents. The
Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables
games and simulations to serve as environments for training intelligent agents. We provide
implementations (based on PyTorch) of state-of-the-art algorithms to enable game developers
and hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. Researchers can
also use the provided simple-to-use Python API to train Agents using reinforcement learning,
imitation learning, neuro evolution, or any other methods[9]. So, for our case of use we are
going to download the ML-Agents library 1.0.8 version, which will be serving as a liaison be-
tween the unity scene that we created and the rest of python libraries we need to use such as
PyTorch for the training.

After downloading the ML-Agents library, we should now create an agent script .cs which
is going to be the one controlling the robot, collecting observations and in which we are going
to set the reward tree of our training that we will talk about after. Now we will be breaking
down the code and explaining each part of it, how it is related to the scene and how to use it
for the train.
Starting by importing libraries and defining our agent class which is going to be related with
the agent in the scene. The class will control the behavior of the agent (Which is the robotic
arm in our case), will be attaching for each joint and link its type of movement.

So, as it is shown in the figures this is how we declare the agent class. In it we start
by declaring the rigidbodies of each link because we are going to use them after, the scene
objects such as the ground, goal object and obviously the arm and some random variables we
use during the work such as goalreached which is a boolean variable to set if we reached the
goal object or not or the max number of steps.
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Figure 5.41: Class agent declaration

Then we will jump to the first function we use which is Initialize(). This function is used
at the beginning of the train one time only, so it gives and initializes some variables as shown
in the following figure, we set up the drawing lines noted LineRender, and we attach the links
for each rigidbody using the predefined getcomponent function of unity.

Figure 5.42: Initialize() function

Then, we have the OnEpisodeBegin() function. This is the function we call at the begin-
ning of each episode, so it’s not used only once as the initialize one. Its role is to setup the
episode, reset the number of steps, we call inside of this function some other functions we are
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going to explain next that reset the links to their initial position and move the goal object to
a new position in the reachable space of the robotic arm as it is shown in this figure.

Figure 5.43: OneEpisodeBegin() function

After that, we have the ResetPendulums() function. This is the function that sets the
links each one for its starting position which should be the same for all angles to zero value.
So after setting up the scene manually in the editor, we will need to look for the position
and orientation of each link from the inspector panel, then add it manually to the function in
the code so it gets to be called at the beginning of each episode by the previously explained
function. This figure shows how is the ResetPendulums function declared,

Figure 5.44: ResetPendulums() function

Then we declare one of the most important functions which is CollectObservation() which
is going to be used to collect the required information from the scene. The next figure will show
us how it is declared. We will see that we only ask for the goal position object in world space,
since our approach is used to replace the IK solver and as previously explained the IK solver
takes the desired position we want to reach and find out the joint angles required to reach
that position. So with that the observation space of ours will only have 3 elements (X,Y,Z
coordinates of the goal object).

Figure 5.45: CollectObservations() function
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Before continuing, we are going to declare a special function which is special just with our
use case, not like all the previous ones which are mandatory for Reinforcement learning using
ML-agents and Unity. This function is the SetJointRotation() which sets the rotation axis and
applies the angles on each joint in degrees as it is shown in the figure.

Figure 5.46: SetJointRotation() function

After finishing this one, we have one of the necessary functions of the training which is
OneActionReceived(). This function is used to apply the received action from the policy and
apply them on each joint, in addition inside of this function we declare the reward tree we’re
working with. We should understand that, since we have 6 joints (since it’s a 6DOF robotic
arm) the action space will have 6 elements (an angle value for each joint). As shown in the
figure, we set the values between 1 and -1 then multiply by 180 so all the values we get are
between -180 and +180 degrees for each angle. Then we use the SetJointRotation function in
order to apply those values on each joint, each one on its axis of rotation.

Figure 5.47: OneActionReceived() function part 1

We continue with the same function, we declare some temporary variables we use during
the work such as the distancetogoal which is the difference between the position of the end
effector and the goal object, we also have the Alignment which is the cosine of the angle made
between the directing vector from the end effector to the goal and the link6 pointing vector
and some saving variables previousdistance and previous alignment which are used to save the
distance and alignment values and use them for comparison if we in the reward tree.
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Figure 5.48: OneActionReceived() function part 2

5.3.5 Reward tree

Before setting up the reward tree for our training, we should understand that it’s very
crucial. Because it does structure the way our robot is going to learn the way to perform the
task so it should be chosen carefully.
At first, since the robot doesn’t know anything about how to do it, we should try and keep it
simple for it so it gets to understand the basics of robotic arm movement and the main idea
of the application. For the beginning we chose a pretty simple tree in which we only used the
distance and the alignment as essential inputs.

Figure 5.49: Simple reward tree

As we can see in the figure, we did use the hand position (end effector position) and the
goal position for each step to calculate the distance and alignment between them. At first
we did some gradual rewarding, so each time the robot gets a better alignment or reduces its
distance from the goal object we give him a small positve reward +0.5f, and in the same way
if he gets far or misses the alignment we give him a little negative reward of -0.5f. We should
know that the reward better be between -1 and +1 at the beginning and only give some small
rewards and punishment otherwise the policy will prohibit the exploration of the scene in the
future and its movements will be only based on the firstly made ones.
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Figure 5.50: Simple rewarding system

With the time going on, we should keep surveying the evolution of the reward values and
behavior of the robot, so when we make sure that he learned the basics we can start making
it more complex. Over steps we started to add some rewards and punishment on the too far
distance so the policy understands that we can’t have movement that take him 1 meter far
away from the goal object, we start giving big punishments when the end effector looks directly
in the opposite way of the goal object. In addition we started to add the collision problems,
using the mesh colliders we set at the beginning we can detect when 2 elements collide and we
use this as an aggressive punishment of -1f since these are untolerated actions except if the end
effector gets in collision with the goal object that means it did reach it with good orientation
so we give him a big reward of +1f . We do add some slight punishments over steps in order
to make it accomplish the task in the minimum possible of steps , so for each step we give a
small punishment of -0.05f, and more of a big punishment of -1f if the episode ends before the
end effector reaches the goal object. At the end we have got the following complex reward tree
that did lead us to some good results.

Figure 5.51: Complex reward tree
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Figure 5.52: Reward tree part 1 Figure 5.53: Reward tree part 2

Figure 5.54: Reward tree part 3

5.3.6 Model architecture

In order to start with the training now, we should set the hyperparameters of our training
in a training.yaml file. From this file they will be imported to the model for the training. And
the following table shows us the configuration the we chose :

Parameter Value
Trainer Type PPO
Batch Size 2048
Buffer Size 40960
Learning Rate 0.0003
Beta 0.005
Epsilon 0.2
Normalize False
Hidden Units 512
Num Layers 3
Max steps 1.107

Sum frequency 25000

Table 5.16: Table of training hyperparameters
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So as it is listed in the table, we went with the PPO as a trainer type since we have
explained the advantage of using it specially since we are working with a continuous space of
actions and as previously mentioned it does take into account the next action based on the
actual one, so we are keeping the continuity of the movement. Next to it, we chose a batch size
of 2048 and a buffer size of 40960 with a learning rate of 0.0003, beta of 0.005 and epsilon of
0.2 (So the trust ratio will be constrained between 0.8 and 1.2). In addition we chose a lambda
of 0.95, architecture of 3 layers with 512 hidden units for each. At the end set the max step for
100 million steps before the end of the training while keeping checkpoints each 5 episodes. So
at the end we got the following training.yaml file :

Figure 5.55: Configuration file

After setting all these parameters, now we can start the training for our robot.

5.3.7 Test & results

For the interesting part now, the test and results. We should firstly know that we have
to keep an eye on the scene during the training since we have to change each time the reward
tree and sometimes even the architecture in case of the model gets stuck at a local maximum.
So during that monitoring we can see from the following pictures that we were starting to get
some good results.

Figure 5.56: Scene 1 of
the farm

Figure 5.57: Scene 3 of
the farm
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Figure 5.58: Scene 5 of the
farm Figure 5.59: Scene 7 of the farm

Figure 5.60: Scene 4 of the
farm Figure 5.61: Scene 6 of the farm

This is why we pointed at the necessity of monitoring the train but never rush to stop it
whenever u see that it’s not getting to reach the object, since in our case we have a farm of
training and the global policy is learning from the punishment and rewards of all of them at
the same time, so it is a good point actually that some of them are miss applying the behavior
since it will help in the future to avoid mistakes in the test.
At the end of the training, we could get the loss and cumulative reward by steps.
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5.3.7.1 Cumulative reward / steps :

This graph will explain to us the comportment of our robot in the scene, how good or
bad was he accomplishing the task and did he get enough reward values or punishments. We
have the following figure that shows that

Figure 5.62: Steps/Cumulative reward value

Let’s break this graph down. As we can see that the beginning fo the train wasn’t that
good which normal since the robot is still discovering its environment and is generating some
random actions that are taking him away from the robot rather then getting closer to it but it
remains a normal thing since we’re still at the discovery part.
After approximately 10M steps we can see that the cumulative reward value has increased
significantly entering a new phase of the train where the robot has discovered its environment
and now is getting closer to the goal object. In this phase we can see the the reward is oscillating
a lot around 34000 and 37000 this can be explained that each time we see that it learned the
current reward tree we try to complicated a little bit this explains why we have sometimes some
hard dropping in the cumulative reward value.

Over steps, we can see that it stabilizes around the 36000 value and from the simulation
scene we found out that the robot has learned how to perform the task and he is getting close
enough with a good orientation to the goal object, so we entered a new phase in which we try
to teach the robot on how to perform the task quickly and not only effectively and for that we
reduced the episode length from 25000 steps per episode to 10000 which less then the half of it.
The main reason for that is to make it learn how to perform the task quickly since the episode
will end early this time and that will be giving negative reward to the agent that he will try to
avoid. So during this phase we can see a huge drop in the cumulative reward value but that’s
normal since he can’t accumulate the same reward value with less available steps.

Even though we reduced the steps number but the robot didn’t forget how to perform the
task which can be seen in the plot, at the beginning the cumulative reward value has dropped
and we can see that it’s oscillating again, but after around 80M steps the agent did learn again
correctly the task and stabilized the cumulative value.
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5.3.7.2 Loss / Steps :

For the loss value plot, we should understand that it mean error between the generated
action at an instant t and the supposed to be a good action for the same moment and not
the opposite of the cumulative reward as some might understand or think ,so for continuous
movements and robotic arms, the difference should not be big since we can’t suddenly generate
a big difference in angle for a certain joint, if it’s the case that means there is something wrong.
So we can say that the loss / steps graph is more of a stability indicator for our training.

Figure 5.63: Steps/Loss value

As we can see from the figure of the Steps / Loss value. At the beginning of the training
we have a high value jump in the loss since it’s obvious that the robot is generating random
actions in order to discover its environment. Then with the training going on, we can see clearly
that the robot is minimizing the difference between its movements, so he is starting to learn
how to perform a continuous action. At the same time we can see that the loss value increase
so it’s kind of oscillating, but this is normal since each time as previously explained we were
complicating the reward tree for the agent, this will cause that the policy at the moment we
upgrade the reward tree will start to receive some negative rewards a lot this will cause that
the policy will re-start exploring again in order to find out which actions are more suitable now
for the new reward tree.

After reaching the 50M we can see that the value loss increased a lot, which is due to
decreasing the total number of steps for the episode. Same as previously motioned, this caused
that the agent received huge negative reward at that moment, so the policy did re-discover the
environment for a certain time then we can see that the loss value has dropped less then before
the 50M because the policy has reached stability again until the end of the train around 100M
steps where we can see that the loss value decreased a lot and we have less oscillations this
time which means better stability of the policy.
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At the end of this, to simulate the comportment of the robot we took the obtained model
and tested it on 1 robot from the farm to see how it is performing the task. The following
figure shows 3 phases of the test, first at the beginning at the test where the robot is initialized
without movement, second in the middle of the test while the robot is trying to reach the
desired goal object, and finally the last one when the robot has successfully reached the goal.
We added some writings on the scene to visualize the distance and the alignment between the
end effector and the goal object.

Figure 5.64: Test beginning Figure 5.65: Mid test

Figure 5.66: The end of the test

As we can see in the figure, the robot is initialized at its starting position and the goal
object (the green cube) has spawned at a 0.85m distance from the end effector with a 0 alignment
value which means 90 degrees angle between them. When we start the test the robot is trying
to reach the goal object by reducing the distance by 0.39m and fixing the alignment of -0.88
which is 151 degrees. For us, the best case is to have less than 0.1m distance between the end
effector and the cube. This can be visualized in the third part of the test in which we got a
distance of 0.08m or 8cm while taking into account the cube size it self of 6cm, and since we
calculate the distance between the center of the effector holder of the robot and the center of
the green cube and not its out surface, the distance error between the end effector and the goal
object reduces to 5cm in addition to that we take into account the dimensions of the gripper
(the 7cm length of the fingers) which in this case reduces the error distance by 3cm so we get a
global distance error of approximately 2 to 3cm, and with an alignment of -0.93 which is pretty
good as a result and as we can see in the figure the robot has reached the goal object while
facing it to make the grasping easy.
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5.4 Aruco detection and pose estimation based approach

5.4.1 The approach

The main idea of this approach, is to estimate the position and orientation of the aruco
tag fixed on the top of the goal object in order to use that information alongside the IK
solvers of MoveIt package with ROS to calculate the required angles and trajectories for task
accomplishing.
Before getting into more details, this figure shows the main structure of the aruco tag approach.

Figure 5.67: Aruco pos based approach architecture

5.4.2 Camera Calibration

Since we are working with ROS, we are going to use the advantage of the available pack-
ages. The camera calibration package is a predefined package in the robot operating system
that can be used to calibrate mono and stereo cameras alongside libraries of python specially
the OpenCv one.

5.4.2.1 Chess Board :

Which is a printed black and white squares pattern used for camera calibration process.
It is defined by the size of those squares and the number of edges vertically and horizontally.
The following figure shows and example of that.

Figure 5.68: Chess board 8x6 25mm squares
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5.4.2.2 Camera calibration package :

After printing the required chessboard for the work, we clone the repository of the camera
calibration package in our work space and from a terminal we run the cameracalibrator.py node
in which we are going to specify the number of edges, the square dimensions, and the topic of
our camera USB.

Figure 5.69: Calibration images collection
Figure 5.70: Running the node from termi-
nal

After collecting enough images for the calibration while all the corners were detected and
the X, Y and size bare from the right are fulled completely. The package will return to us at
the end the camera matrix and coefficient of distortion in a config file as shown in this figure.

Figure 5.71: Camera parameters config file

After that we are going to apply these factors on the raw image obtained from the camera
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each time we want to localize the arUco tag.

5.4.3 Aruco detection

5.4.3.1 Python library for aruco detection

For easy work on arUco markers detection, we are going to present the most suitable way
for that which is using the OpenCv library with arUco module on python. It specially works
with the 4.7.0 version of OpenCv and higher. Starting now to explain the most important and
usable functions of the arUco module in OpenCv after for sure importing the library we have :

- aruco.Dictionary_get() : Basically this is the first function to call, in which we are
going to call the dictionary we want to work with.

- aruco.DetectorParameters_create() : This function is used to set the parameters of
the frame binarization (thresholding, corners marker, corners filtering) As shown in the
following figure, this is how they are going to be used.

Figure 5.72: aruco.DetectorParameters_create()

- aruco.detectMarkers() : This is the function that we use to detect the markers, it takes
the grayscale frame from the capture image, the dictionary that we define to use and the
set of parameters previously defined. All these parameters are taken as arguments for
this function to detect the arUco markers, then save their outputs which are the corners,
the IDs and rejected ones as shown in the figure.

Figure 5.73: aruco.detectMarkers()

- aruco.drawDetectedMarkers() : The last important function which has to draw the
ids and the frames of the detected markers on the image as an output. For the arguments,
it takes the normal frame img, the IDs and corners obtained from the previous function
as the next figure shows.

Figure 5.74: aruco.drawDetectedMarkers()
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So basically, this is the simplest method u can use in order to detect arUco markers using
a python script since it’s the most suitable one while working on image processing.

5.4.4 Arcuo pose estimation

After detecting the arUco tag placed on the top of the goal object, we should now proceed
to the main part of the approach which is the pose estimation from the calibrated image.
For this purpose, we used the same aruco for OpenCv library used for the aruco detection but
this time using different function arcuo.estimateposesinglemarker() as shown in the next figure.

Figure 5.75: Pose estimation function

The provided function takes as inputs a vector of the 4 aruco corners detected, the marker
length that we specify at the beginning since we are the ones to chose the aruco tag ID and
size for the application, it does take also the camera matrix and distortion coefficient that we
get from the config file after the calibration process.

Based on that, the function tries to estimate the real 3D pose of the arUco tag (position
and orientation) but in the camera frame.

And at the end, it outputs the rvecs which has the rotation information on each axis, and
the tvecs that has the translation or positions on each axis.

5.4.5 Task execution

Based on the explained work on how to estimate the aruco pose, we can use the approach
either on ROS or Robodk based on the case of work.

5.4.5.1 Using ROS

In order to implement the aruco pose navigation on , we will work using this approach :

Figure 5.76: ROS based aruco navigation approach
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Figure 5.77: Workspace ROS for aruco pose navigation

- rect.py : a python node responsible on detecting an aruco, performs pose estimation and
create a "obj_link" frame that has as attributes the position and orientation estimated
earlier.

Figure 5.78: rect.py

- get_pose.py : a python node that gets the position and orientation from "obj_link"
frame and publishes it pose in respect to the "base_link" frame (the reference frame of
moveIt in /obj_pose topic.
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Figure 5.79: get_pose.py node

- nav_2_position.py : a python node that subscribe to /obj_pose topic gets the pose of
the object(position and orientation) and navigates to that pose using move_group().

Figure 5.80: nav_2_position.py node
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5.4.5.1.1 Test

5.4.5.1.1.1 First step : moveIt launch We launch our robot on ROS moveIt and as we
can see we have our eef position of the robot on the pose :

- X position = 0,08 .

- Y position = 1, 35 × 10−6.

- Z position = 0,87029.

Figure 5.81: 1st Moveit launch

5.4.5.1.1.2 Second step : Aruco detection and pose estimation In this step we are
going to detect the aruco from its node and attribute it position and orientation to a frame
called "/obj_link".

Figure 5.82: Publishing the position of the aruco in respect to the camera frame
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Figure 5.83: The position of the aruco in respect to the base link frame

As we can see the aruco pose its at the position :

- X position = 0.

- Y position = 0,688247.

- Z position = 0,158902.

5.4.5.1.1.3 Third step : nav to aruco pose Using the nav_2_position.py node explained
earlier to send our robot from its current position to the aruco pose.

Figure 5.84: Navigating to the aruco position with our robotic arm

We can see that the EEF of our robot reached the position :

- X position = −4, 56109 × 10−5.

- Y position = 0,688311.

- Z position = 0,15891.

Aruco detection and pose estimation based approach Page 141



Robotic arm autonomy using machine learning

X position Y position Z position
Aruco pose in meter 0 0,688247 0,158902

Final EEF pose in meter −4, 56109 × 10−5 0.688311 0,15891
Absolute error in cm 4, 56109 × 10−3 0.051 0,0008

Table 5.17: Comparison between the aruco position and the EEF position after aruco-based
navigation

The end-effector (EEF) successfully reached the ArUco-detected position with high accuracy.
The absolute positional errors are minimal—approximately 0.05 cm in Y, 0.0008 cm in Z,
and 0.0046 cm in X—indicating precise alignment between the desired and final poses after
ArUco-based navigation.

5.5 Conclusion

As a conclusion for this work, we can say that we got some good results in each approach
compared to the related works done in this field specially since the main approach we went
through are kind of different from the previous works.

For the supervised learning, our work aims to predict the future movement of the robotic
arm, in contrast to previous works which only estimate the robot’s current position. However,
despite this difference, we were able to achieve results similar to theirs.

As for the reinforcement learning approach, our work aimed to get a robust IK solver
with the minimum possible of input presented by the goal object position giving a space vector
of 3 elements only compared to the related work which had up to 19 elements, and for this
difference our approach took much more time during the training compared to theirs. But even
though we were able to get results which are slightly near to theirs.

And for the aruUco pose estimation approach, the simulation did gave accurate results,
since the camera detected the position of the arUco tag on the object goal and reached the
desired position as shown in the test and result part. Unfortunately the test were done only on
simulation and not in reality since the required equipments and pieces manufacturing weren’t
available at the time.
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In this thesis, we focused on designing and developing an autonomous 6 DOF robotic
arm that can be an intelligent decision-making platform through the integration of machine
learning and image processing techniques. Our goal was not only to achieve full autonomy for
industrial tasks but also a commercial product that aligns with modern collaborative robotics
standards.

Following a challenging engineering path, we successfully addressed the complete devel-
opment cycle of the robotic arm — from mechanical design, kinematic and dynamic analysis,
3D modeling and printing, electrical integration, and final assembly. We ensured that each
component, both mechanical and electronic, was carefully selected and tested for an optimal
performance.

In terms of control and software integration, we successfully implemented two control ap-
proaches using ROS with MoveIt and Robodk. These platforms provided a robust framework
for simulating, controlling, and validating the robotic arm’s planning.

The most important contribution of our work is exploring, implementing and compar-
ing different machine learning approaches for robotic arms autonomy. We explored supervised
learning for pose estimation and behavior cloning, reinforcement learning to let the robot learn
optimal actions through interaction with its environment, and an ArUco marker-based pose es-
timation method to enhance fast and real time navigation. These experiments confirmed that
our robotic arm could perform intelligent tasks such as path planning and decision-making with
full autonomy.

Additionally, by creating a Business Model Canvas (BMC), we explored the entrepreneurial
point of vue of our project, preparing it for potential commercialization as an intelligent col-
laborative robotic solution adaptable to multiple industrial tasks.

In conclusion, this project highlights the potential of combining machine learning with
robotic systems to create autonomous, flexible, and intelligent robotic arms suitable for a wide
range of real-world applications.
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For future work, we would like to start by improving our mechanical structure in order
to ensure the scalability of our product and better address industrial-scale applications.

As for the intelligence and autonomy aspects, we aim to make our model more general
and achieve better results by exploring larger and more diverse datasets. This includes incor-
porating the DH parameters of different robots alongside their respective datasets as inputs to
our model, in order to ensure the generalization of our work and its applicability to various
types of robots. We also plan to combine the supervised learning approach with reinforcement
learning methods to further improve the accuracy of our results.

As a final improvement, we would try to collect our own robot dataset for better accuracy
of the supervised learning approach, then use the obtained weights as predefined ones for the
reinforcement learning approach for earlier convergence and better results.
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