
ةيبعشلاةيطارقميدلاةيرئازجلاةيروهمجلا

République Algérienne Démocratique et Populaire
يملعلاثحبلاويلاعلاميلعتلاةرازو

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Département d’Électronique

Thesis of Final Graduation Project

For the obtention of the State Engineer Diploma in Electronics

Plant Leaves Disease Severity Estimation

Wissam ABID

Under the supervision of Mme. Nesrine BOUADJENEK MCB ENP

Publicly presented and defended on the 24th of June, 2025.

Jury members:

President Mr. Adel BELOUCHRANI Prof. ENP
Promoter Mme. Nesrine BOUADJENEK MCB ENP
Examiner Mr. Mourad ADNANE Prof. ENP

ENP 2025

ةيبعشلاةيطارقميدلاةيرئازجلاةيروهمجلا

République Algérienne Démocratique et Populaire
يملعلاثحبلاويلاعلاميلعتلاةرازو

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Département d’Électronique

Thesis of Final Graduation Project

For the obtention of the State Engineer Diploma in Electronics

Plant Leaves Disease Severity Estimation

Wissam ABID

Under the supervision of Mme. Nesrine BOUADJENEK MCB ENP

Publicly presented and defended on the 24th of June, 2025.

Jury members:

President Mr. Adel BELOUCHRANI Prof. ENP
Promoter Mme. Nesrine BOUADJENEK MCB ENP
Examiner Mr. Mourad ADNANE Prof. ENP

ENP 2025

ةيبعشلاةيطارقميدلاةيرئازجلاةيروهمجلا

République Algérienne Démocratique et Populaire
يملعلاثحبلاويلاعلاميلعتلاةرازو

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Département d’Électronique

Mémoire de projet de fin d’étude

pour l’obtention du diplôme d’Ingénieur d’État en Électronique

Estimation de la sévérité des maladies des
feuilles des plantes

Wissam ABID

Sous la supervision de Mme. Nesrine BOUADJENEK MCB ENP

Présenté et soutenue publiquement le 24 Juin 2025.

Membres de jury:

Président Mr. Adel BELOUCHRANI Prof. ENP
Promotrice Mme. Nesrine BOUADJENEK MCB ENP
Examinateur Mr. Mourad ADNANE Prof. ENP

ENP 2025

Résumé
L’agriculture intelligente vise à améliorer la surveillance des cultures grâce à une analyse
automatisée et précise de la santé des plantes. Une tâche cruciale dans ce domaine est
l’estimation de la sévérité des maladies, qui consiste à identifier les stades de progression
des infections des plantes. Dans ce travail, nous proposons une solution basée sur lappren-
tissage profond utilisant deux architectures de transformers : Vision Transformer (ViT)
et Swin Transformer. Ces modèles sont implémentés, évalués, puis combinés dans une
architecture innovante qui exploite lattention globale du ViT et l’attention locale hiérar-
chique du Swin pour une classification fine de la sévérité. Les modèles sont entraînés
sur le jeu de données Rouille Jaune du blé, comprenant six stades de sévérité. Enfin, les
résultats montrent que le modèle combiné surpasse les modèles individuels de référence,
offrant une solution efficace pour l’estimation automatisée de la sévérité.

Mots-clés : Agriculture Intelligente, Estimation de la Sévérité des Maladies, Rouille
Jaune, Mécanisme d’Attention, Encodeur Transformer, Vision Transformer (ViT), Swin
Transformer, Auto-Attention Multi-tête, Extraction de Caractéristiques, Concaténation.

Abstract
Smart agriculture aims to improve crop monitoring through automated and accurate
analysis of plant health. A critical task in this domain is disease severity estimation,
which focuses on identifying the progression stages of plant infections. In this work,
we propose a deep learning-based solution using two transformer architectures: Vision
Transformer (ViT) and Swin Transformer. These models are implemented, evaluated,
and combined into a novel architecture that leverages ViTs global attention and Swins
hierarchical local attention for fine-grained severity classification. The models are trained
on Wheat Yellow Rust dataset, which includes six severity stages. Finally, results show
that the combined model outperforms individual baselines, providing an effective solution
for automated severity estimation.

Keywords : Smart Agriculture, Disease Severity Estimation, Yellow Rust, Attention
Mechanism, Transformer Encoder, Vision Transformer (ViT), Swin Transformer, Multi-
head Self-Attention, Feature Extraction, Concatenation.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to Dr. Nesrine BOUAD-
JENEK, my supervisor, for her invaluable guidance, continuous support, and insightful
advice throughout the course of this research. Her expertise and encouragement have
been instrumental in shaping this thesis.

I extend my deepest appreciation to the members of the jury, particularly Pr. BE-
LOUCHRANI Adel, the president of the jury, and Pr. ADNANE Mourad, the examiner,
for accepting to evaluate my work and for their valuable feedback and constructive criti-
cism. Their time and effort are greatly appreciated.

I would like to acknowledge all the teachers and students of the Electronics Engineer-
ing Department, whose contributions, discussions, and collaborative spirit have enriched
my academic journey. Their support and engagement have been a source of motivation
throughout this process.

A special mention goes to the ELN3 class, whose encouragement and unwavering
support have made this journey more meaningful. Their presence has been a source of
inspiration, and I am grateful for the kindness and positivity they have shared.

Dedication

“To my parents, who believed in me when I didn’t believe in myself. Your sacrifices and
endless love gave me the strength to push through every challenge. Your endless support

and encouragement have been the foundation upon which this achievement stands.

To my best friend, who has been there through it all, my loyal companion and greatest
support.

To my family, who celebrated every milestone and offered strength during challenging
times.

To ELN department, who were there through all the ups and downs and shared in both
the struggles and challenges.

To the VIC family and all its members, and especially the HR department and the
committee I worked with, you made me believe that anything is possible when we support

each other.

To all those who have helped in one way or another during this research, I extend my
heartfelt thanks.

Thank you all.“

Contents

List of Figures

List of Tables

List of Abbreviations

General Introduction 13

1 State of the art on plant leaves disease severity estimation 15
1.1 Introduction . 16
1.2 Major Categories of plant leaf diseases . 16

1.2.1 Fungal Diseases . 16
1.2.2 Bacterial Diseases . 17
1.2.3 Viral Diseases . 17

1.3 Plant disease severity . 18
1.4 Severity assessement methods . 18

1.4.1 Qualitative Scales . 19
1.4.2 Quantitative Scales . 19
1.4.3 Advanced methods . 21
1.4.4 Limitations of traditional Approaches 21

1.5 Wheat Yellow rust . 21
1.6 State of the art . 22
1.7 Conclusion . 25

2 Transformers and attention mechanism 26
2.1 Introduction . 27
2.2 Attention mechanism . 27
2.3 Motivation for models selection . 28

2.3.1 Choice of the models . 28
2.4 Vision Transformer (ViT) . 28

2.4.1 ViT applications . 29
2.5 ViT architecture . 29

2.5.1 Patch Extraction and Linear Embedding 30
2.5.2 Incorporation of Positional Encodings and Class Token Augmentation 30
2.5.3 Transformer Encoder Blocks . 30
2.5.4 Final Classification . 32

2.6 ViT variants . 32
2.7 Swin (Shifted Window) Transformer . 33

2.7.1 Applications of Swin Transformer 33

CONTENTS

2.8 Swin architecture . 34
2.8.1 Stage 1: Patch Partitioning and Embedding 35
2.8.2 Stage 2: Patch Merging and Feature Transformation 35
2.8.3 Stage 3 and Stage 4: Progressive Feature Refinement 36
2.8.4 Inside Two Successive Swin Transformer Blocks 36
2.8.5 Cyclic Shift . 39

2.9 Swin Variants . 40
2.10 Conclusion . 40

3 Proposed Model Approach for Estimating Plant Leaf Disease Severity 41
3.1 Introduction . 42
3.2 Motivation for variants choice . 42
3.3 ViT-small . 42

3.3.1 Step 1: Input Image Processing . 44
3.3.2 Step 2: Patch Splitting and Tokenization 44
3.3.3 Step 3: Flattening . 44
3.3.4 Step 4: Linear Embedding and Dimensionality Transformation . . . 45
3.3.5 Step 5: Positional Encoding Integration 45
3.3.6 Step 6: Class Token Insertion . 45
3.3.7 Step 7: Transformer Encoder Processing 46
3.3.8 Step 8: Feature Extraction and Aggregation 48
3.3.9 Step 9: Classification Head and Output Generation 48

3.4 Swin-base . 49
3.4.1 Step 1: Input Image Processing and Patch Partition 50
3.4.2 Step 2: Linear Embedding and Initial Feature Mapping 51
3.4.3 Step 3: Stage 1 - Initial Feature Processing 51
3.4.4 Step 4: Patch Merging and Stage 2 Processing 54
3.4.5 Step 5: Stage 3 - Deep Feature Extraction 54
3.4.6 Step 6: Stage 4 - Final Feature Refinement 55
3.4.7 Classification . 55
3.4.8 Model Architectural Benefits . 56

3.5 Conclusion . 56

4 Experimental Framework 58
4.1 Introduction . 59
4.2 Experimental Setup : Software . 59

4.2.1 Python . 59
4.2.2 Visual Studio Code . 59
4.2.3 PyTorch . 59
4.2.4 timm . 59

4.3 Experimental Setup : Hardware . 60
4.4 Dataset . 60

4.4.1 Dataset classes . 60
4.4.2 Dataset division . 61
4.4.3 Data Preprocessing . 62

4.5 Evaluation metrics . 64
4.5.1 Confusion matrix . 64

CONTENTS Page

CONTENTS

4.5.2 Accuracy . 65
4.5.3 Precision . 65
4.5.4 Recall (Sensitivity) . 65
4.5.5 F1-score . 65

4.6 Implementation Details . 65
4.7 Conclusion . 66

5 Experimental results 67
5.1 Introduction . 68
5.2 ViT-small Model . 68

5.2.1 Model complexity . 68
5.2.2 Classification Report . 68
5.2.3 The Confusion Matrix . 70
5.2.4 Discussion and Analysis . 70

5.3 Swin-base Model . 71
5.3.1 Model complexity . 71
5.3.2 Classification Report . 72
5.3.3 The Confusion Matrix . 73
5.3.4 Discussion and Analysis . 73

5.4 Enhancing model accuracy : Combined model 74
5.4.1 Architecture Overview . 75
5.4.2 Feature Fusion . 75
5.4.3 Classification . 75

5.5 Proposed combined model results . 76
5.5.1 Model complexity . 76
5.5.2 Classification Report . 76
5.5.3 The Confusion Matrix . 78
5.5.4 Interpretation . 79

5.6 Strengths and Limitations of the Proposed Model 79
5.6.1 Strengths . 79
5.6.2 Limitations . 80

5.7 Models comparison . 80
5.8 Comparison with State-of-the-Art Models 82

5.8.1 Comparison with Yellow-Rust-Xception Model 83
5.8.2 Comparison with C-DenseNet Model 84
5.8.3 Summary . 84

5.9 Conclusion . 85

Conclusion 86

Bibliography 89

CONTENTS Page

List of Figures

1.1 Black spot [9]. 16
1.2 Yellow rust [9]. 16
1.3 Pepper bacterial diseases [11]. 17
1.4 Tomato mozaic viral disease [11]. 18
1.5 Leaf images of four severity stages (healthy, early, middle and end) of apple

black rot disease [19]. 19
1.6 Example plot of two diseases severity ratings in cucumber [21]. 20
1.7 Severity estimation using ratio scale for : a. spot blotch severity on wheat

leaves. b. Frogeye leaf spot on soybean [17]. 20
1.8 Wheat leaf with Yellow Rust infection [14]. 22
1.9 Zoomed in: Wheat leaf with Yellow Rust infection [15]. 22

2.1 Vision Transformer architecture [36]. 29
2.2 Transformer Encoder [36]. 31
2.3 a. Swin Transformer. b. Vision Transformer [38]. 33
2.4 Swin architecture [38]. 34
2.5 Patch Partition [40]. 35
2.6 Two successive Swin Transformer Blocks with regular and shifted window-

ing configurations [38]. 36
2.7 W-MSA in Swin Transformer [40]. 38
2.8 Illustration of efficient batch computation approach for self-attention in

shifted window partitioning [38]. 39

3.1 Architecture of the ViT-Small model. 43
3.2 ViT-base : Patch splitting. 44
3.3 ViT-base : Patch flattening. 44
3.4 ViT-base : Patch Embedding. 45
3.5 ViT-base : Adding class token [CLS]. 46
3.6 Query, Key and Value matrices computation. 46
3.7 Scaled Dot-Product Attention [35]. 47
3.8 Multi-Head Attention [35]. 47
3.9 ViT-small : Transformers processing. 48
3.10 ViT-small : Final classification. 49
3.11 Architecture of the Swin-Base model. 50
3.12 Step 1 : Patch Partition. 50
3.13 Step 2 : a. Flatteninig. 51
3.14 Step 2 : b. Linear Embedding. 51
3.15 Step 3 : Windows partition. 52
3.16 Two Successive Swin Transformer Blocks [38]. 53

LIST OF FIGURES

3.17 Step 4 : Patch Merging. 54
3.18 Swin base : Final classification. 56

4.1 Severity levels images from the dataset [23]. 61
4.2 Data augmentation examples on yellow rust images: (a) original; (b) resized

(224x224); (c) horizontal flip; (d) vertical flip; (e) ± 15◦ rotation; (f) color
jitter (±20%). 63

4.3 Confusion matrix [46]. 64

5.1 Confusion Matrix for ViT-small. 70
5.2 Confusion Matrix for the Swin Base model 73
5.3 Architecture of the proposed combined model. 74
5.4 Confusion Matrix for the Combined model. 78
5.5 Models accuracy comparison. 81
5.6 F1-score per class for each model. 82

LIST OF FIGURES Page

List of Tables

1.1 Disease severity grading standard [21]. 20
1.2 Global state-of-the-art summary of plant disease severity estimation meth-

ods, including accuracy of all tested models. 24

2.1 Details of Vision Transformer model variants [36]. 33
2.2 Input and Output Shapes of Swin Transformer Stages. 36
2.3 Details of Swin Transformer model variants [38]. 40

3.1 Key Parameters of the ViT-Small Model 43
3.2 Key Parameters of the Swin-Base Model. 49

4.1 Severity levels of infection in the Yellow Rust 19 dataset. 61
4.2 Dataset split for Yellow Rust 19. 62
4.3 Training Configuration. 66

5.1 Model Complexity and Training Details for ViT-Small model. 68
5.2 Classification Report for the ViT-small model. 69
5.3 Model Complexity and Evaluation Details for the Swin Base model. 71
5.4 Classification Report for the Swin Base model. 72
5.5 Model Complexity and Evaluation Details for the Combined model. 76
5.6 Classification Report for the Combined model. 77
5.7 Models accuracy comparison. 81
5.8 Performance Comparison with State-of-the-Art Models. 83
5.9 Detailed Comparison with Yellow-Rust-Xception Model. 83
5.10 Dataset Comparison. 84

List of Abbreviations

CNNs Conolutional Neural Networks

AI Artificial Intelligence

ML Machine Learning

NLP Natural Language Processing

RMSE Root Mean Squared Error

ViT Vision Transformer

CLS-token Classification token

MLP Multi Layer Perceptron

FFN Feed Forward Network

MHSA Multi Head Self Attention

LN Layer Normalization

Swin Shifted window

Swin ViT Shifted Window Vision Transformer

W-MSA Window-based Multi-head Self-attention

SW-MSA shifted Win- dow Multi-head Self-attention

GELU Gaussian Error Linear Unit

GAP Global Average Pooling

ReLU Rectified Linear Unit

R Resistant

MR Moderate Resistant

MRMS Moderate Resistant Moderate Susceptible

MS Moderate Susceptible

S Susceptible

General Introduction

Agriculture has always been the main source of livelihood for humanity. The agriculture
sector is undergoing a major transformation with industry 4.0 and big data technolo-
gies [1].

In last decades, agriculture has witnessed a transformative shift with the integration of
advanced technologies to enhance crop yield and ensure food security. One crucial aspect
of this transformation is the utilization of computer vision with advanced machine learn-
ing techniques for the early classification and identification of plant diseases [2]. Moreover,
plant disease severity estimation is a new challenging research issue in precision agriculture
which helps to make effective disease management [3]. Better methods for detection and
further increased accuracy in the estimation of the severity of the disease are demanded [4].

This work addresses the critical challenge of automated plant disease severity as-
sessment in smart agriculture by developing a deep learning framework that combines
two complementary transformer architectures. The proposed solution integrates Vision
Transformer (ViT), which captures global image relationships through comprehensive at-
tention mechanisms, with Swin Transformer, which excels at hierarchical local feature
extraction. By merging these approaches, the hybrid model effectively balances global
context awareness with detailed local pattern recognition, enabling precise classification
of disease progression across six severity stages (Healthy, Resistant, Moderate Resistant,
Moderate Resistant Moderate Susceptible, Moderate Susceptible, Susceptible). When
evaluated on the Wheat Yellow Rust dataset, this combined architecture demonstrates
superior performance compared to individual transformer models, offering a robust and
automated approach for real-time crop health monitoring that can significantly enhance
agricultural decision-making and early intervention strategies.

This thesis is divided into five chapters, structured as follows:

The first chapter introduces the plant leaf disease severity estimation system, outlining
its key steps and reviewing the most recent work carried out in this field. This provides
the foundational context for the study.

The second chapter introduces attention mechanisms and transformer models, which
have revolutionized various fields, especially computer vision. We will explore the funda-
mental concepts of attention, followed by a comprehensive explanation of Vision Trans-
formers ViT and its variants as well as the Swin Transformer and its variants. The chapter
also discusses the motivation behind selecting these models for our study and highlights
the benefits of combining different transformer architectures.

13

LIST OF TABLES

The third chapter presents the models used to estimate disease severity in plant leaves.
These models include transformer-based architectures which are Vision Transformer (ViT)
and Swin Transformer, each designed to extract different aspects of image features. The
chapter focuses on their structure and performance independently.

The fourth chapter details the experimental setup used to evaluate the proposed
combined model for severity estimation. It covers software and hardware environments,
dataset specifics, preprocessing steps, evaluation metrics, and implementation details.

The fifth chapter presents the results obtained using the proposed models. We analyze
their performance in detail and evaluate the effectiveness of our approach in addressing the
problem. Based on the insights gained, we propose a novel combined model that integrates
ViT and Swin Transformer architectures to leverage their complementary strengths. The
features extracted from both branches are concatenated and passed through a classifica-
tion head to predict severity levels between multiple class of diseases. This fusion aims to
improve accuracy by effectively capturing both global and local features.

Finally, we will conclude by summarizing the findings, discussing the limitations of
the proposed approach, and suggesting potential directions for future research to enhance
the system’s performance.

LIST OF TABLES Page 14

Chapter 1

State of the art on plant leaves
disease severity estimation

State of the art on plant leaves disease severity estimation

1.1 Introduction
Plant diseases pose a significant threat to global agricultural productivity and food secu-
rity, accounting for losses of 10 to 30% of the global harvest each year [5]. They manifest
through diverse symptoms that can lead to reduced yields and compromised plant health.
These diseases, caused by fungi, bacteria, and viruses, exhibit distinct pathological char-
acteristics, making accurate identification and management essential for effective disease
control.

This chapter presents a comprehensive overview of current knowledge and method-
ologies used to estimate the severity of plant leaf diseases. Covers the main categories of
plant diseases, their symptoms, traditional and modern severity assessment techniques.
Finnaly, we present state of the art advances in artificial intelligence for plant disease
severity estimation.

1.2 Major Categories of plant leaf diseases
Plant leaf diseases can be classified based on their causal agents into two categories : [6]

• Infectious diseases : The infectious agents are called pathogens and can be
grouped as follows: viruses, bacteria, fungi, nematodes, and parasitic seed plants.
These pathogens can spread rapidly and severely affect plant health.

• Non-infectious diseases : The non-infectious agents are caused directly or indi-
rectly by inappropriate physical, chemical or other abiotic environmental factors [7].

Infectious diseases are the most damaging and are responsible for the greatest losses
in crop production worldwide.

1.2.1 Fungal Diseases
Fungal Diseases are an infectious disease. Pathogenic fungi can lead to significant eco-
logical changes. It causes up to 30% of crop diseases. Notable outbreaks include Cry-
phonectria parasitica on chestnut trees, causing nearly total defoliation, and Phytophthora
cinnamomi, which leads to root rot in many crops. These fungi can affect multiple plant
species and involve other organisms like beetles and birds [8].

Figure 1.1: Black spot [9]. Figure 1.2: Yellow rust [9].

Introduction Page 16

State of the art on plant leaves disease severity estimation

As shown in Figure 1.1 and Figure 1.2, both black spot and rust are fungal diseases
that affect plant leaves, black spot causes dark lesions on the upper leaf surface, while rust
forms rust-colored pustules underneath. These fungi thrive in moist conditions and spread
through water, wind, and insects, leading to leaf discoloration and premature drop [9].

1.2.2 Bacterial Diseases
Plant diseases caused by bacterial pathogens are an infectious diseases that place major
constraints on crop production and cause significant annual losses on a global scale. Bac-
terial leaf diseases are hard to control in agriculture. Some bacteria grow fast in good
conditions, like Erwinia amylovora in fire blight. Others live on healthy-looking leaves
or in the soil, like Pseudomonas syringae and Ralstonia solanacearum. Some hide in-
side plants where sprays cant reach, like Candidatus Liberibacter spp. in citrus. Insects
can also spread these diseases. Bacteria can survive on old plants or tools and even on
seeds without showing signs. To manage them, farmers need to use resistant plants, good
timing, and a mix of treatments and farming practices [10].

Figure 1.3: Pepper bacterial diseases [11].

Pepper plants are also susceptible to bacterial diseases, which typically cause water-
soaked spots that later turn dark and necrotic. As shown in Figure 1.3, these symptoms
can lead to reduced photosynthesis and premature leaf drop, significantly affecting crop
yield.

1.2.3 Viral Diseases
Viral plant diseases are caused by viruses and viroidstiny infectious agents that severely
affect plant health. Once infected, plants are difficult to cure, making these diseases a ma-
jor threat to global crop production. They spread through contact with infected plants,
soil, seeds, pollen, insects, or vegetative reproduction. Common symptoms include mal-
formations, necrosis, dwarfism, and discoloration. Notable viral diseases include tobacco
mosaic, tomato spotted wilt, potato spindle tuber, cucumber mosaic, barley yellow dwarf,
prunus necrotic ring spot, and citrus exocortisall of which significantly affect plant growth
and crop yields [12].

Tomato plants are vulnerable to viral infections such as the mosaic virus, which causes
mottled, light and dark green patterns on the leaves, often leading to leaf distortion
and reduced growth. As illustrated in Figure 1.4, these symptoms are characteristic of

Major Categories of plant leaf diseases Page 17

State of the art on plant leaves disease severity estimation

the tomato mosaic virus, which spreads through infected tools, hands, or plant-to-plant
contact.

Figure 1.4: Tomato mozaic viral disease [11].

1.3 Plant disease severity
Plant disease severity refers to the quantitative measure of the extent of visible symptoms
on plant tissue, typically expressed as the proportion or percentage of affected tissue. It
is a crucial variable for understanding the impact of plant diseases and is widely used in
research, disease management, and decision-making processes [17].

This metric holds significant practical importance for agricultural management:

• Treatment Guidance: Severity levels directly determine the type, timing, and
dosage of control measures (e.g., fungicides, pesticides). Accurate assessment pre-
vents under-application (risking crop loss) and over-application (increasing costs
and environmental impact).

• Yield Prediction: Higher severity correlates strongly with reduced photosynthetic
area, impaired plant growth, and diminished harvestable yield.

• Epidemic Monitoring: Tracking severity over time is vital for understanding dis-
ease progression, evaluating cultivar resistance, and assessing management strategy
efficacy.

1.4 Severity assessement methods
Accurate visual assessment of plant disease severity plays an important role in agricultural
production. It enables the evaluation of treatment efficacy, supports yield loss estimation,
and helps monitor plant development. However, traditional methods are often affected
by subjectivity and variability between raters. Disease severity is typically assessed us-
ing various types of visual scales, which can be broadly categorized into qualitative and
quantitative methods.

Visual severity assessment typically uses four types of scales: nominal (descriptive),
ordinal, interval (category), and ratio scales, each offering varying levels of precision and
objectivity [18].

Plant disease severity Page 18

State of the art on plant leaves disease severity estimation

1.4.1 Qualitative Scales
• Descriptive Scale: A simple and subjective method that categorizes disease sever-

ity using terms like healthy stage, early stage, middle stage, and end stage, as shown
in Figure 1.5. Its lack of quantitative definitions limits its accuracy [18].

Figure 1.5: Leaf images of four severity stages (healthy, early, middle and end) of apple
black rot disease [19].

• Qualitative Ordinal Scale: An enhanced version of the descriptive scale that
uses ordered numerical values (e.g., from 0 to 5) to represent increasing severity
levels. It is commonly used for diseases, especially viral ones, where symptoms are
difficult to quantify precisely [18].

1.4.2 Quantitative Scales
Quantitative scales assign numerical values to assess disease severity more objectively.

• Quantitative Ordinal Scale: This scale categorizes symptoms by percentage
ranges of affected areas. It includes equal interval scales, which may overestimate
low severities, and unequal interval scales. [18].

Table 1.1 presents the disease severity grading standard based on the proportion of
disease spots observed on the leaf surface. This grading system ranges from Level 0,
indicating a healthy leaf with no visible symptoms, to Level 5, where more than 50%
of the leaf area is affected. As illustrated in Figure 1.6, each level corresponds to a
distinct visual pattern of disease spread, which serves as a reference for consistent
labeling during dataset annotation and model evaluation.

Severity assessement methods Page 19

State of the art on plant leaves disease severity estimation

Table 1.1: Disease severity grading standard [21].

Disease Grade Proportion of Disease Spots

Level 0 p = 0%

Level 1 0 < p ≤ 5%

Level 2 5% < p ≤ 10%

Level 3 10% < p ≤ 25%

Level 4 25% < p ≤ 50%

Level 5 50% < p ≤ 100%

Figure 1.6: Example plot of two diseases severity ratings in cucumber [21].

• Ratio Scale: This method provides a direct percentage estimate (from 0 to 100%)
of symptomatic organs, as illustrated in Figure 1.7. It offers high precision but
requiring experienced raters [18].

Figure 1.7: Severity estimation using ratio scale for : a. spot blotch severity on wheat
leaves. b. Frogeye leaf spot on soybean [17].

Severity assessement methods Page 20

State of the art on plant leaves disease severity estimation

1.4.3 Advanced methods
Advancements in plant disease diagnostics have introduced automated and high-precision
methods that address the limitations of traditional techniques. The most notable innova-
tions include machine learning-based approaches. Convolutional Neural Networks (CNNs)
and Transformers based models are particularly effective in automatically learning fea-
tures from images.

1.4.3.1 Deep learning models

CNN and Transformers based models have revolutionized plant disease severity estima-
tion by enabling automated classification of leaf diseases from images. These models
analyze visual symptoms with high precision, often surpassing traditional methods in
accuracy [20].

1.4.4 Limitations of traditional Approaches
These traditional methods face inherent constraints:

• Subjectivity: Significant rating variability due to assessor experience, perception,
and environmental conditions

• Resource Intensity: Time-consuming processes requiring skilled personnel, im-
practical for large-scale monitoring

• Symptom Variability: Symptoms vary widely depending on plant species, disease
stage, and environmental conditions.

• Scalability Issues: Logistically challenging and costly to implement consistently
across diverse agricultural landscapes

1.5 Wheat Yellow rust
Wheat yellow rust, or stripe rust, is a fungal disease caused by Puccinia striiformis f.
sp. tritici, primarily affecting wheat leaves, though it can also infect stems and spikes,
leading to severe grain yield and quality loss [13].
This disease was chosen as the focus of our study due to its widespread presence and
significant threat to wheat production globally.

As shown in Figure 1.8 and Figure 1.9, Yellow rust symptoms begin with chlorotic
streaks on wheat leaves, which completely colonize the leaves and consume the nutrients
synthesized by the host plant. In severe cases, the infection spreads to spikes and stems,
leading to significant yield losses.

Wheat Yellow rust Page 21

State of the art on plant leaves disease severity estimation

Figure 1.8: Wheat leaf with Yellow Rust
infection [14].

Figure 1.9: Zoomed in: Wheat leaf with
Yellow Rust infection [15].

Wheat yellow rust is a major threat to wheat production worldwide due to its ability
to spread rapidly and adapt to new environments. The disease can cause yield losses of
up to 70% under favorable conditions [16], making early detection and accurate severity
estimation essential for effective management. Monitoring yellow rust progression helps
optimize control strategies, reduce chemical usage, and support breeding programs for
resistant varieties.

1.6 State of the art
Accurate estimation of plant disease severity is essential for effective crop management.
This section reviews state-of-the-art approaches to assess disease severity, highlighting key
models, datasets, and performance metrics to provide a comparative analysis of current
research trends.

Hayit et al., [23] proposed a deep convolutional neural network-based model,
Yellow-Rust-Xception, to classify the severity of yellow rust disease in wheat.
Using 5,421 wheat leaf images, the model categorizes five levelsno disease, resistant (R),
moderately resistant (MR), moderately susceptible (MS), and susceptible (S)and achieved
91% accuracy.

Wang et al., [25] proposed a Sliding Segmentation Algorithm (SSA) to enhance
limited training data for soybean bacterial blight. They compared multiple deep learn-
ing modelsVGG16 (93.21%), Vision Transformer (94.85%), EfficientNet (95.47%), Swin
Transformer V2 (98.12%), and ResNet-50 (96.73%)with the Swin Transformer achieving
99.64% accuracy on 15,600 images across five classes.

Yang et al., [26] proposed a novel deep learning-based framework, LDI-NET,
integrating CNNs and transformers to simultaneously identify plant type, disease, and
severity. The architecture consists of three main modules: feature tokenizer, token
encoder, and multi-label decoder. The feature tokenizer module leverages both
CNNs and transformers, ensuring the extraction of both local and global con-
textual information from plant leaf images. The token encoder module enhances
contextual relationships among extracted tokens, improving disease severity identification.
The study was conducted using the AI Challenger 2018 dataset, comprising 31,718
training images and achieved an overall accuracy of 87.40%.

Kundu et al., [27] proposed a deep learning-based framework, MaizeNet for

State of the art Page 22

State of the art on plant leaves disease severity estimation

automatic disease severity prediction and crop loss estimation in maize. By segmenting
diseased regions using K-Means clustering and classifying severity on a 19 scale, the model
achieved 98.50% accuracy on 2,996 images, with TLB and Rust measured at 57.48% and
82.13%, respectively.

Parikh et al., [28] proposed a two-step classification framework for detecting and
estimating the severity of Grey Mildew disease in cotton leaves from unconstrained
images. The first step segments leaves from a cluttered background using statistical
color and texture features processed through a K-Nearest Neighbor (KNN) classifier.
The second step classifies healthy and diseased regions based on hue and luminance
features in the HSV color space. Severity estimation is calculated by measuring the pro-
portion of diseased pixels relative to the leaf area. The model achieved 82.5% accuracy
on 190 images.

Wang et al., [29] proposed a deep learning-based approach for automatic severity
estimation of apple black rot. Using transfer learning on the PlantVillage dataset, they
tested VGG16, VGG19, Inception-V3, and ResNet50achieving 90.4%, 89.1%, 85.7%, and
80.0% accuracy, respectively; a shallow CNN (8 convolutional layers) reached 79.3%.

Patil et al., [30] proposed an image processing-based method to estimate the
severity of brown spot disease in sugarcane. By segmenting the leaf area with simple
thresholding and the lesion area via Triangle thresholding. The severity is calculated as
the ratio of diseased area to total leaf area. The method, tested on 90 samples, achieved
98.60% accuracy.

The table 1.2 summarizes several state-of-the-art approaches proposed in the literature
for plant disease detection and severity estimation. It highlights the different models,
datasets, and evaluation metrics used, providing a clear comparison of their performance
and methodological choices.

State of the art Page 23

State of the art on plant leaves disease severity estimation

Table 1.2: Global state-of-the-art summary of plant disease severity estimation methods,
including accuracy of all tested models.

Au-
thors Plant Type Number of

Classes Dataset Number
of Images Model Used Accuracy Year

[23] Wheat
6

Healthy,R

MR, MRMS

MS, S

Yellow-
Rust 19 15000 Yellow-Rust-

Xception 91% 2021

[24] Wheat
6

Healthy,R

MR, MRMS

MS, S

Yellow-
Rust 16 5,242 C-DenseNet

(DenseNet + CBAM)
97.99% 2020

[25] Soybean
5

(Normal, Early,

Middle, Late,

Background)

private 15,600

VGG16

Vision Transformer

EfficientNet

Swin Transformer V2

ResNet-50

Swin Transformer

93.21%

94.85%

95.47%

98.12%

96.73%

99.64%

2023

[26]

Apple, Cherry,

Citrus, Corn,

Grape, Peach,

Pepper, Potato,

Pumpkin, Soybean,

Strawberry,

Tomato.

3

(Healthy,

General,

Severe)

AI

Challenger

2018

34534 LDI-NET

(CNN+Transformer)
87.40% 2024

[27] Maize
3

(Mild,

Moderate,

Severe)

private 2,996 MaizeNet

(CNN)
98.50% 2022

[28] Cotton
3

(Stage 1,

Stage 2,

Stage 3)

private 190
KNN

(HSV +

Texture Features)

82.5% 2016

[29] Apple (Black
Rot)

4

(Healthy,

Early,

Middle,

End)

PlantVil-
lage 2086

VGG16

VGG19

Inception-V3

ResNet50

Shallow CNN 8

90.4%

89.1%

85.7%

80.0%

79.3%

2017

[30] Sugarcane 5 private 90 Triangle
Thresholding 98.60% 2011

[31] Cucumber Continuous scale

(percentage)
private 2976

DM-BiSeNet

(BiSeNet V2 +

MobileNetV3 +

Depthwise Separable

Convolutions)

R2 = 0.9407

RMSE=1.068
2024

[32] Leafminer
damage

Continuous

(percentage)
private 4,782

DeepLab-Leafminer

(Edge-aware module

Canny loss)

92.38% 2025

State of the art Page 24

State of the art on plant leaves disease severity estimation

1.7 Conclusion
The estimation of plant leaf disease severity is a vital component of precision agriculture,
offering the potential to significantly enhance crop management and reduce yield losses.
This chapter has explored the nature and impact of various plant leaf diseases, as well
as the evolution of disease severity diagnostic techniques from traditional visual inspec-
tions to advanced deep learning-based approaches. Recent progress, particularly with the
integration of Convolutional Neural Networks and Transformer-based architectures, has
enabled more accurate, scalable, and automated assessment of disease severity across a
variety of plant species. As reviewed, state-of-the-art models demonstrate promising per-
formance in diverse agricultural contexts, benefiting from large annotated datasets and
improved computational methods.

In the next chapter, we will focus on attention mechanisms and Transformer-based
models. These models, first used in natural language processing, have recently been
applied with success to image analysis tasks. We will explain how they work and why
they are well-suited for plant disease severity estimation.

Conclusion Page 25

Chapter 2

Transformers and attention
mechanism

Transformers and attention mechanism

2.1 Introduction
In recent years, transformers have revolutionized the field of deep learning, especially in
NLP (natural language processing) and, more recently, in computer vision. At the heart
of these models lies the attention mechanism, a powerful concept that enables models
to dynamically focus on the most relevant parts of the input data. This revolutionary
approach represents a fundamental departure from traditional sequential architectures,
as transformers move away from recurrence and focus on self-attention mechanisms to
process data in parallel. Unlike RNNs (Reccurent Neural Networks) that process se-
quences step-by-step and struggle with vanishing gradients over long distances, transform-
ers can capture long-range dependencies without relying on recurrence, allowing them to
directly model relationships between any two positions in a sequence regardless of their
distance [33].

Transformers have proven their exceptional performance across numerous fields: nat-
ural language processing (powering models like GPT and BERT for translation, text
generation, and understanding), computer vision (Vision Transformers for image clas-
sification and object detection), speech recognition, code generation and programming
assistance, multimodal tasks (combining text, images, and audio), etc. [34].

This chapter introduces the foundations of attention, then explores two of the most
influential transformer architectures in the field of vision: the Vision Transformer (ViT)
and the Swin (Shifted Window) Transformer. We present their architectures, discuss their
key variants, and highlight how they adapt the transformer paradigm to effectively process
image data. Also, we justify our choice of these two architectures for our application, as
they represent complementary approaches to visual processing, ViT with global attention,
and Swin with hierarchical local attention.

2.2 Attention mechanism
Attention mechanism emerged as a fundamental invention in artificial intelligence (IA)
and machine learning (ML) that redefined the potential of deep learning models.

Attention mechanism is a technique used in deep learning models that allows the
model to choose focus on particular regions of the input data. When dealing with lengthy
data sequences, such as in computer vision or natural language processing (NLP) jobs,
attention mechanism is particularly beneficial. Attention mechanism allows the model to
pay different levels of attention to distinct bits of data instead of processing all inputs in
the same way. It allows models to concentrate on particular segments of an image that
are more informative for disease severity classification.

By assigning different weights or attention scores to various parts of an image, these
mechanisms enable the model to prioritize disease stage-related features and disregard
irrelevant or misleading information.

The influential paper "Attention Is All You Need" [35], published by Vaswani et al.

Introduction Page 27

Transformers and attention mechanism

(2017), marked a significant advancement in classification tasks across machine learning
applications. Prior to this innovation, classification models primarily relied on convolu-
tional neural networks or recurrent architectures with limited ability to weigh the impor-
tance of different input features. The attention mechanism addressed this limitation by
enabling models to assign varying levels of significance to different parts of the input data
during classification processes.

By implementing self-attention, classification models gained the ability to create context-
aware representations of input features, leading to more accurate discrimination between
classes and improved performance on complex categorization problems. The subsequent
adoption of Transformer-based architectures in classification systems demonstrated sub-
stantial improvements over previous methods, particularly when handling long sequences
or when interpretability of classification decisions was required.

2.3 Motivation for models selection

2.3.1 Choice of the models
In recent years, numerous Transformer-based architectures have been proposed for com-
puter vision tasks. Among them, we selected Vision Transformer (ViT) and Swin Trans-
former as the core components of our model due to their complementary characteristics
and strong performance.

ViT is the first pure Transformer model successfully applied to image classification,
introducing a patch-based tokenization approach that enables global context modeling
through self-attention. However, ViT does not naturally take into account important
image properties, such as spatial locality. This can make it less effective when working
with smaller datasets.

Swin Transformer, on the other hand, addresses this limitation by introducing a hi-
erarchical structure with shifted windows, allowing it to capture both local and global
dependencies efficiently. Its design also makes it more scalable and suitable for dense
prediction tasks.

2.4 Vision Transformer (ViT)
The Vision Transformer (ViT), introduced by Dosovitskiy et al [36], signifies a paradigm
shift in the domain of computer vision by leveraging self-attention mechanismsoriginally
devised for natural language processingto vision tasks. Its capability to capture long-range
dependencies through self-attention makes it particularly suited for complex image un-
derstanding tasks. The core innovation of ViT lies in its treatment of images as sequences
of patches rather than utilizing the spatial inductive biases inherent to convolutional op-
erations. This section delineates the principal components and sequential operations of
ViT.

Motivation for models selection Page 28

Transformers and attention mechanism

2.4.1 ViT applications
Vision Transformers have demonstrated remarkable versatility across diverse computer
vision tasks, extending beyond traditional image classification to complex multimodal
applications [37] :

• Image Classification: Categorizing images into predefined classes. ViTs outper-
form CNNs on very large datasets.

• Image Captioning: Generating descriptive text captions for images by learning
general visual representations.

• Image Segmentation: Partitioning images into semantic regions.

• Anomaly Detection: Identifying unusual patterns in images using reconstruction-
based approaches with patch embedding.

• Action Recognition: Classifying human actions in videos by extracting spatiotem-
poral tokens through transformer layers.

2.5 ViT architecture
The Vision Transformer (ViT) architecture, as illustrated in Figure 2.1, begins by dividing
an input image into fixed-size patches, which are flattened and mapped into a high-
dimensional embedding space via a learnable linear projection. Positional encodings are
then added to these embeddings, and a dedicated class token is appended to capture
global context. The resulting token sequence is processed by a series of transformer
encoder layers, as shown in Figure 2.2, each comprising multi-head self-attention and
feed-forward sub-networks, to iteratively refine the representation. Finally, the output
corresponding to the class token is passed through a classification head to produce the
final prediction.

Figure 2.1: Vision Transformer architecture [36].

ViT architecture Page 29

Transformers and attention mechanism

2.5.1 Patch Extraction and Linear Embedding
An input image of dimensions H × W with C channels is divided into a grid of non-
overlapping patches, each of size P × P . This operation yields a total of N patches :

N =
H ×W

P 2
(2.1)

Each patch is subsequently flattened into a one-dimensional vector of length P 2C. A
learned linear projection, represented by the weight matrix Wproj ∈ R(P 2C)×D, transforms
each flattened patch into a D-dimensional embedding, as follows:

x(i)
p = Wproj · vec(P(i)), (2.2)

where P(i) denotes the ith patch. This process preserves local structural informa-
tion while converting the spatial image into a sequential format amenable to transformer
processing.

2.5.2 Incorporation of Positional Encodings and Class Token
Augmentation

Given that the patch extraction process disregards the original spatial order, it is necessary
to reintroduce positional information. This is achieved by adding learnable positional
encodings Epos ∈ R(N+1)×D to the patch embeddings. Additionally, a special class token
xclass ∈ RD is prepended to the sequence, resulting in:

z0 =
[
xclass; x(1)

p + E(1)
pos; . . . ; x(N)

p + E(N)
pos

]
. (2.3)

This class token is designed to aggregate information across the entire image, serving
as the basis for subsequent classification tasks.

2.5.3 Transformer Encoder Blocks
The enriched sequence z0 is then input to a stack of L transformer encoder blocks, as
shown in Figure 2.2 :

Each encoder block is comprised of two primary sub-layers:

• Multi-Head Self-Attention (MHSA): For each token, queries, keys, and values
are computed via learned linear mappings.

Given an input sequence z ∈ RN×D, where N is the number of tokens and D is the
input feature dimension, we compute the queries (q), keys (k), and values (v) using
a single learned linear projection:

[q, k, v] = zUqkv,Uqkv ∈ RD×3Dh (2.4)

Each token’s query interacts with all keys through a dot product to compute the
attention weights:

ViT architecture Page 30

Transformers and attention mechanism

A = softmax
(

qk>
√
Dh

)
, A ∈ RN×N (2.5)

These attention weights are then used to compute a weighted sum of the values:

SA(z) = Av (2.6)

To improve model capacity, multi-head self-attention (MHSA) runs k self-attention
computations (called heads) in parallel. Each head has its own projection matrices.
The outputs of all heads are concatenated and linearly projected:

MHSA(z) = [SA1(z); · · · ; SAk(z)]Umsa, Umsa ∈ Rk·Dh×D (2.7)

This design enables the model to jointly attend to information from different rep-
resentation subspaces at different positions.

Figure 2.2: Transformer Encoder [36].

• Feed-Forward Neural Network (FFN): The FFN is applied independently to
each token and is identical across all positions. It consists of a two-layer multilayer
perceptron (MLP) with a non-linear activation in between.
Given an input x ∈ RD (the output of the MHSA sub-layer), the FFN transforms
it as follows:

FFN(x) = W2 φ(W1x + b1) + b2 (2.8)

where:

– W1 ∈ RD×Dff , W2 ∈ RDff×D are learnable weight matrices,
– b1 ∈ RDff , b2 ∈ RD are bias terms,
– φ(·) is a non-linear activation function, GELU (Gaussian Error Linear Unit).

This structure expands the feature dimension from D to 4D, applies the activation,
and projects it back to dimension D.

ViT architecture Page 31

Transformers and attention mechanism

To facilitate training, residual connections and layer normalization are applied
around both the MHSA and FFN sub-layers. For an input x, a generic sub-layer is
wrapped as:

Output = LayerNorm(x + SubLayer(x)) (2.9)

This design helps stabilize training, preserves information through residual paths,
and improves gradient flow.

Together, these components enable the encoder blocks to iteratively refine the ex-
tracted features, capturing both local and global patterns in the image.

2.5.4 Final Classification
After processing through the transformer encoder blocks, the output corresponding to
the class tokennow enriched with aggregated contextual informationis extracted. This
output is subsequently fed into a classification head, typically implemented as a multilayer
perceptron (MLP), to map the learned representation to the final output space:

ŷ = MLP(zclass). (2.10)

2.6 ViT variants
The original Vision Transformer (ViT) framework has since inspired the development of
several variants designed to accommodate varying computational budgets and applica-
tion requirements. In particular, models such as ViT-Tiny, ViT-Small, ViT-Base, and
ViT-Large offer distinct parameterizations that directly influence model capacity, compu-
tational complexity, and overall performance.

Parameterization and Model Complexity
ViT variants are primarily differentiated by several hyperparameters, including:

• Depth (L): The number of transformer encoder layers, with deeper models gener-
ally providing enhanced representational capabilities.

• Embedding Dimension (D): The dimensionality of the token embeddings. A
higher dimensionality permits a richer representation of image patches.

• Number of Self-Attention Heads: This parameter dictates the number of par-
allel attention operations, which allow the model to capture diverse relationships
among tokens.

• MLP Dimension: The size of the feed-forward sub-network within each trans-
former block, often set as a multiple of the embedding dimension.

A judicious selection of these parameters is crucial when deploying vision transformers in
resource-constrained environments or when higher performance is demanded by complex
visual tasks.

ViT variants Page 32

Transformers and attention mechanism

Table 2.1: Details of Vision Transformer model variants [36].

Model Layers Hidden size D MLP size Heads Params

ViT-Tiny 12 192 768 3 5.7M
ViT-Small 12 384 1536 6 22M
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

The table 2.1 presents the configurations of various Vision Transformer (ViT) model
variants, including ViT-Tiny, ViT-Small, ViT-Base, and ViT-Large. It outlines key pa-
rameters such as the number of layers (L), model dimension (D), self-attention heads,
and total parameter count, which range from 5-10 million for ViT-Tiny to 307 million
for ViT-Large. These configurations are critical in determining computational efficiency
and model capacity, thereby guiding the selection of an optimal variant based on resource
constraints and task-specific performance requirements in visual processing applications.

2.7 Swin (Shifted Window) Transformer
The Swin Transformer [38] introduces an innovative architectural framework for visual
representation learning, effectively integrating the expressive power of Transformer mod-
els with the computational efficiency and locality biases essential for computer vision
applications. Unlike earlier approaches that compute global self-attention over all image
tokens, the Swin Transformer introduces a hierarchical architecture that partitions an
image into local windows and subsequently aggregates features across multiple scales, as
illustrated in Figure 2.3. This design not only reduces computational complexity but also
enables the effective modeling of visual entities at different resolutions [38].

Figure 2.3: a. Swin Transformer. b. Vision Transformer [38].

2.7.1 Applications of Swin Transformer
The Swin Transformer has demonstrated strong performance across various domains due
to its hierarchical architecture and efficient attention mechanism. Its applications span
both traditional computer vision tasks and extend into other areas such as medical imaging
and natural language processing [39]:

Swin (Shifted Window) Transformer Page 33

Transformers and attention mechanism

• Image Classification: T It uses its hierarchical structure for feature extraction at
multiple scale and these features help in classification of image.

• Object Detection: It detects fine details present in image this helps in under-
standing its global context. This can be used to detect various objects present in a
image.

• Image Segmentation:Feature extraction at multiple scale helps in segmenting
image into different distinct regions.

• Medical Imaging: Swin Transformers precise feature extraction aids in identifying
anomalies in medical scans, contributing to improved diagnostic performance in
healthcare applications.

• Natural Language Processing (NLP): Although primarily designed for com-
puter vision, Swin Transformer can be adapted for NLP tasks by modifying its
architecture to process sequential textual data.

2.8 Swin architecture
As illustrated in Figure 2.4, the Swin Transformer follows a hierarchical feature repre-
sentation approach, where the input image undergoes successive transformations through
patch partitioning, embedding, and multi-head self-attention (MHSA) in shifted windows.

Each stage is designed to efficiently balance local feature extraction and global context
aggregation while reducing the spatial resolution of the feature map and increasing the
depth of representations.

The Swin Transformer’s hierarchical design allocates distinct stages to different vision
applications: initial stages (Stage 12) focus on local feature extraction (e.g., object detec-
tion, instance segmentation) using high-resolution feature maps, while later stages (Stage
34) capture global semantic context, making them ideal for image classification and scene
understanding

Figure 2.4: Swin architecture [38].

The process starts with an input image of dimensions H ×W × 3, where H and W

denote the height and width, respectively, and the three channels correspond to RGB

Swin architecture Page 34

Transformers and attention mechanism

color information. This image is the raw data that is progressively transformed into a
compact, high-level representation.

First, the input image is passed through a Patch Partition, to split it into a fixed-size
non-overlapping patches.

Figure 2.5: Patch Partition [40].

A patch size of 4 x 4 is used and the Patch Partition gives us H/4 x W/4 patches.
Each patch has a channel dimension of 4 x 4 x 3 = 48 pixels and is treated as a token
whose feature vector is derived from raw pixel values.

2.8.1 Stage 1: Patch Partitioning and Embedding
• Linear embedding layer: Each patch is projected into a feature vector of size C

using a linear layer. This creates a new representation suitable for the transformer.

• The resulting feature map is then passed through a Swin Transformer block,
which keeps the same shape for both input and output.

• Swin Transformer blocks (see Figure 3.16) applies attention mechanisms:

– Window-based multi-head self-attention (W-MSA).

– Shifted window multi-head self-attention (SW-MSA).

• These blocks allow the model to capture relationships between patches within local
windows and across neighboring windows.
→ Final output shape of this stage: H

4
× W

4
× C

2.8.2 Stage 2: Patch Merging and Feature Transformation

→ Input shape of this stage: H
4
× W

4
× C

1. The first patch merging layer concatenates the features of 2 x 2 neighboring
patches and applies a linear layer, reducing the number of tokens by 4 x (effectively
downsampling by a factor of 2).

2. This stage introduces a higher-dimension representation (2C instead of C) while
maintaining spatial hierarchy.

Swin architecture Page 35

Transformers and attention mechanism

3. Successive Swin Transformer blocks 3.16 operate on these merged patches, re-
fining feature extraction.

→ Output shape of this stage: H
8
× W

8
× 2C

2.8.3 Stage 3 and Stage 4: Progressive Feature Refinement
1. Each subsequent stage further reduces the resolution by applying additional patch

merging layers, progressively increasing the depth of feature representations and a
successive Swin Transformer blocks.

2. The final output contains a compact yet semantically rich representation suitable
for various computer vision tasks like image classification and dense prediction.

Table 2.2: Input and Output Shapes of Swin Transformer Stages.

Stage Input Shape Output Shape

Stage 1 H ×W × 3 H
4
× W

4
× C

Stage 2 H
4
× W

4
× C H

8
× W

8
× 2C

Stage 3 H
8
× W

8
× 2C H

16
× W

16
× 4C

Stage 4 H
16

× W
16

× 4C H
32

× W
32

× 8C

As shown in Table 2.2, the Swin Transformer employs a hierarchical architecture
where each stage progressively reduces spatial resolution while expanding channel depth.
The network transforms an input image (H × W × 3) into a high-dimensional feature
representation (H

32
× W

32
× 8C) through successive downsampling operations.

2.8.4 Inside Two Successive Swin Transformer Blocks
Each Swin Transformer block (Figure 3.16) consists of multiple layers that sequentially
transform feature representations while maintaining efficiency through window-based self-
attention.

Figure 2.6: Two successive Swin Transformer Blocks with regular and shifted windowing
configurations [38].

Swin architecture Page 36

Transformers and attention mechanism

With the shifted window partitioning approach, consecutive Swin Transformer blocks
are computed as :

ẑl = W-MSA
(
LN
(
zl−1

))
+ zl−1, (2.11)

zl = MLP
(
LN
(
ẑl
))

+ ẑl, (2.12)

ẑl+1 = SW-MSA
(
LN
(
zl
))

+ zl, (2.13)

zl+1 = MLP
(
LN
(
ẑl+1

))
+ ẑl+1, (2.14)

Where zl and ẑl denote the outputs of the MLP and self-attention sub-layers at block l,
respectively. W-MSA and SW-MSA refer to window-based multi-head self-attention with
regular and shifted partitioning, respectively, as illustrated in Figure 3.16. Specifically,
Equations (2.11) and (2.12) describe the operations in the first block (W-MSA), while
Equations (2.13) and (2.14) correspond to the second block (SW-MSA).

1. First Swin Transformer Block: Window-Based Multi-Head Self-Attention
(W-MSA) :

• Layer Normalization (LN): Before computing self-attention, each token em-
bedding undergoes LayerNorm (LN) to stabilize training and normalize feature
distributions.

• Multi-Head Self-Attention (W-MSA): Instead of computing self-attention
globally, attention is applied within local non-overlapping windows of size
M ×M , as shown in Figure 2.7, and calculated using the expression 2.15:

Attention(Qi, Kj, Vj) = Softmaxj

(
QiK

>
j√
d

+Bi,j

)
Vj (2.15)

– Where :
– Q : Query matrix: the input being processed.
– K : Key matrix: used to match against the query.
– V : Value matrix: holds the information to be aggregated.
– D : Scaling factor (usually

√
dk) to prevent large dot product values.

– softmax : Converts similarity scores into attention weights.
— The relative position bias Bi,j : encodes the spatial relationship between
tokens i and j within a local window. Instead of using absolute positional
encodings, the model learns a set of biases based on the relative positions (e.g.,
token i is 2 steps to the right of token j), which allows for better translation-
invariance and locality in vision tasks. These biases are added directly to the
attention logits before the softmax, influencing how much attention is paid
based on relative positions.
This operation allows local contextual feature extraction while reducing com-
putational complexity.

Swin architecture Page 37

Transformers and attention mechanism

Figure 2.7: W-MSA in Swin Transformer [40].

• Residual Connection: The attended tokens are added back to the original
input, preventing gradient vanishing.
This results in the intermediate representation ẑl, as defined in Equation (2.11).

• MLP (Multi-Layer Perceptron) block: After the attention mechanism, a
two-layer MLP is applied to each token independently. This helps the model
learn more complex feature transformations. The MLP consists of:

– A linear layer with weight matrix W1.
– A non-linear activation function: GELU (Gaussian Error Linear Unit).
– Another linear layer with weight matrix W2.

This can be written as:
x′ = GELU(W1x)W2

Here:
– x is the input token embedding
– W1 projects x to a higher-dimensional space (increasing capacity)
– GELU activation: The Gaussian Error Linear Unit (GELU) is a smooth,

non-linear activation function. It is defined as:

GELU(x) = x · Φ(x), (2.16)

where Φ(x) is the standard Gaussian CDF1.
– W2 projects back to the original dimension

This process allows the model to refine the features learned by the attention
mechanism.

• Second Layer Normalization (LN): Another normalization step ensures
stable feature propagation.

1The cumulative distribution function (CDF) gives the probability that a standard normal variable is
less than or equal to x. It is defined as: Φ(x) = 1√

2π

∫ x

−∞ e−t2/2dt.
In a Transformer, the CDF is used in the GELU activation function to provide a more probabilistic and
smooth behavior to neuron activation.

Swin architecture Page 38

Transformers and attention mechanism

• Residual Connection: The processed features are added back to the input
of the MLP, improving network stability.
This yields the output zl, as shown in Equation (2.12).

2. Second Swin Transformer Block: Shifted Window Multi-Head Self-Attention
(SW-MSA) :

• This block follows the same structure as the first Swin Transformer block, with
the key difference being the use of (SW-MSA) instead of W-MSA.

• The shifted windows allow cross-window connections, enabling better modeling
of global dependencies without significantly increasing computational complex-
ity.

2.8.5 Cyclic Shift
To enhance cross-window information exchange while maintaining computational effi-
ciency, the Swin Transformer introduces a cyclic shift strategy prior to the self-attention
operation. Specifically, in the Shifted Window Multi-Head Self-Attention (SW-MSA)
module, the input feature map is shifted by a fixed number of pixels (typically half the
window size) along the spatial dimensions before window partitioning. This shift brings
tokens from neighboring windows into the same local window, allowing information ex-
change across regions (see Figure 2.8).

Figure 2.8: Illustration of efficient batch computation approach for self-attention in shifted
window partitioning [38].

However, this shift also introduces tokens from different original windows into the
same attention window, which may result in unintended connections. To prevent such
cross-window attention, a binary attention mask is applied during the computation of
self-attention. This mask assigns zero to allowed token pairs and large negative values
(e.g., −∞) to disallowed ones, effectively blocking attention between unrelated tokens. It
ensures each token only attends to others from the same window prior to shifting, pre-
serving local structure while enabling hierarchical modeling.

After attention is computed, a reverse cyclic shift restores the original spatial align-
ment of tokens.

Swin architecture Page 39

Transformers and attention mechanism

2.9 Swin Variants
The Swin Transformer is designed with multiple variants to balance computational cost
and performance for various vision tasks. The main variantsSwin-Tiny, Swin-Small, Swin-
Base, and Swin-Largediffer primarily in terms of network depth, embedding dimensions,
and the number of attention heads. These configuration differences allow practitioners
to select a variant that best suits the available computational resources and specific task
requirements.
Table 2.3 summarizes the common configurations for these variants where depth and
number of heads are given per stage.

Table 2.3: Details of Swin Transformer model variants [38].

Variant Layers Embedding Dim (D) Attention Heads Params

Swin-Tiny [2, 2, 6, 2] 96 [3, 6, 12, 24] 29M
Swin-Small [2, 2, 18, 2] 96 [3, 6, 12, 24] 50M
Swin-Base [2, 2, 18, 2] 128 [4, 8, 16, 32] 88M
Swin-Large [2, 2, 18, 2] 192 [6, 12, 24, 48] 197M

• Where :

• Depth (per stage): Number of Transformer blocks in each of the four stages of
the network.

• Embedding Dim (D): The dimensionality of the token embeddings at the first
stage. This increases by a factor of 2 at each subsequent stage.

• Attention Heads: Number of self-attention heads used in each stage.

• Parameters: Approximate total number of trainable parameters in the model.

2.10 Conclusion
Transformers, through their attention-driven design, have opened new possibilities for vi-
sion tasks by enabling models to reason globally or locally depending on their architecture.
The Vision Transformer offers a pure attention-based approach with strong representa-
tional power, while the Swin Transformer brings a more scalable, hierarchical structure
tailored to visual patterns.

Our choice to focus on ViT and Swin stems from their proven effectiveness and comple-
mentary characteristics. Furthermore, selecting ViT-Small and Swin-Base variants allows
us to balance computational cost with model accuracy, making them well-suited for our
objective of disease severity estimation. A solid understanding of these architectures lays
the foundation for the design and development of our proposed solution.

In the next chapter, we delve deeper into the architecture of the selected transformer
variants. This detailed analysis will shed light on their internal components and design
principles, providing a solid foundation for their integration into our proposed methodol-
ogy for plant leaf disease severity estimation.

Swin Variants Page 40

Chapter 3

Proposed Model Approach for
Estimating Plant Leaf Disease
Severity

Proposed Model Approach for Estimating Plant Leaf Disease Severity

3.1 Introduction
Precise estimation of plant disease severity plays a crucial role in modern agriculture,
enabling informed decision-making for disease control and maximizing crop yields. With
increasing pressure to reduce pesticide use and enhance food security, accurate and au-
tomated methods for assessing leaf disease severity have become indispensable tools for
researchers and farmers alike.

This chapter presents a comprehensive approach to plant leaf disease severity estima-
tion using two distinct model architectures: Vision Transformer Small (ViT-Small), Swin
Transformer Base (Swin-Base). Our approach addresses the inherent challenges in disease
severity estimation, including the subtle visual differences between severity levels, varying
lighting conditions, and the need for fine-grained feature extraction from leaf images.

The proposed methodology transforms the complex task of disease severity assessment
into a multi-class classification problem, enabling automated and consistent evaluation of
plant health status.

3.2 Motivation for variants choice
We considered two Transformer-based architectures: ViT-Small and Swin-Base, to eval-
uate the trade-offs between model complexity, accuracy, and computational cost.

– ViT-Small: [around 22 million parameters]
A lightweight version of the Vision Transformer, ViT-Small requires fewer parame-
ters and less computation. It is well-suited for medium-scale datasets and limited
resources, while still benefiting from global self-attention.

– Swin-Base: [around 88 million parameters]
Swin Transformer introduces a hierarchical structure with shifted windows, which
allows for both local and global feature extraction. Swin-Base strikes a good balance
between accuracy and computational cost, offering better performance than Swin-
Tiny on various vision benchmarks.

3.3 ViT-small
The Vision Transformer (ViT) architecture treats images as sequences of patches, simi-
lar to tokens in natural language processing. The ViT-Small variant employs a smaller
number of parameters while retaining the model’s ability to capture global dependencies
through self-attention mechanisms.

The main parameters of the ViT-Small model are summarized in Table 3.1. The
model takes input images of size 224 × 224 pixels and divides them into patches of size
16× 16, resulting in 196 patches per image. Each patch is linearly projected into a 384-
dimensional embedding. The transformer backbone consists of 12 layers, each with 6
attention heads. The feed-forward (MLP) part of each layer has a hidden dimension of

Introduction Page 42

Proposed Model Approach for Estimating Plant Leaf Disease Severity

1536. A dropout rate of 0.1 is applied during training to reduce overfitting. Overall, the
model contains approximately 22 million parameters. The final prediction is made using
a linear classification head that outputs the severity class.

Table 3.1: Key Parameters of the ViT-Small Model

Parameter Value

Patch Size 16× 16

Input Image Size 224× 224

Embedding Dimension 384
Number of Transformer Layers 12
Number of Attention Heads 6
MLP Hidden Dimension 1536
Dropout Rate 0.1
Number of Parameters 22 million
Classification Head Linear

ViT architecture, as illustrated in Figure 3.1, consists of several interconnected com-
ponents that transform raw leaf images into disease severity classifications. The following
provides a detailed step-by-step explanation of each architectural component:

Figure 3.1: Architecture of the ViT-Small model.

ViT-small Page 43

Proposed Model Approach for Estimating Plant Leaf Disease Severity

3.3.1 Step 1: Input Image Processing
• Input Dimensions: The architecture begins with an RGB input image of dimen-

sions 224 × 224 × 3, where the three channels represent Red (R), Green (G), and
Blue (B) color components.

• Image Representation: The input image contains plant leaf samples with varying
degrees of disease severity, captured under different lighting conditions and orienta-
tions.

• Preprocessing: Standard normalization is applied to ensure pixel values are within
the appropriate range for neural network processing.

3.3.2 Step 2: Patch Splitting and Tokenization
• Patch Extraction: The 224× 224 input image is systematically divided into non-

overlapping square patches of size 16× 16 pixels.

• Patch Count: This division results in 224
16

× 224
16

= 14×14 = 196 individual patches.
[see Figure 3.2]

Figure 3.2: ViT-base : Patch splitting.

3.3.3 Step 3: Flattening
• Patch Flattening: Individual patches are flattened from 16×16×3 = 768 dimen-

sional vectors, as shown in the detailed patch flattening illustration. [see Figure 3.3]

Figure 3.3: ViT-base : Patch flattening.

ViT-small Page 44

Proposed Model Approach for Estimating Plant Leaf Disease Severity

3.3.4 Step 4: Linear Embedding and Dimensionality Transfor-
mation

• Embedding Layer: Each 768-dimensional flattened patch undergoes linear trans-
formation through a learnable embedding matrix.

• Output Dimensions: The embedding process transforms each patch into a 384-
dimensional feature vector, resulting in 196× 384 patch embeddings, as illustrated
in Figure 3.4.

• The embedding layer learns to map raw pixel values into a more meaningful feature
space suitable for transformer processing.

Figure 3.4: ViT-base : Patch Embedding.

3.3.5 Step 5: Positional Encoding Integration
• Positional Information: Since transformers are inherently permutation-invariant,

positional encodings are added to preserve spatial relationships between patches.

• Positional encodings are element-wise added to patch embeddings, maintaining the
384-dimensional representation.

• This step ensures the model can distinguish between patches from different spatial
locations within the leaf image.

3.3.6 Step 6: Class Token Insertion
• CLS Token: A special classification token [CLS] is prepended to the sequence of

patch embeddings.

• The CLS token serves as a global representation that aggregates information from
all patch tokens through self-attention mechanisms.

• The input sequence expands from 196 patch tokens to 197 tokens (including the
CLS token), as shown in Figure 3.5.

ViT-small Page 45

Proposed Model Approach for Estimating Plant Leaf Disease Severity

• The CLS token is initialized as a learnable parameter that evolves during training.

Figure 3.5: ViT-base : Adding class token [CLS].

3.3.7 Step 7: Transformer Encoder Processing
The core transformer encoder processes the token sequence through multiple identical
layers:

3.3.7.1 Multi-Head Self-Attention Mechanism

• Query, Key, Value Generation: Each input token is linearly transformed to
generate Query (Q), Key (K), and Value (V) matrices, as shown in Figure 3.6.

Figure 3.6: Query, Key and Value matrices computation.

• Attention Computation: The scaled dot-product attention is computed as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (3.1)

where dk represents the key dimension.
- The attention mechanism computes a weighted sum of the values V based on
the similarity between queries Q and keys K. As shown in Figure 3.7, the dot

ViT-small Page 46

Proposed Model Approach for Estimating Plant Leaf Disease Severity

products of Q and K are first calculated, optionally masked, then scaled by 1√
dk

,
and passed through a SoftMax to obtain the attention weights. These weights are
then multiplied by V to produce the final attention output.

• Multi-Head Processing: The attention mechanism is applied in parallel across
multiple heads (h = 6 for ViT-Small), allowing the model to attend to different
representation subspaces.

• Head Concatenation: Outputs from all attention heads are concatenated and
linearly projected back to the original dimension, as illustrated in Figure 3.8.

Figure 3.7: Scaled Dot-Product Atten-
tion [35].

Figure 3.8: Multi-Head Attention [35].

3.3.7.2 Feed-Forward Network (MLP)

• Two-Layer Structure: The MLP consists of two linear transformations with a
GELU activation function in between.

• Dimension Expansion: The first layer expands the feature dimension from 384

to 1536 (x 4 expansion ratio).

• Non-Linear Activation: GELU (Gaussian Error Linear Unit) activation intro-
duces non-linearity: GELU(x) = x ·Φ(x), where Φ(x) is the cumulative distribution
function of the standard normal distribution.

• Dimension Reduction: The second layer projects back to the original 384 dimen-
sions.

3.3.7.3 Residual Connections and Normalization

• Skip Connections: Residual connections are applied around both the attention
and MLP blocks, facilitating gradient flow during training.

ViT-small Page 47

Proposed Model Approach for Estimating Plant Leaf Disease Severity

• Layer Normalization: Pre-normalization is applied before each sub-layer, stabi-
lizing training dynamics.

• Mathematical Representation: The overall transformer block can be expressed
as:

z′l = MSA(LN(zl−1)) + zl−1 (3.2)
zl = MLP(LN(z′l)) + z′l (3.3)

where zl represents the output of the l-th transformer layer.

3.3.8 Step 8: Feature Extraction and Aggregation
• After processing through all transformer layers, as shown in Figure 3.9, only the

CLS token representation is extracted for classification.

• The final CLS token contains aggregated information from all patch tokens through
self-attention interactions and effectively summarizes the entire leaf image’s disease-
relevant characteristics.

• Feature Dimension: The extracted feature maintains the 384-dimensional repre-
sentation established throughout the transformer layers.

Figure 3.9: ViT-small : Transformers processing.

3.3.9 Step 9: Classification Head and Output Generation
• Layer Normalization: A final layer normalization is applied to the CLS token

representation before classification.

• Linear Classification: A single linear layer maps the 384-dimensional CLS token
to the number of disease severity classes.

• Output Classes: The model produces logits for each severity level.

• Probability Distribution: Softmax activation converts logits to probability dis-
tributions across severity classes, as illustrated in Figure 3.10.

ViT-small Page 48

Proposed Model Approach for Estimating Plant Leaf Disease Severity

Figure 3.10: ViT-small : Final classification.

3.4 Swin-base
The Swin Transformer introduces a hierarchical architecture with local self-attention com-
puted within non-overlapping windows, enabling linear computational complexity with re-
spect to image size. The Swin-Base variant balances performance and model complexity
by using a deeper architecture with increased embedding dimensions compared to smaller
versions.

The main parameters of the Swin-Base model are summarized in Table 3.2. The model
operates an input image of size 224× 224× 3 which is first divided into non-overlapping
patches of size 4×4, resulting in a feature map of shape 56×56×48. Each 48-dimensional
patch embedding is then projected to 128 dimensions using a linear layer, yielding a final
output of shape 56× 56× 128. The architecture is organized into four stages with a total
of 24 transformer blocks distributed as (2, 2, 18, 2) per stage. The embedding dimension
is doubled at each stage: 128, 256, 512, and 1024 respectively. Each block uses 4 or more
attention heads depending on the stage. A dropout rate of 0.1 is applied to regularize
the model. Overall, the Swin-Base model has approximately 88 million parameters. The
final classification is performed by a linear head using the features from the last stage.

Table 3.2: Key Parameters of the Swin-Base Model.

Parameter Value

Patch Size 4× 4

Input Image Size 224× 224

Initial Embedding Dimension 128
Number of Stages 4
Blocks per Stage [2, 2, 18, 2]
Embedding Dimensions [128, 256, 512, 1024]
Number of Attention Heads [4, 8, 16, 32]
Number of Parameters 88 million
Classification Head Linear

Swin Transformer architecture, as depicted in Figure 3.11, includes shifted window at-
tention and hierarchical feature extraction, making it suitable for dense and fine-grained

Swin-base Page 49

Proposed Model Approach for Estimating Plant Leaf Disease Severity

classification tasks such as estimating disease severity in leaf images. The following pro-
vides a detailed step-by-step explanation of each architectural component:

Figure 3.11: Architecture of the Swin-Base model.

3.4.1 Step 1: Input Image Processing and Patch Partition
• Input Dimensions: The architecture processes RGB input images of dimensions

224× 224× 3, representing plant leaf samples with various disease severity levels.

• Patch Partition: Unlike ViT’s larger patches, Swin Transformer divides the input
image into smaller, non-overlapping patches of size 4 × 4 pixels, as illutrated in
Figure 3.12.

• Initial Patch Count: This results in 224
4
× 224

4
= 56×56 = 3136 individual patches

of size 4× 4× 3 = 48.

Figure 3.12: Step 1 : Patch Partition.

Swin-base Page 50

Proposed Model Approach for Estimating Plant Leaf Disease Severity

3.4.2 Step 2: Linear Embedding and Initial Feature Mapping
• Patch Flattening: Each 4 × 4 × 3 = 48-dimensional patch is flattened to create

the initial token representation, as shown in Figure 3.13.

Figure 3.13: Step 2 : a. Flatteninig.

• Embedding Transformation: Each 48-dimensional flattened patch undergoes
linear projection to the initial feature dimension C = 128.

• Feature Map Dimensions: The resulting feature map has dimensions 56× 56×
128, preserving spatial structure while creating learnable feature representations, as
shown in Figure 3.14.

Figure 3.14: Step 2 : b. Linear Embedding.

3.4.3 Step 3: Stage 1 - Initial Feature Processing

a. Window Partitioning and Local Attention
• Spatial Resolution: Maintains 56 × 56 spatial resolution with 128-dimensional

features per location.

• Window Configuration: The feature map is partitioned into non-overlapping
windows of size M ×M = 7× 7.

• Window Count: Results in 56
7
× 56

7
= 8 × 8 = 64 windows, each containing

7× 7 = 49 tokens, as illustrated in Figure 3.15.

Swin-base Page 51

Proposed Model Approach for Estimating Plant Leaf Disease Severity

• Local Self-Attention: Multi-head self-attention is computed within each 7 × 7

window independently.

Figure 3.15: Step 3 : Windows partition.

b. Swin Transformer Blocks
• Block Structure: Stage 1 contains 2 consecutive Swin Transformer blocks, as

shown in Figure 3.16.

• W-MSA Block: The first block employs Window-based Multi-head Self-Attention
(W-MSA) with regular window partitioning.

• SW-MSA Block: The second block uses Shifted Window Multi-head Self-Attention
(SW-MSA) with window partitions shifted by (bM

2
c, bM

2
c) = (3, 3) pixels.

• Attention Coputation: Let the flattened input features in a window be denoted
by X ∈ RM2×C , where C = 96 is the embedding dimension at the first stage of Swin
Base.

– The input X is linearly projected into queries Q, keys K, and values V using
learned weight matrices:

Q = XWQ, K = XWK , V = XWV

where WQ,WK ,WV ∈ RC×d, and d = C
h

is the dimension per head, with h = 3

heads in the first stage (so d = 32).
– For each head, self-attention is calculated independently within each window.

The result is:

Attention(Q,K, V) = SoftMax
(
QKT

√
d

+B

)
V (3.4)

Swin-base Page 52

Proposed Model Approach for Estimating Plant Leaf Disease Severity

where B ∈ RM2×M2 is a learnable relative position bias that accounts for
spatial relationships within each window.

– The outputs from all heads are concatenated and projected back to the original
embedding dimension C via a final linear layer.

• Each block follows this pattern:

1. Normalize the input data.
2. Apply attention (either W-MSA or SW-MSA) to find important relation-

ships.
3. Add the result back to the original input (residual connection).
4. Normalize again.
5. Apply MLP (a small neural network) for further processing.
6. Add this result back to the input from step 3.

• Mathematical Formulation: Each Swin block can be expressed as:

ẑl = W-MSA(LN(zl−1)) + zl−1 (3.5)
zl = MLP(LN(ẑl)) + ẑl (3.6)

ẑl+1 = SW-MSA(LN(zl)) + zl (3.7)
zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (3.8)

where:
• LN(·) denotes Layer Normalization

• W-MSA(·) denotes Window-based Multi-head Self-Attention

• SW-MSA(·) denotes Shifted Window Multi-head Self-Attention

• MLP(·) denotes Multi-Layer Perceptron (feed-forward network)

• zl represents the feature map at layer l

• ẑl represents intermediate feature map after attention

Figure 3.16: Two Successive Swin Transformer Blocks [38].

Swin-base Page 53

Proposed Model Approach for Estimating Plant Leaf Disease Severity

3.4.4 Step 4: Patch Merging and Stage 2 Processing

a. Patch Merging Operation
• Spatial Downsampling: Adjacent 2 × 2 patches are merged to reduce spatial

resolution by a factor of 2.

• Dimension Changes: Resolution decreases from 56× 56 to 28× 28, while feature
dimension increases from 128 to 256.

Figure 3.17: Step 4 : Patch Merging.

b. Stage 2 Swin Transformer Processing
• Spatial Configuration: Operates on 28 × 28 feature maps with 256-dimensional

features.

• Window Partitioning: Creates 28
7
× 28

7
= 4× 4 = 16 windows of size 7× 7.

• Block Count: Contains 2 Swin Transformer blocks following the W-MSA and
SW-MSA pattern.

• Feature Enhancement: Captures medium-range spatial dependencies and disease
pattern relationships.

3.4.5 Step 5: Stage 3 - Deep Feature Extraction

a. Second Patch Merging
• Resolution Reduction: Further downsampling from 28 × 28 to 14 × 14 spatial

resolution.

• Feature Expansion: Feature dimension doubles from 256 to 512 through the
merging and projection process.

b. Intensive Processing Stage
• Block Count: Stage 3 contains 18 Swin Transformer blocks, making it the most

computationally intensive stage.

• Window Configuration: Operates with 14
7
× 14

7
= 2×2 = 4 windows of size 7×7.

Swin-base Page 54

Proposed Model Approach for Estimating Plant Leaf Disease Severity

• Deep Feature Learning: The 18 blocks enable learning of complex, high-level
disease pattern representations.

• Critical Feature Extraction: In this stage,the reduced spatial resolution and
increased channel depth enable the extraction of high-level semantic features, effec-
tively capturing global indicators of disease severity.

3.4.6 Step 6: Stage 4 - Final Feature Refinement

a. Final Patch Merging
• Ultimate Downsampling: Spatial resolution reduces from 14× 14 to 7× 7.

• Maximum Feature Dimension: Feature dimension reaches its maximum of 1024
dimensions.

• Global Context: The small spatial resolution combined with high feature dimen-
sion captures global disease severity indicators.

b. Final Processing Blocks
• Block Configuration: Stage 4 contains 2 Swin Transformer blocks for final feature

refinement.

• Single Window: The entire 7 × 7 feature map is processed as a single window,
enabling global attention computation.

• High-Level Abstraction: Focuses on overall disease severity patterns and global
leaf health indicators.

3.4.7 Classification
As illustrated in Figure 3.18, before classification, a Global Average Pooling1 operation
is applied to the output from the last transformer stage using equation 3.9. This reduces
the spatial dimensions, summarizing each feature map into a single value, resulting in a
fixed-size vector of shape [Batch, 1024].

GAP(x) = 1

H ×W

H∑
i=1

W∑
j=1

xi,j (3.9)

Then, the final linear layer outputs 6 raw scores (logits), one for each disease severity
class. These scores are converted into probabilities using the Softmax function, which
ensures all outputs are between 0 and 1 and sum to 1.

The Softmax function is defined as:

Softmax(zi) =
ezi∑6
j=1 e

zj
(3.10)

1GAP reduces a tensor of shape [H,W,C] into a vector of shape [C] by averaging all spatial positions
over the height and width dimensions.

Swin-base Page 55

Proposed Model Approach for Estimating Plant Leaf Disease Severity

where zi is the score for class i.
The class with the highest probability is selected as the predicted disease severity.

Figure 3.18: Swin base : Final classification.

3.4.8 Model Architectural Benefits
• Hierarchical Design: The progressive patch merging stages enable multi-scale

feature learning, capturing both local details and global disease patterns.

• Efficient Attention: Shifted window self-attention balances computational effi-
ciency and context modeling.

• Self-attention usually costs O(N2) because each patch attends to all others. Swin
splits the image into M small windows of size k × k, reducing computation to
O(M × k2). Shifting windows between layers allows efficient information flow with
low cost.

• Strong Representation: High-dimensional embeddings and deep blocks allow
modeling subtle severity differences.

• Spatial Awareness: The model preserves the spatial layout of features, which
helps in accurately identifying the location and spread of plant diseases.

3.5 Conclusion
This chapter provided an in-depth description of two prominent vision transformer archi-
tectures: ViT-small and Swin-base. We began by introducing the detailed architecture
of ViT-small, highlighting its patch embedding process, multi-head self-attention mecha-
nism, and position embedding strategy.

After that, we present the Swin-base architecture, which introduces a hierarchical
structure and shifted window-based self-attention. These innovations enable Swin-base to
efficiently model both local and global dependencies while reducing computational com-
plexity. The use of non-overlapping windows and their strategic shifting between layers
allows the model to achieve better scalability and representation power, particularly for
high-resolution vision tasks.

By understanding the inner workings and design philosophies of these two architec-
tures, we establish a solid foundation for their comparative analysis and practical applica-
tion. The insights gained here will be instrumental in the next chapter, where we present

Conclusion Page 56

Proposed Model Approach for Estimating Plant Leaf Disease Severity

the experimental setup used to evaluate and compare their performance across plant leaf
disease severity estimation task.

Conclusion Page 57

Chapter 4

Experimental Framework

Experimental Framework

4.1 Introduction
This chapter defines the experimental framework for evaluating yellow rust severity on
wheat leaves. It details the software tools, dataset properties, preprocessing methods, and
evaluation metrics. The framework is built for reproducibility, robustness, and controlled
testing, ensuring reliable model performance analysis. This setup forms the basis for
presenting and discussing the results.

4.2 Experimental Setup : Software

4.2.1 Python
Python is an interpreted, object-oriented, high-level pro-
gramming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Applica-
tion Development, as well as for use as a scripting or glue
language to connect existing components together. Python
is extensively used in web development, data science, ma-
chine learning, artificial intelligence, automation, and scien-
tific computing. It encourages modularity and code reuse through its support for modules
and packages. It is freely available on all major platforms in both source and binary
forms [41].

4.2.2 Visual Studio Code
Visual Studio Code is a cross-platform source code editor
that supports hundreds of languages, IntelliSense code com-
pletion, debugging, and more. It is an open-source project
that combines web, native, and language-specific technolo-
gies. It is free and available on any platform - Linux, macOS,
and Windows [42].

4.2.3 PyTorch
PyTorch is an open-source machine learning library devel-
oped by Meta. It provides flexible tools for building and
training deep learning models, with dynamic computation
graphs and strong GPU acceleration. Widely used in both
research and production, PyTorch supports a wide range of
neural network architectures and is compatible with major
platforms [43].

4.2.4 timm
timm (PyTorch Image Models) is an open-source library that compiles a diverse set of
state-of-the-art computer vision models, layers, utilities, optimizers, schedulers, data-

Introduction Page 59

Experimental Framework

loaders, augmentations and also training/validating scripts with ability to reproduce Im-
ageNet training results [44].

4.3 Experimental Setup : Hardware
The training process was carried out on a high-performance computing setup featuring
an NVIDIA RTX 4050 GPU with 32GB of VRAM. This hardware configuration provided
the necessary computational resources to efficiently handle large-scale image datasets and
the complexity of the models used. The ample memory and processing power enabled
smooth and accelerated training, contributing to effective model convergence.

4.4 Dataset
The Yellow Rust 19 dataset [45] is used in this study to assess the severity of plant leaf
diseases. It is a collection of 15 000 images with 6 severity stages. This dataset captures
the visual symptoms of yellow rust a fungal infection caused by Puccinia striiformiswhich
typically appears as yellow, powdery patches or stripes on the leaves and sheaths of wheat
plants.

4.4.1 Dataset classes
As illustrated in Figure 4.1, the dataset categorizes images into 6 distinct classes based
on the extent of rust infection observed on plant leaves :

• 0 Healthy

• R Resistant

• MR Moderately Resistant

• MRMS Moderately Resistant to Moderately Susceptible

• MS Moderately Susceptible

• S Susceptible

Experimental Setup : Hardware Page 60

Experimental Framework

Figure 4.1: Severity levels images from the dataset [23].

Table 4.1: Severity levels of infection in the Yellow Rust 19 dataset.

Classes Description Number of Images
0 No signs of infection; healthy plant leaves. 2500

R Minor signs of infection; plant exhibits resistance. 2500

MR Small to medium signs of infection; partial resistance. 2500

MRMS Transition between resistant and susceptible. 2500

MS Medium signs of infection; moderate vulnerability. 2500

S Major signs of infection; high susceptibility. 2500

Total 15000

Table 4.1 summarizes the distribution of image samples across six severity classes in
the Yellow Rust 19 dataset, ranging from healthy leaves (class 0) to highly susceptible
ones (class S), with each class containing an equal number of 2500 images.

4.4.2 Dataset division
To ensure robust experimental integrity, the dataset is partitioned into three subsets:

• Training set (80%): Supports the model in learning characteristic features and
patterns associated with yellow rust severity.

• Validation set (10%): Aids in tuning hyperparameters and mitigates overfitting
by offering an intermediate check during the training process.

• Test set (10%): Provides an unbiased evaluation of the model’s performance on
unseen samples, ensuring reliability and generalizability.

Table 4.2 presents the structured distribution of images across the three subsets.

Dataset Page 61

Experimental Framework

Table 4.2: Dataset split for Yellow Rust 19.

Subset Percentage Number of Images Number per Class
Training Set 80% 12 000 2 000

Validation Set 10% 1 500 250
Test Set 10% 1 500 250

4.4.3 Data Preprocessing
The dataset preprocessing pipeline differs between the training phase and the valida-
tion/testing phases, with data augmentation techniques, as illustrated in Figure 4.2, ap-
plied only to the training data to enhance model generalization while keeping validation
and testing conditions consistent.

On-the-fly augmentation dynamically applies stochastic transformations at runtime
during training, leveraging GPU acceleration to increase data diversity efficiently without
additional storage or preprocessing overhead.

4.4.3.1 Resizing

All images, regardless of their original dimensions, are resized to a fixed resolution of
IMAGE_SIZE × IMAGE_SIZE pixels. This standardization ensures consistent input
dimensions for the transformer model, which is essential for batch processing.

4.4.3.2 Training Data Augmentation

The following data augmentation techniques, as shown in Figure 4.2, were exclusively
applied to the training dataset to artificially expand the diversity of training samples:

a. Random Horizontal Flip

This transformation randomly flips images horizontally with a 50% probability [as shown
in Figure 4.2.c].

b. Random Vertical Flip

This transformation randomly flips images vertically with a 50% probability [as shown in
Figure 4.2.d].

c. Random Rotation

Images are randomly rotated by an angle of up to 15 degrees [as shown in Figure 4.2.e].

d. Color Jitter

This transformation randomly adjusts three image properties [as shown in Figure 4.2.f] :

• Brightness: Random adjustment within a range of ±20%.

• Contrast: Random adjustment within a range of ±20%.

Dataset Page 62

Experimental Framework

• Saturation: Random adjustment within a range of ±20%.

Color jitter helps the model become less sensitive to variations in lighting conditions and
color distributions, increasing its ability to generalize across different environments and
image capture conditions.

4.4.3.3 Normalization

Applied to both training and validation/test datasets:

b. Normalization

Images are normalized using the mean [0.485, 0.456, 0.406] and standard deviation [0.229,
0.224, 0.225] across the RGB channels. These values correspond to the statistics of the
ImageNet dataset and are commonly used as a standard normalization practice. Normal-
ization helps stabilize and accelerate the training process by ensuring that input features
have similar scales.

4.4.3.4 Validation and Test Preprocessing

For validation and test datasets, only the essential preprocessing steps are applied without
any data augmentation:

• Resizing to IMAGE_SIZE × IMAGE_SIZE.

• Normalization.

This simpler pipeline ensures that the model’s performance is evaluated on clean,
consistent data that represents the actual deployment conditions.

Figure 4.2: Data augmentation examples on yellow rust images: (a) original; (b) resized
(224x224); (c) horizontal flip; (d) vertical flip; (e) ± 15◦ rotation; (f) color jitter (±20%).

Dataset Page 63

Experimental Framework

4.5 Evaluation metrics
Evaluation metrics constitute quantitative measures implemented to assess the predic-
tive capabilities of classification algorithms in machine learning. These metrics facilitate
objective quantification of model performance through mathematical formulations that
compare predicted outcomes against ground truth values. Many measures have been
introduced in research, each addressing specific aspects of an algorithms performance.
Consequently, for every machine learning problem, researchers need a suitable set of mea-
sures for performance assessment.

In this study, several common metrics were collected to obtain crucial information on
the effectiveness of the algorithms used to estimate the disease severity. These metrics
include precision, recall, F1-score, accuracy and the confusion matrix.

4.5.1 Confusion matrix
The confusion matrix represents a fundamental analytical tool in the evaluation of classi-
fication models, providing a comprehensive tabular representation of prediction outcomes
compared against actual class labels. This matrix, as shown in Figure 4.3, constitutes the
foundational structure from which numerous performance metrics are derived, offering
multidimensional insights into model performance characteristics.

In the binary classification context, the confusion matrix is structured as a 2Œ2 con-
tingency table that categorizes predictions into four distinct outcome categories: True
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

Figure 4.3: Confusion matrix [46].

• True Positives (TP): Instances correctly predicted as positive when the actual
class is positive.

• False Negatives (FN): Instances incorrectly predicted as negative when the actual
class is positive (Type II errors).

Evaluation metrics Page 64

Experimental Framework

• False Positives (FP): Instances incorrectly predicted as positive when the actual
class is negative (Type I errors).

• True Negatives (TN): Instances correctly predicted as negative when the actual
class is negative.

4.5.2 Accuracy
Probably the most common and first way to evaluate an algorithms classification per-
formance. It measures the percentage of successfully predicted data relative to the total
number of observations in the dataset. It is mathematically expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

4.5.3 Precision
Precision quantifies the proportion of correctly identified positive instances among all
instances predicted as positive. This metric is particularly relevant in contexts where
false positive predictions incur significant consequences. Its mathematical formulation is:

Precision =
TP

TP + FP
(4.2)

4.5.4 Recall (Sensitivity)
Recall, also termed sensitivity or true positive rate, measures the proportion of actual
positive instances correctly identified by the model. Its mathematical representation is:

Recall = TP

TP + FN
(4.3)

4.5.5 F1-score
The F1-score represents the harmonic mean of precision and recall, providing a balanced
assessment when these metrics exhibit trade-off relationships. It is calculated as:

F1− score =
2 · Precision · Recall
Precision + Recall (4.4)

4.6 Implementation Details
We implemented and trained all the models under the same conditions to ensure fair com-
parative analysis. The training was performed using the PyTorch framework as detailed
in Table 4.6.

• Input images standardized to 224 × 224 pixels, with pixel values normalized using
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]).

• We adopted the AdamW optimizer with a base learning rate of 1×10−4, weight decay
1×10−3 for L2 regularization, and 0.1 dropout probability to mitigate overfitting in

Implementation Details Page 65

Experimental Framework

dense layers. Training proceeded for 60 epochs with a batch size of 32, optimized for
memory efficiency on an NVIDIA RTX 4050 GPU (32GB VRAM) while maintaining
gradient stability.

• A cosine annealing scheduler modulated the learning rate across training iterations,
complemented by early stopping with a patience of 10 epochs based on validation
accuracy. The CrossEntropyLoss function was used to optimize the model for 6-class
severity estimation.

Table 4.3: Training Configuration.

Parameter Value

Batch Size 32

Number of Epochs 60

Learning Rate 1× 10−4

Weight-decay 1× 10−3

Loss Function CrossEntropyLoss

Optimizer AdamW

Learning Rate Scheduler CosineAnnealingLR

Early Stopping max val-acc (patience = 10)

kernel NVIDIA RTX 4070, 32GB VRAM

These hyperparameters were finalized through iterative ablation studies prioritizing
generalization over training convergence speed.

4.7 Conclusion
This chapter detailed the entire experimental setup, including the software and hard-
ware tools used, the dataset description, and the evaluation metrics applied to assess the
models performance. These elements provide a solid foundation to ensure the rigor and
reproducibility of the experiments.

In the following chapter, we will provide a detailed discussion and comprehensive
presentation of the results obtained from the experimental evaluation of our proposed
approach. This includes analysis, comparisons, and interpretations that highlight the
effectiveness and relevance of our model in the context of the addressed problem.

Conclusion Page 66

Chapter 5

Experimental results

Experimental results

5.1 Introduction
This chapter presents the experimental results of our study on plant leaf disease severity
estimation. Each model’s performance is assessed using widely accepted classification
metrics, including accuracy, precision, recall, F1-score, and the confusion matrix. These
metrics provide a detailed understanding of the models strengths and weaknesses in han-
dling the task. Building upon these, the proposed combined model was introduced, lever-
aging the strengths of both architectures through effective feature fusion and classification
strategies. Furthermore, a comparative analysis is conducted to highlight the differences
in performance, effectiveness, and computational efficiency among all tested architectures.
In addition, the Combined Model is evaluated against state-of-the-art methods to assess
its competitiveness in plant disease severity estimation.

This analysis provides insights into the strengths and limitations of the proposed
method and serves as a foundation for further research and improvements in automated
plant disease assessment.

5.2 ViT-small Model
In this section, we present the evaluation results of the ViT-Small model applied to the
task of plant leaf disease severity classification. This model is based on the Vision Trans-
former (ViT) architecture, adapted for small-scale training with reduced parameters. The
performance is assessed using standard classification metrics, model complexity measures,
and confusion matrix analysis.

5.2.1 Model complexity
As shown in Table 5.1, the model has 21.66 million parameters and a relatively small
footprint of 82.66 MB, making it suitable for deployment on devices with limited resources.
The training time of 1.6 hours and inference time of 10 ms per image show that the model
is efficient and scalable.

Table 5.1: Model Complexity and Training Details for ViT-Small model.

Metric Value Unit

Training Time 1.6 hours

Model Size 82.66 MB

Number of Parameters 21.66 million

Inference Time 100 mS

5.2.2 Classification Report
The ViT-Small model demonstrates moderate performance with a test accuracy of
61.33% and a test loss of 0.8978. The classification report is presented in Table 5.2.

Introduction Page 68

Experimental results

Table 5.2: Classification Report for the ViT-small model.

Class Precision Recall F1-score Support

0 0.64 0.78 0.70 250

R 0.56 0.58 0.57 250

MR 0.53 0.37 0.44 250

MRMS 0.59 0.58 0.59 250

MS 0.56 0.59 0.58 250

S 0.76 0.78 0.77 250

Test Accuracy 61.33%

Test Loss 0.8978

– The model achieves its best performance on class S (Susceptible), with high pre-
cision (0.76), recall (0.78), and F1-score (0.77), indicating that it correctly identifies
this class in most cases. Class 0 (Healthy) also performs relatively well, particu-
larly in recall (0.78), though its lower precision (0.64) suggests some confusion with
other classes.

– In contrast, the model struggles significantly with classes MR(Moderate Re-
sistant) and MS(Moderate Susceptible). Class MR has a low recall (0.37),
meaning many true MR samples are misclassified. Its precision (0.53) is also subop-
timal, reflecting frequent false positives. The confusion matrix (Figure 5.1) confirms
that MR is often misclassified as class 0 or R(Resistant), which highlights a clear
limitation of the model in distinguishing this class.

– Class MRMS(Moderate Resistant Moderate Susceptible) shows average re-
sults, with precision (0.59) and recall (0.58) indicating moderate performance. Class
R also achieves consistent but unimpressive scores, with all metrics in the 0.560.58
range, reflecting limited class separability.

ViT-small Model Page 69

Experimental results

5.2.3 The Confusion Matrix

Figure 5.1: Confusion Matrix for ViT-small.

The confusion matrix in Figure 5.1 highlights several key points. Notably:

– A significant number of MR instances are misclassified as class 0 (48 samples) and
R (58 samples).

– Class MRMS has confusion with MS (52 samples) and MR (26 samples), indi-
cating potential feature overlap.

– Class S is well separated from the others, with 195 correctly classified samples and
very few confusions.

5.2.4 Discussion and Analysis
The ViT-Small model achieved varying performance across the different classes, which can
be explained by analyzing both the characteristics of the data and the model architecture.

Strengths: The model performs best on class S, with high precision (0.76) and recall
(0.78). This strong performance can be attributed to the clear and pronounced visual
symptoms associated with susceptible leaves, such as widespread necrosis and visible
lesions. These global patterns are effectively captured by the self-attention mechanism of
the Vision Transformer, which excels at modeling long-range dependencies and large-scale
spatial structures. Similarly, class 0 (Healthy) shows good recall (0.78), likely due to
the distinct absence of disease symptoms, which provides a strong contrast compared to
infected classes.

ViT-small Model Page 70

Experimental results

Weaknesses: In contrast, the model struggles with classes MR and MRMS. These
classes tend to exhibit subtle or mixed visual features that are often difficult to distinguish
from other severity levels. The confusion matrix shows that MR is frequently misclassified
as 0 (Healthy) and R, indicating that the model confuses mild symptoms with either no
symptoms or more resistant appearances. This is attributed to the ViT-Small models lim-
ited ability to capture fine-grained local features, as its patch-based input representation
often overlooks subtle yet important small-scale details.

Architectural limitations: The ViT-Small model, with its reduced depth and number
of parameters, is efficient but less capable of modeling complex or subtle visual cues. While
it captures global structures well, it may overlook local variations critical for distinguishing
intermediate severity levels. Additionally, Vision Transformers generally benefit from
large training datasets. Since our dataset contains ambiguous labels, the model’s ability
to learn robust discriminative features is further limited.

Interpretation: These results suggest that the ViT-Small model is effective in classi-
fying clearly defined classes but lacks the resolution and representational power required
to differentiate between overlapping or less distinct categories. Improving the perfor-
mance on these classes may require either a larger dataset or a hybrid architecture that
integrates both local and global feature extractors, such as combining ViT with another
transformer-based model such as Swin.

5.3 Swin-base Model
In this section, we analyze the performance of the Swin Base model on the task of plant leaf
disease severity classification. This model utilizes a hierarchical Transformer architecture
with shifted windows, as detailed in chapter three, enabling strong performance across
image recognition tasks.

5.3.1 Model complexity
As shown in Table 5.3, the Swin Base model has a significantly higher parameter count
than ViT-Small, totaling 86.75 million parameters and a model size of 330.92 MB. Its
training time is slightly higher (1.8 hours), and inference time remains efficient with 10
ms per image.

Table 5.3: Model Complexity and Evaluation Details for the Swin Base model.

Metric Value Unit

Training Time 1.8 hours

Model Size 330.92 MB

Number of Parameters 86.749 million

Inference Time 100 mS

Swin-base Model Page 71

Experimental results

5.3.2 Classification Report
The Swin Base model achieves a test accuracy of 88.07%, substantially outperforming
ViT-Small, with a test loss of 0.9643. The detailed classification metrics are provided in
Table 5.4.

Table 5.4: Classification Report for the Swin Base model.

Class Precision Recall F1-score Support

0 0.94 0.98 0.96 250

R 0.92 0.95 0.93 250

MR 0.91 0.86 0.88 250

MRMS 0.86 0.83 0.84 250

MS 0.79 0.76 0.77 250

S 0.86 0.91 0.88 250

Test Accuracy 88.07%

Test Loss 0.9643

– The model performs best on class 0, achieving an exceptional recall of 0.98 and an
F1-score of 0.96, indicating that it can reliably identify healthy samples.

– Classes R, MR, and S also exhibit strong results, each exceeding 0.85 in precision
and recall, confirming robust separability and low confusion.

– Although slightly weaker, classes MS and MRMS still demonstrate solid perfor-
mance with F1-scores above 0.77. This reflects the models capacity to distinguish
fine-grained severity levels more effectively than ViT-Small.

Swin-base Model Page 72

Experimental results

5.3.3 The Confusion Matrix

Figure 5.2: Confusion Matrix for the Swin Base model

The confusion matrix in Figure 5.2 reveals that:

– Class 0 is very well predicted with only a handful of misclassifications (5 samples
misclassified).

– Class MR shows some confusion, notably with MRMS (11 instances) and R (14
instances), but still maintains high recall (0.86).

– Class MRMS is occasionally confused with MS (25 cases) and MR (13 cases),
indicating moderate overlap.

– Class MS is misclassified as MRMS (24 cases) and S (36 cases), suggesting a need
for better spatial resolution in those classes.

– Class S is clearly separated with 227 correct predictions and few confusions, pri-
marily with MS.

5.3.4 Discussion and Analysis
The Swin Base model achieved consistently strong performance across all classes, with
notable improvements compared to ViT-Small. These results can be interpreted by con-
sidering both the data characteristics and the strengths of the Swin architecture.

Strengths: The model performs best on class 0 (Healthy), with an outstanding recall
of 0.98 and F1-score of 0.96. This is due to the distinct and uniform appearance of healthy
leaves, which contrasts sharply with any form of disease. The hierarchical structure
of Swin and its ability to process information at multiple scales allow it to accurately
identify these clean patterns. Similarly, the model excels on classes R (Resistant) and S

Swin-base Model Page 73

Experimental results

(Susceptible), both showing high precision and recall above 0.85. The visual symptoms
in these classes are typically well-defined (e.g., strong discoloration or lesion patterns),
which the shifted window attention captures effectively by balancing local and global
context.

Weaknesses: The model struggles more with intermediate severity classes such as MR,
MRMS, and MS. These categories often present overlapping or ambiguous visual fea-
tures, leading to confusion between them. For example, MR is frequently misclassified as
MRMS and R, while MS is confused with MRMS and S. These misclassifications suggest
that, although Swin captures multi-scale features, subtle visual differences between inter-
mediate severity levels are still challenging to distinguish, possibly due to shared texture
patterns or disease progression stages.

Architectural limitations: While the Swin Base model improves over ViT-Small by
introducing locality through shifted windows and hierarchical representation, it may still
have limitations in detecting very fine-grained variations, especially in densely textured
regions. Additionally, the presence of visual similarity across MR, MRMS, and MS can
create decision boundaries that are difficult to learn.

Interpretation: These results indicate that the Swin Base model is highly capable of
identifying classes with distinct and consistent visual traits, leveraging its architectural
advantages in multi-scale feature extraction. However, its performance on overlapping
or borderline categories is constrained by the inherent visual complexity of those classes.
Addressing this could involve combining it with a Vision Transformer (ViT) to jointly
exploit Swin’s hierarchical locality and ViT’s strong global attention capabilities. Such
a hybrid model may offer improved discrimination between closely related severity levels
by capturing both fine-grained and long-range dependencies more effectively.

5.4 Enhancing model accuracy : Combined model
The proposed combined model architecture integrates two complementary transformer-
based vision models to leverage their distinct feature extraction capabilities. As illustrated
in Figure 5.3, the architecture consists of parallel feature extraction using Vision Trans-
former (ViT-small) and Swin Transformer (Swin-base), followed by feature concatenation
and classification.

Figure 5.3: Architecture of the proposed combined model.

Enhancing model accuracy : Combined model Page 74

Experimental results

The input RGB image (224 x 224) undergoes parallel feature extraction through both
networks. ViT-small captures global relationships through self-attention mechanisms, pro-
ducing 384-dimensional features, while Swin-base employs hierarchical windowed atten-
tion to extract local-to-global representations, yielding 1024 x 7 x 7 dimensional features.
These features are then flattened and concatenated to form a comprehensive feature vector
that combines both global and hierarchical spatial information. Finally, a two-layer MLP
classifier with ReLU activation and dropout regularization maps the combined features
to the final predictions across 6 classes (0, R, MR, MRMS, MS, S).

5.4.1 Architecture Overview
The input RGB image with dimensions 224 × 224 is processed simultaneously by both
transformer networks:

• ViT-small: Extracts global contextual features through self-attention mechanisms,
producing a 384-dimensional feature vector that captures long-range dependencies
across the entire image.

• Swin-base: Employs hierarchical windowed self-attention to extract multi-scale
features, generating 1024× 7× 7 dimensional features that preserve both local and
global spatial information.

5.4.2 Feature Fusion
1. Feature Extraction: Both models extract features without their original classifi-

cation heads (num_classes=0).

2. Feature Flattening: Swin transformer features are flattened from (1024, 7, 7) to
(1024× 7× 7) = 50176 to ensure compatibility with ViT features.

3. Feature Concatenation: The ViT features (384-dim) and flattened Swin features
(50176-dim) are concatenated to form a comprehensive feature vector of dimension
50560.

5.4.3 Classification
A two-layer MLP classifier with the following structure:

h1 = ReLU(W1 · fcombined + b1) (5.1)
h2 = Dropout(h1, p = 0.1) (5.2)
y = W2 · h2 + b2 (5.3)

where:

• fcombined ∈ R50560 is the concatenated feature vector

• W1 ∈ R512×50560 and b1 ∈ R512 are the weights and bias of the first linear layer

• h1 ∈ R512 is the output of the first hidden layer after ReLU(Rectified Linear Unit)
activation

Enhancing model accuracy : Combined model Page 75

Experimental results

• h2 ∈ R512 is the output after applying dropout regularization

• W2 ∈ R6×512 and b2 ∈ R6 are the weights and bias of the second linear layer

• y ∈ R6 represents the final class logits for the 6 target classes

5.5 Proposed combined model results
In this section, we analyze the performance of the proposed combined model on the task of
plant leaf disease severity classification. The architecture combines the strengths of ViT
Small and Swin Base, enabling it to effectively capture both global and local features. This
integration allows the model to deliver improved classification accuracy across all severity
levels, demonstrating its effectiveness in handling complex visual patterns associated with
plant diseases.

5.5.1 Model complexity
As shown in Table 5.5, the proposed combined model has substantially higher computa-
tional requirements compared to the Swin Base model, with 134.299 million parameters
and a model size of 512.31 MB. Despite the increased complexity, the model maintains
efficient inference time at 10 ms per image, while requiring 3 hours for training.

Table 5.5: Model Complexity and Evaluation Details for the Combined model.

Metric Value Unit

Training Time 3 hours

Model Size 512.31 MB

Number of Parameters 134.299 million

Inference Time 100 mS

5.5.2 Classification Report
The proposed combined model achieves exceptional performance with a test accuracy of
94.67%, representing a substantial 33.34% improvement over ViT base model (61.33%)
and 6.6 % improvement over the Swin Base model (88.07%). The test loss is significantly
reduced to 0.5324, demonstrating improved model confidence and reduced prediction
uncertainty. The detailed classification metrics are provided in Table 5.6.

Proposed combined model results Page 76

Experimental results

Table 5.6: Classification Report for the Combined model.

Class Precision Recall F1-score Support

0 0.99 1.00 1.00 250

R 0.99 1.00 0.99 250

MR 0.98 0.97 0.98 250

MRMS 0.91 0.94 0.92 250

MS 0.89 0.84 0.86 250

S 0.91 0.93 0.92 250

Test Accuracy 94.67%

Test Loss 0.5324

– The model achieves perfect performance on class 0 (healthy samples), with excep-
tional precision (0.99), perfect recall (1.00), and perfect F1-score (1.00), indicating
flawless identification of healthy plant samples.

– Class R demonstrates near-perfect performance with 0.99 precision, perfect recall
(1.00), and 0.99 F1-score, showing excellent separation of severely diseased samples.

– Class MR exhibits outstanding performance with 0.98 precision, 0.97 recall, and
0.98 F1-score, representing a significant improvement over previous models.

– Classes MRMS and S show strong and balanced performance, both achieving F1-
scores of 0.92, indicating robust classification of intermediate severity levels.

– Although class MS shows the lowest performance, it still achieves solid results
with an F1-score of 0.86, representing substantial improvement over the Swin Base
model’s 0.77.

Proposed combined model results Page 77

Experimental results

5.5.3 The Confusion Matrix

Figure 5.4: Confusion Matrix for the Combined model.

The confusion matrix in Figure 5.4 reveals remarkable classification precision with mini-
mal misclassifications:

– Class 0 achieves near perfect classification with 248 samples correctly identified and
only 2 misclassifications, demonstrating the model’s exceptional ability to distin-
guish healthy samples.

– Class MR shows excellent performance with 243 correct predictions out of 250,
with minimal confusion primarily with MRMS (4 instances) and R (2 instances),
indicating precise boundary detection.

– Class MRMS demonstrates strong classification with 236 correct predictions, show-
ing limited confusion with MS (9 instances) and MR (3 instances), representing
significant improvement in distinguishing intermediate severity levels.

– Class MS exhibits the most challenging classification pattern with 215 correct pre-
dictions, primarily confused with S (21 instances) and MRMS (13 instances),
though still maintaining acceptable performance levels.

– Class R achieves near perfect classification with 249 samples correctly identified,
demonstrating exceptional capability in recognizing severe disease manifestations.

– Class S shows strong performance with 234 correct predictions out of 250, with
minimal confusion limited to MS (16 instances), indicating clear differentiation of
severe disease states.

Proposed combined model results Page 78

Experimental results

5.5.4 Interpretation
The results demonstrate that the proposed combined model significantly enhances classifi-
cation performance by effectively capturing both global and local contextual information.
This dual-stream architecture mitigates the limitations observed in the Swin-Base model,
particularly in classifying intermediate severity levels such as MS and MRMS. The im-
proved F1-scores across all classes, especially in challenging cases, suggest that fusing ViT
and Swin features enables a richer and more discriminative representation.

5.6 Strengths and Limitations of the Proposed Model

5.6.1 Strengths
• Superior Accuracy and Reduced Loss:

– The proposed combined model achieves an impressive test accuracy of 94.67%
with a low test loss (0.5324).

– This performance is a notable improvement compared to the individual ViT-
Small and Swin-Base models.

– Such results indicate that the combined approach optimally captures disease
severity characteristics in the yellow rust dataset.

• Complementary Feature Fusion:

– By integrating the global attention capabilities of ViT-small with the local
and hierarchical feature extraction of Swin-base, the model effectively captures
both broad contextual information and fine-grained spatial details.

– This dual approach leads to enhanced feature representation and enables near-
perfect discrimination for classes that are distinct (e.g., the healthy class 0 and
the severely diseased class S).

• Robust Class Performance:

– The classification report shows that classes such as 0 (healthy) and R (Resis-
tant) are almost perfectly classified with almost perfect precision and recall
demonstrating the models strong ability to accurately identify and distinguish
clearly defined cases.

• Effective Handling of Complex Visual Patterns:

– The fusion of features from both transformer architectures allows the model
to better handle the inherent ambiguities present in plant leaf images.

– The combined representation provides a comprehensive view, enhancing the
models robustness in distinguishing subtle variations across disease severity
stages.

Strengths and Limitations of the Proposed Model Page 79

Experimental results

5.6.2 Limitations
• High Computational Complexity:

– The proposed combined model has 134.299 million parameters and a model
size of 512.31 MB.

– Such complexity entails a higher computational cost during training (which
takes around 3 hours).

– This could limit deployment in resource-constrained or real-time environments

• Residual Ambiguity in Intermediate Classes:

– Although overall performance is strong, the confusion matrix reveals that
classes with subtle differences, and particularly the intermediate categories
(MS and MRMS), still suffer from some misclassification.

– There remains some ambiguity in distinguishing these borderline classes, which
may be due to overlapping visual features.

• Potential Scalability Issues:

– The concatenation of the high-dimensional feature vectors (with the Swin fea-
ture map flattened to over 50,000 dimensions and then combined with the
384-dimensional ViT features) increases the memory footprint.

– This complexity might pose challenges for scalability or deployment on devices
with limited memory or processing power.

• Training Overhead:

– The increased model complexity means a longer training time and possibly
greater susceptibility to overfitting if not properly regularized.

In summary, the proposed combined model is remarkably effective, leveraging the
complementary strengths of global and local attention mechanisms to achieve high accu-
racy and robust performance for plant disease severity estimation. However, its benefits
come at the cost of increased computational demands and some challenges in resolving
classification boundaries among visually similar intermediate classes.

5.7 Models comparison
The table 5.7 represents the comparison between three models : ViT-Small, Swin-Base,
and the proposed combined model, in terms of classification test accuracy, number of
parameters, and model size.

Models comparison Page 80

Experimental results

Table 5.7: Models accuracy comparison.

Model Accuracy (%) Num. of paras (M) Model size (MB)

ViT-small 61.33 21.66 82.66

Swin-base 88.07 86.749 330.92

Combined Model 94.67 134.299 512.31

Table 5.7 and Figure 5.5 clearly highlight the superior performance of the proposed
combined model compared to ViT-small and Swin-base models.

Figure 5.5: Models accuracy comparison.

The ViT-Small model, relying on pure global self-attention, effectively captures long-
range dependencies but exhibits limitations in discerning fine-grained local features due
to its uniform patch processing. In contrast, the Swin-Base architecture utilizes a hier-
archical shifted-window mechanism, efficiently extracting multi-scale local features with
inherent translation invariance and reduced computational complexity, though potentially
at the cost of some global context. Consequently, a combined ensemble model integrat-
ing both architectures consistently achieves superior accuracy, as shown in Figure 5.5
compared to either model alone. This enhancement arises from their complementary
strengths: ViT-Small provides robust global structural understanding, while Swin-Base
excels at modeling local textures and details, leading to diverse error profiles. Their fu-
sion mitigates individual weaknesses, creates more comprehensive representations, and
significantly boosts robustness.

Models comparison Page 81

Experimental results

Comparison using F1-score
To go deeper in our comparison, we use the F1-score metric, because that provides a
balanced measure between precision and recall, which is especially important in multi-
class classification tasks. Unlike accuracy, which can be misleading when some classes are
easier to predict than others, the F1-score better reflects the model’s ability to correctly
identify each class without favoring the dominant ones.

Figure 5.6: F1-score per class for each model.

Figure 5.6 illustrates the F1-scores obtained by the three models ViT-small, Swin
Base, and the Combined model for each of the six plant leaf disease severity classes:
0 (Healthy), R (Resistant), MR, MRMS, MS, and S (Susceptible).

The Combined model consistently outperforms the others, achieving near-perfect F1-
scores across all classes. The Swin Base model also performs well, particularly in classes
0 and R, but shows a slight drop in class MS. In contrast, the ViT-small model exhibits
more variability, with its lowest performance in class MR (F1-score of 0.44), indicating
difficulties in recognizing certain intermediate severity levels.

This comparison highlights the robustness and generalization capability of the pro-
posed combined architecture in handling nuanced disease severity classification.

5.8 Comparison with State-of-the-Art Models
Table 5.8 presents the performance comparison of our proposed combined model with
existing state-of-the-art approaches for Wheat Yellow Rust disease severity estimation.

Comparison with State-of-the-Art Models Page 82

Experimental results

Table 5.8: Performance Comparison with State-of-the-Art Models.

Model Architecture Dataset Accuracy (%)

Proposed Model ViT-Small + Swin-Base Yellow Rust 19 94.67
Yellow-Rust-Xception [23] CNN-based (Xception) Yellow Rust 19 91.00
C-DenseNet [24] DenseNet + CBAM WSRgrading 97.99

5.8.1 Comparison with Yellow-Rust-Xception Model
Our proposed combined model significantly outperforms the Yellow-Rust-Xception model
by Hayit et al. [23] across multiple aspects, as shown in Table 5.9.

Our model achieves 3.67% higher accuracy while eliminating the need for manual
preprocessing steps. The transformer-based architecture captures both global and local
features more effectively than traditional CNN approaches.

Table 5.9: Detailed Comparison with Yellow-Rust-Xception Model.

Aspect Our Model Yellow-Rust-Xception

Accuracy (%) 94.67 91.00
Preprocessing Not required Manual segmentation
Architecture Transformer-based CNN-based
Implementation End-to-end Multi-step process

• A major advantage of our transformer-based approach is its ability to process raw
field images directly, without requiring the complex preprocessing steps that
other models depend on.

• In contrast, models like the Yellow-Rust-Xception demand a four-stage pre-
processing workflow, which includes:

– Thresholding to isolate relevant image regions,
– Morphological transformations to refine structures and shapes,
– Masking to emphasize diseased areas,
– And format conversion, all of which require technical expertise and spe-

cialized software.

• Our model avoids these requirements entirely by supporting end-to-end process-
ing of original images, while still achieving superior accuracy (94.67% com-
pared to 91%), showing its effectiveness even without preprocessing.

• The elimination of preprocessing has a transformative impact on practical
deployment:

– Farmers can simply capture images with standard smartphones,

Comparison with State-of-the-Art Models Page 83

Experimental results

– And receive immediate assessments of disease severity without needing
any technical skills or spending time on manual image preparation.

• This ability to directly handle raw images makes the model:

– More user-friendly, especially for non-technical users in the agricultural
sector,

– Faster to deploy in real-time settings,
– And less prone to errors that may arise from multi-step preprocessing

chains.

• Overall, these qualities make our approach far more suitable for real-world
agricultural use, where simplicity, speed, and accessibility are essential.

5.8.2 Comparison with C-DenseNet Model
Although C-DenseNet [24] reports higher accuracy (97.99%), our model demonstrates
superior practical value due to dataset characteristics shown in Table 5.10.

Table 5.10: Dataset Comparison.

Characteristic Our Model C-DenseNet

Dataset size 15,000 images 5,242 images

Data source Multi-device field images Single-location images

Class distribution Balanced Imbalanced

Our model achieves 94.67% accuracy on a dataset three times larger and more diverse
than C-DenseNet’s dataset. This demonstrates better generalization capability for real-
world agricultural applications.

5.8.3 Summary
Our proposed combined model offers the best combination of accuracy and practical
applicability:

• Higher accuracy: 3.67% improvement over Yellow-Rust-Xception

• Automated processing: No manual preprocessing required.

• Robust performance: Effective on diverse, large-scale datasets.

• Modern architecture: Transformer-based design for better scalability.

These advantages make our model the most suitable solution for practical deployment
in smart agriculture systems.

Comparison with State-of-the-Art Models Page 84

Experimental results

5.9 Conclusion
In conclusion, this chapter demonstrates that combining the strengths of the ViT-small
and Swin-base models leads to a significant improvement in plant leaf disease severity
estimation. While ViT-small alone had moderate performance and Swin-base delivered
robust metrics, their integration raised the overall accuracy to 94.67% and reduced the
loss. This hybrid approach successfully leverages a transformer’s ability to capture global
features alongside localized attention, enabling it to clearly distinguish even subtle differ-
ences in disease severity.

Moreover, when compared to state-of-the-art models, our approach proves its value in
practical applications. For instance, it outperforms the CNN-based Yellow-Rust-Xception
model by achieving a 3.67% higher accuracyall while eliminating the need for complex
manual preprocessing steps. Although the C-DenseNet model reports a slightly higher
accuracy of 97.99%, it was evaluated on a significantly smaller and less diverse dataset.
Hence, our models performance on a larger and more varied dataset makes it better
suited for real-world agricultural scenarios where simplicity, speed, and reliability are
paramount.

Conclusion Page 85

General conclusion

General conclusion

In this work, we developed and evaluated an automated, deep learning based solution
for plant leaf disease severity estimation, which is a critical task for advancing precision
agriculture and safeguarding crop yields. We began with an in depth review of traditional
diagnostic methods and their limitations, which motivated us to explore transformer ar-
chitectures as innovative alternatives. By leveraging the global attention capacity of
the Vision Transformer (ViT) and the hierarchical, locality-aware strengths of the Swin
Transformer, we developed a novel combined model that effectively captures both broad
contextual cues and fine-grained spatial details.

Our experimental framework was rigorously designed using the Yellow Rust 19 dataset,
which provided a comprehensive set of images categorized into six distinct severity levels.
We ensured reproducibility and robustness by implementing a standardized preprocessing
pipeline with data augmentation techniques applicable during training. Through exten-
sive analysis, we observed that while the individual models : ViT-small and Swin-base
offered valuable insights into global and local feature extraction respectively, each had its
own limitations. Specifically, ViT-small struggled with distinguishing borderline severity
classes, whereas Swin-base delivered robust performance owing to its efficient window-
based self-attention mechanism.

To overcome these challenges, we devised a combined model that fused the global
contextual features from ViT-Small with the detailed, hierarchical representations ob-
tained from Swin-Base. This integration significantly improved our overall performance,
as our combined approach achieved a test accuracy of 94.67% and a notably low test loss.
Moreover, our method eliminates the need for complex, manual preprocessing steps, sim-
plifying deployment in real-world agricultural settings and providing immediate, reliable
assessments of plant disease severity using standard imaging devices.

Our work contributes a transformative perspective on plant disease severity estima-
tion. It shows that transformer models can improve how we estimate the severity of plant
diseases. By capturing both global and local image features, these models can help build
better, more reliable systems for automatically monitoring crops.

Perspectives & Future works
While our current work demonstrates promising results, several avenues remain to be ex-
plored to enhance the models performance, usability, and real-world applicability. Below,
we outline key directions for future research and development.

87

Experimental results

• Making the Model Lighter: Although our model is effective, it is computation-
ally heavy.

• Using More Diverse Data: Our model was tested on the Yellow Rust 19 dataset.
Expanding to other crops, diseases, and environmental conditions would improve
its robustness and generalizability.

• Testing in the Field: Field trials are essential to validate the model under real
conditions. Deploying it on mobile or edge devices and collecting feedback from
farmers will help improve the system.

• Making the Model More Transparent: To gain user trust, future versions
should include explainability tools like attention maps or visual explanations to
show how the model makes decisions.

• Improving Feature Fusion: We currently combine features from ViT and Swin
using simple concatenation. Smarter fusion strategies like attention-based methods
could better capture complementary information.

Conclusion Page 88

Bibliography

[1] Dilan Onat Alaku, brahim Türkolu. Smart Agriculture, Precision Agriculture, Digital
Twins in Agriculture: Similarities and Differences. In 2024 Innovations in Intelligent
Systems and Applications Conference (ASYU).

[2] Nitin Lokhande, Vijaya Thool, Pratap Vikhe. Comparative analysis of different plant
leaf disease classification and detection using CNN. In 2024 International Conference
on Recent Innovation in Smart and Sustainable Technology (ICRISST).

[3] Mohamed Rayane Lakehal, Hassiba Nemmour, Mohamed Lamine Bouibed, Yakout
Fetmouche, Melissa Harchaoui, Youcef Chibani. CNN Ensembles for Pear Leaf Dis-
ease Severity Estimation. In 2023 30th IEEE International Conference on Electronics,
Circuits and Systems (ICECS).

[4] K. R. Prasanna Kumar, M. Gunasekar, K. Logeswaran, P Dhanya Sree, P Malathi, V
Vignesh. Fig Leaf Disease Prediction and Severity Estimation Using Deep Learning.
In 2024 International Conference on Computing and Intelligent Reality Technologies
(ICCIRT).

[5] Sachin Gupta, Baby Summuna and Moni Gupta. Plant Diseases: A Potential Threat
to Global Food Security. 2015.

[6] Shurtle , M.C.; Pelczar, M.J.; Kelman, A.; Pelczar, R.M. Plant disease. In Plant
Pathology; Encyclopedia Britannica: Chicago, IL, USA, 2020; Available online:
[https://www.britannica.com/science/plant-disease].

[7] Ning Zhang, Guijun Yang, Yuchun Pan, Xiaodong Yang, Liping Chen and Chunjiang
Zhao. A Review of Advanced Technologies and Development for Hyperspectral-Based
Plant Disease Detection in the Past Three Decades.

[8] Archana Jain, Surendra Sarsaiya, Qin Wua , Yuanfu Lu, and Jingshan Shi. A review
of plant leaf fungal diseases and its environment speciation. 2019

[9] How to Identify and Control Common Plant Fungal Diseases.
[https://www.gardentech.com/blog/pest-id-and-prevention/
keep-your-garden-free-from-fungal-disease].

[10] Sundin, G. W., Castiblanco, L. F., Yuan, X., Zeng, Q., and Yang, C.-H. Bacterial
disease management: challenges, experience, innovation and future prospects. 2022

[11] PlantVillage Dataset. [https://www.kaggle.com/datasets/abdallahalidev/
plantvillage-dataset].

89

https://www.britannica.com/science/plant-disease
https://www.gardentech.com/blog/pest-id-and-prevention/keep-your-garden-free-from-fungal-disease
https://www.gardentech.com/blog/pest-id-and-prevention/keep-your-garden-free-from-fungal-disease
https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset
https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset

BIBLIOGRAPHY

[12] Cherlinka, V. (2025, February 19). Crop Diseases: Types, Control, and Prevention.
EOS Data Analytics.[https://eos.com/blog/crop-diseases/]

[13] Laura Bouvet, Sarah Holdgate, Lucy James, Jane Thomas, Ian J. Mackay, James
Cockram. The evolving battle between yellow rust and wheat: implications for global
food security.

[14] Yellow rust: understanding, preventing and control-
ling this wheat disease. [https://uk.blog.sencrop.com/
yellow-rust-understanding-preventing-and-controlling-this-wheat-disease/].

[15] Céréales : Risque de rouille jaune sur blé. [https://www.agri-mag.com/2017/06/
19/cereales-risque-de-rouille-jaune-sur-ble/].

[16] X.M. Chen. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici]
on wheat.

[17] Clive H. Bock, Jayme G. A. Barbedo, Emerson M. Del Ponte, David Bohnenkamp,
Anne-Katrin Mahlein. From visual estimates to fully automated sensor-based mea-
surements of plant disease severity: status and challenges for improving accuracy.

[18] Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., & Huang, H. (2021). Recent
advances in plant disease severity assessment using convolutional neural networks.

[19] Demba Faye, Idy Diop, Nalla Mbaye, Doudou Dione, Marius Mintu Diedhiou. Plant
Disease Severity Assessment Based on Machine Learning and Deep Learning: A
Survey. 2023

[20] Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., Huang, H. (2023). Recent
advances in plant disease severity assessment using convolutional neural networks.
https://doi.org/10.1038/s41598-023-29230-7

[21] Hui Yao,Chunshan Wang, Lijie Zhang, Jiuxi Li, Bo Liu, Fangfang Liang. A Cucumber
Leaf Disease Severity Grading Method in Natural Environment Based on the Fusion
of TRNet and U-Net.

[22] Chuvieco, E., De Santis, A., Riaño, D., Halligan, K. . Simulation Approaches for
Burn Severity Estimation Using Remotely Sensed Images. 2007.

[23] Hayit, T., Erbay, H., Varçn, F., Hayit, F., & Akci, N. (2021). Determination of the
severity level of yellow rust disease in wheat by using convolutional neural networks.
Journal of Plant Pathology. https://doi.org/10.1007/s42161-021-00886-2

[24] Mi et al., "Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism
and Images From Mobile Devices," 2020.

[25] Wang, X., Pan, T., Qu, J., Sun, Y., Miao, L., Zhao, Z., Li, Y., Zhang, Z., Zhao,
H., Hu, Z., Xin, D., Chen, Q., & Zhu, R. (2023). Diagnosis of soybean bacterial
blight progress stage based on deep learning in the context of data-deficient. Com-
puters and Electronics in Agriculture, 212, 108170. https://doi.org/10.1016/j.com-
pag.2023.108170

BIBLIOGRAPHY Page 90

https://eos.com/blog/crop-diseases/
https://uk.blog.sencrop.com/yellow-rust-understanding-preventing-and-controlling-this-wheat-disease/
https://uk.blog.sencrop.com/yellow-rust-understanding-preventing-and-controlling-this-wheat-disease/
https://www.agri-mag.com/2017/06/19/cereales-risque-de-rouille-jaune-sur-ble/
https://www.agri-mag.com/2017/06/19/cereales-risque-de-rouille-jaune-sur-ble/

BIBLIOGRAPHY

[26] Yang, B., Li, M., Li, F., Wang, Y., Liang, Q., Zhao, R., Li, C., & Wang, J.
(2024). A novel plant type, leaf disease and severity identification framework us-
ing CNN and transformer with multi-label method. Scientific Reports, 14, 11664.
https://doi.org/10.1038/s41598-024-62452-x

[27] Kundu, N., Rani, G., Dhaka, V.S., Gupta, K., Nayaka, S.C., Vocaturo, E., &
Zumpano, E. (2022). Disease detection, severity prediction, and crop loss estimation
in maize crop using deep learning. Artificial Intelligence in Agriculture, 6, 276-291.
https://doi.org/10.1016/j.aiia.2022.11.002

[28] Parikh, A., Raval, M. S., Parmar, C., & Chaudhary, S. (2016). Disease detection
and severity estimation in cotton plant from unconstrained images. Proceedings of
the IEEE DSAA 2016, 81. https://doi.org/10.1109/DSAA.2016.81

[29] Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity
estimation using deep learning. Computational Intelligence and Neuroscience, 2017,
2917536. https://doi.org/10.1155/2017/2917536

[30] Patil, S. B., & Bodhe, S. K. (2011). Leaf disease severity measurement using image
processing. International Journal of Engineering and Technology, 3(5), 297-301.

[31] Kaiyu Li, Yuzhaobi Song, Xinyi Zhu, Lingxian Zhang. A severity estimation method
for lightweight cucumber leaf disease based on DM-BiSeNet. 2024.

[32] Ye, Z., Liu, Y., Ye, F., Li, H., Luo, J., Guo, J., Feng, Z., Hong, C., Li, L., Liu, S.,
Yang, B., Liu, W., & Yao, Q. (2025). Automatic diagnosis of agromyzid leafminer
damage levels using leaf images captured by AR glasses.

[33] Sequence Models Compared: RNNs, LSTMs, GRUs, and Transformers. [https://
aiml.com/compare-the-different-sequence-models-rnn-lstm-gru-and-transformers/].

[34] NLP Rise with Transformer Models | A Comprehensive Anal-
ysis of T5, BERT, and GPT. [https://www.unite.ai/
nlp-rise-with-transformer-models-a-comprehensive-analysis-of-t5-bert-and-gpt/].

[35] Vaswani et al., "Attention Is All You Need," 2017.

[36] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021.

[37] Vision Transformer: What It Is & How It Works [2024 Guide]. [https://www.
v7labs.com/blog/vision-transformer-guide].

[38] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Trans-
former: Hierarchical Vision Transformer using Shifted Windows.

[39] Swin Transformer. [https://www.geeksforgeeks.org/computer-vision/
swin-transformer/].

[40] Explanation Swin Transformer[https://chautuankien.medium.com/
explanation-swin-transformer-93e7a3140877/]

BIBLIOGRAPHY Page 91

https://aiml.com/compare-the-different-sequence-models-rnn-lstm-gru-and-transformers/
https://aiml.com/compare-the-different-sequence-models-rnn-lstm-gru-and-transformers/
https://www.unite.ai/nlp-rise-with-transformer-models-a-comprehensive-analysis-of-t5-bert-and-gpt/
https://www.unite.ai/nlp-rise-with-transformer-models-a-comprehensive-analysis-of-t5-bert-and-gpt/
https://www.v7labs.com/blog/vision-transformer-guide
https://www.v7labs.com/blog/vision-transformer-guide
https://www.geeksforgeeks.org/computer-vision/swin-transformer/
https://www.geeksforgeeks.org/computer-vision/swin-transformer/
https://chautuankien.medium.com/explanation-swin-transformer-93e7a3140877/
https://chautuankien.medium.com/explanation-swin-transformer-93e7a3140877/

BIBLIOGRAPHY

[41] What is Python? Executive Summary [https://www.python.org/doc/essays/].

[42] What is Visual Studio Code? [https://code.visualstudio.com/].

[43] What Is PyTorch? Definition, Uses and Tools. [https://builtin.com/
machine-learning/pytorch]

[44] timm: PyTorch Image Models. https://timm.fast.ai/].

[45] Yellow Rust 19 Dataset. https://www.kaggle.com/datasets/tolgahayit/
yellowrust19-yellow-rust-disease-in-wheat].

[46] What is a confusion matrix ?

[https://plat.ai/blog/confusion-matrix-in-machine-learning/].

BIBLIOGRAPHY Page 92

https://www.python.org/doc/essays/
https://code.visualstudio.com/
https://builtin.com/machine-learning/pytorch
https://builtin.com/machine-learning/pytorch
https://timm.fast.ai/
https://www.kaggle.com/datasets/tolgahayit/yellowrust19-yellow-rust-disease-in-wheat
https://www.kaggle.com/datasets/tolgahayit/yellowrust19-yellow-rust-disease-in-wheat
https://plat.ai/blog/confusion-matrix-in-machine-learning/

	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	State of the art on plant leaves disease severity estimation
	Introduction
	Major Categories of plant leaf diseases
	Fungal Diseases
	Bacterial Diseases
	Viral Diseases

	Plant disease severity
	Severity assessement methods
	Qualitative Scales
	Quantitative Scales
	Advanced methods
	Limitations of traditional Approaches

	Wheat Yellow rust
	State of the art
	Conclusion

	Transformers and attention mechanism
	Introduction
	Attention mechanism
	Motivation for models selection
	Choice of the models

	Vision Transformer (ViT)
	ViT applications

	ViT architecture
	Patch Extraction and Linear Embedding
	Incorporation of Positional Encodings and Class Token Augmentation
	Transformer Encoder Blocks
	Final Classification

	ViT variants
	Swin (Shifted Window) Transformer
	Applications of Swin Transformer

	Swin architecture
	Stage 1: Patch Partitioning and Embedding
	Stage 2: Patch Merging and Feature Transformation
	Stage 3 and Stage 4: Progressive Feature Refinement
	Inside Two Successive Swin Transformer Blocks
	Cyclic Shift

	Swin Variants
	Conclusion

	Proposed Model Approach for Estimating Plant Leaf Disease Severity
	Introduction
	Motivation for variants choice
	ViT-small
	Step 1: Input Image Processing
	Step 2: Patch Splitting and Tokenization
	Step 3: Flattening
	Step 4: Linear Embedding and Dimensionality Transformation
	Step 5: Positional Encoding Integration
	Step 6: Class Token Insertion
	Step 7: Transformer Encoder Processing
	Step 8: Feature Extraction and Aggregation
	Step 9: Classification Head and Output Generation

	Swin-base
	Step 1: Input Image Processing and Patch Partition
	Step 2: Linear Embedding and Initial Feature Mapping
	Step 3: Stage 1 - Initial Feature Processing
	Step 4: Patch Merging and Stage 2 Processing
	Step 5: Stage 3 - Deep Feature Extraction
	Step 6: Stage 4 - Final Feature Refinement
	Classification
	Model Architectural Benefits

	Conclusion

	Experimental Framework
	Introduction
	Experimental Setup : Software
	Python
	Visual Studio Code
	PyTorch
	timm

	Experimental Setup : Hardware
	Dataset
	Dataset classes
	Dataset division
	Data Preprocessing

	Evaluation metrics
	Confusion matrix
	Accuracy
	Precision
	Recall (Sensitivity)
	F1-score

	Implementation Details
	Conclusion

	Experimental results
	Introduction
	ViT-small Model
	Model complexity
	Classification Report
	The Confusion Matrix
	Discussion and Analysis

	Swin-base Model
	Model complexity
	Classification Report
	The Confusion Matrix
	Discussion and Analysis

	Enhancing model accuracy : Combined model
	Architecture Overview
	Feature Fusion
	Classification

	Proposed combined model results
	Model complexity
	Classification Report
	The Confusion Matrix
	Interpretation

	Strengths and Limitations of the Proposed Model
	Strengths
	Limitations

	Models comparison
	Comparison with State-of-the-Art Models
	Comparison with Yellow-Rust-Xception Model
	Comparison with C-DenseNet Model
	Summary

	Conclusion

	Conclusion
	Bibliography

