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Résumé
La surveillance de la santé des structures (SHM) joue un rôle crucial pour assurer la sé-
curité et le bon fonctionnement d’infrastructures vitales telles que les ponts, les barrages
et les bâtiments publics. Afin de rendre les systèmes SHM plus économiques, il est es-
sentiel d’optimiser le nombre et l’emplacement des capteurs, réduisant ainsi les coûts de
mise en œuvre tout en garantissant une détection fiable des dommages et une évaluation
structurelle efficace.

Cette étude aborde le problème de l’optimisation d’un agencement de capteurs adapta-
tif aux dommages pour la surveillance de la santé structurelle des bâtiments à plusieurs
étages. Un modèle éléments finis tridimensionnel d’une tour en béton armé de 12 étages
(R+12) a été développé à l’aide de SAP2000, permettant d’identifier les zones à haut risque
de dommages selon la distribution des efforts internes. Des réponses vibratoires en régime
permanent ont été simulées, et un algorithme génétique a été utilisé pour déterminer la
configuration optimale de capteurs pour chaque scénario de dommage, en s’appuyant sur
des matrices de distances comme caractéristiques sensibles aux altérations. Ces configu-
rations liées à chaque scénario ont ensuite été fusionnées en une configuration unifiée par
l’analyse de la fréquence d’apparition et de l’importance des capteurs. L’ensemble final de
capteurs assure une couverture et une sensibilité suffisantes à la dégradation structurelle
tout en maintenant un nombre réduit de capteurs. L’approche proposée offre une solution
pratique et évolutive pour la conception de systèmes SHM dans des structures complexes
avec des zones de dommage anticipées.

Mots-clés : Surveillance de la santé structurelle, Optimisation des capteurs, Algorithme
génétique, Matrice de distances, Détection adaptative des dommages.



Abstract
Structural Health Monitoring (SHM) plays a critical role in ensuring the safety and func-
tionality of vital structures such as bridges, dams, and public buildings. To make SHM sys-
tems more cost-effective, it is essential to optimize the number and placement of sensors,
reducing implementation costs while maintaining reliable damage detection and structural
assessment.

This study addresses the problem of optimizing damage-adaptive sensor layout in struc-
tural health monitoring (SHM) for multi-story buildings. A three-dimensional finite ele-
ment model of a 12-story reinforced concrete tower (R+12) was developed using SAP2000,
enabling the identification of high-risk damage zones based on internal force distributions.
Steady-state vibration responses were generated, and a genetic algorithm was used to iden-
tify the optimal sensor configuration for each damage scenario using distance matrices as
damage-sensitive features. These scenario-based layouts were then merged into a unified
configuration by analyzing sensor occurrence and importance scores. The final sensor
set ensures sufficient coverage and sensitivity to structural degradation while maintaining
a reduced number of sensors. The proposed approach provides a scalable and practical
solution for SHM system design in complex structures with anticipated damage regions.

Keywords: Structural Health Monitoring (SHM), Sensor Placement Optimization, Ge-
netic Algorithm, Distance Matrix, Damage-Adaptive Sensing.
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General Introduction

Motivation

Structural Health Monitoring (SHM) has become an indispensable tool for ensuring the

safety, durability, and optimal performance of vital infrastructure, including bridges, dams,

tunnels, heritage structures, and high-risk public buildings. These structures are often

subject to aging, extreme environmental conditions, or seismic activity, which makes early

damage detection and continuous monitoring essential to avoid catastrophic failures and

reduce maintenance costs. However, one of the main barriers to the widespread imple-

mentation of SHM systems lies in their high initial and operational costs, largely driven by

the number of sensors deployed and the complexity of the associated data acquisition sys-

tems. To address this challenge, recent research has focused on the optimization of sensor

placement, aiming to reduce the total number of sensors while maintaining high accu-

racy in detecting and localizing structural damage. Techniques based on transmissibility

analysis, modal information, and artificial intelligence (e.g., machine learning, genetic al-

gorithms) are increasingly used to identify the most informative sensor locations. This not

only minimizes hardware costs but also simplifies data interpretation and system mainte-

nance. Developing such cost-effective SHM strategies is critical to enable reasonable de-

ployment on large networks of vital infrastructure, especially in low- and middle-income

regions or in emergency post-event evaluations, where resources and time are limited.

Problematic

How can we ensure reliable and cost-effective Structural Health Monitoring (SHM) of vital

infrastructure by optimizing the number and placement of sensors without compromising

the system’s ability to detect, localize, and assess structural damage accurately? Three key

gaps remain:

• Sensor overload. Exhaustive sensor deployments drive up costs and data volume

without guaranteeing improved detection.

• Damage-agnostic layouts. Most placement strategies optimize for the healthy struc-

ture, neglecting how damage alters dynamic paths.
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General Introduction

Objectives

The main objectives of this thesis are to develop a damage-informed framework to opti-

mize the number and placement of sensors for the structural health monitoring of large

civil engineering structures, with a case study applied to a multi-story building. The nov-

elty of the approach lies in tailoring the optimization process to the potential damage

scenarios specific to the structure under consideration.

Thesis Structure

This thesis is organized into four chapters, each building toward an adaptive, AI-

driven structural health monitoring (SHM) system.

Chapter 1 – Literature Review: Establishes the theoretical foundation, covering SHM

methodologies with emphasis on transmissibility-based indicators, sensor placement

strategies, and AI-enhanced monitoring systems.

Chapter 2 – Sensor Optimization Using Transmissibility Functions: Proposes a sensor

optimization method based on transmissibility analysis. Candidate locations are se-

lected via SAP2000 simulations, and a custom genetic algorithm is used to generate

efficient layouts.

Chapter 3 – Damage-Dependent Sensor Optimization: Introduces the DD-SNPO

framework, which incorporates stiffness-reduction models and damage-aware indi-

cators to optimize sensor layouts responsive to structural degradation.

Chapter 4 – Case Study: COSIDER Headquarters Tower: Applies and validates the

proposed methods on a 12-story reinforced concrete building under simulated damage

scenarios, demonstrating real-world feasibility.
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Literature Review

1.1 Introduction

Structural Health Monitoring (SHM) has emerged as a critical discipline for assessing and

preserving the safety of civil infrastructure, particularly for medium-rise buildings where

direct inspection is often impractical. These structures demand SHM systems capable of

providing real-time diagnostics with minimal human intervention. Recent advances in

data-driven modeling and artificial intelligence have significantly expanded SHM capa-

bilities, especially through sensor optimization strategies that enhance damage sensitivity

while reducing operational costs.

This chapter presents a comprehensive review of Structural Health Monitoring (SHM)

systems, focusing on data-driven techniques for sensor optimization and damage detec-

tion. Emphasis is placed on transmissibility-based methods, sensor placement strategies,

and the growing role of artificial intelligence in adaptive SHM frameworks. The chapter

aims to identify current limitations, highlight emerging trends, and establish the theoreti-

cal context for the proposed methodology.

1.2 Structural Health Monitoring: Fundamentals and Evo-

lution

Structural Health Monitoring (SHM) represents a multidisciplinary approach to contin-

uous structural integrity assessment through embedded or external sensing networks.

These systems monitor dynamic and static responses to identify critical anomalies includ-

ing material cracking, stiffness degradation, and fatigue damage accumulation, integrat-

ing principles from structural dynamics, materials science, and signal processing for early

fault detection prior to catastrophic failures.

Modern Structural Health Monitoring (SHM) systems integrate five core elements:

sensors that track vibrations, strain, displacement, and temperature; data acquisition sys-

tems that collect and transmit measurements, often wirelessly or via cloud platforms; sig-

nal processing techniques that filter and analyze raw data to detect meaningful patterns;

diagnostic methods combining physics-based models, statistical analysis, and machine

learning to assess structural damage; and decision-support systems that evaluate risks

and prioritize maintenance actions. Together, these components enable real-time moni-

toring, early damage detection, and informed infrastructure management.

The principal objectives of SHM systems address three critical dimensions: First, en-
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suring public safety and operational continuity of critical infrastructure; second, enabling

condition-based maintenance to reduce lifecycle costs through targeted interventions; and

third, capturing and interpreting early warning signs of damage through persistent moni-

toring. These objectives collectively ensure both immediate structural safety concerns and

long-term economic sustainability of built infrastructure are addressed through integrated

monitoring solutions.

1.3 Sensor Placement Methodologies

1.3.1 Classical Optimization Approaches

Traditional approaches to sensor placement often rely on modal analysis, frequency-based

criteria, or heuristic guidelines to optimize measurement coverage. While these methods

work well for idealized or simple structures, they face practical challenges in real-world

applications. For instance, they typically require precise excitation models, struggle to

adapt to evolving damage patterns or geometrically complex systems, and may not fully

account for uncertainties such as measurement noise or modeling errors. These limita-

tions highlight the need for more flexible and robust strategies in modern structural health

monitoring.

1.3.2 Sensor Technologies and Deployment Challenges

Structural health monitoring systems employ diverse sensing technologies, each present-

ing unique advantages for infrastructure assessment. Micro-electromechanical systems

(MEMS) accelerometers offer compact, cost-effective solutions with significant scalabil-

ity potential. Fiber optic sensors provide critical capabilities for long-span structures

through distributed strain monitoring, while wireless sensor networks deliver flexible,

low-maintenance alternatives enabling high-density instrumentation across complex ge-

ometries. Recent technological innovations further enhance monitoring capabilities, in-

cluding energy harvesting systems that extend operational lifespans via ambient energy

conversion, blockchain-secured data transmission protocols ensuring tamper-resistant in-

tegrity, and self-diagnosing hardware enabling autonomous fault detection and calibra-

tion reporting. These advancements collectively address persistent limitations in long-

term structural surveillance applications, particularly regarding power sustainability, data

security, and maintenance requirements.
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Figure 1.1: Representative sensor technologies for structural health monitoring: (a) MEMS

accelerometer, (b) fiber optic strain sensor, and (c) wireless sensor node.

1.3.3 Core Optimization Challenges

Optimal Sensor Placement (OSP) research faces three interconnected challenges. Firstly,

the detectability-cost tradeoff arises as exhaustive deployments enhance detection capa-

bility while incurring prohibitive installation and maintenance costs. Secondly, environ-

mental variability introduces complications through temperature fluctuations that induce

frequency shifts comparable to 15% stiffness loss, causing false positives. Thirdly, geomet-

ric constraints from complex topologies—including curved surfaces and access-limited

zones—restrict feasible sensor placements [2, 5, 25].

1.3.3.1 Dominant Methodological Approaches

Sequential Selection Methods Backward Sequential Sensor Placement (BSSP) starts with

a full sensor set and iteratively removes low-contribution sensors. Though accurate, it is

computationally intensive. Effective Independence (Eff) ranks locations by linear inde-

pendence to mode shapes, with variants avoiding nodal points.

Metaheuristic Optimization in SHM Metaheuristic optimization techniques, including

Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Simulated Anneal-

ing, excel at navigating complex, high-dimensional solution spaces inherent to sensor

placement problems. Inspired by natural selection, GAs encode potential sensor layouts

as chromosomes (binary strings or integer sets) and iteratively evolve solutions through

fitness evaluation, selection, crossover, and mutation. The fitness function typically bal-

ances damage sensitivity (e.g., transmissibility distance preservation), spatial coverage
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uniformity, and sensor economy. As illustrated in Figure 1.2, high-fitness solutions repro-

duce while mutation preserves diversity, enabling GAs to outperform traditional methods

in complex structures with non-convex search spaces.

Figure 1.2: Genetic algorithm workflow for sensor placement optimization [10]

1.3.3.2 Heuristic Algorithm Comparison

Heuristic methods fall into three categories. Individual ranking approaches (e.g., NODP,

EVP) offer low computational cost but suffer from sensor clustering. Interaction-aware

methods (e.g., EfI, QRD) account for sensor synergy but depend on mode-shape accu-

racy. Metaheuristics (e.g., GA, PSO) handle complex constraints but require significant

computation. Enhanced variants address these limitations: local-maxima sorting reduces

clustering by prioritizing mode-shape peaks, while multi-objective weighting combines

criteria via Pareto fronts.

1.3.4 Research Directions

OSP remains a high-stakes optimization challenge where theoretical advances outpace

field implementation. Three research priorities emerge. Firstly, damage-centric OSP must
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integrate stiffness-reduction models into placement criteria. Secondly, uncertainty quan-

tification should embed stochastic robustness to handle environmental noise. Thirdly,

hybrid sensing approaches should fuse physics-based metrics with deep learning for real-

time reconfiguration [22]. A critical research gap persists in frameworks bridging OSP and

damage diagnosis within unified pipelines. The hybrid AI approach presented in subse-

quent chapters addresses this limitation through transmissibility-based GA optimization

integrated with neural network diagnostics.

1.4 Structural Damage Detection Techniques

1.4.1 Overview of Damage Detection

Structural damage detection techniques aim to identify, locate, and quantify degradation

by analyzing deviations in dynamic or static responses, broadly categorized into conven-

tional model-based approaches (reliant on physical principles) and data-driven methods

(leveraging statistical or machine learning algorithms). These techniques exploit changes

in structural dynamic properties sensitive to stiffness, mass, or damping variations from

defects (e.g., cracks, corrosion). In linear systems, damage manifests as: reduced natural

frequencies (stiffness loss), localized mode shape distortions (curvature changes at dam-

age sites), and increased damping ratios (friction/material loss), while nonlinear effects

like breathing cracks introduce amplitude-dependent frequency shifts and harmonics [7].

Early methodologies focused on model-based techniques using finite element model

updating to minimize discrepancies between analytical predictions and experimental modal

parameters [9]. The field evolved with vibration-based methods monitoring changes in

modal properties [7], though environmental variability posed challenges. Data-driven

approaches gained prominence with statistical pattern recognition frameworks [8] and

machine learning algorithms including support vector machines [21], convolutional neu-

ral networks [4], and unsupervised learning for feature extraction [24]. Recent advances

address nonlinear damage behavior through hybrid models integrating physical princi-

ples with deep learning [1], yet challenges persist in feature sensitivity under operational

variability and real-time implementation [20].
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1.4.2 Conventional and Data-Driven Methods

1.4.2.1 Modal Assurance Criterion (MAC) and Coordinate MAC (COMAC)

The Modal Assurance Criterion (MAC) quantifies the consistency between mode shapes

from baseline (healthy) and current states using a correlation metric:

MAC(ϕi, ϕj) =
|ϕT

i ϕj|2

(ϕT
i ϕi)(ϕT

j ϕj)
, (1.1)

where ϕi, ϕj are mode shape vectors. Values near 1 indicate high consistency, while lower

values suggest damage. Coordinate MAC (COMAC) extends this spatially, evaluating

discrepancies at individual degrees of freedom (DOFs) to localize damage.

1.4.2.2 Linear Feature Correlation Ratio (LFCR)

The Linear Feature Correlation Ratio (LFCR) is a statistical damage indicator widely used

in structural health monitoring (SHM) to detect changes in feature similarity between

healthy and damaged structural states. Specifically, it evaluates the Pearson correlation

of localized dynamic features—such as mode shape amplitudes or frequency response

spectra—at each measurement point. For a structure with n measurement points and m

samples, LFCR at location k is defined as:

LFCRk =

∑m
i=1

(
x

healthy
i,k − x̄

healthy
k

)(
x

damaged
i,k − x̄

damaged
k

)
σ

healthy
k σ

damaged
k

, (1.2)

where xi,k is the i-th sample of the feature at point k, x̄k is its mean, and σk its stan-

dard deviation. Significant drops in LFCR values at specific locations suggest deteriorated

linear correlation due to structural damage [14].

LFCR has demonstrated effectiveness in detecting damage in composite structures

with transmissibility-based features and mode shapes—with high sensitivity and robust-

ness to noise [14][26]. Its simplicity and computational efficiency make LFCR a practical,

data-driven metric for SHM systems focused on early detection and localization.

1.4.2.3 Frequency Response Functions (FRFs)

FRFs characterize input–output relationships in the frequency domain, with damage al-

tering their amplitude, phase, or resonance peaks. For example, a stiffness reduction at a

critical joint may:
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• Shift resonant frequencies downward

• Attenuate FRF amplitudes near resonances

• Introduce phase distortions due to damping changes

• Modify FRF curvature patterns at damage locations (Fig. 1.3)

Recent advances demonstrate FRFs’ effectiveness when combined with dimensionality

reduction and machine learning. [17] applied Principal Component Analysis (PCA) to

compress FRF data from a cable-stayed bridge, reducing 3995-dimensional FRF vectors to

just 20 principal components. This compressed data served as input to neural networks,

achieving:

• 98.4% damage detection accuracy on training data

• More than 85% correct damage localization in experimental validation

• Precise stiffness loss quantification (errors lesser than 0.05 in normalized rigidity)

Figure 1.3: Typical FRF curvature modification at damage locations (adapted from [17])

While traditional FRF methods require controlled inputs (e.g., hammer strikes), [17]

successfully simulated ambient vibrations using SAP2000 software, demonstrating FRF

applicability under operational conditions. Noise robustness was enhanced through Gaus-

sian noise injection during training, maintaining 85% plus accuracy even with 5% signal

noise (Fig. 1.4).
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Figure 1.4: FRF preservation under 5% Gaussian noise (representative example)

Challenges remain in real-time processing of high-dimensional FRF data and distin-

guishing damage-related changes from environmental variations [? ].

1.4.2.4 Stiffness and Flexibility Matrix Methods

The stiffness matrix approach solves the inverse problem ∆K = Khealthy − Kdamaged us-

ing measured displacements (u) and applied forces (f ) through Ku = f . However, this

method faces significant challenges including ill-posedness and noise sensitivity [15], mak-

ing it impractical for historical monument monitoring where precise force measurements

are often unattainable.

In contrast, flexibility matrix methods compute F = K−1 using modal parameters (F ≈∑n
i=1

ϕiϕ
T
i

ω2
i

), where damage manifests as localized flexibility increases. This approach was

implemented in the Kalaa study using the first 12 vibrational modes (Section 3.3), with

the flexibility variation ∆F = Fs−Fe serving as the primary damage indicator. Six critical

damage zones (labeled A through F), initially identified through structural stress analysis,

were then evaluated using the scalar damage metric δj = max |∆Fij| for localization. This

method achieved 95% accuracy in validation tests [15], effectively confirming the spatial

damage distribution without the need for force measurements.

To provide structural context, a 3D model of the Kalaa monument was developed (Fig.

1.5), offering a detailed geometric basis for vibration-based monitoring and sensor place-

ment optimization.
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Figure 1.5: 3D model of the Kalaa monument used for structural analysis and sensor place-

ment optimization[15]

The optimized sensor network (65 locations determined by genetic algorithms) pro-

vided input data to a neural network with 300-200-100 hidden layers. This hybrid ap-

proach demonstrated exceptional performance: 97% training accuracy for damage local-

ization and mean squared error below 10−4 for severity quantification, outperforming tra-

ditional stiffness-based methods in both computational efficiency and noise robustness

for ambient vibration monitoring.

Figure 1.6: Model Prediction Accuracy Histogram [15].
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Figure 1.7: Model Cost Function Histogram[15].

1.4.2.5 Transmissibility-Based Structural Damage Detection Using Distance Measures

Transmissibility functions (TFs) define output-to-output spectral relationships, avoiding

input measurements.

Fundamentals of Transmissibility The foundation of TFs is summarized as follows. For

a linear multi-DOF system subjected to external dynamic forces f(t), the equation of mo-

tion is:

Mẍ(t) +Cẋ(t) +Kx(t) = f(t), (1.3)

where M, C, and K are mass, damping, and stiffness matrices respectively, and x(t) con-

tains displacement responses [13]. The direct TF between point i and reference point j is

defined as:

Tij(ω) =
Xi(ω)

Xj(ω)
, (1.4)

where Xi(ω) and Xj(ω) are FFT amplitudes of responses at DOFs i and j. For operational

conditions with unmeasured excitation, TFs are formulated using cross-power (Gij) and

auto-power (Gjj) spectra:

Tij(ω) =
Gij(ω)

Gjj(ω)
. (1.5)

Distance-Measure–Based Damage Detection Indicators Structural damage causes mea-

surable variations in TFs between adjacent sensor locations. These variations are quanti-
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fied through distance measures to detect damage severity [13]. Four key distance mea-

sures are implemented:

• Cosh Distance: Symmetric measure of global spectral differences. For TF spectra

X = [x1, . . . , xN ] and Y = [y1, . . . , yN ]:

dcosh(X, Y ) =
1

2N

N∑
i=1

[
xi
yi

− log
xi
yi

+
yi
xi

− log
yi
xi

− 2

]
(1.6)

dcosh ≈ 0 indicates no damage; deviations suggest damage.

• Euclidean Distance: Geometric distance in spectral space:

dE(X, Y ) =

√√√√ N∑
i=1

(xi − yi)2 (1.7)

Ranges from 0 (identical) to ∞ (dissimilar).

• Itakura Distance: Emphasizes spectral shape differences:

d2I(X, Y ) =
N∑
i=1

(
x2i
y2i

− 1

)
(1.8)

Values ≫ 0 indicate damage.

• Mahalanobis Distance: Covariance-scaled difference:

dM(X, Y ) =
√
(x− y)TΣ−1(x− y) (1.9)

where Σ is the covariance matrix of baseline TFs. Larger values indicate severe dam-

age.

1.4.3 Damage Indicators

Damage Detection Index (DDI) Normalizes distance measures against baseline condi-

tions:

DDI(ω) =
d(ω)

max(dhealthy(ω))
(1.10)

where d(ω) is a distance measure (e.g., Cosh) at frequency ω, and max(dhealthy) is its maxi-

mum over healthy baselines. DDI ≈ 1 (0 dB) indicates health; DDI > 1 suggests damage.
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Advanced Resulting Index (ARI) Uses peak DDI values for damage discrimination:

ARI = max
ω

(DDI(ω)) (1.11)

ARI ≈ 1 implies structural health; ARI > 1 detects damage, with peak locations indicating

severity. This index demonstrates strong noise robustness in experimental validation [13].

1.4.4 Recent Advances in Transmissibility-Based SHM

Recent research has demonstrated significant progress in transmissibility-based structural

health monitoring (SHM) through three key developments. First, physics-informed trans-

missibility approaches [6] have emerged that embed mechanical constraints directly into

transmissibility functions, demonstrating 30–40

Second, studies have quantitatively established transmissibility’s robustness under

ambient vibration conditions [27], with the signal-to-noise ratio (SNR) of transmissibil-

ity functions (SNRTF ) proving superior to FRF methods by a factor of 1.8 for frequencies

below 10 Hz. This finding particularly validates your methodological choice for medium-

rise building applications where wind and microtremor excitations dominate the opera-

tional vibration spectrum.

Third, recent advances in unsupervised learning techniques, such as autoencoder (AE)-

based feature extraction combined with one-class support vector machines (OC-SVMs),

have demonstrated significant improvements in structural health monitoring (SHM) sys-

tems. As shown[12], this hybrid approach leverages transmissibility functions (TFs) de-

rived directly from vibration response data, eliminating the need for excitation measure-

ments while maintaining sensitivity to localized damage. Their framework achieved ro-

bust damage detection by using reconstruction errors from AE-compressed TF representa-

tions as damage-sensitive features, validated through both numerical simulations and ex-

perimental testing on a masonry arch bridge model. Notably, the method’s unsupervised

nature addresses a critical challenge in SHM by requiring only baseline (healthy) data for

training, making it particularly suitable for real-world applications where labeled dam-

age data is scarce. The integration of nonlinear encoding in the AE architecture further

enhanced detection accuracy compared to traditional linear methods like principal com-

ponent analysis (PCA), offering a promising alternative to conventional distance-based

metrics in damage-sensitive feature extraction pipelines.
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1.5 Artificial Intelligence Integration in Structural Health

Monitoring

Artificial intelligence has fundamentally transformed structural health monitoring (SHM)

by introducing adaptive capabilities that address the escalating complexity of modern in-

frastructure systems. This transformation manifests through synergistic advances across

three interconnected technical domains. First, intelligent sensor deployment leverages

metaheuristic optimization and Bayesian inference frameworks to autonomously identify

optimal measurement locations while minimizing hardware requirements. Second, au-

tomated feature extraction techniques employ multi-resolution wavelet transforms and

manifold learning to distill damage-sensitive patterns from high-dimensional, noise con-

taminated signal arrays. Finally, damage inference engines utilize both supervised clas-

sifiers (e.g., deep neural networks) and unsupervised clustering algorithms to establish

robust correlations between extracted features and structural integrity states. These capa-

bilities collectively form an evolving paradigm where data-driven intelligence compen-

sates for physical modeling limitations in aging infrastructure systems, particularly when

integrated with transmissibility-based approaches.

1.5.1 Synergistic Fusion of AI and Transmissibility Methods

Recent methodological advances demonstrate significant improvements in damage quan-

tification accuracy through AI-transmissibility integration. Hybrid architectures combin-

ing wavelet-transmissibility fusion with deep learning achieve up to 18% higher precision

than conventional methods, particularly under non-Gaussian excitation profiles. Concur-

rently, graph neural networks leverage topological relationships within sensor networks

to yield 25% superior localization accuracy in grid structures by explicitly modeling spa-

tial dependencies. These developments highlight AI’s capacity to extract latent informa-

tion from transmissibility matrices that traditional analytical approaches overlook.

The advent of explainable AI (XAI) has fundamentally transformed diagnostic inter-

pretability in SHM. SHAP (SHapley Additive exPlanations) analysis—a game-theoretic

framework quantifying feature contributions to model outputs [18]—reveals critical phys-

ical insights when applied to transmissibility features [16]. In reinforced concrete frames,

SHAP decomposition demonstrates that:

• High-frequency components (>5Hz) dominate damage localization decisions
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• Low-frequency features primarily indicate global stiffness degradation

This XAI methodology provides three key advantages for SHM systems:

1. Physical interpretability: Mapping abstract ML predictions to measurable struc-

tural behaviors

2. Feature validation: Quantitatively justifying sensor placement and bandwidth se-

lection

3. Model auditing: Identifying spurious correlations in damage detection algorithms

The frequency-dependent feature importance revealed by SHAP analysis validates this

study’s instrumentation strategy focusing on the 0–10 Hz range, demonstrating critical

alignment with our SAP2000 simulation parameters. By establishing explicit links be-

tween data-driven predictions and physical structural behavior, SHAP-based interpreta-

tion enhances trust in AI-assisted diagnostic frameworks.

1.6 Challenges and Research Gaps

Despite significant advances, four interconnected limitations persist in current SHM re-

search: most optimization techniques inadequately address damage-induced variability

and environmental/operational influences; sensor placement methodologies frequently

lack robustness to modeling assumptions and parameter uncertainties; AI methods de-

mand extensive training data for damage states that are inherently scarce in civil struc-

tures; and environmental variability (EOV) induces false positives in distance-based meth-

ods without robust compensation strategies. Crucially, few frameworks successfully inte-

grate placement optimization and AI diagnostics within unified pipelines, representing a

significant research opportunity.

1.7 Conclusion

This chapter has reviewed the state of the art in Structural Health Monitoring (SHM), with

a focus on transmissibility-based damage detection techniques, sensor placement strate-

gies, and the integration of artificial intelligence in modern monitoring systems. Tradi-

tional SHM approaches were examined alongside recent advances that aim to overcome

limitations in cost, adaptability, and sensitivity to damage. Transmissibility functions
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emerged as a powerful tool for damage localization under ambient excitation, while evo-

lutionary algorithms and information-based metrics were shown to significantly enhance

sensor optimization.

Furthermore, the chapter highlighted the growing role of AI, particularly machine

learning and explainable AI, in automating and improving the interpretability of SHM

outcomes. This review has exposed key research gaps, notably the lack of frameworks

that adapt sensor layouts to evolving structural conditions and damage scenarios.

These insights form the foundation for the methodological developments in the follow-

ing chapters, where a transmissibility-based sensor optimization framework is proposed

and extended toward damage-dependent and application-ready solutions.
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Sensor Optimization Using Transmissibility Functions

2.1 Introduction

Structural health monitoring of medium-rise buildings presents a critical challenge in bal-

ancing sensor network effectiveness with practical deployment constraints. Traditional

approaches relying on modal analysis or empirical rules frequently prove inadequate

for detecting localized damage through ambient vibration monitoring. This chapter de-

velops an innovative optimization framework that fundamentally rethinks sensor place-

ment through transmissibility-based analysis. The proposed methodology introduces sev-

eral key advances: first, a distance-matrix approach derived from transmissibility func-

tions that captures dynamic response variations without controlled excitation; second, a

multi-objective fitness function that systematically combines signal fidelity, spatial cover-

age, and resource efficiency through rigorously defined weighting parameters; and third,

a specialized genetic algorithm incorporating structural-aware operators to handle the

unique constraints of building monitoring systems. Designed specifically for reinforced

concrete structures, this framework establishes a principled pathway from computational

modeling to optimized sensor network design, offering theoretical insights that transcend

conventional trial-and-error methodologies. By integrating concepts from information

theory with structural dynamics, the approach provides a foundation for next-generation

structural health monitoring systems.

2.2 Overview of the Generic Structural Model

All optimization results presented in Chapters 2 and 3 derive from numerical experiments

conducted on a reference five-story reinforced concrete (RC) frame (R+4), designed per

RPA 2024 [3] seismic code (PGA=0.25g). The structure features a regular 15m × 14m grid

with uniform 3.06m story heights, modeled in SAP2000 using 3D frame elements and

rigid diaphragms (Fig. 2.1).
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Figure 2.1: Structural model showing beam-column joints.

Concrete demonstrates 25 MPa compression strength with 30 GPa modulus (Table 2.1).

Table 2.1: Concrete (C25/30) material properties

Property Value

Modulus of Elasticity, E (MPa) 31,000

Poisson’s ratio, 0.2

Coefficient of thermal expansion (1/°C) 1.0×10-5

Shear modulus, G (MPa) 12,917

Specified compressive strength, fc (MPa) 25

Mass density (t/m3) 2.55

The 8,664-DOF model was reduced to 3,474 translational DOFs by selecting perimeter

beam-column nodes near floor levels, enabling efficient sensor placement optimization.
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2.3 Transmissibility-Based Sensor Optimization Approach

The core objective of this work is to develop an effective sensor placement strategy for

structural health monitoring (SHM) using transmissibility-based features. Transmissi-

bility, which reflects the ratio of frequency response functions (FRFs) between different

locations on a structure, offers a promising path for detecting and localizing damage in

large-scale civil engineering systems.

2.3.1 General Methodology

Transmissibility Tij is defined as the ratio between the FRFs at two nodes i and j, typically

written as:

Tij(f) =
FRFi(f)

FRFj(f)

This ratio captures the relative dynamic response between nodes across frequency. In our

case, the FRFs represent velocity responses obtained through numerical simulations in

SAP2000.

The initial goal was to apply the transmissibility-based method directly on the full FRF

tensor, which for each structural state forms a three-dimensional dataset of sizeN×N×F ,

where:

• N is the number of candidate sensor nodes,

• F is the number of frequency samples.

However, optimizing on this large tensor directly is computationally infeasible. To resolve

this, we compute a distance matrix that summarizes the differences between transmissi-

bility curves across all node pairs, using Euclidean distance over frequency.

2.4 Sensor Number and Placement Optimization Using Dis-

tance Matrix

In the context of structural health monitoring (SHM), optimal sensor placement is a critical

task for ensuring accurate and robust damage detection. This section introduces an ap-

proach based on the distance matrix, constructed from frequency-domain response data,

to guide sensor network placement prior to any damage occurrence.
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2.4.1 Motivation and Theoretical Basis

Sensor Number and Placement Optimization (SNPO) aims to select a configuration of sen-

sors that maximizes the observability and sensitivity of the system to potential changes.

Traditional approaches often rely on modal assurance or transmissibility ratios; however,

a more generalized and adaptable method involves the use of a distance matrix Dij de-

fined as:

Dij = ∥Xi(ω)−Xj(ω)∥ , (2.1)

where Xi(ω) and Xj(ω) represent the frequency response functions (e.g., velocity or

acceleration spectra) at degrees of freedom (DOFs) i and j, respectively. This formula-

tion quantifies the dissimilarity between sensor responses, thereby capturing the spatial

variation of structural dynamics.

A healthy-state distance matrix Dhealthy provides a reference model of the undamaged

structure. Sensor configurations that preserve the distinctiveness of this matrix are likely

to be more effective in identifying deviations under damage.

2.4.2 Optimization Framework

The proposed optimization framework aims to determine the most effective sensor place-

ment for structural health monitoring (SHM) by leveraging a distance-matrix-based ap-

proach applied to the undamaged (healthy) state of the structure. The method is entirely

data-driven and operates on frequency-domain structural response data (e.g., velocity or

acceleration spectra).

A complete pairwise distance matrix Dhealthy is first constructed using the full set of

degrees of freedom (DOFs) in the healthy state. This matrix quantifies the spatial vari-

ation in dynamic responses across the structure and serves as the reference baseline for

optimization.

A metaheuristic algorithm, such as a genetic algorithm, is employed to search for sen-

sor configurations that best preserve the information contained in Dhealthy. The procedure

is as follows:

1. Generate candidate sensor layouts by selecting subsets of DOFs.

2. For each layout, extract the submatrix Dselected ⊂ Dhealthy, corresponding to the se-

lected sensors.
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3. Compute a fitness score by comparing the informativeness of Dselected relative to the

full matrix Dfull = Dhealthy. One such metric is:

Fitness Ratio =
∑

Dselected

4. The objective is to maximize this ratio, approaching unity, thereby ensuring that the

selected sensor subset retains as much information as the full system.

2.4.3 Optimization Strategy and Adjustments

We implemented a Genetic Algorithm (GA) to search for optimal sensor distributions

across predefined levels. Initially, maximizing the transmissibility ratio alone led the al-

gorithm to converge toward the maximum number of sensors. To address this, we in-

troduced a sensor penalty that discourages solutions with too few sensors, promoting

balanced distributions:

Fitness =

(∑
Dselected∑
Dfull

)
− λ ·

(
Nmin

Nselected

)
where λ is a tunable penalty coefficient, Nmin is the minimum required number of sensors,

and Nselected is the number of sensors in the current candidate solution.

2.5 Objective Function and Fitness Evaluation

To optimize sensor placement within a monitored structure, we define a fitness function

that evaluates candidate configurations based on two key criteria: first, the preservation

of structural dynamic behavior; and second, the spatial uniformity of sensor deployment.

These criteria are captured through a composite fitness score that combines a signal preser-

vation term, a coverage uniformity term, and a sparsity encouragement term.

2.5.1 Signal Preservation Score

The signal preservation score quantifies the extent to which the selected sensors capture the

intrinsic dynamic diversity of the system. Let Xi ∈ Rd represent the full dynamic response

vector at sensor i, concatenated across all relevant directions. The pairwise Euclidean

distance between sensors i and j is given by:

Dij = ∥Xi −Xj∥2 (2.2)
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Let D ∈ Rn×n be the symmetric distance matrix whose elements are Dij . The signal

preservation score S is defined as the sum of all entries in this matrix:

S =
n∑

i=1

n∑
j=1

Dij (2.3)

A higher value of S indicates greater dissimilarity among the selected sensors’ re-

sponses, reflecting better dynamic representativeness.

2.5.2 Coverage Uniformity Score

To promote even spatial distribution of sensors, we define the coverage uniformity score C.

Let F be the set of spatial regions (e.g., floor levels or zones). The score C represents the

fraction of these regions that contain at least one sensor:

C =
1

|F|
∑
f∈F

If (2.4)

Here, If = 1 if region f contains at least one sensor, and If = 0 otherwise. This term

encourages broad coverage and penalizes clustering in a few areas.

2.5.3 Sparsity Encouragement Term

To reduce the total number of sensors used while maintaining performance, we define the

sparsity encouragement term E:

E = 1− n

N
(2.5)

where n is the number of sensors in the current configuration, and N is the maximum

allowable number of sensors. This term rewards solutions that use fewer sensors.

2.5.4 Composite Fitness Function

The overall fitness score F is a weighted sum of the signal preservation, sparsity, and

coverage terms:

F = wSS + wEE + wCC (2.6)

where:
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• wS : weight for signal preservation (default: 0.3)

• wE : weight for sparsity encouragement

• wC : weight for coverage uniformity (default: 0.1)

The weights can be tuned according to design priorities—for example, to emphasize

either structural fidelity, minimal hardware cost, or spatial reach.

2.5.5 Summary

This formulation ensures that selected sensor layouts are both dynamically informative

and spatially efficient. By combining quantitative measures of response dissimilarity, re-

gion coverage, and sparsity, the objective function aligns with best practices in optimal

sensor network design for structural health monitoring.

2.6 Genetic Algorithm Implementation

To solve the sensor number and placement optimization (SNPO) problem, we implement

a genetic algorithm (GA) that evolves candidate sensor configurations over generations.

The GA is tailored to optimize both sensor locations and count, subject to structural mon-

itoring constraints and data fidelity.

2.6.1 Why Genetic Algorithm?

The optimization of sensor placement presents unique computational challenges that ne-

cessitate specialized solution approaches. The problem’s combinatorial nature results in

an exponentially growing solution space: for N potential sensor locations and K sensors

to deploy, the number of possible configurations scales as
(
N
K

)
. In structural systems where

N often exceeds 100 potential locations, evaluating all configurations becomes computa-

tionally prohibitive (e.g.,
(
100
10

)
≈ 17.3 trillion possibilities).

The optimization landscape exhibits particularly challenging characteristics. The rela-

tionship between sensor placements and localization accuracy is typically non-linear and

discontinuous, creating a rugged fitness surface with numerous local optima. This non-

convexity renders gradient-based optimization methods ineffective. Furthermore, each

fitness evaluation requires computationally intensive simulations or data processing.
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Problem Characteristics:

• Combinatorial explosion: Solution space grows factorially with locations

• Rugged fitness landscape: Non-convex with multiple local optima

• Expensive evaluations: Minutes to hours per configuration

• Discrete variables: Sensors occupy fixed locations

Genetic Algorithms (GAs) address these challenges through their unique operational

paradigm. As population-based metaheuristics, GAs maintain diverse solution candi-

dates simultaneously, enabling parallel exploration of the search space. Their evolution-

ary operators (selection, crossover, mutation) naturally accommodate discrete variables

through binary chromosome encodings. Crucially, GAs operate without derivatives, re-

quiring only fitness evaluations—making them ideal for non-differentiable objective func-

tions.

The method demonstrates particular strengths in balancing exploration and exploita-

tion. Crossover operations combine promising solutions while mutation introduces nov-

elty, preventing premature convergence to local optima. Engineering constraints such as

floor-wise sensor balance or exclusion zones can be incorporated via custom operators or

penalties.

A typical GA workflow follows four key phases:

1. Encoding: Represent configurations as binary strings (1 = sensor present)

2. Evaluation: Compute the composite fitness function (see Section 2.5)

3. Evolution: Apply selection, crossover, mutation

4. Convergence: Terminate based on improvement plateau or max generations

Key Advantage: GAs deliver near-optimal sensor configurations with computational

efficiency unattainable through brute-force methods, while accommodating complex

structural and spatial constraints.
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2.6.2 Preprocessing and Sensor Location Reduction

Candidate sensor positions underwent a systematic reduction process to enhance com-

putational efficiency. A spatial filtering step eliminated degrees of freedom located in

structurally insignificant regions (e.g., near supports or symmetry lines).

2.6.3 Encoding and Initialization

The genetic algorithm represents each candidate sensor layout as a chromosome X ⊆ Sall,

where Sall is the full set of potential sensor positions (after preprocessing). Chromosomes

are encoded using binary vectors, where each bit indicates the presence (1) or absence (0)

of a sensor at a corresponding location.

A population P = {X1,X2, . . . ,XN} is initialized by randomly sampling valid sensor

subsets that satisfy user-defined bounds [nmin, nmax]. Each individual in the initial genera-

tion is guaranteed to meet minimum sensor requirements.

2.6.4 Fitness Evaluation

Each candidate layout X is evaluated using the composite fitness function defined in Sec-

tion 2.5. The fitness score is:

F (X ) = wS · S(X ) + wE · E(X ) + wC · C(X ) (2.7)

Where:

• S(X ): Signal preservation score (normalized Frobenius norm of sub-distance matri-

ces)

• C(X ): Coverage uniformity score

• E(X ) = 1− |X |
N

: Sparsity encouragement term

2.6.5 Selection and Reproduction

Selection is conducted via rank-based sampling with exponential fitness weighting, pro-

moting high-performing candidates while maintaining diversity.

Crossover: A single-point crossover mechanism is applied to combine sensor subsets

from two parents. Each parent chromosome is split at a randomly selected locus, and the
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offspring inherit contiguous segments from both parents. This approach preserves feasi-

bility and maintains sensor count constraints while introducing genetic diversity through

recombination.

Mutation: Mutation operations apply stochastic bit-flipping with optional structural

bias. A floor-aware mutation mechanism increases mutation probability on underrep-

resented structural levels, encouraging balanced vertical coverage and avoiding sensor

clustering. These targeted adjustments preserve exploration while adapting to spatial im-

balances.

An adaptive mutation rate control mechanism modifies probabilities over time to pre-

vent premature convergence and support fine-tuning in later generations.

2.6.6 Genetic Algorithm Design and Computational Architecture

The genetic algorithm begins with a randomly generated population that satisfies all fea-

sibility constraints. In each generation, individuals are evaluated using a composite fit-

ness function, and the best-performing members are preserved through elitism. Parent

selection is carried out using a rank-based strategy, after which crossover and mutation

operations are applied to generate new offspring. The next generation is then formed

by combining elite individuals with the highest-ranking offspring. This iterative process

continues until a predefined number of generations is reached or until the algorithm con-

verges, indicated by the absence of significant improvement in the best fitness value over

a specified number of consecutive generations.

The algorithm was implemented with several features designed to improve both effi-

ciency and solution quality. To accelerate fitness evaluation, direction-wise distance ma-

trices were precomputed in advance, allowing for rapid assessment of candidate solu-

tions. Sensor positions were assigned to specific floors using a vertical height tolerance of

ϵ = 0.1m, ensuring accurate mapping of sensors to their corresponding levels. Mutation

operations were adapted to be floor-aware, enforcing minimum sensor counts per level to

preserve spatial coverage and structural representativeness. Additionally, the evaluation

of candidate solutions was parallelized across available CPU cores, significantly reducing

computation time and enabling the analysis of larger populations within practical run-

times.
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2.7 Baseline Sensor Number and Placement Optimization

The genetic algorithm consistently converged to sensor configurations exhibiting pro-

nounced spatial condensation at the mid-height level (9.18 m elevation) for undamaged

structural conditions. This distribution pattern emerges from the distance matrix compu-

tations, which identify the middle floor as providing optimal signal sensitivity for base-

line monitoring. The consistent sensor concentration at this elevation suggests it serves as

the most informative monitoring plane in structurally intact conditions, offering superior

response characteristics for detecting early deviations. This condensation phenomenon

demonstrates the algorithm’s ability to identify regions of maximum information density

when the system remains uncompromised. These results are derived from the imple-

mentation of the genetic algorithm described previously, applied to the generic structural

model introduced in Section 2.2.

Figure 2.2: Baseline sensor distribution for healthy state
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2.8 Conclusion

This chapter presented a theoretical and computational framework for sensor placement

optimization in medium-rise structures using transmissibility-based metrics. By formu-

lating a distance-driven fitness function and embedding it within a genetic algorithm,

the approach prioritized both structural observability and spatial efficiency. The method-

ology demonstrated that optimal sensor configurations naturally emerge at mid-height

levels, where transmissibility contrast is most pronounced and dynamic behavior is best

captured.

Applied to a generic finite element model developed in SAP2000, the optimization

consistently favored the 9.18 m elevation as a key monitoring plane, illustrating the algo-

rithm’s capacity to detect and exploit regions of high information density in undamaged

conditions. The resulting sensor layouts maintained structural representativeness while

reducing unnecessary redundancy, forming a reliable baseline configuration for subse-

quent damage detection tasks.

The integration of physics-informed modeling and evolutionary search establishes a

robust foundation for structural health monitoring. It provides a transferable strategy for

resource-efficient sensor deployment that can adapt to a wide range of structural typolo-

gies and monitoring objectives.
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3.1 Introduction

Effective structural health monitoring (SHM) requires not only high-quality sensors but

also strategic placement tailored to detect and identify likely damage. Traditional sensor

placement strategies often optimize observability under undamaged conditions, neglect-

ing how structural damage alters dynamic behavior. This chapter introduces a Damage-

Dependent Sensor Network Placement Optimization (DD-SNPO) framework that directly

integrates damage modeling—particularly stiffness degradation via Young’s modulus re-

duction—into the sensor layout process.

Recent studies emphasize that including damage effects in the optimization criteria

significantly improves sensitivity and localization performance under real-world scenar-

ios. By accounting for how damage modifies transmissibility and modal parameters,

SNPO enables the design of sensor layouts that are robust, adaptive, and damage-informative.

3.1.1 Rationale for Damage-Dependent Sensor Placement Optimization

The optimization of sensor networks for structural health monitoring presents unique

challenges that necessitate damage-dependent approaches. Traditional sensor placement

methods often rely on geometric uniformity or vibration mode coverage, which may in-

adequately address localized damage detection requirements. Damage-dependent opti-

mization fundamentally shifts the paradigm by explicitly incorporating potential damage

scenarios, material vulnerability patterns, and failure mechanisms into the sensor place-

ment strategy [24]. This approach recognizes that structural damage manifests in spe-

cific locations and forms based on loading conditions, material properties, and structural

topology, making spatially uniform sensor distributions suboptimal for critical damage

detection.

The core rationale stems from the physics of structural degradation. Damage progres-

sion follows distinct pathways influenced by stress concentrations, material defects, and

environmental exposure. In steel bridges, for instance, fatigue cracks predominantly initi-

ate at welded connections and stiffener details. Concrete structures exhibit damage local-

ization at rebar termination points and plastic hinge zones. By mapping these vulnerabil-

ity patterns through finite element analysis or historical failure data, damage-dependent

optimization targets sensors to high-risk zones where damage is both most likely to occur

and most critical to detect early. This contrasts with mode-based methods that prioritize

global dynamics over local integrity concerns.
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Damage-dependent optimization provides three key engineering advantages. First,

it significantly enhances detection reliability for critical failure modes. When sensors

concentrate around known vulnerability zones like bridge pier connections or compos-

ite bond lines, the signal-to-noise ratio for incipient damage increases by 40-60% com-

pared to uniform layouts. Second, it enables resource-efficient monitoring by reducing

the required sensor count while maintaining detection confidence. Studies on offshore

platforms demonstrated 35% fewer sensors could achieve equivalent probability of detec-

tion when placement accounted for corrosion hotspots and fatigue-sensitive details [19].

Third, it accommodates structural system effects by considering how damage in one loca-

tion impacts global behavior, ensuring sensors capture both local damage and its system-

wide consequences.

Implementation typically involves defining a damage scenario matrix representing

probable failure modes:

D = {dk|k = 1, . . . , Nd} (3.1)

where each dk represents a specific damage case (e.g., 5% stiffness reduction at a critical

joint). The optimization then minimizes the expected localization error across all scenar-

ios:

f(x) =

Nd∑
k=1

wk · ϵk(x) (3.2)

where x is the sensor configuration, wk is the probability weight of damage scenario dk,

and ϵk is the localization error for that scenario.

Key Advantages of Damage-Dependent Optimization:

• Failure-Mode Coverage: Targets sensors to zones where critical damage initiates

• Resource Efficiency: Achieves higher detection probability with fewer sensors

• Risk-Based Prioritization: Focuses monitoring resources on high-consequence

areas

• Scenario Adaptability: Accommodates multiple damage mechanisms in single

framework

• Signal Quality Enhancement: Improves measurement sensitivity in critical

zones
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Validation studies demonstrate compelling performance benefits. On a cable-stayed

bridge monitoring project, damage-dependent placement achieved 92% detection proba-

bility for tendon corrosion versus 67% for modal-based approaches using identical sensor

counts [23].

In conclusion, damage-dependent sensor placement optimization represents a strate-

gic approach that aligns monitoring resources with structural vulnerability patterns. By

explicitly incorporating damage mechanics into the optimization objective, this method

delivers superior detection performance, reduced lifecycle costs, and enhanced decision

support for structural maintenance. It transforms sensor networks from general moni-

toring tools into targeted early-warning systems tailored to a structure’s unique failure

modes.

3.2 Damage Modeling and Sensor Sensitivity Analysis

Damage Modeling and Sensor Configuration

Structural damage is modeled as a localized reduction in Young’s modulus, E, in selected

finite elements [7]. For an element with original modulus E0, a damage index d ∈ [0, 1]

defines its degraded stiffness:

Ed = (1− d) · E0 (3.3)

where d = 0 represents an undamaged state, while d = 1 indicates complete stiffness

loss. This approach follows established structural damage simulation methods [? ]. The

study implements:

• Discrete damage levels: d = {0.3, 0.6, 0.9} (30%, 60%, 90% stiffness reduction) se-

lected to represent progressive degradation stages from incipient to severe damage

• Six damage zones (Z1-Z6) along the building height providing sufficient dimensional-

ity to validate vertical localization in generic multi-story systems
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3.3 Damage-Dependent SNPO: Objective Function and Fit-

ness Evaluation

In this section, we adapt the objective and fitness definitions from Chapter 2 (Section 2.5)

to the damage-dependent sensor placement problem. All score components S, C, and E

retain their original definitions and notation.

3.3.1 Signal Preservation under Damage

Given measured response vectors Xi ∈ Rd at each potential location i, the pairwise Eu-

clidean distances

Dij = ∥Xi −Xj∥2

are computed only for the selected subset Ssub of size n. Extracting the corresponding

submatrix
[
Dij

]
i,j∈Ssub

, the signal preservation score remains

S =
n∑

i=1

n∑
j=1

Dij,

exactly as in Eq. (2.5.1).

3.3.2 Floor Coverage Calculation

Let {z1, . . . , zNf
} denote the known floor elevations. For each selected sensor at elevation

Zi, match it to its nearest floor zk if |Zi − zk| ≤ ϵ (tolerance ϵ = 0.1m), and let ck be the

resulting count on floor k. The coverage uniformity score is then

C =
1

Nf

Nf∑
k=1

I[ ck ≥ 1 ],

identical to Eq. (2.5.2).

3.3.3 Sparsity Encouragement Term

Maintaining the same notation as Chapter 2, the sparsity term is

E = 1− n

N
,

where N is the total number of candidate locations (see Eq. (2.5.3)).
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3.3.4 Composite Fitness Function

Combining the three terms with the weights {wS, wE, wC} from Chapter 2 yields

Fitness(Ssub) = wS S + wE E + wC C,

with

wS = 0.3, wE = 0.6, wC = 0.1.

3.3.5 Feasibility Rule

Any candidate subset Ssub violating the minimum size nmin or producing S = 0 is imme-

diately discarded by assigning

Fitness = 0.

3.4 GA Framework for Damage-Adaptive Optimization

The genetic algorithm implementation extends classical evolutionary computation prin-

ciples through three key theoretical innovations tailored for structural health monitoring.

First, the fitness function incorporates damage-sensitive weighting that dynamically pri-

oritizes sensor configurations capable of detecting stiffness degradation in critical struc-

tural elements. Second, specialized genetic operators maintain physically meaningful dis-

tributions by enforcing balanced coverage across floors while allowing focused clustering

in high-risk zones. Third, an adaptive selection mechanism creates feedback between

structural degradation patterns and optimization parameters, enabling automatic adjust-

ment to varying damage scenarios.

3.4.1 Implementation Challenges and Solutions

The algorithm addresses two fundamental challenges in sensor placement optimization.

The problem of premature convergence to invalid solutions is resolved through hybrid

constraint handling that combines strict feasibility boundaries with graduated penalty

functions. Spatial distribution challenges are mitigated by a physics-informed niching

technique that considers both vertical (inter-floor) and horizontal (intra-floor) spacing re-

quirements while preserving focus on critical structural elements. These solutions demon-

strate improved convergence properties, requiring fewer iterations to reach stable solu-

tions while maintaining comprehensive coverage.
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3.4.2 Workflow Integration

The optimization process follows three conceptually distinct phases that maintain consis-

tency with structural engineering practice:

• Initial modeling phase establishing geometric and material parameters

• Damage simulation phase generating dynamic response data

• Evolutionary optimization phase refining sensor number and placements

This phased approach preserves physical meaning throughout the workflow while

minimizing computational artifacts. The theoretical framework maintains general appli-

cability to structural monitoring problems while incorporating domain-specific knowl-

edge through its adaptive mechanisms and specialized operators.

3.5 Optimization Behavior Observations

3.5.1 Objective

Optimize sensor configurations under varying damage severities (stiffness reductions at

specified columns).

3.5.2 Damage-Dependent Sensor Convergence

For damage scenarios localized to specific structural elements, the optimization process

demonstrated significant centroid shifting behavior that directly corresponds to damage

locations. When damage was concentrated in a single zone, the sensor distribution cen-

troid consistently migrated toward the damaged element’s spatial coordinates, creating

a gravitational effect around areas of structural degradation. This convergence behavior

intensifies proportionally with damage severity, as evidenced by increased sensor alloca-

tion surrounding elements experiencing higher stiffness reduction. The algorithm exhibits

particular sensitivity to column damage in Zones 0 and 3, where centroid shifting is most

pronounced. For distributed damage patterns affecting multiple columns, sensors form

localized clusters near each damaged element while maintaining higher density at the

9.18 m level, demonstrating a balanced approach that preserves baseline monitoring ca-

pability while enhancing damage-specific coverage through distance matrix optimization.
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The damage visualization process involves identifying and highlighting columns af-

fected by structural degradation. Two representative cases are shown below for compari-

son. Figure 3.1 shows the baseline sensor layout in the absence of damage, while Figure 3.2

illustrates the shift in sensor positioning toward the damaged region in Zone 1 under a

90% stiffness reduction scenario, confirming the convergence behavior described above.

Figure 3.1: SNPO results for the Not Damaged case
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Figure 3.2: DDSNPO results for 90% damage at Zone 1 (highlighted in green)

3.5.3 Results and Interpretation

Optimization outcomes demonstrate scenario-dependent sensor requirements:

• Moderate damage concentrated in single zones (e.g., [0.3, 0, 0, 0]) achieves optimal

detection with 15-17 sensors

• High-severity distributed damage (e.g., [0.9, 0.9, 0.9, 0.9]) necessitates up to 38 sen-

sors

• Mid-height levels (9.18m elevation) consistently attract highest sensor density across

scenarios

• Sensor distribution centroids shift toward damaged columns in localized severity

cases
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3.5.4 Convergence Challenges

Despite generally effective adaptation, the optimization process revealed specific limita-

tions in high-severity scenarios. Certain damage configurations, particularly 90% stiffness

reduction at Column P3 (Zone 2), resulted in premature convergence plateaus where the

sensor distribution centroid failed to fully shift toward the damaged element despite in-

creased allocation. This misalignment between sensor placement and damage location

represents a significant optimization challenge. Furthermore, in uniform high-severity

scenarios, the algorithm exhibited resource drift characterized by excessive sensor de-

ployment without proportional improvements in distance matrix metrics, indicating di-

minishing returns in information capture beyond certain density thresholds. Persistent

sparse coverage at top and bottom levels across all scenarios suggests inherent limita-

tions in signal sensitivity at structural extremities as measured by distance computations,

creating monitoring blind spots in peripheral regions. Persistent sparse coverage at top

and bottom levels across all scenarios suggests inherent limitations in signal sensitivity at

structural extremities as measured by distance computations, creating monitoring blind

spots in peripheral regions. These observations directly informed refinements in the fi-

nal GA implementation 3.6, where mutation parameters and coverage constraints were

systematically tuned to mitigate premature convergence

3.5.5 Summary of the Genetic Algorithm Framework

The proposed genetic algorithm (GA) framework effectively optimized sensor layouts for

medium-rise structures using a distance-based fitness function. It reduced sensor count by

15–20% while maintaining monitoring accuracy, with mid-height levels emerging as key

locations. Under damage scenarios, sensor distributions shifted toward affected areas,

indicating the algorithm’s sensitivity to structural changes.

A modular implementation enabled integration with various structural models and

supported parallel fitness evaluations. Future enhancements to this framework will focus

on increasing convergence efficiency and reducing redundancy. Specifically, we plan to in-

corporate adaptive mutation strategies to dynamically balance exploration and exploita-

tion, and introduce penalty mechanisms to discourage excessive sensor usage. Heuristic

initialization based on clustering techniques will also be explored to improve convergence

speed. Additionally, efforts will be directed toward developing an integrated sensor net-

work by synthesizing optimal configurations from multiple damage scenarios, thereby
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enhancing robustness and generalizability.

Overall, the GA-based framework establishes a flexible and extensible foundation for

structural health monitoring applications. Its architecture supports rapid adaptation to

varying structural configurations and damage conditions while maintaining a balance be-

tween monitoring performance and deployment efficiency.

3.6 Final Genetic Algorithm Implementation and Dataset

Generation

To conclude the optimization process with the most reliable configuration, the finalized

version of the genetic algorithm (GA) was employed, integrating both global mutation

and floor-wise mutation (FW) mechanisms. This version was calibrated using the best

fitness formulation identified previously and incorporates floor-wise mutation logic that

respects the physical structure of the building during sensor distribution.

For each damage scenario—including the healthy case—three independent DD-SNPO

models were developed, each derived using a distinct combination of mutation rate (MR)

and floor-wise mutation strength (FW). Specifically, MR values of 0.3, 0.6, and 0.9 were

used alongside FW values of 0.8 and 1.0, resulting in six GA runs per scenario. Based on

earlier experiments, which demonstrated that the genetic algorithm stabilizes within 20

generations or fewer, the number of generations was fixed at 20 across all configurations

to ensure consistency and computational efficiency.

Although some mutation combinations produced noticeable contrasts in layout pat-

terns, no single setting consistently outperformed the others across all scenarios. There-

fore, to further enhance sensor efficiency and interpretability, the same DD-SNPO process

was repeated under coverage constraints of 3, 4, and 8, thereby reducing the total num-

ber of selected sensors while maintaining critical structural coverage. These additional

configurations enabled damage-specific optimal layouts with minimized sensor counts.

3.7 Final Sensor Layout Strategy

This section presents the concluding methodology used to derive the final optimized sen-

sor configuration, guided by damage-dependent fitness criteria and post-evaluation re-

finements.
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3.7.1 Multi-Criteria Validation of Candidate Layouts

To assess the reliability and versatility of the final layout, we introduce three testing axes:

1. Ratio-Based Performance: The layout must maintain high signal preservation (S)

across multiple damaged zone scenarios. Layouts showing consistent performance

across these variations are preferred.

2. Fitness: The configuration should demonstrate strong fitness values in all tested

conditions, reflecting its overall optimization quality.

3. MinSensor: The solution must exhibit minimal sensor usage by keeping the sensor

count n close to the defined nmin while still maximizing S.

These three axes form a robustness triad against which every final candidate is scored.

3.7.2 Refined Strategy for Final Layout Composition

The final layout was generated through a custom combination strategy:

• Sensors from damage-specific optimal configurations were first aggregated per floor

level.

• Union sets were computed to retain any sensor that was optimal under at least one

damage scenario.

• For floors not covered by any damage-based layout, sensor candidates were selected

from the healthy layout Shealthy using proximity-based filtering.

The resulting layout is therefore hybrid: informed by localized damage optimizations

while being globally complete. It prioritizes structural coverage and information reten-

tion, with feasibility guaranteed under all zone configurations.

This dual-filter strategy delivers a sensor configuration robust to uncertainty, balanc-

ing reactivity to specific damages and proactive full-building monitoring.

3.7.3 Theoretical Framework for Sensor Layout Assignment

To optimize sensor deployment in a medium-rise structure, we partition the vertical do-

main into distinct damaged zones and a complementary healthy zone. Sensor assignments

are executed in a two-phase strategy: first covering damaged zones, then filling uncovered

regions using sensors from a baseline healthy layout.

ENP – Civil Engineering Class of 2025 58



Damage-Dependent Sensor Optimization (DD-SNPO)

3.7.4 Notation and Definitions

• Let L = {ℓ1, ℓ2, . . . , ℓN} denote the set of N floor levels, each located at a vertical

elevation z(ℓi).

• Let S = {s1, s2, . . . , sM} represent the full set of candidate sensor locations, with each

sensor sj positioned at elevation z(sj).

• Define Zd = {Z1, Z2, . . . , ZK} as the set of K damaged zones, where each zone Zk

spans the vertical interval

Zk = [zstartk , zendk ),

such that zstartk < zendk and Zk ∩ Zk′ = ∅ for k ̸= k′.

• The remaining structure, not covered by any Zk, defines the healthy zone Zh =[
mink z

start
k ,maxk z

end
k

)
\
⋃

k Zk.

3.7.5 Sensor Allocation in Damaged Zones

For each damaged zone Zk ∈ Zd, we use a precomputed optimal layout Lk ⊆ S, de-

rived under the assumption of localized structural damage in Zk. We define the partial

assignment map:

fd
k : L → 2S , fd

k (ℓi) =
{
sj ∈ Lk | zstartk ≤ z(sj) < zendk

}
.

Sensors sj within the zone span are assigned to every floor ℓi satisfying zstartk ≤ z(ℓi) < zendk .

The complete damaged-zone assignment map becomes:

fd(ℓi) =
⋃

k: z(ℓi)∈Zk

fd
k (ℓi).

To prevent sensor overpopulation at intersection floors where multiple damaged zones

overlap, we apply a floor-wise mutation operator to the unionized layout fd(ℓi). This

process naturally condenses sensor clusters while preserving coverage in critical zones.

3.7.6 Healthy Zone Assignment for Uncovered Floors

Let Lh ⊆ S represent the baseline sensor layout under undamaged conditions. We define

the fallback assignment map:

fh(ℓi) =
{
sj ∈ Lh | z(ℓi) ≤ z(sj) < z(ℓi+1)

}
,
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with z(ℓN+1) representing the roof or topmost extent of the structure. The final per-floor

assignment is expressed as:

f(ℓi) =

fd(ℓi), if fd(ℓi) ̸= ∅,

fh(ℓi), otherwise.

This hierarchical logic guarantees that sensors optimized for damage detection have pri-

ority, while the healthy layout ensures full coverage.

3.7.7 Summary of the Two-Phase Assignment Algorithm

1. Preprocessing: Compute vertical elevations z(ℓi) and z(sj) for all floors and sensor

candidates.

2. Phase 1 – Damaged Zones:

(a) For each Zk, apply Lk to compute fd
k (ℓi)

(b) Aggregate into fd(ℓi) =
⋃

k f
d
k (ℓi)

(c) Apply floor-wise mutation to fd(ℓi) to prevent sensor overpopulation at floors

where damaged zones overlap

3. Phase 2 – Healthy Gap Filling: For every ℓi where fd(ℓi) = ∅, compute fallback

sensors via fh(ℓi).

4. Final Assembly: Combine results to form f(ℓi) for all ℓi ∈ L.

This formulation provides a principled, rigorous approach to hybrid sensor layout design.

It enables effective monitoring in structurally critical zones while maintaining global ob-

servability, even under partial damage assumptions.

3.8 Conclusion

This chapter established a Damage-Dependent Sensor Network Placement Optimization

(DD-SNPO) framework that fundamentally advances structural health monitoring by ex-

plicitly integrating damage mechanics into sensor optimization. Through stiffness degra-

dation modeling, genetic algorithm implementation with dual mutation operators, and a

hybrid layout strategy combining damage-zone optimizations with healthy-state cover-

age, the methodology generates physics-informed sensor layouts that dynamically adapt
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to structural vulnerability patterns. The approach demonstrated adaptive sensor recon-

figuration toward damaged zones, consistent identification of optimal monitoring planes

at mid-height levels, and effective resource allocation proportional to damage severity.

Future enhancements will focus on dynamic mutation rate adaptation, exponential sen-

sor count penalization, heuristic seeding strategies, and a global multi-scenario coverage

framework to address observed convergence challenges in high-severity distributed dam-

age cases.
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Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

4.1 Introduction

To validate the proposed hybrid structural health monitoring (SHM) framework, we ap-

ply it to the COSIDER Modern headquarters building located in Bab Ezzouar, Algiers.

This reinforced concrete (RC) structure, modeled in SAP2000, consists of 12 above-ground

stories and reaches a total height of 48.45 meters—classifying it as medium-rise under the

seismic code RPA 2024 [3].

The study simulates structural damage across multiple zones, extracts dynamic fea-

tures using transmissibility functions, and optimizes sensor placement to enhance sensi-

tivity to damage while ensuring robustness and cost-efficiency. All seismic design and

dynamic analysis requirements are addressed in compliance with this code.

4.2 Overview of the Structural Model

4.2.1 Description of the Structural System

The New Cosider Headquarters Tower, located in Algiers’ Bab Ezzouar business district

(Fig. 4.1a), serves as the case study for this research. While the entire complex occupies

6,000 m2 at ground level and consists of three reinforced concrete blocks with three base-

ment levels, this study specifically analyzes the 12-story tower block.

Key characteristics include a total of 12 above-ground floors. The typical story height

is approximately 3.60 m for floors 3 to 12, as shown in Figure 4.1b. However, there are

some variations: the height from the ground to level 1 is 4.13 m, from level 1 to level 2 is

4.20 m, and from level 12 to the roof is 4.12 m.
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(a) Actual New Cosider Headquarters Tower in Bab Ezzouar

(b) Elevation view showing non-uniform floor heights

Figure 4.1: Illustrations of the Cosider Headquarters Tower and its structural elevation

4.2.2 3D Finite Element Modeling

The tower was modeled in SAP2000® v26 (Fig. 4.2) accounting for precise geometry and

height variations:

• Element discretization:
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– Frame elements for beams and columns

– Shell elements for shear walls

• Node distribution: 11,439 nodes capturing structural details

• Boundary conditions: Fixed base at ground level

Material Properties

Table 4.1: Reinforced Concrete Material Properties

Property Symbol Value

Unit weight γ 25 kN/m3

Young’s modulus E 33,000 MPa

Poisson’s ratio ν 0.2

Compressive strength f ′
c 30 MPa

Figure 4.2: 3D SAP2000 model showing structural components

ENP – Civil Engineering Class of 2025 65



Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

Working Assumptions

The following simplifying assumptions were adopted to enable practical analysis:

• Modal truncation:

Only the first 12 natural modes (frequencies below 3.5 Hz) were considered for sen-

sor placement optimization and damage simulation. This captures dominant dy-

namic responses while ensuring computational efficiency. The truncation aligns

with seismic analysis standards where the first few modes—characterized by high

mass participation ratios—must collectively capture ≥90% of the total mass. The se-

lected 12 modes satisfied this criterion (with cumulative mass participation exceed-

ing 95%), providing sufficient accuracy for structural response prediction without

unnecessary computational burden [3].

4.2.3 Candidate Sensor Positions Selection

Figure 4.3: Candidate sensor locations after geometric filtering (1,130 nodes)
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The sensor placement strategy employs geometric filtering to define practical measure-

ment locations (Fig. 4.3), guided by accessibility constraints and structural dynamics prin-

ciples. This involves prioritizing primary load-path elements such as frames and shear

walls, ensuring the physical accessibility of sensors during installation and maintenance,

capturing dynamic signatures at the floor level where modal activity is most prominent,

and aligning the selection with the system’s ability to measure translational responses

effectively.

• Initial model: 11,439 nodes from full structural discretization

• Primary reduction: Focused on frame joints and shear wall nodes (excluding slab

elements), reducing candidates to 1,504 nodes

• Height-based filtering: Selected only nodes at occupied floor levels (z > 0), yielding

1,130 candidate nodes

• DOF selection:

– Translational DOFs (U1, U2, U3) exclusively

– Rotational DOFs excluded based on sensor measurement limitations

• Final candidate set: 1,130 nodes × 3 DOFs = 3,390 candidate measurements

4.3 Excitation and Load Case Definition

4.3.1 Simulation of Ambient Excitation

To simulate ambient excitation for frequency-domain transmissibility analysis, a steady-

state dynamic load case was implemented directly in SAP2000. This approach bypasses

the need for external accelerograms by applying broadband frequency excitation analyti-

cally through the software’s computational engine.

The excitation features a flat frequency spectrum with constant amplitude, designed

to activate all relevant structural modal frequencies within the range of interest. Key con-

figuration parameters include:

The frequency response analysis was conducted over a range of 0 to 10 Hz, using 100

uniformly spaced frequency increments. This was implemented within a steady-state load

case to capture the system’s dynamic behavior across the relevant frequency band.
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This steady-state excitation simulates ambient vibrations (e.g., wind, microtremors,

traffic) as a stationary stochastic process with sufficient spectral bandwidth to activate the

first 12 vibration modes .

Figure 4.4: Frequency-domain excitation envelope for steady-state simulation

4.3.2 Selection of Damage Zones

The objective of simulating six distinct damage zones is to capture the structural response

under a variety of realistic damage scenarios. After damage, the reduction in local stiffness

can fundamentally alter mode shapes and modal frequencies, so a healthy-sensor layout

alone may not detect all cases. We therefore:

1. The structure employs a shear-wall-braced system where vertical reinforced con-

crete panels resist lateral loads through in-plane stiffness, supplemented by steel

bracing elements that enhance overall stability and prevent buckling. This dual-

action system provides robust seismic performance by efficiently transferring wind

and earthquake forces to the foundation while controlling deformations. Per RPA

2024 requirements, the system is classified as Category A (highest reliability class)
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with a behavior factor R = 4.5 , enabling generation of site-specific response spectra

for design.

2. Created two orthogonal seismic load cases in SAP2000—EX and EY—using the RPA2024

spectrum parameters (see Fig. 4.8).

3. Combined {G = 6 kN/m, Q = 2 kN/m} with {Ex, Ey} under the RPA2024 Ultimate

Limit State envelopes.

Load Combinations (RPA2024) Under the Ultimate Limit States design philoso-

phy, seismic loading—because of its short duration—is treated as an accidental ac-

tion. Seismic action is characterized by three simultaneous components:

• Two horizontal components, Ex and Ey, in orthogonal directions.

• One vertical component, Ez, along the vertical axis.

4.3.2.1 Horizontal Components of Seismic Action

To derive the design seismic loads, Ex and Ey are combined with permanent and

variable loads as:

Combination 1: G+ ψQ+ Ex + 0.3Ey,

Combination 2: G+ ψQ+ 0.3Ex + Ey, (5.1)

where:

G = permanent (dead) loads, Q = variable (live) loads

ψ = accompanying factor (Table 4.2 of RPA 2024).

The equivalent seismic terms are:

E1 = ±Ex ± 0.3Ey,

E2 = ±0.3Ex ± Ey. (5.2)

4. Extracted the most solicited members—axial forces, bending about local 2–2 and 3–3

axes, and shear—from the full envelope of load combinations.
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Based on this envelope, six zones were selected:

Table 4.2: Structural Damage Zone Specifications

Zone ID Element Type Section (cm) Start Coordinates (m) End Coordinates (m)

Z1 1310 Column 80×80 (0.00, 27.51, 0.00) (0.00, 27.51, 4.13)

Z2 1491 Column ∅85 (40.75, 22.54, 15.53) (40.75, 22.54, 19.13)

Z3 1456 Column ∅85 (40.75, 22.54, 4.13) (40.75, 22.54, 8.33)

Z4 60 Shear Wall Thickness 40

Pt1: (9.28, 32.92, ∼0)

Area Element
Pt2: (14.25, 32.92, 0.00)

Pt3: (14.25, 32.92, 4.13)

Z5 1420 Column ∅100 (32.88, 32.92, ∼0) (32.88, 32.92, 4.13)

Z6 189 Beam 45×100 (40.75, 22.54, 11.93) (41.59, 10.44, 11.93)

Sensor deployment follows a fixed density of 48 sensors (4 per level across 12 levels)

to ensure adequate spatial resolution for mode shape identification [11].

• Z1: Column with maximum axial force under the ULS envelope.

• Z2, Z3: Two columns with highest bending moment about the local 2–2 axis.

• Z4: Base of the principal shear wall, where overturning moment peaks.

• Z5: Column with largest bending moment under the ELU combination.

• Z6: Beam with maximum bending moment about the local 3–3 axis.

These zones span columns, beams, and the shear wall—covering edge vs. core, axial

vs. flexural, and vertical vs. horizontal damage scenarios.

ENP – Civil Engineering Class of 2025 70



Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

(a) Z1: Max-axial-force column (b) Z2: Max-moment column (2–2 axis)

Figure 4.5: Selected damage zones: Columns with max axial force and max moment (2–2

axis).

(a) Z3: 2nd max-moment column (2–2 axis) (b) Z4: Shear wall base

Figure 4.6: Selected damage zones: Second max-moment column and shear wall base.
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(a) Z5: Max-moment column (ELU) (b) Z6: Max-moment beam (3–3 axis)

Figure 4.7: Selected damage zones: Max-moment column under ultimate limit state and

max-moment beam.

Figure 4.8: SAP2000 “Load Case Data – Response Spectrum” settings for cases EX and EY.
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4.3.3 Automated Workflow via SAP2000 OAPI

The SAP2000 Open Application Programming Interface (OAPI) was utilized to automate

key stages of the structural health monitoring workflow, including model generation,

damage simulation, excitation setup, and response extraction. First, the finite element

model of the reinforced concrete structure was programmatically generated using pre-

defined geometric and material parameters, as described in Table 4.1. Second, damage

scenarios were introduced by systematically reducing the stiffness of selected structural

zones (Z1 to Z6) using predefined reduction factors corresponding to 70%, 40%, and 10%

of the original Young’s modulus. This was followed by the automated configuration of

steady-state dynamic excitation cases, aligned with the specifications presented in Sec-

tion 4.3. Finally, structural responses were extracted in the form of nodal velocity com-

ponents (U1, U2, U3) at 1,130 candidate sensor locations and saved directly to CSV format

for further processing. This OAPI-based approach significantly reduced manual work-

load—by approximately 90%—and ensured consistency and reproducibility across all 21

simulated damage scenarios.

4.4 Results and Discussion

4.4.1 Problem Configuration

The optimization problem was defined for a reinforced concrete medium-rise structure

consisting of 12 vertical levels, spanning from 4.13 meters to 48.45 meters in height. A total

of 1130 candidate sensor locations were identified, with a minimum requirement of four

sensors per level, resulting in a lower bound of 48 sensors across the structure. Damage

scenarios were simulated by introducing varying levels of material severity—specifically,

{0.0, 0.3, 0.6, 0.9}—across six predefined structural zones (Z1 to Z6).

4.4.2 Fitness Evolution and Convergence

The genetic algorithm demonstrated consistent convergence across all damage scenar-

ios. Fitness values improved steadily over generations, typically reaching stability within

the first 20 generations—significantly earlier than the maximum 100 generations allowed.

This early convergence, visible in Fig. 4.9, confirms that the algorithm efficiently iden-

tified optimal sensor layouts without requiring the full generational budget, suggesting

well-tuned parameters and effective search space exploration.
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Figure 4.9: Fitness progression over 100 generations (dashed line marks 20 generations).

Early plateau indicates convergence within 20 generations, rendering additional itera-

tions unnecessary.

Figure 4.10: Detailed view of the critical first 20 generations, showing the rapid fitness

improvement that motivated early termination.

The genetic algorithm was configured with a range of mutation rates {0.3, 0.6, 0.9}
and floor-wise mutation rates {0.8, 1.0}, allowing exploration of both global and localized

variations in sensor distribution.
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Mutation Rate Floorwise Rate Generations

0.3 0.8 20

0.6 0.8 20

0.9 0.8 20

0.3 1.0 20

0.6 1.0 20

0.9 1.0 20

Table 4.3: Parameter combinations for batch optimization

4.4.3 Multi-Metric Optimization Framework –Optimal Solution Selec-

tion

This section presents the optimal solutions for each damage scenario based on the final-

ized genetic algorithm (GA) configuration described in Section 3.6. The GA employed

both global and floor-wise mutation strategies across multiple parameter sets. For every

scenario, several DD-SNPO models were evaluated under varying mutation strengths.

Algorithm 1 Sensor Optimization Algorithm

procedure OPTIMIZESENSORS

Initialize population of random sensor layouts

for generation = 1 to max generations do

Evaluate fitness (damage sensitivity)

Select top-performing individuals

Apply crossover: combine sensor sets

Apply mutation:

• Global mutation (rate = 0.3-0.6-0.9)

• Floor-wise mutation (rate = 0.8-1.0)

end for

Return best sensor configuration

end procedure

Final layouts were selected according to three objectives: best fitness (Table 4.4), best

performance-to-cost ratio (Table 4.5), and minimal sensor count (Table 4.6). Solution file-

ENP – Civil Engineering Class of 2025 75



Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

names reflect the associated mutation rate and floor-wise mutation rate. Fitness-optimized

solutions generally delivered the most balanced performance across evaluation criteria.

Table 4.4: Optimal Fitness Solutions per Damage Scenario

Solution GA Parameters Fitness Number of Sensors

Healthy mr = 0.9, fw = 1.0 0.763 68

Zone 1 mr = 0.9, fw = 0.8 0.761 73

Zone 2 mr = 0.9, fw = 0.8 0.756 65

Zone 3 mr = 0.6, fw = 1.0 0.757 80

Zone 4 mr = 0.9, fw = 1.0 0.756 82

Zone 5 mr = 0.6, fw = 0.8 0.759 60

Zone 6 mr = 0.9, fw = 1.0 0.756 65

Table 4.5: Best Performance-to-Cost Ratio Solutions per Damage Scenario

Solution GA Parameters Fitness Number of Sensors

Healthy mr = 0.9, fw = 0.8 0.753 88

Zone 1 mr = 0.3, fw = 0.8 0.753 88

Zone 2 mr = 0.3, fw = 0.8 0.754 86

Zone 3 mr = 0.9, fw = 0.8 0.755 85

Zone 4 mr = 0.6, fw = 1.0 0.751 93

Zone 5 mr = 0.3, fw = 0.8 0.749 96

Zone 6 mr = 0.3, fw = 1.0 0.756 84

Table 4.6: Minimum Sensor Count Solutions per Damage Scenario

Solution GA Parameters Fitness Number of Sensors

Healthy mr = 0.9, fw = 1.0 0.763 68

Zone 1 mr = 0.3, fw = 1.0 0.747 68

Zone 2 mr = 0.3, fw = 1.0 0.749 63

Zone 3 mr = 0.6, fw = 0.8 0.757 65

Zone 4 mr = 0.3, fw = 1.0 0.749 71

Zone 5 mr = 0.6, fw = 0.8 0.759 60

Zone 6 mr = 0.3, fw = 0.8 0.749 65

ENP – Civil Engineering Class of 2025 76



Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

The analysis of optimal sensor placements across various damage scenarios reveals

three key patterns. First, fitness values remain consistently high (0.747-0.763) with min-

imal variation (∆ ≈ 2%) between scenarios, demonstrating that structural monitoring

performance is robust regardless of sensor count (60-96 sensors). Second, certain dam-

age zones (e.g., Zone 5) achieve high fitness (0.759) with relatively few sensors (60), sug-

gesting that dense sensor arrays are not always necessary for accurate detection. Third,

the healthy structure’s optimal solution (0.763 fitness, 68 sensors) shows only marginal

improvement over damaged scenarios, indicating that damage-adaptive configurations

maintain strong performance.

These results confirm that fitness serves as a reliable primary metric, with sensor count

offering secondary optimization potential for cost-sensitive applications. The minimal

performance differences between scenarios suggest that a single robust sensor configura-

tion may be sufficient for most practical deployments.

4.4.4 Psuedo-Final Sensor Layout

Table 4.7: Union Layout Performance

mr fw Sensors Fitness

0.3 0.8 437 0.605

0.3 1.0 419 0.612

0.6 0.8 449 0.607

0.6 1.0 434 0.615

0.9 0.8 459 0.608

0.9 1.0 427 0.618

The union of all scenario-specific layouts (Table 4.7) requires 427 sensors—nearly half of all

available nodes and about 9 times the minimum sensor count—yet yields a lower fitness

score (0.618). Despite aggregating the best positions across scenarios, this approach proves

inefficient and non-optimal due to excessive redundancy. It confirms that simply unifying

optimized layouts fails as a strategy, reinforcing the need for selective, damage-informed

configurations like the 84-sensor hybrid layout, which achieves comparable fitness with

far fewer sensors.
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Table 4.8: Scenario-Specific Layout Performance

Scenario mr fw Fitness

Healthy 0.9 0.8 0.753

Zone 1 (0.3) 0.9 1.0 0.721

Zone 6 (0.9) 0.6 1.0 0.698

Global 0.3 0.8 0.632

The healthy scenario layout achieved superior performance (0.753 fitness) with only 68

sensors (Figure 4.11), demonstrating the potential advantage of specialized configurations

for specific operational conditions.

In contrast, the intersection layout—representing sensors common to all optimal solu-

tions—was found to be empty. This indicates that no single sensor location was univer-

sally selected across all damage scenarios, underscoring the uniqueness of each scenario

and the importance of tailored sensor configurations.
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Figure 4.11: Best healthy layout (68 sensors)
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Figure 4.12: Union layout (423 sensors)
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4.4.5 Custom Layout Selection Methodology

The final sensor configuration was constructed through a structured two-phase algorithm

that integrates sensor layouts derived from both damaged and undamaged structural

conditions. In the first phase, sensor positions optimized for each damaged zone were

gathered from prior simulations assuming localized stiffness degradation. Each zone was

associated with a vertical interval, and sensor candidates falling within this span were

mapped to corresponding floors.

To handle cases where multiple damage zones influenced the same floor, a floor-wise mu-

tation operator was applied to redistribute sensors and mitigate overpopulation, ensuring

efficient spatial utilization without compromising zone coverage.

Figure 4.13: Simplified example of the multi-phase sensor layout selection process
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Figure 4.14: Sensor layout prior to Phase 2 (healthy gap filling).
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The second phase addressed the remaining floors not assigned sensors during the

damage-specific phase. For each such floor, sensors were drawn from a baseline con-

figuration computed under healthy conditions, ensuring that the layout maintained full

vertical coverage. This fallback mechanism preserved the global observability of the struc-

ture by filling in unmonitored regions with sensors previously identified as informative

in the absence of damage.

Figure 4.15: Sensor layout immediately before final floorwise mutation phase

The resulting sensor layout thus represents a principled hybrid between damage-aware

clustering and healthy-state representativity. It prioritizes critical zones affected by struc-

tural degradation while ensuring no floor remains unmonitored. The methodology guar-

antees that sensor density is elevated in zones of interest and maintains balance across the

structure through hierarchical assignment logic rooted in vertical elevation mapping.

Following the initial zone-based sensor aggregation, a significant concentration of sen-

sors was observed at the 4.13 m elevation, resulting in an overcrowded layout with 31

sensors on a single floor. This was addressed through a floor-wise mutation step, which

ENP – Civil Engineering Class of 2025 83



Case Study: Sensor Optimization for the New COSIDER Headquarter Tower (Bab-Ezzouar)

selectively filtered redundant sensors based on spatial and dynamic similarity. Pairwise

XY distances were computed to detect close-proximity sensors, and velocity response vec-

tors were compared, with pairs exhibiting Euclidean distances below a threshold of 1.5

considered functionally redundant. As a result, the sensor count at the 4.13 m level was

reduced from 31 to 15, and the overall sensor count decreased from 100 to 84, all while

preserving the composite fitness score at 0.754. The refined sensor layout, shown in Fig-

ure 4.17, balances monitoring effectiveness with deployment efficiency.

4.4.6 Final Sensor Network Configuration

The synthesized 84-sensor network (Fig. 4.17) achieved high coverage efficiency with

balanced allocation across structural zones. Key features:

• Non-uniform distribution reflecting structural importance

• Strategic placement near critical load-bearing elements

• Adaptive density based on floor-specific requirements

• Sensor distribution per floor:

Floor 1 2 3 4 5 6 7 8 9 10 11 12 13

Sensors 15 7 6 4 5 6 6 6 5 6 6 7 5

Table 4.9: Sensor Distribution Characteristics

Metric Value

Total sensors 84

Mean per floor 6.46

Fitness score 0.754

Ratio metric 0.0064

Minimum per floor 4

Maximum per floor 15
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Figure 4.16: Final sensor layout for Tower HQ (4.13m to 48.45m)
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Figure 4.17: Final sensor layout for Tower HQ in 3D Model

4.5 Discussion

The sensor optimization study for the COSIDER Headquarters Tower revealed critical

insights about structural monitoring in complex medium-rise buildings. The genetic al-

gorithm demonstrated remarkably consistent convergence across all damage scenarios,

typically reaching stability within 20 generations as shown in Figure 4.9. This early ter-

mination capability reduced computational resources by 80% compared to the maximum

100-generation allocation, suggesting effective exploration of the solution space particu-

larly when using higher mutation rates (mr = 0.9) combined with floor-wise mutation

(fw = 1.0). The three-selection strategy revealed important trade-offs where fitness-

optimized solutions consistently delivered the highest damage sensitivity (0.756-0.763),
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while performance-to-cost solutions showed minimal fitness degradation (0.749-0.756)

with 15-40% more sensors. Notably, minimal-sensor solutions achieved surprisingly high

fitness (0.747-0.759) with just 60-71 sensors, challenging conventional sensor density as-

sumptions as demonstrated by Zone 5 detection maintaining 0.759 fitness with only 60

sensors.

The building’s irregular geometry significantly impacted optimal placements with shear

wall foundations consistently requiring denser coverage, service floors attracting clus-

tered sensors due to stiffness transitions, and top floors proving challenging for consis-

tent coverage. The two-phase placement methodology successfully addressed real-world

constraints where the floor-wise mutation operator resolved sensor overcrowding by re-

ducing sensors from 31 to 15 at the 4.13m level, healthy-state gap filling ensured no floor

was left unmonitored, and velocity vector filtering effectively eliminated redundant sen-

sors using a fixed threshold of 1.5. The current methodology shows sensitivity to initial

population conditions in top-floor optimization and fixed velocity thresholds for redun-

dancy removal, while excluding physical installation constraints. Future enhancements

should incorporate adaptive zone-specific filtering thresholds, multi-level refinement al-

gorithms, installation feasibility constraints, and operational vibration testing validation

to address these limitations.

4.6 Conclusion

This comprehensive case study validates the proposed hybrid SHM framework through

application to the 12-story COSIDER Headquarters Tower. Six critical zones were identi-

fied through RPA 2024 seismic analysis, with damage realistically simulated via stiffness

reduction (0-90%) in SAP2000, representing diverse failure mechanisms from axial column

failure to shear wall overturning. The genetic algorithm demonstrated excellent conver-

gence properties, identifying optimal solutions within 20 generations while revealing that

high damage sensitivity (0.756-0.763 fitness) is achievable across scenarios, with zone-

specific optimization enabling significant sensor reduction down to 60 sensors, and mu-

tation parameters significantly impacting solution quality where mr = 0.9 and fw = 1.0

proved optimal.

The novel two-phase placement methodology successfully integrated damage-specific

prioritization with healthy-state coverage, generating a cost-effective 84-sensor layout

shown in Figure 4.17 that maintained high composite fitness (0.754) while resolving over-
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crowding and ensuring full vertical coverage through hierarchical assignment. The study

confirms that transmissibility-based features coupled with evolutionary optimization pro-

vide reliable damage detection in medium-rise RC structures, adaptability to complex

geometries and irregular floorplates, and practical solutions balancing sensitivity with

implementation cost. The final sensor configuration establishes a foundation for perma-

nent monitoring system installation at the COSIDER Tower, with future work focusing

on enhancing robustness under operational variability, developing fault-tolerant network

designs, and implementing machine learning-enhanced damage classification systems for

critical infrastructure in seismic regions.
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General conclusion

Structural Health Monitoring (SHM) has become an essential field in civil engineering,

particularly for buildings subjected to seismic and operational conditions. It enables early

detection of structural deterioration, helps prevent critical failures, and extends the service

life of structures by supporting informed maintenance decisions. The objective of this

thesis was to develop a hybrid methodology for optimizing the number and placement of

sensors in mid-rise reinforced concrete buildings, tailored to potential damage scenarios.

The proposed approach is based on transmissibility functions extracted from ambient

vibration responses, combined with a dual-mutation genetic algorithm (global and floor-

wise). This strategy allows the identification of sensor layouts that concentrate coverage

in vulnerable areas while maintaining an efficient use of resources.

The work began with a detailed literature review covering conventional and recent

SHM methods, including modal analysis, damage detection indices, and sensor place-

ment optimization. Special attention was given to transmissibility-based techniques due

to their applicability under ambient conditions without requiring controlled input forces.

The second chapter presented the optimization methodology using transmissibility

distance metrics, supported by steady-state simulations in SAP2000. This was expanded

in the following chapter with the introduction of the Damage-Dependent Sensor Network

Placement Optimization (DD-SNPO) framework, which explicitly integrates stiffness re-

duction models to reflect structural degradation.

Finally, the proposed methodology was validated through a case study on the COSIDER

Headquarters Tower in Bab Ezzouar, a 12-story reinforced concrete building. Simulated

damage scenarios (axial, flexural, and shear failure) demonstrated that sensor placement

at mid-height levels and stiffness transition zones was the most effective. The optimized

84-sensor layout achieved similar fitness to the healthy configuration while avoiding the

inefficiency of larger sensor networks (e.g., 423 sensors in the union layout).

This hybrid framework—at the intersection of structural modeling, ambient vibration

analysis, and AI-driven optimization—offers a practical and scalable solution for smart

monitoring of civil structures. It represents a step forward toward adaptive SHM systems

capable of evolving with structural conditions and supporting safer, more cost-effective

maintenance strategies.
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Perspectives

While the study yields encouraging results, it remains a foundational effort and opens

several directions for future research:

• The sensor optimization process could be further refined by expanding the objec-

tive function to include additional criteria, such as environmental variability, energy

efficiency, or data redundancy.

• Expand the methodology using explainable AI techniques to enhance model trans-

parency and support decision-making.

• Most importantly, field validation on actual structures is essential to confirm the

practical relevance and robustness of the proposed methodology. (Conduct on-site

validation of the proposed 84-sensor layout on the COSIDER Tower to assess real-

world applicability.)

Overall, this work provides a structured and scalable framework for sensor network

optimization in seismic-prone reinforced concrete buildings. It contributes to the devel-

opment of intelligent SHM systems that prioritize efficient resource allocation while re-

maining adaptable to real-world constraints.
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