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Résumé

Ce mémoire présente une méthodologie permettant de corréler les tassements du sol en sur-
face avec les parametres de fonctionnement du tunnelier (TBM), la géométrie du tunnel et
les parametres géotechniques, en utilisant un modele de réseau de neurones artificiel, qui est
ensuite utilisé pour prédire le tassement maximal en surface. Les données analysées provien-
nent du creusement du tunnel de l'extension de la ligne «1» du métro d’Alger (El-Harrach —
Aéroport international Houari-Boumediene), réalisé principalement a 'aide d’un tunnelier a
bouclier. Les tassements en surface observés sur ’ensemble du tracé du projet d’extension du
métro d’Alger (Contrat 1-9) ont été reproduits de maniere «satisfaisante» par le modele RNA
proposé. Une procédure de pré-traitement dédiée a été nécessaire pour améliorer la capacité
prédictive du modele, suivie d’'une analyse de sensibilité permettant d’évaluer la contribution
individuelle de chaque variable.

Mots clés : Réseau de neurones artificiel - Execution au EPB-TBM - Apprentissage automatique-
Prédiction du tassement en surface.

Abstract

This thesis presents a methodology to correlate ground surface movements (settlement) with
tunnel boring machine (TBM) operation parameters , Tunnel geometry and Geotechnical pa-
rameters using an Artificial neural network model to predict maximum ground surface settle-
ment. Data analyzed were selected from the excavation of the extension of Algiers subway line
“1” (El-Harrach to H.B. Int. Airport) tunnel, which was performed by a shield TBM. The
surface settlements observed along the entire tunnel section of the project (Contract 1-9) were
satisfactorily reproduced by the proposed ANN model. A dedicated pre-processing procedure
was necessary to enhance the model’s predictive capability, followed by a sensitivity analysis
to assess the individual contribution of each feature.

Keywords : Artificial neural network - EPB-TBM Tunneling - Prediction of surface settlement
- Machine learning.
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General Introduction

In recent decades, the accelerated growth of cities particularly in metropolitan areas with
limited surface availability has introduced numerous challenges especially in transportation
and logistics, thus increasing the demand for underground infrastructure such as rapid transit
systems.

Metro tunnel construction has emerged as a strategic solution to address traffic congestion
and enhance urban mobility. While some tunnels are built in stable rock to minimize ground
deformation as is the case in the Moscow Metro (>80m depth) [19] and the Washington D.C.
Metro (50-60m) [20]. Most metro tunnels are constructed at shallow depths of 20-30m. At these
depths, ground settlement becomes a major concern for surface structures and infrastructure,
posing significant geotechnical and engineering challenges.

The Algiers Metro project highlights these challenges, built in a dense and historically rich
urban environment where the metro alignment runs at shallow depths and passes through
heterogeneous soil conditions. This setting complicates efforts to control ground movements
and ensure the safety of existing buildings and infrastructure. One notable example is Place des
Martyrs station, which was built in an area of major archaeological significance. Excavations
during its construction in 2013 revealed Roman, Byzantine, Ottoman, and colonial remains
dating back 2,000 years that made the construction more complex. To protect these discoveries,
the station’s design was subsequently modified to minimize damage to the archaeological site
and to integrate a museum component for public display [21].

o
e T T P T ] T _'

Figure 0.1: Archaeological remains at Place des Martyrs [2].

19



General Introduction

Tunnel excavation involves numerous interacting parameters, whether natural such as soil ge-
ology, groundwater level or operational like the TBM settings, all of which influence ground
deformation. These interactions are not always fully understood and are often difficult to model
using traditional analytical or numerical methods [15]. In recent years, advanced construction
methods were introduced on work sites using multifunction machines such as shield tunnel bor-
ing machines (TBMs). These machines, which apply face support pressure via air, slurry, or
earth, allow for a safer and more efficient construction of shallow tunnels in urban environments
with challenging geological conditions. However, even with such equipment, ground movements
especially vertical surface settlements are inevitable and can propagate to the surface, poten-
tially impacting nearby structures.

If not properly predicted and managed, surface settlement can cause severe damage to infras-
tructure. Numerous global case studies have reported structural issues such as wall cracking,
slab deflection, tilting, and utility damage resulting from tunneling-induced settlement. In sen-
sitive urban areas, even millimeter-scale differential settlements can trigger visible and costly
structural damage, particularly in rigid masonry buildings.

Collapse

Figure 0.2: Damage caused by twin tunnel excavations along the Esenler-Bagaksehir subway
line (Turkey) [3].

Table 0.1 summarizes the most common types of damage associated with tunnel-induced set-
tlement.
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Table 0.1: Common Types of Damage Caused by Tunnel-Induced Settlement

Damage Mechanism Description

Cracking in structural elements Cracks appear in masonry and concrete
walls, often perpendicular to the direction of
settlement. Columns may crack in plaster,
and beams may lose shear capacity.

Differential settlement and tilt Uneven ground loss leads to tilting or steps.
Floor slabs may deflect or sag, showing hair-
line cracks, especially under load.

Hogging vs. sagging Structures may bend upward (hogging) or
downward (sagging). Hogging fagades are
typically more prone to damage.

Infrastructure and utilities Roads, pipelines, and tracks can subside or
become misaligned.

Adjacent tunnels and structures | Older tunnels and nearby underground struc-
tures may deform due to nearby excavation
or dewatering.
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Figure 0.3: Sagging and Hogging phenomenon (Modified from [4]).

Given these risks, accurate prediction of settlement is essential to ensure safety and efficiency.
Traditional modeling methods, such as limit equilibrium analysis, cavity expansion theory, and
numerical simulations (e.g., FEM, FDM, 3D modeling), have been used to study TBM-induced
settlement. Several studies have employed three-dimensional numerical modeling to investigate
these effects: for instance, Emilios et al. [22] simulated EPB-induced subsidence and adjacent
building deformation, while Wu et al. [23] analyzed TBM-ground interaction mechanisms and
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their influence on surface structures. These approaches, while insightful, are computationally
intensive and require significant calibration to capture complex coupled behaviors.

In this context, Artificial Neural Networks (ANNs) have emerged as a powerful alternative,
especially in geotechnical engineering. ANNs are well suited for nonlinear, data-driven problems
like predicting tunneling-induced settlement. Suwansawat and Einstein [24] , for instance, used
an ANN to predict settlement from EPB tunneling and found no single operational parameter
could fully explain surface response, underlining the complexity of the problem. Compared
to conventional methods, ANNs can handle large datasets and extract hidden relationships
between multiple variables.

Objectives of the Study

The purpose of the present thesis is to develop and evaluate a methodology for predicting
maximum ground surface settlement using an Artificial Neural Network (ANN) model, and
to identify the most influential tunneling factors. The approach is applied to vertical ground
movement data collected during the extension of Algiers Subway Line 1 (El-Harrach to Houari
Boumediene Airport), specifically from tunnel sections 1 to 9 (spanning 8.8km) excavated by
an Earth Pressure Balanced (EPB) Tunnel Boring Machine (TBM).

Prior to training, TBM operational, geometrical and geotechnical data undergo a pre-processing
phase to minimize noise and inconsistencies. Once a robust ANN model is established, sensi-
tivity analysis is conducted to determine the most critical input factors influencing settlement.

The ultimate goal is to support proactive risk management. By anticipating conditions that
may lead to excessive settlement, engineers can adjust tunneling strategies accordingly. The
ANN thus serves as a decision-support tool, capturing the combined effects of soil parameters,
groundwater levels, cover depth, and TBM parameters on surface response.

This thesis highlights the practical importance of predictive modeling. Accurate settlement
forecasting is essential for safeguarding surface infrastructure and minimizing economic impact.
The findings are expected to contribute to safer, more efficient tunneling practices in Algeria
and other densely built urban environments.

This thesis is structured into five chapters as follows:

Chapter 1 : Provides an overview of the studied project, highlighting the use of an Earth
Pressure Balance Tunnel Boring Machine (EPB-TBM), its characteristics, the construc-
tion process, and the general geological and hydrological context.

Chapter 2 : Introduces the concept of ground settlement, detailing its types and the key
factors that influence its occurrence during tunnel construction. It also presents the in-
strumentation and monitoring systems employed to measure and record settlement, along
with the data acquisition methodology and frequency applied throughout the project.

Chapter 3 : Discusses Artificial Neural Networks (ANNs), covering their inspiration and his-
torical development, evolution over time, various types, and the fundamental principles
behind their operation.

Chapter 4 : Focuses on the construction of the database and the preprocessing phase.

Chapter 5 : Presents the implementation of the Artificial Neural Network (ANN), the search
for the optimal model, the assessment of its performance, and concludes with a sensitivity
analysis and discussion.

Page 22



General Introduction

In conclusion, the thesis presents the main findings, offers recommendations, and outlines per-
spectives for future research.
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Chapter 1

Project Overview and Site Context

1.1 Introduction

This chapter provides an overview of the studied project, with a particular focus on the use of
an Earth Pressure Balance Tunnel Boring Machine (EPB-TBM). It outlines the main charac-
teristics of the TBM employed, details the construction process adopted for the Algiers Metro
Line 1 extension, and presents the general geological and hydrogeological conditions encoun-
tered along the tunnel alignment. This contextual background is essential for understanding
the operational environment of the TBM and the factors influencing ground behavior during
excavation.

1.2 General description of Algiers Metro

1.2.1 History

The metro of Algiers is a rapid transit system serving the city of Algiers, envisioned in the 1970s
and officially inaugurated in 1982 the project was then delayed due to economic reasons until
1994 when the first 450m long section was delivered. Aiming to modernize the public transport
system and to establish a long term solution for transportation related problems responding to
the rapid growth of the metropolis.

1.2.2 Algiers metro line “1”

Line "1" is extending from Martyr’s square to El-Harrach center and Ain-Naa’dja branching
from Hai-Elbadr with a total route length of 13.5km and containing 19 stations (Figure 1.1).
It was constructed via 3 different phases finishing with the expansion from "Hai el Badr" to "El
Harrach Centre".
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Figure 1.1: Line 1 of Algiers Metro [5].

1.2.3 Extension of Algiers Metro Line 1

The extension project of the Algiers metro is a very important project and represents a strategic
step for the city of Algiers. It aims to solve the problems related to traffic congestion suffered
by the Algiers province as the capital of the country. This extension will help enhance the
efficiency of the urban transport network and respond to the growing demand for mobility.

This large-scale project, which connects the El Harrach Centre station to the Houari Boumédiene
International Airport, constitutes a development and extension of the public transport network
in Algeria. It includes 9 new stations and ten ventilation shafts with a total excavated length
of 9,565 meters (Figure 1.2).
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Figure 1.2: Plan outline for the extension of Algiers metro line “1”

The route of this extension stands out for its complexity, notably due to the presence of five
curves with very small radii (Around 198 meters), which can affect TBM operations and the
tunnel design (Figure 1.3).

Figure 1.3: Algiers metro line “1” extension (Google-earth)

To successfully carry out this project, the Algiers Metro Company (EMA), as the delegated
project owner, entrusted the execution of the works to the construction company COSIDER TP,
a key player in the execution of large-scale infrastructure projects, recognized for its expertise
and experience in this field. The latter subcontracted SELI-overseas a specialized company in
underground works and in mechanised TBM tunnel excavation.

1.3 Execution

This section outlines the execution methodology adopted for the construction of the Algiers
Metro Line 1 extension, with particular emphasis on the tunneling technique employed and the
technical characteristics of the TBM used on site.
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1.3.1 Tunnel boring machine (TBM)

The tunnel boring machine (TBM) used for the excavation is an Earth-pressure balance TBM
(EPB-TBM) with a diameter of 10.5 meters, model C665, developed by the company CREG-
WIRTH, bearing the serial number CTE10470E-3500 (Figure 1.4). It was designed by taking
into consideration the geological, hydrogeological and geometric conditions of the project.
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Figure 1.4: TBM “CREC665” Also known as KAHINA used for this project [6].

1.3.2 Working principle of the EPB-TBM

An EPB-TBM is a specialized type of tunnel boring machine designed for excavating tunnels
in soft, cohesive, or mixed ground conditions, particularly where maintaining face stability is
critical such as in urban environments or areas with high groundwater levels. Figure 1.5 Shows
the general assembly on an EPB-TBM.
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Cutter drive
motor

| Shield |

Figure 1.5: General assembly on an EPB-TBM(Modified from [7]).

The core concept of an Earth Pressure Balance Tunnel Boring Machine (EPB-TBM) is to use
the excavated soil itself to support the tunnel face, ensuring stability throughout the exca-
vation process. As the machine advances, soil is excavated by the rotating cutterhead and
enters a pressurized excavation chamber (Muck chamber) through openings at the front. In
this chamber, the incoming soil mixes with previously excavated material to form a paste-like
consistency. This paste helps balance the external pressures from the surrounding soil and
groundwater. Optimal performance of the EPB-TBM is typically achieved in cohesive soils
with a consistency index (IC) between 0.5 and 0.75 [25].

—
fj f\ The soil enters in the

Cutterhead pushes Excavation Chamber

onto the tunnel face

Figure 1.6: Muck chamber mechanism [8].
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The rotating speed and direction of the cutterhead is in most cases changed during the excava-
tion to accomplish the best mixing and conditioning of the ground and to counter a rolling of
the shield. Inside the excavation chamber, between the cutterhead rear and the fixed elements
of the pressure wall, the excavated material is kneaded into a plastic mash with the support of
the mixing blades. If the muck is too dry or sticky conditioning agents like foam or bentonite
are added to the mix to help obtain a plastic consistency [26].

Pressure balance is maintained when the internal pressure of the soil paste matches the sur-
rounding earth and groundwater pressures.A screw conveyor positioned at the back of the
chamber (Figure 1.6) continuously removes the conditioned material at a controlled rate. This
regulation of the outflow is critical for maintaining consistent pressure at the face. The ex-
cavated material is then transferred onto a conveyor belt system and transported out of the
tunnel.

As the TBM advances, an annular void forms between the excavated ground and the segmental
lining, which must be filled immediately to prevent ground loss and surface settlement. This is
achieved through simultaneous grouting, injected under pressure via dedicated nozzles located
around the tail shield. The tail seal system, equipped with multiple sealing brushes and often
lubricated with grease, prevents the infiltration of groundwater and grout during ring installa-
tion. Thrust cylinders then push the TBM forward by reacting against the completed segment
rings, ensuring a continuous cycle of excavation, muck removal, ring assembly, and grouting.

1.3.3 TBM “KAHINA” Characteristics

This section outlines the main technical features of the EPB-TBM “KAHINA”

Cutterhead: In addition to clayey soils, the cutterhead is also designed to ensure a good flow
ability of sandy cobble stratum ground condition, with an opening ratio of 39%. Injection
nozzles foreseen 12 pipelines, each one has an independent pump, and they are connected with
the cutterhead via centre rotary joints. The 12-foam line also has 8 injection points, 6 going to
the excavation chamber and 2 connected to the screw conveyor.

Figure 1.7: KAHINA’s cutter head and its opening, highlighted with yellow arrows (Modified
from [1]).
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Thrust cylinders : There are 38 thrust cylinders in total which are divided in 6 groups.

724 Group C
pe]

@ 222 721 7220 719 Z
® ®

@ o

Figure 1.8: Thrust cylinders distribution [1].

Each thrust group is equipped with a built-in stroke sensor to determine the TBM direction’s
attitude during advancing. Thrust cylinders can produce a maximum thrust force of 106,910
kN at maximum hydraulic pressure of 350 bar.

Articulation cylinder system : There are in total 18 cylinders divided in 4 groups (Figure
1.9) equipped with displacement sensors embedded in four different articulation cylinder groups
to detect the stroke.

In-built stroke sensor

Group C

Group B

Figure 1.9: Articulation cylinders distribution [1]

Tail void Grouting: A bi-component grout is used, composed of components A (grout) and
B (accelerator), is injected at the rear of the shield through six grouting lines, where the two
components are mixed at the nozzles. Each grouting line is equipped with a dedicated grouting
pump and a spare line to be used in case of clogging.
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Table 1.1 below highlights the main characteristics of the TBM, including general dimensions,
operating capacities, and other key parameters such as thrust and power systems.

Table 1.1: Principal characteristics of the TBM [1] .

Characteristics Unit
Estimated total length (including | 85 (m)

back up)

Estimated shield length 10.5 (m)

Exit speed: (geology related) 90 (mm/min)
Maximum head rotation 2.73 (rpm)
Operating pressure 5 (bar)

Type of motors Electric
Installed motors 10

Free positions for motors 3

Motor power 350

Nominal Thrust 130.000 (KN)
Number of thrust cylinders 38

1.3.4 Sequence of tunnel execution

This metro line extension project will be carried out in two main phases of work (Figure 1.10).
With Oued-Smar as a Launching and supply section.

HACEN BADI STATION
vs 02

¥ 01 UNIVERSITY POLE STATION

EL HARRACH CENTER

F BEAULIUE STATION

PHASE 2

Figure 1.10: Construction phases of the tunnel project

Phase 1: This first phase consists of the realization of 6 tunnel sections from Oued-Smar
station to Hourai-Boumediene Int. Airport station and extended to the ventilation shaft N°10,
with a linear distance of 5,768 m, this first phase consists of the realization of the following 06
tunnels:
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Table 1.2: Phase 1 of the extension (Modified from [1]).

Ne of Tunnel Section | Starting point Arriving point Length (m)
5 Oued-Smar Station USTHB University Sta- 869
tion
6 USTHB station Rabia Tahar station 656
7 Rabia Tahar station Smail Yefsah 965
8 Smail Yefsah Business Center station 586
9 Business Center Station | Airport Station 1368
10 ﬁéiers International Air- Ventilation shaft 10 566

Once it reaches the ventilation shaft N°10, the tunnel boring machine will be disassembled,
transported to Oued Smar, and then reassembled to begin the second excavation phase towards

El Harrach Centre.

This Phase of the construction will be addressed as "Zone 1" In the upcoming sections.

Phase 2: This second phase consists of the realization of 4 tunnel sections over a length of
3807m from Oued Smar station to El Harrach downtown

Table 1.3: Phase 2 of the extension (Modified from [1]).

Ne of Tunnel Section | Starting point Arriving point Length (m)
1 Oued-Smar Station Beaulieu station 904
2 Beaulieu station Po6le Universitaire station 1138
3 Pole Universitaire station | Hassan Badi station 529
4 Hassan Badi station El Harrach Centre station 751

This Phase of the construction will be addressed as "Zone 2" In the upcoming sections.

The work sequencing for the tunnel construction is shown in Figure 1.11 .

Execution
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Figure 1.11: Work sequencing scheme (Modified from [1]).

1.3.5 Characteristics of the Studied area

Table 1.4 provides a summary of some technical parameters of this alignment :

Table 1.4: Technical Specifications of the Tunnel

Length of the tunnel 9,565 meters
Internal Diameter 9,3 meters
External Diameter 10,2 meters
Excavation Diameter 10,5 meters

Number of stations to be | 8 stations

crossed

Average tunnel Depth An Average Depth of approximately 15 to 20 me-
ters below the ground surface

Excavation Method Full-face Excavation Method

Support Method Precast Concrete Segments

Average Ring Length Two types of rings were used to ensure they follow

the alignment and avoid issues related to stresses,
which could cause deformations, misalignment of
segments or cracks in the concrete.

Type 01: with an average length of 1,8m.

Type 02: with an average length of 1,4m.

Execution Page 33



Project Overview and Site Context

1.4 Geological Context

This extension of Algiers metro line “1” is located in the eastern part of the plain of Mitidja
which extends over an area of 1300 km2 or 100 km long and a width that varies between 8-
18 km, it is an elongated depression from west to east, from Hadjout to Blida and curves in
direction WSW-ENE from Blida to the Oued-ElHamiz and the sea. This plain, bounded on
the west by the Oued-Nador and on the east by the Oued-Boudouaou, is bounded to the north
by the anticline of the Sahel and to the south by the Atlas blidéen.

1.4.1 The plain of the Mitidja

The plain of the Mitidja is formed by Tertiary land and filled by Quaternary. In the extract of
the geological maps at scale 1:50,000, sheet 21 from Algiers and sheet 42 from Arba, the study
route has been implanted (Figurel.12) in plan, the study area is mainly constituted by recent
alluvial deposits, where it is possible to differentiate two formations: a3 - Alluvions marshes and
flood areas; a2 - Silty alluvium and p2q — Maison Carrée Marl (Late and Quaternary Pliocene
former)

Alluvions anciennes
3. Partie de la Mitidja (comblement de la Mitidja)

anciennement marécageuse Sicilien 2
et souvent inondée.

Figure 1.12: Extract from the Geological Maps sheet no21 of Algiers and sheet no 42. (The
Extension Alignment implemented)
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1.4.2 Lithology

The differentiated lithological units present in the underground of the studied area are, in
chronological order from the oldest to the most recent:

Tertiary - Astien

It is characterized by shallow marine deposits, represented by a lithological succession that
generally includes, from bottom to top, the following facies: marly-sandy, calcareous-sandy,
molassic, and sandy-clayey, collectively referred to as the Astian Molasse. These facies show
intercalations and frequent lateral variations. They were identified during the geological study
of the tunnel extension line as Units TS, TG, and TM.

- Unit TS: This unit represents fine, medium to coarse, sand with sandstone fragments,
these formations appear only in depth, particularly in Section 1 (pk 0+000 to pk 0+782.50),
Section 2 (pk 0+912.00 to pk 14445.80) and Section 3 (pk 1+4576.20 to pk 2+646.30);

- Unit TG: This unit represents unweathered to cracked sandstone, these formations ap-
pear only in depth, particularly in Section 2 (pk 04+912.00 to pk 1+445.80);

- Unit TM: This unit represents marly clay to marl. These formations appear only in
depth, particularly in Section 1 (pk 04000 to pk 0+782.50), Section 2 (pk 0+912.00 to
pk 14+445.80)

Quaternary

After the sedimentation of the Astian, erosion of the Tellian Atlas led to the deposition of
Quaternary sediments in low-lying areas and along the marine coast. These deposits include a
wide range of facies, mainly detrital in nature, and lie over older layers. The main facies were
identified during the geological study of the tunnel underground as Units QM, QS, and QA.

- Unit QM: This unit represents a deposition of Clays and Marls, known as those of
El Harrach. It also includes cross-stratified sandstones, occasionally containing levels of
pebbles and lumachelles, which testify to an agitated coastal environment before the sea
resumed its general regression.

- Unit QS: This unit consists of a detrital deposit resulting from the dismantling of up-
lifting reliefs, it is mainly composed of clayey, sandy, and pebbly facies.

- Unit QA: This unit consists of a detrital depost corresponding to significant fluvio-
continental sedimentation, occuring across the alluvial plains in continuity with previous
depositional events. It is composed of clayey facies formed of clays and sandy clays with
pebbles.

Tablel.5 summarizes the main lithostratigraphic units encountered along the tunnel alignment.
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Table 1.5: Main lithostratigraphic units intersected along the tunnel alignment

Stratigraphy Symbology | Lithology Observations
Recent R Fill Layer of no importance for excavation,
very superficial
QA Silty clay with low | Important layer for excavation in sec-
Quaternary sand content tions 7-10
QG Pebbles with a clayey | Important in section 9
or sandy-clayey ma-
trix
QS Silty-clayey sands | Important layer thickness in sections
with pebbles, sand-|5-9
stone and conglomer-
ates
) QM Marly clays and marls | Important in sections 1-6, 9-10
]E]J le)er P 11(?Ecene with sandstones and
~ Early Quaternary conglomerates
QMg Silty-clayey sands | Present as lenses in QM: sections 1,
with pebbles 3-5,9
QM Fine to medium silty | Present as lenses in QM: sections 1, 4,
sand 10
) TS Fine to coarse sand | Important in sections 1-3
Tertl.ary with sandstone frag-
Astien
ments
TG Fractured sandstone | Important in section 2
with lumachelle
™ Marly clay and marl | Very deep; not relevant in sections 1-2

1.4.3 Subsurface Conditions throughout the Tunnel Alignment

The main units excavated inside the tunnel along the extension El-Harrach - Bab-Ezzouar -
Algiers International Airport are presented in Table 1.6 below, including the length and depth
of the cover along the sections and the units above the tunnel crown.

Table 1.6: Geological units encountered along each tunnel segment

Tunnel | Pk start | Pk end | Length (m) | Depth (m) | Units inside the tunnel Units at the tunnel’s crown
T1 | 04000,00 | 0478250 | 782.50 741 | QS/QM/QM, /QM, /TS /| QA /QS/ QM /QM,, / QM,
™
T2 | 0491200 | 1444580 |  533.80 2332] | QS/QM /TG /TS QA /QS/QM/QM, /TG /

TS
T3 | 14576,20 | 2+646,30 |  1070.10 [1326] | QM / QM /TS QG / QM / QM,,
T4 | 2477570 | 3+4741,95 | 966.20 [13-20] | QM / QM / QM, QA / QS / QM / QM / QM,
T5 | 34872,00 | 4474050 |  868.50 1025 | QS/QM/ QM QA / QS / QM / QM,,
T6 4+4869,90 | 5+527,50 657.60 [10-15] QS only QA /QS/ QM
T7 | 54677,65 | 61644,96 |  967.30 1021 |QA/QS QA / QS
TS | 64774,97 | 74363,13 |  588.20 1316 | QA / QS QA / QAs / QS
T9 | 74501,13 | 84873,10 |  1372.00 1517 | QA / QG / QM / QM QA / QG / QM
T10 | 9+002,90 | 9+575,00 |  572.10 15 16] | QA / QM / QM. QA / QM / QM.
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Figure 1.13: Longitudinal profile showcasing units distributions in tunnel Section 1
(pk+0.000,00 to pk+0.700,00). (Details in Appendix A)

1.5 General Hydrology

The route of the entire extension of the Algiers Metro line between El-Harrach —Algiers Inter-
national Airport, currently under construction, develops in the eastern part of the vast Mitidja
Plain, limited between the Oued El-Harrach and the Oued El-Hamiz. According to the bibli-
ography, the eastern part of the Mitidja Plain, in northern Algeria, covers about 575 km?2. It is
bounded by the Mediterranean Sea to the north, the Atlas Mountains (1200-1600 m elevation)
to the south, the Oued El-Harrach to the west, the Oued Réghaia to the east, and the “Petit
Sahel” (200 to 250 m elevation) to the northeast. The general elevation of the plain varies from
20 to 50 m. The main watercourses are the Oued El-Harrach (West), Oued El-Hamiz (Center),
and Oued El-Réghaia (East). The most important water catchment areas are Bouréah, Hamiz,
Haouch Félit, and Baraki. In the eastern part of the Mitidja Plain, from top to bottom, there
are two main aquifers:

The Quaternary alluvium:
- This aquifer is located in more or less consolidated gravels and sands, inter-stratified with
clay. It is recharged by:

o Precipitation;
o Infiltration from Oued El-Harrach and Oued El-Hamiz;

o Drainage from the Astien reservoir.
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- It is separated from the Astien aquifer by the El Harrach Formation, except to the east
of El Hamiz, where the two are in direct contact.

- The unconfined aquifer extends along the entire Mitidja basin.

The Astien reservoir

- It is confined beneath the marls of “Maison-carrée”, currently called the “El Harrach
marl,” in which clayey elements dominate in an alternation comprising sticky marls,
gravelly clays, and some beds of sand and gravel—except in the eastern part where it is
in direct contact with the Mitidja aquifer.

In plan view, the route under study crosses several geological formations, which can be classified
into two hydrogeological categories of terrains (As shown in the excerpt from the hydrogeological
map of the Algiers region, at a scale of 1:200,000, Figure 1.14);

Figure 1.14: Excerpt from the Hydrogeological Map of the Algiers Region (Alignment
implemented).

Table 1.7: Hydrogeological Classification of the Mitidja Formations

Class | Stratigraphy| Symbology Lithology Hydrogeology
ESERERES: Alternation of clays and P‘ermeablhty generally
I Quaternary | |7:7I07:%0° s high. Water resources
cio:oio:o gravel (Mitidja) .
important
AT Low permeability.
I Quaternar ’/,////}’,/,j Clay and pebbles from Substrate of the water
y 22274427 Villafranchien (Mitidja) | table of the alluvions in
the Mitidja

General Hydrology
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- Class I: Highly permeable soils. Water resources generally significant..

- Class II: Soils with medium permeability. Water resources variable.

In plan view along the route, the permeability is characterized as shown in Table 1.8

Table 1.8: Permeability in plan along the route based on the Hydrogeological Map of the Algiers

region.
Tunnel (Section) Pki Pkf Extension (m) Hydrogeology

T1 04-000,00 | 0+782,50 782,50 Medium Permeability
T2 04+912,00 | 1+445,80 533,8 Medium Permeability
T3 14576,20 | 24646,30 1070,1 Medium Permeability
T4 24-775,70 | 3+741,95 966,2 Medium Permeability
T5 3+872,00 | 4+740,50 868.,5 Medium to High Permeability
T6 4+869,90 | 5+527,50 657,6 High Permeability
T7 0+677,65 | 6+644,96 967,3 High Permeability
T8 6477497 | 7T+363,13 588,2 High Permeability
T9 7+501,13 | 84+873,10 1372 High Permeability
T10 9+4002,90 | 9+575,00 572,1 High Permeability

1.6 Conclusion

The extension of Algiers Metro Line 1 between El Harrach Centre and Houari Boumédiene
International Airport is a key infrastructure project intended to improve urban mobility and
reduce congestion in the capital. With a length of 9.5 km and 9 new stations, the project
is was executed in two main phases using an Earth Pressure Balance Tunnel Boring Machine
(EPB-TBM) adapted to the local geological and hydrogeological conditions.

The tunnel alignment crosses complex terrain within the Mitidja plain, requiring careful con-
sideration of soil behavior, groundwater conditions, and construction techniques. In summary,
the main units that govern the tunnel excavation are Units QM (marly clays), QS (silty-clayey
sands), and TS (Sands), which represent the dominant lithologies encountered along the tunnel

route.

Conclusion
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Chapter 2

Ground Surface Settlement and
Monitoring

2.1 Introduction

Soil settlement is defined as a vertical deformation of the ground caused by the application of
an external load (structural load, embankments, the soil’s own weight, etc.). It results from
the rearrangement of soil grains, dissipation of pore water, and progressive soil consolidation.
This phenomenon is particularly pronounced in saturated fine soils (clays, silts), where low
permeability causes slower and more prolonged settlement.

Three types of settlement are distinguished:

- Uniform settlement, which affects an entire structure evenly and is generally not crit-
ical.

- Tilting, a form of nonuniform settlement that typically occurs without visible cracks. It
often results from soil liquefaction, causing the entire structure to tilt without necessarily
damaging its integrity [9].

- Differential settlement, which is more dangerous as it causes uneven subsidence that
can lead to cracks or structural deformations.

Tipping settlement Differential settlement
(often without cracks) (with cracks)

Uniform settlement
(no cracks)

Figure 2.1: Different types of settlement [9].
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Consolidation lies at the heart of the phenomenon, and Terzaghi’s one-dimensional theory
explains its time evolution: initially immediate settlement, then primary consolidation (due to
pore water dissipation), and finally secondary consolidation (particle creep).

The main causes of settlement include:

Natural consolidation under constant loads (e.g., weight of structures or embankments)

Groundwater pumping

Resource extraction (e.g., mining, groundwater)

Civil engineering activities, including soil compaction and mechanized tunneling (e.g.,
with Earth Pressure Balance Tunnel Boring Machines), which can induce ground settle-
ment due to excavation-related disturbances.

In this study, we focus specifically on ground settlement induced by EPB-TBM excavation.

2.2 Surface Settlements Induced by EPB-TBM Tunnel-
ing

The excavation of tunnels using Earth Pressure Balance Tunnel Boring Machines (EPB-TBMs)
inevitably induces ground deformations that may result in surface settlements. The extent and
characteristics of these settlements are governed by a combination of factors, generally classified
into three main categories:

- Tunnel geometry including tunnel diameter, depth, and alignment.

- Geological and hydrogeological conditions such as soil permeability, groundwater
level and soil resistance.

- TBM operational parameters such as face pressure, advance rate, and volume loss.

This chapter analyzes the influence of each category on the occurrence and magnitude of surface
settlements during shield tunneling.

Factors
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X Conditions Geometry Operation :
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Figure 2.2: Main Factors Influencing Surface Settlement in EPB-TBM Tunneling
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2.3 Factors Influencing Surface Settlement in EPB-TBM
Tunneling

2.3.1 Tunnel Geometry

In this subsection, the factors taken into account and having a significant influence on the
magnitude of settlement are three: tunnel diameter, cover depth and distance from station.

2.3.1.1 Tunnel Diameter

The tunnel diameter is a very important factor that strongly influences surface settlement. It
corresponds to the outer diameter of the shield (i.e., the excavation diameter). An increase in
tunnel diameter leads to an extension of the vault (crown) length, which increases the temporary
loads that the surrounding ground must bear. Moreover, this increase expands the influence
zone around the tunnel face, covering an area with a diameter equal to that of the tunnel. This
region experiences a higher typically maximum convergence rate compared to other parts of
the tunnel. As a result, controlling convergence becomes more difficult, especially in loose or
low-cohesif soils. Furthermore, a larger diameter means a wider cross-sectional area, which,
under constant soil conditions, causes a greater volume of ground to move toward the tunnel.
This situation further complicates the effective installation of a temporary support system due
to the increased stresses and the larger surfaces that need to be stabilized. Since this tunnel
was excavated using the same shield throughout the entire alignment, the diameter remains
constant (10.5m); therefore, its influence can be neglected in this case.

2.3.1.2 Cover Depth

The cover depth, defined as the thickness of soil above the tunnel, plays a key role in the
behavior of the soil during shield excavation. In shield tunneling, the arching phenomenon
refers to the structural formation that redistributes pressure around an excavated opening,
redirecting some of the vertical overburden stress laterally into an arch above the tunnel. The
Arching effect was developped in 1943 by K.Terzaghi [27].

. Settlement trough
Ground surface , <

‘j-x\ \ E_____%__L/Afﬂf JII’
\ /
\ L /
\ Ah ' /
20N , v\\
! Simplified linear
shear band

Figure 2.3: Scheme illustrating Arching zone (Modified from [10]).
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- Effect of shallow cover depth: When the tunnel depth is shallow, the soil’s ability
to behave like an arch is limited. This results in greater vertical deformation of the soil
above the tunnel, thus increasing surface settlement. Studies have shown that for low
depth-to-diameter ratios (H/D), the maximum settlement is higher and the affected area

is larger [28], this phenomenon is clearly represented in Figure 2.4 for a tunnel section in
Zone 1. [11]

Displacement
[*10-3 m]
i dA b Abh AL AR AAkhddshdad 56,00

52,00

Figure 2.4: Simulation under Plaxis 2D software showing the arching zone for a tunnel depth
of 20m (Extension line 1). [11]

The efficiency of that arch and thus the reduction in settlement at the tunnel crown and
surface is a strong function of the cover depth.

- Effect of deep cover depth: As the cover depth increases, the arching effect becomes
more pronounced. This allows the soil above the tunnel to deform less, thus reducing
surface settlement. A greater cover depth generally reduces surface settlement by pro-
moting the arching effect. However, even a significant cover depth may not be sufficient
to limit settlement if other factors, such as soil properties and tunnel diameter, are not
optimized.
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Figure 2.5: Simulation under Plaxis 2D software showing the arching zone for a tunnel depth

of 66m (Extension line 1). [11]

An illustration of the relationship between the tunnel depth-to-diameter ratio (H/D) and the
observed ground surface settlement, for the case of extension of line 1, is provided in Figure 2.6.

In the present study, given the tunnel diameter of 10,5m and friction angle of 20°, and according
to Terzaghi theory, the arching effect becomes significant only when H/D ratio exceeds 3,5. As
shown in Figure 2.6, only 14 settlement measurement points, for which H/D is greater than
3,5, were recorded along the tunnel section N°1. we can see that surface settlements in this

tunnel section are very small (less than 8mm).

Settlement vs H/D
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Figure 2.6: Settlement vs H/D Scatter plot (Extension of line 1-Algiers metro).
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2.3.1.3 Distance from station

The distance from station or distance from the launching shaft plays an important role in
the development of surface settlement during tunnel excavation using an Earth Pressure Bal-
ance (EPB) shield. Generally, the most significant ground deformations are observed near the
starting point of the tunnel. This is because, in the early stages, the machine is not yet fully
stabilized: excavation parameters such as pressure, foam injection rate, and advance speed are
still being adjusted, and the temporary support system is not yet working at full efficiency.
As tunneling progresses, these parameters become more stable, allowing for better control of
ground loss and, consequently, surface settlement. Therefore, the further the machine advances
from the launch shaft, the more consistent the excavation becomes, often leading to a gradual
reduction in surface settlement.

AIRPORT STATION

BUSINESS CENTER
STATION

V3 08

4 GUED AR STATIONm RABIATAHAR STATION
HOUARIBOUMEDIENE
UNNERSITY STATION SMAILYEFSAH STATION

BEAULIUE STATION

UNIVERSITY POLE
"2 STATION

HACEN BADI STATION

EL HARRACH
CENTER

Figure 2.7: Recorded settlement along the tunnel drive from Tunnel section 1 to 9
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2.3.2 Geological Conditions

Several geological parameters are known to significantly influence ground surface settlement
during tunnel excavation. These include the nature of the soil (geological profile), groundwater
table level, internal friction angle, soil permeability, soil cohesion, the elastic modulus, and the
compression modulus. In the following sections, some of these factors are discussed in more
detail to highlight their contribution to surface deformation.

2.3.2.1 Soil permeability

Soil permeability is a key factor in the behavior of soil under load. It expresses the soil’s ability
to allow water to flow through it under the effect of a pressure gradient or gravity. The more
permeable a material is, the faster water drains out, which allows settlement to occur over a
relatively short period of time, as is often the case with sandy or gravelly soils. In contrast,
in fine-grained soils with low permeability, such as clays, water drainage is very slow, leading
to gradual settlement over several months or even years. The coefficient of consolidation C, is
used to quantify this phenomenon, taking into account permeability, compressibility, and soil
structure.

2.3.2.2 Groundwater table level

Groundwater table level has a significant influence on the effective stress in the soil, which is the
actual force supported by the soil grain structure. Effective stress is defined by the equation:

/
0 = Ototal — U

Where u is the pore water pressure. Therefore, a drop in the groundwater level results in a
decrease in pore pressure, which increases effective stress and causes soil settlement through
consolidation. Conversely, a rise in the groundwater level reduces effective stress, which can
slow down or temporarily prevent settlement, and in some clayey soils, it may even cause
temporary swelling.

2.3.2.3 Soil Cohesion

Soil cohesion is as decisive a factor as the other parameters influencing the magnitude of surface
settlement. It reflects the ability of soil particles to resist separation and remain bonded together
under the effect of interparticle forces (electrostatic, capillary, or suction forces). This cohesion
helps reduce deformations, contributes to the stability of the soil structure, and enhances its
resistance to applied loads. A soil with high cohesion (such as cohesive clays) generally exhibits
better resistance to deformation and, consequently, reduced settlement under load.

Conversely, in the case of low cohesion, particularly in dry, very loose, or reworked soils, the
soil is more likely to deform under stress, leading to greater settlements.

It is also important to emphasize that cohesion is strongly influenced by water content. In fact,
increasing moisture reduces the cohesion forces between particles (especially in clayey soils),
which can weaken the soil structure and increase its compressibility, leading to more significant
settlement.
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2.3.3 Operational parameters of the EPB-TBM (Tunnel Boring Ma-
chine)

Among the many operational parameters of the Earth Pressure Balance (EPB) shield that
influence ground surface settlement, we can mention: Face Pressure, Penetration rate , Mass
Loss, Tail Void Grouting , Thrust cylinder , Pitching angle.

In this section, we will focus on most of these parameters, particularly those that are likely to
have a significant influence [24] on settlement generation.

2.3.3.1 Face Pressure

Face pressure plays a crucial role during the excavation of a tunnel using an Earth Pressure
Balance (EPB) shield. It corresponds to the pressure exerted by the excavation chamber on
the tunnel face and aims to balance the forces exerted by the soil and pore water. This
pressure allows for the temporary support of the ground at the face, ensuring stability during
shield advancement and preventing collapses that could lead to the formation of voids and,
consequently, surface settlements.

The variation in face pressure has a direct impact on soil behavior and the resulting settlements.

Table 2.1 presents the possible scenarios based on the face pressure conditions.

Table 2.1: Effects of Face Pressure Variations on Tunnel Stability and Ground Settlement

Consequence on

Face Pressure Con- Surface Settlement

dition

Effect on Stability

Instability at the face,
inflow of soil into the

Fails to chamber, and thus

Insufficient face pres-
sure

counterbalance the
forces exerted by the
soil and pore water

the formation of voids
at the tunnel face,

resulting in significant
surface settlements

Optimal face pressure

Provides mechanical
equilibrium at the
face, enables precise
control of the
excavated soil volume

Reduces settlements.

Excessive face pres-
sure

Can lead to
overpressure in the
excavation chamber,
forcing the soil
outward

Potentially causing
surface heave,
especially in fine and
saturated soils.
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An illustration of the relationship between the Face Pressure and the observed ground surface
settlement is provided in Figure 2.8.
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Figure 2.8: Settlement vs Face pressure Scatter plot (Extension of line 1-Algiers metro).

2.3.3.2 Penetration Rate

The penetration rate of tunnel boring machines (TBMs) is commonly used as a performance
indicator during excavation works and serves as a key parameter for estimating the construction
duration and associated costs.

It represents the ratio between the excavated distance and the time required for excavation,
excluding pauses or operational stoppages. Generally expressed in millimeters per minute
(mm/min) or meters per hour (m/h).

To maintain a balanced earth pressure during excavation, it is crucial for operators to adjust
the muck extraction rate based on the penetration rate. If the muck extraction rate is too
high compared to the TBM’s advancement, too much soil is removed, which can lead to an
imbalance and cause ground loss. On the other hand, if the extraction rate is too low compared
to the penetration rate, the volume of excavated soil is less than the volume replaced by the
shield’s advance, which can result in excessive face pressure. Meaning that the spoil removal
rate must be adjusted accordingly to maintain optimal face pressure.

An illustration of the relationship between the Penetration-rate and the observed ground surface
settlement is provided in Figure 2.9.

Factors Influencing Surface Settlement in EPB-TBM Tunneling Page 48



Ground Surface Settlement and Monitoring

Settlement vs Penrate (mm/min)
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Figure 2.9: Settlement vs Penetration-rate Scatter plot (Extension of line 1-Algiers metro).

2.3.3.3 Mass Loss

Mass loss represents the difference between the theoretical mass of soil to be excavated (cal-
culated as the product of soil density and the excavated volume) and the actual mass of soil
removed during TBM operation. This discrepancy is an important indicator that can be di-
rectly linked to ground surface deformations. A negative mass loss value means that more
soil was excavated than anticipated, which may indicate over-excavation, loss of confinement,
or ground loosening. Such conditions can create voids around the tunnel lining, resulting in
ground surface settlement. On the other hand, a positive mass loss value indicates that less
soil was excavated than expected which may suggest under-excavation or face clogging. This
can lead to a build-up of pressure at the tunnel face or along the shield, potentially causing
ground uplift, also known as heave.

An illustration of the relationship between the Mass loss and the observed ground surface
settlement is provided in Figure 2.10.
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Settlement vs Mass loss (%)
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Figure 2.10: Settlement vs Mass Loss Scatter plot (Extension of line 1-Algiers metro).

2.3.3.4 Thrust Cylinder

Thrust is the axial force applied by a TBM’s hydraulic jacks to advance the shield against the
tunnel face. In EPB-TBMs, this thrust also contributes to maintaining face pressure, ensuring
stability at the tunnel face and preventing collapse or over-excavation of the cavity created

during excavation.

Although thrust itself does not directly cause ground settlement, it has a critical indirect effect
by influencing key mechanisms such as face pressure control, mass loss, and face stability [29].
Therefore, analyzing thrust in isolation is insufficient, as its effect is intrinsically linked to
other operational parameters. Table 2.2 summarizes the influence of different thrust regimes

on ground behavior.

Table 2.2: Effects of Different Thrust Regimes During Excavation

Thrust regime

Mechanism

Mass loss

Result

Excessive thrust

-Cutter
over-penetration
-Soil over-excavation
in the chamber
-Temporary face
heave

Gradual mass loss as
face heave relaxes

Delayed settlement

Insufficient thrust

-Cutter stalls against
ground
-Chamber under-filled

Face pressure drop

Sudden Mass loss at
face

Immediate surface
settlement

An illustration of the relationship between the Thrust and the observed ground surface settle-
ment is provided in Figure 2.11.
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Settlement vs Thrust (KN)
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Figure 2.11: Settlement vs Thrust cylinder Scatter plot (Extension of line 1-Algiers metro).

2.3.3.5

Tail Void Grouting

The advancement of the shield (TBM) results in the formation of an annular void between the
excavated ground and the installed tunnel lining. If left unfilled or inadequately filled, this void
allows the surrounding soil to migrate toward the tunnel, leading to ground subsidence and
surface settlements. Grouting is essential to fill this gap and counteract soil movement, thereby

limiting ground deformations.

The performance of the grouting process is primarily influenced by parameters such as injection
An optimal balance between these factors is critical to ensure
effective backfilling and structural integrity. The effects of various injection pressure scenarios
on ground stability are summarized in Table 2.3.

pressure and grout volume.

Table 2.3: Effects of Injection Pressure on Backfilling Grout Performance

Injection Pressure

Potential Consequences

Impact on Stability

Sufficient / Optimal

- Homogeneous grout distribu-
tion in the annular void

- Soil movements toward the
tunnel prevented

- Ensures structural stability
- Minimizes settlement risk

- Potential for water ingress

Excessive - Ground heave - Overstressing of surrounding
- Possible damage to tunnel | ground
lining - Potential structural damage
Insufficient - Incomplete void filling - Increased risk of differential

settlements
- Compromised tunnel durabil-

ity

An illustration of the relationship between the Tail void Grouting and the observed ground
surface settlement is provided in Figure 2.12.
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Settlement vs Grout volume (m3)
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Figure 2.12: Settlement vs Tail void Grouting Scatter plot (Extension of line 1-Algiers metro).

2.3.4 Summary

Table 2.4 summarizes the various factors influencing settlement, that have been considered in
the present study.

Table 2.4: Categories and associated influencing factors

Category Factors
Cover depth (m)
Tunnel Geometry Tunnel Diameter (m)

Distance from Station (m)
Soil permeability (m/s)
(

Geological Conditions Groundwater table level
Soil cohesion (kpa)
Face pressure (bar)

Penetration rate (mm/min)

Mass loss (%)
Thrust cylinder (KN)
Tail void Grouting (m?)

m)

Shield Operation Factors

2.4 Settlement Monitoring Instruments

Surface settlement during EPB-TBM tunneling is monitored using surface markers (leveling
benchmarks and survey targets), while multi-point borehole extensometers (settlement meters)
(MPBX) are used for subsurface settlement. These instruments are installed along the tunnel
axis and referenced to stable control points outside the zone of influence, with data collected
periodically. [30, 31].
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2.4.1 Swurface markers and settlement arrays

For the of the Extension of Algiers metro ligne “1” a large number of surface settlement markers
and settlement arrays were installed along the entire tunnel alignment to measure and record
surface settlements. Typically, surface settlement markers were installed on the tunnel axis
approximately every 12.5 or 25 meters intervals and settlement arrays were installed in groups
of 3 every 50 meters: one positioned on the tunnel axis, and the other two placed 10 meters on
either side of the axis (Figure 2.13).

Figure 2.13: Distribution of settlement markers and arrays of settlement markers in tunnel
section 2.

In cases where surface obstacles, such as buildings or other infrastructure, prevent the precise
installation of measurement equipment, the layout of the points is adjusted accordingly, and
the monitoring plan is updated to reflect these changes.

2.4.1.1 Execution

Surface settlement along the tunnel alignment is monitored using conventional measurement
rods. These consist of 1-meter-long steel bars that are anchored into a non-deformable structure
(such as a concrete block). At the bottom end, each bar is welded or fixed to a 20x20cm metallic
plate, which ensures a stable connection to the underlying support.

The free (upper) end of the rod is exposed at the surface, where precise leveling measurements
can be taken using standard surveying instruments. This exposed tip serves as the reference
point for vertical displacement monitoring.
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The Z-coordinate (elevation) of this point is recorded periodically, before, during, and after
tunnel excavation. Any decrease in Z indicates vertical ground settlement. By installing a
series of such rods along the tunnel alignment, a detailed settlement profile can be developed

over time.
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(a) Settlement marker schematic (b) Settlement marker at pk1+315.00

Figure 2.14: Settlement marker

2.4.1.2 Reading frequency

The reading frequency is linked to the progress of the excavation by the TBM.

Surface settlement measurements are taken once per day (daily) for points located within the
range of (-50 m; +50 m) along the tunnel axis relative to the TBM’s excavation face, and once
every two (2) days for points within the range of (-100 m; 4100 m). Outside the (-100 m; +100
m) zone, the frequency becomes monthly and is eventually stopped if stability is confirmed.

"\ 100 m 100 m f\
e N S
Pl &
TBM - Tunnel
W /

Figure 2.15: Reading zone for settlement marker and settlement arrays

Once relative settlement stability over time is observed, readings will be spaced out to once a
week, then once a month, until they are fully discontinued. If an alert threshold is exceeded dur-
ing measurements, a second exceptional reading may be carried out for the affected settlement
points, continuing until stabilization is achieved.
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2.4.2 Inclinometric monitoring

To assess deformation within the soil mass, inclinometers are installed to measure horizontal
ground movements, particularly in areas affected by construction activities.

2.4.2.1 Execution

Inclinometer monitoring involves installing 55 mm diameter, 3-meter-long ABS tubes (Figure
2.16) into a borehole of project-specified diameter and depth. Each tube is equipped with four
internal grooves forming two perpendicular axes; one groove is aligned perpendicular to the
tunnel axis to measure horizontal displacements induced by tunneling.

Type A B c D

2" 47 mm 55mm 54 mm 60 mm

Figure 2.16: Inclinometer tubes

The tubes are interlocked at machined ends for precise alignment, with joints secured using
rivets, sealing tape, and adhesive to ensure watertightness. A bottom cap protects the first
tube from clogging, and the entire assembly is grouted in place using cement grout similar to
the surrounding soil, poured from the bottom up to avoid voids. At the surface, the tubes are
covered by metal protection caps.

Inclinometers measure horizontal ground deformation by recording tilt angles along the depth
of a borehole using a biaxial probe guided within grooved ABS tubes. The inclinometer probe
is lowered at regular depth intervals (e.g., every 0.5m or 1m) and measures the inclination
relative to the vertical axis. The recorded tilt angles 6 at each depth are then converted into
cumulative horizontal displacements using numerical integration. This is expressed as:

u(z) = /Z: tan(0(s)) ds

where u(z) is the horizontal displacement at depth z, 0(s) is the tilt angle at point s, and zq is
the reference depth (typically the bottom of the borehole). By processing the tilt data in this
manner, engineers can reconstruct the lateral deformation profile of the ground and monitor
potential movements toward or away from the tunnel axis with high precision.

Inclinometer installations are typically spaced at two per special section, with depth depending
on ground cover and tunnel alignment.
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2.4.2.2 Reading frequency

After the initial reading is established, 3 readings will be taken following the passage of the
TBM for each section. Additional measurements were carried out when necessary.

2.4.3 Settlement Meters

Settlement meters or settlement gauges, are simple and robust measuring instruments used to
monitor underground settlements and uplift (Heaves). They were installed in locations defined
by the project (areas where settlement is to be monitored and at depths where movement is
likely to occur).

Settlement is transferred to the surface by transfer rods and is measured either through precision
leveling or by topographic methods. The instrument is widely used to monitor the surface
stability of underground excavations.

2.4.3.1 Execution

The instrument consists of a galvanized tubular rod inserted into a hole drilled by rotary
methods. The lower end of the rod is anchored in a cement grout, while the upper part is
protected by a PVC sleeve and terminates with either a leveling sphere or a target prism for
measurement. Optional protective elements, such as galvanized tubes or concrete boxes, may
also be installed around the top for added durability.

Leveling and reverse-leveling readings were taken from a stable benchmark located outside the
tunnel’s zone of influence. Vertical ground movements at the anchored depth are directly trans-
ferred to the surface via the rod, allowing for reliable monitoring with minimal instrumentation
complexity.

Triple settlement meters can be installed in the same borehole, provided that the borehole
diameter is compatible.

The settlement meters are located in the special sections, with 3 series of settlement meters
installed at different depths as follows:

- Above the tunnel axis

- At both ends of the tunnel, approximately 8.00 m away (Tunnel diameter is 10 m) from
the tunnel axis
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Figure 2.17: An array of settlement meters above the tunnel axis at pk2-+654,00.

2.4.3.2 Reading frequency

The frequency of readings is also linked to the progress of the TBM excavation. Settlement
measurements are taken once per day (daily) for points within the range of (-50 m; +50 m)
along the tunnel axis and relative to the TBM’s excavation front, and once every two (02) days
for points within the range of (-100 m; +100 m).

When the excavation front is more than 100 meters away from the special section, if stability
is observed in the measurements, readings will be scheduled once a month (01/month) for
3 months, after which measurements will be suspended until further notice (in the case of
buildings).
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Figure 2.18: Instrument used to measure and record settlement.
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Figure 2.19: Instrument distribution plan at tunnel section 1 pk0+000,0 to pk0+150,00.
(Appendix B)

The highlighted buildings in Figure 2.19 represents the control threshold for additional admis-
sible movements according to classification (Figure 2.19), in Tunnel section 1 (El-harrach to
Hasan Badi) the sensibility levels are devised into 3 types (Figure 2.20)
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Figure 2.20: Identification of sensitivity types along Tunnel section 1.

Settlement Monitoring Instruments Page 58



Ground Surface Settlement and Monitoring

Table 2.5: Allowable Settlement Limits Based on Structural Sensitivity and Control Thresholds

Parameter Allowable settlement (mm)

Control threshold GREEN | YELLOowW | REB

Type A - Areas without buildings <30 30-50 >80

- Streets with vehicular roads
Type D - Surface-foundation buildings <10 10-15 >15
- Surface damage

- No apparent damage

Type E - Buildings with damaged surface foundations or <5 5-10 >10
monumental buildings

2.5 Extraction and Analysis of Ground Surface Settle-
ments

The primary objective of the measurements with settlement markers is to measure maximum
surface settlements above the tunnel centerline (Figure 2.21).
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Figure 2.21: Maximum surface settlement [12].

Additionally, readings were taken every day before and after shield passing but increased to
higher frequency (i.e., every 24 h) during shield passing in order to capture the development
of surface settlements. Surface settlement markers also allow the observation of longitudinal
surface settlement profiles (Figure 2.22) which tend to reach a maximum after the shield’s
passing then stabilize. It is at that moment where the maximum GSS is extracted.

Extraction and Analysis of Ground Surface Settlements Page 59



Ground Surface Settlement and Monitoring

-X -ix Tunnel Face Position | X
- . -

Tunnel Face | «——— Advancement Direction

Figure 2.22: Longitudinal settlement trough [13].

Figure 2.23 shows examples of settlement recordings using different instruments mentioned
above, we can clearly see resemblance of the longitudinal settlement trough and the stabilization
of settlement after the shields passing.
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(c) Settlement meter (Extensometer) recordings at pk 24654,00.

Figure 2.23: Examples of settlement recordings using surface markers and extensometers.
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Figure 2.24 shows the evolution of ground settlement as a function of the horizontal distance
from the tunnel axis, at section pk24688,00 m. The graph indicates that the maximum settle-
ment consistently occurs at the centerline of the tunnel, where the settlement curve typically
takes the shape of a trough. Settlement increases progressively in depth while also spreading
laterally, affecting areas to the left and right of the axis, although to a lesser extent.
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Figure 2.24: The settlement profile trough at section pk24-688,00.

It is clearly observed that this curve exhibits a shape similar to the Gaussian curve, as demon-
strated by Peck. In 1969, he furthered his research and showed that a Gaussian curve effectively
models the ground settlement induced by tunnel excavation. Based on data from various sites
and projects he studied, he concluded that the settlement curve, in cross-section, is gener-
ally symmetrical with respect to the tunnel’s central axis. He proposed specific equations to
calculate the settlement at any point along the cross-sectional profile.

The following equation is identified among these:

Where:

- Sv: is the vertical surface settlement at the Y distance from tunnel centerline.

- Smax: is the maximum ground surface settlement that usually occurs above tunnel
centerline.

- ¢: is horizontal distance from tunnel centre to point of inflection of the settlement trough.

2.6 Conclusion

This chapter examined the phenomenon of ground surface settlement, particularly in the con-
text of EPB-TBM tunneling. The analysis focused on three main categories of influencing
parameters: geometric, geological, and TBM operational.
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Among geometric parameters, only cover depth and distance from the launching shaft were
retained as significant. The geological parameters discussed such as cohesion, permeability,
and water table level were also identified as key factors in the settlement process. Regarding
TBM operational parameters, all were found to be effective contributors, either directly or
through interdependent mechanisms such as mass loss or face instability.

The chapter also presented the instrumentation used to monitor ground deformation, includ-
ing surface markers, inclinometers, and settlement meters. Measurement frequency increased
during shield passage to better capture settlement evolution. Surface marker data enabled the
observation of longitudinal and transverse settlement profiles, which stabilized after shield ad-
vance. The settlement curves typically formed a symmetrical trough, with maximum displace-
ment at the tunnel centerline This profile guided the extraction of maximum ground surface
settlement (GSS), to be used in the predictive modeling that follows.
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Chapter 3

Overview of Artificial Neural Networks

3.1 Introduction

To effectively apply Artificial Neural Networks (ANNs) in this study, it is essential to understand
their core components namely the network architecture, activation functions, and supervised
learning algorithms that enable training. This chapter begins with a brief overview of their
biological inspiration and historical development, followed by a detailed explanation of the key
technical concepts relevant to their implementation as predictive models.

3.2 Origins and inspiration

The concept of artificial neural networks is inspired by biological neural networks, which are
part of the human nervous system. These networks consist of a large number of interconnected
neurons (nerve cells) that generate electrical signals known as action potentials. These signals
enable the rapid transmission of information over long distances within the body.

These neurons perform these key functions:

- Receive signals from outside through structures called dendrites.

- Processes the incoming signals in the cell body, determining whether the signal should be
transmitted further

- Communicate signals to target cells which might be other neurons or muscles or glands
via the axon through a junction called the synapse, which connects the axon with other
neurons (Figure3.1) [14].

Dendrite

Synapse

YT N7

Qo"

Axon

Cell body(Soma)

e,

Figure 3.1: Biological Neural Network (Modified from [14]).
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3.3 Artificial neurons (perceptrons)

The artificial neuron, also known as a perceptron, is the fundamental building block of a neural
network. Conceptually, it is a mathematical model inspired by the structure and function of
biological neurons. Functionally, it can be viewed as a simple logic gate that produces binary
outputs based on weighted inputs and a threshold function [14]. The perceptron model typically
comprises four main components:

Input values

Similarly to a dendrite in biological neurons, input values are passed to the neuron using this
layer. These inputs can be a simple array of values, representing features of the data, which
are then passed to the artificial neuron for further processing.

Weights and Bias

Weights are a set of numerical values associated with each input, used to determine the im-
portance of each feature. Each input value is multiplied by its corresponding weight, and the
results are summed together to produce a weighted sum.

A fixed number known as bias then added to this weighted sum, this bias helps the model make
better predictions by allowing it to shift the activation function, improving flexibility.

Activation function

The final result (weighted sum + bias) is passed through an activation function. This function
determines whether the neuron should be "activated" by producing an output based on that
value. In a basic perceptron, the activation function is typically a step function [32] that outputs
binary values (such as 0 or 1), allowing the model to make make binary decisions.

Output Layer

The output layer provides the final output of a neuron. This output can either be passed on to
other neurons in deeper layers of the network or used directly as the model’s final prediction
in shallow ANNs.

Figure 3.2 describes a general model of an artificial neuron or a simple perceptron, where x; is
the input, w; is the weight, >~ denotes summation, and f is the activation (or transformation)
function.

Output
y=f(Ewx)

=l

Figure 3.2: Simple perceptron (Modified from [15]).
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3.4 Evolution of the ANN

McCulloch and Pitts” pioneering work in the 1940s is widely recognized as the foundation of
artificial neural networks (ANNs). They introduced the first computational model of artifi-
cial neurons using electrical circuits, demonstrating that such networks could perform logical
operations similar to those of Turing machines.

In the late 1950s, Frank Rosenblatt developed the perceptron and its related learning rule
marking the first practical implementation of neural networks. However, the basic perceptron
was limited in its capabilities, as it could only solve linearly separable problems [33].

During the 1970s, Marvin Minsky and Seymour Papert published Perceptrons, a critical analysis
of the perceptron model. They emphasized its inability to solve non-linear problems such as
XOR, which led to skepticism, reduced research funding, and a decline in interest in neural
networks, an era later termed the "AI Winter" [34].

Interest in neural networks resurged in the late 1980s, largely due to the work of David Rumel-
hart, Geoffrey Hinton, and Ronald Williams. Their introduction of the backpropagation algo-
rithm enabled the efficient training of multi-layer networks, addressing earlier limitations and
revitalizing ANN research.

3.5 Artificial Neural Network (ANN)

An ANN is an information-processing system whose principal applications are optimization,
classification, and prediction [15]. It consists of a number of interconnected processing ele-
ments, commonly referred to as neurons or perceptrons. These neurons or perceptrons are
logically arranged into two or more layers in parallel, and interact with each other via weighted
connections. Each neuron is connected to all the neurons in the next layer. There is an input
layer where data is presented to the ANN, and an output layer that holds the response of the
network to the input. It is the intermediate layers, also known as hidden layers, which enable
these networks to represent and compute complicated associations between patterns. [35]

3.5.1 Layers of the ANN

Neural networks have evolved from simple to increasingly complex architectures. Initially,
they consisted of only an input and an output layer, forming what is known as a single-layer
neural network. The introduction of one or more hidden layers between the input and output
transformed them into multi-layer neural networks. A typical multi-layer neural network thus
comprises an input layer, one or more hidden layers, and an output layer.

The neural network that has a single hidden layer is called a shallow neural network or a vanilla
neural network. A multi-layer neural network that contains two or more hidden layers is called
a deep neural network. Most of the modern neural networks used in practical applications are
deep neural networks [36]. The following table summarizes the branches of the neural network
depending on the layer architecture.
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Table 3.1: Types of Neural Network Architectures Based on Layer Depth

Single-layer Neural network Input layer — Output layer

Shallow neural network Input layer — Hidden layer —

Multi-layer Neural network Output layer

Deep neural network Input layer — Hidden layers —
Output layer

Input 1 Input 1

Input 2 Input 2

Input 3 § Input 3 % A Output

Input 4 Input 4

Input 5 Input 5

Hidden layer Hidden layers

(a) Shallow multilayer ANN (b) Deep multilayer ANN

Figure 3.4: Multi-layer ANN’s.

3.6 Supervised Learning of a Neural Network

After understanding the structure of artificial neurons and how they form layers in an ANN, it
becomes essential to look into how these networks actually learn and make predictions.

This learning process is commonly achieved through a process called supervised learning, this
process can be summarized in the following steps:

- The weights are initialized with adequate values.

- The network is provided with input data from the training set, structured as pairs of
input- expected output. The input is processed by the network to produce an output,
which is then compared to the expected output in order to calculate the error.

- The weights are adjusted based on the calculated error.
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- Steps 2 and 3 are repeated for all samples in the training dataset. This iterative process
continues until the network’s performance reaches an acceptable level.

3.6.1 Training of a Single-Layer Neural Network

The Delta Rule is the representative learning rule used in the training of single-layer neural
networks [36]. It is a type of numerical method called gradient descent. provides an algorithm
for updating the weights of the network based on the observed error that insights:

“If an input node contributes to the error of the output node, the weight between the two nodes
is adjusted in proportion to the input value x;, and the output error e; .”

The training process using the delta rule for the single-layer neural network is summarized by
the following steps:
1. The weights are initialized with adequate values.

2. The input from the training dataset, structured as pairs of input-desired output, is fed into
the neural network. The output error e; for each output node is computed by subtracting
the actual output from the desired output:

e =d; —y;

3. The weight update is calculated using the Delta Rule as follows:

Awij = QeT;
where « is the learning rate, e; is the output error, and z; is the input value.

4. The weights are then adjusted by adding the computed change:

Wi < Wi + A’U)ij
5. Steps 24 are performed for all examples in the training dataset.

6. Steps 2-5 are repeated iteratively until the total error falls below a predefined tolerance

threshold.

The learning rate o determines how much the weight is changed per time. If this value is too
high, the output wanders around the solution and fails to converge. In contrast, if it is too low,
the calculation reaches the solution too slowly

These steps are almost identical to that of the process for the supervised learning in the “Su-
pervised Learning of a Neural Network” section. The only difference is the addition of Step 6
states that the whole training process is repeated.

The single-layer neural network is limited in its applicability, as it can only solve problems that
are linearly separable [36]. Consequently, its usage is restricted to relatively simple tasks, and
it lacks the capacity to model complex, non-linear relationships.
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3.6.2 Training of Multi-Layer Neural Network

In an effort to overcome the practical limitations of single-layer neural networks, the architecture
evolved into a multi-layer structure. However, the previously introduced delta rule becomes
ineffective in training such networks. This is because the error, the essential element for applying
the delta rule for training, is not directly defined for the hidden layers. Training data only
provides target outputs for the output layer, making it impossible to compute the error at
hidden nodes using the same method (the difference between predicted and actual outputs)
[36].

That’s how the back-propagation algorithm, the representative learning rule of the multi-layer
neural network was formulated in 1986. It provided a systematic method to determine the error
of the hidden nodes. Once the hidden layer errors are determined, the delta rule is applied to
adjust the weights.

3.6.2.1 Backpropagation Algorithm

The backpropagation algorithm operates in two main phases:

- Forward pass : The input data is propagated through the network to compute the
output, the weighted sum of inputs is passed through an activation function to produce
an output value.

- Backward pass (Backpropagation) : The error between the network’s predicted out-
put and the actual output (target) is calculated using a loss function. This error is then
propagated backward from the output layer to the hidden layers, computing the gradient
of the loss with respect to each weight. The weights are updated accordingly using this
formula:

1) _ ) 23
gl N wij — 8wij

w (3.1)

where:

- wg-) is the weight between neuron ¢ and neuron j at iteration ¢,

- « is the learning rate,

OF
Ow;;

is the partial derivative of the error E with respect to the weight w;.

This iterative process continues until the network converges to a solution where the total error
is minimized across the training set.
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Figure 3.5: Backpropagation Principle (Modified from [15]).

3.7 Feedforward back-propagation neural networks

The feedforward neural network (FNN) is among the most widely used neural network ar-
chitectures, particularly for structured data such as tabular datasets [37], and for supervised
learning tasks including regression and classification. The neurons are generally grouped into
layers. Signals flow from the input layer to the output layer via connections, the neurons being
connected from one layer to the next, but not within the same layer. A feedforward network
can be viewed as a graphical representation of a parametric function which takes a set of input
values and maps them to a corresponding set of output values. Figure 3.6 shows an example of
a multi-layer feedforward network of a kind that is widely used in practical applications [24].

Input Hidden Layer Orutput

Figure 3.6: Basic Multi-layer feedforward ANN

As shown in Figure 3.7, a problem is presented to the network as an array of input values x;.
The input neurons transmit these values across the links to the second layer (hidden layer) of
neurons. Fach link has a weight w;; used to multiply transmitted values.
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I Hidden Layer I I Output Layer I

Figure 3.7: Working principle of a feedforward backpropagation ANN

The weighted values converging at a neuron in the hidden layer are summed along with a bias
b; associated with that neuron. The result is then put through a transformation function f .

To generate a signal result for the neuron. The results of the hidden neurons are then transmit-
ted across their outgoing links to the neurons in the output layer. As before, these values are
weighted w;j and biased by during transmission across the links, then summed at the output
neuron and put through a transformation function.

Expressions (1) and (2) below represent these processes. The function signal generated at the
output neuron(s) is the network’s solution or output y; to the problem presented at the inputs.

All neurons within a layer in this type of network operate synchronously in the sense that, at
any point in time, they will be at the same stage in processing.

yj=f (i (wji - i + bj)) (1)

i=1
yp =1 (Zl (wgi - y; + bk)) (2)
j=
Where:
- x;: Input value.
- y;: Output from hidden node j.
- y: Final output from output node k.
- wji, wi;: Weights between the respective layers.
- b;, by: Bias terms for the neurons.

- f(-): Transfer function (Activation Function).

After computing the final output y, (Equation 2), the network evaluates the prediction error
using a loss function (Section 3.7.1).

This error is then propagated backward through the layers using the backpropagation algo-
rithm (Section 3.6.2.1), which computes the gradient of the error with respect to each weight.
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The weights are updated iteratively via the rule in Equation 3.1, guiding the network toward
minimizing the total error.

3.7.1 Loss Functions

A loss function measures the error between a predicted output and its actual target, typically
at the level of a single data point. When averaged over the entire training set, it becomes the
cost function, which guides the network’s learning via optimization algorithms like gradient
descent. The choice of loss (and cost) function depends on the task type.

For regression problems, the most commonly employed loss functions include:

- Mean Squared Error (MSE): This function calculates the average of the squared
differences between predicted and actual values. It heavily penalizes larger errors and is

defined as: |

i=1
where y; is the true target value, §; the predicted output, and n the number of observa-
tions.

- Mean Absolute Error (MAE): MAE computes the average of the absolute differences
between predicted and actual values. Compared to MSE, it penalizes errors linearly and
is less sensitive to outliers:

1& .
MAE =~ [y: = i (3.3)
=1

For classification problems, other types of loss functions are typically used, such as:

- Binary Cross-Entropy, commonly used for binary classification tasks.

- Categorical Cross-Entropy, suited for multi-class classification.

3.7.2 Transfer Functions

Transfer functions, also known as activation functions, are essential components of ANNs that
introduce non-linearity into the model, enabling it to capture complex patterns in the data.
The most commonly used activation functions in regression-based ANNs are described below.

Sigmoid function: The sigmoid function is a classical activation function used primarily in
the output layer when the output values are normalized between 0 and 1. It is differen-
tiable, which facilitates backpropagation. It is defined by:

1

= Ve e R 4
1+e® re (3-4)

a(x)

Its characteristic "S"-shaped curve maps any real-valued input into a range between 0 and
1.
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6

Figure 3.8: Sigmoid activation function

Hyperbolic tangent (tanh) function: The tanh function is widely used in hidden layers
of ANNs. Unlike the sigmoid, it maps input values to a range between —1 and 1, which
makes it zero-centered and generally helps training converge faster. It is defined by:

sinh(z) e*—e™”

tanh(z) = cosh(z) e*+e® (3:5)

5

-1.00

Figure 3.9: tanh activation function

Rectified Linear Unit (ReLU) function: Though more commonly used in deep learning
models, ReLU can also be used in ANNs for its computational simplicity and effectiveness.
It outputs zero for all negative values and the input itself for positive values. ReLU
introduces sparsity and helps avoid the vanishing gradient problem to some extent. It is
defined as:

E if E>0

(3.6)
0 otherwise

G(F) =max(0, F) = {
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y=0

Figure 3.10: ReLU activation function

3.8 Conclusion

In conclusion, this chapter provided a comprehensive overview of Artificial Neural Networks
(ANNs), tracing their development from biologically inspired models to their implementation as
powerful computational tools. It covered the essential building blocks of ANNs including input
layers, weights, biases, and activation functions, highlighting their roles in enabling complex,
nonlinear decision-making. Various network architectures and training methods, such as the
Delta Rule and backpropagation, were discussed, illustrating how ANNs have evolved from
simple perceptrons to deep learning frameworks. The chapter also emphasized the role of loss
and cost functions in quantifying prediction errors and guiding the optimization process, as
well as the pivotal role of activation functions in allowing networks to approximate intricate
relationships. Overall, ANNs have emerged as indispensable components in modern machine
learning, with wide-ranging applications in classification, prediction, and optimization.
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Chapter 4

Data Construction and Data
Preprocessing

4.1 Introduction

After identifying in Chapter 2 the factors affecting ground surface settlement, it is indispensable
to create a dataset to serve as the input source for the Artificial Neural Network. In this
chapter, we outline the input parameters, describe their sources, and explain the extraction
process. Finally, we detail the preprocessing steps applied to prepare the data for training.

4.2 Factors Affecting Settlement

All the factors considered in this study are referred to as “Features”. Table 4.1 summarizes the
source, unit, and relevant notes for each feature.

Table 4.1: Summary of Features sources

Feature Source Unit Notes
Penetration rate TBM mining mm,/min Extracted/calculated
parameter per ring.
report/Excavation

data analysis logs.

Face pressure TBM mining bar Extracted and
parameter averaged per ring.
report/Excavation

data analysis logs.

Thrust TBM mining KN Extracted per ring.
parameter
report /Excavation
data analysis logs.
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Grout volume TBM mining m Extracted per ring.
parameter
report/Excavation
data analysis logs.

Mass loss TBM mining % Extracted per ring.
parameter
report /Excavation
data analysis logs.

Equivalent Geology /Geotechnics m Calculated per
cover-depth — Plan and Settlement point.
longitudinal profile.
Distance from Station | Geology/Geotechnics m Calculated per
— Plan and Settlement point.

longitudinal profile.

Groundwater Head Geology/Geotechnics m Calculated per
— Plan and Settlement point.
longitudinal profile.

Ey /Pl Geotechnical / Calculated per
Investigation reports. Settlement points.

4.3 Data Acquisition and Computation

In this section, we will present, as an example only settlement points at sections “pk6+417,00”
and “pk6+4180,00” will be representing Zone 1 (As described in section 1.3.4). And settlement
point at section “pk3+4591,00” representing Zone 2.

4.3.1 TBM Operation parameters

All TBM operational parameters will be extracted on a per-ring basis, which means we must
first identify the ring number corresponding to the 3 sections mentioned above. This can be
done by consulting the "TBM Mining Parameter report" files (Figure 4.1 and Appendix C
for details).

(o SELI der ids;
TBM Mining Parameter Report uERecRs CORCERes
TBM S/N: CREC665 Project: Algiers 14
Ring No: 1303 ST: 2021/5/18 8:16:25 FT: 2021/5/18 10:23:32
Advance T: 64 M 58 § Ring BuildingT: 30 M 31 § TotalT: 2 H 7 M

Figure 4.1: Example showcasing the ring number for section pk6+417,00.
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4.3.1.1 Thrust and Penetration-rate

- Zone 1: This Zone can be divided into 2 sections:

o Section 1 (pk3+904.00 to pk6+180.00): In this section, the "TBM Mining
Parameter report" files do not provide the penetration rate directly; instead,
they include the advance step and the corresponding advance time. Therefore, the
penetration rate is calculated as follows:

Advance step

Penetration rate = (4.1)

Advance time

For instance, in section PK 6+180.00, the recorded advance time is 1:10:33, which
is equivalent to 70.55 minutes. (Figure 4.2)

.. EELlcg;,dgrf.u_,s
TBM Mining Parameter Report
TBM S/N: CREC665 Project: Algiers 1/4
Ring No: 1171 ST: 2021/4/18 3:23:58 FT: 2021/4/18 5:44:33
AdvanceT: 70 M 33 § Ring Building T: 58 M 55 g Total T: 2 H 20 M

Figure 4.2: Parameter report for section pk6+180.00

To determine the penetration rate, the corresponding advance step interval that
includes this chainage is first selected. As illustrated in Figure 4.3 the value of (1.784
meters) represents the length of the advance step between chainage PK 6+179.431
and pk6+181.215

Pas d'avancementi
PK
(m})
6179,431 0
6181,215 1,784

Figure 4.3: Advance step for section pk6+180.00

After converting this distance to millimeters, the penetration rate for this section
is calculated as 25.38 mm/min. As for the thrust data across the entirely zone 1,
it is directly extracted from the logging files.

o Section 2 (pk6+180.00 to pk8+48853.00): In this section, the two operational
parameters are directly extracted from the corresponding "TBM Mining Param-
eter report" files. (Figure 4.4)
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Thrust Cylinder
Pressure
Group A
Group B
Group C
Group D
Group E
Group F

mm O N o®»

T
1500

Total Force[kN]

Average[bar] Max[bar] Min[bar]

19.96 4222 7

87.99 94.56 42.16

111.22 161.98 49.78

110.02 159.51 31.74

62.79 67.48 26.59

12.97 30.48 5.44

Starting Stroke[mm] Finishing Stroke[mm)]
622.29 A 2411.16
610.28 B 2406.96
614.29 c 2427.76
628.25 D 2451.59
633.84 E 2453.28
625.42 F — 2430.3
2000 0 500 1000 1500 2000 2500
24568.67 Speed[mm/min] 27.33

Figure 4.4: Thrust and Penetration-rate Logging

- Zone 2: The procedure for calculating the penetration rate is the same as in Zone 1.
The only difference lies in the source of the advance time, which, in this zone, is extracted
from the "Excavation Data Analysis Logs" (Figure 4.5). Furthermore, the thrust
force is also directly obtained from the same logging file.

Propulsion ' 1,79
Pump:168,75
- 273053 | Rotatccw:0m0s | 2500 50m 28018,79
Propulsion
Pump2:151,36 Rotat cw:50m38s

Figure 4.5: Excavation Data Analysis Logs. (Appendix D)

4.3.1.2 Face pressure (Earth pressure)

A total of 11 sensors are installed inside the muck chamber in a clockwise arrangement, primarily
to measure and record the internal muck chamber pressure. For the purposes of this study,
only the three sensors positioned around the ring vault are considered (Figure 4.6).

Figure 4.6: Disposition of Earth Pressure sensors in the Muck chamber
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- Zone 1: The face pressure values recorded for section pk6+417.00 are the following:
S01=0.27 bar, S11=0.62 bar, and S10=0.62 bar.

1#{bar] 0.27 10#[bar] 0.62
0.6
f 0.9 {
|
0.4 f\/'/m y 0.6 ‘
0.2 AJ 0.3
0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
DELTA[mm] DELTA[mm]
(a) Sensor 01 (b) Sensor 10
1 1#[bar] 0.62
0.3
AV
0.3
0
0 500 1000 1500 2000 2500
DELTA[mm]

(c) Sensor 11

Figure 4.7: Earth Pressure recorded for Vault sensors

- Zone 2: For section pk3+591.00, Earth Pressure is extracted from "Excavation Data
Analysis Logs", are the following: S01=1.49 bar, S10=1.80 bar and S11=1.30 bar.

so1 S02 S03 504 SO05 S06 so7 s08 s09 Ss10 S11
1,49 1,38 1,44 1,92 2,28 2,72 2,66 2,49 2,12 1,8 1,3

Figure 4.8: Earth Pressure for section pk3+591.00

4.3.1.3 Mass loss

Mass loss is calculated using the following formula:

Mass Loss — Theoretical mass .— Excavated mass (4.2)
Theoretical mass

The theoretical mass is obtained from "Excavation Data Analysis Logs", while the exca-
vated mass is derived from the "TBM Mining Parameter report" files. In this context,
Weight 1 corresponds to the muck weight measured as it falls onto the conveyor belt, accounting
for gravitational force, whereas Weight 2 represents the weight of the muck as it is conveyed
along the belt.
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Screw Earth Pressure
Front[bar] 0 Back[bar] 0.01

0,009
0 0.006

0.003

500 1000 1500 2000 2500

[= Y PR BRI R R

0 500 1000 1500 2000 2500
DELTA[mm] DELTA[mm]

Middle[bar] 0.58

| P S ke
be L e o
0.4 | Muck
0.2 | 1#Weight[T] 298.03 24Weight[T]  297.03
0
0 500 1000 1500 2000 2500
DELTA[mm]

Figure 4.9: Screw Earth Pressure Logs for section pk6+417,00

Mass loss was directly obtained from the Excavation Data analysis Logs for both Zone 1 and
Zone 2.

4.3.1.4 Grouting volume

As mentioned in Section 1.3.3, Tail void Gouting is bicomponent. Therefore we will be using
the sum of two liquids volumes as a single grouting volume.

- Zone 1: The two volumes are highlighted in Figure 4.10

SELI cosdor s

TBM Mining Parameter Report SVERREAS
4/4
Grouting Volume Liquid A Liquid B

Grouting 6[m?] 0 0
Grouting 5[m?] 0 0
Grouting 4[m?] 0
Grouting 3[m?] 0 0
Grouting 2[m?] 5.08 0.36
Grouting 1[m?] 3.48 0.25

X 8.56 X 0.61

Figure 4.10: Grout Volume Logs for section pk6+417,00

For Zone 1, the data is extracted from the "TBM Mining Parameter report" files and
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subsequently summed.

- Zone 2: The same approach is applied for Zone 2.

Figure 4.11: Grout Volume Logs for section pk3+591.00

4.3.2 Geometric parameters
4.3.2.1 Equivalent cover-depth

To account for the varying geotechnical conditions along the tunnel alignment, we employed
the concept of equivalent cover depth, which provides a more realistic representation of the
vertical stress acting at the tunnel crown. Unlike simple geometric cover depth, this approach
incorporates the influence of different soil layers and their respective humid unit weights. The
calculation method, detailed below, ensures that both material heterogeneity and hydrostatic
effects are properly considered when assessing face stability and support requirements.

The equation is the following:

Z(%’ : hi)

/YCI'OWH

ECV; =

Where:
- ECV; : Equivalent cover depth at section i.
- 7 : Humid unit weight of each layer ¢ overlying the tunnel.
- h; : Thickness of each layer.
= Yerown : Humid unit weight at the tunnel crown.

The humid unit weight values used to calculate the equivalent cover depth are listed in table
4.2 for each unit and section.
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Table 4.2: The humid unit weight values for each unit, depending on the section.

Geo’“jﬁﬁ“““ Re | Qa | Qs | QM |QMSG QMS | Ts | T™M | QG
T1 20 20 21 21 21 20 21 21
T2 20 20 21 21 21 / 21.5 21
T3 20 21 21 21 20 21 21 / 20
T4 20 20 21 21 21 20 / / /
T5 20 21 21 20 21 / / /
T6 20 21 21 21 21 / / /
T7 20 21 21 21 20 / / /
TS 20 20 21 21 / / / /
T9 20 20 21 21 21 20 / / 20
20 SC64/SP44 !
Layer thickness (m) - "‘%‘Ej_g : ’— 2_;— o —;®X~f——— I |
[ o7 5 (B ( ‘ 5:: Qa
[ 28 ° — 2*‘ | ] S
B o-ss o —— :f.;:_ +HH—————
20 A |§ T =
iBA s Qs
IR 1] S —— o
e
1 =
[ KiLomETRES 300 a0 417

Figure 4.12: Example illustrating layer thickness assessment for cross section at pk
pk6+417.00.

4.3.2.2 Distance from Station

It represents the horizontal distance of tunnel front position to the nearest station in the
direction of tunnel advancement.
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) __% ot OUED-SMAR STATION |
Tunneling D2
direction 3km807,00

D3
———
— D4 ™
SC38/SP26 _ ©  gcaolsp27
B - 2 o
1og | R
i = o B

500 841 653 666 674 700 800 ) 900

Figure 4.13: Illustration of Distances From Station assessment For different tunnel front
positions.

4.3.3 Geotechnical parameters

4.3.3.1 Groundwater Head

To determine the Groundwater head at the tunnel level, we calculated the vertical distance
between the piezometric surface and the tunnel invert. In tunneling and geotechnics, this value
is commonly used to estimate the hydrostatic pressure acting on the tunnel face or lining, as
it represents the height of the water column above the tunnel. For this purpose, we referred
to the file entitled "Geology/Geotechnics — Plan and Longitudinal Profile" (Appendix
A) which includes the tunnel alignment along with relevant geological and hydrogeological
information. Figure 4.14 illustrates the position of the piezometric surface to the tunnels invert
from which the groundwater head values were derived.

20 SCBA4/SPA4

10

=10

300 400 417

Figure 4.14: Tllustration of Groundwater Head assessment at cross section pk pk6+417,00.
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4.3.3.2 The Menard Modulus-Limit Pressure ratio %

The % ratio, defined as the ratio between the Menard modulus of elasticity (E£j/) and the limit
pressure (pl), serves as a practical indicator of the soil’s deformability under loading conditions.
The Menard modulus (E)y) reflects the soil’s elastic response during a pressuremeter test, while
the limit pressure (pl) represents the pressure at which the soil yields or fails. A low E—fl” ratio
typically indicates highly deformable soils, such as soft clays or loose sands, where the elastic
stiffness is relatively low compared to the failure threshold. Conversely, a high % ratio suggests

stiffer, less deformable soils.

In the context of the present study and given the geotechincal investogation reports, this ratio
was the only parameter available that could meaningfully capture soil deformability across the
project area. Given the limitations of the geotechnical dataset, it offered a consistent and
interpretable means of assessing ground behavior. Its integration into our database was key to
evaluating settlement risk and refining our interpretation of face stability, particularly in zones
lacking detailed laboratory data.

Since the tunnel face may include several soil types, an equivalent E); and an equivalent P1 are
first calculated by taking into account the proportion of each soil type present at the tunnel
Em

face, and the 4t ratio was then computed accordingly using the following equation:

Euv _ Yoo By
pl i1 aipl;

«a; @ ratio (expressed as a percentage) of the thickness of soil ¢ present in the face to the tunnel
diameter.

The values of Fy; and pl; are extracted from Geotechnical Investigation reports. (Figure
4.15 as an Example) (Appendix E for selected results)

Sondage
En Pl Pf EwP
Phase |  Unité Profondeur
Code
(m) MPa MPa MPa -

QM 5P13 450 26,57 2,04 142 13,00
QM 5P13 9,00 8169 495 495 16,50
QM 5P13 13,50 97,29 5,50 3,34 17,53
QM 5P13 18,00 123,88 5,50 3,63 2254
Qm 5P13 22,50 146,36 9,11 5,11 2865
QM 5P13 27,00 36,02 3,01 228 11,98
T8 5P13 31,50 66,45 421 42 15,78
TS SP13 36,00 “.17 2,86 1,88 1439
QA 5P14 450 14,49 0,67 0,47 2172

Figure 4.15: Example of Pressuremeter test Results
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4.4 Data Preprocessing

After assembling all feature data into a single dataset, preprocessing is essential, as Artificial
Neural Network training is highly sensitive to data quality. This step ensures the model learns
from meaningful patterns rather than noise or errors. Quality control involved verifying the
absence of missing values, data duplicate entries and data outliers. Preprocessing was carried
out in two main phases: data cleaning and data normalization.

4.4.1 Data Cleaning

This phase aimed to ensure a reliable dataset by addressing missing values and duplicates and
outliers.

- Missing Data

The first step was to check for missing values (e.g., NaN, Null). A Python script confirmed the
dataset contained none. Figure 4.16 illustrates the result.

Missing values per column:
Settlement (mm) 5}
Penetration rate (mm/min)

Groundwater Head (m)

Mass loss (%)

Thrust (KN)

ECV (m)

Face Pressure (bar)

Grout volume (m3)
Distance from Station (m)
EM/PL

dtype: inte4

[ I I I o

Figure 4.16: Data Analysis for Missing data

- Detecting and eliminating duplicate entries
The dataset was also checked for duplicate records, which were removed if found, as they may
bias the model by reinforcing certain patterns and reducing generalization. Figure 4.17 presents

the analysis results.

Index: []
Total number of duplicated rows: @

Figure 4.17: Data Analysis for Duplicated Values

- Outliers

All Data was carefully reviewed, and none were identified as outliers. Therefore, the complete
dataset was retained for analysis.
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4.4.2 Data Distribution Analysis

This analysis provides insight into the distribution characteristics, the degree of skewness, for
each feature.

skewness = zero

positive skewness negative skewness

Figure 4.18: Illustration of Skewness degree [16].

- Settlement (Target Variable)

Figure 4.19 illustrates the distribution of values for Settlement.

The settlement distribution peaks at minor displacements (0 to -10 mm), indicating predomi-
nantly stable ground conditions. Significant right-skewness reveals infrequent severe subsidence
events (down to -80 mm), highlighting localized geotechnical vulnerabilities.

Distribution of Settlement (mm)
140
120
100

80

frequency

60

20

—80 —70 —60 —50 —40 —30 —20 —10 (o]
Settlement (mm)

Figure 4.19: Histogram representing Settlement Distribution

o Distribution: Asymmetric Peaking at (0 to -10 mm).

o Skewness: Negative-skewed tail toward more severe/more negative settlements on
the left.
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- Penetration rate

Figure 4.20 illustrates the distribution of values for Penetration rate.

Distribution of Penetration rate (mm/min)

frequency
s & &

-
o

=}

Penetration rate (mm/min)

Figure 4.20: Histogram representing Penetration-rate Distribution

o Distribution: Symmetric (peaks at 30 mm/min).
o Skewness: Negligible skew (zero).
Optimal TBM advancement rates; symmetry suggests consistent machine-soil interaction.
- Groundwater head
Figure 4.21 illustrates the distribution of values for Groundwater Head.

Distribution of Groundwater Head (m)

Frequency
HoH NN
o U o wn

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Groundwater Head (m)

Figure 4.21: Histogram representing GroundWater Head Distribution

o Distribution: Asymmetric (peaks at 5-10m, rare high heads).

o Skewness: Positive-skewed (tail toward high heads on the right).

Moderate groundwater levels dominate;the multimodel distribution observed reflects Ground-
water Head variations due to geological conditions.
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- Mass loss
Figure 4.22 illustrates the distribution of values for Mass Loss.

Distribution of Mass loss (%)

80

g

frequency
8

N
o

. | |

—100 —80 —60 —40 —20 (o] 20 40 60
Mass loss (%)

Figure 4.22: Histogram representing Mass Loss Distribution

o Distribution: Symmetric (centered around 0).
o Skewness: Negligible skew (Zero).
- Thrust
Figure 4.23 illustrates the distribution of values for Thrust.

Distribution of Thrust (KN)

frequency
& 8

N
=]

(=]
o

o - L
10000 20000 30000 40000 50000 60000 70000 80000 90000
Thrust (KN)

Figure 4.23: Histogram representing Thrust Distribution

o Distribution: Symmetric (peaks at 50,000 KN).

o Skewness: Near-zero (balanced distribution).
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- Equivalent Cover-Depth
Figure 4.24 illustrates the distribution of values for Equivalent Cover-depth.

Distribution of ECV (m)

Frequency
8

30
20
10
0
10 15 20 25 30 35 40
ECV (m)

Figure 4.24: Histogram representing Equivalent Cover-Depth Distribution

- The distribution is of a Multimodal structure: two distinct parts can be identified. Part
1, with cover depths ranging from 10 to 25 meters, corresponds to the tunnel sections
between Hasan Badi and Airport stations , is symmetrically distributed. Part 2, with
depths from 26 to 41 meters, represents the restricted zone of tunnel section 1.

- Face pressure
Figure 4.25 illustrates the distribution of values for Face pressure.

Distribution of Face Pressure (bar)

frequency
b= [,¥] W B U
o o o o ©

=

0.5 1.0 1.5 2.0 2.5
Face Pressure (bar)

Figure 4.25: Histogram representing Face Pressure Distribution

o The distribution is Multimodal due to varying geological conditions encountered
along the tunnel alignment.
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- Tail Void Grout
Figure 4.26 illustrates the distribution of values for Tail void grout.

Distribution of Grout volume (m3)

120

100

80

frequency
g

8

= lll Il
8

Grout volume (m3)

4 6

10

Figure 4.26: Histogram representing Tail void Grout Volume Distribution

o Distribution: Near-symmetric.

o The histogram is slightly negatively skewed, which can be attributed to changes in
the nature of the soil along the tunnel alignment.

- Distance from station

Figure 4.27 illustrates the distribution of values for Distance from station.

Distribution of Distance from Station (m)

N
=}

frequency
&

0 200 400 600 800 1000 1200 1400
Distance from Station (m)

Figure 4.27: Histogram representing Distance from Station Distribution

o Distribution: Asymmetric.

o Skewness: Positively skewed, with a longer tail extending toward higher distances
on the right, since most of the distances from the station are less than 800 meters..
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- The Menard Modulus-Limit Pressure ratio

Ey

Figure 4.28 illustrates the distribution of values for %.

60

frequency
bt 9] w iy V)]
(=) =} [« =) =}

=
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Distribution of EM/PL

20

30

EM/PL

40

Figure 4.28: Histogram representing % Distribution

50

o The distribution is Multimodal due to varying geological conditions encountered
along the tunnel alignment.

A summary of descriptive statistics of considered features are presented in Table 4.3.

Table 4.3: Descriptive Statistics of Considered features.

Feature Type Data (442 samples)
Minimum | Maximum Mean Standard Coefficient
Deviation of Variation
Penetration rate (mm/min) 9.56 55,45 29,14441 8,17605 0,28054
Groundwater head (m) 0 17.3 8,32429 3,86505 0,46431
Mass loss (%) -94.3 62,44 -1,36681 13,21872 9,67122
Thrust (KN) 12833,69 86378,78 | 33408,00835 | 11854,12791 0,35483
Equivalent CD (m) Input 9,48 40,65 18,46077 5,93975 0,32175
Face pressure (bar) 0,39 2,7 1,25052 0,45359 0,36272
Grout volume (m3} 3 11,36 8,58183 1,18081 0,13759
Distance from Station (m) 5 1343 454,45226 291,2336 0,64085
E, 4.23 53.76 19,29792 8,42018 0,43633
Pl
Settlement (mm) Target -80 0 -7,03767 9,82042 1,39541

Data Preprocessing
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4.4.3 Data Normalization

After verifying that the dataset contained no missing or duplicated values, the next crucial step
was data normalization, which involves appropriately scaling the input features.

Data normalization serves several important purposes:

- Improved model convergence: Scaling the data helps the model converge more effi-
ciently during training by ensuring all features contribute proportionally.

- Reduced risk of overfitting: When features have widely different value ranges, the
model may assign disproportionate importance to those with larger magnitudes. Normal-
ization mitigates this bias, helping the model generalize more effectively.

- Accelerated training: Normalized data enables faster convergence toward an optimal
solution.

- Better compatibility with activation functions: Activation functions such as sig-
moid or hyperbolic tangent are sensitive to input scale. Feeding unnormalized data into
the network may result in slower learning and less accurate predictions. Normalization
stabilizes the training process and enhances model performance.

Several data normalization methods exist, including:

Logarithmic transformation,

Min-Max scaling,

Standardization (which centers the data around zero),

Decimal scaling normalization,
- ete.

In the present case, we used the Min-Max normalization method, defined by the following
formula:

(r — Tmin) X 2

Tmax — Lmin

where:

- x :is the original value,
- Tmin and Ty are the minimum and maximum values of the variable, respectively,
- Tporm 1S the normalized value ranging between —1 and 1.

The choice of normalization to the range (—1,1) offers several advantages for handling the
diverse distribution shapes and ranges in the dataset:

- Skewed Distributions:

o Positively skewed (Ep—fl”, Face Pressure, Thrust, ECV, Groundwater Head):
These variables exhibit long right tails due to rare extreme values. Scaling to (—1,1)
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reduces their influence while preserving the relationships between common obser-
vations. This helps avoid biases and issues that standardization might introduce in
such cases.

o Negatively skewed (Settlement, Tail void Grout Volume):
Min-max scaling constrains rare negative outliers (possible measurement errors),
reducing their destabilizing effect during training.

- Symmetric or Near-Normal Distributions (Mass Loss, Penetration Rate):
Scaling these variables to (—1, 1) maintains their balanced shape and symmetry, ensuring
consistent gradient updates without introducing skew.

4.5 Conclusion

This chapter provided an overview of the data assembly and preprocessing phase, a necessary
step for building a predictive model based on Artificial Neural Networks (ANNs). It detailed
the source of the data and described the extraction of relevant tunneling and geotechnical
parameters from Earth Pressure Balance Tunnel Boring Machine (EPB-TBM) project records.

Subsequently, several preprocessing steps were undertaken to ensure the quality and consistency
of the dataset:

- The dataset was found to be complete and consistent, with no missing values or duplicate
records, thereby ensuring data integrity for the training process.

- Although certain data points may be viewed as statistical outliers, all samples were re-
tained. This decision was based on the recognition that these values stem from actual
field measurements and may capture meaningful behavior patterns essential to accurate
settlement prediction.

- To ensure numerical stability and enhance training performance, all features were nor-
malized using Min-Max scaling within the range (—1,1). This approach was chosen with
regard to the distribution characteristics of the input variables and the mathematical
properties of the activation functions employed in the ANN.

The preprocessed dataset, consisting of 442 samples (Appendix F), is thus considered suitable
for model development.
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Chapter 5

Artificial Neural Network Modeling
and Performance Analysis

5.1 Introduction

With Data Preprocessing completed, this chapter presents the development and evaluation of
an Artificial Neural Network (ANN) designed to predict surface settlements induced by EPB-
TBM tunneling. We begin with a general overview of ANN principles and key parameters,
followed by considerations related to the overall design and performance of the model. These
concepts are then applied in the implementation section, where the network is configured,
trained, tested, and evaluated, followed by a sensitivity analysis to assess the impact of each
input parameter on the predictions.

5.2 ANN Model Configuration and Design Process

Artificial Neural Networks (ANNs) are defined by a set of interconnected components and tun-
able parameters that directly influence their learning capacity and generalization performance.
Selecting appropriate values for these parameters is essential for building an effective and robust
model. Table 5.1 summarizes the key architectural, functional, and training-related parameters
commonly considered when configuring an ANN.
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Table 5.1: Summary of neural network configuration parameters

Neural network model

- Feedforward backpropagation Neural Network
- Convolutional Neural Network

- Recurrent Neural Network

Input nodes

Number of features fed into the network

Hidden layer

Single or multiple hidden layers

Hidden layer neurons

Number of neurons in the hidden layer(s)

Output layer neurons

Number of outputs the model predicts

Training network algorithm

- Levenberg-Marquardt
- Gradient Descent

- Bayesian Regularization

Training percentage

Percentage of total data used for training

Testing percentage

Percentage of total data used to evaluate model general-
1zation

Validation percentage

Percentage of total data used to monitor overfitting dur-
ing training

Transfer function hidden
layer

- Tansig (Hyperbolic-tangent Sigmoid)
- Logsig (Log-Sigmoid)
- ReLU (Rectified Linear Unit)

Transfer function output
layer

- Purelin

- Logsig

Data division

- Random division
- Sequential split

- User-defined indices

No. of epochs

Maximum number of training iterations

Validation checks (itera-
tions)

Number of validation failures allowed before early stop-
ping
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Performance
- Mean Squared Error (MSE)

- Root Mean Squared Error (RMSE)

- Regression coefficient R?

5.2.1 Design of the optimum artificial neural networks

The determination of the optimal network architecture, particularly the number of neurons in
the hidden layers, is a crucial step in the modeling process. In feedforward backpropagation
neural networks, this aspect has been extensively studied, and two principal methodological
strategies have emerged: constructive approaches and pruning strategies.

- Constructive approaches, such as the Cascade-Correlation algorithm, begin with a
minimal architecture and incrementally add neurons based on improvements in perfor-
mance, typically evaluated on a validation set. This method allows the network to adap-
tively grow in complexity, enhancing learning capacity while maintaining generalization
and reducing the risk of overfitting [38].

Outputs
Outputs Outputs b I A
o o o o [)I]
Add
Initial State ,;/I/j ,;)l/j Add ’;/I/j ’;)I/j Hidden Unit 2
No Hidden Units Hidden Unit 1 EH'
Inputs g Inputs 8 & Tnputs 8 :
< o i} 5
ot £q! £ + & &
(a) No hidden units (b) One hidden unit added (¢) Two hidden units added

Figure 5.1: Illustration of the constructive strategy: incremental addition of hidden neurons
during training [17].

- Pruning strategies start from an over-parameterized network and remove neurons or
weights that contribute little to the overall predictive performance. These removals are
guided by sensitivity analyses or the magnitude of weights, ultimately resulting in a more
compact, computationally efficient network without a significant loss in accuracy [39, 40].
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Figure 5.2: Illustration of the pruning strategy: reducing an over-parameterized network to a
simpler one [18].
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In the present study, a constructive approach was adopted using a trial-and-error methodology,
where various configurations of hidden neurons were tested iteratively by incrementally adding
neurons to the hidden layer. Each configuration is trained using a pre-defined data divison,
and its performance is evaluated to determine which network structure best balances accuracy
and model simplicity.

Iteration n

Figure 5.3: Constructive strategy adopte using a Trial-and-error methodology

In addition, several empirical formulas have been proposed in the literature to estimate a suit-
able number of hidden neurons in a feedforward neural network [41]. While these formulas do
not guarantee optimality, they offer a practical starting point when designing network archi-
tectures. One such expression for determining the hidden layer size in a backpropagation ANN
that demonstrated consistently lower prediction errors,is given by:

An® +3
N}, = R (5.1)

where N}, represents the number of hidden neurons and n is the number of input neurons.

5.2.2 Performance Analysis

Following the selection of the network architecture, each neural network configuration is eval-
uated using two key statistical indicators: the Root Mean Squared Error (RMSE) and the
coefficient of determination (R?).

- Root Mean Squared Error (RMSE): RMSE is derived from the Mean Squared Error
(MSE), previously defined in Section 3.7.1. It provides an error metric in the same unit
as the output variable, making it more interpretable. It is computed as:
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n

RMSE = J :L > (ai — pi)?

=1

- Coefficient of Determination (R?): This indicator evaluates the proportion of variance
in the observed data that is predictable from the model. Values closer to 1.0 reflect
stronger predictive power and better generalization. The formula is:

n

R2—1_ i (ai — pi)?
s (ai —a)?

where:

o a; is the actual (measured) value of settlement at observation i,
o p; is the predicted value of settlement at observation 1,

o a is the mean of all actual settlement values.

Together, RMSE and R? provide a comprehensive evaluation of model accuracy and reliability,
guiding the selection of the most suitable ANN configuration.

5.2.3 Overview of Sensitivity Analysis Approaches

While Artificial Neural Networks (ANNs) are powerful tools for modeling complex, nonlinear
systems, they are often criticized for their lack of interpretability a limitation commonly re-
ferred to as the “black-box” problem. This issue becomes particularly critical in engineering
applications such as tunneling-induced ground settlement, where understanding the relation-
ship between input parameters and predicted outcomes is just as important as achieving high
predictive accuracy.

This interpretability step is crucial. While accurate predictions can support general forecasting,
they are not sufficient for practical engineering decision-making. Engineers must identify which
input parameters most influence settlement to inform design choices, monitoring strategies,
and risk mitigation efforts. For this reason, a sensitivity analysis will be introduced as a
post-implementation step, to assess the relative importance of each input variable and provide
insights into the physical mechanisms captured by the ANN.

In the ANN literature, sensitivity analysis techniques are commonly categorized into two main
approaches: Perturbation-based and Weight-based methods.

5.2.3.1 Perturbation-based Sensitivity Analysis

Perturbation-based approaches assess the influence of individual input variables by systemati-
cally altering one feature at a time and observing the resulting change in the model’s output.
These techniques are intuitive and model-agnostic, as they do not rely on the internal structure
of the network. They are particularly useful for examining the local behavior of the model and
for quantifying how sensitive the output is to small variations in input values.

In the context of this study, perturbation-based sensitivity analysis proves particularly valuable,
as the input parameters span three distinct categories: controllable TBM operational factors,

ANN Model Configuration and Design Process Page 98



Artificial Neural Network Modeling and Performance Analysis

uncontrollable geotechnical conditions, and fixed geometric parameters. By systematically
isolating and modifying each input, this method yields practical insights into which operational
settings can be optimized to reduce settlement, while also identifying geotechnical factors that
present elevated risk but lie beyond direct control. Additionally, it allows for assessing the
influence of geometric parameters established during the design phase.

Algorithm Overview

The following procedure was implemented to evaluate the relative importance of each input
variable in the trained neural network model:

1.

Dataset Definition: The initial dataset, denoted by xq, is an N x d matrix, where N
is the number of samples and d is the number of input features.

Perturbation of Input Variables: For each input variable z;, with j = 1,...,d, two
perturbed versions of each sample ¢ are generated:

(,9)

- X Jus, in which the value of x; is increased by a factor (1 + ¢)
ol =) (1+¢)
- x%) in which the value of x; is decreased by a factor (1 — ¢)

g xg-i) (1—¢)

minus

The value of € is a small perturbation factor, typically ranging between 0 and 1.

Model Prediction and Output Variation: The trained model is used to predict the
outputs corresponding to each perturbed input:

g = G,y = )

Here, f(-) denotes the trained ANN function.

The absolute variation in output for each sample is then computed as:

) _ ‘yg) - y(—i)

2e

Ay

Aggregation of Variations: The average variation for each input variable x; is calcu-
lated across all samples:

N
S = 3 AV
J N e 7

Normalization: The relative importance of each variable is expressed as a percentage
of the total sensitivity:

g.
Relative Importance; = ﬁ x 100
k=1+~k
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5.2.3.2 Weight-based Sensitivity Analysis

Weight-based methods analyze the internal structure of the trained Artificial Neural Network
(ANN), focusing on the synaptic weights that connect the input, hidden, and output layers.
By examining the magnitude and distribution of these weights, these methods estimate the
relative contribution of each input variable to the model’s output. This approach provides a
global overview of how the network prioritizes different features during the training process. It
helps identify which parameters had the strongest influence on the model’s learning behavior,
offering valuable insights into the internal logic captured by the ANN.

In this study, the Milne method was adopted as a weight-based sensitivity analysis technique
to evaluate the relative importance of each input parameter.

Mathematical Formulation

Let:
- n: number of input variables
- h: number of hidden neurons
- wj;: weight connecting input neuron 7 to hidden neuron j
- W, weight connecting hidden neuron j to the output neuron
h w
E h = wog
I=LS Jwjl
IIF; = = (5.2)
n h wik
> | T
k=11j=1 Z |w]l‘
=1
Where:
w ..
- %: normalizes the weight of input ¢ to hidden neuron j, ensuring that the contri-
> |wil
=1

butions of all inputs to a given hidden neuron are evaluated on a consistent scale.

- wy;: represents the weight connecting hidden neuron j to the output, indicating the
contribution of that hidden neuron to the final output.

- The numerator: quantifies the total weighted influence of input 7 on the output neuron
through all hidden neurons.

- The denominator: aggregates the influence of all inputs to normalize the result, allowing
the importance values to be expressed as relative contributions.

Algorithm Overview

1. Initialization of Raw Influence Scores

Define an initial influence score vector IIF;*™ < 0 for alli = 1 to n, where n is the
number of input neurons.
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2. Iterative Computation Across Hidden Neurons

For each hidden neuron j = 1 to h, where h is the total number of hidden neurons:

- Compute the normalization factor for the weights entering hidden neuron j:

Sy = |wyl

1=1
- For each input neuron ¢« = 1 to n:

a. Calculate the normalized weight contribution from input ¢ to hidden neuron j:

wji

S;

’LUjZ' =

b. Compute the weighted contribution of input ¢ to the output through hidden
neuron j:
Clji = Wji - Wo

¢. Accumulate the influence of input ¢ across hidden neurons:
IIF;™ « IIF™ 4 CY;
3. Conversion to Absolute Influence Scores
The raw influence values are converted to absolute form to quantify magnitude:
IIF2P = [IIF™| foralli=1ton

4. Normalization to Relative Importance

The absolute influence scores are normalized to obtain relative percentage contributions:

[1F2bs
IF; = ——— x 100
Sopg HFR™
5. Final Output
Return the resulting vector of relative influence for all inputs: [IIF,, IIF,, ... IIF,]
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5.3 Implementation

5.3.1 Computational Environment

MATLAB was employed as the main computational platform for developing, training, and
simulating the Artificial Neural Network (ANN) model, primarily due to its dedicated Neural
Network Toolbox and optimized training functions. Although Python was also used extensively
during the preprocessing and exploratory phases particularly for data cleaning, normalization,

and visualization. The final model development and sensitivity analyses were conducted in
MATLAB.

As a starting point, we utilized the fitnet configuration provided by MATLAB’s Neural Net-
work Fitting Tool, which is specifically designed for function approximation problems using
feedforward neural networks.The default configuration of fitnet includes the following key char-
acteristics:

Table 5.2: Default fitnet Configuration in MATLAB

Neural network model Feedforward backpropagation Neural
network
Hidden layer Single hidden layer
Training network algorithm Levenberg-Marquardt
Transfer function hidden layer tansig
Transfer function output layer purelin
No. of epochs 1000
Validation checks (iterations) 6
Performance MSE and R2

5.3.2 Neural Network Training Procedure

To develop an effective neural network model for predicting ground surface settlement, a full-
scale training phase is conducted using the entire dataset, with appropriate data partitioning to
ensure robust model evaluation. In this phase, the data set is divided into three subsets: 70%
for training (310 samples), 15% for validation (66 samples), and 15% for testing (66 samples).
This approach enables both model learning and independent performance assessment while
avoiding data leakage. In the present case, a Feedforward Backpropagation Neural Network
(FF-BP-ANN) is employed, with an input layer consisting of 9 neurons corresponding to the
9 selected input features (Figure 5.4). Various hidden layer configurations are systematically
tested to identify the network architecture that yields the best generalization performance.
Once the optimal configuration is determined, it is evaluated on the test set to assess its
predictive capability on unseen data.
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Input Layer

Penetration rate
Thrust

Face pressure

Grout volume

Mass loss

Water table level
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Figure 5.4: Neural Network Input Configuration

Utilizing Equation 5.1, and considering that the model includes nine input features, the esti-
mated starting number of neurons in the hidden layer was calculated to be approximately 4,48.
This theoretical value was rounded to 5, which served as the baseline for network design.

To systematically evaluate the influence of hidden layer size on the prediction performance of
the neural network, the number of neurons was gradually increased from 5 to 40, in increments
of 2. This design was motivated by both theoretical considerations starting from the estimate
obtained using Equation 5.1 and the need to explore how increasing model complexity impacts
generalization. The goal was to identify the optimal number of neurons that offers a balance
between predictive power and robustness without causing overfitting or underfitting.

In total, 16 configurations with different number of neurons in one hidden layer were tested.
For each configuration, the network was trained 15 times, allowing for slight variations due to
random initialization and data shuffling. From these repetitions, the best performing result
based on the highest validation and test R?-was retained to represent each configuration. This
repetitive training ensured that the evaluation of each architecture was not biased by outliers
or unstable initial conditions, and that the peak performance for each structure was reliably
captured.

The results visualized in Figure 5.5 present the regression coefficients (R?) for training, vali-
dation, testing, and overall data across all configurations. The graph clearly shows that per-
formance initially improves as the number of neurons increases. The optimal performance was
achieved with 8 neurons, where the model attained R? values close to 0.94 for all three phases.
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Figure 5.5: Regression Coefficients (R?) Across Neuron Configurations

Beyond 10 neurons, although the training R? remained high or increased which suggests a
tighter fit to the training data, the validation and test R? values began to decline in many
configurations. This divergence reflects signs of overfitting, where the model becomes too
specialized to the training data and loses its ability to generalize.

Another evaluation step in the pre-assessment of networks is illustrated in Figure 5.6, which
presents the RMSE values of all generated networks on the test dataset. The 9-8-1 architecture
achieved the lowest RMSE, with a value of 4.16 mm, indicating strong performance. This result
supports the relevance of Equation 5.1 as a useful criterion for determining the optimal number
of hidden neurons in BP-ANN models. In contrast, the 9-34-1 network exhibited the highest
RMSE, reaching 9.77 mm.

RMSE(mm) vs. Number of Neurons in Hidden Layer
10

— RMSE({mm)
Expon. RMSE(mm)

RMSE(mm)
-~
1

T T T T T T T T
5 10 15 20 25 30 35 40
Various networks with different number of neurons at hidden layer

Figure 5.6: RMSE for Different NN in Hidden Layer
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The curve labeled Expon (Performance(RMSE)) represents an exponential fit applied to the
data in order to model the overall trend of RMSE evolution as the number of neurons in the
hidden layer increases.

5.3.3 Prediction of Maximum Settlement Using the Most Accurate
Neural Network

In this study, several neural network architectures were designed and evaluated to predict
surface settlements induced by excavation using an Earth Pressure Balance Tunnel Boring
Machine (EPB-TBM). After a series of tests, the NN 9-8-1 model was identified as the most
effective due to its high accuracy and stability throughout the different phases of training.

The results obtained, presented in Figure 5.7 , show a very good agreement between the pre-
dicted values and the measured settlements, with correlation coefficients of R?=0.949 for train-
ing, R2=0.94 for validation, and R?=0.92 for testing, all exceeding 0.90.

Training: R=0.94934 Validation: R=0.94038

© )

o o

=} o

o - O Data Q

+ prer) i 1

' g, o5 Lo

> <

© =

— *

* I o

- -

(=] (=]

? 1 05(

- - |o .

3 5

g g ‘

S 5 -1t

o 0 0.5 1 o - 0 1
Target Target

2 Test: R=0.92128 3 All: R=0.93855

o ()

- -

-t -

o 7]

o o

| |

— -

* *

< )

- =

o o

I ]

l l

-t -t

= =

o o

5 5 -

o o - 0 1
Target Target

Figure 5.7: Regression Plots for Training, Validation, Testing, and Overall

Figure 5.8 presents a comparison between the normalized measured settlements (in red) and the
normalized predicted settlements (in blue) for the Test Dataset. The close agreement between
the two curves across most of the test sample range reflects the model’s ability to accurately
reproduce the overall settlement trend.
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Figure 5.8: Predicted Settlement vs Actual Settlement for the Test Dataset

Figure 5.9 displays the residual error plot, which illustrates the difference between the measured
and predicted settlement values across all monitoring points along the tunnel alignment. Each
blue dot represents the residual error at a given location, while the red line indicates the zero-
error reference. The residuals appear to be symmetrically distributed around zero.

20 Error between measured and predicted settlement
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Figure 5.9: Residual Error Distribution of Predicted vs Measured Settlements Along the Tunnel
Alignment
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5.4 Sensitivity Analysis

After evaluating the performance of the selected neural network architecture (9-8-1) on the test
dataset and confirming its high predictive accuracy and low error metrics, it is appropriate to
proceed with a sensitivity analysis.

5.4.1 Perturbation Sensitivity Analysis

The figure below presents the results of the perturbation-based sensitivity analysis performed
on the test dataset. Three different perturbation magnitudes 10%, 15% , and 20% were system-
atically applied to each input feature.The corresponding changes in the predicted maximum
surface settlement were recorded to evaluate the relative sensitivity of the model to each pa-
rameter.
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Figure 5.10: Perturbation-based sensitivity analysis with a 10% input variation.
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Figure 5.11: Perturbation-based sensitivity analysis with a 15% input variation.
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Figure 5.12: Perturbation-based sensitivity analysis with a 20% input variation.

5.4.1.1 Results Analysis

The results obtained for the three levels of perturbation show that, for the first two successive
values of £10% and £15%, the three most influential parameters on the prediction results are,
in order: Equivalent Cover Depth, Groundwater Head, and Distance from Station.

However, for the +20% variation, a change is observed in the ranking of these three most
influential parameters.This finding suggests that the model exhibits strongly nonlinear behavior
or some instability when the perturbation amplitude becomes significant.

In the present case, A decision to retain the results obtained with a +15% perturbation was
made based on two main reasons:

- It reflects a realistic range of variability for geotechnical and operational parameters,
ensuring the analysis remains relevant to practical engineering conditions.

- It is sufficiently pronounced to capture potential nonlinear interactions within the model,
without introducing excessive distortions in the output.

5.4.2 Weight-based Sensitivity Analysis

The analysis was conducted by extracting and evaluating the synaptic weights connecting the
input, hidden, and output layers, as shown in Table 5.3.
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Table 5.3: Synaptic Weights Connecting the Input, Hidden, and Output Layers of the Trained

ANN

Page 109

Sensitivity Analysis



Artificial Neural Network Modeling and Performance Analysis

After carrying out the necessary computations to calculate the Individual Input Factor IIF;
for each input parameter using the Milne method, as defined in Equation 5.2, the resulting
sensitivity values are presented in Figure 5.13.

Distance from Station

Penetration rate
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Figure 5.13: Weight-based Sensitivity Analysis result

5.5 Discussion

Following the application of both Perturbation-based and Weight-based (Milne) sensitivity anal-
yses, several important insights emerged regarding the influence of each input parameter on the
predicted ground surface settlement. Although both approaches aim to assess variable impor-
tance, they provide distinct yet complementary insights revealing both converging and differing
patterns that enhance the interpretation of the ANN’s internal logic and its representation of
the underlying physical phenomena.

The perturbation-based analysis, which quantified the effect of £15% variations in each input
on the model’s output, identified the most sensitive parameters as shown in Table 5.4 .

Table 5.4: Results of the perturbation-based sensitivity analysis

Input Parameter Relative Influence (%)
Equivalent Cover Depth (ECV) 19.1
Groundwater Head (Water Table Level) 17.3
Distance from Station (DistS) 12.2
Thrust 12.2
Face Pressure 11.5
B/ 8.3
Mass Loss 7.6
Grouting Volume 7.2
Penetration Rate 4.7

Discussion
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These findings underscore the strong influence of geometric and hydrogeological conditions
on ground surface settlement. This aligns with fundamental geomechanical principles: greater
overburden increases vertical stress at tunnel vault depth, amplifying the potential for downward
soil movement toward the tunnel face. If this displacement is not properly controlled, it can
propagate upward and manifest as surface settlement. However, the ability of the ground to
resist such deformation is strongly linked to the cover depth through the arching effect, whereby
greater depth provides sufficient confinement for the soil to laterally redirect vertical stresses
around the tunnel, limiting deformation above the crown and reducing surface settlement.
This phenomenon is clearly illustrated in Figures 2.4 and 2.5 which shows significantly lower
displacement values above the tunnel crown as the cover depth increases. Conversely, the
Algiers Metro tunnel characterized by predominantly shallow equivalent cover depths (13-25
m) demonstrates insignificant arching effect, resulting in a greater vulnerability to surface
settlement. As also depicted in Figure 2.4, displacement becomes notably more pronounced
above the tunnel crown at a shallow cover depth of 20 m. Similarly, elevated groundwater levels
reduce effective stress and may lead to soil softening, increasing susceptibility to deformation.
Prior research on tunneling through water-rich or soft soils supports this, often showing a

near-linear relationship between groundwater fluctuations and surface settlement magnitude
[42].

In contrast, the Milne weight-based analysis, which evaluates the contribution of each input
based on the magnitude of normalized weight paths within the network, highlighted a greater
emphasis on parameters associated with machine operation such as thrust and penetration rate.
This suggests that the network, during training, structurally relied on these variables, even if
the predicted output does not strongly react to small perturbations in their values.

A particularly noteworthy outcome is the consistent prominence of Distance from Station in
both analyses. This parameter likely captures a positional or temporal trend: sections closer
to stations are encountered during early tunneling stages, when the TBM may not yet be
fully stabilized. In these zones, machine parameters like thrust and penetration rate may
exhibit more variability, increasing the likelihood of surface disturbance. The ANN appears to
have learned this implicit condition, associating early-stage tunneling operations with increased
settlement risk.

Thrust and Face Pressure emerged as key operational parameters influencing surface settle-
ment, each playing a distinct but interconnected role in TBM performance. Thrust directly
governs the forward advance of the machine and contributes significantly to face stability. The
sensitivity analysis confirmed its strong influence, with high scores in both perturbation- and
weight-based methods. Face Pressure, while showing only moderate sensitivity (5.7% struc-
tural importance), is critical in counteracting earth and water pressures at the tunnel face
especially in weak soils or under high groundwater conditions.These two parameters are highly
interdependent in practice. An increase in thrust, if not balanced by adequate face pressure,
can destabilize the face and induce excessive ground deformation. Conversely, excessive face
pressure with insufficient thrust can reduce advance efficiency or cause blowouts. The ANN
likely captured this dynamic, assigning importance to both features while moderating their
standalone sensitivity based on how they vary together in the dataset.

Penetration Rate further reinforces this interdependency. Although it received the second
highest structural importance in the Milne weight-based analysis (18.3%), it showed the lowest
perturbation sensitivity. This discrepancy suggests that Penetration Rate’s influence is condi-
tional meaning it only significantly impacts settlement when combined with specific thrust and
face pressure conditions. This is supported by its statistical distribution: being approximately
normal and centered around 30 mm/min, small perturbations often remain within operationally
stable limits. Therefore, while Penetration Rate alone may not trigger large prediction changes,
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it acts as an informative indicator of how thrust and face pressure interact, reflecting the effi-
ciency of TBM advance and stress transmission to the ground.

The E—Q’ ratio showed a measurable and consistent influence on predicted settlement, indicat-
ing that the ANN captured the link between soil deformability and ground response. Lower
values, reflecting more compressible soils, were associated with increased settlement under
TBM-induced loading.

Grouting Volume and Mass Loss exhibited low but non-negligible importance across both analy-
ses. Although consistently ranked near the bottom, perturbation results show they can influence
settlement predictions under specific conditions. Their limited but measurable effect suggests
that while not primary drivers, they may contribute in context-dependent scenarios.
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Conclusion

This study successfully developed an Artificial Neural Network (ANN) model to predict maxi-
mum ground surface settlement induced by EPB-TBM tunneling in the Algiers Metro project.
The research integrated machine learning with geotechnical engineering, yielding a robust pre-
dictive tool while also providing interpretable insights into the key factors influencing settle-
ment.

Key Findings
- Optimal ANN Architecture :

o A feedforward backpropagation ANN (9-8-1) with 8 hidden neurons achieved the
best performance, yielding R? values above 0.92 across all datasets and maintaining
a low prediction error with an RMSE of 4.16 mm.

o Levenberg-Marquardt optimization algorithm and tanh/purelin activation functions
proved effective in modeling the nonlinear relationships between TBM operations
and settlement.

- Sensitivity Analysis Insights :

o Perturbation-based analysis (£15% variation) revealed that Equivalent Cover Depth
(ECV) and Groundwater Head were the most influential factors, followed by Dis-
tance from Station (DistS) and Thrust/Face Pressures.

o Weight-based analysis (Milne method) highlighted Thrust and Penetration Rate as
structurally significant, despite their lower perturbation sensitivity.

o Differences between analysis methods reveal that parameters like Penetration Rate,
while structurally important to the ANN, exert their influence primarily through
interactions with other key variables, rather than in isolation.

- Geotechnical and Operational Implications :

o Shallow Equivalent Cover Depth (ECV) and elevated groundwater levels were iden-
tified as key contributors to surface settlement. Reduced cover depth diminishes
the arching effect that normally shield the ground surface, while high groundwater
lowers effective stress and softens the soil, increasing susceptibility to deformation
during excavation.

o Early-stage tunneling at low Distance from Station was associated with increased
settlement risk, likely due to transitional TBM behavior before reaching operational
stability.
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o Penetration Rate serves as an indirect indicator of TBM—ground interaction dynam-
ics. While relatively insensitive to small input variations, it reflects the coordinated
effect of thrust and face pressure, making it a valuable parameter for assessing
excavation efficiency across varying ground conditions.

o Grouting Volume demonstrated low sensitivity across both analysis methods, sug-
gesting a minor overall role in predicting settlement. However, its consistent pres-
ence points to potential influence in specific contexts particularly where proper
compensation of the annular void is essential to maintain ground stability, such as
in loose or low-cohesion soils. In such cases, inadequate grouting may allow void
migration or relaxation, subtly contributing to deformation.

o Mass Loss also showed consistently low sensitivity across both methods, reinforcing
its limited general impact on settlement prediction. Nevertheless, under certain
conditions such as weak confinement or face instability it may indirectly contribute
to ground deformation. These scenarios often involve over-excavation or insufficient
face pressure control, where even small mass losses can lead to stress redistribution
and local soil loosening.

Practical Recommendations

- Design Phase

o Adequate cover depth should be prioritized during route selection and profile op-
timization. Where shallow cover cannot be avoided, mitigation should focus first
on adjusting TBM operating parameters such as optimizing face pressure and reg-
ulating advance rate to maintain face stability, with targeted ground treatment or
localized support measures reserved only for critical locations.

o In sections with elevated groundwater levels, pre-excavation dewatering systems
(e.g., deep wells, vacuum wells) should be employed to maintain ground strength.

o Pre-excavation ground treatment such as jet grouting should be considered near
stations or launching shafts to improve initial TBM face stability and minimize
early-stage ground deformation.

- Construction Phase

o Key TBM operational parameters particularly ones that have strong interactions
with the critical soil conditions along the tunnel alignment should be closely moni-
tored and controlled.

o Conduct ground response monitoring (e.g., extensometers, settlement markers) above
critical structures to detect surface movement early and allow for intervention.

- Model Deployment

o Translate model predictions into recommended adjustments that can be presented
to operators in real time.

o Integrate real-time sensor data to refine predictions dynamically.

o Deploy warning thresholds in the model output to alert operators of potentially
unsafe trends in settlement behavior.
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Constraints and Future Work

Some Constraints in data availability and quality had to be addressed during the Database
construction and preprocessing:

- Geomechanical Parameters

Classical soil parameters such as cohesion and friction angle were not available, as they
were either untested or likely derived through empirical correlations rather than direct
measurements. To maintain consistency with field-based input data, the model used the
E/pl ratio obtained from pressuremeter tests as a proxy for soil deformability.

- Operational Parameters

Several TBM operation variables were either missing or incomplete. Grouting volume was
not recorded for some tunnel sections, so estimated values provided by the construction
company were used instead. In Zone 1, penetration rate was not logged directly and was
therefore calculated from raw-Data as the ratio of advancement distance to excavation
time.

- Settlement Assessment in Zone 1

The maximum surface settlements for Zone 1 were manually extracted from monitoring
data provided by the surveying company VBSS, as explicit maximum values were not
directly recorded. This procedure preserved data continuity for model training, though it
may have introduced minor variability due to the interpretive nature of manually identi-
fying maximum values.

- Face Pressure Assessment

As mentioned in Section 4.3.1.2, face pressure (or earth pressure) was measured using 11
sensors arranged in a clockwise configuration. The three sensors located near the crown
were selected for analysis due to their higher reliability, as other sensors were more prone
to malfunction or data distortion caused by soil adhesion or blockage.

For future work we recommend Including direct measurements of key geotechnical parame-
ters, such as cohesion (¢) and friction angle (¢), to improve soil characterization.

Final Remarks

This research highlights the capability of Artificial Neural Networks to predict tunneling-
induced settlement with high accuracy. When paired with robust sensitivity analyses, the
dual approach combining perturbation-based and weight-based methods bridges the "black-
box’ gap by revealing both the model’s internal structure and its real-world responsiveness.
The findings contribute actionable guidance for future urban tunneling operations, especially
in soft ground contexts like the Algiers Metro. Moving forward, real-time adaptive learning and
sensor integration offer promising avenues to enhance predictive accuracy and risk management
in mechanized tunneling.

Discussion Page 115



Bibliography

1]

[12]

[13]

[14]
[15]

D. Vizzino, G. Raimondo, and P. Felici. Algiers metro, el harrach centre / airport project,
extension e. In ITA-AITES World Tunnel Congress, WTC2022 and }8th General Assembly,
pages 1-15, 2022.

Metro-Eldjazair. Station place des martyrs, 2018.

Candag Topal and Yilmaz Mahmutoglu. Assessment of surface settlement induced by tun-
nel excavations for the esenler-bagaksehir (istanbul, turkey) subway line. Environmental
FEarth Sciences, 80(5):188, 2021.

Yang Zhao, Weiguo Gong, Yi Jiang, and Xuexue Liu. A hybrid algorithm of artificial neural
network and simulated annealing for prediction of ground surface settlement caused by epb
shield tunneling. Engineering with Computers, 35(4):1323-1336, 2019.

Wikipedia. List of algiers metro stations, 2025.

China Railway Construction Equipment Group (CRECG). Field machines and backup
equipment, 2025.

Ryan Rakhmat. Introduction to tunnel boring machine (tbm) — part 1, 2022.

Master Builders Solutions. Earth pressure balance - epb technology for tunnel boring
machines, 2023.

Dream civil. Settlement in foundation, 2023.

Ghorban Khandouzi and Mohammad Hossein Khosravi. Prediction of ground settlements
induced by shield tunneling using a hybrid particle swarm optimization—support vector
machine model. Tunnelling and Underground Space Technology, 139:105347, 2023.

FERCONSULT, CENOR, DONGMYEONG, Euroestudios, SAETI, and
COSIDER Travaux Publics. Hypotheses géotechniques pour le tunnel : Pk 0+000,00 — pk
9+575,00. Document technique interne L1B1-GCG-COSM28-3000-A10-40-002-A, Projet
Métro d’Alger, Alger, Algérie, 2016.

Vahed Ghiasi and Mehdi Koushki. Numerical and artificial neural network analyses of
ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5):939, 2020.

Gang Niu, Xuzhen He, Haoding Xu, and Shaoheng Dai. Tunnelling-induced ground sur-
face settlement: A comprehensive review with particular attention to artificial intelligence
technologies. Natural Hazards Research, 4(1):148-168, 2024.

Saurabh Mhatre. What is the relation between artificial and biological neuron?, June 2020.

Fabrice Emeriault Rim Boubou and Richard Kastner. Artificial neural network application
for the prediction of ground surface movements induced by shield tunnelling. NRC' Research
Press, pages 1215-1233, 2010.

116



bibliography

23]

[24]

[31]
[32]

[33]

[34]

[35]

Tarun @ DataMantra. Skewness: “unpacking the distribution shape to know the direction
of outliers”, August 2024.

DTREG. Cascade correlation neural network. DTREG technical documentation, 2025.
Poh Soon Chang. Network trimming, 2021.

bridgetomoscow. Moscow subway, 2022.

Forest glen station, 2024.

The New Arab. Algiers commutes back in time with metro station museum, 2018.

Emilios M. Comodromos, Mello C. Papadopoulou, and Georgios K. Konstantinidis. Nu-
merical assessment of subsidence and adjacent building movements induced by tbm-epb
tunneling. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), 2014.

Ke Wu et al. Mechanical aspects of construction of new thm tunnel under existing struc-
tures. 2021. Large-scale 3D simulations to study TBM-ground interaction mechanisms.

Suchatvee Suwansawat and Harry H. Einstein. Artificial neural networks for predicting the
maximum surface settlement caused by epb shield tunneling. Tunnelling and Underground
Space Technology, 21(4):445-458, 2006.

Martin Herrenknecht and Ulrich Rehm. Earth pressure balanced shield technology. Tech-
nical report, Herrenknecht AG, 2001. Technical presentation, available online.

Hyobum Lee, Dae Young Kim, Dahan Shin, Jachyun Oh, and Hangseok Choi. Effect of
foam conditioning on performance of epb shield tunnelling through laboratory excavation
test. Transportation Geotechnics, 32:100692, 2022.

Karl Terzaghi. Theoretical Soil Mechanics. Wiley, 1943.

Md Shariful Islam and Magued Iskander. Effect of geometric parameters and construction
sequence on ground settlement of offset arrangement twin tunnels. Geosciences, 12(1):41,
2022.

International Tunneling and Underground Space Association (ITA). Guidelines for mech-
anized tunnelling — ita working group 14. Technical report, ITA-AITES, 2019.

Pietro Lunardi. Design and Construction of Tunnels: Analysis of Controlled Deformations

in Rocks and Soils (ADECO-RS). Springer, Berlin, Heidelberg, 2008.

Kenichi Soga, Robert J. Mair, and Malcolm D. Bolton. Instrumentation for monitoring
around tunnels. Proceedings of the ICE - Geotechnical Engineering, 149(1):17-25, 2001.

Wikipedia contributors. Perceptron — wikipedia, the free encyclopedia, 2024.

Yu-Lung Lai, Tsung-Han Yu, Sheng-Fu Liang, and Hong-Han Chang. A brief survey of ar-
tificial neural network models and their applications. Proceedings of the 2016 International
Conference on Machine Learning and Cybernetics (ICMLC), pages 173-178, 2016.

Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.

Chungen Yin, Lasse Rosendahl, and Zhongyang Luo. Methods to improve prediction
performance of ann models. Energy Conversion and Management, 44(11):1781-1799, 2003.

BIBLIOGRAPHY Page 117



bibliography

[36] Phil Kim. MATLAB Deep Learning: With Machine Learning, Neural Networks and Arti-
ficial Intelligence. Apress, Berkeley, CA, 2017.

[37] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition, 2019.

[38] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems (NeurIPS), volume 2, pages 524-532.
Morgan Kaufmann, 1990.

[39] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances
in Neural Information Processing Systems (NeurIPS), volume 2, pages 598-605. Morgan
Kaufmann, 1990.

[40] Russell Reed. Pruning algorithms—a survey. IEEE Transactions on Neural Networks,
4(5):740-747, 1993.

[41] K. Gnana Sheela and S. N. Deepa. Review on methods to fix number of hidden neurons
in neural networks. The Scientific World Journal, 2013:1-11, 2013.

[42] Chungsik Yoo. Ground settlement during tunneling in groundwater drawdown environ-
ment — influencing factors. Underground Space, 1(1):20-29, 2016.

BIBLIOGRAPHY Page 118



Appendices

119



A

Geology / Geotechnical — Plan and Longitudinal Profile (PK 0+000 to PK 0+4700)

120



B

Monitoring of Tunnel Section (750.33 m) from PK 0+030.67 to PK 0+781.00

121



C

TBM Mining Parameter Report

122



D

SELI Monitoring Files

123



E

SUMMARY OF IN-SITU TEST RESULTS — PRESSIOMETER TESTS

124



F

Subset of the database

125



	List of Tables
	List of Figures
	List of Acronyms
	General Introduction
	Project Overview and Site Context
	Introduction
	General description of Algiers Metro
	History
	Algiers metro line “1” 
	Extension of Algiers Metro Line 1

	Execution
	Tunnel boring machine (TBM) 
	Working principle of the EPB-TBM
	TBM “KAHINA” Characteristics
	Sequence of tunnel execution
	Characteristics of the Studied area

	Geological Context
	The plain of the Mitidja
	Lithology
	Subsurface Conditions throughout the Tunnel Alignment

	General Hydrology
	Conclusion

	Ground Surface Settlement and Monitoring
	Introduction
	Surface Settlements Induced by EPB-TBM Tunneling
	Factors Influencing Surface Settlement in EPB-TBM Tunneling
	Tunnel Geometry
	Tunnel Diameter
	Cover Depth
	Distance from station

	Geological Conditions
	Soil permeability
	Groundwater table level
	Soil Cohesion

	Operational parameters of the EPB-TBM (Tunnel Boring Machine)
	Face Pressure
	Penetration Rate
	Mass Loss
	Thrust Cylinder
	 Tail Void Grouting

	 Summary

	Settlement Monitoring Instruments
	Surface markers and settlement arrays
	Execution
	Reading frequency

	Inclinometric monitoring
	Execution
	Reading frequency

	Settlement Meters
	Execution
	Reading frequency


	Extraction and Analysis of Ground Surface Settlements
	Conclusion

	Overview of Artificial Neural Networks
	Introduction
	Origins and inspiration
	Artificial neurons (perceptrons)
	Evolution of the ANN
	Artificial Neural Network (ANN)
	Layers of the ANN

	Supervised Learning of a Neural Network
	Training of a Single-Layer Neural Network
	Training of Multi-Layer Neural Network
	Backpropagation Algorithm


	Feedforward back-propagation neural networks
	Loss Functions
	Transfer Functions

	Conclusion

	Data Construction and Data Preprocessing
	Introduction
	Factors Affecting Settlement
	Data Acquisition and Computation
	TBM Operation parameters
	Thrust and Penetration-rate
	Face pressure (Earth pressure)
	Mass loss
	Grouting volume

	Geometric parameters
	Equivalent cover-depth
	Distance from Station

	Geotechnical parameters
	Groundwater Head
	The Menard Modulus-Limit Pressure ratio EMpl


	Data Preprocessing
	Data Cleaning
	Data Distribution Analysis
	Data Normalization

	Conclusion

	Artificial Neural Network Modeling and Performance Analysis
	Introduction
	ANN Model Configuration and Design Process
	Design of the optimum artificial neural networks
	Performance Analysis
	Overview of Sensitivity Analysis Approaches
	Perturbation-based Sensitivity Analysis
	Weight-based Sensitivity Analysis


	Implementation
	Computational Environment
	Neural Network Training Procedure
	Prediction of Maximum Settlement Using the Most Accurate Neural Network

	Sensitivity Analysis
	Perturbation Sensitivity Analysis
	Results Analysis

	Weight-based Sensitivity Analysis

	Discussion

	Conclusion
	Bibliography
	Appendices
	Appendix A: Geology / Geotechnical – Plan and Longitudinal Profile (PK 0+000 to PK 0+700)
	Appendix B: Monitoring of Tunnel Section (750.33 m) from PK 0+030.67 to PK 0+781.00
	Appendix C: TBM Mining Parameter Report
	Appendix D: SELI Monitoring Files
	Appendix E: SUMMARY OF IN-SITU TEST RESULTS – PRESSIOMETER TESTS
	Appendix F: Subset of the database



