RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Hydraulique

Optimisation de la Gestion des Réseaux d'Eau Potable par l'Analyse Multicritère et l'Intelligence Artificielle

Application au réseau d'alimentation en eau potable d'Alger

CHENNIT Aya

Sous la direction de Mr. BENZIADA Salim ENP

Présenté et soutenu publiquement le (30/06/2025)

Composition du jury:

Pr. BENMAMAR Saâdia	Professeur	ENP
Mr. BENZIADA Salim	MAA	ENP
Mr. GHERMOUL Madjid	Ingénieur	SEAAL
Dr. MEZENNER Noureddine	Docteur	MRE / ENP
Mr. LIMANE Abdelmounaim	Ingénieur/Doctorant	ENP
	Mr. BENZIADA Salim Mr. GHERMOUL Madjid Dr. MEZENNER Noureddine	Mr. BENZIADA Salim MAA

MCB

ENP

ENP 2025

Représentant de l'incubateur Dr. BOUSBAI M'Hamed

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Hydraulique

Optimisation de la Gestion des Réseaux d'Eau Potable par l'Analyse Multicritère et l'Intelligence Artificielle

Application au réseau d'alimentation en eau potable d'Alger

CHENNIT Aya

Sous la direction de Mr. BENZIADA Salim ENP

Présenté et soutenu publiquement le (30/06/2025)

Composition du jury :

Présidente	Pr. BENMAMAR Saâdia	Professeur	ENP
Promoteur	Mr. BENZIADA Salim	MAA	ENP
Co-Promoteur	Mr. GHERMOUL Madjid	Ingénieur	SEAAL
Examinateur	Dr. MEZENNER Noureddine	Docteur	MRE / ENP
Examinateur	Mr. LIMANE Abdelmounaim	Ingénieur/Doctorant	ENP
Représentant de l'incubateur	Dr. BOUSBAI M'Hamed	MCB	ENP

ENP 2025

هذا العمل يندر ج في إطار تقييم هشاشة شبكات مياه الشرب، بهدف تحسين إدارتها الاستثمارية. تعتمد الدر اسة على استخدام تقنيات التعلم <u>و لا</u> سيما من خلال منهجية _الألي والذكاء الاصطناعي لمعالجة واستغلال البيانات، مما يشكل قاعدة قوية لتطبيق التحليل متعدد <u>المعابير</u> العملية التحليلية المر مية.

وقد سمح هذا التحليل بتحديد المقاطع الأكثر هشاشة واقتر اح أولويات تدخل مناسبة وعقاتنية

كما تفتح هذه المقاربة آفاقاً ريادية من خلال إنشاء "ويفوليا"، و هي مؤسسة مصغرة مستقبلية. تطمح الى دمج الذكاء الاصطناعي ضمن حلول حملية تهدف إلى تحسين الإدارة الاستثمارية للبنى التحتية بشكل مستدام، ليس فقط في مجال المياه بل أيضا في سياقات أوسع تتعلق بإدارة الأصول.

الكلمات المفتاحية الذكاء الاصطناعي - التعلم الآلي - شبكات توزيع مياه الشرب - التحليل متعدد المعايير - الهشاشة.

Abstract

This study is part of an assessment of the vulnerability of drinking water networks, with the aim of optimizing their asset management. The approach is based on the use of machine learning and artificial intelligence methods for data processing and analysis, providing a solid foundation for the application of Multi-Criteria Analysis (MCA), particularly through the Analytic Hierarchy Process (AHP). The analysis made it possible to identify the most vulnerable network segments and to propose rational and well-prioritized intervention strategies.

This approach also opens the door to an entrepreneurial perspective through the creation of Wevolia, a future micro-enterprise. Wevolia aims to integrate artificial intelligence into practical solutions to sustainably optimize asset management, not only in the water sector but also in broader infrastructure management contexts.

0.5cm

Keywords : Artificial Intelligence - Machine Learning - Drinking water networks - Multi-Criteria Analysis - Vulnerability.

Résumé

Ce travail s'inscrit dans le cadre de l'évaluation de la vulnérabilité des réseaux d'eau potable, dans l'objectif d'optimiser leur gestion patrimoniale. L'étude repose sur l'utilisation des méthodes d'apprentissage automatique et d'intelligence artificielle pour le traitement et l'exploitation des données, constituant une base solide pour l'application de l'Analyse Multicritère (AMC), notamment à travers la méthode AHP (Processus Hiérarchique Analytique).

L'analyse a permis d'identifier les segments les plus vulnérables et de proposer des priorités d'intervention adaptées et rationnelles.

Cette démarche ouvre également la voie à une perspective entrepreneuriale à travers la création de Wevolia, une future micro-entreprise. Wevolia ambitionne d'intégrer l'intelligence artificielle dans des solutions concrètes pour optimiser durablement la gestion patrimoniale des infrastructures, non seulement dans le domaine de l'eau, mais également dans des contextes élargis de gestion d'actifs.

Mots clés : Intelligence Artificielle - Apprentissage Automatique - Réseaux d'eau potable - Analyse Multicritère - Vulnérabilité.

Dédicace

Je dédie ce modeste travail à tous les gens que j'aime et qui m'aiment.

À **ma mère et à mon père,** pour leur amour inconditionnel, leur soutien, et leurs sacrifices qui m'ont permis de parvenir jusqu'ici

À mes chères sœurs Ikram, Malek et Chahd,

 \grave{A} mes grands-parents,

À mes tantes et mes oncles,

À mes cousines et cousins,

À mes meilleures amies Nour El Houda et Amel.

Remerciements

Avant toute chose, je tiens à exprimer ma profonde gratitude à **Allah Le Tout-Puissant**, source de vie, de volonté et de persévérance, sans qui rien de ce travail n'aurait été possible.

Je remercie vivement **Monsieur Benziada Salim**, mon encadrant académique à l'École Nationale Polytechnique d'Alger, pour la confiance qu'il m'a témoignée, la richesse de ses idées, la pertinence de ses orientations et l'effort soutenu qu'il a consacré à l'encadrement de ce travail.

Ma profonde reconnaissance s'adresse également à Monsieur Ghermoul Madjid, directeur de l'unité du patrimoine et encadrant professionnel au sein de l'Entreprise de l'Eau et de l'Assainissement d'Alger (SEAAL), ainsi qu'à Monsieur Touazi Fodil, directeur technique de la SEAAL, pour leur accompagnement attentif, leur disponibilité et la pertinence de leurs conseils. Leur implication, leur rigueur et leur bienveillance ont été des soutiens essentiels dans l'aboutissement de ce travail.

Je souhaite adresser mes sincères remerciements à l'ensemble des enseignants de la spécialité, dont les enseignements et les conseils ont grandement contribué à ma formation.

Je tiens également à remercier les membres du jury, notamment **Pr. BENMAMAR Saâdia**, présidente du jury, ainsi que **Mr. LIMANE Abdelmounaim**, **Dr.MEZENNER Noured-dine** et **Mr.BOUSBAI M'hamed** pour l'intérêt porté à ce travail et le temps consacré à son évaluation.

Aya CHENNIT.

Table des matières

ы	ste d	te des tableaux					
Ta	Table des figures						
Li	ste d	les acr	ronymes	10			
In	trod	uction	générale	12			
1	Le	contex	te de la SEAAL	14			
1.1 Introduction		duction	. 14				
	1.2	Organ	nisation	. 15			
		1.2.1	Missions	. 15			
		1.2.2	Chiffres clés	. 15			
	1.3	Direct	tion du patrimoine	. 16			
		1.3.1	Missions principales	. 16			
		1.3.2	Rôle transversal au sein de l'entreprise	. 17			
	1.4	Concl	usion	. 18			
2	2 Généralités sur les modèles de machine learning						
	2.1	Introd	duction	. 19			
	2.2	2.2 Intelligence artificielle					
	2.3 Machine Learning		ine Learning	. 20			
		2.3.1	Définition et typologie	. 20			
		2.3.2	Les données d'apprentissage	. 21			
		2.3.3	Algorithmes de Machine Learning	. 21			
			2.3.3.1 Decision Tree (arbre de décision) :	. 22			
			2.3.3.2 Random Forest:	. 24			

			2.3.3.3	Random forest Regressor:	24
			2.3.3.4	LightGBM (Light Gradient Boosting Machine) :	26
		2.3.4	Mesures	de performances et d'évaluation	28
			2.3.4.1	Erreur Absolue Moyenne (MAE – Mean Absolute Error) :	28
			2.3.4.2	Erreur Quadratique Moyenne (MSE - Mean Squared Error) :	29
			2.3.4.3	Racine de l'Erreur Quadratique Moyenne (RMSE - Root Mean Squared Error) :	29
			2.3.4.4	Coefficient de Détermination (\mathbb{R}^2 - Coefficient of Determination) :	30
			2.3.4.5	F-mesure (F1-score):	30
	2.4	Logici	els utilisé	S	31
		2.4.1	Visual S	tudio Code	31
		2.4.2	Système	e d'information géographique	34
			2.4.2.1	Définition du SIG	34
			2.4.2.2	Les domaines d'application	34
			2.4.2.3	Qu'est-ce que ArcGIS?	34
			2.4.2.4	Interface de ArcGIS?	35
	2.5	Concl	usion		38
3	Net	\mathbf{toyage}	, Analys	se et Prédiction des Données	39
	3.1	Introd	uction .		39
	3.2	Préser	ntation de	e la base de données	39
		3.2.1	Source e	et structure des données	39
		3.2.2	État ini	tial de la base : manques et incohérences	40
		3.2.3	Descript	cion des principales variables	41
	3.3	Prédic	ction du d	liamètre	42
		3.3.1	Objectif	s de la prédiction	42
		3.3.2	Choix d	e l'algorithme (Random Forest)	43
		3.3.3	Évaluati	ion des performances du modèle	44
		3.3.4	Résultat	s obtenus et interprétation	44
	3.4	Prédic	tion du t	ype de matériau	46
		3.4.1	Objectif	s de la prédiction	46

		3.4.2	Choix de l'algorithme Light GBM	47
		3.4.3	Évaluation des performances du modèle	47
		3.4.4	Résultats obtenus et interprétation	48
	3.5	Résult	eats en chiffres	50
	3.6	Traite	ment des variables restantes	53
	3.7	Conclu	usion	56
4	Mét	thodol	ogie et résultats de l'analyse multicritère	57
	4.1	Introd	uction	57
	4.2	Défini	tion de l'analyse multicritère	58
		4.2.1	Principes fondamentaux	58
		4.2.2	Domaines d'application	58
		4.2.3	Différentes familles de méthodes	59
		4.2.4	Justification du choix de la méthode AHP	60
		4.2.5	Les étapes de la méthode AHP	60
	4.3	Identii	fication, sélection et pondération des critères	62
		4.3.1	Les méthodes de pondération des critères	63
		4.3.2	Comparaison par paires des critères	66
		4.3.3	Justification des notations	68
	4.4	Résult	ats de l'analyse et interprétation	68
		4.4.1	Scores globaux et classement des alternatives	68
		4.4.2	Analyse comparative et interprétation des résultats	69
	4.5	Vérific	eation de la cohérence et validation	77
		4.5.1	Indice de cohérence (CI)	77
		4.5.2	Rapport de cohérence (CR)	80
	4.6	Conclu	usion	82
5	Élal	boratio	on du Business Model Canvas (BMC)	83
	5.1	Introd	uction	83
	5.2	Préser	ntation du Business Model Canvas	84
		5.2.1	Définition du BMC	84
		5.2.2	Présentation de la méthode d'élaboration	84

5.3	6.3 Construction du BMC de WEVOLIA					
	5.3.1	Segments de clientèle	85			
	5.3.2	Proposition de valeur	85			
	5.3.3	Canaux de distribution	87			
	5.3.4	Relations avec les clients	88			
	5.3.5	Sources de revenus	88			
	5.3.6	Ressources clés	89			
	5.3.7	Activités clés	90			
	5.3.8	Partenaires clés	90			
	5.3.9	Structure des coûts	91			
5.4	Conclu	asion	92			
Conclu	Conclusion générale					
Bibliog	graphie		98			

Confidentielle