
الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire

المدرسة الوطنية المتعددة التقنيات

Ecole Nationale Polytechnique

Métallurgie

Centre de Recherche en Technologie des Semi-Conducteurs pour l'Energétique (CRTSE)

Pour l'obtention du diplôme d'Ingénieur d'État en Génie des Matériaux

L'effet de la taille des particules de Si sur les propriétés des contacts localisés AlSi dans les cellules n-PERT

Réalisé par :

Diafat Mounia

Soutenu le 08 Juillet 2025, Devant le jury composé de :

Président Kamel Abadli Maitre-Assistant A, ENP

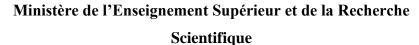
Promoteur Oussama Djema Maitre de Recherche A/HDR, CRTSE

Merzak Laribi Promoteur Professeur, ENP

Examinatrice **Amane Sahli Chercheur Principal, CRND**

Examinateur **Youssef Larbah Chercheur Senior, CRNA**

ENP 2025



الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire

المدرسة الوطنية المتعددة التقنيات

Ecole Nationale Polytechnique

Métallurgie

Centre de Recherche en Technologie des Semi-Conducteurs pour l'Energétique (CRTSE)

Pour l'obtention du diplôme d'Ingénieur d'État en Génie des Matériaux

L'effet de la taille des particules de Si sur les propriétés des contacts localisés AlSi dans les cellules n-PERT

Réalisé par :

Diafat Mounia

Soutenu le 08 Juillet 2025, Devant le jury composé de :

Président Kamel Abadli Maitre-Assistant A, ENP

Promoteur Oussama Djema Maitre de Recherche A/HDR, CRTSE

Merzak Laribi Promoteur Professeur, ENP

Examinatrice **Amane Sahli Chercheur Principal, CRND**

Examinateur **Youssef Larbah Chercheur Senior, CRNA**

ENP 2025

Remerciements

Au seuil de ce travail de fin d'études, je tiens à exprimer ma profonde reconnaissance à toutes celles et ceux qui ont, par leur savoir, leur soutien et leur bienveillance, contribué à la réalisation de ce projet. Chacun, à sa manière, a éclairé mon chemin et m'a permis d'avancer avec confiance et détermination.

En premier lieu, je tiens à remercier **Monsieur Djema Oussama**, mon promoteur de mémoire, pour sa présence constante, son accompagnement avisé et son soutien chaleureux tout au long de ces mois de travail intensif. Sa capacité à guider et à encourager m'a permis de m'engager avec passion dans ce sujet qui me tient particulièrement à cœur.

Je tiens à remercier **Monsieur Laribi Merzak**, mon encadrant, dont les conseils judicieux, la rigueur et l'engagement sans faille ont grandement contribué à façonner mon esprit scientifique tout au long de ce travail.

J'exprime également ma profonde reconnaissance à **Monsieur Abadli Kamel** pour avoir accepté de présider le jury de soutenance, ainsi que pour son accompagnement, ses conseils précieux tout au long de mon parcours de spécialité, et l'aide généreuse qu'il m'a apportée à travers ses idées et son implication.

Je remercie **Madame Sahli Amane** et **Monsieur Larbah Youssef** pour avoir accepté de faire partie du jury et d'avoir contribuer au commencement et à l'initiation directe dans notre projet par leur précieuse aide dans les travaux de caractérisation, leurs conseils, leur disponibilité et leur expertise ont grandement contribué à l'avancement de ce projet.

Je remercie également l'ensemble du personnel technique et administratif du Centre de Recherche en Technologies des Semi-conducteurs pour l'Energétique (CRTSE), et plus particulièrement Madame Hadjira Larbeche, responsable des opérations de chimie eu CRTSE pour son aide précieuse durant la préparation chimique des plaquettes de Silicium. Un grand merci aussi à tous les responsables des techniques de caractérisation au niveau du CRTSE pour leurs aides, conseils et disponibilités.

Je tiens à remercier le département de Génie Minier pour l'aide qui nous a été accordé nous accordé l'utilisation du broyeur des poudres. Nous remercions particulièrement Monsieur Malek Ouled Hammou et Madame Halima pour son aide précieuse au sein du laboratoire, ainsi que pour sa disponibilité et son accompagnement tout au long de nos travaux expérimentaux.

Un remerciement particulier est adressé à l'ensemble des professeurs du département du Génie des Matériaux de l'École Nationale Polytechnique. Leur soutien académique et humain durant nos trois années de spécialité a été essentiel à notre épanouissement et à notre réussite.

Que toute personne ayant contribué de près ou de loin à l'aboutissement de ce travail, trouve ici l'expression de nos vifs remerciements et notre profonde gratitude

Dédicace

"À ma belle maman, L'étoile flagrante qui a toujours illuminé mon chemin, Pour tes sacrifices inlassables tout au long de ma scolarité, Pour ta patience infinie, ton amour inébranlable, et ta présence douce et rassurante dans chaque étape de ma vie. Ce travail est le fruit de tout ce que tu m'as donné sans jamais compter. Merci d'avoir été ma première enseignante et mon école. Je t'aime Mama.

À mon cher papa, Mon pilier solide sur lequel je m'appuie, mon repère dans les tempêtes et ma force silencieuse. Merci pour ton soutien inébranlable, tes sacrifices constants, et ta présence rassurante à chaque étape de mon parcours. Ce travail est le reflet des valeurs que tu m'as transmises et je te le dédie avec tout mon respect et ma profonde gratitude. Je t'aime Papa.

À mon petit chouchou Momo, mon petit cœur, ma source de bonheur. Ton sourire, ta tendresse et ta présence illuminent mes journées. Tu es une part précieuse de ma vie, et tu es toujours dans mon cœur.

À ma sœur Wiwi et à mon frère Ishak, merci d'avoir toujours été là, chacun à votre manière, dans les moments simples comme dans les plus difficiles. Vos sourires, vos mots, même vos silences m'ont souvent apaisée sans que vous le sachiez. Votre présence m'a portée, soutenue, parfois sans un mot, juste par votre façon d'être. Vous êtes mes repères, mes petites forces tranquilles au quotidien. Vous êtes bien plus que ma famille, vous êtes une partie de moi.

À mon fiancé, ton soutien et ta patience ont été ma force tout au long de ce parcours. Merci d'avoir cru en moi, même dans les moments de doute.

Ta présence à mes côtés m'a donné le courage d'avancer et de ne jamais abandonner. Cette réussite est aussi la tienne.

À mes chères amies Racha, Ines et Hanane, vous qui êtes entrées dans ma vie comme des amies, et qui êtes devenues des sœurs de cœur. Merci pour votre présence sincère, vos éclats de rire partagés, vos mots réconfortants et votre soutien dans les moments les plus importants. Votre amitié est une lumière douce qui m'accompagne chaque jour. Vous êtes une partie de moi, et je vous garde dans mon cœur avec tendresse. Bonne chance pour vous aussi.

À toute ma famille Diafat et Chemmami, merci pour votre amour, vos prières, votre soutien silencieux et constant. Vous êtes ma base, mes racines, et une partie essentielle de ce que je suis aujourd'hui."

الملخص

في ظل التحول الطاقوي الحالى، يُعد تحسين كفاءة الخلايا الكهروضوئية أمرًا بالغ الأهمية لزيادة القدرة التنافسية للطاقة

الشمسية وإمكانية الحصول عليها. تُعتبر خلايا n-PERT (المُزيل السلبي الخلفي المُنتشر كليًا) تقنيةً مبتكرة، تتميز ببنية

متطورة وأداء عال. تُعد جودة نقاط التلامس الموضعية أحد العوامل المهمة التي تؤثر على كفاءة خلايا n-PERT BJ. في

هذا العمل، درسنا تأثير حجم جسيمات السيليكون المُضافة إلى عجينة الألومنيوم في تحقيق نقاط التلامس الموضعية في خلايا

n-PERT BJ. ولتحقيق ذلك، قمنا بتحضير معاجين AlSi بأحجام جسيمات مختلفة من مسحوق السيليكون. ثم تم ترسيب

معاجين AISi المُحضرة بواسطة الطباعة الحريرية على ركائز سيليكون من النوع n. تم بعد ذلك توصيف نقاط التلامس

الناتجة باستخدام تقنيات مختلفة: المجهر الضوئي، المجهر الإلكتروني الماسح، DSC ،XRD ،EPMA ، وXPS. أظهرت

النتائج أنه يمكن تحسين خصائص نقاط التلامس الموضعية عن طريق تقليل حجم جسيمات السيليكون المُضافة إلى عجينة

الألو منيو م.

الكلمات المفتاحية: n-PERT, نقاط التلامس الموضعية. معاجبن السبليكون. حجم جسيمات السبليكون. طباعة الشاشة.

Abstract

In the current context of energy transformation, improving the efficiency of photovoltaic cells

is of paramount importance to increase the competitiveness and accessibility of solar energy.

n-PERT (Passive Demitter Rear Totally Diffused) cells are recognized as an innovative

technology, offering an advanced structure and high performance. The quality of the local

contacts is one of the important factors that can affect the efficiency of n-PERT BJ cells. In this

work, we examined the effect of Si particle size added to the Al paste for the realization of the

local contacts in n-PERT BJ cells. To this end, the AlSi pastes were prepared with different of

Si particle sizes. The prepared AlSi pastes were then deposited by screen-printing on n-type

silicon substrates. The realized AlSi contacts were then characterized using various techniques

such as: optical microscope, SEM, EPMA, XRD, DSC, and XPS. The results showed that the

local AlSi contact properties can be improved by reducing the Si particle size added to the Al

paste.

Keywords: n-PERT. Local contacts. AlSi pastes. Si particle size. Screen-printing.

Résume

Dans le cadre actuel de changement énergétique, l'amélioration de l'efficacité des cellules photovoltaïque est d'une importance capitale pour accroître la compétitivité et l'accessibilité de l'énergie solaire. Les cellules n-PERT (PassivedemitterReartotallydiffused) sont reconnues comme une technologie innovante, offrant une structure avancée et des performances élevées. La qualité des contacts localisée est l'une des facteurs importants qui peut affecter le rendement des cellules n-PERT BJ. Dans ce travail nous avons examiné l'effet de la taille des particules de Si ajoutée à la pâte d'Al pour la réalisation des contacts localisée dans les cellules n-PERT BJ. Pour cela nous avons préparé des pates AlSi avec différents granulométries de poudre Si. Les pates AlSi préparées ont été ensuite déposé par sérigraphie sur des substrats de silicium de type n. Les contacts localisés AlSi réalisés ont été ensuite caractérisés par déférents technique : Microscope optique, MEB, EPMA, DRX, DSC et XPS. Les résultats obtenus montre que les propriétés des contacts localisée peuvent être améliorées en réduisent la taille des particules des Si ajoute dans la pâte d'Al.

Mots-clés: n-PERT. Contacts localisées. Pates AlSi. Taille des particules de Si. Sérigraphie.

Table des matières

Introduction général	16
Chapitre I	18
Généralité sur les cellules photovoltaïques	18
I.1. Rappel sur les semi-conducteurs	19
I.1.1. Conducteurs	19
I.1.2. Isolants	19
I.1.3. Semi – Conducteurs	19
I.3.3. Les jonctions PN	25
I.4. Les cellules photovoltaïques	27
I.4.2. Les constituants d'une cellule photovoltaïque standard	28
I.4.4. Les paramètres physiques caractérisant les cellules photovoltaïques	30
I.4.5. Modélisation électrique d'une cellule photovoltaïque	33
I.5. Mécanisme des pertes dans la cellule photovoltaïque	34
I.6. Conclusion du chapitre	39
Chapitre II	40
Technologies des cellules photovoltaïques à base du silicium cristallin	40
II.1.1. La cellule PERC	41
II.1.2. La cellule IBC	42
II1.3. La cellule PERT	43
II.2. La cellule n-PERT BJ	44
II.4.1. Historique	45
II.4.2. Les constituant des cellules n-PERT BJ	46
II.4.2.2. Emetteur p+	47
II.4.2.3. Texturation	50
II.4.2.4. Passivation	50
II.4.2.5. Les contacts AlSi	52
II.4.2.6. Les contacts métalliques	53
II.4.3. Le procédé de fabrication des cellules n-PERT BJ	53
II.4.4. Avantages de la cellule n-PERT	54
II.5. Conclusion du chapitre	55

Table des matières

III.1. Contacts arrière localisés dans les cellules n-PERT BJ	57
III.1.4. Impact des contacts localisés sur les performances des cellules photovoltaïques	61
III.2. La sérigraphie	62
III.3. Les pâtes d'aluminium	63
III.3.1. Effet de la taille des particules d'aluminium dans la pâte d'aluminium sur les prop des contacts localisés	
III.3.2. Effet de l'ajout de Silicium dans la pâte d'aluminium sur les propriétés des contac localisés	
III.4. Conclusion du chapitre	68
Chapitre IV	69
Protocole expérimental et méthode de caractérisation	69
IV.1.1. Préparation de la poudre de Silicium	70
IV.2.2. Préparation des pates AlSi	72
IV.2.3. Préparation des plaquettes de Silicium	74
IV.2.4. La sérigraphie	75
IV.2.5. Le recuit RTP (Rapid Thermal Processing)	79
IV.2.6. Découpage des échantillons	81
IV.3. Techniques de caractérisation	82
IV.3.1. Microscope optique	82
IV.3.2. Microscopie électronique à balayage (MEB)	84
IV.3.3. Micro-analyseur à sonde électronique (EPMA)	87
IV.3.4. X-ray Photoelectron Spectroscopy (XPS)	89
IV.3.5. La diffraction des Rayons X (DRX)	92
IV.3.6. Calorimétrie Différentielle à Balayage (DSC)	95
IV.4. Conclusion du chapitre	96
Chapitre V	97
Résultats et discussions	97
V.1. Microscope optique (MO)	98
V.2 Microscope Electronique à Balayage (MEB)	101
V.3. Microanalyseur à sonde électronique (EPMA)	103
V.4 Diffraction des rayons X	105
V.5 Differential Scanning Calorimetry (DSC)	107
V.6 X-Ray photo spectroscopy (XPS)	109
V.7. Conclusion du Chapitre	113
VI. Conclusion générale	114
Bibliographie	116

Figure I.1 : Diagrammes de bandes d'énergie d'un isolant, un semi - conducteur et un
conducteur
Figure I.2: Structure cristalline du silicium (Si)
Figure I.3: Représentation schématique du diagramme de bandes du Silicium et sa Structure
cristalline23
Figure I.4: Dopage de type N du Silicium
Figure I.5 : Dopage de Type P du Silicium
Figure I.6 : Déplacement des Trous dans un Silicium du type P
Figure I.7 : Schéma simplifié de la formation de la jonction PN
Figure I.8 : Présentation la zone de transition
Figure I.9 : Structure d'une cellule photovoltaïque standard
Figure I.10 : Schéma du principe de fonctionnement d'une cellule photovoltaïque30
Figure I.11 : a) Caractéristique courant-tension de la cellule photovoltaïque sous obscurité et
sous éclairement. b) la représentation conventionnelle de la courbe I(V)30
Figure I.12 : Schéma électrique équivalent d'une cellule photovoltaïque réelle
Figure I.13 : Schéma représentative des trois niveaux de la réflexion au niveau de la cellule photovoltaïque
Figure I.14 : Influence de la résistance série sur la caractéristique J-V d'une cellule photovoltaïque sous éclairement
Figure I.15 : Influence de la résistance parallèle sur la caractéristique J-V d'une cellule photovoltaïque sous éclairement
Figure I.16 : Schéma des principaux mécanismes de recombinaisons dans les semi- conducteur
Figure II.1: Structure d'une cellule P-PERC

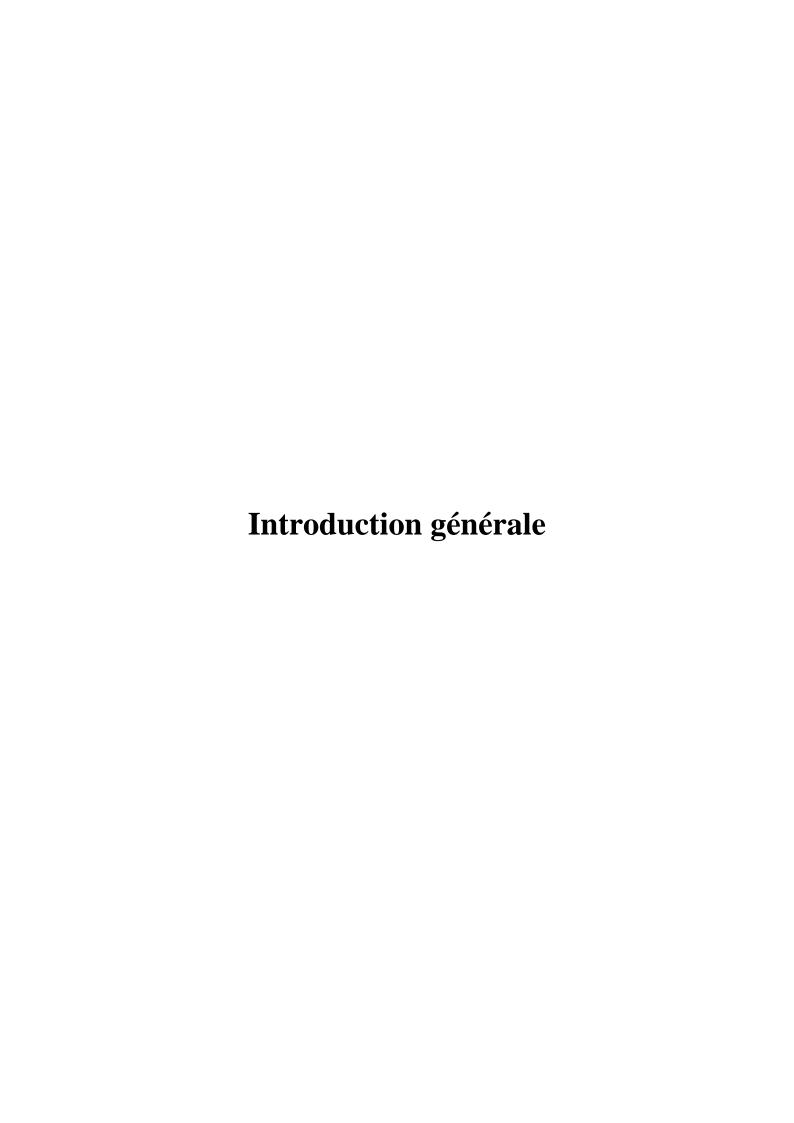
Figure II.2 : Structure d'une cellule photovoltaïque IBC
Figure II.3 : Première cellule solaire PERT en 1992
Figure II.4 : Structure d'une cellule solaire n-PERT
Figure II.5: Structure d'une cellule solaire n-PERT BJ
Figure II.6 : Concept d'un émetteur p+ arrière non passivé sur la surface totale de la cellule
Figure II.7 : Concept d'un émetteur p+ arrière passivé sur la surface totale de la cellule49
Figure II.8 : Concept d'un émetteur p+ arrière localisé et passivé
Figure II.9 : Structure de contact arrière localisé pour cellules solaires n-PERT BJ52
Figure II.10 : Étapes du procédé de fabrication d'une cellule solaire n-PERT BJ54
Figure III.1 : Structure schématique des contacts ponctuels locaux en alliage d'aluminium
Figure III.2 : Micrographie MEB en section transversale de contact localisé présenté par Rauer
et al59
Figure III.3 : Schéma illustratif de la formation des contacts localisés dans les cellules photovoltaïques
Figure III.4 : Schématisation du procédé de sérigraphie
Figure III.5 : (a) Courbe de profilage capacité-tension (ECV) de quatre de pâte d'aluminium. (b) L'épaisseur de la couche Al-P+ pour les quatre de pâte d'aluminium
Figure III.6 : Profondeur de contact et épaisseur moyenne mesurée de la région Al-p+ aux
contacts localisés en fonction de la teneur en Si ajoutée à la pâte d'aluminium
Figure IV.1 : Broyeur de marque Restsch PM 10071
Figure IV.2 : Image montrant la pate d'aluminuimm de base « Monocrystal » et la poudre
intiale de Silicium utilisées « Si ₀ »
Figure IV.3 : Image montrant la préparation des pates Al-Si73

Figure IV.4 : Image montrant les boites noires utilisées pour conserver les pates préparées
Figure IV.5 : Etapes de péparation des palquettes de Si : a) Amancissment b) Neutralisation c) Oxydation d) Désoxydation
Figure IV.6 : Image montrant la machine de séraphine DEK 1760RS utilisé76
Figure IV.7 : Image de l'écran de base utilisé
Figure IV.8 : Image montrant le positionnement de la plaquette par rapport à l'écran77
Figure IV.9 : Image montrant l'application de la pâte sur l'écran
Figure IV.10 : Plaquette sérigraphie réalisée
Figure IV.11 : Image montrant le four de séchage utilisé
Figure IV.12 : Image montrant le four RTP utilisé avec son schéma explicatif80
Figure IV.13 : Profil RTP utilisé dans notre travail
Figure IV.14: ASYS SOLAR "Edge Isolation"
Figure IV.15 : Microscope optique de la marque ZEISS
Figure IV.16: Image montrant l'interface de logiciel Image J
Figure IV.17 : Utilisation d'Image pour le calcul le taux de porosités
Figure IV.18 : Représentation des différents composants d'un MEB85
Figure IV.19 : a) Interaction entre l'échantillon et le faisceau d'électron incident b) Poire d'interaction
Figure IV.20 : Microscope Electronique à Balayage (MEB) de type JSM-7610F Plus (CRTSE)
Figure IV.21 : Transitions électroniques et émissions caractéristiques des rayons X
FigureIV.22: Microanalyseur à sonde électronique (EPMA)Jeol JXA8230
Figure IV.23 : Image schématique du concept de XPS et du processus de relaxation de l'atome
ionisé par l'émission d'un électron Auger90

Figure IV.24 : XPS Escalab Xi+ utilisé au CRTSE
Figure IV.25 : Image montrant le Diffractomètre X'PertPro2 MPD Panalytical93
Figure IV.26 : Schéma simplifié de la géométrie Bragg-Brentano en mode $(\theta - \theta)$ 94
Figure IV.27 : Image montrant l'interface de logiciel X'Pert HighScore Plus de PANalytical.95
Figure IV.28 : Image montrant DSC NETZSCH DSC 40496
Figure V.1 : Les micrographies optiques des zones totalement sérigraphies ainsi que celles des doigts pour les différentes granulométries de silicium a) S_0 , b) S_1 , c) S_2 et d) S_3
Figure V.2 : Évolution du taux de porosité en fonction de la granulométrie de la poudre du silicium pour les différents échantillons sérigraphies
Figure V.3 : Micrographie MEB des sections transversale des contacts AlSi pour les déférentes granulométries $Si:a)\ S_0,b)\ S_1,c)\ S_2,d)\ S_3.$
Figure V.4 : Evolution des épaisseurs des couches eutectique AlSi et la jonction Al-p+ des différentes pates pour les différentes granulométries de Si
Figure V.5 : Cartographies EPMA de la disparition du Si sur la surface des pates AlSi pour les différentes granulométries de Si a) S_0 , b) S_1 , c) S_2 , d) S_3
Figure V.6 : Spectre DRX des contacts AlSi pour les différentes granulométries de Si106
Figure V.7 : Courbe DSC des pates AlSi pour les différentes granulométries de Si108
Figure V.8 : Spectres XPS survey (globale) des contacts Si pour la différente granulométrie de Si
Figure V.9 : Spectre XPS à haute résolutions Al2p pour les différentes granulométries de Si : A) S ₀ , B) S ₁ , C) S ₂ , D) S ₃
Figure V.10 : Spectre XPS à haute résolutions Si2p pour les différentes granulométries de Si : A) S ₀ , B) S ₁ , C) S ₂ , D) S ₃

Liste des tableaux

Tableau II.1 : Ensemble de cinq cellules PERT avec de meilleurs résultats publiés entre 1991 et 2006
Tableau III.1 : Les performances des cellules n-PERT BJ en fonction du pourcentage massique de Si ajouté dans la pâte d'aluminium
Tableau IV.1 : Les conditions de préparation des alliages71
Tableau IV.2 : Granulométrie et surface spécifique des poudres de silicium en fonction du temps de broyage
Tableau V.1 : les analyses de la composition chimiques des contacts AlSi pour les différentes granulométries de Si
Tableau V.2 : les paramètres microstructuraux de la matrice d'Al pour les différentes tailles de Si 107
Tableau V.3 : Température de pic d'oxydations de Al pour les différentes granulométries de Si
Tableau V.4 : Energies de liaisons (Eb) et les proportions atomiques (% at) des éléments sur la surface des contacts AlSi
Tableau V.5: Teneur surfacique en Al ₂ O ₃ sur la surface des déférentes pates AlSi113


Liste des symboles

E_G	Énergie de gap
E_B	Énergie de liaison
BC	Bande de conduction
BV	Bande de valence
T	Température
I _{CC}	Courant de court-circuit
<i>I</i> ₀	Courant d'obscurité
I_{ph}	Photo-courant
Voc	Tension de circuit ouvert
Pm	Puissance maximale
FF	Facteur de forme
η	Le rendement électrique
λ	Longueur d'onde
R_{S} (λ) Réponse spectrale
$\varphi(\lambda)$) L'éclairement monochromatique
$R_{Sint}(\lambda)$ La réponse spectrale interne	
h	La constante de Planck
C	La vitesse de la lumière
R_s	La résistance série
R_P	Résistance parallèle
P_m	La puissance maximale
J_{0}	Courant de recombinaison
f_m	La fraction de la surface couverte par la métallisation arriè

Liste des abréviations

PV Photovoltaïque CzCzochralski FZZone flottante **ZCE** Zone de charge d'espace CAR La couche antireflet IQE Internal quantum efficiency **EQE** External quantum efficiency **BSF** Back surface field. (Champ de surface arrière) **SRH** Schokley Read Hall PERC Passivated Emitter Rear Contact IBC Interdigitated Back Contact **PERT** Passivated Emitter Rear Totally Diffused n-PERT BJ Passivated Emitter Rear Totally Diffused Back Junction **FSF** Front surface field OMMicroscope optique MEB Microscope Electronique à Balayage **EPMA** Un micro-analyseur à sonde électronique XPS *X-ray Photoelectron Spectroscopy* **DRX** La diffraction des Rayons X **DSC** Calorimétrie Différentielle à Balayage APCVD Chemical Vapor Deposition à Pression Atmosphérique

PECVD lPlasma-Enhanced Chemical Vapor Deposition.

Introduction général

L'énergie est l'élément indispensable au fonctionnement de tous les appareils et les machines d'usage personnel ou publique. Cette énergie provient d'une part, à partir des sources non renouvelables comme le pétrole, le gaz naturel, le charbon et le nucléaire. D'autre part, cette énergie peut provient de la part des sources renouvelables tel que, le soleil, le vent, la chaleur de la terre, les chutes d'eau, les marées ou encore la croissance des végétaux.

Parmi eux, l'énergie solaire photovoltaïque (PV) est l'énergie électrique produite par la conversion directe du rayonnement solaire à l'aide d'un dispositif appelé cellule solaire photovoltaïque. Elle a l'avantage d'être abondante, propre, silencieuse, élégante et sans pièces rotatives. En plus, l'énergie solaire PV est la seule source d'énergie qui peut fournir de l'énergie de l'échelle de milliwatts à plusieurs mégawatts à partir d'une technologie modulaire.

Actuellement, les cellules photovoltaïques à base de silicium cristallin (c-Si) restent la filière la plus avancée sur le plan technologique et industriel pour la conversion de l'énergie solaire en électricité. En effet, le silicium est l'un des éléments les plus abondants sur la terre sous forme de silice, parfaitement stable et non toxique, idéal donc pour l'utilisation en industrie photovoltaïque.

L'une des étapes clés dans la fabrication des cellules photovoltaïques est la métallisation par sérigraphie, qui permet de créer les contacts métalliques chargés de collecter les porteurs de charge et de conduire le courant photo-généré par la cellule au milieu extérieur. Cette technologie consiste à déposer une couche d'un métal conducteur sur la surface des cellules solaires en utilisant des pâtes métalliques spéciales et une machine de sérigraphie.

Il existe plusieurs architectures de cellules solaires. Cependant, les cellules PERT (Passivated Emitter Rear Totally Diffused) représentent une configuration innovante intégrant des technologies avancées telles que la passivation de l'émetteur et la diffusion complète de la face arrière. Ces techniques visent à optimiser l'efficacité de conversion de la lumière solaire en électricité. Grâce à ces caractéristiques, les cellules PERT offrent des rendements de conversion élevés tout en minimisant les pertes liées à la recombinaison des porteurs de charge, ce qui en fait une solution particulièrement prometteuse pour un large éventail d'applications solaires, des installations résidentielles aux systèmes spatiaux exigeant des performances accrues.

En particulier, les cellules PERT de type n se distinguent par leurs propriétés remarquables, les positionnant comme des candidates de choix dans le domaine photovoltaïque.

Introduction générale

Ces dernières années, d'importants efforts de recherche ont été consacrés à leur industrialisation, en mettant l'accent sur les substrats de type n afin de tirer pleinement partie de leurs avantages intrinsèques.

Dans ce contexte, le présent travail, intitulé « Effet de la taille des particules de silicium sur les propriétés des contacts localisés AlSi dans les cellules n-PERT », vise à étudier l'influence de la taille des particules de silicium incorporées dans la pâte d'aluminium sur le comportement et les performances des contacts localisés.

Ce travail comporte cinq chapitres organisés de la manière suivante :

Le premier chapitre présente des notions générales sur les semi-conducteurs et les cellules solaires en se focalisant sur leur principe de fonctionnement, leurs constituants, les différentes étapes de fabrication, ainsi que les paramètres physiques caractéristiques et leur modélisation électrique.

Le deuxième chapitre décrit les différentes technologies de cellules photovoltaïques à base de silicium cristallin, en mettant en évidence leurs spécificités et leurs avantages. Il présente également la conception des cellules photovoltaïques n-PERT, en détaillant leurs constituants ainsi que les procédés de fabrication associés.

Le troisième chapitre présente les contacts localisés qui font l'objet principal de notre étude, en détaillant leurs caractéristiques, les mécanismes métallurgiques impliqués dans leur formation, ainsi que leur impact sur les performances des cellules photovoltaïques. Il présente également les différentes techniques de réalisation de ces contacts.

Le quatrième chapitre est consacré à la description de l'ensemble des procédures expérimentales pour la synthèse et la déposition des contacts Al-Si, ainsi qu'aux techniques de caractérisation des couches obtenue.

Pour finir, le cinquième chapitre exposera les résultats obtenus par les différentes caractérisations effectuées et leurs interprétations.

Le mémoire sera clôturé par une conclusion générale et perspective.

Dans ce chapitre, nous présenterons les notions indispensables pour la compréhension de notre travail de recherche. Nous débuterons par un rappel sur les semi-conducteurs et la jonction PN. Par la suite, nous décrivons en détails les cellules photovoltaïques, leur principe de fonctionnement, leurs constituants, leurs différentes étapes de fabrication, leurs paramètres physiques caractéristiques et leur modélisation électrique. Enfin, nous présentons les mécanismes de pertes au sein des cellules photovoltaïques.

I.1. Rappel sur les semi-conducteurs

Les matériaux sont classés en trois catégories selon leurs propriétés électriques :

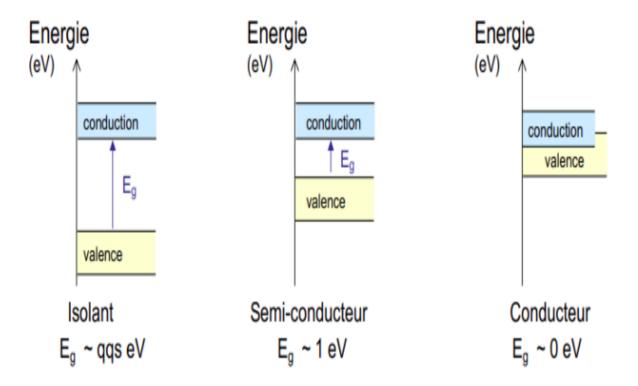
I.1.1. Conducteurs

Ce sont les métaux, tels que le fer (Fe), le cuivre (Cu), l'or (Au), l'argent (Ag) et l'aluminium (Al), ayant la plus faible résistivité à température ambiante, typiquement inférieure à $10^{-5} \Omega$.cm. La conduction électrique de ces métaux s'effectue essentiellement au moyen des électrons libres situés dans les couches périphériques des atomes qui les constituent [1].

I.1.2. Isolants

Ce sont les matériaux dont la résistivité est supérieure à $10^8 \Omega$.cm, tels que le verre, le mica, la silice (SiO₂), le carbone (diamant) [1].

I.1.3. Semi – Conducteurs


Les semi-conducteurs appartiennent à la classe des matériaux électroniques. Ils se situent dans la colonne IV du tableau de Mendeleïev tel que le Silicium (Si). La résistivité électrique des semi-conducteurs est comprise entre les métaux conducteurs et les isolants, dont elle varie entre $10^{-5} \Omega$.cm et $10^{8} \Omega$.cm. Le transport électrique se fait par les porteurs de charges négatifs (électrons) et porteurs de charges positifs (trous) [1,2].

Le caractère conducteur ou isolant prend sa source dans la structure des atomes. En effet, chaque élément du tableau périodique possède un certain nombre d'électrons qui sont agencés autour d'un noyau. C'est cet agencement sous la forme de couches d'électrons, différentes selon le type d'élément.

Les électrons d'un atome peuvent avoir plusieurs rôles au sein d'une structure d'atomes :

- électrons de cœur : ceux-ci sont proches du noyau et n'interagissent pas vraiment avec les autres atomes.
- électrons de valence : ceux-ci sont sur les couches externes de l'atome et permettent de créer des liaisons interatomiques et de former les molécules.
- électrons de conduction : ceux-ci sont responsables de la circulation du courant électrique donc la conductivité électrique du matériau.

On peut schématiser l'ensemble sous la forme de bandes. La Figure I.1 présente les bandes d'électrons de valence et d'électrons de conduction pour les différentes classes des matériaux.

Figure I.1: Diagrammes de bandes d'énergie d'un isolant, un semi – conducteur et un conducteur [1].

Dans un métal, les bandes de valences et de conduction se chevauchent. Cela signifie que les électrons peuvent passer de la bade de valence vers la bande de conduction sans aucune excitation, ce qui confère à ces matériaux le caractère conducteur.

Dans un isolant, par contre, les bandes de conduction et de valence sont séparées par un espace appelé « bande interdite » : cela signifie que les électrons ne peuvent pas s'y trouver. Cette bande interdite est caractérisée par une énergie appelée énergie de Gap (E_g) . La valeur énergétique du Gap (E_g) est élevée pour les isolants. C'est pour cala que les électrons peuvent passer de la bade de valence vers la bande de conduction, ce qui confère à ces matériaux le caractère isolant.

Dans les semi-conducteurs, il existe une bande interdite aussi, mais sa valeur énergétique (E_g) est plus faible par rapport aux isolants. Un semi-conducteur est donc un isolant mais qui peut devenir un conducteur en excitant les électrons de valence pour qu'ils passent vers la bande de conduction par une énergie supérieure ou égale à celle du gap [3].

I.1.3.1. Types des semi-conducteurs

Il existe deux types des semi-conducteurs.

✓ Semi- conducteur intrinsèque

Un semi-conducteur intrinsèque est un semi-conducteur non dopé, c'est-à-dire qu'il contient peu d'impuretés (atomes étrangers) dans son réseau [1].

✓ Semi- conducteur extrinsèque

Un semi-conducteur extrinsèque est un semi-conducteur intrinsèque dopé par des impuretés spécifiques lui conférant des propriétés électriques adaptées aux applications électroniques [1].

I.3.2. Le silicium

Le silicium est l'un des éléments les plus présents dans la croûte terrestre, représentant environs 28% de sa composition, ce qui le place juste derrière l'oxygène en termes d'abondances. Il se trouve dans de nombreux minéraux tels que les roches, le sable....etc. La structure cristalline de Silicium est cubique diamants, résultants de la superposition de deux réseaux cubiques à faces centrées (Figure I.2). Le paramètre de maille de Silicium est a= 5.43 A° [4]. Il existe trois types de Silicium : le Silicium monocristallin, le Silicium multi-cristallin et le Silicium amorphe.

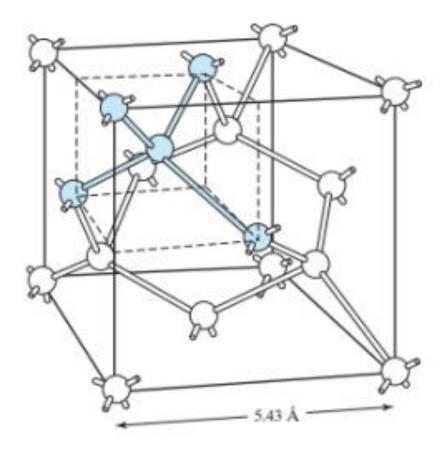
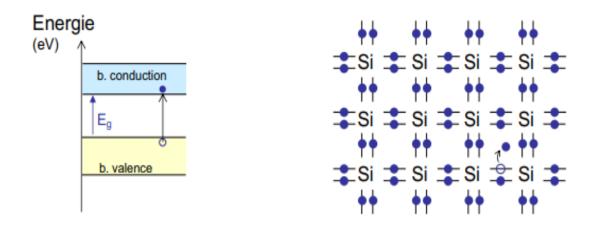



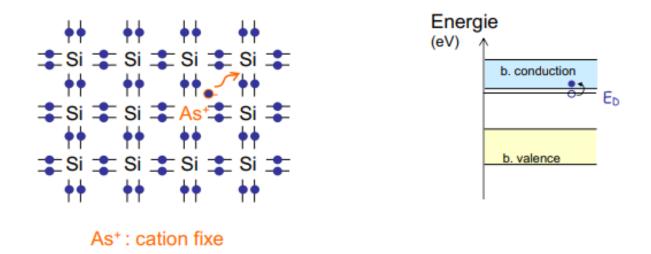
Figure I.2: Structure cristalline du silicium (Si) [4].

I.3.2. Le Silicium dans les cellules photovoltaïques

Le silicium constitue le substrat de base pour la fabrication des cellules photovoltaïques. Il a été choisi pour ses propriétés optiques (absorption de la lumière) ainsi que ses caractéristiques électroniques. En effet, il contient quatre électrons de valence sur sa couche périphérique, ce qui le permet quatre liaisons covalentes (Figure I.3) [5].

L'énergie de gap du Silicium, qui représente l'énergie nécessaire pour qu'un électron passe de la bande de valence à la bande de conduction est $Eg \approx 1.12 \text{ eV}$ [6].

Figure I.3 : Représentation schématique du diagramme de bandes du Silicium et sa Structure cristalline [6].


I.3.3. Le dopage du Silicium

Il existe deux types du dopage du silicium

• Dopage type N

Un de type N est obtenu par l'introduction d'atomes possédant 5 électrons de valence dans un réseau de silicium (éléments de la colonne V du tableau de Mendeleïev), tel que le phosphore (P) ou l'arsenic (As). Ces atomes vont remplacer le Silicium par substitution, ce qui permet d'augmenter le nombre d'électrons libres dans la bande de conduction. Ce l'électron supplémentaire ne participe pas aux liaisons, il peut donc se déplacer dans le réseau (Figure I.4) [5].

Le cristal garde sa neutralité électrique globale, i.e. à chaque électron libre donné par les atomes d'impureté correspond un cation fixe.

Figure I.4 : Dopage de type N du Silicium [6].

Dopage type P

Un dopage de type P est obtenu par l'introduction d'atomes possédant 3 électrons de valence dans un réseau de silicium (éléments de la colonne III du tableau de Mendeleïev), tel que le Bore (B) et le Gallium (Ga). Dans ce cas, seules trois liaisons covalentes peuvent être créées, le quatrième reste non liée (Figure I.5) [5].

Le cristal garde sa neutralité électrique globale, i.e. pour chaque électron libre accepté par les atomes d'impureté créant un anion fixe, un trou est créé.

Un trou est donc créé pour chaque atome de dopage, et ce trou est comblé par un électron d'une liaison covalente voisine, ce qui entraîne le déplacement du trou. Ce processus se répète ainsi de suite (Figure I.6).

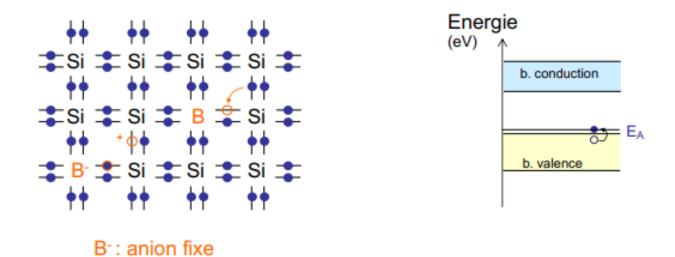


Figure I.5 : Dopage de Type P du Silicium [6].

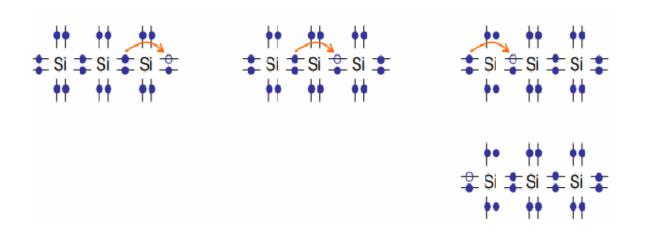


Figure I.6: Déplacement des Trous dans un Silicium du type P [6].

I.3.3. Les jonctions PN

Une jonction PN dans les semi-conducteurs est définie comme la juxtaposition d'une zone de type P qui est riche en trous (porteurs de charge positifs) et une zone de type N qui est riche en électrons (porteurs de charge négatifs) (Figure I.7) [4].

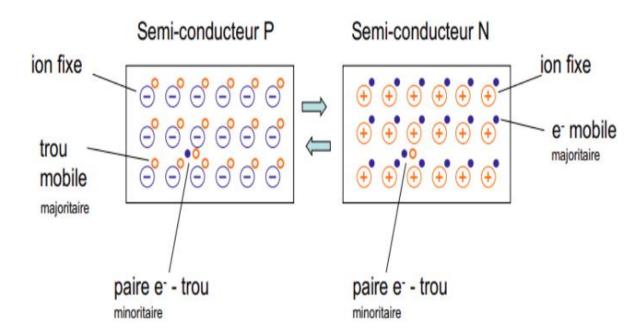
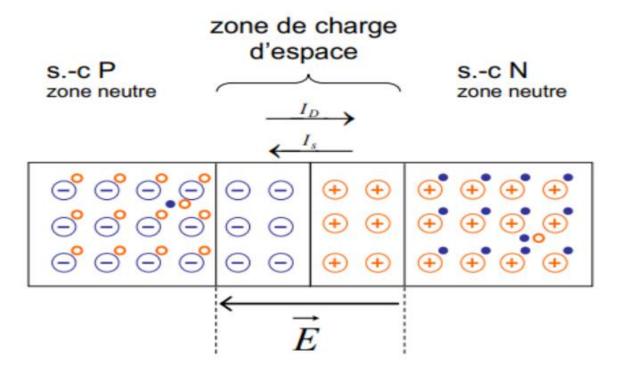


Figure I.7 : Schéma simplifié de la formation de la jonction PN [7].

Dans l'ensemble de la jonction, la présence d'un gradient de porteurs de charge induit la formation d'un courant de diffusion I_d (Figure I.8), i.e. :


- Des trous mobiles de la zone P diffusent vers la zone N et se recombinent avec les électrons libres.
- Des électrons mobiles de la zone N diffusent vers zone P et se recombinent avec les trous libres.

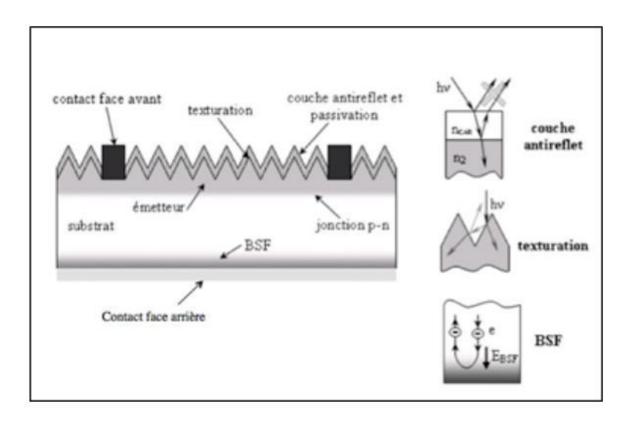
Chaque électron (respectivement trou) majoritaire quittant le semi-conducteur N (P) et entraîne l'apparition d'un anion (cation) fixe dans le semi-conducteur P (N) du fait de sa recombinaison avec un trou (électron). Ces ions sont localisés à proximité de la zone de contact entre les deux zone N et P, entrainant la création de La zone de charge d'espace, ZCE), qui est à l'origine de la création d'un champ électrique (\vec{E}) qui s'oppose au courant de diffusion (I_d) (Figure I.8). Ce champ électrique est équivalent à une différence de potentiel appelée barrière de potentiel (V₀) (V₀ = 0 .7 V pour le silicium, V₀ = 0.3 V pour le germanium) [6].

Un état d'équilibre est atteint dans lequel :

Seuls quelques porteurs majoritaires possèdent une énergie suffisante pour traverser la
 ZCE et contribuer au courant de diffusion (I_d), ce dernier étant compensé par un courant

de saturation inverse I_S, généré par les porteurs minoritaires qui sont capturés par le champ électrique de la ZCE [6].

Figure I.8 : Présentation la zone de transition [6].


I.4. Les cellules photovoltaïques

I.4.1. Effet photovoltaïque

L'effet photovoltaïque est à la base des technologies de fabrication des cellules photovoltaïques. Il a été découvert en 1839 par Alexandre Edmond Becquerel. Il consiste en la conversion de l'énergie solaire (lumière) en énergie électrique à travers un matériau semi-conducteur, généralement le silicium (Si). Ce processus se déroule par la libération de porteurs de charge, principalement des électrons. Ces électrons sont organisés dans des bandes de valence et de conduction. Lorsque les photons de la lumière interagissent avec les électrons, cela génère des paires électron/trou, ce qui favorise la conductivité électrique. Ce phénomène est connu sous le nom d'effet photoélectrique. Le choix du matériau semi-conducteur joue un rôle clé dans l'efficacité de cet effet, c'est pourquoi il est recommandé d'utiliser des matériaux avec de bonnes propriétés d'absorption, comme le silicium (Si) [4].

I.4.2. Les constituants d'une cellule photovoltaïque standard

Comme le montre la Figure I.9, une cellule photovoltaïque standard à base de Silicium cristallin est constituée d'une multitude couches : le Substrat, la texturisation de la surface, émetteur, La couche antireflet et les contacts face avant et arrière.

Figure I.9 : Structure d'une cellule photovoltaïque standard.

- Le Substrat : Cette partie est l'élément de base de la cellule photovoltaïque, où se produit la dissociation électron/trou. Il peut être un Silicium de type P ou de type N selon le type de la cellule. La surface des plaquettes doit subir un traitement chimique adéquat (dégraissage, amincissement et désoxydation) afin d'éliminer les traces de sciage ainsi que les graisses et les effluents de sciage.
- La texturisation de la surface : Elle consiste à créer des micro-pyramides de taille 5-10 μm avec une inclinaison d'environ 54.74° afin de réduire la réflexion de la lumière à moins de 10%. Cette étape est généralement réalisée en trempant les plaquettes de silicium dans une solution alcaline.
- Emetteur : L'émetteur et la jonction PN sont créés par la diffusion du phosphore dans les plaquettes qui contiennent déjà du bore (ajouté lors de sa fabrication) en créant une

zone fortement dopée (n+). Le procédé le plus couramment utilisé est la diffusion qui s'effectue en deux étapes pré-dépôt et le drive —in selon les réactions chimiques suivantes :

$$POCl_3(liquide) + N_2(gaz) \rightarrow POCl_3(vapeur)$$
 (pré – déposition) (Eq I. 1)

$$4POCl_3 + 3O_2 \rightarrow 6Cl_2 + 2P_2O_5 + 5Si + 4P + SiO_2 \ (drive - in)$$
 (Eq I.2)

$$P + 3Si \rightarrow n - type \ doped \ Si$$
 (Eq 1.3)

• La couche antireflet (CAR) : C'est du nitrure de silicium hydrogéné a-SiNx : H (contenant jusqu'à 40 at.% d'hydrogène) déposée sur la face avant de la cellule (émetteur). Cette couche permet d'un coté de réduire la réflexion de la lumière j'jusqu'à 5%, et autre côté de passiver les liaisons pendantes par le Hydrogén. Cette couche est généralement déposée par PECVD (Plasma-Enhanced Chemical Vapor Déposition) selon la réaction suivante :

$$SiH_4 + 4NH_3 \rightarrow Si(NH_2)_4 + 4H_2 (Eq I.4)$$

• Les contacts métalliques : Les contacts sont la structure de collecte qui récupère et transfère les porteurs de charges photo-générés vers le circuit externe. Les contacts métalliques sont généralement réalisés par sérigraphie en utilisant des pâtes à base d'argent pour la face avant de la cellule et une pâte à base d'aluminium pour la face arrière de la cellule.

I.4.3. Le principe de fonctionnement des cellules photovoltaïques

Comme le montre la Figure I.10, le fonctionnement d'une cellule photovoltaïque standard est basé sur les trois mécanismes suivant :

- Absorption des photons.
- Création de paires électron/trou.
- Collecte du courant photo-généré.

Les photos de la lumière dont l'énergie est supérieure à celle du gap de Si (1.12 eV) excitent les électrons dans la structure, ce qui entraine à la création des pairs électron/trou. Les électrons qui sont les porteurs de charges mobiles dans la structure diffusent vers l'émetteur (n+), ou ils sont majoritaires sous l'effet du champ électrique créé par la zone de charge d'espèce (ZCE). Ces électrons vont ensuite collecter par les contacts métalliques de la face avant de la cellule.

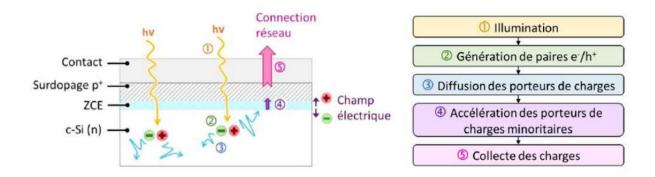
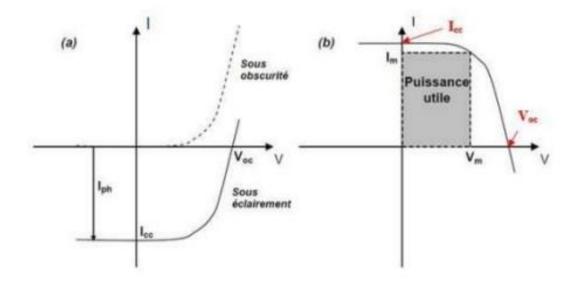



Figure I.10 : Schéma du principe de fonctionnement d'une cellule photovoltaïque [5].

I.4.4. Les paramètres physiques caractérisant les cellules photovoltaïques

Les cellules photovoltaïques sont caractérisées par plusieurs paramètres physiques qui permettent d'évaluer leurs performances dans différentes conditions d'utilisation. Ces paramètres peuvent être obtenus à partir de la courbe courant-tension (I-V) (Figure I.11).

Figure I.11 : a) Caractéristique courant-tension de la cellule photovoltaïque sous obscurité et sous éclairement. b) la représentation conventionnelle de la courbe I(V) [4].

• Courant de court-circuit (Icc)

Sa valeur est déterminée en connectant un ampèremètre entre les bornes de la cellule, dans une situation où la tension à travers celle-ci est nulle. Le courant de court-circuit représente le niveau

le plus élevé du courant que la cellule peut émettre. Ce courant est pratiquement identique au courant généré par l'effet de la _{lumière} sur la cellule, connu sous le nom de photo-courant I_{ph} [4].

$$I_{cc} \approx I_{ph} (Eq I.5)$$

• Tension de circuit ouvert (V_{co})

Cette tension se mesure en connectant un voltmètre directement aux bornes de la cellule solaire. Elle correspond à la valeur de tension où le courant généré par la lumière (I_{ph}) annule précisément le courant de fuite ou d'obscurité (I_o) , résultant en un courant net de zéro débité par la cellule. Il s'agit de la tension la plus élevée que la cellule photovoltaïque peut fournir [4].

$$V_{OC} = \ln \frac{I_{Ph}}{I_0} + 1 \ (Eq \ I.6)$$

• La puissance maximale P_m

La puissance maximale d'une cellule photovoltaïque éclairée est la grandeur essentielle pour évaluer sa performance, elle est donnée par la relation suivante [4].

$$P_m = I_m \cdot V_m \quad (Eq \ I.7)$$

• Facteur de forme FF

Le facteur de forme (FF) est un paramètre crucial pour évaluer l'efficacité d'une cellule photovoltaïque. Il donne une idée de la qualité de la cellule en termes de conversion de l'énergie solaire en électricité. Ce paramètre est compris entre 0 et 1 et il est exprimé en pourcentage, caractérise la forme plus ou moins rectangulaire de la courbe I-V de la cellule photovoltaïque. Si cette courbe était parfaitement carrée, le facteur de forme serait égal à 1, et la puissance P_m serait alors égale à $I_{cc} \times V_{oc}$. Cependant, en pratique, le facteur de forme varie généralement entre 0.6 et 0.85 [4]. Le facteur de forme est donc défini comme le rapport entre la puissance maximale (P_m = $I_m \times V_m$) et le produit de $I_{cc} \times V_{Oc}$.

$$FF = \frac{I_m \cdot V_m}{I_{cc} \cdot V_{cc}} \quad (Eq \ I.8)$$

• Le rendement électrique η

Le rendement η désigne le pourcentage de conversion en énergie électrique. Il est défini comme étant le rapport entre la puissance maximale délivrée par la cellule et la puissance lumineuse incidente (P_i) qui est exprimée en fonction de la surface de cellule S (m²) et l'éclairement E (W/m).

Le rendement électrique est considéré le paramètre de référence pour évaluer la qualité d'une cellule solaire [11]. Il est exprimé par la relation :

$$\eta = \frac{P_m}{P_{inc}} \frac{I_m \cdot V_m}{SxE} = \frac{FF \cdot I_{cc} \cdot V_{oc}}{SxE} \quad (Eq \ I.9)$$

• La réponse spectrale

La réponse spectrale est la valeur du courant de court-circuit I_{cc} de la cellule par unité de flux monochromatique incident à une longueur d'onde donnée λ . Elle exprime l'efficacité de la cellule à convertir l'énergie lumineuse d'une certaine longueur d'onde en courant électrique [9].

$$R_{S}(\lambda) = \frac{I_{cc}(\lambda)}{\varphi(\lambda)} (Eq I. 10)$$

 R_S (λ) est la réponse spectrale (A/W), $\varphi(\lambda)$ l'éclairement monochromatique global, (W/m²) et I_{cc} (λ) désigne le courant de court-circuit (A/m²).

• La réponse spectrale interne

La réponse spectrale interne est la valeur du courant de court-circuit de la cellule, par unité de flux monochromatique absorbé à l'intérieur de la cellule, c'est-à-dire après avoir pris en compte les pertes dues à la réflexion de la lumière sur la surface de la cellule.

$$R_{Sint}(\lambda) = \frac{I_{cc}(\lambda)}{\varphi(\lambda)(1-R(\lambda))} (Eq I.11)$$

 $R(\lambda)$ est le coefficient de réflexion du silicium [9].

• Le Rendement Quantique

Le rendement quantique est le rapport entre le nombre d'électrons dans le circuit externe et le nombre de photons incidents. Lorsque les photons perdus par réflexion (à la fenêtre de la cellule) et les photons perdus par transmission à travers toute l'épaisseur de la cellule (à cause de l'absorption incomplète) ne sont pas pris en compte, cette grandeur s'appelle alors le rendement quantique interne, IQE (internal quantum efficiency). Dans le cas contraire, ce paramètre s'appelle le rendement quantique externe, EQE (external quantum efficiency). Le rendement quantique externe est défini comme suit :

$$EQE(\lambda) = \frac{I_{CC}}{\varphi(\lambda)} \cdot \frac{E(\lambda)}{e} = \frac{I_{CC}(\lambda)}{\varphi(\lambda)} \cdot \frac{hc}{e\lambda} (Eq I. 12)$$

 φ (λ) est le flux lumineux incident, e est la charge de l'électron et E l'énergie du photon (avec $E(\lambda) = hc/\lambda$, h étant la constante de Planck, c la vitesse de la lumière et λ la longueur d'onde) [10].

Le rapport I_{CC} / φ (λ) est appelé « réponse spectrale » de la cellule, elle est notée $R_S(\lambda)$. Elle représente la sensibilité de la cellule pour chaque longueur d'onde. On peut donc redéfinir le rendement quantique externe comme suit :

$$EQE(\lambda) = RS(\lambda) \cdot \frac{h c}{e \lambda} (Eq I. 13)$$

I.4.5. Modélisation électrique d'une cellule photovoltaïque

La modélisation électrique d'une cellule photovolta \ddot{a} que (PV) permet de représenter son fonctionnement en termes de circuits électriques équivalents, facilitant l'analyse et l'optimisation de ces performances. Pour mieux estimer le courant réellement fourni à la charge du circuit extérieur et prendre en compte les limitations de la cellule, un modèle intègre une résistance en série (R_S) et une résistance parallèle appelé aussi résistance Shunt (R_p), comme illustré par le schéma électrique sur la Figure I.12.

Le schéma électrique équivalent d'une cellule photovoltaïque est ainsi composé d'une source de courant et de deux diodes en parallèle. La source de courant modélise le courant photogénéré (I_{ph}). La première diode avec un facteur d'idéalité $n_1 \approx 1$ modélise le courant de diffusion dans la base et l'émetteur, tandis que I_1 est le courant de saturation de ce phénomène. La seconde diode représente le courant de génération/recombinaison ou d'effet tunnel dans la zone de charge d'espace, avec un facteur d'idéalité $n_2 \approx 2$ et I_2 étant le courant de saturation lié à ce phénomène.

Afin de modéliser les courants de fuite existant dans la cellule photovolta \ddot{a} que, une résistance parallèle (R_p) est ajoutée. Elle traduit les fuites des porteurs qui peuvent avoir lieu par exemple sur les bords de la cellule ou à travers l'émetteur Elle agit de manière peu prononcée sur la tension en circuit-ouvert (V_{OC}) et doit être la plus forte possible. La résistance série (R_s) modélise les pertes résistives en volume du semi-conducteur et aux contacts métalliques. Elle agit de manière peu prononcé sur le courant de court-circuit (I_{CC}) et doit être plus faible possible en optimisant la résistance de contact métal-semi-conducteur [11].

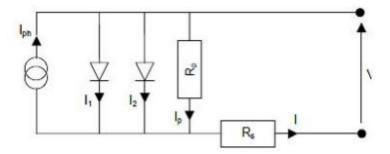


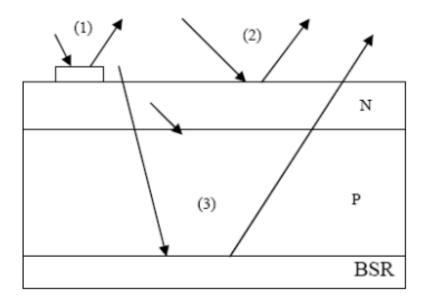
Figure I.12 : Schéma électrique équivalent d'une cellule photovoltaïque réelle [11].

I.5. Mécanisme des pertes dans la cellule photovoltaïque

Il est bien évident que la conversion de l'énergie solaire en énergie électrique n'est pas totale. Cela est dû aux différentes pertes au niveau de la cellule. Ces pertes peuvent être devisées en trois majeurs mécanismes : Pertes optiques, Pertes ohmiques et Pertes de recombinaisons en volume.

I.5.1. Pertes optiques

Les **pertes optiques** d'une cellule photovoltaïque représentent une partie de l'énergie lumineuse qui est perdue avant même d'être convertie en électricité. Elles sont dues à des phénomènes physiques liés à la façon dont la lumière interagit avec la surface et les matériaux de la cellule photovoltaïque.


• Pertes par Photons de grande longueur d'onde du spectre solaire

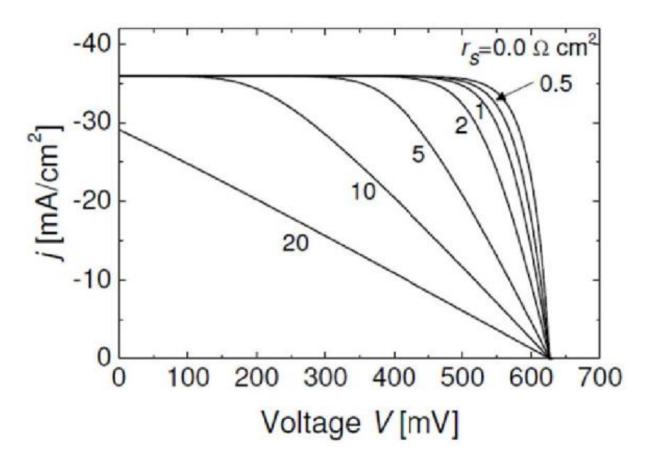
Si chaque photon incident pouvait générer un électron dans le circuit électrique, les dispositifs photovoltaïques auraient un rendement bien plus élevé. Cependant, une première limitation provient de la longueur d'onde du rayonnement incident, qui doit être suffisamment courte. Pour qu'un électron initialement lié dans la bande de valence d'un semi-conducteur devient libre et contribue à la conduction électrique, il doit recevoir une énergie minimale correspondant à l'énergie du gap de bande (Eg). Par exemple, dans le silicium monocristallin, dont l'énergie du gap est de 1.14 eV, seuls les photons ayant une longueur d'onde inférieure à 1100 nm peuvent être absorbés. Les photons ayant une longueur d'onde supérieure à cette limite ne possèdent pas assez d'énergie pour générer des paires électron/trou et ils sont donc perdus [11].

Réflexion

Le phénomène de la réflexion est l'un des problèmes qui impose la meilleure conversion d'énergie. Ces pertes affectent principalement le courant de court-circuit de la cellue photovoltaïque. Généralement, la lumière se perd en deux formes, soit par réflexion, soit par transmission. Comme montre la Figure I.13, les trois niveaux de la réflexion sont responsables des pertes optiques dans une cellule photovoltaïque [12]:

- 1. Réflexion par les contacts ohmiques.
- 2. Réflexion par la surface avant du semi-conducteur.
- **3.** Réflexion par la couche arrière (BSR).

Figure I.13 : Schéma représentative des trois niveaux de la réflexion au niveau de la cellule photovoltaïque [12].


I.5.2. Pertes Ohmiques

La réalisation d'une cellule photovolta \ddot{q} que idéale est pratiquement impossible à cause des imperfections qui pourraient dues aux Résistance Série (R_s) et la résistance parallèle (R_p).

• Résistance série R_s

La résistance série R_s correspond à la résistivité intrinsèque des matériaux semi-conducteurs utilisés pour la fabrication de la cellule photovoltaïque, ainsi qu'à la résistance des contacts métalliques sur la face avant et arrière de la cellule, et d'autres contacts ohmiques présents dans le dispositif. Ce paramètre joue un rôle déterminant dans la performance globale de la cellule solaire, car il entraîne des pertes d'énergie sous forme de chaleur. Une résistance série élevée limite court-circuit (I_{CC}) et réduit donc l'efficacité de la cellule [11].

L'effet de la résistance série R_s sur les caractéristiques I-V de la cellule photovoltaïque sous éclairement est illustré sur la Figure I.14.

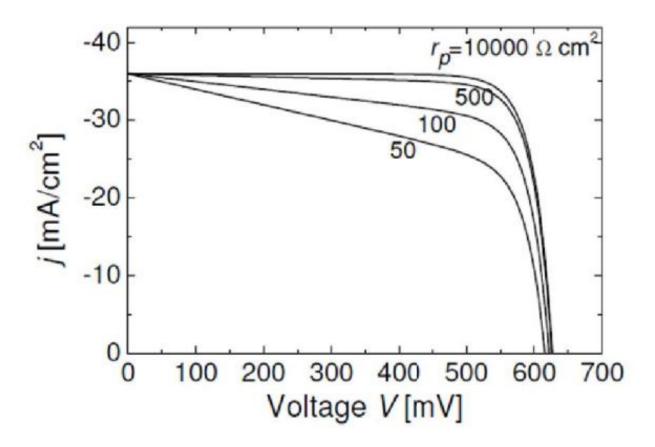


Figure I.14 : Influence de la résistance série sur la caractéristique J-V d'une cellule photovoltaïque sous éclairement.

• Résistance parallèle R_P

Connue aussi sous de résistance parallèle ou résistance de shunt (R_{sh}). Les pertes causées par la présence de cette sont généralement dues à des défauts de fabrication, plutôt qu'à un mauvais design de la cellule solaire. Ces défauts peuvent inclure des imperfections dans la structure de la jonction p-n, des défauts dans les matériaux semi-conducteurs, ou des problèmes au niveau des contacts métalliques, qui permettent à des courants parasites de circuler à travers des chemins non productifs, réduisant ainsi la tension en circuit-ouvert (V_{OC}) et donc l'efficacité de la cellule s photovoltaïque [11].

L'effet de la résistance parallèle R_{sh} sur les caractéristiques I-V de la cellule photovoltaïque sous éclairement est illustré sur la Figure I.15.

Figure I.15 : Influence de la résistance parallèle sur la caractéristique J-V d'une cellule photovoltaïque sous éclairement.

I.5.3. Les Pertes de recombinaisons en volume

Les pertes de recombinaison dans une cellule photovoltaïque correspondent à des mécanismes où les porteurs de charge photo-générés (électrons et trous) se recombinent, ce qui réduit l'efficacité de conversion de l'énergie solaire en énergie électrique. D'une façon très générale, on distingue deux types de recombinaisons dans un semi-conducteur :

- La recombinaison dite directe bande à bande où un électron de la bande de conduction franchit la bande interdite vers un état inoccupé de la bande de valence.
- La recombinaison indirecte où l'électron de la bande de conduction transite par un niveau profond dans la bande interdite avant de se recombiner avec un trou de la bande de valence.

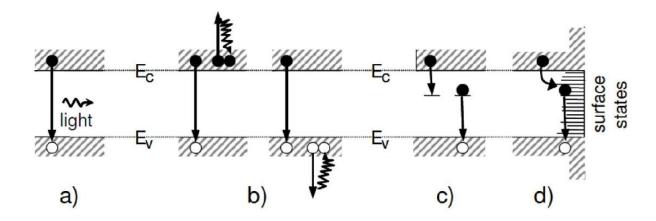
Lors de la recombinaison, une énergie égale à l'énergie de la paire électron-trou est réémise dans le réseau cristallin, soit sous forme de radiation par émission d'un ou plusieurs photons, soit sous forme de chaleur par émission de phonons [13].

Comme illustre la Figure I. 16, les recombinaisons se manifestent selon plusieurs mécanismes:

• Les recombinaisons radiatives ou bande-à-bande

Le processus de la recombinaison radiative ou inter-bandes est définit comme l'inverse du processus de la photo-génération (figure I.16a). Ce processus est faible pour les matériaux à gaps indirects comme le Silicium. De ce fait, ce mécanisme n'influe pas considérablement sur la durée de vie des porteurs minoritaires [13].

Les recombinaisons Auger


Ce type de recombinaison est décrit comme un mécanisme à trois entités. En effet, l'excès d'énergie issu de la recombinaison d'un électron de la bande de valence peut être transféré à un autre électron ou troue libre dans le même niveau d'énergie au lieu d'être émise sous forme de photon [12]. Ce deuxième électron activé émis émet son énergie sous forme de phonons à la structure du réseau. La recombinaison d'Auger est particulièrement active dans les semi-conducteurs fortement dopés, car la quantité d'électrons libres dans la bande de conduction ou les trous de la bande de valence sont augmentés (figure I.16b).

• Les recombinaisons Schokley Read Hall (SRH)

Elles sont liées à la présence d'impuretés ou de défauts (dislocations, lacunes,) au sein de la structure cristalline du silicium. Cela induit la présence de niveaux d'énergies discrets au sein du gap du matériau. Ces niveaux d'énergies introduites des états énergétiques localisés dans la bande interdite, produisant ainsi le piégeage des porteurs de charge pendant leur génération-recombinaison (figure I.16c).

• Recombinaison à la surface

Les liaisons pendantes (liaisons non saturées) présentes dans les surfaces, provoquées par les découpages des plaquettes de Silicium, conduisent à la formation des défauts structuraux, ces derniers introduisent des niveaux énergétiques dans le gap qui contribuent aux phénomènes de recombinaisons (figure I.16d).

Figure I.16 : Schéma des principaux mécanismes de recombinaisons dans les semiconducteurs [13].

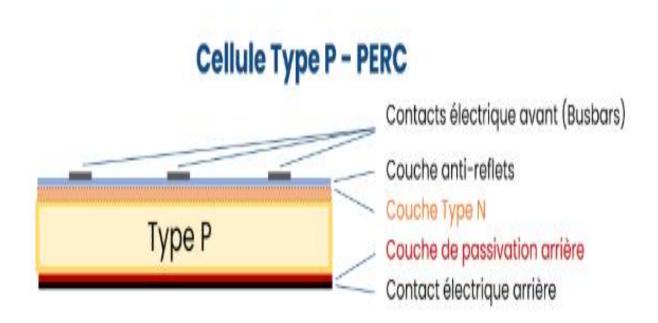
I.6. Conclusion du chapitre

Les cellules photovoltaïques sont devenues une source d'énergie renouvelable populaire dans le monde entier, avec une efficacité croissante et une diminution des coûts.

La compréhension des notions fondamentales sur les cellules photovoltaïques présentées dans ce chapitre permet de continuer les travaux de recherche afin d'améliorer l'efficacité des cellules et développer de nouvelles technologies des cellules avec une efficacité élevée et un cout raisonnable.

Chapitre II

Technologies des cellules photovoltaïques à base du silicium cristallin


Ce chapitre apporte un aperçu sur des différentes technologies des cellules photovoltaïques à base du silicium cristallin (PERC, PERT et IBC), en présentons leurs spécificités et avantages. Par la suite, nous nous détaillons les cellules photovoltaïques n-PERT, qui fait l'objet de notre étude, en présentons leur conception, constituants et procédés de fabrication tout en mettant en avant les innovations visant à améliorer l'efficacité et la fiabilité de ces cellules photovoltaïques.

II.1. Technologies des cellules photovoltaïques

II.1.1. La cellule PERC

PERC (Passivated Emitter Rear Contact), ce qui se traduit par « émetteur passivé et contact arrière ». C'est une technologie de cellule qui vise à augmenter le rendement de conversion tout en réduisant les coûts de fabrication. Cette technologie consiste à ajouter une couche de passivation (SiO₂ ou Al₂O₃) sur la face l'arrière de la cellule, entre le contact métallique et le substrat en silicium (type N ou P) (Fig.II.1). La fabrication ces cellules PERC n'exige que deux étapes supplémentaires par rapport au processus de fabrication des cellules solaires standards. Ces deux étapes se résument à l'application de la couche de passivation sur la face arrière de la cellule et la gravure au laser ou par voie chimique sur la face arrière pour créer de petites ouvertures dans la couche de passivation, assurant ainsi un contact direct entre le substrat en silicium et le métal du contact arrière. Le coût de ces deux étapes supplémentaires n'est pas très élevé, ce qui constitue un avantage majeur de cette technologie.

L'application de la couche de passivation sur la face arrière de la cellule PERC présente plusieurs avantages. Tout d'abord, la réflexion de la lumière à grande longueur d'onde de la face arrière de la cellule vers l'émetteur ce qui permet d'un côté, l'exploitation des photons de lumière incidents de grande longueur d'onde et d'autre coté, d'éviter l'échauffement de la face arrière de la cellule induite par l'absorbation des photons incidents de grande longueur d'onde. De plus, la réduction de la recombinaison des porteurs de charges sur la face arrière par la passivation des défauts surfaciques.

Figure II.1: Structure d'une cellule P-PERC [4].

II.1.2. La cellule IBC

Les cellules photovoltaïques IBC (Interdigitated Back Contact) ont été développées au début des années 1980 et présentent plusieurs avantages par rapport aux cellules photovoltaïques standard grâce à leur conception innovante. Contrairement aux cellules photovoltaïque standards, où une grille de contacts métalliques est située sur la face avant de la cellule ce qui peut réduire l'absorption de la lumière, dans les cellules IBC tous les contacts métalliques se situent sur la face l'arrière. Cette structure optimise la capture de la lumière solaire et améliore l'esthétique de la cellule photovoltaïque. En effet, les contacts métalliques sont placés sous les émetteurs par ablation laser ou dépôt chimique humide, et des couches de passivation sont souvent ajoutés pour limiter les pertes par recombinaison (Figure II.2).

Le principe fonctionnement des cellules IBC repose sur l'absorption de la lumière solaire à la face l'avant de la cellule, générant des paires électron-trou dans le silicium. Ces porteurs de charges sont ensuite séparés par des champs électriques situés au niveau des jonctions **pn** interdigitées à la face l'arrière. Les électrons migrent vers les zones de type **n**, tandis que les trous se dirigent vers les zones de type **p**, où ils sont collectés par les contacts métalliques arrière correspondants. L'électricité est ensuite générée et acheminée via un circuit externe, optimisant ainsi le rendement énergétique de la cellule [15].

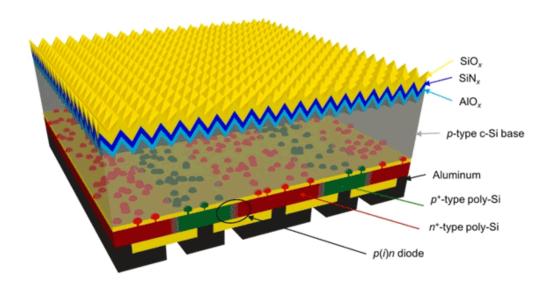


Figure II.2: Structure d'une cellule photovoltaïque IBC [15].

II1.3. La cellule PERT

Les cellules photovoltaïques PERT bénéficient d'une classification très élevée parmi les technologies solaires à rendement extrêmement élevé. PERT est l'acronyme de "Passivated Emitter Rear Totally Diffused" (cellules à émetteur passivé et diffusion totale à l'arrière). À l'origine, le concept PERT a été introduit dans le but d'améliorer le facteur de forme (FF) en réduisant les pertes résistives à l'arrière, en particulier pour les substrats fortement dopés (Figure II.3). La présence zone fortement dopée en face arrière de la cellule BSF (Back Surface Field), permet de repousser les porteurs de charge minoritaires en les confinant dans la base de la cellule, réduisant ainsi les recombinaisons surfaciques.

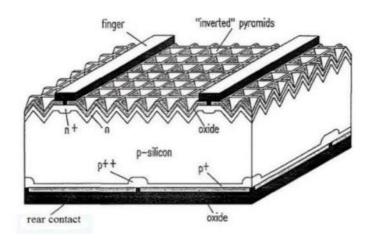
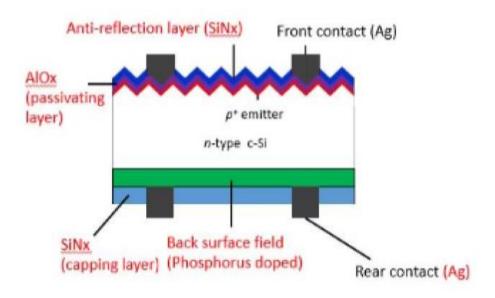



Figure II.3: Première cellule solaire PERT en 1992.

Les cellules PERT peuvent être fabriquées à partir de substrats de type n ou p, chaque type présent des avantages et des inconvénients. La plupart des cellules PERT sont réalisées sur des substrats de type n (Figure II.4), principalement pour éviter la formation du complexe Bore-Oxygène qui est le responsable de la dégradation des cellules sous l'éclairement (LID : Light Induced Degradation), ce qui rend ce type de cellule moins affecté par l'augmentation de la température [14].

Figure II.4: Structure d'une cellule solaire n-PERT [4].

II.2. La cellule n-PERT BJ

n-PERT est l'acronyme de Passivated Emitter Rear Totally Diffused Back Junction. Cette technologie des cellules photovoltaïque est distinguée par une jonction sur la face arrière de la cellule et un champ de la face avant FSF (Front surface field); comme montre la Figure II.5. La technologie de fabrication des cellules PERT-BJ est similaire à celle des cellule PERC afin de réduire les problèmes d'échauffement et les recombinaisons sur la face arrière de la cellule. L'avantage de la cellule n-PERT BJ par rapport à la cellule PERC est les liaisons bore-oxygène ne peut être pas formé, ce qui réduit donc la dégradation induite par la lumière (LID).

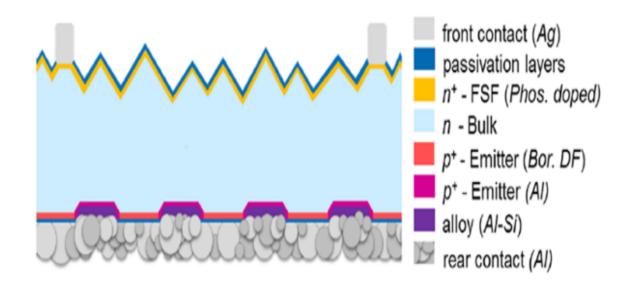


Figure II.5: Structure d'une cellule solaire n-PERT BJ [4].

II.4.1. Historique

La cellule PERT a été introduite pour la première fois par Aihua Wang au début de 1992 lors de ses travaux de recherche doctorales à l'université de Nouvelle-Galles du Sud (UNSW)-Australie. Cette structure PERT qui a été réalisée à base de silicium de type p a pour objectif d'améliorer le facteur de forme (FF) pour les substrats avec une résistivité très élevée (100 Ω.cm). En 2002, Zhao et al ont réalisé la première cellule PERT à base de silicium de type n en utilisant des substrats Czochralski (Cz) et zone flottante (FZ). Depuis lors, cette structure cellulaire est connue sous le nom de n-PERT, atteignant des rendements records à cette époque de 21.1 % et 21.9 %. Ces résultats ont mis en évidence le potentiel des substrats de type n pour la fabrication de cellules solaires à haut rendement. Cependant, ces cellules ont montré une instabilité des performances après un stockage pendant plus de deux ans et une perte supplémentaire a été observée lorsque ces cellules ont été éclairées sous l'intensité d'un seul soleil. En 2006, ils ont développé une nouvelle cellule n-PERT avec un émetteur arrière, où l'émetteur était placé à l'arrière de la cellule. Cette configuration, connue sous le nom de n-PERT BJ, a considérablement amélioré la stabilité des performances, rendant ces cellules plus adaptées aux applications commerciales. Enfin, plusieurs cellules PERT avec des performances améliorées ont été publiées au cours de cette période pionnière, contribuant à l'avancement des technologies photovoltaïques [16].

Le Tableau II.1 résume certaines cellules PERT présentant de meilleures performances publiées au cours de la première période de développement de ces cellules.

Tableau II.1 : Ensemble de cinq cellules PERT avec de meilleurs résultats publiés entre 1991 et 2006 [16].

S.No	Année	Type de cellule	Substrat et sa résistivité (Ω.cm)	Tranche Épaisseur (µm)	Voc (mV)	Jsc (mA/cm ²)	FF (%)	η (%)
01	1999	Type p	MCZ 4.8	400	704	41.6	83.5	24.5
02	1999	Type p	MCZ 1.2	300	707	40.9	80.7	23.4
03	2002	Type n	FZ, 0.9	300-400	695	41.1	76.5	21.9
04	2002	Type n	Cz, 0.4	300-400	687	40.3	75.9	21.1
05	2006	Type n	FZ, 1.5	170	702	40.1	80.5	22.7

II.4.2. Les constituant des cellules n-PERT BJ

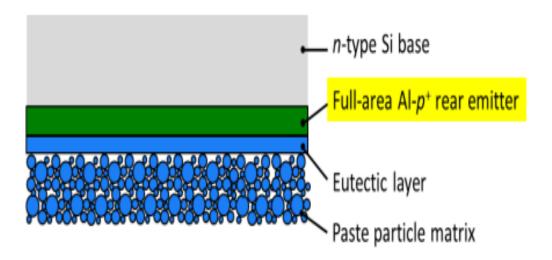
II.4.2.1. FSF (front surface field)

Dans les cellules photovoltaïques n-PERT, le Front Surface Field (FSF) est obtenu par la diffusion du phosphore dans la face avant de la cellule, créant ainsi une région fortement dopée de type-n. Son rôle est similaire à celui du Back Surface Field (BSF) dans les cellules avec un émetteur avant, en repoussant les porteurs de charge minoritaires, loin de la surface avant. Cette action permet de réduire la recombinaison de surface, un phénomène qui limite l'efficacité des cellules solaires. En minimisant ces recombinaisons, le FSF améliore la collecte des porteurs de charge, favorisant ainsi leur contribution à la conversion d'énergie lumineuse en électricité.

Cela se traduit par une augmentation de la tension en circuit ouvert (Voc) et une optimisation des performances globales de la cellule photovoltaïque [14].

II.4.2.2. Emetteur p+

Généralement, la réalisation de l'émetteur dans cette structure des cellules se fait par la diffusion du bore. Cependant, ce processus présente certaines difficultés, notamment en raison de la température très élevée requise pour la diffusion du bore. De plus, la présence du bore entraîne la formation du complexe bore-oxygène, ce qui peut affecter les performances de la cellule photovoltaïque. Pour surmonter ces contraintes, d'autres procédés ont été développés, notamment la formation de l'émetteur par Aluminium à l'aide de la méthode de sérigraphie. Dans cette approche, une pâte d'aluminium est appliquée sur totalité de la surface arrière de la cellule, permettant aux atomes d'aluminium de se diffuser à l'intérieur du substrat de silicium durant le recuit RTP. Cette approche constitue une alternative efficace, réduisant les défis thermiques liés à la diffusion du bore tout en assurant de bonnes performances électriques [14].


Plusieurs aspects clés pour une application réussie d'émetteurs en aluminium entièrement imprimés en p+ dans les cellules photovoltaïques de type n ont été identifiés jusqu'à présent :

- Formation soigneuse de l'émetteur arrière Al-p+ : L'émetteur Al-p+ doit être préparé très soigneusement car ces cellules photovoltaïques sont particulièrement sensibles aux propriétés de l'émetteur arrière p+. Une passivation supplémentaire de la surface de l'émetteur Al-p+ est donc très prometteuse pour améliorer les propriétés électriques des cellules photovoltaïques.
- Résistivités de base élevées ou champs de surface avant sélectifs : Des résistivités de base de 10 Ω.cm ou plus sont importantes pour assurer un blindage efficace des trous par le champ de la surface avant (FSF).
- Une matière de base de haute qualité : les longueurs de diffusion élevées des porteurs minoritaires dans la base de Si de type n sont essentielles pour obtenir une collecte adéquate de porteurs par l'émetteur arrière. Le Si de type n obtenu par la méthode de Czochralski convient bien à la fabrication de cellules photovoltaïques car il est plutôt insensible aux atomes d'impuretés courants et ne présente pas de dégradation induite par la lumière.

En suivant ces aspects clés, ces dernières années, plusieurs groupes de recherche ont obtenu des rendements de conversion remarquablement élevés dans la plage de 19 à 20 % pour des cellules photovoltaïques à grandeur d'aire de type n avec un émetteur arrière Al-p+ [14]. Plusieurs concepts des cellules avec émetteur arrière Al-p+ ont été proposés :

Emetteur p+ non passivé

Ce concept de cellule photovoltaïque est le plus simple pour utiliser des émetteurs p+ aluminium dans les cellules photovoltaïques en Si de type n. Il consiste d'une structure constituée de la pâte d'aluminium, la couche eutectique, la région fortement dopée Al-p+ (Figure II.6). Dans cette structure, les tensions de circuit ouvert (V_{OC}) sont significativement améliorées en adaptant les conditions d'impression et de cuisson du processus de la pâte d'aluminium (c'est-à-dire la quantité de pâte, la température de pointe et le temps de la température de pointe). De plus, l'application d'additifs de B dans les pâtes d'aluminium a le potentiel d'améliorer encore davantage les caractéristiques de recombinaison des régions p+ [14].

Figure II.6 : Concept d'un émetteur p+ arrière non passivé sur la surface totale de la cellule [14].

• Emetteur p+ passivé

Pour améliorer encore les caractéristiques de recombinaison et donc les valeurs Voc des cellules photovoltaïques, une passivation supplémentaire de la surface de l'émetteur arrière en alliage

d'Al-p+ sur toute la surface est appliquée par un empilement SiNx/Al₂O₃ (Figure II.7). Pour cela, une préparation minutieuse de la surface de l'émetteur avant le dépôt de l'empilement des couches de passivation est essentielle. Les émetteurs en alliage Al-p+ avec des faibles épaisseurs présentent d'excellentes propriétés électriques. Étant donné que les profondeurs des contacts arrière localement alliés à travers l'empilement de passivation dépassent de loin l'épaisseur de l'émetteur en alliage Al-p+ sur toute la surface, il est important de réduire également la recombinaison aux points de contact. Cela peut être fait efficacement en utilisant une pâte d'aluminium contenant des additifs de silicium pour la formation de contact, ce qui conduit à une formation améliorée d'émetteurs en alliage Al-p+ aux points de contact [14].

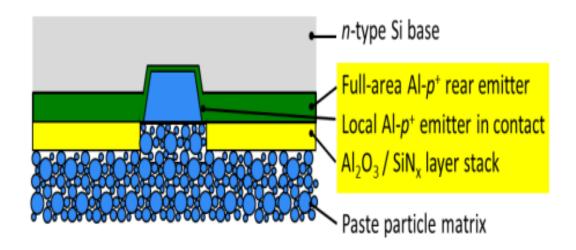


Figure II.7 : Concept d'un émetteur p+ arrière passivé sur la surface totale de la cellule [14].

• Emetteurs p+ en alliage d'Al localisés sur une surface arrière de Si passivée

Une simplification évidente du concept de cellule solaire consiste à omettre l'émetteur en alliage d'Al-p+ sur toute la surface et à utiliser des émetteurs locaux (Figure II.8). Étant donné que, pour le concept de cellule photovoltaïque, les caractéristiques de recombinaison des émetteurs en alliage d'Alp+ localement alliés sont particulièrement critiques, l'utilisation d'une pâte d'aluminium contenant des additifs de silicium est hautement efficace [14].

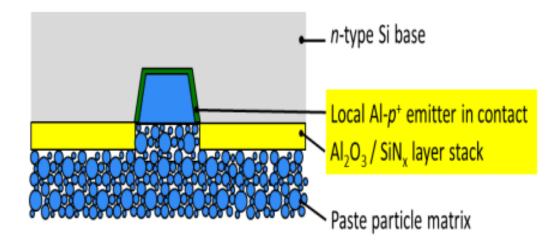


Figure II.8: Concept d'un émetteur p+ arrière localisé et passivé [14].

II.4.2.3. Texturation

La texturation de la surface avant de la cellule par des micro-rainures ou des pyramides permet de produire un effet de double rebond, donnant donc deux chances à la lumière incidente (réfléchie par une paroi de la pyramide et dirigée vers la paroi de la pyramide opposée) de pénétrer dans la surface de la cellule avant d'être réfléchie, améliorant ainsi le piégeage de la lumière. Ces techniques sont particulièrement importantes pour le silicium, étant un matériau à absorption indirecte ayant un faible coefficient d'absorption de la lumière [16].

II.4.2.4. Passivation

Les matériaux le plus souvent utilisés pour la passivation de surface dans la filière photovoltaïque silicium sont l'oxyde de silicium (SiO₂), le nitrure de silicium hydrogéné (SiNx :H), et plus récemment l'oxyde d'aluminium (Al₂O₃) [17].

• L'oxyde de silicium SiO₂

Les faibles densités d'états d'interface entre le silicium et l'oxyde de silicium thermique justifient son utilisation comme couche de passivation dans diverses architectures de cellules photovoltaïques à haut rendement. Après un recuit sous une atmosphère N₂-H₂, le SiO₂ thermique permet d'atteindre des vitesses de recombinaison de surface extrêmement faibles. L'hydrogène introduit lors du recuit contribue à la passivation des défauts électriquement actifs, notamment les liaisons pendantes du silicium (≡Si) [16]. De plus, la couche de SiO₂ joue un

rôle essentiel dans la passivation du FSF en limitant l'impact des défauts de surface, ce qui améliore la qualité électronique et optimise les performances de la cellule photovoltaïque.

La passivation du silicium de type n et p peut être réalisée par oxydation thermique, qui se fait sous une atmosphère soit humide (vapeurs de H₂O), soit sèche (O₂), à des températures élevées (900-1000°C). La méthode humide est généralement privilégiée pour la formation de couches épaisses, car elle offre une vitesse de croissance plus élevée par rapport à l'oxydation sèche.

Des méthodes alternatives à basse température (350-400°C) ont également été explorées, notamment le dépôt chimique en phase vapeur assisté par plasma (PECVD). Cependant, la passivation obtenue avec des couches de SiO₂ déposées à basse température reste moins efficace que celle obtenue par oxydation thermique à haute température, en raison d'un niveau de passivation plus faible [17].

• Le nitrure de silicium a-SiNx

Le nitrure de silicium (SiNx), déposé par dépôt chimique en phase vapeur assisté par plasma (PECVD), est largement utilisé en photovoltaïque en raison de sa capacité à ajuster son indice de réfraction sur une large gamme. Cette propriété en fait un matériau de référence pour les couches antireflets [17].

Avec une épaisseur d'environ 70 nm, cette couche améliore le rendement des cellules photovoltaïques en réduisant les pertes optiques et en protégeant la couche de passivation SiO₂ contre les dommages mécaniques, notamment lors de la sérigraphie. De plus, grâce à l'hydrogène introduit lors du dépôt, elle contribue à la passivation des liaisons pendantes du silicium, améliorant ainsi la qualité des interfaces. Sur la face arrière, elle favorise également la réflexion de la lumière à grande longueur d'onde, limitant l'échauffement de l'émetteur et optimisant les performances de la cellule photovoltaïque.

• L'oxyde d'alumine Al₂O₃

La problématique de la couche d'inversion due aux charges positives a donc orienté la recherche vers un matériau amenant des charges négatives en surface du silicium. L'oxyde d'aluminium, aussi appelé alumine, de formule chimique Al_2O_3 , répond à ce critère. Les couches minces Al_2O_3 offrent une passivation de qualité comparable à celle du SiO_2 , tout en nécessitant un budget thermique nettement inférieur car elles sont réalisées par des techniques à basse

températures tel que : Atomic Layer Deposition (ALD) et le Plasma-Enhanced Chemical Vapor Deposition (PECVD). Plus récemment, des méthodes comme la Chemical Vapor Deposition à Pression Atmosphérique (APCVD) et la pulvérisation par radiofréquence ont également été développées pour améliorer l'efficacité du dépôt et élargir les possibilités d'application [17].

II.4.2.5. Les contacts AlSi

Les couches de passivation SiNx/Al₂O₃ de la face arrière sont localement ouvertes à l'aide d'un laser d'un diamètre d'environ 35 à 75 µm. Lorsque la pâte d'aluminium est appliquée par la sérigraphie, un contact direct s'établit entre l'aluminium et le substrat en silicium. Cela permet de créer un contact localisé (Figure II.9). Durant le recuit RTP et sous l'effet d'un gradient de concentration, les particules de silicium commencent à migrer vers l'aluminium. A une température d'environ 577 °C, une couche d'alliage eutectique (Al- 12.6% Si) entre la pâte d'aluminium et le substrat de Si est formée. L'épaisseur de cette couche eutectique reflète la profondeur des contacts localisés. Sous cette couche eutectique, une région fortement dopé Al-P+ se forme permet de réduire la recombinaison des porteurs minoritaires à l'arrière de la cellule, améliorant ainsi l'efficacité de conversion et les performances des cellules photovoltaïques.

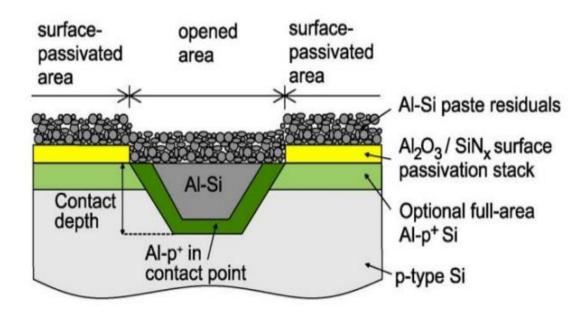


Figure II.9: Structure de contact arrière localisé pour cellules solaires n-PERT BJ [18].

II.4.2.6. Les contacts métalliques

Dans les cellules photovoltaïques industrielles, la grille métallique située sur la face avant est réalisée à l'aide d'une pâte à base d'argent, tandis que la métallisation de la face arrière est effectuée avec une pâte contenant de l'aluminium. Ce choix technologique repose sur plusieurs facteurs clés. L'argent est privilégié pour la face avant en raison de sa conductivité électrique exceptionnelle et de sa stabilité à long terme, ce qui permet d'optimiser la collecte et le transport des charges électriques générées par la cellule. L'utilisation d'aluminium sur la face arrière est motivée par sa disponibilité abondante et son coût relativement faible, tout en offrant de bonnes propriétés de réflectivité et de contact électrique. Cette combinaison de matériaux assure un équilibre entre performance, durabilité et rentabilité dans la fabrication des cellules photovoltaïques industrielles [4].

II.4.3. Le procédé de fabrication des cellules n-PERT BJ

La Figure II.10 illustre un schéma simplifié des différentes étapes de fabrication des cellules photovoltaïques n-PERT, qui fais l'objet de notre étude. D'abord, les plaquettes de Si de type n subissent un traitement chimique par émersion dans une solution de d'hydroxyde de sodium (NaOH) à une température d'environ 80°C afin d'éliminer les dommages liés à la découpe suivi d'un nettoyage Piranha (H₂SO₄/H₂O₂). Par la suite, l'émetteur p+ de bore est formé par diffusion du bore en utilisant le tribromure de bore (BBr₃) comme gaz précurseur. Cet émetteur de bore a été ensuit passivé par l'empilement SiNx/Al₂O₃. La face avant non passivée de la plaquette a été texturisée suivie d'une diffusion de phosphore en utilisant de l'oxychlorure de phosphore (POCl₃) comme gaz précurseur dans un four à tube sous atmosphère d'oxygène (O₂) à une température d'environ 960 °C afin de réaliser le champ de la face avant (FSF) faiblement dopée. Le FSF a été ensuit passivé par l'empilement SiNx/Al₂O₃.

À l'aide d'un laser vert pulsé, des ouvertures locales (LCO) en forme de points ont été réalisées sur l'empilement SiNx/Al₂O₃ de la face arrière, avec un diamètre de spot de 40 µm et un pas de 450 µm. Par la suite, la face arrière a été entièrement recouverte d'une pâte d'aluminium, tandis que la face avant a été imprimée avec des doigts en argent. Les deux faces ont ensuite été soumises à un recuit RTP [19].

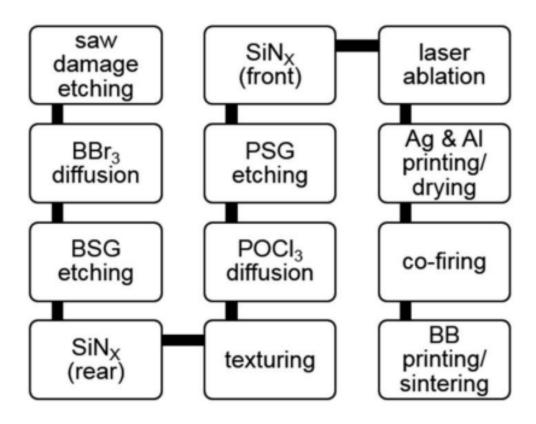


Figure II.10 : Étapes du procédé de fabrication d'une cellule solaire n-PERT BJ [19].

II.4.4. Avantages de la cellule n-PERT

La technologie PERT est une avancée significative dans le domaine des cellules photovoltaïques, offrant plusieurs avantages par rapport aux architectures traditionnelles, notamment les cellules PERC (Passivated Emitter and Rear Cell). Parmi ces avantages, on peut citer [16] :

- Réduction des pertes optiques : La technologie PERT intègre une couche optimisée sur la surface arrière, qui réduit les pertes optiques en améliorant la réflexion des photons vers l'intérieur de la cellule ainsi en évitant l'échauffement de la face arrière. Cela permet une meilleure utilisation de la lumière incidente et augmente ainsi l'efficacité de conversion énergétique.
- Amélioration de la passivation de surface à l'arrière : les cellules PERT bénéficient d'une passivation complète sur toute la surface arrière. Cela diminue les pertes dues à la recombinaison des porteurs de charge et améliore le rendement global de la cellule.

- Réduction de l'effet d'encombrement du courant : Grâce à une diffusion optimisée du
 dopage dans l'émetteur et à une conception réduisant la résistance de contact, les
 cellules PERT présentent une diminution de la résistance série. Cette amélioration
 permet d'augmenter la tension en circuit ouvert (Voc) et d'améliorer la performance de
 la cellule.
- Amélioration du facteur de forme (FF) : une meilleure gestion des résistances internes et à une optimisation du design des contacts arrière.
- Absence de dégradation induite par la lumière (LID) : Contrairement aux cellules standard, qui subissent une dégradation induite par la lumière (LID) due à la présence d'oxygène et de bore dans le silicium, les cellules PERT utilisent des procédés de fabrication minimisant ces effets. Cela leur permet de conserver leur efficacité sur le long terme.
- Compatibilité avec une structure bifaciale : Les cellules PERT peuvent être utilisées dans des modules bifaciaux, ce qui permet de capter la lumière incidente des deux côtés de la cellule. Cette propriété améliore le rendement global du module.
- Durée de vie plus longue et meilleure résistance aux contaminations : Grâce à une optimisation des traitements de surface et à une meilleure passivation, les cellules PERT ont une durée de vie plus longue et une meilleure résistance aux contaminations environnementales (humidité, polluants atmosphériques, etc.), ce qui les rend plus adaptées aux conditions d'exploitation difficiles.

II.5. Conclusion du chapitre

Les cellules photovoltaïques à base de silicium de type n, telles que les cellules n-PERT BJ, représentent une avancée significative dans le domaine de l'énergie solaire, offrant des performances accrues et une meilleure stabilité par rapport aux technologies standards. La compréhension de principe de fonctionnement de ces cellules ainsi que leur procédé de fabrication permettent ainsi de poursuivre les recherches afin d'améliorer leurs performances et favorise le développement de nouvelles technologies de cellules photovoltaïques plus performantes et durables.

Chapitre III Contacts localisés dans les cellules n-PERT BJ

Ce chapitre présente une description détaillés des contacts localisés dans les cellules photovoltaïques n-PERT BJ, qui font l'objet de notre étude. Pour cela, nous mettons en évidence sur leurs caractéristiques, leurs mécanismes métallurgiques de formation et leur impact sur les performances des cellules. Par la suite, nous détaillerons les différentes techniques de réalisation des contacts localisés. Enfin, nous présentons les caractéristiques des pates d'aluminium utilisés pour la réalisation des contacts localisés dans les cellules photovoltaïques n-PERT BJ.

III.1. Contacts arrière localisés dans les cellules n-PERT BJ

III.1.1. Présentation

Les contacts localisés sont des zones spécifiques où la pâte d'aluminium sur la face arrière de la cellule est en contact direct avec le silicium. Pour cela deux différentes techniques peuvent être adoptées : (i) application de la pâte d'aluminium sur la totalité des couches de passivation ouvertes localement et formation ultérieur des contacts durant le recuit RTP. (ii) application de la pâte d'aluminium sur la totalité des couches de passivation non ouvertes, recuit RTP puis formation de contact ultérieure par ablation laser à travers les couches de passivation.

La Figure III.1 montre un schéma simplifié d'un contact localisé présenté par Rauer et al [18]. Dans ce travail, le contact localisé a été fabriqué à partir de plaquettes de silicium de type p dopées au bore orientées à zone flottante (100). L'empilement Al₂O₃/SiN_x a été ouvert localement par ablation laser créant des points d'un diamètre d'environ 75 µm. Les contacts locaux présentent une forme caractéristique de pyramides tronquées. La profondeur des contacts est caractérisée par une couche eutectique AlSi qui se forme par interaction entre la pâte d'aluminium et le silicium durant le recuit RTP. En dessous de cette couche eutectique, il se trouve une zone fortement dopé par aluminium Al-P+. Cette région agisse d'un côté comme un champ de surface arrière local et d'autre coté comme un émetteur arrière local. L'épaisseur de cette région Al-p+ dépend de la concentration de dopage en aluminium. Plus la concentration en aluminium est élevée, plus l'épaisseur de la couche Al-P+ est grande, ce qui entraine un bon blindage électronique [18].

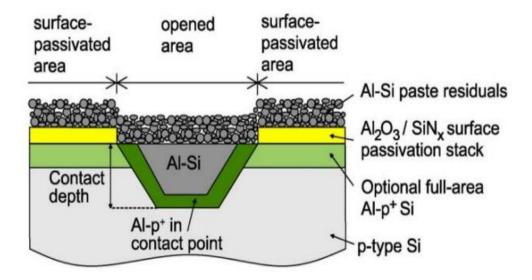
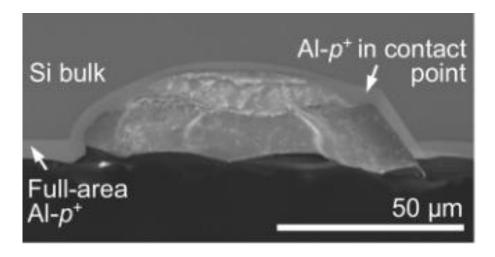



Figure III.1 : Structure schématique des contacts ponctuels locaux en alliage d'aluminium [18].

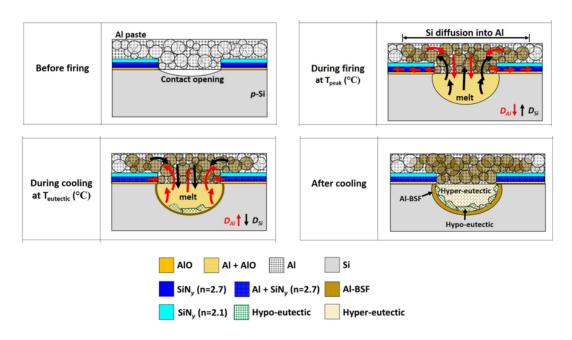

La Figure III.2 présente une micrographie MEB en section transversale de contact localisé présenté par Rauer et al [18]. Comme montré sur le schéma de la Figure III.1, le contact local présente une forme caractéristique de pyramides tronquées. Grâce au contraste de potentiel, l'interface entre la région Al-p+ et le volume de Si est clairement visible et peut être utilisée pour les mesures d'épaisseur d'Al-p+. Le contact ponctuel présente une profondeur de contact égale à l'épaisseur de la couche eutectique AlSi. La largeur des points de contact est ainsi limitée par l'empilement de passivation Al₂O₃/SiNx qui recouvre la région Al-p+ sur toute la surface des bords.

Figure III.2 : Micrographie MEB en section transversale de contact localisé présenté par Rauer et al [18].

III.1.2. Mécanismes métallurgiques de formation des contacts localisés

La Figure III.3 présente un schéma illustratif de la formation des contacts localisés dans les cellules photovoltaïques. Durant le recuit RTP, lorsque la température de frittage atteint 300°C, le silicium à l'interface Al-Si commence à se dissoudre en Al, lorsque la température de recuit atteint la température eutectique (577 °C), une phase liquide d'alliage Al-Si est générée à l'interface Al-Si. À mesure que la température augmente, la phase liquide de l'alliage Al-Si et la proportion de silicium dans cette phase augmentent. Lors de la formation de la phase liquide Al-Si, le Si et l'Al diffusent thermiquement l'un dans l'autre, le Si migre rapidement dans la couche d'Al et l'Al est dopé dans la matrice de Si. Lors du refroidissement, la diffusion thermique de l'Al et la recristallisation du Si forment conjointement une couche P+ fortement dopée. Lorsque la température est inférieure à 577 °C, la phase liquide Al-Si durcit pour former des couches d'alliage Al-Si [20].

Figure III.3 : Schéma illustratif de la formation des contacts localisés dans les cellules photovoltaïques [20].

III.1.3. Réalisation des contacts localisés par ablation Laser

Le laser est l'abréviation de « light amplification by stimulated emission of radiation » qui signifie « amplification de la lumière par émission stimulée de radiation » [18]. On va expliquer la méthode adoptée par Rauer et al [18] pour la réalisation des contacts localisés dans les cellules photovoltaïque PERC. Dans cette étude, les contacts localisés ont été réalisés sur plaquettes de silicium de type p obtenues par la méthode de zone flottante (100). L'émetteur de la face arrière a été réalisé par diffusion de bore. La face arriéré a été ensuite passivée par un empilement composé d'une couche d'oxyde d'aluminium (Al₂O₃) de 10 nm d'épaisseur, déposée par ALD, et d'une couche de nitrure de silicium (SiNx) déposée par PECVD de 80 nm d'épaisseur. L'empilement Al₂O₃/SiNx a été ouvert localement par ablation à l'aide d'un laser Lumera Super Rapid (longueur d'onde de 532 nm et largeur d'impulsion de 12 ps), créant des points d'un diamètre d'environ 75 µm et d'un pas L de 900 µm, sans enlèvement significatif de Si de la surface. Par la suite, la pâte d'aluminium a été sérigraphie sur toute la surface arrière et séchée pour éliminer les solvants. Les pâtes d'aluminium ont subi un recuit RTP à une température maximale de 900 °C pour former les contacts locaux avec la surface du silicium dans les points ouverts. Un schéma explicatif des contacts localisés obtenus par Rauer et al [18] a été déjà présenté sur la Figure III.1.

III.1.4. Impact des contacts localisés sur les performances des cellules photovoltaïques

Plusieurs auteurs ont étudié les performances des cellules photovoltaïques n-PERT en fonction du pourcentage massique de Si ajouté dans la pâte d'aluminium [21]. Dans l'étude effectuée par Zih-Wei Peng et al [21], les auteurs ont trouvé que la tension en circuit ouvert (Voc) montre une amélioration considérable (~120 mV de plus) lors de l'ajout d'additifs Si à la pâte d'aluminium. Avec l'augmentation de la teneur en additifs Si dans la pâte, le paramètre peut encore être amélioré jusqu'à un Voc moyen maximal de 682 mV. Par conséquent, le facteur de forme (FF) a été amélioré de 65% à 80% et le rendement de la cellule de 14% à 21%.

Cet effet est attribué à une surface de contact réduite (seulement 1.3 %), et à une région dopée à l'aluminium correctement formée, ce qui entraine une réduction du la densité de courant de recombinaison ($J_{0, met (Al)}$) qui exprimé par équation suivante [19] :

$$J_{0,Met(Al)} = [J_{0,Total} - J_{0,Emitter}(2 - f_m)]/f_m$$
 (Eq III.1)

Avec:

 $J_{0,Met\,(Al)}$: La densité de courant de recombinaison attribuée à la métallisation arrière en aluminium (Al).

 $J_{0.Total}$: La densité de courant de recombinaison totale, mesurée sur toute la cellule.

 $J_{0.Emitter}$: La densité de courant de recombinaison attribuée à l'émetteur.

 f_m : La fraction de la surface couverte par la métallisation arrière.

Le tableau III.1 présente les performances des cellules n-PERT BJ obtenu par Zih-Wei Peng et al [21].

Tableau III.1 : Les performances des cellules n-PERT BJ en fonction du pourcentage massique de Si ajouté dans la pâte d'aluminium [21].

Si-additive (wt %)	$J_{0, met}$ (fA/cm ²)	J_{SC} (mA/cm ²)	Voc(V)	FF (%)	Eta (%)
no	2839	39.0	0.560	64.5	14.08
low	101	39.3	0.675	80.4	21.36
mid	703	39.3	0.680	80.7	21.59
high	635	39.3	0.682	80.6	21.61

III.2. La sérigraphie

La métallisation par sérigraphie est un procédé de revêtement ou une couche métallique est déposée sur un substrat. Dans le cadre des cellules photovoltaïques, cette couche métallique va servir à collecter le courant photo- généré lors de l'absorption de la lumière par la cellule. Étant l'une des étapes les plus coûteuses de la fabrication des cellules, elle joue à la fois un rôle électrique et optique, de par la contribution des contacts à l'ombrage et à la résistance sérient. De plus, ils peuvent réduire la tension des cellules solaires en raison de la recombinaison des porteurs de charge à l'interface. La sérigraphie est utilisé depuis 1970 dans l'industrie photovoltaïque car elle possède divers avantages tel que : Simplicité et fiabilité du procédé, Durabilité de l'équipement, Faible taux de rejets et la production en chaine (1000 à 3000 cellules par heure).

Dans l'ensemble, les approches de métallisation basées sur la sérigraphie de pâtes à film épais contenant de l'Ag ou de l'Al suivie d'un séchage et un recuit RTP pour la formation des contacts. Au cours du processus de métallisation par sérigraphie la plaquette de silicium est positionnée avec précision sous la section d'impression et à une distance spécifique de l'écran (appelée le Gap). À l'étape suivante, une raclette est déplacée avec une pression et une vitesse définies (contrôlées par la tête d'impression), pressant ainsi localement l'écran contre la plaquette de silicium. L'écran se compose généralement d'une maille en acier inoxydable montée sur un cadre en aluminium qui comporte des zones bloquées par une émulsion et des zones ouvertes pour le passage de la pâte. Et en raison de la tension élevée des mailles, l'écran se détache dans toutes les zones où la raclette n'appuie pas sur la tranche de silicium, ce qui améliore l'impression et empêche le wafer de silicium de coller à l'écran. Après l'impression,

la raclette est relevée et ramenée à sa position initiale, tandis qu'une barre au sol remplit les ouvertures de l'écran de pâte en vue de l'impression. La plaquette imprimée est transportée par la suite vers la section de déchargement, puis dans un four de séchage afin que la plaquette imprimée puisse passer par le recuit RTP [22]. La Figure III.4 présente schématisation du procédé de sérigraphie.

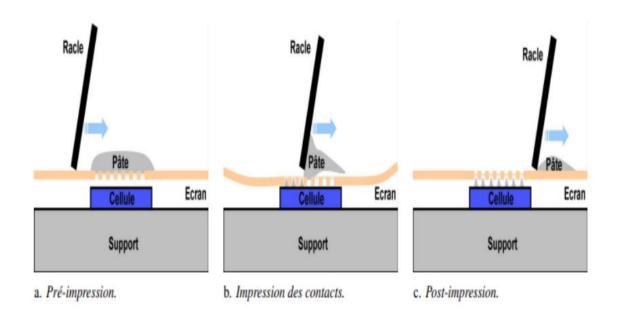


Figure III.4 : Schématisation du procédé de sérigraphie [22].

III.3. Les pâtes d'aluminium

Les pâtes d'aluminium de la sérigraphie pour la métallisation de la face arrière des cellules photovoltaïques doivent répondre à plusieurs exigences. Les premières exigences sont liées au processus de sérigraphie où les pâtes doivent être bien imprimables, en prenant en considération le rapport hauteur/largeur élevé pour faciliter la conductivité latérale. Le deuxième groupe d'exigences concerne les propriétés du contact final. Ce dernier doit présenter une conductivité latérale élevée et une faible résistance de contact avec le substrat. La troisième exigence est d'obtenir une bonne adhérence mécanique avec le substrat de Si et d'assurer une stabilité à long terme des contacts.

Pour répondre à ces exigences, les pâtes de sérigraphie pour la métallisation de la face arrière de la cellule photovoltaïque avec des émetteurs au Bore contiennent trois constituants principaux : des composants organiques (liant et solvant), jusqu'à 5 % de verre fritté et 90 % de poudre d'aluminium. Les composants organiques sont responsables des propriétés

d'impression et empêchent le dessèchement de la pâte. Ils sont brûlés lors du processus de séchage et de cuisson après le dépôt de la pâte [4].

La fritte de verre remplit différents rôles :

- Elle affecte le mouillage du contact mécanique entre la pâte et le silicium.
- Le verre élimine la couche antireflet sur la plaquette et établit un contact direct entre le silicium et aluminium contenu dans la pâte.
- Pour le contact avec les émetteurs de bore, le verre est en outre nécessaire pour faciliter la croissance des cristaux d'aluminium.

La pâte d'aluminium est étudiée comme principal matériau de métallisation utilisé dans la technologie de formation de l'émetteur p+ des cellules n-PERT BJ. L'histoire de cette technologie remonte à 1930, lorsque la compagnie General Electric a breveté un vernis conducteur composé d'environ 50 % de vernis à l'huile, 40 % de lithopone et 10 % de suie ou de poussière métallique.

Une décennie plus tard, des avancées ont permis le développement de pâtes de métallisation intégrant des poudres métalliques, un véhicule organique et un flux inorganique, plus tard nommé fritte de verre. Cette dernière s'est révélée essentielle pour la formation de couches métalliques adhérentes sur divers matériaux tels que le quartz, la céramique et le verre.

Le véhicule organique joue un rôle crucial dans les propriétés d'impression, la durée de vie et les performances électriques de la pâte cuite, tandis que les frittes de verre, en fondant à haute température sans volatilisation puis en se solidifiant au refroidissement, assurent une excellente adhérence. De plus, elles renforcent la fiabilité et les performances électriques des contacts, tout en améliorant l'adhérence entre la couche frittée d'Al et le substrat de Si. Sur le plan esthétique, elles réduisent la rugosité et éliminent les irrégularités de surface, minimisant ainsi le risque de rupture des cellules solaires lors de l'assemblage des modules.

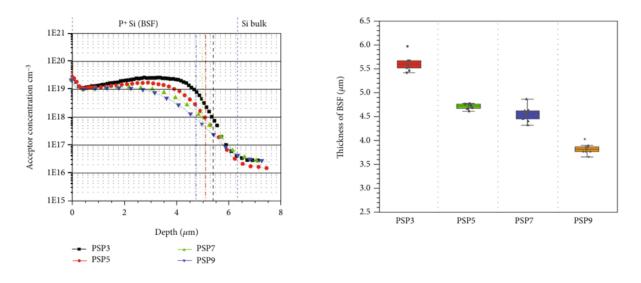
La conception des pâtes d'aluminium pour les cellules photovoltaïques repose principalement sur des propriétés viscoélastiques permettant l'impression d'un film uniforme. Traditionnellement, ces pâtes contiennent de la poudre d'aluminium, de la fritte de verre et un véhicule organique. Toutefois, la teneur de l'aluminium ne dépasse pas généralement 85 % en raison de son volume important, nécessitant une proportion plus élevée de véhicule organique pour garantir une impression optimale.

Pour les pâtes d'aluminium :

- Le véhicule organique, représentant environ 15 % à 40 % en poids, est incorporé pour améliorer l'applicabilité et l'imprimabilité de la pâte lors de son application par sérigraphie. Il est obtenu en dissolvant une ou plusieurs résines connues dans un ou plusieurs solvants.
- La poudre d'aluminium, d'un diamètre compris entre 1 et 20 μm, est ajoutée en proportion de 60 % à 85 % en masse.
- La frite de verre est intégrée en quantité allant de 1 % à 5 % en masse.

Le véhicule organique dans la pâte d'aluminium joue un rôle essentiel en maintenant la structure viscoélastique de la pâte, principalement constituée de particules d'aluminium, afin de faciliter son application par sérigraphie. Il assure également l'adhésion entre le substrat et le revêtement d'aluminium après séchage. De plus, il peut contenir divers additifs et agents fonctionnels, tels que des antioxydants, des inhibiteurs de corrosion, des agents antimousse, des épaississants, des agents de couplage, des agents électrostatiques, des inhibiteurs de polymérisation, des agents thixotropes et anti-sédimentation, qui stabilisent la pâte et prolongent sa durée de conservation. Le choix du solvant repose généralement sur un solvant à haut point d'ébullition afin d'éviter le séchage prématuré de la pâte lors de la sérigraphie.

Pour améliorer la mouillabilité entre les groupes OH⁻ présents à la surface des particules d'aluminium et la résine, des additifs tels que les acides gras peuvent être incorporés, permettant ainsi de contrôler la concentration de solides et d'empêcher la sédimentation de la pâte dans les contenants.


Par ailleurs, les nouvelles générations de cellules solaires, comme les PERC bifaciaux et les PERT à jonction arrière avec des doigts en aluminium, nécessitent une pâte d'aluminium dotée de propriétés de viscosité et de thixotropie supérieures à celles des pâtes conventionnelles. Cela permet d'imprimer des doigts métalliques avec un rapport d'aspect élevé, grâce à une largeur d'impression de 100 à 200 μm.

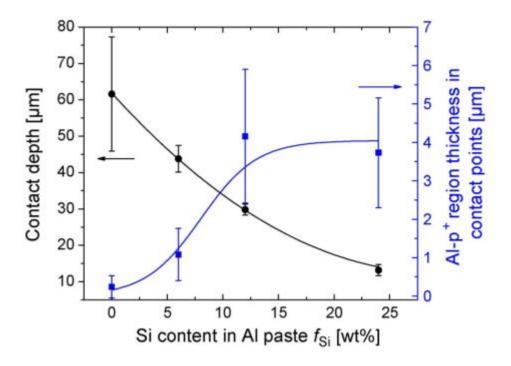
Concernant la composition, la pâte d'aluminium intègre généralement des frittes de verre à base de plomb (PbO) ou de bismuth (BiO). Ces frittes doivent être conçues de manière à ne pas traverser les couches de passivation en oxyde d'aluminium recouvertes de SiNx, tout en

garantissant une forte cohésion entre les particules d'aluminium et une excellente adhésion de l'électrode brûlée au SiNx [4].

III.3.1. Effet de la taille des particules d'aluminium dans la pâte d'aluminium sur les propriétés des contacts localisés

Zhu et al [23] ont étudié l'effet de la taille des particules d'aluminium dans les pattes d'aluminium sur les propriétés des contacts localisés. Pour cela, les auteurs ont préparé quatre pattes d'aluminium à partir des quatre différentes poudres d'aluminium avec différentes tailles allant de 6 à 15 µm. Les quatre pattes d'aluminium avec des tailles de particules allant de petites à grandes ont été identifiés comme PS3, PS5, PS7 et PS9.Les auteurs ont examiné par la suite les propriétés des contacts localisés réalisés à partir de ces pates d'aluminium. Les résultats ont montré que la concentration en aluminium augmente avec la diminution de la taille des particules d'aluminium. Par conséquent, l'épaisseur de la zone Al-p+ augmente avec la diminution de la taille des particules d'aluminium [23] (Figure III.5).

Figure III.5 : (a) Courbe de profilage capacité-tension (ECV) de quatre de pâte d'aluminium. (b) L'épaisseur de la couche Al-P+ pour les quatre de pâte d'aluminium [23].


III.3.2. Effet de l'ajout de Silicium dans la pâte d'aluminium sur les propriétés des contacts localisés

Tel que expliqué dans la section III.1.2, en raison du fort gradient de concentration en silicium au sein de la masse fondue Al-Si, par rapport à la pâte d'aluminium, une diffusion latérale rapide du silicium se produit de la masse fondue Al-Si vers la pâte d'aluminium, réduisant la

concentration en silicium au sein de la masse fondue Al-Si. Cela pose deux problèmes principaux, caractéristiques des contacts localisés :

- 1) Des profondeurs de contact importantes entraînent un élargissement significatif de la surface de contact.
- 2) L'épaisseur des régions Al-p+ aux points de contact est bien inférieure à 1,0 µm, ce qui entraîne un mauvais blindage électronique. De plus, les régions non alliées peuvent provoquer des shunts.

L'une des solutions pour remédier ces problèmes est la modification de la pâte d'aluminium par l'ajout de certaines teneur de silicium. Pour cela, on va présenter étude effectuée par Rauer et al [réf]. Dans cette étude, les auteurs ont modifié la composition de la pâte d'aluminium en ajoutant systématiquement de la poudre de silicium (granulométrie de 1 à 20 µm) afin de faire varier la teneur en silicium entre 0 et 24 % en poids. Les résultats ont montré que l'augmentation de la teneur en Si dans la pâte d'aluminium réduit considérablement la profondeur de contact et entraine une augmentation de la région Al-p+ [18] (Figure III.6).

Figure III.6 : Profondeur de contact et épaisseur moyenne mesurée de la région Al-p+ aux contacts localisés en fonction de la teneur en Si ajoutée à la pâte d'aluminium [18].

III.4. Conclusion du chapitre

La réalisation des contacts localisés est l'une des étapes importantes dans le processus de fabrication des cellules photovoltaïques n-PERT. Les caractéristiques des contacts localisés affectent directement sur la tension en circuit ouvert (Voc) et par conséquent le rendement de la cellule. Les caractéristiques des contacts localisés dépendent fortement des caractéristiques de la pâte AlSi utilisée pour la métallisation de face arrière des cellules photovoltaïque n-PERT. L'optimisation des caractéristiques de la pâte AlSi comme la taille des particules d'aluminium et la teneur de Si entraine une amélioration des propriétés des contacts localisés tel que : la profondeur de contact et l'épaisseur de la région Al-p+.

Chapitre IV Protocole expérimental et méthode de caractérisation

Chapitre IV. Protocole expérimental et méthode de caractérisation

Ce chapitre est consacré à la description de l'ensemble des techniques et procédures expérimentales utilisées pour la réalisation de ce travail. Nous détaillons d'abords les procédures expérimentales mises en œuvre pour la synthèse et la déposition des contacts Al-Si. Puis, nous présentons les techniques de caractérisation des couches élaborées.

IV.1. Préparation des contacts Al-Si

IV.1.1. Préparation de la poudre de Silicium

Dans le cadre de notre travail, nous avons broyé les poudres de silicium (Si) en fonction du temps de broyage, en utilisant une vitesse de rotation du plateau de $\Omega=300$ tr/min. Les temps de broyage choisis sont : 1 h, 2 h et 4 h. Un mélange de poudres de 10,87 g, posé à l'aide d'une balance, a été introduit dans une jarre contenant des billes en acier-chrome. La masse des billes est égale à 10 fois la masse de la poudre. L'ensemble a été manipulé dans une boîte à gants afin d'éviter toute contamination par l'oxygène. Par la suite, les jarres ont été transportées vers le broyeur, où elles ont été fixées sur des supports rotatifs. Le broyage a été effectué selon un cycle composé de 20 minutes de broyage, suivies de 10 minutes de pause, avec inversion de la rotation à chaque cycle. Cette alternance permet de limiter l'échauffement excessif des jarres et uniformiser le broyage des poudres.

La Figure IV.1 présente une image de broyeur de marque Retsch PM 100 utilisé dans le cadre de notre travail.

Figure IV.1: Broyeur de marque Restsch PM 100.

Les conditions de synthèse des poudres de silicium sont regroupées dans le tableau IV.1.

Tableau IV.1: Les conditions de préparation des alliages.

Echantillons	Nombre des	Rapport	Masse de	Durée de	Vitesse de
	billes	Poudre/bille	poudre Si (g)	broyage (h)	broyage
					(tours /min)
$\overline{S_0}$	/	/	/	0	/
S_1	11	1:10	10.87	1	300
S_2	11	1:10	10.87	2	300
S_3	11	1:10	10.87	4	300

Chapitre IV. Protocole expérimental et méthode de caractérisation

La granulométrie des poudres de silicium en fonction du temps de broyage a été mesurée à l'aide d'un analyseur de granulométrie par diffraction laser (LS 13 320, Beckman Coulter). La surface spécifique des poudres de silicium en fonction du temps de broyage a été testée par des mesures BET (Micromeritics ASAP 2000). Le tableau IV.2 présente la granulométrie des poudres de silicium ainsi que la surface spécifique en fonction du temps de broyage.

Tableau IV.2 : Granulométrie et surface spécifique des poudres de silicium en fonction du temps de broyage.

Echantillons	D ₁₀ (μm)	D ₅₀ (μm)	D ₉₀ (μm)	Surface spécifique (m2/g)
S_0	2.74	8.22	16.92	1.6354 ± 0.0258
S_1	0.91	5.73	11.85	1.8319 ± 0.0420
S_2	0.57	2.57	5.13	5.0522 ± 0.0666
S_3	0.25	0.44	0.78	7.4372 ± 0.0849

IV.2.2. Préparation des pates AlSi

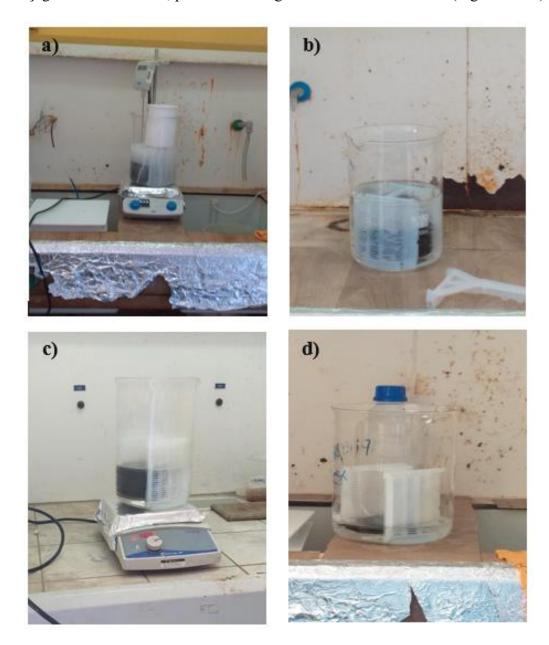
L'objectif de notre travail est de réaliser des contacts Al-Si sur des cellules solaires de type n. Pour cela, nous avons modifié la composition de la pâte d'aluminium en y ajoutant de la poudre de silicium (Si) pour les différentes granulométries réalisés (Tableau IV.2). En se basant sur le travail de Slimani et Zouyzed [4], la teneur de Si ajoutée à la pâte d'aluminium est 3 %. A la fin, nous avons préparé quatre pâtes AlSi avec différentes granulométries des poudre Si. La pâte d'aluminium de base est de la marque « Monocrystal » référence PASE-1207, et est fournie en conditionnement de 2000 g (Figure IV.2) [18].

Figure IV.2 : Image montrant la pate d'aluminium de base « Monocrystal » et la poudre intiale de Silicium utilisées « Si_0 ».

Pour chaque granulométrie de poudre de Si, nous avons mélangé la pâte d'Aluminium avec la poudre de Silicium manuellement à l'aide d'une spatule métallique pour obtenir les différents échantillons de composition Al-3% Si (Figure IV.3).

Figure IV.3 : Image montrant la préparation des pates Al-Si.

Enfin, les pâtes préparées sont placées dans des boîtes noires propres afin d'éviter tout contact avec l'environnement extérieur, et surtout de les protéger de la lumière (Figure IV.4).


Figure IV.4 : Image montrant les boites noires utilisées pour conserver les pates préparées.

IV.2.3. Préparation des plaquettes de Silicium

Au cours de cette étude, nous avons utilisé des plaquettes de silicium monocristallin de type n, présentant une orientation cristallographique (100). Ces plaquettes, de forme circulaire, ont une épaisseur d'environ 200 µm et un diamètre d'environ 10 cm. Elles ont été soumises aux différentes étapes de préparation chimique (Figure IV.5).

- L'amincissement : Cette étape consiste à placer les plaquettes dans une nacelle en téflon, puis à les immerger pendant 5 minutes dans une solution de 50 % NaOH à une température de 80°C, suivie d'un rinçage à l'eau d'ionisée et séchage avec l'azoté (Figure IV.5a).
- Neutralisation : Afin d'ajuster le pH sur la surface plaquettes à un niveau neutre, les plaquettes ont été immergée pendant 15 minutes dans une solution de 50 % HCl. Les plaquettes sont ensuite rincées de nouveau à l'eau d'ionisée, puis séchées sous un flux d'azote sec (Figure IV.5b).
- Oxydation : La surface des plaquettes de silicium ont été oxydé en les immergeant pendant 20 min dans l'eau d'ionisée chauffée à 100 °C (Figure IV.5c).
- La désoxydation : Cette étape vise à éliminer l'oxyde de silicium natif (SiO₂) ainsi que les impuretés présentes à la surface des plaquettes. Pour cela, les plaquettes sont

immergées pendant 1 minute dans une solution de 10% HF. Ce traitement est suivi d'un rinçage à l'eau d'ionisée, puis d'un séchage sous un flux d'azote sec (Figure IV.5d).

Figure IV.5 : Etapes de péparation des palquettes de Si : a) Amancissment b) Neutralisation c) Oxydation d) Désoxydation.

IV.2.4. La sérigraphie

Dans cette étape, les pâtes préparées ont été déposées sur les plaquettes de silicium à l'aide d'une machine de sérigraphie semi-automatique de marque DEK 1760RS (Figure IV.6).

Figure IV.6: Image montrant la machine de séraphine DEK 1760RS utilisé.

Nous avons utilisé un écran composé d'une maille en acier inoxydable montée sur un cadre en aluminium. Il comporte des zones bloquées par une émulsion ainsi que des zones ouvertes permettant le passage de la pâte. Les zones ouvertes ont une de forme rectangulaire de largeur de 3 cm, et des doigts de largeur de 85 µm (Figure IV.7). En effet, la réalisation d'une zone rectangulaire a pour but de découper des échantillons de dimensions assez large pour des caractérisations qui nécessitent des dimensions larges telles que XPS et DRX. Cependant, la réalisation des doigts de largeur de 85 µm a pour but de se rapprocher le plus possible des dimensions des contacts localisés qui ont généralement une largeur entre 70-90 µm [18].

Avant d'être placé dans la machine de sérigraphie, l'écran a été nettoyé avec de l'acétone, puis séché à l'air comprimé afin d'éviter toute contamination.

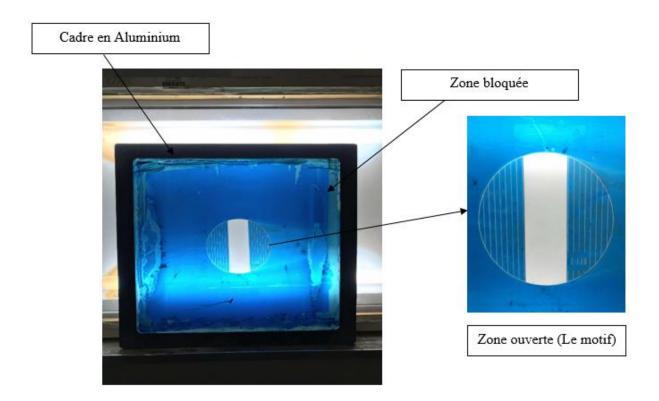


Figure IV.7 : Image de l'écran de base utilisé.

Par la suite, la plaquette de silicium a été positionnée avec précision sous la zone d'impression, en respectant une distance spécifique par rapport à l'écran (Figure IV.8).

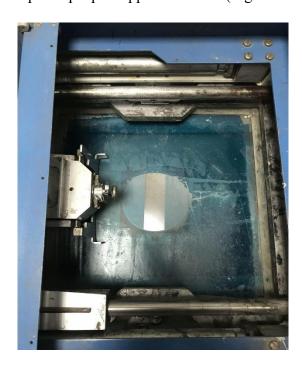


Figure IV.8 : Image montrant le positionnement de la plaquette par rapport à l'écran.

Chapitre IV. Protocole expérimental et méthode de caractérisation

Une couche épaisse de pâte est déposée sur la partie supérieure de l'écran, puis une raclette en caoutchouc fixée à un long manche en métal est utilisée pour faire glisser la pâte sur toute la surface de l'écran, recouvrant ainsi l'ensemble du pochoir. La pâte est ensuite pressée à travers les zones ouvertes du pochoir et se dépose sur la plaquette située en dessous, formant le motif souhaité (Figure IV.9). Il est indispensable de nettoyer l'écran avec de l'acétone et de l'air comprimé à chaque changement de pâte afin d'éviter toute contamination croisée.



Figure IV.9 : Image montrant l'application de la pâte sur l'écran.

La Figure IV.10 présente une image des plaquettes sérigraphies réalisées.

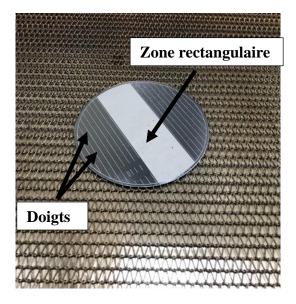


Figure IV.10 : Plaquette sérigraphie réalisée.

Chapitre IV. Protocole expérimental et méthode de caractérisation

Par la suite, un processus de séchage des plaquettes sérigraphiées a été effectué à l'aide d'un four spécifique. Pour cela, les plaquettes sont transportées sur un convoyeur à travers une enceinte où de l'air soufflé à une température de 250 °C les traverse pendant environ 5 minutes (Figure IV.11). Cette étape permet le séchage des plaquettes sérigraphiées par l'évaporation des solvants et des diluants présents dans la pâte d'aluminium.

Figure IV.11: Image montrant le four de séchage utilisé.

IV.2.5. Le recuit RTP (Rapid Thermal Processing)

L'objectif de cette épare est la formation des contacts Al-Si. Dans notre travail, le recuit RTP a été réalisé dans le four RTP AllWin21 Accu Thermo AW610. Ce système est conçu autour d'une chambre en quartz, qui constitue la chambre de recuit. À l'arrière de cette chambre se trouvent des entrées permettant de recevoir quatre gaz de processus : deux entrées pour l'azote, une pour l'oxygène et une pour l'argon. La chambre en quartz, refroidie par de l'azote, est entourée de 21 lampes halogènes en tungstène, d'une puissance de 1 kW chacune, réparties en haut (10 lampes) et en bas (11 lampes). L'ensemble du système, y compris la partie électrique, est refroidi par un circuit d'eau en circulation ouverte. Figure IV.12 montre la présentation du four RTP AllWin21 Accu Thermo AW610 utilisé, accompagnée de son schéma explicatif [4].

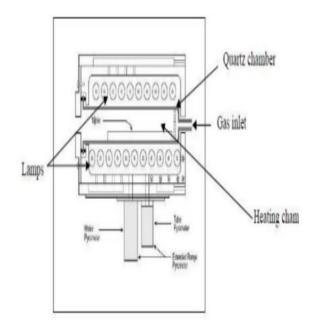


Figure IV.12: Image montrant le four RTP utilisé avec son schéma explicatif.

Pour notre travail, Le recuit RTP a été réalisé jusqu'à une température maximale de 783 °C. Pour cela, les plaquettes sérigraphiées ont été placées sur un porte-substrat en quartz avant d'être introduite dans le four. La température à l'intérieur du four est mesurée à l'aide d'un thermocouple de type K, et les cycles de température sont programmés via un logiciel de contrôle RTAPRO. Ce logiciel permet également un contrôle complet et un diagnostic du système AccuThermo RTP. La Figure IV.13 présente un profil RTP typique utilisé dans le cadre de notre travail.

Le procédé RTP débute par une purge à l'azote de la chambre de recuit pendant quelques secondes à température ambiante afin d'éviter le choc thermique des plaquettes. A la température 500 °C, les résidus des solvants ont tous évaporés. Lorsque la température de frittage atteint la température eutectique (577°C), une phase liquide d'alliage Al-Si est générée à l'interface Al-Si. À mesure que la température augmente, la phase liquide de l'alliage Al-Si augmente. Lors du refroidissement assisté par le flux d'azote, et lorsque la température est inférieure à 577 °C, la phase liquide Al-Si se solidifie durcit pour former des couches d'alliage Al-Si.

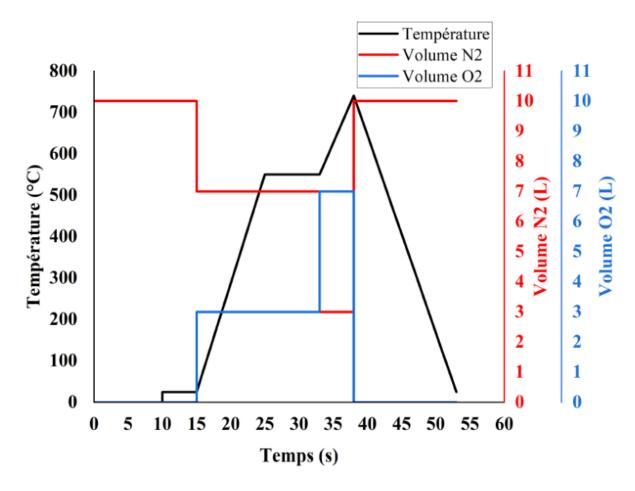


Figure IV.13: Profil RTP utilisé dans notre travail.

IV.2.6. Découpage des échantillons

Les plaquettes ont ensuite été découpées en des échantillons avec des dimensions adaptées à l'analyse envisagée en utilisant un laser de marque ASYS SOLAR "Edge Isolation" (Figure IV.14). L'utilisation du laser avait pour but d'obtenir une haute précision sur les dimensions des échantillons, éviter l'échauffement des échantillons lors de découpage et de réduire les pertes de matière.

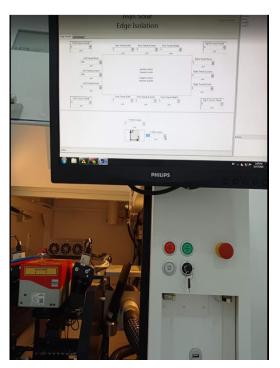


Figure IV.14: ASYS SOLAR "Edge Isolation".

IV.3. Techniques de caractérisation

IV.3.1. Microscope optique

Dans notre travail, le microscope optique (OM) a été utilisé principalement pour caractériser l'état de surface des contacts Al-Si réalisés (Planéité, couleur, porosités, etc.). Le microscope optique est équipé d'un logiciel assurant le transfert et le traitement des images acquises. Les observations sont réalisées à l'aide d'objectifs et d'oculaires qui permettent d'agrandir l'image d'une structure donnée, avec des grossissements allant de X 50 à X 1000, ce qui définit le pouvoir de grossissement et de résolution de ce microscope par rapport à d'autres [24].

Dans notre travail, les micrographies optiques ont été réalisées à l'aide d'un microscope optique à lumière réfléchie et transmise de marque ZEISS (Figure IV.15). Puisque nous intéressons uniquement à l'état de surface, nous avons travaillé en mode à lumière réfléchie.

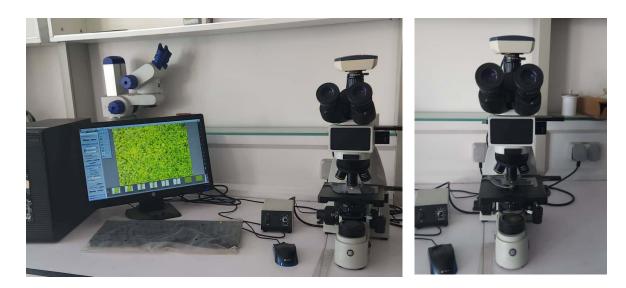


Figure IV.15: Microscope optique de la marque ZEISS.

Les micrographies optiques obtenues ont été ensuite traitées à l'aide du logiciel d'analyse d'image ImageJ pour mesurer la taille des grains, la porosité, etc (Figure IV.16).

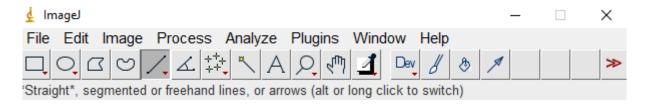


Figure IV.16: Image montrant l'interface de logiciel Image J.

La procédure de traitement de l'image via ImageJ commence d'abord par le chargement de la micrographie optique via le menu *File* > *Open*. Ensuite, on indique l'échelle dans la fenêtre *Set Scale*. Après cela, on modifie le type d'image à l'aide de l'option *Image* > *Type*. Pour calculer le taux de porosité, on clique sur *Adjust* > *Threshold*, puis on sélectionne toute la zone souhaitée à analyser La valeur du taux de porositésest indiqué dans la collone % Area sur la barre (Figure IV.17).

Chapitre IV. Protocole expérimental et méthode de caractérisation

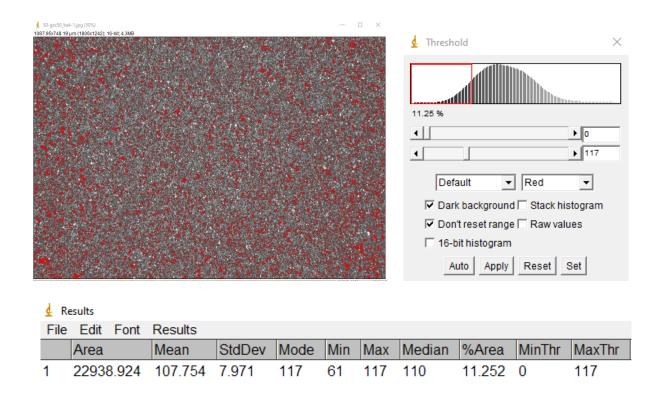


Figure IV.17: Utilisation d'Image pour le calcul le taux de porosités.

IV.3.2. Microscopie électronique à balayage (MEB)

Une étude plus fine des états de surface des contacts Al-Si ainsi qu'en clivage a été menée par le biais d'un Microscope Electronique à Balayage (MEB). La composition chimique et en point ont été identifiée par spectrométrie de rayons X à dispersion d'énergie (EDS, Énergie Dispersive X-ray Spectroscopie) installée sur le MEB. Le MEB produit des images en balayant l'échantillon à l'aide d'un faisceau d'électrons focalisé. Ce faisceau pénètre jusqu'à une profondeur de quelques microns, en fonction de la tension d'accélération et de la densité de l'échantillon [24].

La figure IV.18 présente un schéma explicatif des différents composés du MEB.

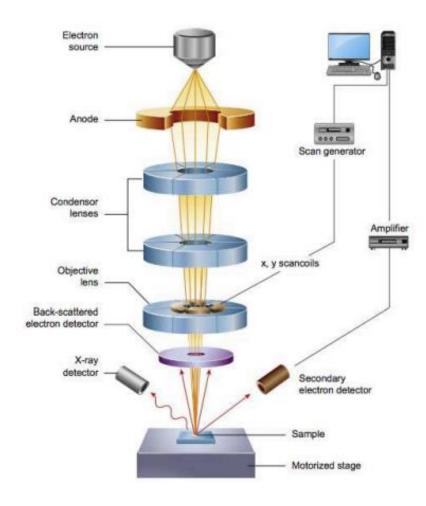
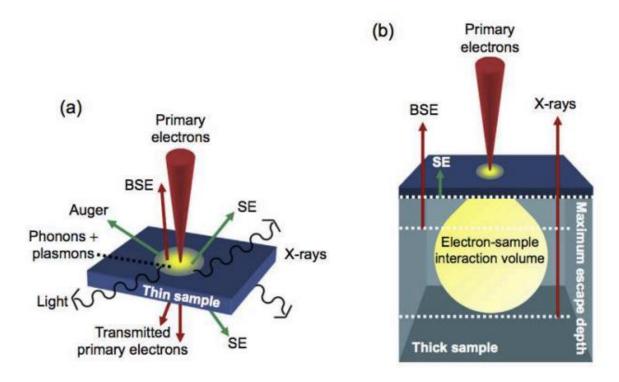


Figure IV.18: Représentation des différents composants d'un MEB.


Plusieurs types de rayonnement peuvent se produire après une interaction entre les électrons et la matière, notamment :

- Les électrons secondaires (Secondary electrons SE): Ils sont générés par l'ionisation d'un atome du matériau par un électron du faisceau incident, également appelé électron primaire, dans une interaction inélastique. L'électron primaire transfère une partie de son énergie à un électron peu lié de la bande de conduction, ce qui provoque l'éjection de cet électron du substrat. En raison de leur faible énergie (< 50 eV). Seuls les électrons secondaires émis à proximité de la surface du matériau (à moins de 10 nm) sont collectés par le détecteur pour former l'image observée.
- Les électrons rétrodiffusés (Backscattered electrons BSE): Ils sont générés lors de la collision entre les électrons incidents du faisceau et les noyaux d'atomes du substrat, dans une interaction élastique. Ces électrons dispersés possèdent une haute énergie,

proche de celle du faisceau incident, ce qui leur permet d'être recueillis depuis une plus grande profondeur dans le matériau par rapport aux électrons secondaires. Le nombre d'électrons rétrodiffusés augmente avec le numéro atomique Z de l'échantillon, indiquant que la diffusion est favorisée pour les atomes lourds.

• Les rayons X (X-rays): L'émission de rayons X est le résultat de l'interaction entre le faisceau d'électrons incidents et les électrons de cœur du matériau. Lorsqu'un électron incident transfère suffisamment d'énergie pour ioniser un atome et éjecter un électron d'une couche interne (k, m, l), un électron d'une couche externe comble le vide laissé par l'électron éjecté afin de revenir à son état fondamental. La différence d'énergie entre ces deux états est émise sous forme d'un photon X.

Comme le montre la Figure IV.19, ils sont extraits plus ou moins profondément du matériau analysé et le volume d'interaction entre le faisceau incident et le matériau a une forme en poire. Ces signaux permettent d'afficher une image de la surface analysée avec un contraste de topographie et/ou de composition chimique [24].

Figure IV.19 : a) Interaction entre l'échantillon et le faisceau d'électron incident b) Poire d'interaction.

Dans notre travail, les micrographies MEB des contacts Al-Si ont été réalisées en utilisant un Microscope Electronique à Balayage (MEB) de type JSM-7610F Plusau, équipé d'une

spectrométrie de rayons X à dispersion d'énergie (EDS, Energy Dispersive X-ray Spectroscopy) pour les analyses de la composition chimique (Figure IV.20).

Figure IV.20 : Microscope Electronique à Balayage (MEB) de type JSM-7610F Plus (CRTSE).

IV.3.3. Micro-analyseur à sonde électronique (EPMA)

Un micro-analyseur à sonde électronique (EPMA) est un instrument à microfaisceau utilisé principalement pour l'analyse chimique non destructive *réalisée sur les petits échantillons solides*. L'importance principale d'un EPMA réside dans sa capacité à réaliser des analyses élémentaires quantitatives et précises à de très petites tailles de points (de 1 à 2 microns), principalement par spectroscopie dispersive en longueur d'onde (WDS) [25].

Une microsonde électronique fonctionne selon le principe suivant : si un matériau solide est bombardé par un faisceau d'électrons accéléré et focalisé, le faisceau incident possède suffisamment d'énergie pour libérer la matière et énergie de l'échantillon. Ces interactions électron-échantillon libèrent principalement de la chaleur, mais produisent également des électrons dérivés et des rayons X. La génération de rayons X est produite par

les collisions inélastiques des électrons incidents avec les électrons des couches internes des atomes de l'échantillon; lorsqu'un électron de la couche interne est éjecté de son orbite, laissant une lacune, un électron de la couche supérieure tombe dans cette lacune et doit pour cela libérer de l'énergie (sous forme de rayons X). Ces rayons X quantifiés sont caractéristiques de l'élément (Figure IV.21) [25].

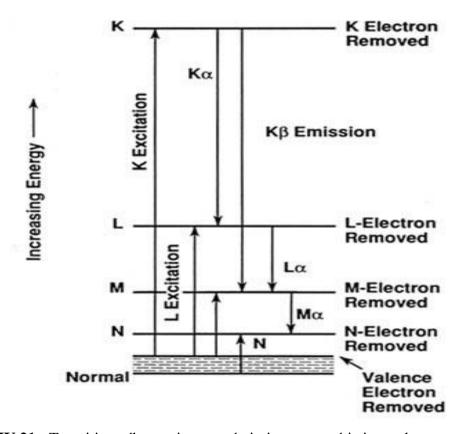


Figure IV.21: Transitions électroniques et émissions caractéristiques des rayons X [25].

L'EPMA se compose de quatre éléments principaux, de haut en bas [25] :

- Une source d'électrons, généralement une cathode à filament W appelée « canon ».
- Une série de lentilles électromagnétiques situées dans la colonne de l'instrument, utilisées pour condenser et focaliser le faisceau d'électrons émanant de la source, cela comprend l'optique électronique et fonctionne de manière analogue à l'optique lumineuse.
- Une chambre d'échantillon, avec un étage d'échantillon mobile (XYZ), qui est sous vide pour empêcher les molécules de gaz et de vapeur d'interférer avec le faisceau d'électrons

sur son chemin vers l'échantillon, un microscope optique permet une observation optique directe de l'échantillon.

 Une variété de détecteurs disposés autour de la chambre d'échantillon qui sont utilisés pour collecter les rayons X et les électrons émis par l'échantillon.

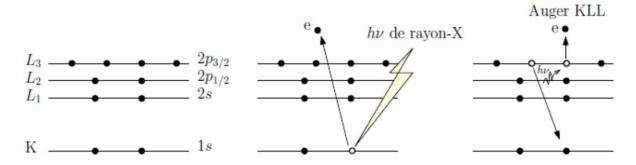
Dans notre travail, nous avons utilisés EPMA de marque Jeol JXA 8230 (Figure IV.22), afin de faire des analyses quantitative de la composition chimique des contacts AlSi ainsi que d'analyser la dispersion des différents éléments chimique au sein des contacts AlSi.

Figure IV.22: Microanalyseur à sonde électronique (EPMA) Jeol JXA 8230.

IV.3.4. X-ray Photoelectron Spectroscopy (XPS)

L'analyse XPS est l'une des techniques d'analyse de surface non destructives les plus importantes et les plus largement disponibles, et les applications de cette méthode continuent de s'étendre. Les deux principaux avantages de cette technique sont sa sensibilité de surface (~10 nm en profondeur) et sa capacité à distinguer les différentes espèces dans l'environnement chimique. L'analyse XPS peut détecter tous les éléments, sauf l'hydrogène et l'hélium, avec des limites de détection d'environ 0.1% à 1% [26]. Dans note travail, cette technique est utilisée

Chapitre IV. Protocole expérimental et méthode de caractérisation


pour caractériser les liaisons chimiques des éléments présents dans la surface des contacts Al-Si.

Le principe de l'analyse XPS repose sur les théories de Planck et d'Einstein concernant l'interaction entre la lumière et la matière, ainsi que sur la notion de photon. Lorsqu'un échantillon est exposé à des rayons X monochromatiques à haute énergie (1253.6 eV pour une source de magnésium et 1486.6 eV pour une source d'aluminium), les électrons des niveaux de cœur absorbent cette énergie et sont émis. Ces photoélectrons sont ensuite détectés par un analyseur qui mesure leur quantité et leur énergie cinétique. La quantité de photoélectrons détectés est directement liée à la composition chimique de l'échantillon, tandis que leur énergie cinétique permet de déduire l'énergie de liaison de ces électrons dans les atomes, à partir de l'équation suivante [27]:

$$E_B = hv - E_k \quad (Eq\ IV.1)$$

Où E_B est l'énergie de liaison, hv est l'énergie du photon du rayon-X, et E_k est l'énergie cinétique mesurée. L'élément chimique peut être déduit à partir de l'énergie de liaison.

L'électron émis d'un niveau de cœur va laisser un état vide qui sera rempli par un électron d'un niveau d'énergie supérieure. La différence d'énergie entre les deux orbites sera transmise à un troisième électron qui va être émis. Ce dernier est appelé électron Auger. La Figure II.23 montre une représentation schématique du concept XPS. Les pics d'émission des électrons Auger sont nommés par trois lettres : la première désigne le niveau d'énergie final de l'électron recombiné, la deuxième correspond à son niveau initial et la troisième désigne le niveau d'énergie de l'électron émis. Par exemple, un pic Auger nommé KLL correspond à la transition d'un électron du niveau L au niveau K en émettant un électron secondaire du niveau L.

Figure IV.23 : Image schématique du concept de XPS et du processus de relaxation de l'atome ionisé par l'émission d'un électron Auger.

Chapitre IV. Protocole expérimental et méthode de caractérisation

Les principaux éléments d'un appareillage XPS sont [28] :

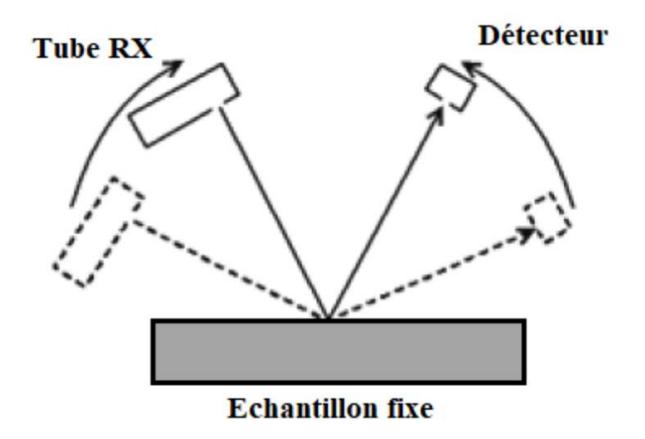
- Un système de pompage permettant d'atteindre l'ultravide ;
- Une source de rayons X;
- Un analyseur permettant de séparer les électrons émis en fonction de leur énergie cinétique et un système de comptage (associé à une informatique d'acquisition);
- Un canon ionique permettant de réaliser des cycles analyse/abrasion en profondeur ;
- Un canon à électrons pour l'analyse des échantillons isolants électriques ;
- Les porte-échantillons ;
- Un système d'exploitation des données.

L'équipement utilisé est de la marque Escalab Xi+ (Figure IV.24). L'appareil est muni d'une microsonde X monochromatique correspondant à la raie K_{alpha} de l'aluminium d'énergie égale à 1486.6 eV. Les analyses sont effectuées sous ultra-haut vide (10¹¹ Pa) obtenu par pompage ionique et sublimation de titane.

Figure IV.24: XPS Escalab Xi+ utilisé au CRTSE.

IV.3.5. La diffraction des Rayons X (DRX)

La diffraction des rayons X (DRX) a été utilisée pour l'identification des phases au sein des contacts Al-Si réalisés ainsi que le calcul des paramètres structuraux. Le principe de cette technique est le suivant [22] :


- Les faisceaux de rayons X produits par les tubes bombardent l'échantillon où ils sont réfléchis par des plans. Ces faisceaux déviés interfèrent les uns avec les autres, ce qui conduit à la production d'un signal intense lorsqu'ils existent un plan cristallin.
- C'est ce signal qui est capté par le détecteur est tracé sous forme d'un diffractogramme (spectre), ou les pics à des angles de diffraction très spécifiques.
- La position de ces pics est la véritable signature de la présence des plans cristallins à l'intérieur du cristal.
- La relation empirique entre les angles auxquels les pics sont observés et les distances entre les plans atomiques est définie par la loi de Bragg.

L'équipement utilisé est un diffractomètre Panalytical X'Pert Pro MPD de type géométrique Bragg-Brentano en mode $(\theta - \theta)$ (Figure IV.25). Le diffractomètre est muni d'une source de cuivre émettant des rayons X d'une longueur d'onde CuK $\alpha = 1,540598$ Å avec une tension d'accélération de 30 kV et un courant de 40 mA. L'ensemble des spectres de diffraction ont été enregistrés dans un domaine angulaire (2θ) allant de 20° à 90° .

Figure IV.25: Image montrant le Diffractomètre X'PertPro2 MPD Panalytical.

Dans le cas des diffractomètres à géométrie Bragg-Brentano en mode $(\theta - \theta)$, l'échantillon reste fixe en position horizontale alors que le tube (la source) et le détecteur de rayons X sont mobiles. Ils se déplacent simultanément en sens inverse dans le cercle goniométrique d'un angle θ avec une vitesse angulaire ω (Figure IV.26).

Figure IV.26 : Schéma simplifié de la géométrie Bragg-Brentano en mode $(\theta - \theta)$.

Les diffractogrammes obtenues ont été ensuite traité à l'aide de logiciel de traitement des spectres de diffraction de rayons X (DRX) X'Pert HighScore Plus de PANalytical afin d'identifier les phases existantes ainsi que ses paramètres structuraux (taille des cristallites, mico-déformation et le paramètre) (Figure IV.27).

L'identification des phases dans un spectre de DRX se fait en trois étapes majeures :

- La détermination de bruit de fond (Determine Background).
- La recherche les pics des phases constituant le spectre DRX (Search peaks).
- La sélection des phases dans la base de données. Parmi les candidats proposés, on choisit la phase (le candidat) sur la base des observations microstructurales et la valeur du Score la plus élevée

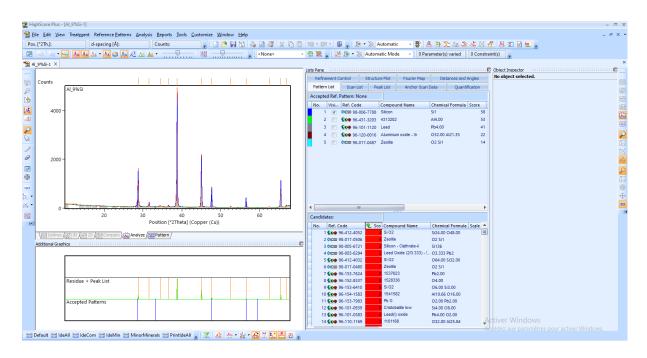


Figure IV.27: Image montrant l'interface de logiciel X'Pert HighScore Plus de PANalytical.

IV.3.6. Calorimétrie Différentielle à Balayage (DSC)

La calorimétrie différentielle à balayage (DSC) est une technique utilisée pour étudier le comportement thermique des matériaux. Elle mesure le flux de chaleur (ΔH) absorbé ou dégager en fonction de la température.

L'appareil comporte deux creusets : l'un contenant l'échantillon à analyser, l'autre servant de référence. Ces creusets sont placés dans un four chauffé à une vitesse de montée jusqu'à une température définie. Ils sont reliés à un thermocouple qui mesure les températures et transmet les données à un ordinateur. Lors du chauffage, une différence de température apparaît entre le creuset de l'échantillon et celui de référence. L'ordinateur convertit cette différence en un flux de chaleur. Ainsi, la DSC mesure la quantité de chaleur supplémentaire qu'il faut fournir au creuset de référence pour qu'il atteigne la même température que celui contenant l'échantillon. L'analyse est généralement effectuée sous atmosphère inerte afin d'éviter toute interaction entre l'échantillon et l'oxygène de l'air [30].

Dans notre étude, nous avons utilisé un appareil DSC de marque NETZSCH DSC 404 (Figure IV.28). Les cycles thermiques consistent en une montée en température jusqu'à 1000 °C à une vitesse constante de 20 °C/min.

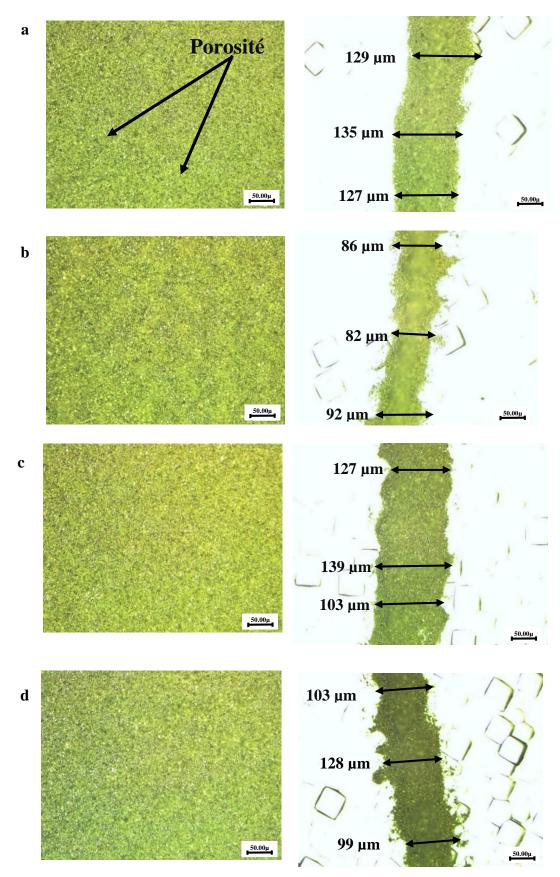
Figure IV.28: Image montrant DSC NETZSCH DSC 404.

IV.4. Conclusion du chapitre

Les techniques de caractérisation abordées dans ce chapitre ont permis d'obtenir des résultats significatifs, qui seront exposés et analysés en détail dans le chapitre suivant.

Chapitre V Résultats et discussions

Chapitre V. Résultats et discussions


Ce chapitre présente l'ensemble des résultats obtenus des différentes caractérisations des contacts localisés AlSi réalisés par sérigraphie pour différentes granulométries de la poudre de Si. Les résultats obtenus ont été évalués et commentés à la lumière de la bibliographie consultée.

V.1. Microscope optique (MO)

La Figure V.1 présente les micrographies optiques des zones entièrement sérigraphies et les doigts sérigraphies par les différentes pates AlSi réalisés pour les différentes granulométries de la poudre de Si.

Sur les zones entièrement sérigraphies, on remarque la présence des porosités (zones noires) sur la surface des différents échantillons. Ces porosités sont dues à l'évaporation des solvants et liants initialement présents dans la pâte d'aluminium durant le séchage et le recuit RTP [4,23, 30]. Ces porosités sont l'un des défauts surfaciques (inconvenants) de la méthode de réalisation des contacts par sérigraphie.

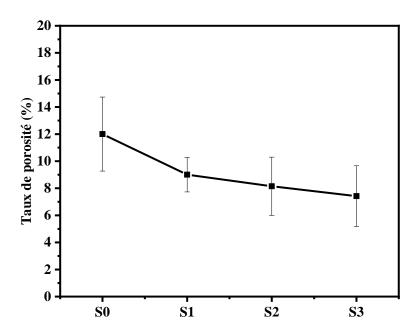

Sur les doigts sérigraphies, on note une no-uniformité de la largeur des doigts tout le long de leur longueur pour les des différents échantillons. Cela peut être expliqué par le débordement de la pâte AlSi sur les extrémités des doigts. En effet, pour la granulométrie S_0 , la largeur de doigt varie entre $127\mu m$ - $135\mu m$. Puis, la largeur de doigt diminue pour la granulométrie de S_1 , ou elle varie entre $82\mu m$ - $92\mu m$. Par la suite la largeur de doigt augmente pour la granulométrie S_2 , ou elle varie entre $127\mu m$ - $139\mu m$. En fin, la largeur de doigt diminue pour la granulométrie de S_3 , ou elle varie entre $99\mu m$ - $128\mu m$. Il a été discuté par Rauer et al [18] que le débordement de la pâte Al sur les extrémités des doigts sérigraphies, i.e. : l'augmentation de la largeur de doigt par rapport à celle du motif est liée à la quantité de pâte appliquée lors de la sérigraphie.

Figure V.1 : Micrographies optiques des zones totalement sérigraphies ainsi que celles des doigts pour les différentes granulométries de silicium a) S_0 , b) S_1 , c) S_2 et d) S_3 .

La Figure V.2 représente l'évolution du taux de porosité (%) pour des différentes granulométries des poudres de silicium. Les segments verticaux indiquent l'écart-type des mesures. Notons que trois mesures du taux de porosités à l'aide du logiciel Image J ont été effectuées pour chaque granulométrie de Silicium en raison du non uniformité de la planéité de la surface des échantillons ainsi que la crédibilité des résultats.

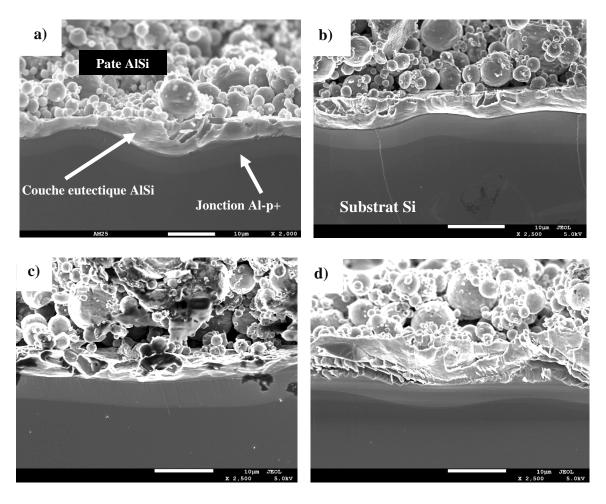

On remarque une certaine dépendance du taux de porosités par rapport à la granulométrie des poudres du Si utilisés pour la réalisation des pates AlSi, où le taux de porosités diminue avec la diminution de granulométries des poudres de silicium. D'abord, le taux de porosités diminue remarquablement de la granulométrie S0 à S1, où il varie de 12 % \pm 2.73 à 9 % \pm 1.28. Par la suite, le taux de porosités diminue légèrement de la granulométrie S1 à S3, où il varie de 9% \pm 1.28 à 7.42 % \pm 2.24. Cette diminution du taux de porosités en fonction de la granulométrie de la poudre du Si nous laisse suggérer la capacité de la poudre de Si d'absorber les solvants existants dans les pâtes d'aluminium lors de la préparation des pates AlSi (Voire la section préparation des pates AlSi du chapitre IV). On peut donc supposer que l'absorption des solvants par la poudre de Si diminue avec la réduction de la granulométrie de la taille des particules du Si.

Figure V.2 : Évolution du taux de porosité en fonction de la granulométrie de la poudre du silicium pour les différents contacts AlSi.

V.2 Microscope Electronique à Balayage (MEB)

La figure (V.3) présente les micrographies MEB des sections transversale des contacts AlSi pour les déférentes granulométries Si. On constate la présence de trois zones distinctes : (1) Contacts AlSi caractérisée par des particules sphériques non uniformes qui varient entre 1-20 µm. Selon Dressler et al [28], l'utilisation d'une pâte d'Aluminium constituées des particules de taille non uniforme permet de minimiser les vides entre les particules, ce qui améliore ses caractéristiques électriques. (2) Couche eutectique AlSi due à la diffusion de l'Aluminium à l'intérieure du substrat du Si. (3) Une zone sombre lié à la formation de la jonction Al-p+ due à l'incorporation des atomes Al à l'intérieur de du réseau de Si [18]. Le mécanisme de la formation de couche eutectique AlSi et la jonction Al-p+ a été expliqué en détails dans la section III.1.2 du chapitre III.

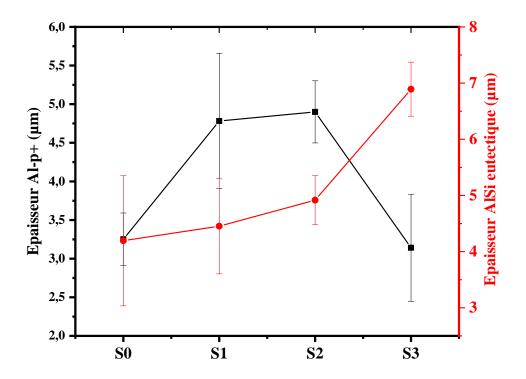


Figure V.3 : Micrographie MEB des sections transversale des contacts AlSi pour les déférentes granulométries Si : a) S₀, b) S₁, c) S₂, d) S₃.

Afin d'évaluer la profondeur des contacts, nous avons mesuré l'épaisseur de la couche eutectique AlSi ainsi que l'épaisseur de la jonction Al-p+ à l'aide du logiciel Image J. Les résultats sont présentés sur la figure V.4. On remarque que l'épaisseur de la couche eutectique augmente avec la diminution de la granulométrie de la poudre Si. En effet, l'épaisseur de la couche AlSi augmente légèrement de la granulométrie S₀ à S₂ ou elle varie de 3.19 μm à 3.91μm. Puis elle augmente significativement à S₃ ou elle atteint la valeur de 6.89 μm. Rappelons que la formation de cette couche eutectique est due à la diffusion de Al à l'intérieure du substrat Si. Les travaux publiés par Rauer et al [18] ont montré que l'épaisseur de la couche eutectique peut dépondre de la quantité de la pâte appliquée lors sérigraphie. Cette explication est en bon accord avec les observations optiques (Figure V.1), où on a observé un débordement de la pâte AlSi sur les extrémités des doigts due à la différence de la quantité de la pâte déposée pour les différents échantillons.

Pour la jonction Al-p+, on remarque que son épaisseur augmente largement de S_0 à S_1 ou elle varie de $3.24~\mu m$ à $4.78~\mu m$. Puis, l'épaisseur de la jonction Al-p+ augment légèrement a S_2 ou elle atteint la valeur $4.9~\mu m$. En fin, l'épaisseur de la jonction Al-p+ diminue significativement a S_3 ou elle atteint la valeur de $3.14~\mu m$. Rappelons de la formation de la jonction Al-p+ est due à l'incorporation des atomes dopants Al a l'intérieure du substrat de S_1 lors de la recristallisation de S_1 durant l'étape de refroidissement pendant le recuit RTP [18,19,31]. Selon les travaux publie dans la littérature, plus l'épaisseur de la jonction Al-p+ est grande, plus la concentration des atomes de S_1 dopants a l'intérieure du substrat est grande, ce qui résulte un bon blindage électronique contre le phénomène de recombinaison des électrons. Donc, on peut suggérer que la concentration des dopants Al la plus élevés est obtenue pour la granulométrie S_2 .

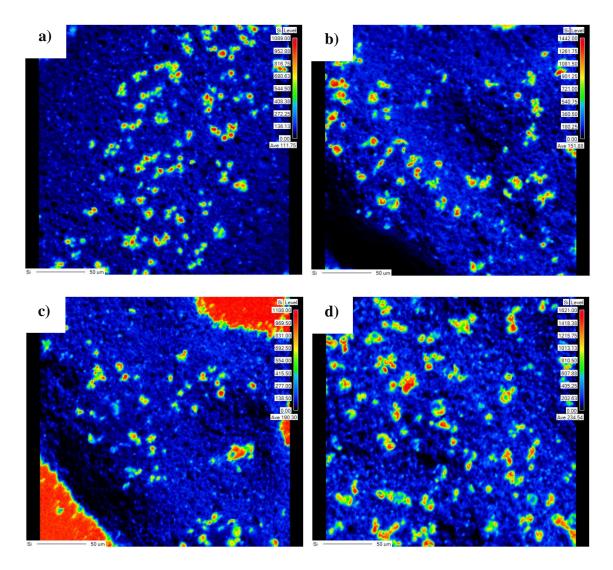
Cependant, certains auteurs [23] ont montré que l'épaisseur de la jonction Al-p+ peut être réduite malgré une incorporation très importante des dopants Al à l'intérieur de substrat, ce qui résulte un meilleur blindage électronique que le cas d'une épaisseur de jonction Al-p+ grande. Cela peut expliquer dans notre cas la diminution de l'épaisseur de la jonction Al-p+ pour la granulométrie S3. Cette interprétation peut être confirmée par des analyses ECV (Electrochemical Capacitance Volatge) qui sont envisagées pour des travaux perspectifs.

Figure V.4 : Evolution des épaisseurs des couches eutectique AlSi et la jonction Al-p+ des différentes pates pour les différentes granulométries de Si.

V.3. Microanalyseur à sonde électronique (EPMA)

Le tableau (V.1) présente les analyses de la composition chimiques des contacts AlSi pour les différentes granulométries de Si. On note la présence Aluminium (Al), Silicium (Si), Oxygène (O), Carbone (C) et le Plomb (Pb). La présence de l'oxygène est due à l'oxydation des particules Al lors du recuit RTP (voir la figure IV.13). La présence du C est due à la contamination inévitable avec l'air ambiant. La présence du Pb est due à l'interaction de la frite de verre (PbO) avec le substrat du Si lors du recuit RTP selon la réaction suivante [31] :

$$PbO + Si \rightarrow Pb + SiO_2 (Eq V. 1)$$


On remarque que la teneur de Si pour les déférentes pates AlSi est largement supérieure à la teneur de la poudre Si ajoutée à la pâte d'Al lors de la préparation (3%). Cela est due à la diffusion latérale de Si du substrat vers la pâte AlSi [4,18].

Chapitre V. Résultats et discussions

Tableau V.1 : les analyses de la composition chimiques des contacts AlSi pour les différentes granulométries de Si.

Echantillons	So	S_1	S ₂	S ₃
Al	62.970	55.0613	61.8027	61.058
Si	15.973	14.519	15.2170	15.218
O	11.507	21.944	14.4503	12.740
\mathbf{C}	9.355	8.375	8.3930	10.699
Pb	0.195	0.101	0.1370	0.283

La figure (V.5) montre les cartographies EPMA de la dispersion du Si sur la surface des pates AlSi pour les différentes granulométries de Si. On note un non uniformités de la disparition du Si sur les surfaces des différentes pates AlSi. Cela confirme l'apparition de la diffusion latérale de Si du substrat vers les pates AlSi.

Figure V.5 : Cartographies EPMA de la dispersion du Si sur la surface des pates AlSi pour les différentes granulométries de Si a) S₀, b) S₁, c) S₂, d) S₃.

V.4 Diffraction des rayons X

La Figure (V.6) présente les spectres DRX pour les contacts Al-Si pour la différente granulométrie de la poudre de Si. On note la présence de trois pics intense d'Aluminium (111), (002) et (022) liée aux particules sphériques d'aluminium caractérisant les pates AlSi (Figure 3). Trois pics de Silicium (111), (022) et (113). Il convient de noter qu'aucune phase AlSi indiquée par le diagramme binaire Al-Si n'a été détecte. Les spectres montrent aussi la présence de deux faibles pics de Plomb (111) et (002). Les analyses de DRX sont cohérents les résultats de la composition chimique obtenue par EPMA.

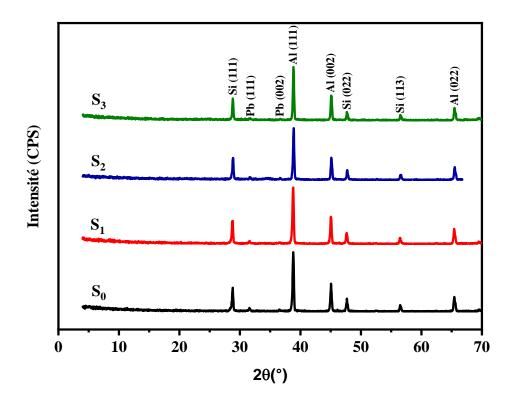


Figure V.6 : Spectre DRX des contacts AlSi pour les différentes granulométries de Si.

Afin d'évaluer l'effet de la taille de Si sur les propriétés structurale de la matrice d'Al, nous avons calculé la distance interarticulaire (d) en utilisent le logiciel Xpert HighScore. Nous avons aussi calculé la taille des cristallites (D) et les microdéformations (ε) en utilisent la loi de Sherrer [32] :

$$D = \frac{K \lambda}{\beta \cos \theta} (Eq V.2)$$

$$\varepsilon = \frac{\beta}{4 \tan \theta} \ (Eq \ V.3)$$

Avec:

 λ : longueur d'onde du rayon X incident (A°). Dans notre cas, $\lambda_{CuK\alpha}=1.54~A^\circ$.

 θ : est l'angle de Bragg (°).

 β : est la largeur totale à mi-hauteur de la raie (FWHM: Full Width at Half Maximum) (°).

K : est la constante de Scherrer qui dépend de la forme des cristallites. Dans notre cas, K = 0.9.

Le Tableau (V.2) résume les paramètres microstructuraux obtenus de la matrice d'Al pour les différentes tailles de Si. On remarque que la distance interarticulaire (d) reste pratiquement inchangée, ce que signifie que le paramètre de maille reste aussi inchangeable. Cela signifie qu'il n'y avait pas d'incorporation de particules de Si à l'intérieur du réseau d'Al, donc le Si ajouté reste en solution avec la matrice Al.

On remarque que la diminution de la taille des particules de Si entraine une augmentation de la taille des cristallites d'Al (D) accompagnée par une diminution des microdéformations (ε) . Ce comportement est expliqué par le fait plus les particules de Si sont grandes, plus elles exercent une pression sur les particules d'Al et vice versa.

Tableau V.2 : les paramètres microstructuraux de la matrice d'Al pour les différentes tailles de Si.

Echantillons	D (nm)	ε (%)	d (A°)
S_0	34	0.308	2.321
S_1	35.2	0.297	2.322
S_2	38.3	0.272	2.316
S_3	40.3	0.259	2.318

V.5 Differential Scanning Calorimetry (DSC)

La figure (V.7) présente les courbes de DSC des différentes pates AlSi pour les différentes granulométries de Si. Les courbes DSC sont caractérisée par un petit pic exothermique (I) a une température d'environ 570 ° C. Selon de diagramme binaire AlSi, l'apparition de ce pic est due la formation d'une phase eutectique AlSi en raison de l'interaction entre les particules d'Al et la poudre de Si ajoutée [4]. On note que la hauteur de ce pic diminue avec la diminution de la granulométrie de la poudre de Si jusqu'à la disparition à la granulométrie S₃. Les courbes DSC montre aussi un pic exothermique (II) suivi par un pic endothermique (III). Selon les travaux publie précédemment [23, 31], le pic exothermique (II) est due à l'oxydation de l'Al et le pic endothermique (III) est due à la fusion de Al.

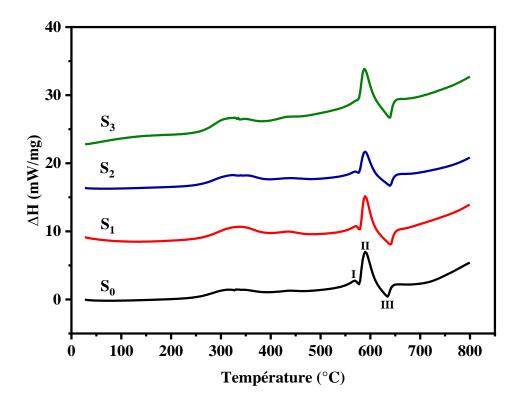


Figure V.7 : Courbe DSC des pates AlSi pour les différentes granulométries de Si.

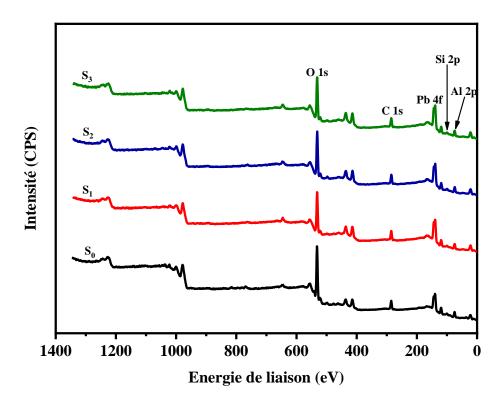

Dans notre étude, nous intéressons à l'oxydation des particules Al qui influent beaucoup sur leur pénétration à l'intérieur de la matrice Si pour la formation de la jonction Al-P+. Le Tableau (V.3) présente les températures de pic exothermique correspondant à l'oxydation des particules d'aluminium (T_p). On remarque que la température du pic d'oxydation des particules d'Al diminue avec la diminution de la granulométrie des poudres de Si. Cela peut être expliquée par la disparition du pic (I) lie à la formation du la phase eutectique AlSi à mesure que la granulométrie de Si diminue. Donc, on peut dire que l'oxydation de aluminium s'accélére avec la diminution de la granulométrie de la poudre de Si.

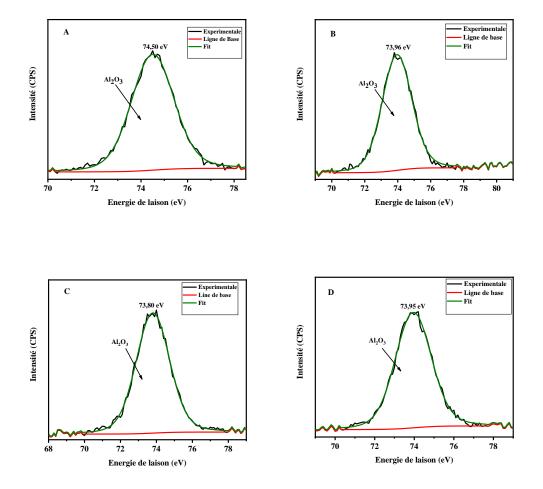
Tableau V.3 : Température de pic d'oxydations d'Al pour les différentes granulométries de Si.

Echantillons	Température T _p (°C)
S_0	589.63
S_1	589.48
\mathbf{S}_2	589.46
S_3	587.48

V.6 X-Ray photo spectroscopy (XPS)

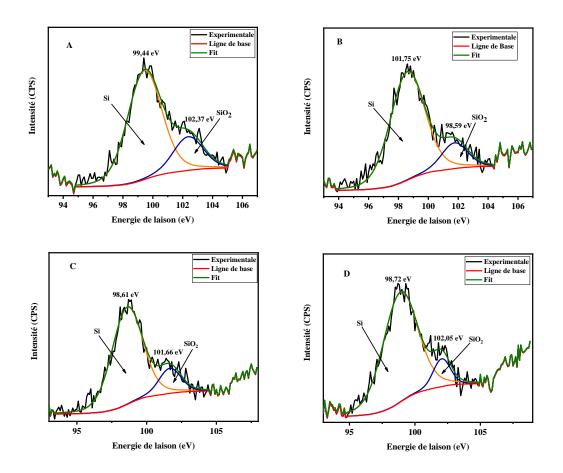
La figure (V.8) présente Spectres XPS survey (globale) des contacts AlSi pour la différente granulométrie de Si. Les spectres montre la présence des éléments Aluminium (Al 2p), Silicium (Si 2p), Plomb (Pb 4f), Carbone (C 1s) et l'Oxygène (O 1s). Ce résultat est cohérents avec les analyses EPMA et DRX.

Figure V.8 : Spectres XPS survey (globale) des contacts AlSi pour la différente granulométrie de Si.


Le tableau (V.4) présente les énergies des liaisons (Eb) et les proportions atomiques (% at) des éléments sur la surface des différents contacts AlSi. On remarque que la proportion des éléments obtenue est déférente à celle obtenue par EPMA. Cela due que XPS est une technique de caractérisation purement surfacique (environ 10 nm de profondeur en surface). Le tableau (V.4) révèle que l'Oxygène est l'élément majoritaire sur la surface des différents contacts. Cela est dû à l'oxydation de la surface des contacts durant le recuit RTP effectué sous O₂ (voir la figure IV.13).

Chapitre V. Résultats et discussions

Tableau V.4 : Energies de liaisons (Eb) et les proportions atomiques (% at) des éléments sur la surface des contacts AlSi.


Éléments	Al 2p		Si 2p		O 1s		C 1s		Pb 4f	
	Eb	% at	Eb	%	Eb	%at	Eb	%at	Eb	%
	(eV)		(eV)	at	(eV)		(eV)		(eV)	at
So	74,50	21,52	100	3,02	531,73	51,20	285,2	22,26	140,14	2,00
S_1	73,96	14,18	98,54	0,94	531,75	54,11	285	28,8	138,88	1,97
S_2	73,80	23,04	99,41	2,95	531,16	45,86	284,78	25,52	139,93	2,63
S_3	73,95	24,31	99,7	3,03	531,31	44,9	284,97	24,8	140,15	2,97

La figure (V.9) présente les spectres XPS à haute résolutions Al2p pour les différentes granulométries de Si. Le fit par logiciel CasaXPS montre que les spectres Al2p consistent à un seul pic. Selon les valeurs des énergies de liaisons, ce pic correspond à Al₂O₃ [33, 34]. A partir de cette analyse on peut conclure que la surface des particules d'Al est totalement oxydée.

Figure V.9 : Spectre XPS à haute résolutions Al2p pour les différentes granulométries de Si : A) S₀, B) S₁, C) S₂, D) S₃.

La figure (V.10) présente les spectres XPS à haute résolutions Si2p pour les différentes granulométries de Si. Le fit par logiciel CasaXPS montre que les spectres Si2p consistent en deux pics. Selon les valeurs des énergies de liaisons, le grand pic correspond au Si alors que le petit pic correspond à SiO₂ [35, 36]. A partir de cette analyse on peut conclure que la surface de Si est partiellement oxydée.

Figure V.10 : Spectre XPS à haute résolutions Si2p pour les différentes granulométries de Si : A) S₀, B) S₁, C) S₂, D) S₃.

Afin d'évaluer la teneur en oxyde Al_2O_3 sur la surface des différents pates nous avons adopté la proche suivantes [37] :

$$x_i = \frac{\frac{A_i}{S_i}}{\sum_{j=1}^n \binom{A_j}{S_j}}$$

Avec:

 x_i : La teneur surfacique en Al₂O₃ (atomique %).

 A_i : La surface de pic de chaque élément.

 S_i : Le facteur de sensibilités relatives disponibles sur la base des données de logiciel CasaXPS.

Les valeurs de la teneur surfacique en Al_2O_3 des déférentes pates AlSi sont présentées sur le tableau (V.5). On note que la teneur surfacique en Al_2O_3 augmente avec la diminution de la granulométrie de la poudre de Si de S_0 jusqu'à S_2 puis la teneur surfacique en Al_2O_3 reste pratiquement inchangé avec la diminution de la granulométrie de la poudre de Si de S_2 jusqu'à S_3 . L'augmentation de la teneur surfacique en Al_2O_3 de S_0 à S_2 est consistante avec les observations MEB de la Figure V.3, où on a trouvé que l'épaisseur de la jonction Al-p+ augmente de S_0 à S_2 . Cela peut être expliqué par le fait que le processus d'oxydation des particules d'aluminium s'accélère avec la diminution de la granulométrie de la poudre de Si de S_0 jusqu'à S_2 , tel que montré par les analyses DSC (Figure V.6).

Par la suite, On note une stabilisation de la teneur surfacique en Al₂O₃ avec la diminution de la granulométrie de la poudre Si ajoute à la pâte de S₂ à S₃.

Il est à noter que l'augmentation de l'épaisseur Al-p+ avec l'augmentation de la teneur surfacique Al₂O₃ est due en fait que la couche d'oxyde Al₂O₃ formée sur la surface des particules Al diminue la liaison entre les particules d'Al ce qui favorise leur pénétration a l'intérieure de substrat de Si [31].

Tableau V.5 : Teneur surfacique en Al₂O₃ sur la surface des déférentes pates AlSi.

Echantillons	Atomique %		
$\overline{S_0}$	23,98		
S_1	24,43		
\mathbf{S}_2	26,79		
S_3	26,68		

V.7. Conclusion du Chapitre

Ce chapitre nous a permis de comprendre l'effet de la taille des particules de Si ajoutée dans les pâtes Al pour la réalisation des contacts localisés dans les cellules solaires n-PERT. L'ensemble des résultats expérimentaux obtenus nous permis d'optimiser la taille des particules de Si ajoutée dans les pâtes Al afin d'obtenir les meilleure propriétés des contacts localisés AlSi liées aux propriétés de la jonction Al-P+.

VI. Conclusion générale

Dans ce travail, nous avons examiné l'effet de la taille de Si ajoutée dans la pâte d'aluminium pour la réalisation des contacts localisée dans les cellules solaires n-PERT BJ. Les principales conclusions peuvent être résumées comme suit :

- Les observations par microscope optique montrent la présence des porosités sur la surface des contacts AlSi due à l'évaporation des solvants et les liants durant le séchage et le recuit RTP. Le taux de ces porosités diminue avec la diminution de la granulométrie de la poudre de Si, suggérant la diminution de la capacité d'absorption des solvants par les particules de Si avec la diminution de la granulométrie de la poudre Si.
- Les observations par le MEB montrent la formation d'une couche eutectique au-dessous de contacts AlSi et une jonction Al-p+ au-dessous de la couche eutectique. L'épaisseur de la jonction Al-p+ augmente avec la diminution de la granulométrie de la poudre de Si jusqu'à une certain taille puis elle diminue. Ce qui suggère l'effet positive de la taille des particules de Si ajoutée à la pâte Al sur les propriétés de la jonction Al-p+.
- Les cartographies EPMA confirment la diffusion latérale de Si su substrat vers la pâte AlSi, ce qui entraine une distribution non uniforme du Si sur la surface de la pâte.
- Les analyses DRX montre que le paramètre de maille de la matrice d'Al reste pratiquement inchangeable pour les différentes granulométries de Si. Les analyses DRX montrent aussi que la taille des cristallites d'Al peut être influencée par granulométrie de la poudre de Si.
- Les analyses de DSC montrent que la cinétique de l'oxydation de particule d'Al est accélérer avec la diminution de la granulométrie de la poudre de Si due à la disparition de la phase AlSi avec la diminution de la granulométrie de la poudre de Si.
- Les analyses XPS confirme la réussite de l'oxydation des particules d'Al durant le recuit RTP. La teneur d'oxyde en surface augmente avec la diminution de la granulométrie de la poudre de Si ce qui a un effet positive sur la pénétration des atomes d'Al a l'intérieure de la matrice Si pour la formation de la jonction Al-p+.

Conclusion générale

Les perspectives envisage pour la suite de notre travail sont :

- Des mesures de contractions des dopants d'Al active par le ECV (Electrochemical Capacitage Voltage).
- Des analyses ATG afin de suivre l'évolution de la masse des pates AlSi en fonction de l'augmentation de températures.
- Des observations par le microscope électronique à transmission (MET) afin de pouvoir mesurer l'épaisseur de la couche oxyde Al₂O₃.
- La mesure de la résistance de contact métal semi-conducteur (Rc) par la méthode TLM.
- Mesure de la durée de vie des porteurs de charges minoritaires par la méthode QSSPC (quasi-steady-state photoconductance).

Bibliographie

- [1] Dr.Hakim, Yahi. Polycopié du Cours Physique des semi-conducteurs. Université 8 MAI 1945 GUELMA, 2020.
- [2] Pr. Robert Valls <u>& Dr Richard Frèze</u>. Propriétés et structure des semi-conducteurs, La théorie des bandes d'énergie. Université d'Aix- Marseille
- [3] Semi-conducteur. Lycée Hoche, Académie de Versailles. 'https://lyc-hoche-versailles.ac-versailles.fr/IMG/pdf/1_un_semi-conducteur.pdf ' .
- [4] Slimani Yasmine, Zouyed Maroua. Mémoire de fin d'étude, Utilisation des alliages Al-Si pour la réalisation des contacts localisés en face arrière des cellules PERT de type n. Université d'Alger 1 Benyoucef Benkhedda, CRTSE, 2024.
- [5] Généralité sur les cellules solaires, Chapitre 1.
- [6] J.-M Dutertre.Cours Electronique analogique, Introduction aux semi-conducteurs la jonction PN. Institut Mines-Télécom.
- [7] Sébastien Thibert. Etude de la métallisation de la face avant des cellules photovoltaïques en silicium. Génie des procédés. Université de Grenoble Alpes, 2014.
- [8] Nichiporuk Oleksiy « Simulation, fabrication et analyse de cellules photovoltaïques à contacts arrière interdigités ». Thèse de doctorat, L'institut national des sciences appliquées de Lyon, 2005.
- [9] N. Benaouda, R. Aiouaz, t M. Abersi, Réponses spectrales et des caractéristiques I V des cellules solaires au silicium. Université des Sciences et de la technologie Houari Boumédiene, Alger, Algérie. Laboratoire de Thermique, Centre de Développement des Energies Renouvelables B.P. 62, Route de l'Observatoire, Bouzaréah, Alger, Algérie, 2007.
- [10] Helali Kamelia, Mémoire de MAGISTER EN ELECTROTECHNIQUE, Machines Electriques, Modélisation D'une Cellule Photovoltaïque : Etude Comparative. UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU, 2012.
- [11] Ouddah Mourad. ÉTUDE DU SILICIUM POREUX DESTINE AUX CELLULES SOLAIRES. UNIVERSITE MENTOURI CONSTANTINE, 2009

- [12] Mohamed-Ould-Salem. MEMOIRE DE MAGISTER EN PHYSIQUE ENERGETIQUE ET MATERIAUX, Analyse, Modélisation et Simulation des Pertes dans un Module Photovoltaïque à Base de Silicium Monocristallin. UNIVERSITE ABOU BEKR BELKAID-TLEMCEN, 2010. 'http://dspace.univ-tlemcen.dz/bitstream/112/1001/1/Mohamed-Ould-Salem.pdf'.
- [13] Rappels sur la conversion photovoltaïque, Chapitre I. Université de Tlemcen. 'http://dspace.univ-tlemcen.dz/bitstream/112/1014/6/ChapitreI.pdf'.
- [14] TINOUCHE Yakoub. Mémoire de fin d'études pour l'obtention du diplôme de Master en Physique appliqué, Etude des caractéristiques des émetteurs p+ réalisés lors de la métallisation de la face arrière des cellules solaires de type-n. Universite d'Alger 1 Benyoucef BENKHEDDA, 2022/2023.
- [15] STEVEN Kwok. Panneau solaire IBC explique points forts et par rapport aux autres technologies. SOLARBUY.COM, Jul 10, 2024. 'https://solarbuy.com/fr/solar-101/ibc-solar-panel-explained/'.
- [16] Atta ur Rehman1, 2 · Muhammad Nadeem1 · Muhammad Usman2. Émetteur passivé et diffusion arrière totale : cellule solaire PERT-An Aperçu, ARTICLE DE SYNTHÈSE. Silicium (2023) 15:639–649. 'https://doi.org/10.1007/s12633-022-02050-6/ '.
- [17] CORINA Barbos. Thèse de Doctorat, Passivation de surface des cellules photovoltaïque en silicium cristallin dépôt par ALD et caractérisation de couche minces d'Al2O3. Ecole Doctorale Electronique, Electrotechnique, Automatique. Université de LYON, 2016.
- [18] Michael Rauer, Robert Woehl, Karola Rühle, Christian Schmiga, Martin Hermle, Matthias Hörteis et Daniel Biro. Alliage d'aluminium dans les zones de contact locales sur Surfaces arrière passivées diélectriquement de Cellules solaires en silicium.
- [19] Zih-Wei Peng, Thomas Buck, Lejo J. Koduvelikulathu, Valentin D. Mihailetchi, et Radovan Kopecek. Cellules solaires n-PERT-RJ sérigraphiées industrielles : Efficacité supérieure à 22 % et circuit ouvert Tensions approchant 700 Mv. JOURNAL IEEE DU PHOTOVOLTAÏQUE.
- [20] Supawan Joonwichien , Masaaki Moriya, Satoshi Utsunomiya, Yasuhiro Kida, Katsuhiko Shirasawa et Hidetaka Takato. Mécanisme des pertes induites par la métallisation dans le Face arrière du type p entièrement sérigraphié Cellules solaires PERC. JOURNAL IEEE DU PHOTOVOLTAÏQUE.

- [21] Zih-Wei Peng, Masahiro Nakahara, Thomas Buck, Radovan Kopecek. Towards 22% Efficiency n-PERT Rear Junction Solar Cells with Screen Printed Al Point Back Contact. 1 International Solar Energy Research Center (ISC), Rudolf-Diesel-Str. 15, 78467 Konstanz, Germany. 2 Toyo aluminium k.k., 341-14 Higashiyama, Ohtani, Hino-Cho, Gamo-Gun, Shiga 529-1608, Japan.
- [22] GOUDJIL Lyna, GHEDDOU Chirraz. Mémoire de fin d'études, Etude et caractérisation des contacts métalliques des cellules solaire à base de silicium monocristallin. Centre de Recherche en Technologie des Semi-Conducteurs pour l'Energétique. Juin 2022.
- [23] Peng Zhu, Yang Lu et Xiaolei Chen. Effets des différentes tailles de particules de poudre d'aluminium sur le frittage Article de recherche Propriétés de la pâte d'aluminium dans les cellules solaires en silicium cristallin. Journal international de photoénergie Hindawi. Faculté de chimie et de génie chimique, Université de Nantong, Nantong 226019, Chine. Reçu le 5 juillet 2022 ; Révisé le 19 septembre 2022 ; Accepté le 7 octobre 2022 ; Publié le 3 novembre 2022.
- [24] Lourdiane Camélia, Mansouri Lynda. Mémoire de projet de fin d'études. Caractérisation structurale et électrique de la couche de nickel électro-déposée sur silicium pour application photovoltaïque. Centre de Recherche en Technologie des Semi-Conducteurs pour l'Energétique.Le 22 Juin 2023.
- [25] John Goodge.Micro-analyseur à sonde électronique (EPMA), Université du Minnesota-Duluth. National Science Foundation sous la subvention n° 1542210. 'https://serc.carleton.edu/msu_nanotech/methods/EPMA.html'
- [26] F. A. STEVIE et C. L. DONLEY, « Introduction to x-ray photoelectron spectroscopy », J. Vac. Sci. Technol. A 38, 063204 (2020),
- [27] W. El-Huni, « Modélisation de cellules solaires multi-tandem bas coût et très haut rendement à base de nitrures des éléments III-V », thèse de doct., Université Paris Saclay, 2016.
- [28] A. JAMES, « Développement de méthodes de caractérisation chimiques de surface en support à l'amélioration des procédés de la microélectronique avancée », thèse de doct., Université Claude Bernard Lyon 1, 2015.

- [29] Laboratoire interdisciplinaire des environnements continentaux. Diffraction des Rayons X sur poudres [En ligne]. Université de Lorraine. Disponible à l'adresse suivante : Fiche Diffraction rayons X | Laboratoire interdisciplinaire des environnements continentaux (univlorraine.fr).
- [30] Linkilab. Calorimétrie différentielle à balayage (DSC) [En ligne]. Disponible à l'adresse suivante : 'https://linkilab.fr/portfolio/calorimetrie-differentiellea-balayage-dsc/'.
- [31] V. A. Popovich^{1,} M. P. F. H. L. van Maris², M. Janssen¹, I. J. Bennett³, I. M. Richardson¹. Understanding the Properties of Silicon Solar Cells Aluminum Contact Layers and Its Effect on Mechanical Stability. Department of Materials Science & Engineering, Delft University of Technology, Delft, The Netherlands; 2 Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 3 Solar Energy, PV Module Technology, Energy Research Centre of the Netherlands, Petten, The Netherlands. Received October 26th, 2012; revised November 25th, 2012; accepted December 23rd, 2012. 'http://v.popovich@tudelft.nl'.
- [32] Oussama Djema, Abderrahmane Moussi, Sofiane Chaouchi, Chafiaa Yaddaden, Malika Berouaken, and Samir Meziani. Ag and Sn capping layers for stabilizing Cu solar cell contacts against oxidation in air: effectsof method and solution of deposition. Research Centre in Semiconductors Technology for Energetics (CRTSE), Algiers, Algeria. 11 December 2023.
- [33] Yoshkikazu Kameshima, Atsuo Yasumori and Kiyoshi Okada. XPS and X-ray AES (XAES) of Various Aluminate Compounds. Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552. Received March 3, 2000; Accepted May 29,2000.
- [34] W. O sterle, I. Do"rfel a, I. Urban a, T. Reier b, J.W. Schultze. XPS and XTEM study of AlN formation by N⁺ 2 implantation of aluminium. Bundesanstalt fu"r Materialforschung und pru"fung (BAM), 12205 Berlin, Germany b Institut fu"r Physikalische Chemie und Elektrochemie, Heinrich-Heine-Universita"t, 40225 Du"sseldorf, Germany Received 24 July 1997; accepted 6 December 1997.

[35] S. Libraro, A. Morisset, J. Hurni, E. Genç, L. Antognini, L.J. Bannenberg, T. Famprikis, C. Ballif, A. Hessler-Wyser, F.-J. Haug. Understanding and mitigating resistive losses in fired passivating contacts: role of the interfaces and optimization of the thermal budget. b Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629JB, Delft, the Netherlands c CSEM Sustainable Energy Center, Rue Jaquet-Droz 1, CH-2002, Neuchatel, Switzerland.

[36] F.S. Aguirre-Tostado, D. Layton, A. Herrera-Gomez, R.M. Wallace, J. Zhu, G. Larrieu, E. Maldonado, W.P. Kirk, M. Tao. X-ray photoelectron spectroscopy study of the oxidation of Se passivated Si (001). F.S. Aguirre-Tostado, D. Layton, A. Herrera-Gomez, R.M. Wallace, J. Zhu, et al. X-ray photoelectron spectroscopy study of the oxidation of Se passivated Si (001). Journal of Applied Physics, 2007, 102, pp.084901-1-7. ff10.1063/1.2794858ff. Ffhal-00255854f. Submitted on 25 May 2022.

[37] A. Kubala-Kukuś, B. Szczepanikc. Stabrawaa, D. Banaś, K. Szarya, M. Pajeka. Rugalach. Wójtowicze. Słomkiewicz. X-ray photoelectron spectroscopy analysis of chemically modified halloysite. Institute of Physics, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland. Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland.