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ملخص

الحركات اثٔناء وطيد راسٔي سد على المطبقة الهيدروديناميكية الضغوط على السطحية الجاذبية الموجات تاثٔير الدراسة هذه تتناول
للانضغاط، القابلة وغير للانضغاط القابلة للموائع خوارزمي لتصميم المحدودة العناصر طريقة باستخدام الاهتزازية. الافٔقية الارٔضية
خطي، حر سطح نموذج عبر السطحية الموجات تاثٔيرات مراعاة خلال ومن كمي. بشكل الهيدروديناميكية الاستجابات تقُاس
ظروف تحت المختلفة الموجات تاثٔيرات ظهور كيفية لفهم نموذجًا الجاذبية سد يُعتبر التاثٔيرات. هذه اتساق التحليل يضمن
المستويات، هذه عند المنخفضة. الترددات عند الاكٔبر التاثٔير السطحية للموجات انٔ التحليل يُظهر النتائج، هذه على متنوعة.بناءً
على المسيطرة هي الانضغاط قابلية وتصبح تاثٔيرها يضعف الإثارة، تردد ازدياد مع القاعدة. ضغوط في كبير انخفاض يحدث
بين التمييز ضرورة ويُبرز المتخصصة الدراسات في المذكورة الاتجاهات مع السلوك هذا يتوافق الزلزال. اثٔناء خاصةً الاستجابة،

السد. سلامة تقييم عند الانضغاط وتاثٔيرات السطحية الموجات تاثٔيرات

سد المحدودة، العناصر طريقة وطيد، السد الهيدروديناميكية، الضغوط السطحية، الجاذبية الموجات الاساسية: الكلمات
الزلزالية. الاستجابات الفودة،

Résumé

Cette étude analyse l’influence des ondes de gravité de surface sur les pressions hydrodyna-
miques exercées sur un barrage vertical rigide soumis à des mouvements horizontaux du sol.
En recourant à la méthode des éléments finis pour modéliser des fluides incompressibles et
compressibles, les réponses hydrodynamiques sont quantifiées. La prise en compte des effets des
ondes de surface, via une condition de surface libre linéarisée, permet de garantir une meilleure
précision dans l’évaluation des pressions hydrodynamiques. Le barrage-poids d’El Fodda consti-
tue l’étude de cas ; les résultats sont évalués dans les domaines temporel et fréquentiel afin de
mettre en évidence les impacts critiques, en comparant des situations avec et sans effets des
ondes de surface. Ces résultats fournissent une base solide pour interpréter la manifestation des
différents effets d’ondes dans diverses conditions.

Sur la base de ces résultats, l’analyse montre que les ondes de surface exercent une influence
maximale aux basses fréquences. À ces niveaux, on observe une réduction substantielle des
pressions de base. À mesure que la fréquence d’excitation augmente, leur effet s’atténue, et la
compressibilité devient le facteur prédominant dans la réponse, notamment lors d’événements
sismiques. Ce comportement est conforme aux tendances rapportées dans la littérature spé-
cialisée. Il souligne l’importance de distinguer les effets des ondes de surface de ceux de la
compression lors de l’évaluation de la sécurité des barrages.

Mots clés : Ondes de gravité de surface, Pressions hydrodynamiques, Barrage rigide, Méthode
des éléments finis, Barrage d’El Fodda, Réponses sismiques.



Abstract

This study examines the influence of surface gravity waves on the hydrodynamic pressures
exerted on a rigid vertical dam during horizontal ground motions. Using the Finite Element
Method for both incompressible and compressible fluid models, hydrodynamic responses are
quantified. By accounting for surface-wave effects through a linearized free-surface condition,
the analysis ensures their consistent influence. The El Fodda gravity dam serves as a case study,
with outcomes assessed in both the time and frequency domains to highlight critical impacts,
comparing situations with and without surface wave effects. These findings provide a foundation
for interpreting how different wave effects manifest under various conditions.

Building on these results, the analysis shows that surface waves have the most influence at low
frequencies. At these levels, there is a substantial reduction in base pressures. As excitation
frequency increases, their effect weakens, and compressibility governs the response, especially
during seismic events. This behavior matches trends reported in the specialized literature. It
highlights the need to distinguish surface-waves and compressional effects when assessing dam
safety.

Keywords : Surface gravity waves , Hydrodynamic pressures ,Rigid dam, Finite element me-
thod,El Fodda Dam ,Seismic responses.
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GENERAL INTRODUCTION

GENERAL INTRODUCTION

Dams are vital infrastructure for water supply, energy production, and flood control. However,
their safety can be compromised by seismic events, which generate dynamic interactions between
the reservoir water and the dam structure. These interactions generate hydrodynamic pressures
on the upstream face of the dam, which may significantly impact its stability. Reliable evaluation
of these pressures is therefore essential in earthquake engineering and in the design of safe
hydraulic structures.

Early analytical studies provided the first foundations for this field. In 1933, Westergaard
introduced the concept of added mass, which allowed engineers to estimate hydrodynamic forces
by assuming rigid dams and incompressible fluids. Although pioneering, this approach neglected
surface-wave effects, dam flexibility, and fluid compressibility. Zangar (1952) and Housner (1957)
extended the analysis with electrical analogies and impulsive–convective decomposition, while
Chopra (1966) introduced compressibility and derived exact analytical formulations. These
works represented significant advances, but they remained limited in their ability to capture all
relevant physical effects.

The development of numerical methods in the 1960s and 1970s, especially the Finite Element
Method (FEM), marked a turning point. FEM made it possible to represent realistic geometries
and boundary conditions and to incorporate effects such as surface gravity waves and fluid com-
pressibility. Despite these advances, many practical analyses continued to neglect surface-wave
phenomena, which generally results in conservative (overestimated) hydrodynamic pressures,
especially at the dam’s top where surface waves can induce negative pressures, accompanied by
a reduction of pressure at the base, and most evident at low excitation frequencies.

The present thesis contributes to this ongoing effort by developing a finite element model of
a rigid vertical dam–reservoir system in order to quantify the influence of surface waves on
hydrodynamic pressures. Beyond this framework, complementary analytical formulations have
been developed in collaboration with my supervisor as part of a scientific article currently under
review at LARHYSS JOURNAL, titled “EFFECTS OF SURFACE GRAVITY WAVES ON
RIGID DAMS.” To provide context and enable comparison, selected results from this ongoing
analytical research are included in the annex as supplementary material. These annexed results
are exclusively illustrative and do not reproduce the full content of the article, which serves as
a natural extension of the present work.

0.1 Motivation

Earthquakes can generate significant hydrodynamic pressures on concrete dams, potentially
leading to cracking or partial failure. Such failures can have catastrophic downstream conse-
quences, threatening lives, infrastructure, and water resources. Despite progress in seismic de-
sign codes, many existing dams were constructed before modern standards and lack reliable

Page 15



Chapitre 0 GENERAL INTRODUCTION

numerical tools to accurately predict their seismic response. Therefore, it is essential to deve-
lop advanced numerical models capable of accurately predicting hydrodynamic pressures in the
reservoir under both seismic and harmonic excitations while considering the influence of fluid
compressibility and surface gravity waves.

0.2 Objectives of the study

This research aims to clarify the effects of surface waves on hydrodynamic pressures in dam–
reservoir systems during seismic events. The specific objectives are :

1. Develop a finite element model of the reservoir for both incompressible and compressible
fluid cases.

2. Analyze surface gravity wave effects under harmonic and seismic loading

3. Compare hydrodynamic pressures with and without surface-wave effects

4. Identify key parameters influencing surface-wave significance.

5. Show conditions where neglecting surface waves impacts seismic safety assessments.

The study focuses on a vertical rigid dam and a horizontal reservoir bottom. It neglects dam
deformability and sediment to better isolate hydrodynamic pressures.

0.3 Structure of the dissertation

This dissertation is organized as follows :

- Chapter 1 reviews the historical evolution of hydrodynamic pressure analysis and high-
lights the role of surface waves.

- Chapter 2 presents the mathematical model and governing equations.

- Chapter 3 describes the finite element implementation and provides comparative numeri-
cal results for the Oued El Fodda dam. It contains numerical applications, comparisons,
and interpretations of results.

- The General Conclusion summarizes the findings and outlines perspectives for future
research.

Page 16
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Chapitre 1 LITERATURE REVIEW

Chapitre 1

LITERATURE REVIEW

1.1 Introduction

This chapter reviews the historical development of methods used to analyze hydrodynamic
pressures on dams during seismic events. Starting with early analytical approaches such as
Westergaard’s formulation, we trace the evolution of models and their limitations, including
the neglect of fluid compressibility and surface gravity wave effects. We then examine key
contributions from Zangar, Housner, Chopra, and others that progressively addressed these
shortcomings. Finally, the chapter outlines the transition from simplified analytical formulations
to modern numerical techniques such as the Finite Element Method (FEM), which forms the
basis of the present study.

1.2 Historical context and major seismic accidents

Most large dams are designed to withstand earthquakes ; however, a few accidents have shown
how dams can fail. These rare events led engineers to develop more sophisticated analysis
methods that now consider dam flexibility, water compressibility, and dynamic effects such as
surface gravity waves.

Building on this improved understanding, notable examples such as the 1967 Koyna Dam
earthquake in India, which caused structural cracking due to hydrodynamic effects, and the 1999
Chi-Chi earthquake in Taiwan, where the Shih-Kang Dam suffered partial failure [1], further
advanced the field. These incidents underscored that simplified models, such as Westergaard’s
added-mass formulation, could not capture all dynamic effects. In particular, they highlighted
the role of dam flexibility, reservoir bottom absorption, and surface wave generation, all of
which are best addressed within a finite element modeling framework.

These historical analyses and the lessons from major dam failures motivate the detailed review
of classical analytical models and their limitations presented in the following sections.

1.3 Classical analytical and semi-analytical approaches

The foundation for modern hydrodynamic pressure analysis lies in classical analytical models.
These can be traced through the following key contributions :
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1.3.1 Early pioneers and their fundamental assumptions

The first analytical models aimed to provide explicit, closed-form solutions for engineering ap-
plications. Although pioneering, these models depended on rigid assumptions that constrained
their reliability under actual seismic conditions.

1.3.1.1 Westergaard’s simplified model (1933)

Westergaard (1933) introduced the first practical formulation of hydrodynamic pressures acting
on a rigid, vertical dam subjected to horizontal ground motion. His approach, known as the
added mass method, treats the hydrodynamic effect as an inertial force arising from a fictitious
mass of water that moves with the dam. This concept simplifies the fluid-structure interaction
to an equivalent structural inertia problem [2, 3, 4, 5, 6].

The classical formulation is based on several key assumptions :

- The reservoir water is incompressible and inviscid.

- Surface wave effects at the free surface are neglected.

- The dam is modeled as a rigid body with an infinite upstream reservoir length.

- Only the fundamental mode of horizontal excitation is considered.

Westergaard’s solution is applicable primarily when the excitation frequency is below the funda-
mental frequency of the reservoir [4, 5]. Despite its simplicity, the method remains widely used
in the preliminary seismic design of gravity dams, where low-frequency excitation dominates
and water is often assumed incompressible [4, 7, 8].

However, this approach tends to overestimate hydrodynamic pressures because it neglects signi-
ficant factors such as dam flexibility and surface wave generation. This motivated subsequent
researchers, starting with Zangar, to extend and refine the theory.

Although not a numerical method itself, the added mass concept has been incorporated into
many finite element and numerical techniques [4]. For example, Mir & Taylor (1995) applied
the concept in experimental settings to approximate dam-reservoir pressures [4]. Nonetheless,
it remains recognized that the original formula often overpredicts maximum pressures, leading
to the proposal of correction factors that account for dam elasticity, reservoir geometry, and
sediment presence.

Despite these limitations, Westergaard’s formulation is foundational, still forming the basis of
many design codes and guidelines. It may be regarded as a special case within more generalized
models that include compressibility, surface gravity waves, and flexibility [4].

In the decades following Westergaard’s publication, further developments arose. Researchers in
the 1950s and 1960s systematically addressed these limitations by developing more advanced
models. Beginning with Zangar’s electrical analogies, Housner’s impulsive-convective decompo-
sition, and Kotsubo’s extensions accounting for earthquake motion randomness. These lay the
groundwork for modern numerical and analytical methods, which are further elaborated in the
next chapters.
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1.3.1.2 Zangar electrical analogy method (1952)

Building on Westergaard’s simplified model, Zangar (1952, 1953) developed an electrical analogy
method and was the first to experimentally investigate the influence of the upstream face
geometry of dams. He showed that hydrodynamic pressures are consistently smaller for dams
with non-vertical faces. These findings provided crucial validation data for later analytical and
numerical models [7, 9].

1.3.1.3 von Kármán and Housner (1957)

Housner idealized the liquid as incompressible and posed and solved the problem in an ap-
proximate and simple way with acceptable results. To do this, he decomposed the motion into
impulsive and oscillatory. He applied the results to rectangular, cylindrical, and elliptical tanks
and to rigid inclined walls and studied the effect of the dam’s flexibility. He demonstrated that
hydrodynamic pressures decrease as the dam’s flexibility increases, an insight later verified with
numerical models.[10]

1.3.1.4 Kotsubo (1960)

Kotsubo challenged the validity of the added-mass approach by emphasizing that earthquakes
are inherently random and cannot be represented adequately by simplified harmonic excita-
tion [11]. He showed that maximum dynamic pressures can be considerably larger than those
predicted by Westergaard’s equation [12].

Importantly, Kotsubo demonstrated that dynamic water pressure is not always proportional
to ground acceleration. When the earthquake period is shorter than the reservoir’s resonance
period, the pressure response lags the acceleration phase by about 90◦, acting as a damping
force that may, in some cases, enhance dam safety [12].

He also provided one of the first theoretical solutions for the three-dimensional distribution
of dynamic pressures in arch dams, an important step toward treating more complex dam
geometries [12].
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1.3.1.5 Anil K. Chopra (1966) : hydrodynamic pressures on dams during earth-
quakes

Chopra was one of the first researchers to systematically investigate the limitations of classical
hydrodynamic formulations for dams under seismic loading. His seminal 1966 report[13] sought
to determine accurate hydrodynamic pressures acting on dams during real earthquake motions,
moving beyond simplified design approaches such as Westergaard’s “virtual mass” method.
Chopra’s objective was to establish a rigorous analytical framework that incorporated the in-
herently dynamic and complex nature of earthquake excitations. Chopra’s model incorporated
several critical assumptions :

- Dam and Reservoir Geometry : A vertical, rigid dam face with an infinitely long
reservoir in the upstream direction.

- Fluid Properties : Water was modeled as a compressible, inviscid (ideal), and initially
still fluid. Compressibility was a central and novel aspect of his study.

- Excitation : Both horizontal and vertical components of ground motion were ana-
lyzed, with the 1940 El Centro earthquake used as the primary input.

A key aspect of Chopra’s research was to evaluate the necessity of including surface waves at
the free surface boundary condition(y = H) . Two boundary conditions were compared :

Exact Boundary Condition (including surface waves) :

- Exact Condition (with surface waves) :

∂2Φ

∂t2
+ g

∂Φ

∂y
= 0 (1.1)

Where Φ is the velocity potential

- Simplified Condition (without surface waves) :

p = 0 (1.2)

Justification for Simplifying or Neglecting Surface gravity Waves :

- Horizontal Motion : Referencing Bustamante et al.[10], Chopra employed an error
criterion based on the dimensionless parameter H/T . His analysis showed that for typical
earthquake frequencies, the error in neglecting surface waves is less than 5%, supporting
the use of the simplified boundary condition.

- Vertical Motion : Chopra performed calculations with and without the full surface
wave condition. He found only negligible differences between the two solutions, conclu-
ding that the simplified condition p = 0 “is sufficiently accurate for engineering
purposes.”[13]
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1.3.1.6 Nath (1969)

Nath (1969) extended the analysis of hydrodynamic pressures using the finite element method,
focusing particularly on vertical ground motions for both vertical and inclined dam faces. His
work provided important refinements to earlier studies, including Chopra’s.[13].

Nath actually confirmed and reinforced Chopra’s finding that surface wave effects are ge-
nerally negligible for seismic analysis. He demonstrated quantitatively that :

n =
cT

H
(1.3)

For high frequencies (e.g., n = 30), the difference between applying the linearized free-surface
condition and simply taking p = 0 at the surface was minimal—the pressure coefficient at the
free surface was only 0.0002 in the former case versus zero in the latter. Nath concluded that
“surface gravity waves would have some effect on dynamic pressures only when the relative
frequency of motion is very small, and that for relatively high frequencies—where compressibi-
lity effects become significant—the simplified condition p = 0 at the free surface is sufficiently
accurate.”

Nath’s significant contributions included :

- Developing one of the earliest finite element applications to dam-reservoir interaction
problems

- Providing numerical validation of compressibility effects for complex geometries, including
inclined dam faces

- Showing that inclined dams experience lower pressure coefficients than vertical dams

- Demonstrating that pressure distribution varies with reservoir length for inclined dams,
unlike vertical dams where pressures remain constant along the reservoir

His work represented an important transition toward numerical methods in dam engineering,
providing the framework for more sophisticated finite element and boundary element formula-
tions that would follow.[14]

1.3.2 Limitations of classical approaches

While classical analytical methods provided foundational insights into hydrodynamic pressures,
they were constrained by several significant simplifications that limited their accuracy for com-
plex seismic analysis.

The most notable limitation was the treatment of the free surface condition. Methods like
Westergaard neglect surface-wave effects by assuming (p = 0 at y = H), neglecting the dynamic
interaction between surface waves and hydrodynamic pressures. However, subsequent research
by Chopra [13] and Nath [14] demonstrated that this simplification was actually justifiable
for high-frequency seismic analysis, as surface wave effects were quantitatively shown to
be negligible (approximately 5% error) for the dominant frequencies in earthquake excitations.

The more critical limitation emerged in the treatment of water compressibility. Classical ap-
proaches either :
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- Assumed incompressible water (e.g., Zangar’s method), leading to errors of 20-51% in
peak pressure estimates

- Were restricted to harmonic excitations with periods longer than the reservoir’s funda-
mental period (e.g., Westergaard’s method)

Additionally, these methods could not adequately handle :

- Complex dam geometries (e.g., inclined faces, arch dams)

- Three-dimensional reservoir effects

- Dam-reservoir-foundation interaction

- Arbitrary earthquake time histories with wide frequency content

The virtual mass concept proved particularly problematic, as it became invalid when ex-
citation periods approached the reservoir’s resonant periods, where phase differences between
acceleration and pressure become significant.

These limitations highlighted the necessity for more sophisticated approaches that could pro-
perly account for water compressibility, complex geometries, and full dynamic interaction—
ultimately driving the development of numerical techniques such as the finite element method
(FEM) and boundary element method (BEM). These limitations provided the impetus for the
development of more advanced numerical methods, notably the finite element method, discussed
in the following subsection.

1.3.3 Development of numerical methods

The advent of digital computers in the 1960s and 1970s enabled the use of numerical methods
for dam–reservoir interaction analysis. These approaches overcame many of the limitations of
classical analytical models by explicitly incorporating water compressibility, dam flexibility,
complex geometries, and surface gravity wave effects.

Chopra and his colleagues made pioneering contributions by formulating finite element proce-
dures that included reservoir geometry and water compressibility [4]. Their work showed that
Westergaard’s solution is valid only when the excitation frequency is less than the fundamen-
tal frequency of the reservoir, and that water may be treated as incompressible if the dam’s
fundamental frequency is less than half that of the reservoir [4, 5].

To reduce computational cost, Chakrabarti and Chopra [4] developed a boundary element
method (BEM), which required discretization only of the reservoir boundaries . Later, Hall and
Chopra (1982) proposed a two-dimensional FEM procedure for the dynamic analysis of concrete
gravity dams, treating the dam as elastic and the water as compressible. Fenves and Chopra
(1984, 1987) further refined these methods to include dam–water–foundation interaction and
reservoir bottom sediments.

Other significant contributions include Sharan (1985), who extended FEM to handle complex
geometries and introduced a technique for modeling radiation damping in infinite reservoirs .
His numerical results compared favorably with analytical solutions derived by Chwang [7, 9].

In the 1980s and 1990s, these advances laid the foundation for more sophisticated computational
methods. Recent developments include coupled FEM–BEM techniques, scaled boundary FEM,
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and mesh-free methods such as smoothed particle hydrodynamics (SPH). These approaches
offer improved computational efficiency, higher accuracy, and better treatment of surface waves
and nonlinear effects, making them well-suited for dam–reservoir interaction studies.

1.4 Integration of surface wave effects in dam–reservoir
analysis

The influence of surface waves on hydrodynamic pressure distribution has long been recognized,
yet these effects are often neglected in practical analyses. This is mainly because classical
analytical methods neglect the wave motion at the free surface, while early numerical models
prioritized computational efficiency over free-surface accuracy. As a result, most design-oriented
studies overestimated surface-wave contributions.

A more complete treatment of dam-reservoir system, therefore, requires explicit integration of
surface waves into numerical formulations, an approach that has only recently become practical
with advances in computational power and modeling techniques.

1.4.1 Bustamante et al. (1963) : free-surface and compressibility ef-
fects

Bustamante, Rosenblueth, Herrera, and Flores presented a comprehensive theoretical analysis
of hydrodynamic pressures on dams during earthquakes [10]. Their study formulated the dam–
reservoir interaction problem for a compressible, inviscid, and irrotational fluid under small
displacements, excited by harmonic ground motion.

The governing equation reduces to a wave equation for the velocity potential ω :

∂2ω

∂x2
+

∂2ω

∂y2
− γ0

gEv

∂2ω

∂t2
= 0, (1.4)

where Ev is the bulk modulus of water, γ0 the unit weight, and g gravity.

The free-surface boundary condition is given by :

∂2ω

∂t2
(x,H, t) + g

∂ω

∂y
(x,H, t) = 0, (1.5)

which fully accounts for surface gravity waves (seiches). Because solving this exactly is difficult,
a common simplification sets ω(x,H, t) = 0, effectively neglecting surface waves.

1.4.1.0.1 Key findings. The authors quantified the errors introduced by common simpli-
fications :

1. Neglecting surface waves :

- Error in hydrodynamic force Q is < 5% when H
T
> 4.2

√
H,

- Error is < 20% when H
T
> 2.6

√
H.

2. Neglecting compressibility :
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- Small errors for H
T
< 100 m/s,

- Very large errors (up to 100%) near resonance at H
T
≈ 359.6 m/s.

3. Reservoir length-to-depth ratio (L/H) :

- For L/H > 5, results converge to those of an infinite reservoir,
- For L/H ≈ 1, significant differences occur, especially above the first critical frequen-

cy.

1.4.1.0.2 Implications. This study provided one of the first rigorous formulations of the
dam–reservoir problem with compressibility and surface wave effects. It demonstrated that while
surface waves can sometimes be neglected for high-frequency motions, they become crucial at
low frequencies and for short reservoirs, reinforcing the need for numerical approaches capable
of capturing these effects.

1.4.2 Chwang (1981, 1985) : Surface waves, compressibility, and
flexibility

The impact of surface gravity waves on hydrodynamic pressure distribution was a key area
of Chwang’s research [7]. In a 1981 study, Chwang [15] performed a perturbation analysis to
investigate the effect of density stratification in the reservoir fluid. Specifically, he examined
how a linear density profile, ρ̄(y) = ρ0(1−ϵy/h), modifies the hydrodynamic pressure. Although
stratification was the primary focus, the analysis was conducted within the framework of linear
wave theory, which inherently includes surface waves. The wave-effect parameter C = g/(ω2h)
appeared as a fundamental quantity, and the resulting pressure distribution included both in-
phase and out-of-phase components, the latter arising directly from the free-surface boundary
condition.

Chwang’s subsequent report with Huang [16] marked a major advance. This work presented a
comprehensive general method for analyzing three-dimensional reservoirs of arbitrary planform.
Surface wave effects (parameter C) were treated explicitly and on equal footing with water
compressibility (parameter B = ωh/c0) and reservoir geometry. The study demonstrated that
when C > 0, the pressure distribution becomes oscillatory near the free surface, a radical
departure from classical solutions.

The 1985 study also extended the formulation to flexible dams by representing the dam-face
motion as a superposition of modal shapes. This revealed how structural flexibility interacts
with reservoir hydrodynamics, significantly altering both pressure distributions and system
resonance characteristics.

Together, these contributions established a systematic framework for including surface waves,
compressibility, and flexibility in dam–reservoir interaction analysis, paving the way for later
FEM and BEM implementations.

1.4.3 Eatock Taylor (1981) : mode superposition and surface wave
criteria

Eatock Taylor reviewed the analysis of hydrodynamic loads on submerged structures such as
dams, intake towers, and offshore platforms during seismic events [5]. A central theme of his
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work was the dynamic interaction between fluid loading and structural response. To illustrate
key physical effects, he presented an analytical solution for a simplified two-dimensional dam-
reservoir system, explicitly accounting for fluid compressibility and free-surface motion.

The method proceeds in two steps. First, the structure is analyzed in a “dry” state (without
fluid) to determine its natural vibration modes and frequencies. Second, the influence of the
surrounding fluid is superimposed onto these dry modes using modal analysis, avoiding the
need to solve the fully coupled fluid-structure system simultaneously. This mode superposition
approach reduces computational effort while capturing essential hydrodynamic effects.

The hydrodynamic pressure p(x, y, t) is expressed as a linear superposition of contributions from
ground motion and the structure’s vibration modes. The governing equation for the unit pres-
sure function θr (which defines the pressure distribution per mode) is the modified Helmholtz
equation :

∇2θr = −ω2

c2
θr, (1.6)

where ω is the excitation frequency and c is the acoustic wave velocity in the fluid.

At the free surface (y = H), the boundary condition incorporates gravity effects :

∂θr(x,H)

∂y
=

ω2

g
θr(x,H), (1.7)

which shows that surface response depends on both excitation frequency and gravitational
acceleration.

From this formulation, Eatock Taylor derived practical criteria for simplifying analyses : Surface-
wave effects are negligible when :

ω1 > 8.3

√
g

H
, (1.8)

where ω1 is the dam’s fundamental frequency (in rad/s). This criterion is based on the work by
Bustamente et al.[10]. - Compressibility effects are negligible when (following Chopra, 1968) :

ω1 <
πc

4H
. (1.9)

Importantly, these two conditions overlap only for extremely deep reservoirs (H > 1890 m).
For most practical dam heights, either compressibility or surface wave effects (or both) must
be considered to ensure accurate seismic analysis.
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1.4.4 Wu and Yu (1989) : Trefftz method and wave–Dam interaction

Wu and Yu employed the Trefftz method to analyze the influence of surface gravity waves
on hydrodynamic pressure distributions along rigid dams with non-vertical upstream faces [9].
Their approach used a set of T-complete functions that satisfied the Laplace equation and all
boundary conditions except on the dam face, where a least-squares fit was applied.

They introduced the wave-effect parameter

CW =
g

ω2H
, (1.10)

and showed that hydrodynamic pressure decreases as CW increases, attributing this effect to
energy radiated away by propagating surface waves.

Their numerical results, computed with 25 series terms, were compared with Chwang’s exact
solutions (which neglected surface waves) and with Zangar’s experimental data. The agreement
was good, and the study highlighted the significance of wave effects—especially for dams with
sloped upstream faces. Wu and Yu’s work remains a key reference in numerical investigations
of wave–dam interaction under seismic conditions.

1.4.5 Tsai and Wei (1991)

Tsai and Wei investigated the hydrodynamic pressure on an oscillating vertical plate. They
reported that compressibility is effective at higher oscillation frequencies in deep reservoirs,
with pressures exceeding those of incompressible fluids, particularly near the bottom. At lower
frequencies, the effect of surface waves was more significant, producing negative pressures close
to the free surface. Experiments were also performed to examine the wave effect, and the results
showed good agreement with theoretical studies.[17]

1.4.6 Martin (1992) : wavemaker analogy and surface wave criteria

Martin revisited the hydrodynamic problem of dams under seismic loading by drawing an
analogy with Havelock’s classical wavemaker problem [18]. His analysis emphasized the role of
surface waves, which had often been neglected in earlier dam-reservoir models.

In the wavemaker problem, surface waves are explicitly included through the free-surface boun-
dary condition,

Kϕ+
∂ϕ

∂y
= 0 on y = 0, (1.11)

where K = ω2/g, and ϕ is the velocity potential. This condition admits propagating gravity
waves, with the fundamental eigenfunction

ϕ0(x, y) = eik0xY0(y), (1.12)

where k0 satisfies the dispersion relation

K = k0 tanh(k0h). (1.13)

This formulation captures both radiating surface waves and higher-order evanescent modes,
placing surface waves at the center of the analysis.
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By contrast, Martin reformulated the dam problem as the limiting case K → ∞, corresponding
to short-duration earthquake loading where gravitational effects are negligible. In this regime,
the free-surface condition becomes

ϕ(x, 0) = 0, x > w(0), (1.14)

so that no surface gravity waves are generated. This distinction clarified that surface waves
are essential for long-duration or harmonic excitations, but can be neglected under impulsive
loading conditions.

Martin further demonstrated that for both vertical and non-vertical wavemakers (or dams), the
velocity potential can be represented as a convergent eigenfunction expansion—provided the
geometry satisfies specific constraints. By adapting the Rayleigh hypothesis from acoustics, he
identified the allowable shapes for which such an expansion remains valid everywhere in the
fluid, thus extending Westergaard’s classical solution to more general dam faces.

1.4.7 Maity and Bhattacharya (1999, 2003) : boundary conditions
for FEM with surface waves

Maity and Bhattacharya [3] introduced an efficient far-boundary condition for truncating the
infinite reservoir domain in finite element models . Their formulation treated pressure as the
nodal variable and incorporated fluid compressibility, enabling time-domain analyses of dam–
reservoir systems. A key advantage was that the artificial boundary could be placed relatively
close to the structure without compromising accuracy, thereby reducing computational cost.
For dams with vertical upstream faces under steady-state loading, their approach produced
results in close agreement with classical solutions, even when the truncation surface was set
at a short distance from the dam. Importantly, the free-surface boundary condition in their
method explicitly included the effects of surface waves.

Building on this work, [2]They developed a more general FEM procedure for coupled fluid–
structure systems, again assuming a compressible, inviscid fluid with pressure as the unknown
variable . Their extended formulation retained the explicit treatment of surface waves, making
it applicable to a broader range of dynamic loading problems.

Together, these contributions provided a practical and computationally efficient FEM frame-
work for dam–reservoir interaction that overcame one of the main challenges in numerical mo-
deling : representing the infinite reservoir while still accounting for compressibility and surface
wave effects.

1.4.8 Attarnejad and Zahedi (2004) : time-domain exact solution
with surface waves

Attarnejad and Zahedi presented a time-domain exact solution for the coupled response of
gravity dams and reservoirs, explicitly accounting for surface wave effects [6]. Their analysis
assumed an incompressible and irrotational fluid and demonstrated that hydrodynamic pres-
sures can be significantly larger when surface waves are included—up to three times greater
than those predicted under the assumption of a fixed free surface.

This result highlights the critical role of free-surface motion in seismic dam analysis and provides
strong evidence that neglecting surface waves can lead to unsafe underestimation of hydrody-
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namic loads. Their work, therefore, underscores the need to integrate surface wave effects into
modern numerical approaches.

1.4.9 Avilés and Suárez (2010) : surface waves in compressible and
viscous fluids

Avilés and Suárez extended the Trefftz method to investigate the effects of surface gravity
waves on the hydrodynamic pressures of rigid dams with arbitrary upstream faces, while also
accounting for water compressibility and viscosity [7]. Their formulation used a complete set of
Trefftz functions that satisfied the reduced wave equation and all boundary conditions except
on the dam face, where the solution was determined in the least-squares sense.

They characterized the surface wave effect using the parameter

σ =
ω2Hr

g
, (1.15)

and found that hydrodynamic pressures are significantly influenced by surface waves for values
of σ < 10, but become irrelevant for large values (e.g., σ = 100).

Their results showed that surface waves generate negative pressures at the dam’s top and reduce
positive pressures at the base, with the former effect being more critical for fully inclined faces.
They concluded that while the influence of surface waves is distinct, it is generally smaller
than the effect of internal waves from fluid compressibility, which dominate at the reservoir’s
resonant frequencies. The study provided a comprehensive closed-form solution, validating its
convergence and accuracy against existing exact solutions for both vertical and sloping dams.

1.4.10 Gogoi and Maity (2006–2010) : truncation boundaries and
frequency-domain approaches

Gogoi and Maity in 2006 introduced a new truncation boundary condition for evaluating hy-
drodynamic pressures in infinite reservoirs [4]. This formulation incorporated the absorptive
properties of the reservoir bottom and the reflection coefficient of sedimentary layers, making
it suitable for unbounded domains in FEM applications.

In 2007, they extended this framework by explicitly including surface wave effects in the free-
surface boundary condition. Their formulation assumed an inviscid, irrotational, and linearly
compressible fluid subjected to small-amplitude motion, further enhancing the physical realism
of dam–reservoir interaction models.

Later, in 2010 they proposed a short-term Fourier transform (STFT)-based solution for dyna-
mic dam–reservoir problems, allowing the identification of frequency-dependent interactions at
the reservoir bottom. This frequency-domain approach provided a flexible tool for analyzing
complex bottom boundary conditions and transient seismic inputs.

Taken together, these contributions advanced the numerical modeling of dam–reservoir systems
by integrating surface wave effects with more realistic boundary conditions, bridging the gap
between idealized theory and practical FEM implementations.
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1.4.11 Pani and Bhattacharyya (2008) : FEM with free-surface and
truncated boundaries

Pani and Bhattacharyya investigated the hydrodynamic pressure on a vertical rectangular gate
using the finite element method (FEM), treating fluid pressure and gate displacement as inde-
pendent nodal variables. Their formulation incorporated a linearized free-surface condition to
represent surface waves—justified by the small amplitude of waves relative to the fluid depth,
despite the inherently nonlinear nature of free-surface flows—and a near-truncation boundary
condition to efficiently approximate the unbounded reservoir.[19]

1.4.12 Chen and Yuan (2011) ; Abdollahi and Attarnejad (2012) :
quantifying surface wave effects

Chen and Yuan and Abdollahi and Attarnejad emphasized the role of surface waves in dam–
reservoir interaction. Their studies showed that surface-wave effects can augment hydrodynamic
pressures by up to 10% in linear analyses and become even more significant under ramp-type
seismic excitations [20, 21].

1.4.13 da Silva and Pedroso (2019)

da Silva and Pedroso developed an analytical solution in the complex plane to study the dam-
reservoir interaction problem for a rigid dam and a semi-infinite, incompressible fluid re-
servoir [22]. Their formulation solved the Laplace equation to determine the hydrodynamic
pressure field, explicitly incorporating the effects of surface gravity waves through a linea-
rized free-surface boundary condition. A key outcome of their work was the derivation of the
complex hydrodynamic force on the dam, which they separated into a conservative part (real
component), representing the inertial added mass effect, and a dissipative part (imaginary
component), quantifying the energy radiated away from the structure by surface waves.

They demonstrated that the balance between these inertial and radiative effects is governed by
the Froude number (Fr), a dimensionless parameter they defined as the square of :

F 2
r =

ω2H

g
(1.16)

where ω is the excitation frequency, H is the reservoir depth, and g is the acceleration due
to gravity. Their analysis showed that the dissipative effect decreases as the Froude number
increases, while the conservative effect increases. The study also provided asymptotic solutions
for both very low and very high Froude numbers, offering simplified expressions for these limiting
cases.

In summary, this work provided a fundamental analytical framework that clearly isolates and
characterizes the mechanisms of energy dissipation due to surface wave radiation in dam-
reservoir systems, complementing numerical approaches by offering exact benchmark solutions.
Despite such findings, many practical analyses continue to neglect free-surface motion due to
the added computational complexity. Addressing this gap requires numerical models that can
efficiently incorporate surface-wave effects. The present work contributes to this effort by em-
ploying a finite element model with a Neumann boundary condition at the free surface, offering
a framework that balances accuracy with computational feasibility [7].
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In summary, while classical analytical models laid the groundwork for understanding dam-
reservoir interactions, their simplifying assumptions limited their applicability to modern dams
and loading conditions. Progressing from these foundations, this thesis adopts a finite element
framework that incorporates both fluid compressibility and surface-wave effects, providing an
advanced tool for accurate seismic analysis.

1.5 conclusion

This chapter has traced the historical development of methods for analyzing hydrodynamic
pressures on dams, beginning with classical analytical approaches and progressing to modern
numerical formulations. Early studies established the fundamental concepts of added mass and
rigid-reservoir assumptions, but they also introduced significant simplifications, most notably,
the neglect of water compressibility, dam flexibility, and free-surface motion. Subsequent re-
search progressively relaxed these assumptions, incorporating compressibility and geometry
effects, and demonstrating that surface waves can strongly influence hydrodynamic pressures.

Despite these advances, surface-wave effects remain frequently overlooked in practical enginee-
ring analyses, largely due to their computational complexity. The literature reviewed in this
chapter shows that neglecting them can lead to a substantial overestimation of hydrodynamic
pressures.

The next chapters build directly on these insights by developing a finite element framework for
a rigid vertical dam–reservoir system. This model explicitly incorporates surface-wave effects
through appropriate free-surface boundary conditions, providing a more realistic assessment of
hydrodynamic pressures under seismic loading.
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Chapitre 2

MATHEMATICAL MODEL AND
GOVERNING EQUATIONS

2.1 Introduction

To establish the mathematical framework for this work, this chapter formulates the governing
equations of the dam–reservoir system. Emphasis is placed on hydrodynamic pressures exerted
on a rigid vertical dam, with explicit distinction between compressible and incompressible fluid
models. The formulation is developed for numerical implementation using the Finite Element
Method (FEM), as introduced in Chapter 1. We begin with the geometric assumptions of the
dam–reservoir system, followed by the governing equations of fluid motion. Finally, the relevant
boundary conditions are derived, including the treatment of the free surface with and without
surface-wave effects.

2.2 Modeling assumptions and geometry

The reservoir is assumed to have constant depth (H) and a rigid horizontal bottom. Its
length is considered sufficiently large to approximate an infinite domain, which is typically
satisfied for L ≥ 3H in practical FEM applications, where L denotes the length of the compu-
tational domain. These geometric simplifications underpin the following analysis.

Building upon these assumptions, we consider a vertical dam subjected to horizontal ground
acceleration, denoted as ün, as illustrated in Figure 2.1. The coordinate origin is placed at
the base of the reservoir. Due to the dam’s rigidity, all points along the dam–fluid interface
experience the same acceleration as the base. The dam–reservoir system is modeled in two
dimensions, with the following fluid assumptions : the water is linearly compressible, inviscid,
and irrotational. For the purposes of this simplified seismic analysis, the peak ground acce-
leration is assumed to fully characterize the seismic input and is used to define the relevant
seismic parameters [23].
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2.2.1 Geometry and computational domain

As depicted in Figure 2.1, the reservoir is modeled as a rectangular domain Ω bounded by four
distinct boundaries :

- S1 : The impermeable bottom of the reservoir (y = 0).

- S2 : The truncated lateral boundary at the far end of the reservoir (x = L).

- S3 : The free surface of the water (y = H)

- S4 : The vertical dam-reservoir interface (x = 0, 0 ≤ y ≤ H).

- Total Boundarys : S = S1 ∪ S2 ∪ S3 ∪ S4

Figure 2.1 : Geometry of the dam-reservoir system

2.3 Theoretical formulation

2.3.1 Governing equations for fluid

Building on the modeling assumptions introduced in Section 2.2, we make the following addi-
tional simplifications for the derivation of the governing equations :

(a) the reservoir is considered infinitely long in one direction, allowing a two-dimensional
formulation ;

(b) fluid motions are assumed to be of small amplitude, justifying linearization of the governing
equations.

Under these assumptions, and considering the reservoir water to be linearly compressible and
inviscid, the Navier–Stokes equation expressing the dynamic balance of fluids reduces to :

ρv̇ = −∇p (2.1)
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p is the hydrodynamic pressure in the liquid and ρ the mass density of water.For a complete
description, the mass conservation equation as well as the equation of state must be combined
with the preceding equation of motion [24]. They are written, respectively, as

ρ̇+ ρ∇v = 0 (2.2)
The relationship between the fluid density and the resulting hydrodynamic pressure is defined
by the equation of state :

dρ =
ρ

k
ṗ (2.3)

Where k the fluid’s bulk modulus. From equations 2.2 and 2.3, we can write :
ρ

k
ṗ+ ρ∇v = 0 (2.4)

Multiplying equation 2.4 by ∇ and differentiating equation 2.3 with respect to time leads to
the following system of dynamic equilibrium equations :

ρ∇v̇ +∇2p = 0 (2.5)

ρ∇v̇ +
1

C2
p̈ = 0 (2.6)

Where : C =
√

k/ρ denotes the acoustic wave velocity in water.For water, C ≈ 1438 m/s.
Eliminating the variable v from the system of equations 2.5 and 2.6 leads to the wave equation
governing the behavior of the pressure perturbation inside the reservoir :

∇p2 +
1

C2
p̈ = 0 (2.7)

In the incompressible limit (C → ∞ ⇒ k → 0), (Eq. 2.7) reduces to Laplace’s equation.
∇2p = 0 (2.8)

For a compressible fluid, the equation that governs the problem is none other than the Navier-
Stokes equation with all its terms : The dam is modeled as a rigid body undergoing base
excitation, expressed as

ün(t) = eiωt (2.9)
Where : w is the circular frequency of vibration. This formulation allows us to later apply the
Finite Element Method (see Chapter 3) to capture the dynamic pressure distribution. To solve
the Helmholtz equation, we define the appropriate boundary conditions, presented in the next
section.

2.3.2 Boundary conditions

Boundary conditions are crucial for solving the governing equations, as they specify the behavior
of the fluid at the domain boundaries. The boundary conditions for the dam-reservoir system
shown in Figure 2.1 are given by :

1. On the upstream face of the dam (S4) : At the dam–reservoir interface S4, the fluid
bonds perfectly to the rigid dam wall. Therefore, the fluid’s normal acceleration must
equal the dam’s prescribed horizontal acceleration, ün. The condition can be written in
terms of the hydrodynamic pressure gradient as

∂p(x, y, t)

∂n

∣∣∣∣
S4

= −ρün (2.10)

where n is the outwardly directed normal to the elemental surface along the interface.
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2. At the free surface (S3) : On the free surface S3, the simplest condition is to consider
atmospheric pressure p = 0 and to neglect surface waves. However, pressure variations
inside the reservoir induce fluctuations of the free surface.[24]
An approximate idea to include the effects of surface waves consists in considering a mean
free surface for which any elevation or lowering of the actual surface by a height h (as
illustrated in Figure 2.1)results in a pressure variation assumed to be hydrostatic [24] :

p = ρgh (2.11)

The dynamic equation applied to this case gives :

∂p

∂n
= −ρḧ (2.12)

where ∂p

∂n
is the pressure gradient normal to the free surface, and ḧ is the second time

derivative (acceleration) of the free surface elevation.
Taking twice the time derivative of equation (2.11) and substituting into equation (2.12)
yields the linearized free surface wave boundary condition :

∂p

∂n
= −1

g
p̈ (2.13)

This condition expresses that the normal pressure gradient at the free surface is pro-
portional and opposite to the second time derivative of the pressure. It is known as the
linearized free surface boundary condition and is essential to incorporate the dynamic ef-
fects of surface gravity waves in hydrodynamic pressure modeling. Under the assumption
of small-amplitude waves, the free surface remains nearly horizontal, so the outward nor-
mal vector n to S3 is approximately vertical and coincides with the y–axis. Accordingly,
the normal derivative reduces to :

∂p

∂y
= −1

g
p̈ (2.14)

The linearized free surface boundary condition is therefore expressed as

1

g
p̈+

∂p

∂y
= 0 (in the Time domain) (2.15)

This expression is referred to as Poisson’s boundary condition for gravity waves [7]. As
previously advanced, the pressure in the reservoir can be given in the frequency domain
as :

p(x, y, t) = p(x, y, w)eiωt (2.16)
we derive the condition in the frequency domain. So, the boundary condition in terms of
physical pressure is written as :

∂p

∂y

∣∣∣∣
S3

=
ω2

g
p (linearized and in the frequency domain) (2.17)

3. The radiation condition (S2) :
This boundary is considered the truncation limit of the domain bounding the reservoir
where pressures are completely dissipated. Therefore :

p
∣∣
S2

= 0 (2.18)
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4. At the bottom of the reservoir (S1) : This boundary condition, applied at the
bottom of the reservoir (S1), which is considered rigid and horizontal, assumes that the
fluid particles are perfectly bonded to the solid particles of the dam. As a result, their
velocity in the vertical direction is considered to be zero :

∂p

∂y

∣∣
S1

= 0 (2.19)

In summary, the mathematical formulation of the system, taking into account the boundary
conditions, is :



∇2p =
1

C2

∂2p

∂t2
in Ω

∂p

∂n
= −ρün on S4

on S3 :

p = 0 (without surface wave)
∂p

∂y
=

ω2

g
p (with surface wave)

p = 0 on S2

∂p

∂y
= 0 on S1

(2.20)

2.4 Conclusion

Selecting an appropriate mathematical model is a demanding task that requires careful evalua-
tion by the design engineer. It involves defining calibration parameters, establishing the gover-
ning equations for the phenomenon under study, and selecting numerical tools and boundary
conditions that closely match real-world behavior. Unlike earlier approaches that overlooked the
influence of surface gravity waves on hydrodynamic pressure distribution, this study explicitly
accounts for the influence of surface gravity waves through the adopted governing equations
and boundary conditions, ensuring a more realistic representation of the hydrodynamic beha-
vior within the reservoir. The resulting formulation establishes a consistent theoretical basis for
analyzing the pressure field in the dam–reservoir system.
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Chapitre 3

Numerical Analysis and Comparative
Results

3.1 Introduction

In studying the effect of earthquakes on dams, most analyses have concentrated on horizontal
motions of the structure and valley walls. Fewer works have considered hydrodynamic pressures
due to vertical motions, or the role of surface waves at the free surface [7, 9]. This work examines
the effects of surface gravity waves on the distribution of hydrodynamic pressures using finite
element methods. Two cases are considered :

1. the p = 0 approximation at the free surface (classical assumption).

2. The linearized free-surface condition including surface waves.

Both incompressible and compressible fluids are treated. Numerical results for the Oued El
Fodda gravity dam are presented, and comparisons are made in the time and frequency domains.

3.2 Numerical model setup

The dam considered is Oued El Fodda, a 101 m high gravity structure with a vertical upstream
face. A two-dimensional finite element reservoir model was constructed in MATLAB.
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Figure 3.1 : The Resolution algorithm by MATLAB
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- Geometry : The reservoir is represented with a height equal to (H = 100 m) ; upstream
length taken sufficiently large to avoid reflections. See Section 3.3.1 for justification.

- Mesh : Triangular three-node elements ; refinement near the dam–reservoir interface.
Section 3.3.1 discusses mesh convergence in detail.

- Boundary conditions :

◦ Upstream S2 : radiation condition (p(x, y, ω) = 0).
◦ Dam–reservoir interface S4 : prescribed dam motion.
◦ Reservoir bottom S1 : rigid bottom ∂p

∂y
= 0 .

◦ Free surface S3 :
1. Without surface waves : p = 0,
2. With surface waves : ∂p

∂y
+ ω2

g
p = 0.

- Excitations : Two types of loading are applied :

1. Harmonic excitations over a range of frequencies,
2. The 1940 El Centro earthquake record.

The dam–reservoir system with boundary conditions is shown in Fig. 3.2. The free surface,
dam–reservoir interface, rigid bottom, and far-end truncation are indicated. This configuration
is reduced in the following to a two-dimensional model.

Figure 3.2 : 3D schematic of the dam–reservoir system with boundary conditions and interface
representation

3.3 Baseline case : without surface waves

This case reproduces the classical assumptions of Westergaard, serving as a baseline for com-
parison. (p = 0 approximation).
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Figure 3.3 : The dam–reservoir system

3.3.1 Incompressible fluid–without surface waves

This section analyzes the hydrodynamic response of the dam–reservoir system using an incom-
pressible fluid. First, the analysis establishes the appropriate reservoir length and mesh density.
Then, it presents the resulting hydrodynamic pressure distributions.

3.3.1.1 Determination of an appropriate reservoir length

The boundary condition on the reservoir’s upstream side depends on the dam’s height. Hydro-
dynamic pressure waves from structural vibrations propagate upstream without reflection and
influence this boundary. It is assumed that far from the dam, where the distance is effectively
infinite, the pressure becomes negligible. Typically, large dams have reservoirs extending far
upstream from the structure. To investigate this, a parametric study was conducted to deter-
mine the optimal extent of the upstream region, defined by the reservoir length (L), as shown
in Fig 3.4.

Figure 3.4 : Comparison of hydrodynamic pressures for different lengths (L)
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The results show that Cmax
p converges for L = 3H. Therefore, a reservoir length of 3H is

adopted in the following analysis to ensure accuracy while minimizing computational cost (see
Fig 3.5).

Length H 2H 3H 4H 5H

Cpmax 0.675 0.739 0.742 0.742 0.742

Table 3.1 : Convergence of Cpmax in a function of reservoir length.

Figure 3.5 : Dam reservoir

3.3.1.2 Determination of the optimal mesh

To ensure accuracy and efficiency, we determined the optimal mesh for the reservoir. A coarse
mesh misses pressure gradients near the dam face, while an overly fine mesh raises computatio-
nal costs without meaningful accuracy gains. We refined the mesh and tracked the maximum
hydrodynamic pressure coefficient Cmax

p . Mesh configurations are shown in Fig 3.6, and results
are given in Table 3.2. Based on this study, a balance was achieved at the selected mesh, which
provided accurate results for Cmax

p with reasonable computational effort.

Number of nodes
on the upstream

face

Total number
of nodes

Number
of elements Cpmax

5 67 103 0.732
9 236 412 0.739
17 883 1648 0.741
33 3413 6592 0.742
65 13 417 26 368 0.742

Table 3.2 : Influence of the number of mesh nodes on the upstream face of the dam on the
hydrodynamic pressure coefficient Cp.
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(a) Coarse Mesh

(b) Intermediate Mesh

(c) Fine Mesh

Figure 3.6 : Finite element mesh showing refined elements near the dam-reservoir interface
(H = 100 m, L = 300 m).
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3.3.1.3 Results for an optimal mesh

Fig. 3.7 shows the isopressure contours from the finite element simulation. The color scale
illustrates the spatial distribution of hydrodynamic pressures within the reservoir. Maximum
values appear near the dam base, while pressures decrease progressively with elevation and ap-
proach zero at the free surface. The smoothly spaced contours reflect a stable pressure gradient,
consistent with theoretical expectations.

Figure 3.7 : Contours of hydrodynamic isopressures

3.3.2 Compressible fluid–without surface waves

The effect of water compressibility on hydrodynamic pressures was examined in the frequency
domain.

3.3.2.1 Case of a harmonic excitation

Pressures at the dam base were computed for f = 1, 3.6, 10Hz Fig( 3.8).Resonance occurred at
f = 3.6Hz, consistent with

fresonance =
C

4H
= 3.6Hz. (3.1)

Maximum pressure reached 8.7× 105 Pa under resonance conditions

3.3.2.2 Seismic excitation

For the El Centro earthquake input (Figs. 3.9–3.12), a significant time lag is observed between
the excitation peak and the dam response. The seismic excitation reaches its maximum at
t = 2.12 s, whereas the dam’s hydrodynamic response peaks at t = 26.06 s, corresponding to a
delay of 23.94 s. This phase shift reflects the influence of fluid compressibility, which slows the
propagation of pressure waves in the reservoir and thus delays the dam’s reaction to the seismic
loading.
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(a) Hydrodynamic pressure distribution for w = 6.28 rad/s

(b) Hydrodynamic pressure distribution for w = 22.5881 rad/s

(c) Hydrodynamic pressure distribution for w = 62.8319 rad/s

Figure 3.8 : Response to harmonic excitations f = 1, 3.6, 10Hz

Figure 3.9 : The seismic acceleration of El Centro, 1940
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Figure 3.10 : The response to a seismic excitation (El Centro)

Figure 3.11 : Fourier transform of the accelerogram

Figure 3.12 : Variation of hydrodynamic pressures as a function of excitation frequency at
the base of a vertical rigid dam

3.4 Extended case : with surface waves

Surface-wave effects were incorporated through the linearized free-surface boundary condition.
Results were compared with the simplified approximation.

Page 50



Chapitre 3 Numerical Analysis and Comparative Results

Figure 3.13 : The resolution algorithm by MATLAB
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Figure 3.14 : The dam–reservoir system with a surface wave above the fixed free surface

3.4.1 Incompressible fluid–with surface waves

The investigation into the effect of surface waves on hydrodynamic pressure begins with the
case of an incompressible fluid, a standard assumption in studies of gravitational surface waves
[15, 16, 9, 6, 22]. This approach simplifies the analysis and allows the hydrodynamic response
to be attributed solely to free-surface oscillations, providing a clear benchmark for comparison.

3.4.1.1 The wave-effect parameter

The influence of free-surface oscillations was characterized by

σ =
ω2H

g
, (3.2)

where σ is a dimensionless frequency parameter that characterizes the free-surface wave motion
in the reservoir. It depends on the angular frequency ω, the reservoir depth H, and the gravi-
tational acceleration g. This parameter is related to the fundamental wave properties through
the wavelength λ, the phase velocity C, and the wavenumber k, which are defined as :

C =

√
gλ

2π
, k =

ω

C
=

2π

λ
. (3.3)

These relations describe how the oscillation frequency and the depth of the reservoir determine
the propagation of surface gravity waves. A larger value of σ corresponds to shorter wavelengths
(higher frequencies), while smaller σ values indicate longer waves with slower propagation. Some
works adopt the inverse form, Cw = 1/σ, but the physical interpretation remains equivalent.

Analytical benchmarks confirm that surface waves dominate for σ ≲ 10 and vanish for σ ≳ 200
(Table 3.3).
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Fr2 ≪ 1 (Slow Regime) Fr2 ≫ 1 (Fast Regime)

σ Cmax
p (with wave) Cmax

p (with no wave)
Percentage

deviation (%) σ Cmax
p (with wave) Cmax

p (with no wave)
Percentage

deviation (%)
0.1 0.007178 0.742613 99.03 1 0.113036 0.742616 84.77
0.2 0.015133 0.742616 97.96 2 0.245542 0.742616 66.93
0.5 0.044293 0.742616 94.03 3 0.403521 0.742616 45.66
0.6 0.055962 0.742616 92.46 4 0.500747 0.742616 32.56
0.7 0.068668 0.742616 90.75 5 0.560577 0.742616 24.51
0.8 0.082426 0.742616 88.90 20 0.742797 0.742616 -0.024
0.9 0.097228 0.742616 86.90 33 0.742797 0.742616 -0.024

Table 3.3 : Comparison of maximum pressure coefficients with and without surface-wave
effects in slow and fast regimes, obtained using the Triftz method.

3.4.1.2 Analysis of hydrodynamic pressure contours

At low σ, negative pressures appeared near the surface and extended deep into the reservoir
(Fig 3.15). With increasing σ ,negative regions contracted and pressures localized along the
dam.

3.4.1.3 Analysis of the velocity vector field

At small σ, coherent vectors radiated into the reservoir (Fig 3.16 ). For σ ≥ 100, vectors
diminished to a thin zone adjacent to the dam,an p = 0 approximation suffices.
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Figure 3.15 : Evolution of hydrodynamic pressure contours with the surface-wave parameter
σ
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Figure 3.16 : Frequency-dependent surface wave effects on velocity field in dam reservoir.

3.4.1.4 Hydrodynamic pressure profiles for harmonic Excitation

Pressure distributions along the dam face were obtained for different values of the wave-effect
parameter σ under harmonic excitation.(Figs. 3.17–3.18,Table 3.4)
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Table 3.4 : Maximum pressure coefficient Cmax
p for a vertical dam under different values of

the surface-wave parameter, assuming an incompressible, inviscid fluid.

σ
Cmax

p

(no wave)
Cmax

p

(with wave)
Percentage

deviation (%)
2.5 0.742 0.350 52.83

3.33 0.467 37.06

5 0.556 25.06

30 0.717 3.36

50 0.727 2.02

80 0.733 1.21

100 0.735 0.94

200 0.739 0.40

300 0.740 0.26

1. Effect of surface waves.
At low values of σ (≈ 2.5) , the maximum pressure coefficient was reduced by more than
50% owing to surface-wave radiation. For intermediate values (σ = 3–5) , the reduction
ranged between 25–37%

2. High-frequency limit.
For σ ≥ 100, deviations became negligible (< 1%). and the solution approached the
simplified assumption

3. Profiles.
Pressures increased with depth and were maximum at the base. Near the surface, negative
pressures appeared when surface waves were included

Observation

- Surface-wave effects dominate at low excitation frequencies (σ ≤ 5).

- For σ ≥ 100 ,the simplified assumption p = 0 at the free surface is sufficiently accurate.

- Negative pressures near the free surface are a characteristic feature of surface-wave ra-
diation.
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Figure 3.17 : Variation of the pressure coefficient with depth for
different values of the surface-wave parameter
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Figure 3.18 : Hydrodynamic pressure response to surface waves for
different values of the surface-wave parameter σ assuming an incompressible, inviscid fluid
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3.4.2 Compressible fluid–with surface waves

The compressibility of water modifies the hydrodynamic response, especially at high frequencies.

3.4.2.0.1 Compressibility parameter. The effect is characterized by the dimensionless
parameter B [16], defined as

B =
ωH

C
, (3.4)

where C is the speed of sound in water. Note that B can also be expressed in terms of the
surface-wave parameter σ as :

B =
ωH

C
=

√
σgH

H
, (3.5)

B represents the ratio of reservoir depth to acoustic wavelength. For B ≪ 1, the fluid is nearly
incompressible ; for B ≳ 1, compressibility becomes important. For H = 100 m and C = 1438
m/s, values of B are given in Table 3.5.

σ ω (rad/s) B

2.5 0.495 0.034
5 0.700 0.049

100 3.130 0.218

Table 3.5 : Computed values of the compressibility parameter B for different values of σ .

Since all values of B are well below unity, compressibility is of secondary importance in the
present frequency range. At low σ, the response is governed by surface-wave radiation. At high
σ, wave effects vanish and compressibility appears only as a phase lag in the pressure. The two
effects do not peak simultaneously.
These observations are in line with the study of Tsai and Wei [17], who found compressibility
to be important at high frequencies and surface waves to dominate at low frequencies, with
negative pressures appearing near the free surface.

Seismic excitation

A seismic analysis was performed for both with and without surface wave effects using the
El Centro 1940 record.Fig 3.19 shows the temporal distribution of hydrodynamic pressure at
the reference point for the compressible case with surface-wave boundary condition. The peak
hydrodynamic pressure at the reference point was

Pno-wave = 1.292× 106 Pa at t = 26.06 s , Pwith-wave = 1.255× 106 Pa at t = 22.82 s.

The corresponding reduction was 2.87% (Table 3.6).

Case Peak pressure (Pa) Time of peak (s)
No waves 1.292× 106 26.06

With waves 1.255× 106 22.82

Table 3.6 : Peak hydrodynamic pressures under El Centro excitation for both case with and without surface
waves
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For the El Centro earthquake (high-frequency input), the difference between the simplified
assumption and the free-surface case was only 2.87%, indicating that surface-wave effects are
negligible under seismic loading.

Figure 3.19 : Seismic response of hydrodynamic pressures including compressibility and
surface-wave effects
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3.5 Comparison with classical studies

For completeness, the present numerical results were compared with the analytical criteria of
earlier investigators. The comparisons show close agreement and help to clarify the conditions
under which surface-wave and compressibility effects may be neglected.

3.5.1 Nath (1969)

Nath introduced the relative frequency parameter

n =
cT

H
, (3.6)

For n = 30, he obtained
T =

nH

C
=

30× 100

1438
≈ 2 s, (3.7)

so that
ω =

2π

T
≈ 3.141592654 rad/s, σ =

ω2H

g
≈ 100.6. (3.8)

At this frequency he reported that the pressure coefficient at the free surface was only 0.0002
with the linearized condition, compared to zero with p = 0. He concluded that surface waves
would have some effect only when the relative frequency of motion is very small, and that
for relatively high frequencies, where compressibility effects become significant, the assumption
p = 0 at the free surface is sufficiently accurate.

The present FEM results show exactly the same behaviour. For low values of σ (σ ≈ 2.5–5) the
pressures were reduced by more than 50% due to surface-wave radiation, but for σ ≥ 100 the
difference from the the simplified assumption fell below 1%. Thus the numerical model confirms
Nath’s observation that surface waves vanish at high frequencies, while compressibility remains
the controlling factor.

3.5.2 Bustamante et al. (1963)

Bustamante and co-workers proposed limits for neglecting surface oscillations in terms of the
ratio H/T . They showed that the error is less than 20% when

H

T
> 2.6

√
H, (3.9)

and less than 5% when
H

T
> 4.2

√
H. (3.10)
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For H = 100 m and ω = 0.49 rad/s,

T =
2π

ω
≈ 12.82 s, H

T
=

100

12.82
≈ 7.8 m/s. (3.11)

The thresholds are 2.6
√
H = 26.0 m/s and 4.2

√
H = 42.0 m/s, both far greater than the actual

value. Accordingly, Bustamante’s criterion predicts that surface waves are important in this
regime. The FEM results confirm this prediction : at σ ≈ 2.5, pressures were reduced by more
than 50% relative to the rigid-lid assumption.

3.5.3 Eatock Taylor (1981)

Eatock Taylor derived a simple inequality for neglecting surface waves :

ω1 > 8.3

√
g

H
. (3.12)

For H = 100 m this gives

ωlim = 8.3

√
9.81

100
≈ 2.60 rad/s. (3.13)

From the present study, the resonance frequency was found to be ω = 22.5881 rad/s Surface-
wave effects were also shown to vanish for σ ≳ 100, which corresponds to ω ≈ 3.14 rad/s.
Since ω = 22.5881 rad/s is far greater than both limits, the resonance lies firmly in the high-
frequency regime. In this range, compressibility dominates, and surface-wave radiation can be
neglected. The FEM confirms this : at resonance, the deviation between the with and without
surface waves cases was less than 1%, while at low excitation frequencies (σ ≲ 5) reductions
exceeded 50%. The conclusion is therefore the same as that of Eatock Taylor, namely that the
assumption p = 0 is accurate for high frequencies, but surface waves must be retained at low
ones.

3.6 Conclusion

The finite element formulation reproduced classical results when surface waves were neglected,
confirming the validity of the simplified assumption p = 0 at the free surface. When surface
waves were included, significant reductions in hydrodynamic pressures were observed at low
excitation frequencies (σ ≤ 5), reaching more than 50%. At higher frequencies (σ ≥ 100)
the deviations became negligible, and the simplified condition was found to be sufficient. The
presence of surface waves also introduced negative pressures near the free surface, a feature
absent in the classical case. Fluid compressibility played only a secondary role in the frequency
range considered, producing a slight phase lag but little change in amplitude. Under harmonic
excitation close to resonance, hydrodynamic pressures reached values of the order of 106 Pa,
while for seismic input (El Centro 1940 record), the effect of surface-wave radiation was limited
to a small reduction (≈ 2.9%) in peak pressures. Overall, the results demonstrate that surface-
wave effects must be included at low frequencies, but that fluid inertia remains the dominant
factor in realistic seismic loading.
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General Conclusion

The hydrodynamic response of a rigid vertical dam subjected to both harmonic and seismic
excitations has been examined using the finite element method, considering both compressible
and incompressible fluids, as well as surface-wave effects. The free-surface condition was in-
troduced in both the frequency and time domains to evaluate its significance on the pressure
distribution.

For harmonic excitation, surface waves proved to be decisive at low frequencies. Negative pres-
sures developed at the reservoir surface, accompanied by a marked reduction of pressures at
the base. For the case of the vertical El Fodda dam, the base pressures were reduced by nearly
50% when surface waves were included, showing that their omission can lead to severe ove-
restimation. At higher frequencies, surface-wave effects became negligible, and compressibility
governed the response.

For seismic excitation, compressibility introduced a significant phase delay between the ground
motion and the hydrodynamic response. In the El Centro record, the acceleration reached its
maximum at 2.12 seconds, whereas the peak pressure was attained at 26.06 seconds, a delay
of nearly 24 seconds. The inclusion of surface waves in this case altered the maximum pressure
by only 2.9%, indicating that their contribution under earthquake loading is minor compared
with that of compressibility.

It is concluded that surface waves have a strong influence on the hydrodynamic response in
low-frequency harmonic excitation, whereas compressibility is the dominant effect under seis-
mic input. Simplified models neglecting these phenomena may lead to misleading estimates of
hydrodynamic pressures and should be applied with caution.

Perspectives

The present formulation is limited to a two-dimensional rigid dam-reservoir system with a
linearized free-surface condition. Several extensions are possible :

- The inclusion of dam flexibility and soil-structure-fluid interaction would allow a more
realistic representation of coupled dynamics.

- A three-dimensional reservoir model would capture wave propagation and diffraction
effects not present in the 2D case.

- Nonlinear free-surface motion should be considered under strong seismic excitation, where
wave steepening and breaking may occur.

- The role of reservoir bottom absorption, sediments, and variable bathymetry requires
further investigation.
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- The inclusion of viscosity and turbulence may refine the prediction of energy dissipation
in real reservoirs.

Page 65



Bibliographie



GENERAL INTRODUCTION

Bibliographie

[1] Abdelmadjid Tadjadit. Investigations analytique et numérique des effets de compressibilité
et de viscosité sur le comportement sismique des barrages rigides à géométrie irrégulière.
PhD thesis, Ecole Nationale Polytechnique, El Harrach, Alger, Algérie, 2018. Thèse de
Doctorat.

[2] Maity D and Bhattacharyya S.K. A parametric study on fluid–structure interaction pro-
blems. Journal of Sound and Vibration, 263(4) :917–935, 2003.

[3] Maity D and Bhattacharyya S.K. Time-domain analysis of infinite reservoir by finite
element method using a novel far-boundary condition. Finite Elements in Analysis and
Design, 32(2) :85–96, 1999.

[4] Papazafeiropoulos G, Tsompanakis Y, and Psarropoulos P.N. Dynamic interaction of
concrete dam-reservoir-foundation : Analytical and numerical solutions. In M Papadra-
kakis, N. D. Lagaros, and M. Fragiadakis, editors, Proceedings of COMPDYN-2009: 2nd
International Conference on Computational Methods in Structural Dynamics and Earth-
quake Engineering, pages 22–24, Rhodes, Greece, 2009.

[5] Eatock Taylor R. A review of hydrodynamic load analysis for submerged structures excited
by earthquakes. Engineering Structures, 3(3) :131–138, 1981.

[6] Attarnejad R and Zahedi H. Effect of surface waves on dam-reservoir interaction du-
ring the earthquake. In Proceedings of the International Conference on Computational &
Experimental Engineering & Science, pages 1–6, Madeira, Portugal, 2004.

[7] Avilés J and Suárez M. Effects of surface waves on hydrodynamic pressures on rigid dams
with arbitrary upstream face. International Journal for Numerical Methods in Fluids,
62:1155–1168, 2010.

[8] Calvi A. Analytical interpretation of hydrodynamic pressure on dams. Technical report,
Technical Report, 2024.

[9] Wu Y.C. and Yu D.J. Trefftz method for hydrodynamic pressure on rigid dams with
non-vertical upstream face. International Journal for Numerical Methods in Fluids, 9:1–7,
1989.

[10] Bustamante J.I., Rosenblueth E., Herrera I., and Flores A. Presión hidrodinámica en
presas y depósitos [hydrodynamic pressure in dams and reservoirs]. Boletín de la Sociedad
Mexicana de Ingeniería Sísmica, 1(2) :37–54, 1963.

[11] Gogoi I and Maity D. A novel procedure for determination of hydrodynamic pressure along
upstream face of dams due to earthquakes. In Proceedings of the 14th World Conference
on Earthquake Engineering, Beijing, China, 2008.

Page 67



Chapitre Bibliographie

[12] Kotsubo S. Dynamic water pressure on dams during earthquakes. In Proceedings of the
2nd World Conference on Earthquake Engineering, pages 799–814, 1960.

[13] Anil K. Chopra. Hydrodynamic pressures on dams during earthquakes. University of
California, Berkeley, Structural Engineering Laboratory, Report No. 66-2:1–50, 1966.

[14] Nath B. Hydrodynamic pressures on high dams due to vertical earthquake motions. Pro-
ceedings of the Institution of Civil Engineers, 44:7171–7189, 1969.

[15] Chwang A.T. Effect of stratification on hydrodynamic pressures on dams. Journal of
Engineering Mathematics, 15(1) :49–63, 1981.

[16] Huang L.-C. and Chwang A.T. Seismic water pressures on dams for arbitrarily shaped
reservoirs. Technical Report IHR Report No. 291, Iowa Institute of Hydraulic Research,
The University of Iowa, 1985.

[17] Ching-Piao Tsai and Tzu-Kun Wei. Hydrodynamic pressure on an oscillating vertical plate.
In Mechanics Computing in 1990’s and Beyond, pages 399–403. ASCE, 1991.

[18] Martin P.A. Havelock wavemakers, westergaard dams and the rayleigh hypothesis. Journal
of Engineering Mathematics, 26:267–280, 1992.

[19] Pani P.K. and Bhattacharyya S.K. Hydrodynamic pressure on a vertical gate considering
fluid-structure interaction. Finite Elements in Analysis and Design, 44(12) :759–766, 2008.

[20] Chen B.-F. and Yuan Y.-S. Hydrodynamic pressures on arch dam during earthquakes.
Journal of Hydraulic Engineering, 137(1) :34–44, 2011.

[21] Abdollahi M and Attarnejad R. Dynamic analysis of dam-reservoir–foundation interaction
using finite difference technique. Journal of Central South University, 19(5) :1399–1410,
2012.

[22] Da Silva S.F. and Pedroso L.J. Interaction dam-reservoir : study of conservative and
dissipative effects. Revista Ibracon de Estruturas e Materiais, 12(4) :858–873, 2019.

[23] International Commission on Large Dams (ICOLD). Selecting Seismic Parameters for
Large Dams. Bulletin 148 (Revision of Bulletin 72). ICOLD, Paris, France, 2016.

[24] Seghir A. Investigation des effets d’interaction sismique fluide–structure par couplage
éléments finis – éléments infinis [investigation of seismic fluid-structure interaction effects
using finite-infinite element coupling]. Master’s thesis, École Nationale Polytechnique,
Alger, Algérie, 1999.

[25] Santosh Kumar Das, Kalyan Kumar Mandal, and Arup Guha Niyogi. Finite element-
based direct coupling approach for dynamic analysis of dam-reservoir system. Innovative
Infrastructure Solutions, 8:44:1–15, 2022.

[26] Gogoi I and Maity D. Influence of sediment layers on dynamic behavior of aged concrete
dams. Journal of Engineering Mechanics, 133(4) :400–413, 2007.

[27] Nath B. Hydrodynamic pressures on arch dams during earthquakes. Proceedings of the
Institution of Civil Engineers, 25:165–175, 1963.

[28] Islam Haouas and Amir Saker. Application de la méthode des éléments finis dans les
calculs dynamique et hydrodynamique des structures. Mémoire de Projet de Fin d’Études,
2023. Étude dynamique d’une paroi moulée sous sollicitation sismique avec Plaxis 2D.

Page 68



Chapitre Bibliographie

[29] Abdelmadjid Tadjadit. Pressions hydrodynamiques sur barrages rigides à fruits irréguliers
sous excitations sismiques. Master’s Thesis, École Nationale Polytechnique, Algiers, 2010.

Page 69



GENERAL INTRODUCTION

Appendices

Page 70



GENERAL INTRODUCTION

Annexe – Extension of the Previous
Work to Inclined Rigid Dams Using
Analytical Formulations

Note : The results presented in this appendix represent preliminary findings from ongoing re-
search conducted in collaboration with my supervisor and provide additional analytical context
that complements the main thesis results. A complete analytical extension will be published
separately.

.1 Introduction

This annex presents selected results that originate from a scientific article prepared jointly
with my supervisor, currently under review in LARHYSS JOURNAL. These results are inclu-
ded solely as supplemental material to allow comparison between the analytical formulations
developed in external research and the numerical results presented in the main body of this
dissertation. The content here does not constitute the entirety of the article ; rather, it serves
to illustrate the consistency and limits of the numerical and analytical approaches as a natural
extension of this end-of-study project.

.2 Formulation

The governing wave equation was expressed in terms of a velocity potential and expanded in
Trefftz functions. Boundary conditions were imposed at the reservoir bottom, the free surface
(with and without gravity-wave terms), the radiation boundary, and along the dam face inclined
at an angle θ to the vertical. Two fluid models were considered : (a) incompressible, inviscid ;
(b) compressible, viscous, the latter represented by the Kelvin–Voigt model. The dispersion
relation arising from the free-surface condition was solved iteratively by the Newton–Raphson
method. Solutions yield hydrodynamic pressure distributions and resultant forces on the dam
face.
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Figure 20 : Methodological framework comparing FEM approach (vertical dams) and Trefftz
method (sloped dams).

.3 Results

The following principal observations were made :

1. For vertical dams (θ = 0◦), surface waves reduced hydrodynamic pressures markedly at
low excitation frequencies, by more than 50%. For inclined dams, the reduction persisted
but was smaller : about 38% at 15◦ and 24% at 30◦.

2. Negative pressures were observed near the free surface whenever gravity-wave terms were
included.
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3. Increasing dam inclination consistently lowered pressure coefficients, in comparison with
the vertical case.

4. For compressible, viscous fluids, resonance peaks in shear force and overturning moment
were strongly damped. In this regime, viscosity dominated the response.

5. while the effect of surface waves was negligible. The analytical extension also highlights
the combined influence of surface gravity waves and dam inclination, which significantly
modifies the hydrodynamic pressure distribution near the free surface.

.4 Discussion

It is seen that the effect of surface oscillations is essentially confined to low frequencies. Inclina-
tion of the upstream face, and viscosity of the reservoir fluid, both act to diminish hydrodynamic
demands on the dam. These results extend the finite-element findings of the main thesis, which
showed that surface-wave effects become negligible under seismic input.

.5 Conclusions

The principal conclusions are :

- Surface waves affect pressures only at low frequencies ; their influence is negligible under
seismic loading.

- Inclination of the dam face reduces pressures substantially relative to the vertical case.

- Viscosity introduces damping at resonance, moderating dynamic responses.

Thus, while both finite element and Trefftz formulations confirm the limited role of surface
waves at seismic frequencies, the latter further demonstrates the beneficial effects of slope and
damping. The two approaches together yield a consistent and complementary picture of dam-
reservoir interaction.
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