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Résumé

L’objectif de cette étude est d’explorer 1'utilisation de I’apprentissage automatique comme
un outil puissant d’intelligence artificielle pour développer un algorithme permettant d’es-
timer et de prédire trois paramétres pétrophysiques essentiels : le volume d’argile (Vpr),
la porosité effective (PHIE) et la saturation en eau (Sy), a partir de données diagra-
phiques brutes issues de plusieurs puits de production du bassin de Berkine. La principale
problématique réside dans la prédiction précise de la saturation en eau. Plusieurs modéles
ont été comparés, notamment XGBoost, MLP et CNN. Les résultats obtenus, en par-
ticulier avec CNN, démontrent une efficacité remarquable des techniques d’apprentissage
automatique, avec un coefficient de détermination global de R? = 0,81 pour la saturation
en eau, parameétre le plus difficile & estimer.

Mots-clés : apprentissage automatique, intelligence artificielle, prédiction, volume d’ar-
gile, porosité effective, saturation en eau, diagraphies, réservoirs, bassin de Berkine.

Abstract

This study aims to explore the use of machine learning as a powerful artificial intelligence
tool to develop an algorithm capable of estimating and predicting three essential petro-
physical parameters: clay volume (V¢ ), effective porosity (PHIE), and water saturation
(Sw), based on raw log data from several production wells in the Berkine Basin. The
main challenge lies in the accurate prediction of water saturation. Several models were
compared, including XGBoost, MLP, and CININ. The results obtained, especially with
the CNIN model, demonstrate the high efficiency of machine learning techniques, achiev-
ing a global determination coefficient of R? = (.81 for water saturation, which is the most
complex parameter to predict.

Keywords: machine learning, artificial intelligence, prediction, clay volume, effective
porosity, water saturation, logs, reservoirs, Berkine Basin.



(zeneral Introduction

Petrophysical analysis plays a pivotal role in the exploration of hydrocarbons, by
giving key insights into the rock properties, the fluid characteristics and behavior and
reservoir performance. With the rise of new technologies applied to the field of Earth
sciences, the integration of artificial intelligence (Al) into petrophysical analysis represents
a promising opportunity to improve the interpretation and predictive modeling of well
log data. Al-assisted petrophysical analysis has the high potential to refine reservoir
evaluation, reduce uncertainties, and optimize decision-making processes in the oil and
gas industry.

Despite significant innovations in logging tools and data acquisition methods, the
interpretation of petrophysical parameters remains a complex task for the petroleum
professionals. Historically, the oil and gas industry has always relied on conventional well
log analysis techniques, which involve analysing logs to detect deviations from baseline
trends. These deviations often indicate variations in either lithology, fluid saturation,
porosity, or borehole conditions. The objective behind such analyses is to identify depth
intervals of interest that require further investigation, for their hydrocarbon potential.
However, these traditional approaches meet a number of limitations that can compromise
the accuracy and efficiency of the reservoir characterization process.

The difficulties faced during the training of the models stem from multiple factors,
such as the inherent heterogeneity of the subsurface, with layered formations, fractures,
and uneven fluid distributions, the subjective nature of visual interpretation and the
variation in data quality. Moreover, well log data can be compromised by physical
factors such as the limitations in the tool resolution, the environmental noise referring
to the signal disturbances due to borehole conditions (e.g., mud invasion, borehole rugosity,
temperature and pressure variations) or tool-related effects, and the borehole irregularities,
all of which leads to inaccurate interpretation of the graphs. These traditional approaches,
dependent on empirical correlations and subjective expertise, are prone to human error
and bias. This highlights the urgent demand for streamlined, automated alternatives
to enhance petrophysical analysis. AI and machine learning (ML) techniques present
an interesting pathway to address these challenges by allowing faster and more accurate
log interpretation. Algorithms capable of pattern recognition, anomaly detection, and
predictive modeling can help in identifying important reservoir parameters while minimizing
human error.Furthermore, they enable the combination of multidisciplinary data—such

as core samples, seismic attributes, and production history—into Al-driven workflows to
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enhance the responses, thus, the reliability of reservoir assessments, to improve hydrocarbon
exploration, and ultimately, maximize profitability by economizing time, energy and
resources. It is safe to say that the future, undoubtedly, lies in associating domain
expertise with Al power.

This thesis is structured in two main parts: a theoretical component and a practical
one. The theoretical part introduces the fundamental concepts of petrophysics and
artificial intelligence, providing the necessary background to understand both the problem
treated and the proposed approach. The practical part presents the methodology for
the selected models being, Linear Regression, MLP, XGBoost and CNN, covering from
exploratory data analysis (EDA), the modeling pipeline, the obtained results, to a pilot
log generated from the best performing model CNN.
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Part One

Theoretical Framework



Chapter 1

Fundamentals of Petrophysical

Parameters

Objective: establish the theoretical and practical foundations of petrophysics with a

view to setting up an intelligent platform for applications of the Artificial Intelligence tool.

1.1 Definition and Scope

Petrophysics, from the Greek petra “rock” and physis “nature” [1] is a sub-discipline
of the geosciences, also known as the main branch of petroleum geology and geophysics,
which is concerned with the study of the physical and chemical properties of rocks and
their interactions with fluids, such as water, hydrocarbons, and gases, in subsurface
geological formations. Integrating physics, chemistry, geology and engineering principles
allows us to quantitatively analyse the petrophysical characteristics of reservoir rocks,
providing key information about the interconnected network of pore spaces and the
distribution and circulation of fluids in these spaces across this related network [2].

Although the term "petrophysics" may have been used informally in earlier industrial
circles. Its first well-documented appearance in a published article is attributed to
Gustavus Archie’s 1950 book [3|, "Introduction to Petrophysics of Reservoir Rocks".
However, Archie’s empirical models (e.g. the Archie equation) clearly reinforced the scientific
rigour of this study field [4].

The adoption of scientific terms accelerated in the mid-20th century, driven by the need
to quantify the petrophysical properties of reservoirs. Gustavus Archie played a central
role in this effort. In this seminal work, he introduced a revolutionary perspective to oil
and gas exploration, highlighting the importance of studying a series of physical properties:
porosity, permeability, capillary pressure, clay volume, water and hydrocarbon saturation
in relation to electrical resistivity, fluid properties, natural radioactivity potential and
their interrelationships in reservoir rocks, and considering them together when interpreting
their interactions in order to detect and evaluate more effectively the presence of zones of
interest corresponding to bearing layers containing hydrocarbons in economically exploitable
grade [3].
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Figure 1.1: Scheme of petrophysical system |[3]

In the “petrophysical system diagram”, he schematized the relationships between the
main physical properties of the reservoir rocks and the factors that influence them. His
framework has become the basis for the modern assessment of reservoir petrophysics.

The core objectives of petrophysics include the following:
¢ Rock Property Analysis: Measurement of porosity, permeability, and saturation.

e Reservoir Characterization: Assessing the storage capacity, fluid flow, and

economic potential of either hydrocarbon or geothermal reservoirs.

e Fluid Behaviour Prediction: Modeling fluid dynamics through rock formations

under different conditions of pressure and temperature.

Petrophysical interpretation plays a crucial role in most subsurface work, as it implies
the integration of the pore system, fluid and flow properties, and their interrelationships,
in order to identify and assess geological formations. This analysis is fundamental to
exploration; enabling hydrocarbon reservoirs, aquifers, and seals to be characterized as
follows[5]:

e Characterizing Reservoir Rocks: Petrophysics determines the essential properties

required to assess reservoir quality and potential.

22



Evaluating Fluid Distribution: Petrophysics is used to predict the production
rates and identify zones of interest, by analysing the fluid distribution within the

pore system of rocks.

Integrating Data for Reservoir Models: Building accurate subsurface models
based on the integration of different relevant data sources. This integration helps
to make enlightened decisions about drilling operations, production, and reservoir

management in general.

Supporting Reservoir Management: Applied petrophysics provides information
on in situ bed limits, net pay and fluid contacts, which is needed for economic

decision-making and efficient resource management.

Reducing Uncertainty and Risk: Through quantitative analysis, petrophysics
reduced overall uncertainty in reservoir evaluation, mitigating risks and improving

the efficiency of the upstream industry|6].

Enhancing reservoir surveillance: Operational petrophysics focuses on real-time
data acquisition, analysis, and interpretation of downhole parameters, to support

immediate decision-making processes.

This explains the wide-range applications of petrophysics, it is indispensable during

every step in the oil and gas industry. Its main industrial applications include:

e Reservoir characterization and evaluation: The quality and potential of reservoirs

are assessed by determining their keys properties, logging technologies and core
analysis are used to identify production zones. Enhanced petrophysical evaluation

through machine learning and well logging data in an Iranian oil field [7].

Well Logging and Formation Evaluation: Well logs (e.g. resistivity, neutrons,
density, and gamma rays) and borehole images provide in situ measurements that
enable real-time decisions to be made during drilling and completion operations,

facies analysis and thin layer identification|§].

Production Optimization and Reservoir Management: Monitoring fluid
movement|9], evaluating enhanced oil recovery (EOR) techniques (e.g., water flooding,
gas injection)|10], and managing reservoir performance over time. Theoretical advancements

in operational petrophysics for enhanced reservoir surveillance

Broader Industrial Applications: Beyond the oil and gas industry, petrophysics
is being applied in the energy transition sector as in geothermal energy|11] (characterizing
heat reservoirs), water resource management (aquifer assessment), mining (orebody
characterization) and carbon capture and storage[12] (CO2 sequestration site assessment)

by using practically the same processes as for hydrocarbon exploration.
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1.2 Key Petrophysical Parameters

The fundamental petrophysical parameters required to characterize a rock are mainly its
porosity, permeability, and fluid saturation. These measurements can be obtained from

petrophysical loggings, core analysis, or pressure measurements [13, p. 57].

1.2.1 Porosity (¢)

Porosity (Phi or ¢) is defined as the ratio of the pore volume within a rock to its bulk
volume. It is strongly affected by the uniformity of grain shape and size, sorting, and the

degree of consolidation. Porosity is dimensionless and usually expressed as a percentage:

_
¢_‘/l)

where V), is the pore volume and Vj is the bulk volume.

1.2.1.1 Primary vs. Secondary Porosity

In the context of sedimentary geology, primary porosity refers to the original pores
spaces formed from the lithification process, as a result of mineral precipitation or partial
dissolution during sediment deposition of the sand beds in the early stages of rock formation.
However, this type of porosity does not necessarily have a significant impact on the rock’s
permeability, i.e, its ability to let the fluid flow.

On the other hand, if the voids occurred after the rock formation through geological
processes like diagenesis, catagenesis, geodynamic stresses or dissolution, it is referred to
as secondary or porosity. This type of voids is more important in carbonate reservoir

rocks. Nevertheless, both can generally be found in the same rock matrix [14, 2, p. 123].

1.2.1.2 Total vs. Effective Porosity

Porosity can also be classified as either total porosity (¢r) or effective porosity (¢g),
depending on the connection between pores. In fact, during sedimentation, some of the
spaces initially formed become isolated due to geological processes such as compaction,
while others remain interconnected. The total (absolute) porosity is the ratio of the total
space contained in a bulk volume to the total volume, whereas effective porosity refers
to spaces that are interconnected and have the capacity to conduct fluids. The equation

then becomes the ratio of the effective pores or connected pores to the bulk volume.

e Total porosity (¢r) includes all pore spaces, whether connected or isolated.

e Effective porosity (¢g) includes only the interconnected pores contributing to
fluid flow.
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1.2.2 Permeability (k)

Permeability is another parameter, related to porosity. It describes the ability of the rock
to allow fluid movement through its interconnected pores, related to its effective porosity.
It depends on grain size, shape, sorting, consolidation cementation and clay content. The
type of clay or cementing material between the grains determines permeability, especially
when wet, as some are known to expand under the effect of water (such as smectites),

forming an impermeable barrier, leading to a significant reduction of permeability [15].

1.2.2.1 Darcy’s Law and Modifications

The permeability is measured in Darcies, referring to the French engineer Henry Darcy
(1803-1858), who formulated a simple empirical equation describing the fluid flow through

porous media, as a function of flow rate and differential pressure.

dH
= —kA—
@ dL

Where:
e (Q: Volumetric flow rate (m3/s),
e k: Permeability (m/s),
e A: Cross-sectional area (m?),
. ‘fj—g: Hydraulic gradient (change in head per unit length).

The negative sign indicates flow occurs from high to low hydraulic head.

One Darcy corresponds to a flow of 1 cm?®/s of 1 ¢P (centiPoise) fluid through 1 cm?
of cross-section under a pressure gradient of 1 atm/cm.

The law assumes laminar flow (Reynolds number < 1), a homogeneous isotropic

medium, incompressible Newtonian fluid, and no phase changes [16].

Alternative Form in Petroleum Engineering Darcy’s equation has been used as
a starting point for modifications and correction, to include several parameters such as
velocity, with a view to generalize the application of the formula to reservoir rocks [17].

One of the suggested forms for petroleum measurement is :

kdP

V=———

W dx

Where:
e v : Darcy velocity or apparent fluid velocity (m/s)

e [ : Permeability of the medium (m?)
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e 1 : Dynamic viscosity of the fluid (Pa-s)

P .

.dz‘

Pressure gradient (Pa/m)

e 1 : Distance in the direction of flow (cm) (always positive).

Absolute vs. Effective Permeability

e Absolute permeability refers to the permeability of a rock when its pores are
100% saturated with a single fluid.

e Effective permeability (k,, ky,, k;) (effective permeability of oil, gas and water
respectively) refers to the permeability of a specific fluid in the presence of others
[13, 14, p. 83, 129).

Relative Permeability Relative permeability is defined as the ratio of effective permeability

at a given saturation to absolute permeability, expressed as a percentage or fraction:

keff

krel - L

1.2.3 Fluid Saturation (S, S,, Sy)

Fluid saturation assessment aims to quantify the fraction of pore space occupied by a
fluid phase in the reservoir rock, which is essential for assessing hydrocarbon potential.

Sw, So and Sy are respectively the standard notation for water, oil and gas saturation.

1.2.3.1 Archie’s equation

Archie conducted a number of experiments using clean, clay-free sandstone samples saturated
with a brine of resistivity noted R,, [18]. In his seminal work, he showed the inverse
relationship between the resistivity of the brine saturating the rock and the resistivity of
a clean formation [14], leading to the establishment of a quantitative relationship between
porosity (¢), rock resistivity (R,), and hydrocarbon saturation of reservoir rocks. He

then suggested an empirical approach that estimates the water saturation of clean sands

Sw _ ( aRw )1/71,
Ryo™

e R,: Formation water resistivity,

as follows:

Where:

e R;: True formation resistivity,
e ¢: Porosity,
e a, m, n: Empirical constants, to be determined from core analysis [19].
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Limitations of Archie’s Equation Archie revolutionised reservoir characterization,

however, still carried some limitations:

e Empirical Basis : Archie carried out his experimental work on clean, consolidated
sandstone reservoirs with high humidity and clay-free. His parameters (a, m, n) are
empirical and formation-specific, and must therefore be determined for each reservoir

rock.

e Non-Archie Pore Geometries :The equation assumes intergranular pore spaces;

it is not valid for rocks with complex pore geometries.

e Presence of Conductive Minerals : Rocks containing conductive minerals violate

Archie’s assumptions, as they modify the resistivity values, leading to an underestimation

of water saturation.

e Fresh Formation Waters : Archie’s equation is less accurate when the formation
water is very fresh (low salinity). The lack of electrolytes increases its resistivity,

which becomes similar to that of hydrocarbons.

e Heterogeneous and Shaly Formations : In shale sands or heterogeneous reservoirs,
Archie’s equation requires modifications or alternative models to adapt to this type

of complex lithology.

1.2.3.2 Wettability

Wettability is a term used to describe the tendency of a solid to be wetted by one fluid
rather than another, by spreading or adhering to its surface. It is determined by the
balance between the adhesive forces (attraction between the fluid and the surface) and the
cohesive forces (attraction within the fluid itself).

In a water—brine—oil-rock system, the water tends to cover the rock surface and fill
the smallest pores, while the oil occupies the largest pore spaces.

If a rock is water-wet and initially saturated with oil, it will imbibe water when exposed
to it, displacing the non-wetting fluid—in this case, oil—from the small pores.

In contrast, if the rock is oil-wet, it will imbibe oil even when it is saturated with
water, pushing water out of the rock.

Wettability can vary depending on how the brine interacts with the rock surface.

e Water-wet — absorbs water
e Oil-wet — absorbs oil

e Mixed-wet — no strong preference (about 50,/50)
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Figure 1.2: In water-wet pores, oil stays in the center; in oil-wet pores, it coats the surfaces.
In mixed-wet cases, oil occupies some surfaces, but stays centered in water-wet pores. All three
cases may show similar fluid saturations. [20]

Wettability is an important parameter in petroleum engineering, as it strongly affects
oil recovery. It influences oil production rates, the water/oil ratio after water breakthrough,
the effectiveness of enhanced oil recovery methods, and the amount of oil remaining in
the reservoir at the time of abandonment.

For instance, a water-wet system allows greater primary oil recovery, whereas as
the system becomes more oil-wet, oil recovery becomes more challenging at any given
amount of water injected into the rock [14].

The role of reservoir engineers is therefore to plan Enhanced Oil Recovery (EOR)
processes to modify the wettability to water-wet in order to capture the oil coating the
solid surface. Alternatively, in some cases, making the formation more oil-wet may lead

to better ultimate oil extraction, depending on the reservoir characteristics [20].

1.2.4 Clay and Shale Volumes

The volume of clay is an important petrophysical parameter, denoted as V. It is a
valuable measure considering the fact that the clay content modifies the rock’s physical
properties, such as the effective porosity, permeability, and electrical conductivity.

Physically, it describes the proportion of clay present in a rock matrix, quantified as
a fraction or percentage of the rock volume occupied by this mineral.

The term shale volume (V) is often misused to refer to the volume of clay, although
it is a closely related concept, the distinction is that Vj, refers to the volume of the
shale-filled matrix, containing up to 70% of clay, plus a minor proportion of hydrogen-free
silt-sized particles with quartz (SiO2) and some lithic minerals such as feldspars and
plagioclases, forming the common shale minerals (e.g., kaolinite, illite, smectite) [2].

Clay minerals have a strong affinity for water, which can lead to an overestimation
of water saturation (.S,). Their tendency to swell in the presence of water also reduces

porosity and permeability. In addition, clay affects some well log responses, particularly
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those sensitive to the presence of radioactive elements and hydrogen—namely, gamma-ray
and neutron logs—due to the natural radiation emitted by shale formations from thorium
and potassium associated with clay minerals, in addition to uranium which is often fixed
by phosphatic or organic matter [21].

V. values can typically range from close to 0% in clean (clay-free) sandstones or

carbonates to close to 100% in shale or clay-rich formations.

1.2.4.1 V., Estimation Methods

The estimation of the clay volume (V,;) is based on the results of various well logs related

to radioactivity and hydrogen occurrence.

¢ Gamma ray method: The Gamma ray logging measures the natural radioactivity
of the formations, due to the presence of radioactive elements in clay-rich rocks. The
Vi (volume of shale) is estimated by normalizing the gamma ray readings between

clean sand and shale, using the following formula :

G(Rlog - GRclean

‘/Ys p—
" GRshale - GRclean

¢ Density-neutron log separation: The difference between neutron porosity and
density readings may indicate the presence of clay minerals containing formation-water
which appears as additional hydrogen on the neutron logs, resulting in apparent
increases in porosity, while the density log remains less affected; in fact, this difference

indicates the presence of clay.

e Nuclear Magnetic Resonance (NMR): This is used to distinguish between free
fluids and formation-water bound to clay, which gives an indication of the amount

of clay present in the formation.

1.2.5 Other Parameters

In addition to the petrophysical parameters listed above, other measurements provide
complementary information on reservoir characteristics, contributing to fluid identification,
lithology estimation, and mechanical property assessment [22|. These include resistivity,

bulk density, and acoustic velocity.

Resistivity Resistivity, expressed in ohm-m, describes the extent to which the formation
is able to resist the flow of electric current. Sedimentary formations filled with saline
water contain electrolytes capable of conducting an electric current and therefore have
low resistivity values, due to the ions present in the brine, whereas zones filled with
hydrocarbons show a higher resistivity. This behaviour is dictated by Archie’s law, which
links resistivity to porosity and water saturation in a clean formation [18]. Nevertheless,
factors such as clay content and formation water considerably affect resistivity readings

and must be taken into account during interpretation [23].
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Bulk Density Bulk density, also known as apparent density, is the measure of the rock
mass per unit volume, including the inherent interstitial spaces. It is generally measured
from logs and is essential for identifying lithology and estimating porosity. When the
density values of the rock matrix and fluid are known, bulk density can be used to calculate

porosity using the following equation:

Pma — Pb
Pma — Pf

¢ =

where:

e ¢: Porosity (fraction)

® P Matrix density (g/cm?)

e pp: Bulk density (g/cm?)

e p;: Fluid density (g/cm?)

[24]
Acoustic Velocity Acoustic velocity, or sonic velocity, is a measure of the propagation
speed of sound waves through a medium. In the formation, it is influenced by the lithology,
pores, and fluid content of the rock. The velocity is obtained by converting the travel

time of compressional waves (At) acquired by sonic tools, which is then correlated with

porosity using models such as Wyllie’s time-average equation [25]:

1 6 1—¢

At Aty Aty

where:
e At: Measured travel time (ps/ft)
o Aty Travel time in fluid (ps/ft)

o At,,: Travel time in matrix (ps/ft)
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Chapter 2

Acquisition and Pre-processing of

Petrophysical Data

Objective: Introduce the conventional methods used in petrophysical data acquisition,

highlight their practical limitations and identify common data issues.

2.1 Traditional Measurement Methods

The data used in petrophysics originates from various sources and is collected at different
stages of the well life cycle, either during the drilling, the completion or production;
however, the tools may differ. The primary source of this data is: well logging, core
analysis and well testing. These methods provide either direct characterization, as it is

for the case of lab tests, or indirect, like log results.

2.1.1 Well Logging

Well logging tools are the specialized downhole hardware run in the wellbore, to make
logs; they are equipped with sensors for different measurements. The type, diameter and
length of these instruments depend on the stage of the well; they are divided into two

main categories: drilling logging tools and wireline logging tools.

2.1.1.1 Drilling Logging

During the drilling process, engineers operate without a direct visibility into wellbore
conditions, to address this challenge, Measurements-while-drilling (MWD) logging tools,
or also known as logging while drilling (LWD) tools, are used to provide the crucial
insight required to complete the task safely, while gathering initial information about
the geological formation. The data obtained can be either physical, such as cuttings,
operational, such as rate of penetration (ROP) or mud weight (MW), or formation
evaluation data, from (LWD) sensors measurements, including gamma ray, density, neutron

porosity and resistivity data, displayed as tracks on mud-logs or as digital outputs [2].
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Figure 2.1: Excerpt from a basic mud log [26].

Logging While Drilling (LWD) measurements are acquired near the drill bit as part of
the bottom hole assembly (BHA) using self-contained tools. The data points are recorded
downwards (continuously while drilling) and referenced against time-while-drilling and
then processed to be converted to depth-base measurements. The distance between the
position of the tools and the bit may limit the use and effectiveness; hence, it is crucial
to plan the type and order of the tool string assembly. Then, the data can be stored in
the tool’s memory during drilling LWD to be retrieved later to the surface.

Although unreliable and expensive in some cases, this type of technology has the
advantage of measuring properties of a formation before drilling fluids invade the wellbore.
In addition, these data are sufficient in the case of exploratory wells, as they form the
primary evaluation of the downhole in terms of lithology, presence of hydrocarbon and
even water saturation. The physical samples, of cuttings and gas, are also a strong

indicator of the stratigraphy and the source rock.

2.1.1.2 Wireline Logging

After drilling operations are completed, the wireline logging is performed in order to collect

continuous measurements of wellbore properties. This type of logging involves lowering

32



tools equipped with sensors (sondes) into the wellbore using an armoured electrical cable
that serves two main functions: mechanical support of the tool’s weight and ensuring
real-time transmission of power and data between the surface and the downhole tools, via
various telemetry systems. During the operations, surface equipment is required, as the
tool is lowered and raised using a motorized winch system mounted on the wireline unit
near the rig floor, manipulated by operators to maintain proper speed in order to avoid tool
sticking and high-quality acquisition. The wireline cable is counter-helically armoured, to

prevent twisting and ensure resistance to high tensions and hostile conditions.

Drilling rig
derrick

Armoured cable

X

LOGGING UNIT

Winch ==

> - Datum level

Logging tool

)

Figure 2.2: Schematic of a standard Wireline operation set-up [2].

Regarding shape, wireline tools are typically cylindrical, with a diameter ranging from
1.5 to 5 inches (3.8 to 12.7 cm), making them smaller and more manageable than the tools
used for LWD. These tools are capable of measuring a wide range of parameters related
to the formation and the borehole including, but not limited to electrical resistivity, to
differentiate between hydrocarbon or water bearing zones ; acoustic velocity, that infers
porosity and mechanical properties of the rock ; radioactive response, to estimate the
volume of clay ; dimensional measurements, to modelise the well geometries (diameter,
depth...), in addition to formation pressure and temperature, using specialized gauges

and samplings.
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The following tables summarize the most used Wireline Tools, their applications and

relevant units.

Table 2.1: Common Wireline Logging Tools and Their Applications [2]

Tool / Log Physical General Use Applications
Measurement
GR (Gamma Ray) | Natural Lithology Shale volume
radioactivity identification estimation, well
correlation
DTP (Sonic Log) Acoustic velocity Porosity evaluation | Matrix porosity,
lithology
discrimination
AT (Array Tools) Attenuation of | Resistivity proxy Water  saturation
electromagnetic estimation via
waves Archie’s law
RHOB (Density) Bulk density Porosity evaluation | Total and matrix
porosity, lithology
discrimination
NPHI (Neutron) Hydrogen index Porosity evaluation | Total porosity, fluid
type indicator
URAN (Uranium) | Uranium Lithology Identification
concentration of radioactive
anomalies
THOR (Thorium) | Thorium Lithology Differentiation
concentration between clastic and
carbonate facies
POTA (Potassium) | Potassium Lithology Shale typing
concentration and sediment
provenance analysis

Table 2.2: Common Log Tracks, Units, and Display Scales 2]

Log (Track) Measurement (Units) Left | Right
GR (1) APT units 0 150
SP (1) Millivolts (V) 10 | +10
CAL (1) Inches (in) 6 16
BIT SIZE (BS) (1) | Inches (in) 6 16
RES (2) Resistivity — log scale (€2-m) 0.2 200
SONIC (3) Slowness (us/ft) 140 40
DENS (2) Bulk density (g/cm?) 1.95 | 2.95
NEUT (2) Limestone porosity units (p.u.) | 0.45 | —0.15
PEF (2) Barns/electron (B/e) 0 10

Principles of density, neutron and resistivity logs

1. Density log

The tool diameter typically ranges from 1.5inches to 5inches (3.8 cm to 12.7 cm),

depending on the borehole size.
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The log density measures the bulk density, which is both the density of the rock and
the fluids contained in the pore spaces, symbolized by the letter p (rho) commonly
denotes density. The typical scale for density ranges between 1.95 and 2.95 g/cm?.
In order to determine the porosity from the density tool, it is crucial to determine

first, the density of the matrix and all the fluids it potentially contains.

The tool is mounted on a skid and a caliper arm to maximize the contact of the
emitter side with the borehole wall. It uses a radioactive source (such as Cesium-137 or
Cobalt-60), or a modern accelerator to emit gamma rays. The emitted rays interact
with the electrons in the formation by Compton scattering, each collision causes an
energy loss of the gamma particle, and the tool’s two detectors, placed about 50cm

from the source, measure the radiation of the returned scattered particles.

N
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Figure 2.3: Schematic of a density tool [2].

The returned rays are divided into two categories, high-energy rays, related to
electron density, used to calculate the rock bulk density, or low-energy rays, governed
by the photoelectric effect (PFE), used to identify rock and fluid types.

. Neutron logging

Neutron logging measures the hydrogen index (HI), which reflects the amount of
hydrogen atoms in the rock, in order to estimate the formation porosity. The main
sources of hydrogen in the subsurface are water and hydrocarbons; hence, the tool

essentially detects fluid-filled porosity.

The tool contains a neutron source (typically americium-beryllium) to emit fast neutrons,
which collide with atoms in the rock. When they hit hydrogen atoms, their energy
is quickly lowered due to their similar mass. After slowing down, the neutrons

are absorbed by the formation and emit gamma rays, which are detected by the
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tool. The more hydrogen, the more gamma rays, the higher porosity readings,
gaseous zones contain less hydrogen than water and oil, which means a lower porosity
reading, known as the gas effect. When neutron porosity appears lower than density

porosity, it creates a “crossover” on the log, indicating a potential gas-bearing zone.
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Figure 2.4: Schematic of a neutron tool [2].

The log is calibrated, based on a standard limestone response, being near zero, and
displaying scales usually ranging from 0.45 to — 0.15 in limestone porosity units.

However, it’s important to correct, according to lithology for:

e Shales, which trap water in clay and overestimate porosity.

e Hydrocarbons and salt, which affect the HI and require corrections.

The Hydrogen Index (HI) is defined as:

I — Hydrogen atoms per unit volume of rock

Hydrogen atoms per unit volume of pure water

This index serves as an indicator of porosity, but is not a direct measurement, as it

also depends on lithology and fluid type, in addition to tool-specific corrections.

Neutron-density cross plot equations The density-neutron logging is a combined
log that simultaneously records neutron and density porosity, providing valuable
cross-validation for porosity estimation and lithology identification [27]. In some

areas, porosities recorded on the logs differ for three reasons:

e Incorrect matrix density assumption in computing porosity logs.
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e The gas effect.

e Shale/clay presence, containing bound water, which elevates the porosity readings.

3. Array Induction Resistivity Log

Resistivity tools work by inducing an electrical current into the formation and
measuring the resulting voltage response, which is affected by the salinity and
volume of the formation water. As highly saline water exhibits better conductivity
resulting in lower resistivity values, hydrocarbon-rich zones show higher resistivity
values. The resulting logs are displayed on a logarithmic scale ranging from 0.2 €2 -
m to 2000 2 - m. Induction tools generate a magnetic field to induce eddy currents
in the formation and measure conductivity. During drilling, mud filtrate invades
the permeable formations, pushing formation water away from the borehole and

forming a flushed zone. This creates three zones of interest:

e The rinsed (invaded) zone near the borehole.
e The transition zone (annular).

e The uninvaded zone (true formation).

Each zone has different fluid saturations and electrical properties. Resistivity readings

taken at different depths of investigation allow interpretation of these zones.

2.1.2 Core Analysis

Core drilling is the process of extracting cylindrical samples of the formation, either
during drilling or later, respectively, conventional coring or cable and sidewalls coring
Petrophysics. Conventional coring involves using a special core bit with the drill string,
the main advantage of this method is the recovery of large diameters samples, varying
from 3 to 5 inches in diameter and 30 to 90 feet long, but it requires the entire drill string
to be removed in order to retrieve the core. However, for the wireline coring, the sample
is carried to the surface using a drill pipe (a downhole tool used for fishing and recovery
operations according to SLB Glossary). The cores obtained are relatively small, from 1 to

2 inches in diameter and 10 to 20 feet in length.
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Figure 2.5: Schematic diagram of a coring assembly and barrel prior to retrieval [2].

Furthermore, lateral coring is operated to obtain core samples from a particular zone

already drilled, especially in soft rocks.

Figure 2.6: Core Samples [28].

These cores are essential for understanding the depositional environment and acquiring

direct measurements of reservoir properties such as porosity and permeability.

Laboratory measurements (porosity—permeability)

Upon delivery to the laboratory, cores are arranged to collect the information required
for identification and archiving, including description and measurements, surface features
such as fractures are noted prior to sampling and gamma-ray scanning. A typical core
analysis implies systematic samplings at regular intervals (e.g., every 25 cm).

Thin sections (slices of rock) prepared in a laboratory from the cores are used for
petrographic analysis (mineralogy, texture, diagenesis), often complemented by scanning

electron microscope (SEM) imaging for pore size distribution.
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Figure 2.7: Photomicrograph of rock thin section: Gabbroic inclusion [29].

Representative core samples from different facies are subjected to electrical experiments
to determine Archie’s parameters (a, m, n), allowing better estimates of water saturation
based on resistivity logs and empirical relationships. Additionally, core samples are crucial
for the dynamic evaluation of reservoir properties, including wettability, capillary pressure
and relative permeability. Despite the valuable information they provide, cores lose some
of their representativeness once extracted. Pressure and temperature changes alter fluid
distribution, and physical manipulations can disturb the rock fabric, leading to changes
in porosity and permeability. Nonetheless, core data remains indispensable for calibrating
wireline logs during log integration and for building accurate geological and petrophysical

models.

Special Tests

Specific core Analysis (SCAL) samples, targeting specific facies, are selected jointly by
geologists and petrophysicists. These whole-cores samples are described, photographed,
and preserved before being cut and stored. Routine sampling is performed using a
water-cooled diamond drill to extract 2.5 to 3.8 cm plugs perpendicular to the bedding.
These are labelled and cleaned in solvent chambers to remove hydrocarbons and water.
Drying then takes place in humidity-controlled ovens; however, care must be taken, as
processes such as drying can affect fragile clay structures (e.g., illite), altering permeability
without significantly impacting porosity. SCAL experiments fall into two main categories:
(1) electrical measurements for saturation models and (2) dynamic flow measurements for
reservoir simulation. Due to their complexity and cost, SCAL experiments are limited to
a few carefully selected samples deemed homogeneous and representative, often verified by
computed tomography (CT) scanning. Without such high-quality core data, petrophysical

models would carry much greater uncertainty and are less reliable for decision-making.
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2.1.3 Well Test Data

Historically, well testing was performed to obtain rudimentary production-related data,
such as fluid type, deliverability, reservoir pressure, and permeability. Nowadays, well
testing has become a vital tool for comprehensive reservoir evaluation, as a direct result
of the rapid development of high-precision gauges and analysis software programs that
enable better understanding and improved data quality.

With access to accurate pressure measurements, it is now possible to detect large-scale
reservoir heterogeneities, such as faults or facies boundaries. Nevertheless, interpretations
remain very different and must be corroborated by additional seismic or geological data
to ensure reliability.

Well tests are particularly valuable for estimating permeability. Unlike core or log
data that provide localized or averaged values, the flow rate measured during a well
test provides a dynamic, in situ representation of the reservoir behaviour. The resulting
permeability—thickness values can be compared across wells to identify the most productive

intervals and prioritize reservoir development.

2.2 Pre-processing Techniques in Traditional Petrophysical
Workflows

Before using petrophysical data for quantitative analysis or predictive modeling, it has
to go through a series of pre-processing steps to improve its quality, consistency, and
reliability. These steps are mandatory when dealing with large volumes of well log data,

which may be affected by noise, missing values, or incompatible measurement scales.

The most commonly applied pre-processing techniques in petrophysical analysis

include:

1. Outlier Detection and Removal: Logs may contain anomalous readings due to
tool malfunctions, borehole conditions, or sudden lithological changes. Statistical
methods such as the Interquartile Range (IQR), Z-score thresholding, or visual
inspection (e.g., box plots or cross-plots) are used to identify and remove these

outliers.

2. Handling Missing Data: Missing data is a frequent problem, particularly for
older wells or in cost-constrained environments. Traditional imputation techniques
include filling gaps using linear interpolation, nearest-neighbor values, or constant
substitution. In more sophisticated workflows, geostatistical methods or empirical

correlations may be used to estimate missing values.

3. Depth Matching and Log Alignment: When combining data from different

logging runs or tools, slight mismatches in depth registration can occur. Depth
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shifting or resampling is applied to align measurements from multiple sources to a

unified depth scale.

. Environmental and Borehole Corrections: Raw log data may be affected by
borehole diameter, mud properties, or tool standoff. Traditional workflows involve
applying environmental corrections using correction charts or proprietary software

to obtain true formation responses.

. Data Filtering and Smoothing: To reduce high-frequency noise in the logs,
filtering techniques such as moving average, median filters, or Savitzky—Golay filters
are often applied. These help preserve geological trends while removing noise from
the data.

2.3 Limitations of Conventional Approaches

The conventional approaches for predicting petrophysical parameters such as porosity,

Clay Volume, and water saturation face several significant limitations that affect the

efficiency; accuracy and scalability in reservoir characterization.|30]

Some of These restrictions are listed below:

. Time-consuming and Expensive: Traditional methods like core analysis and
well logging are both time-consuming and expensive, making them impractical for

comprehensive or real-time reservoir evaluation.

. Limited Data and Coverage: Direct measurements typically come from a few
wells or limited depth intervals. As a result, they may not adequately represent the

spatial variability and heterogeneity of the entire reservoir.

. Complexity in Heterogeneous Reservoirs: Empirical correlations and conventional
models often fail to capture the nonlinear, non-uniform distribution of petrophysical
properties in complex, layered, or heterogeneous reservoirs. This leads to reduced

accuracy in parameter estimation.

. Sensitivity to Reservoir Conditions: Parameters such as water saturation are
highly sensitive to reservoir-specific factors including mineral composition, cementation,
and fluid salinity, complicating accurate estimation using traditional resistivity-based
methods like Archie’s equation, may not perform well under varying geological

conditions.

. Lack of Real-Time Prediction: Conventional methods do not provide real-time

predictions, which limits timely decision-making during drilling and production.

. Requirement of Expertise and Specialized Equipment: These methods depend
heavily on the availability of domain experts and specialized tools, adding to operational

complexity and cost.

41



7. Nonlinear and Complicated Relationships: The relationship between well log
attributes and petrophysical parameters is often complex and nonlinear, making

conventional empirical or correlation-based approaches less effective.[30]

These challenges have driven the industry toward data-driven approaches such as machine
learning (ML) and artificial intelligence (AI) techniques, which are capable of handling
nonlinearities, provide real-time predictions, and improve accuracy and efficiency in petrophysical

parameter predictions.

2.4 Data-Related Challenges in Predicting Petrophysical

Parameters

One of the main obstacles in predicting petrophysical parameters lies in the quality,

completeness, and consistency of the available data.

Several key issues must be addressed:

1. Data Quality and Measurement Errors: Logging data can be affected by
borehole conditions, tool calibration differences, and environmental factors, introducing
noise and inconsistencies [31]. These errors complicate the interpretation and reduce

the reliability of conventional prediction methods.

2. Noise in the Data: Well log measurements are often affected by various types
of noise resulting from mechanical, electrical, or environmental disturbances. This

noise can obscure meaningful patterns and reduce the accuracy of predictive models.

3. Missing or Incomplete Data: It is common to encounter missing logs or incomplete
records, especially in older wells or cost-constrained drilling operations. This limits

the volume and quality of usable data for training machine learning models.

4. Variable Resolutions and Scales: Data may originate from multiple sources
with differing sampling rates and resolutions (e.g., high-resolution logging tools vs.
low-resolution seismic data). This heterogeneity complicates data integration and

may introduce bias into the modelling process.|31]
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Chapter 3

Bibliographic summary of artificial

intelligence

Objective: Provide a concise and comprehensive overview of the fundamental concepts,

historical evolution, and key techniques of artificial intelligence (AI).

3.1 Introduction

Artificial intelligence has grown in popularity throughout various industries, it has been
a transformative technology by revolutionizing numerous scientific and industrial fields
due to its ability to process vast amount of data, recognize patterns and make prediction
has led to its widespread adoption in many sectors such as engineering, health care and
finance. In petroleum engineering, Al plays an important role in analysing petrophysical
parameters, enhancing decision-making process and also optimizing reservoir management.
AT has been studied for decades and is still one of the most elusive branches of Computer
Science. This is mainly because of how large the subject is. This chapter aims to
provide a global understanding of AI by exploring its basics; concepts and applications.
Furthermore, it will enlighten the relationship between AI; Machine learning (ML), Deep
Learning (DL) and Generative AI (gen. Al) explaining their significance and methods

in data-driven, decision-making and prediction across various industries.|32]

3.2  Artificial intelligence

Al is known the use of a machine or computer intelligence rather than human or animal
intelligne.it’s a branch of computer science that studies the simulation of human intelligence
processes such as learning, problem-solving and self-correction by computers [33|.AI is
a technology that allow computers and machines to reproduce human comprehension,
learning, problem-solving, decision-making and autonomy [34]. The term Artificial intelligence
was first coined in 1956 by John McCarthy during the first academic conference on
the subject that he held[32]. Still, the journey to figuring out whether computers can
truly think began much earlier. In The groundbreaking 1945 essay "As We May Think",
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Vannevar Bush envisioned a system that amplifies human knowledge and understanding.Five
years later, Alan Turing created the notion of machines simulating human intelligence and

performing tasks requiring human [32].

2020 i Generative AI (Gen AI)

Deep learning models (foundation models) that
create original content

Figure 3.1: Evolution of Artificial Intelligence: From AI to Generative AI|[35].

ibm,i;opic

3.3 Maching Learning

Underneath AT there is Machine Learning (ML) that is defined as the collection of various
algorithms used to teach computers to find patterns in data for future estimation and
forecasting or as a quality check for performance optimization, it involves creating models
to make decision and predictions [34]. It encloses a wide range of techniques that provides
the ability to machines to learn from and make inferences based on date without being
explicitly programmed for specific tasks, and it can be categorized into three main types,

which are Supervised Learning, Unsupervised Learning and Reinforcement Learning [33].
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Figure 3.2: Machine Learning Techniques|36].

3.3.1 Supervised Learning

Supervised learning is a method that trains the model, using labelled data, where input
features are paired with corresponding output labels [37]. The objective is to establish a
mapping between inputs and outputs, enabling the mode to recognize accurate predictions
on unseen data. This approach solves various problems at scale and is used to develop

highly accurate predictive models [38].

Supervised Learning Common Models

1. Classification: this technique classes data by recognizing specific entities in the
dataset and determining how those should be labelled.Its objective is to predict the
category to which a given input belongs.|38]

Common classification algorithms include:

o K-Nearest Neighbour (KNN): This algorithm assumes that similar data
points are located near to one another when represented mathematically; it
classifies the data points according to their similarity and proximity. It is
simplicity make it useful for image recognition and recommendation systems.But,
as the data size increases; processing time will also increase, making it less
efficient [38].

¢ Random Forest: this supervised ML approach can be used in both classification

and regression models. It consists of numerous uncorrelated decision trees,
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forming a forest. By merging their predictions, the algorithm will reduce

divergence and higher accuracy [38].

e Support Vector Machine (SVM): this operation distinguishes different
classes by setting a decision boundary, known as a hyperplane. The purpose of
this algorithm is to determine the hyperplane that expands the combination

between the data point groups, confirming an optimal separation [38].

2. Regression: It is a model that is employed to understand the relationship between
variables. In regression problems, the output is a continuous value and models

attempt to predict the target variable [37].

There are three common types of regression algorithms:

e Linear regression: It’s a predictive modelling method that estimates a dependent
variable based on independent variables. It established a linear relationship
between these variables by estimating the coefficients of a linear equation that
fits the data. The goal of this technique is to reduce the difference between
predicted and actual outputs [39].

The simplest form for a linear regression model consists of a linear combination

of the input variables and takes the form :

m
y(x, W) = wp + ijxj where x = [21, X2, ..., Ty
j=1
The important property of the linear regression model is that it is a linear
function of the regression coefficients wy, ws, . .., wy, [40].
This type of regression model remains linear even if one of the regressors is a

non-linear function of the other regressor or of the all data predictors.

e Logistic regression: This approach is considered as a statistical model that
evaluates the probability of an event occurring based on a given set of independent
variables. Commonly referred to as the logic model, it is used for classification
and forecasting analytics. Considering that the output represent a probability,

the dependent variable ranges between 0 and 1 [41].

e Polynomial regression: Like other regression models, this one establishes
the relationship between variables but, does so using polynomial functions of
varying degrees. It captures non-linear patterns by incorporating exponential

terms of the independent variables [37].

3.3.2 Unsupervised Learning

Unsupervised learning builds upon complex inputs without any labels, its purpose is
to deduce the underlying structure or patterns of a system from observed data. It

demands using machine learning algorithms to cluster and analyse unlabelled data sets
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into significant groupings called subsets and clusters.These algorithms reveal intrinsic
patterns or data structures without any human intervention based on similarities. It’s
ability to detect resemblances and distinctions in data makes it ideal for exploratory data

analysis, cross-selling strategies, customer segmentation and image recognition [42].

Unsupervised Learning common modals

1. Clustering: This technique classifies and organizes objects, data points or observations
into groups or “clusters” based on patterns. Dissimilar to supervised learning,
clustering does not rely on labelled data, instead it identifies built-in structures
within the dataset this method is commonly used in exploratory data analysis
to reveal the hidden patterns and to understand underlying trends, patterns, and
outliers. It upgrades the ability to recognize natural groupings, facilitating hypothesis
generation and deeper insight. Furthermore, it is an essential in dimensionality
reduction where large datasets are segmented into small meaningful subsets. In
this case, clustering can be a step in preprocessing. There are numerous clustering
algorithms as there are multiple ways to define clusters, the approach of the algorithm
depends on different factors like the size of the input data, its dimensionality, the

rigidity of the categories and the number present clusters [42].

These algorithms can be divided into four types:

e K-means Clustering: this algorithm is one of the most widely used centroid
based clustering techniques in data segmentation, pattern recognition, and
exploratory data analysis across various domains due to its simplicity and
efficiency. This optimization process involves separating a dataset into 'K’
clusters, where each data point is assigned to a cluster with the nearest centroid.
K-means performs effectively when clusters are approximately equal in size, and

there are no significant variations in density across the data [43].

e Hierarchical Clustering: Also known as connectivity-based clustering, groups
data points based on their distance and connectivity across all dimensions.
The idea behind this approach is that objects that are closer to each other
are more related than those farther apart. This method can be performed
using agglomerative strategy (where each point starts as a single cluster, then
clusters are iteratively merged based on their similarity) or divisive strategy (here
all data points are in one single large cluster, that is then recursively split into smaller
clusters). Unlike K-means clustering, this process does not need a specification

regarding the numbers of clusters [43].

e Distribution-based clustering: Sometimes called probabilistic clustering,
groups data points based on their probability distribution rather than Metrics

like Euclidean distance [42]. It considers a process generating normal distributions
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across different dimensions. Instead of relying on measuring distances, it
identifies statistical distributions that best represent the data across each dimension.
One of the most used probabilistic clustering techniques is the Gaussian Mixture
Model (GMM) that aims to determine the Gaussian probability distribution
to which a data point belongs and to operate under the assumption that these

parameters are unknown [43].

e Density-based clustering: This category detects high density areas within
a dataset while differentiating low density regions. Density-based clustering
can discover clusters of any shape, size, or density in a dataset. It also
distinguishes between data points which are part of a cluster and those that
have to be labelled as noise. This algorithm classifies as outliers the points
that are isolated in low-density areas and clusters the densely packed points.

It performs well for analysing complex datasets [42].

2. Dimensionality Reduction Models: It’s a technique employed when a dataset
contains a high number of features or dimensions, it aims to reduce the number of
the data inputs to a more manageable size while keeping the essential structure and
integrity of the dataset as much as possible. This process is mostly used in the data

processing stage to reduce computational costs and improve model efficiency [43].

There are a few different dimensionality reduction methods:

e Principal Component Analysis: This method is designed to eliminate redundancies
and compress datasets. It applies a linear transformation to the data that generates
a new representation defined by a set of components. The first component captures
the maximum variance in the dataset, on the other hand, the second one maximizes
the variance as well but remains completely uncorrelated with the first one, ensuring
that it is orthogonal to it. This operation continues iteratively, where each new
principal component is orthogonal to the previous ones and captures the next highest

variance, allowing the PCA to retrain relevant information [42].

e Singular value decomposition: It is another technique that divides a matrix A
to three lower-rank matricesA = USVT, where U and V are orthogonal matrices,
and S is a diagonal Matrix that contains the singular values. Like PCA, it is usually

used to reduce noise and compress data [42].

e Autoencoders: It utilises neural networks to compress, then reconstruct a new
representation of the original data’s input. This approach consists of two stages:
encoding where the input in compressed into a hidden layer and decoding where
the date is reconstructed. The hidden layer acts as a bottleneck, ensuring that the

essential features are kept [42].
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3.3.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on sequential
decision-making by autonomous agents, systems capable of acting independently in a
response to their environment, needless to any guidance or direct instruction by a human
user. The process of this learning method involves an interaction between the agent, the
environment, and a defined goal. This relationship is commonly modelled using a Markov
Decision Process (MDP), which furnishes a mathematical framework for decision-making

in unknown environments [44].
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Figure 3.3: graphical representation of the MDP model [45].
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At each step, the environment presents the agent with its current state. The agent
then determines an action to take based on that state. If the action obtains a reward
signal from the surrounding environment, the agent is encouraged to repeat that action
in similar future situations. Over time, the agent learns from rewards and punishments

to take actions within the environment that meet a specified goal.

3.4 Deep Learning

Deep leaning is the latest achievement of machine learning, it achieves its learning based
on deep neural networks, which are a multilayered structure designed to simulate the
complex decision-making power of the human brain with its own complex computational
and recognition abilities. It consists of multiple layers of interconnected nodes, each
building on the previous layer, which take more features or details from the previous layer
in order to optimize and fine-tune the prediction or categorization. Data travels through
the network through a process called forward propagation, in which each layer processes

the data it received in a way that refines the prediction or classification of the model [46].
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Figure 3.4: Neural-Networks-Architecture[47].

An additional operation called backpropagation uses algorithms including gradient
descent to determine errors in predictions, then modify the weights and biases in the
function by working backward through the layers to train the system to learn from its
errors, and thus get better at predicting and improving its accuracy over time.

Deep learning is widely used today in many artificial intelligence applications, particularly

in computer vision and natural language processing (NLP).[46]

Deep Learning Common Models

1. Multi-Layer Perceptron (MLP):

The word "perceptron” originates from a simple neural model designed for binary
classification, which maps input features to a single output decision. It is termed
"multilayer Perceptron” because it contains an input layer, one or more hidden
layers and an output layer, in this architecture, neurons in each layer maintain
complete connections with the neurons in the subsequent layer, enabling the network
to perform advanced non-linear data transformations of the input data [48]. This
approach shows strong performance in regression and classification functions because
it accurately detects complex hidden connections among data variables [49].

A common MLP is composed of key components that work together to process

information and make predictions, whose role is set:

e Input Layer: Each neuron or node in this layer corresponds to an input
feature. For instance, if you have three input features the input layer will have

three neurons.

e Hidden Layer: MLP can have any number of hidden layers with each layer
containing any number of nodes. These layers process the information received

from the input layer.

e Output Layer: The output layer generates the final prediction or result. If
there are multiple outputs, the output layer will have a corresponding number

of neurons [40].
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Figure 3.5: Multi-Layer Perceptron Structure[50].

2. Convolutional Neural Networks: CNNs are a subset of deep learning models,
specifically tailored for dealing with data that has ‘grid’ like topology and images.
They are famous for their great success in image classification, object detection,
and pattern recognition. CNNs are especially suitable due to their capability of
automatically learning and extracting high-level features from raw data, and therefore

are especially powerful for structural and spatial data [51].
A common CNN network is composed of key components whose role is set:

e Convolutional Layer: It’s considered as the core building block of a CNN, where
the majority of computation occurs. It requires a few components, which are input
data, a filter and a feature map. These filters detect unique patterns, such as edges
or curves, which are systematically moved over all the spatial expanse of the input

while preserving spatial information.

e Pooling Layer: These layers intend to redact the spatial dimensions of the feature
maps, reducing computational load and helping with spatial invariance. This operation

retains details to reduce computational burden and support the prevention of overfitting.

e Activation Function: Both convolutional and pooling layers are improved with
non-linearity using activation functions. This process leaves only positive input
values identifiable by their lack of alteration, enabling the model to explore complex

relations and patterns within the data set.

e Weights: Both convolutional and pooling layers are improved with non-linearity
using activation functions. This process leaves only positive input values identifiable
by their lack of alteration, enabling the model to explore complex relations and

patterns within the data set.

e Fully Connected Layer (FC): Positioned at the end of the network, these layers
accumulate spatial feature information, produced by earlier convolutional and pooling

layers, towards the classification or regression result. They are mainly used to
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interpret the high-level features extracted by the previous layers as a single-dimensional

array, allowing for a complex analysis and reasonable conclusions [52].
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Figure 3.6: Convolutional Neural Network Structure[53].

Most popular deep CNNs

e 1D Convolutional Neural Network: This type of CNN is specifically designed
for processing one-dimensional sequential data, like time series, text or any data
where the structure varies along a single axis. It extends the traditional CNN’s
ability to recognize patterns in images to handle sequences of data. The core
component is the 1D convolutional layer, which applies filters that slide across the
sequence to capture local patterns and features, enabling the network to automatically

extract meaningful patterns and dependencies within the data [53].

e 2D Convolutional Neural Network: A 2D Convolutional Neural Network is an
architecture primarily designed to analyse two-dimensional data, such as images.
Processes data by applying convolutional filters that slide across the image in both
horizontal (z) and vertical (y) directions, capturing spatial features such as edges,
textures, and patterns. Each filter generates a 2D feature map that retains spatial

information about where specific features appear [53].

3.5 Algorithms and Applications of Al in Petrophysics

1. Prediction of Petrophysical Parameters
AT developments have improved many industries, with the petroleum sector being
one of the main ones, making it easier and better to study underground rocks. In
particular, the prediction of petrophysical parameters such as porosity and permeability
has greatly benefited from these developments.
The following section presents recent studies and examples that illustrate the application

of deep learning techniques for the prediction of petrophysical parameter:

e Direct Mineral Content Prediction from Drill Core Images via Transfer
Learning: Boiger et al. (2024) employed convolutional neural networks (CNNs)
to analyse drill core images, achieving 96.7% accuracy in classifying formation

types. Additionally, a CNN model was trained to evaluate mineral content,
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demonstrating performance comparable to laboratory X-ray diffraction (XRD)

measurements.|54]

e Neural Machine Translation of Seismic Waves for Petrophysical Inversion:
Teixeira et al. (2024) introduced a deterministic petrophysical inversion technique
based on a language model that decodes seismic wave velocity measurements
to infer soil petrophysical and mechanical parameters as textual descriptions.
This approach delivered comprehensive geological insights 2,000 times faster

than conventional methods [55].

e Machine Learning-Based Prediction of Well Logs Guided by Rock
Physics: A 2025 study utilized four machine learning algorithms —Random
Forests (RF), Gradient Boosting Decision Trees (GBDT), Multilayer Perceptrons
(MLP), and Linear Regression (LR)— to predict porosity and clay volume
fraction from well logs. The predictions were guided by rock physics principles,
and SHapley Additive exPlanations (SHAP) analysis uncovered consistent patterns
across the algorithms [56].

2. Facies and Lithology Classification:
Reservoir characterization depends greatly on properly identifying facies and lithology,
which guides decisions in both exploration and production. Before, facies and
lithology were recognized by looking at well logs, core samples and seismic data,
which often took time and could be affected by the interpreter’s views. Current
advancements in deep learning have provided tools that are able to automate tagging
more accurately. When using large data and complex neural network settings, deep
learning models are able to notice microscopic changes and patterns in geological

information that are not easy for people to analyse nor to detect.

This section highlights recent deep learning advances in facies and lithology classification.

e Lithofacies Prediction from Well Log Data Using Deep Learning:
A 2024 study utilized Convolutional Neural Networks (CNNs) and Residual
Neural Networks (ResNets) to classify lithofacies such as coal, sandstone, and
limestone from well log data. The models achieved up to 88% accuracy in
predicting various lithologies, demonstrating the effectiveness of deep learning

in automating lithology classification [57].

¢ Automated Lithology Classification of Drill Core Images Using CNN:
In 2024, researchers developed a lightweight CNN model for classifying lithologies
such as carbonate, sandstone, and shale from drill core images. The model
achieved an accuracy of 96.9% with only 69,600 parameters, showcasing its

efficiency and potential for real-time applications [58].
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Conclusion of the Theoretical Framework

The theoretical framework presented in this first part has laid the essential foundations
for understanding the petrophysical parameters at the heart of this study: clay volume
(Vier), effective porosity (PHIE), and water saturation (Sy). We explored the physical
principles behind well logging, the interpretation of log data, and the relevance of each
parameter to reservoir characterization. Additionally, we reviewed the fundamentals
of machine learning, focusing on its growing importance in solving complex prediction
problems in geosciences.

This theoretical grounding now allows us to move forward with confidence into the
practical part, where we apply these concepts using real data and advanced machine

learning models to predict petrophysical properties in the Berkine Basin.
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Part Two
Practical Study



Chapter 4

(General Characteristics of the Berkine

Basin

Objective: Provide an overview of the geological and petrophysical framework of the
Berkine Basin, with a particular focus on its petroleum systems, source rocks, reservoir

characteristics, and hydrocarbon generation history.

4.1 Introduction

The Berkine Basin is a major intracratonic sedimentary basin, representing the most
subsided part of the syneclise of the oriental province in the eastern part of Algerian
Saharan Platform. The thickness of the sedimentary terrains reaches about 7500 m
deep, resting directly on a crystalline basement, testifying to a considerable geological
subsidence. The basin covers an area of about 350,000 km?2, spread over three North
African countries: 50,000 km? in eastern Algeria, 200,000 km? in western Libya and

about 100,000 km? in southern Tunisia.
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Figure 4.1: Map of the Sedimentary Basins of the Saharan Platform|59].
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Geologically, it is located in the oriental province of the eastern side of the Algerian
Saharan Platform. It is divided into three distinct geological complexes based on tectono-structural

and facies relationships:

e he central Berkine sub-basin, constituting an extension of the eastern sector of the

larger Ghadames Basin in Libya;

e The Triassic Hassi-Messaoud Ridge and AMGUID-Spur, located to the west of

Berkine basin;

e The Dahar Dome, located to the north, characterized by high Hercynian structural

relief.

Tectonic evolution reflects a complex interaction between marine and continental processes.
During the Namurian, at the basin scale, the region experienced a significant marine
regression, which was followed during the Westphalian by a new marine transgression,
originating from the northeast, extending over large areas of the eastern Sahara. During
the final phase of the Westphalian, a new phase of marine regression led to the formation

of sedimentary environments, mainly lagoonal and continental.

4.2 Geographical Setting and Boundaries

The Berkine Basin is geographically bounded between latitudes 29°30'N and 33°40’N and
extends eastward from longitude 5°55’E to the Tunisian border. It is bordered to the east
by the Algerian—Tunisian and Algerian—Libyan frontiers. The basin covers a total area of

approximately 102 395 km?2, divided into 28 exploration blocks.
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Figure 4.2: Geographical Location of the Berkine Basin [60]
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4.3 Geological context

4.3.1 Lithostratigraphy

The stratigraphic conditions of the region have posed several challenges, mainly due to
lateral facies variations and the scarcity of macrofauna. These factors have led to the
establishment of regional lithostratigraphic nomenclatures. However, the lack of reliable
chronological markers has often complicated the correlation between sedimentary series.
The Berkine Basin has preserved a sedimentary fill exceeding 6,000 meters thick at its
center, ranging from the Paleozoic to the Quaternary. This entire sequence rests on a
Precambrian granitic basement.

The central part of the basin has been relatively unaffected by Hercynian erosion, allowing
the preservation of the upper Carboniferous series. In contrast, towards the structural
highs and basin margins, the Paleozoic sequences have been progressively eroded by
Hercynian events. The basin margins are characterized by the development of Silurian-Devonian

units underlying the Mesozoic cover.
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The Paleozoic

The Paleozoic succession is subdivided into three main stages:

e Cambrian:
This interval corresponds to three main reservoir units: R1 (Ri, Ra), R2, and R3,
generally composed of quartzitic sandstones. These Cambrian sandstones are known

for their oil productivity and have an average thickness of around 300 meters.

e Ordovician:
The principal reservoirs are composed of quartzites (Hamra), Ouargla sandstones,
El Atchane sandstones, El Gassi clays, Azzel clays, Ramade sandstones, Oued
Saret sandstones, and micro-conglomeratic clays. These reservoirs have an average
thickness of about 250 meters, and their productivity is primarily associated with

natural fracturing.

e Silurian:
Unconformably overlying the Paleozoic, it is represented by clay-sandstone and

lagoonal deposits (salt and anhydrite) and is subdivided into three units:

— Argillaceous Silurian: Comprising mainly gray to light gray clays, sometimes
dark brown, silty with fine siltystone interbeds. Towards the base, the clays

become dark and highly organic-rich, forming the main source rock of the basin.

— Argillaceous-Sandstone Silurian: A mixed lithological unit including dark gray
to greenish-gray clays, silts, white fine- to very fine-grained quartzitic sandstones,

compact in some layers, with occasional siltystone interbeds.

The Mesozoic

e Jurassic:
Composed of lagoonal marine sediments, it begins with a characteristic dolomitic

level known as Horizon B, which is widespread and easily recognizable.

e Cretaceous:
This system is widely developed across the Saharan platform and consists of alternating
sandstones, clays, dolomites, and limestones, along with some interbeds of anhydrite,
gypsum, and salt. Toward the top, the formation becomes predominantly carbonate

in nature.

The Cenozoic

The Cenozoic rests unconformably on the Mesozoic and is mainly composed of fine- to

coarse-grained sandstones interbedded with sandy clays.
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4.3.2 The Petroleum Systems of the Berkine Basin

The Berkine Basin is well known for its petroleum potential. Previous geological and
geophysical studies in this region have primarily focused on the Lower Argillaceous-Sandstone
Triassic (TAGI), the Carboniferous, the Devonian, and the Upper Silurian formations.
The primary petroleum systems on the Saharan platform are predominantly hosted in
Palaeozoic and Triassic formations, which collectively account for approximately 43% of
the known oil reserves and 84% of the gas reserves. Nearly all of these hydrocarbon
accumulations are concentrated in the eastern part of the Sahara platform.

Within the Berkine Basin, the estimated in-place resources include roughly 1,609 million
cubic meters of oil, 72 million cubic meters of condensate, and 765 billion cubic meters of
gas. These hydrocarbons are primarily sourced from the basin’s most prolific source rocks,
notably the Silurian black shales rich in Graptolites and the Middle to Upper Devonian

formations.

Source Rocks

1. Silurian Shales (Oued Imerhou Formation)
The Silurian source rocks, dating from the Llandoverian-Wenlock to Gothlandian
stages, comprise black, pyritic marine shales characterized by high organic content
derived from marine phytoplankton and zooplankton. These formations exhibit
thicknesses ranging from 200 to 300 meters across the basin, thinning toward the
northwest and northern margins.

The Silurian interval can be subdivided into three distinct organic-rich layers:
e A basal layer, 10 to 25 meters thick, is the richest in organic matter and
recognized as the principal hydrocarbon-generating horizon.

e An intermediate layer with variable thickness (0 to 275 meters) containing

moderate organic matter content.
e An upper layer with minimal hydrocarbon potential.
2. Upper Devonian (Frasnian-Famennian)

These source rocks, predominantly preserved in the southeastern portion of the

basin, were deposited during a marine transgression and are divided into two zones:

e The lower Frasnian zone, which develop higher total organic carbon (TOC)

contents and thicknesses between 50 and 200 meters.

e The upper Famennian zone, characterized by low radioactivity and a thickness

close to 50 meters.
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Hydrocarbon Generation

The hydrocarbon generation history of the basin is linked to two major tectonic

events: the Paleozoic and Mesozoic stages.

e During the Paleozoic, Silurian and Devonian source rocks matured sufficiently
only in the basin’s southeast, where burial depths allowed entry into the oil

generation window.

e The Hercynian orogeny caused uplift and erosion, reducing burial depths and

temporarily halting or slowing organic maturation in certain areas.

e Subsequent Early Mesozoic subsidence and increased geothermal gradients

reinitiated maturation and hydrocarbon generation.

e In the Tertiary, subsidence ceased while thermal flow increased, promoting

further maturation and cracking of oil to gas in the deepest basin sections.

Overall, Silurian source rocks are currently in the dry gas window across most of
the basin but remain within the oil window in the northern and some southeastern

areas.

Reservoirs Rock

1. TAGS (Upper Triassic clayey-Sandstone)

The TAGS reservoir is located in the southeastern Triassic depression, in the southwestern
part of the basin. It consists of fluvial and deltaic channel sequences, primarily
composed of medium to coarse-grained sandstones, indicating proximity to sediment
sources. The unit thins out southeastward near the Maouar High and disappears to
the west against the Ramade Fault and the El Biod High. Northward, it transitions
into more argillaceous and eventually evaporitic facies (equivalent to the S4 unit).
The average thickness ranges from 100 to 150 meters.

From a petroleum standpoint, TAGS represents one of the main reservoirs in the
southeastern Triassic depression. Notable hydrocarbon discoveries, including oil and
gas condensate, have been made in fields such as Nezla, Hassi Touareg, and Hassi

Chergui. The unit is effectively sealed by a thick Triassic evaporite sequence.

2. TAC (Carbonate Triassic) - TAGin (Intermediate Triassic)

This unit formed during the Triassic rifting phase and is characterized by argillaceous
and commonly dolomitic facies, along with interbedded sandstones. It is well-developed
within the southeastern Triassic depression. Its thickness varies depending on
syn-rift fault activity.

Although its reservoir potential is generally low, hydrocarbons have been encountered
in areas such as Rhourde En Nouss and Hassi Chergui. In the Berkine Basin,
localized sandy intervals have yielded oil, especially in the SFSW, SF, and BRSE

formations.
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. TAGI (Lower Clayey-Sandstone Triassic)

The TAGI formation represents the basal Mesozoic sequence and consists of predominantly
fluvial (occasionally aeolian) deposits, distributed widely across the basin. Its
thickness varies from 65 to 80 meters, largely controlled by faulting and regional
paleotopography.

This reservoir displays stacked sandy units, each approximately ten meters thick,
separated by clayey intervals. Sediment input likely originated from the southwest,

with paleo-flow directed toward the northeast. TAGI is considered a key target

for exploration due to its excellent petrophysical properties, with porosity ranging

between 7% and 26% and average permeability values between 27 and 35 millidarcies
(md).

. Carboniferous

The Carboniferous reservoirs, dated from the Strunian to the Viséan, consist of

sandstone intervals interbedded with argillaceous sequences deposited in shallow

marine settings. The basal Carboniferous has limited areal extent, primarily occurring
in the central and western edges of the Berkine Basin.

The coarse-grained, proximal nature of the sandstones reflects the influence of

ancient paleohighs such as the D’Amguid-Messaoud and D’Ahar massifs, which

acted as major sediment sources. These reservoirs have average thicknesses ranging

from 20 to 50 meters and exhibit very good petrophysical properties.

. Lower Devonian

Lower Devonian reservoirs include two main sequences: the Gedinnian, characterized
by thick, post-Caledonian fluvial sandstones averaging 200 meters in thickness, and
the Siegenian, a transgressive sequence with coastal and deltaic sandy deposits.
Their distribution was influenced by major uplifts like the Amguid-Messaoud High
and detrital input from the southeast.

These reservoirs display good petrophysical characteristics and have proven productive

for light oil and gas.

. Ordovician

Ordovician reservoirs, with average thicknesses around 250 meters, occur primarily
in the southeastern Triassic depression and thin out northeastward toward the
Touggourt-Semhari region. Hydrocarbon production from these quartzitic units,
such as in the Hamra and Rhourde Nouss fields (gas and oil) and Nezla (oil), is

largely associated with natural fracturing.

. Cambrian
Cambrian reservoirs are represented by four units: Ri, Ra, R2, and R3. The best
reservoir quality is found in the quartzitic sandstones of the Ri and Ra units.

These sandstones have yielded oil in several fields, including Rhourde El Baguel,
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Ain Romana, and Damrane. To date, Cambro-Ordovician reservoirs have mainly

been identified along the northern and western flanks of the Berkine Basin.

Seal Rocks

1. Seals of the Cambrian Reservoirs
The seal is provided by clay formations, and lateral closure is ensured by vertical

displacement along faults associated with the regional structural trend.

2. Seals of the Ordovician Reservoirs
Typical clays from the Ordovician and Silurian periods can act as seals for the
Ordovician sandstones, providing containment for accumulations, except in areas

where erosion has occurred due to tectonic activity, especially in the northern region.

3. Seals of the Devonian Reservoirs
Clays within the Carboniferous and Devonian formations serve as seals for the
Devonian reservoirs; specifically, those from the late Devonian.

The Ordovician and Cambrian reservoirs are sealed by clay formations.

4.3.3 Selecting the Berkine Region

The Berkine region was selected for this study due to its high hydrocarbon potential
and the availability of a rich and diverse dataset. As one of the most productive basins
in Algeria, Berkine offers extensive well logging data across various formations, which
is essential for building robust machine learning models. The abundance and quality of
the data in this region contribute to effective model training and also allow for reliable
evaluation on the test wells, ensuring that the models can generalize well within the same

geological context.
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Chapter 5

Exploratory Data Analysis (EDA)

Objective: Perform an Exploratory Data Analysis (EDA) to investigate the structure and
distribution of the petrophysical dataset, with a particular focus on feature relationships,

missing values, outliers, and data consistency.

5.1 Introduction To Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a fundamental step in any data-driven projects. It
represents a set of tools and techniques that allows to better understand the structure,
distribution, and quality of the data to discover patterns, spot anomalies, test a hypothesis,
or check assumptions [62]. It is a key step before modeling, helping to identify outliers,
skewed distributions, variable correlations, and potential data quality issues such as
missing or non-physical values.

In the context of this study, EDA was conducted on petrophysical well log data in
order to assess data completeness, investigate feature distributions, identify anomalies,
and explore the relationships between predictor variables and the target variables, Volume
of Clay (V,;, Effective Porosity (PHIFE) and the water saturation (S,,). The analysis was
conducted on the full dataset prior to the train-test split, and subsequent preprocessing
steps, such as imputation and feature scaling, were applied using parameters derived from
the training set only, to prevent data leakage.

The data analysis and cleaning processes were conducted using Python. Several
libraries were used to perform data manipulation, handle missing values, visualize distributions,
and compute descriptive statistics. The listing below presents the main packages required

for this stage.

Listing 5.1: Main imports for EDA and data cleaning

# For loading and manipulating tabular data
import pandas as pd

# For numerical computations and array handling
import numpy as np

# For static plotting

import matplotlib.pyplot as plt
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# For statistical data visualization
import seaborn as sns
# For statistical transformations

from scipy.stats import skew, kurtosis, boxcox

5.2 Data Description

5.2.1 Data Sources

The dataset used in this study consists of well log measurements acquired during the
evaluation phase of hydrocarbon reservoir development In the Berkine region.

These measurements were collected pretty thoroughly down borehole using various wireline
logging tools that provide super high resolution data continuously from different wells from

the same field.

Figure 5.1: Geographical Location of the Berkine Basin|[63].
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Figure 5.2: Wells distribution. [63].

Where the blue points represent the wells used in the training, and the red

points represent the wells used in the testing

5.2.2 Structure of the Dataset

The combined dataset comprises a total of 91,167 data points of 19 wells in total. Each row
represents a depth-specific log measurement, and the dataset includes 16 columns collected
from well logging tools during the evaluation and exploration phases of subsurface formations.
These features represent a variety of geophysical measurements commonly used in petrophysical

analysis.

The dataset includes both input features and target variables, each group of features
corresponds to a specific category of well logging tools, such as gamma-ray, sonic, resistivity,
density, neutron, and spectral gamma-ray logs.

The following table presents the full list of variables grouped by their logging category,

along with a brief description of each:

5.2.3 Data types

This step aims to check for the data types, as in some cases, the numerical data is stored
as a string, hence, requires a conversion from string to integer or float — depending on
the known type —, to be able to display plots of the data via graphs. In this case, the

data extraction wasn’t affected, and our data types match the nature.
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Category Features

General Well, DEPTH
Gamma-Ray and | GR (Gamma Ray), DTP (Sonic Travel Time)
Sonic

Resistivity Logs AT10, AT20, AT30, AT60, AT90
Density & Neutron | NPHI (Neutron Porosity), RHOB (Bulk Density)

Logs

Spectral  Gamma | URAN (Uranium), THOR (Thorium), POTA (Potassium)
Ray

Target Variables VCL (Clay Volume), PHIE (Effective Porosity), SW (Water

Saturation)

Table 5.1: Categories and corresponding features used in the dataset

Table 5.2: Types of the data in the dataset.

Column | Data Type

Well object
DEPTH | float64
GR float64
DTP float64

AT10 float64
AT20 float64
AT30 float64
AT60 float64
AT90 float64
NPHI float64
RHOB float64
URAN float64
THOR float64
POTA float64

VCL float64
PHIE float64
SW float64

5.2.4 Number of Data Points Per Well

The identification of the data distribution is essential during exploratory data analysis
(EDA), through a computation of data points recorded for each well, then visualisation
of the results using a bar chart. This following plot 5.3 highlights a slight imbalance in
the dataset, where some wells contribute with more data than others. Such disparities
might impact the model performance. This analysis informs decisions related to sampling

strategies and data weighting.
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Figure 5.3: Data Point Distribution Per Well

5.2.5 Histogram of Data Points

A histogram was plotted 5.4 to explore the distribution of values for the variables. The
resulting plot reveals the range, central tendency, and frequency of observed values,
enabling a quick look about potential skewness, outliers, or abnormal concentrations.
Most values appear clustered around a central range, suggesting a relatively consistent
distribution, while tails or sparse regions may indicate anomalous readings or natural
geological variability. This visual inspection is crucial for understanding the data spread
and guiding the selection of the next appropriate preprocessing steps, such as normalization,

transformation, or outlier handling, prior to model training.
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Figure 5.4: Histogram of Raw Data

5.2.6 Heatmap

A heatmap was generated to visualize the pairwise correlation coefficients between numerical
features. This graphical representation helps identify linear relationships between variables,
each cell in the heatmap represents the correlation coefficient (typically Pearson’s r)
between two variables, ranging from -1 to 1. A value close to 1 (displayed in darker warm
colors) indicates a strong positive linear relationship—meaning the two features tend to
increase together. A value near -1 (cooler tones) suggests an inverse relationship—when
one increases, the other decreases. Values close to 0 (neutral colors) imply no linear
correlation. The heatmap reveals clusters of highly correlated features, which may suggest
redundancy or multicollinearity. Understanding these relationships is essential for feature
selection, engineering, and model interpretation. For instance, strong correlations between
porosity-related logs or radioactive indicators such as GR and V, confirm geological
coherence in the dataset. Conversely, weak or near-zero correlations suggest that the

variables are likely to contribute independently to the model’s predictive power.
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Figure 5.5: Heatmap

The heatmap enables the confirmation of data coherence by visually highlighting
correlations between variables. This visualization supports our geoscientific domain expertise,
allowing us to validate expected relationships (e.g., inverse correlation between porosity

and clay volume) and detect any inconsistencies that may indicate data quality issues.

5.2.7 Detecting Outliers

To visually identify potential outliers in the dataset, boxplots were generated for each
numerical variable using Seaborn. A boxplot summarizes the distribution of a feature by
displaying five key statistics: the minimum, first quartile 1, median, third quartile ()3,
and maximum. The interquartile range (IQR = Q3 — Q1) defines the middle 50% of the
data. Values lying outside 1.5 times the QR from the lower Q1 or upper ()3 quartile
are considered outliers and are plotted as individual points beyond the “whiskers” of the
box. This visual tool provides a straightforward method to assess whether a variable
exhibits skewness or contains extreme values. Identifying these outliers is essential, as
they can bias statistical measures or degrade the performance of predictive models. For
instance, parameters such as AT20 or RHOB might display notable outliers, either due to

measurement anomalies or geological variability.
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Figure 5.7: General Boxplot
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5.3 Summary Statistics

The following table represents basic statistical summaries generated for each of the columns,

and includes : count of the data points, mean, standard deviation (std), quartiles (25%,
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50%, 75%), min and max values.

Listing 5.2: Summary Statistics

# Display summary statistics
summary_stats = df.describe ()

print (summary_stats)

Table 5.3: Descriptive Statistics Of The Data.

Stat DEPTH GR DTP AT10 AT20 AT30 AT60 AT90 NPHI RHOB URAN THOR POTA VCL PHIE SW

Count 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762 88762
Mean  4396.56 105.98  66.84 101.23 61.59 57.38 50.76 58.63 0.3402 2.4993 3.23 17.05 0.99 0.616 0.027 0.745
Std 571.13  31.66 6.36 338.36 211.63  155.99  103.87  144.44 0.5666 0.5865 2.07 4.57 1.01  0.321 0.044 0.363
Min 3178.73  16.24  48.57 0.23 0.18 0.18 0.16 0.14 -0.011 -1.948 -1.01 -2.63  -0.09 0.000 0.000 0.001
25% 3901.29  86.95 62.31 12.15 11.68 11.69 12.09 12.26  0.1382  2.5652 1.93 14.38 0.02 0.375 0.000 0.379
50% 4440.94 110.61  65.46 23.40 23.08 23.20 23.82 24.42  0.2068 2.6886 3.16 17.72 0.65 0.712 0.001  1.000
5% 4834.28 125.69  70.45 49.67 48.88 49.98 52.21 54.14 0.2820 2.7203 419  20.17 1.96 0.890 0.041 1.000
Max 5671.87 443.78 109.40 10000.00 10000.00 6455.08 2000.00 2000.00 3.3322 3.6709  40.31 4543 4.57 1.000 0.272 1.000

These statistics were useful to detect inconsistencies or implausible values (e.g., negative

values for resistivity or porosity above 1.0).

Table 5.4: Descriptive Statistics of The Data (highlighting outliers and non-physical values)

Stat DEPTH GR DTP AT10 AT20 AT30 AT60 AT90 NPHI RHOB URAN THOR POTA VCL PHIE SW

Count 88762 88762 88762 88762 88762 88762 88762 88762 88762 83762 88762 88762 88762 88762 88762 83762
Mean  4396.56 105.98  66.84 101.23 61.59 57.38 50.76 58.63 0.3402 2.4993 323 17.05 0.99 0.6156 0.0268 0.7454
Std 571.13  31.66 6.36 338.36 211.63 15599  103.87  144.44 0.5666 0.5865 2.07 4.57 1.01  0.3206 0.0439 0.3635
Min 3178.73  16.24 4857 0.23 0.18 0.18 0.16 0.14  -0.011 -1.95 -1.01 -2.63  -0.09 0.0000 0.0000 0.0013
25% 3901.29  86.95 62.31 12.15 11.68 11.69 12.09 1226 0.1382  2.5652 193 14.38 0.0213 0.3746 0.0000 0.3793
50% 4440.94 110.61  65.46 23.40 23.08 23.20 23.82 24.42 0.2068 2.6886 3.16  17.72 0.6513 0.7115 0.0010 1.0000
5% 4834.28 125.69  70.45 49.67 48.88 49.98 52.21 54.14 0.2820 2.7203 419 20.17 1.9600 0.8905 0.0412 1.0000
Max 5671.87 443.78 109.40 10000.00 10000.00 6455.08 2000.00 2000.00 3.3322  3.6709 10.31 15.43  4.567 1.0000 0.2722 1.0000

Summary statistics revealed a consistent sample size across all features, indicating no
missing rows at this stage. However, extreme values were identified in several attributes.
Notably, the attenuation logs (AT10, AT20, AT60, and AT90) exhibited implausibly high
values (e.g., 10,000 or 1999.999), likely representing fill values. Additionally, negative
readings were observed in physical properties such as neutron porosity (NPHI), bulk
density (RHOB), and radioactive elements (URAN, THOR, POTA), which are physically
unrealistic and indicative of either measurement errors or placeholder values. These
outliers were flagged and treated as missing values. The effective porosity (PHIE) showed

very low overall values, suggesting either poor reservoir quality or incorrect scaling.

5.4 Data Cleaning and Preprocessing

The cleaning and preprocessing steps were implemented in Python using pandas, numpy,

and scipy libraries, and are summarized below.

5.4.1 Handling Missing and Non-Physical Values

The initial step consists in identifying and quantifying missing values in each column.

This involves comparing the number of missing entries to the total number of rows in the
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dataset. Based on the resulting proportion, an informed decision is made on whether to

discard, impute, or retain the affected records, depending on their potential impact on

the analysis.

Table 5.5: Missing values per feature after final cleaning

Variable Number of Missing Values

VCL 2405
PHIE 2405
SW 2405
Well
DEPTH
GR
DTP
AT10
AT20
AT30
AT60
AT90
NPHI
RHOB
URAN
THOR
POTA

OO OO OO OO OO OO oo

Many logging tools return default values when measurements are unreliable. These

include:

e Fill values (placeholders for missing data) such as -999.25, -999, 10000.0, 1999.999

e Negative values in physical parameters like RHOB, NPHI, and spectral logs (URAN,

THOR, POTA), which are not physically meaningful

These values were treated as missing (NaN) and removed from the dataset.

Listing 5.3: Replacing Fill Values and Negative Measurements

fill_values = [10000.0, 1999.999, -999.25, -999.0]

df .replace(fill_values, np.nan, inplace=True)

columns_to_check_negatives = [’NPHI’, °RHOB’, °>URAN’, ’THOR’,
for col in columns_to_check_negatives:

df .loc[df[col] < 0, col] = np.nan

>POTA
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A summary of missing values was computed after cleaning:

Listing 5.4: Missing Values Report

missing_counts = df.isnull().sum()

missing_percent = 100 * missing_counts / len(df)

missing_df = pd.DataFrame ({

’Missing Values’: missing_counts,
’Percentage (%)’: missing_percent.round(2)
1))
missing_df = missing_df[missing_df[’Missing Values’] > 0].sort_valuegs (by=’Mis:

print (missing_df)

Example: After cleaning, RHOB had 0.01% missing values, and URAN had 0.03%. Table 5.6

summarizes the missing value statistics for all features.

Table 5.6: Number of missing values after cleaning

Variable Nb of Missing Values Percentage (%)

SW 2405 2.71
PHIE 2405 2.71
VCL 2405 2.71
URAN 31 0.03
NPHI 25 0.03
THOR 16 0.02
POTA 15 0.02
RHOB 8 0.01
AT20 6 0.01
AT10 4 0.00
Well 0 0.00
AT90 0 0.00
AT60 0 0.00
DEPTH 0 0.00
GR 0 0.00
AT30 0 0.00
DTP 0 0.00
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Figure 5.8: Visualization of missing values per variable, after cleaning

5.4.2 Variable Transformation
5.4.2.1 Skewness and Kurtosis of Numerical Features

To better understand the shape of the distributions of the numerical features, we compute
their skewness (asymmetry) and kurtosis (tailedness). High skewness values indicate

asymmetric distributions, while high kurtosis values reflect heavy tails or outliers.

e Skewness indicates the asymmetry of the distribution:

— A value near 0 implies a symmetric distribution.
— Positive skew indicates a long tail to the right.

— Negative skew indicates a long tail to the left.
e Kurtosis measures the tailedness of the distribution:

— A value of 3: corresponds to a normal distribution.
— Greater than 3: heavy tails (outliers more likely).

— Less than 3: light tails.
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The following Python code summarizes the skewness and kurtosis of all numerical

columns in the cleaned dataset:

Listing 5.5: Computation of Skewness and Kurtosis for Numerical Variables

# Skewness and kurtosis
skew_kurt = pd.DataFrame ({
’Skewness’: df [numerical_cols].skew(),

’Kurtosis’: df [numerical_cols].kurtosis ()

B

print (skew_kurt)

The results are summarized in Table 5.7.

Table 5.7: Skewness and Kurtosis of Numerical Variables

Feature Skewness Kurtosis

DEPTH 0.016 -0.935
GR -0.084 1.744
DTP 0.835 0.556
AT10 5.940 56.318
AT20 17.094 541.777
AT30 9.267 120.761
AT60 8.867 116.943
AT90 8.592 91.795
NPHI 3.756 12.587
RHOB -3.528 11.302
URAN 2.601 23.460
THOR -0.497 0.259
POTA 0.469 -1.221
VCL -0.644 -0.891
PHIE 1.908 3.306
SW -0.918 -0.920

Each feature exhibits a distinct statistical distribution, such as symmetry, skewness,
or heavy tails. As a result, a one-size-fits-all transformation approach is often inadequate.
Table 5.8 summarizes the skewness types and appropriate transformations for selected

features.

Table 5.8: Recommended transformations for selected features based on skewness

Feature Skewed Type Best Fit Transform

PHIE Moderate right skew Log or Box-Cox

AT20 Extreme right skew Log (safer than Box-Cox for heavy-tailed data)
RHOB Left skewed Cube root (works for negatives too)
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Following the recommended processes, log, Box-Cox, and cube-root transformations

were applied:

Listing 5.6: Transformations of PHIE, AT20, and RHOB

from scipy.stats import boxcox

min_phie = df [’PHIE’].min()
shift = le-5 if min_phie > O else abs(min_phie) + le-5
phie_shifted = df [’PHIE’] + shift

df [’PHIE_log’] = np.loglp(df[’PHIE’])
df [?AT20_log’] np.loglp(df[’AT20°])

phie_shifted_finite = phie_shifted.dropna()

phie_bc_transformed_values, fitted_lambda = boxcox(phie_shifted_fini

df [’PHIE_bc’] = np.nan

te)

df .loc[phie_shifted_finite.index, ’PHIE_bc’] = phie_bc_transformed_values

df [’RHOB_sym’] = np.cbrt(df[’RHOB’])

5.4.2.2 Visual Comparison of Original vs Transformed Variables
Distributions before and after transformation were compared using histograms:

Listing 5.7: Histogram Plots of Original vs Transformed Features

import seaborn as sns

import matplotlib.pyplot as plt

plot_pairs = [

(’PHIE’, °PHIE_log’, ’PHIE: Original vs Log’),

(’AT20°, ’AT20_log’, ’AT20: Original vs Log’),

(’RHOB’, ’RHOB_sym’, ’RHOB: Original vs Cube Root’),
y g

for original, transformed, title in plot_pairs:

plt.figure(figsize=(12, 4))

plt.subplot (1, 2, 1)
sns.histplot(df [original].dropna(), kde=True, bins=50)
plt.title(f’0Original {originall}’)

plt.subplot (1, 2, 2)
sns.histplot (df [transformed].dropna(), kde=True, bins=50)
plt.title(f’Transformed: {transformed}’)
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plt.suptitle(title, fontsize=14)

plt.tight_layout(rect=[0, O, 1, 0.95])
plt.show ()
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Figure 5.9: Original VS. Transformed Data

5.4.2.3 Final Cleanup

Finally, all rows containing remaining NaN values were removed to ensure consistency

during model training. Given that the maximum number of rows affected by missing

values was 2,405 out of a total of 91,167 (2.71%), the loss of data was considered negligible

Listing 5.8: Drop Missing Values

df .dropna(inplace=True)

print (df .isnull () .sum() .sort_values (ascending=False))
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Table 5.9: Number of missing values after dropping rows with NaN

Variable Number of Missing Values

Well
DEPTH
GR
DTP
AT10
AT20
AT30
AT60
AT90
NPHI
RHOB
URAN
THOR
POTA
VCL
PHIE
SW

OO OO OO OO OO OO OO o OoOo

5.5 Training and Testing Split

The data is divided into two separate Excel sheets, each one has a distinct purpose in the

machine learning Process:

5.5.1 Training Dataset:

This sheet contains data of 15 wells (which represents 78.95% ) of the database and is
used to train and calibrate the machine learning models.
The goal is to enable the models to learn the underlying relationships between the well

log inputs and the target petrophysical properties.

5.5.2 Testing Dataset:

This subset envelopes data of 4 wells (which represents 21.05%) that were not part of the
training process. It is used to evaluate the model’s performance and to test its ability to
generalize to new, unseen data.

By assessing the model on different wells, we simulate a real-world scenario and verify

whether the model can be applied to other wells with similar characteristics.

5.6 Conclusion:

The dataset has been thoroughly explored and meticulously cleaned, bringing it to the

best possible state given its initial quality. Various data issues —such as invalid fill values,
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negative measurements, and pronounced skewness-were identified and addressed through
appropriate imputation techniques, filtering, and feature transformations (including logarithmic,
Box-Cox, and cube root methods). Although certain crucial measurements such as
pressure, bit size, and caliper data were missing, the remaining dataset retains a rich
array of petrophysical information. The variables preserved after cleaning offer sufficient
depth and reliability to support the development of accurate predictive models. However,
according to these results, a preliminary challenge was identified: a significant imbalance

in the distributions of both water saturation (.5,,) and effective porosity (PHIE). Recognizing
this early on is essential, as it directly informs model design, training strategies, and
evaluation metrics. Overall, this careful data preparation lays a robust foundation for

meaningful and interpretable machine learning outcomes.
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Chapter 6
Pipeline Steps

(Objective: Explain the full machine learning workflow used to predict petrophysical
parameters specifically water saturation (S, ), clay volume (V), and effective porosity
(PHIE) and, outline each essential stage of the pipeline, including data preprocessing,

feature engineering, and model training.)

6.1 Preprocessing

The data preprocessing procedures were previously carried out and described in detail
in the Exploratory Data Analysis (EDA), Chapter Five (Exploratory Data Analysis
(EDA)). This step included cleaning the raw well log dataset by removing null or invalid
values, correcting inconsistent formats, and validating the measurements to ensure data
integrity. The resulting dataset was used as the foundation for building and training the

machine learning models.

6.2 Feature Engineering

After data cleaning, a selection of relevant geophysical and petrophysical logs was made

to serve as input features for the machine learning models.

Table 6.1: Selected input features and predicted output parameters

Input Features Output Parameters
Gamma Ray (GR) Water Saturation (.S,,)
Sonic Transit Time (DTP) Volume of Clay (V)
Resistivity Measurements: Effective Porosity (PHIE)

AT10, AT20, AT30, AT60, AT90
Neutron Porosity (NPHI)
Bulk Density (RHOB)
Natural Radioactivity Logs:
Uranium (URAN), Thorium (THOR), Potassium (POTA)

Then, the dataset was split into training and testing subsets, allowing the evaluation
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of model performance while ensuring that the test set remains unseen during training.
Subsequently, the training dataset was further divided into training and validation sets

using a 70: 30 ratio to optimize model development and prevent overfitting.

6.3 Scaling & Transformation

Data Loading: Datasets in Excel format are imported using the pandas.read_excel()

function. These datasets include several input features and one or more output targets.

Feature Selection and Scaling: A subset of relevant features is selected, and the
data is normalized using the RobustScaler from Scikit-learn. This scaling method

transforms each feature x to reduce the influence of outliers using the following formula:

, = — median(z)

YT TTIQR(2)

where median(z) is the median of the feature and IQR(z) is the interquartile range.

Due to the presence of outliers and skewed distributions in petrophysical features such
as porosity and spectral gamma ray measurements, the RobustScaler was selected for
feature scaling. Unlike the StandardScaler, which centers the data using the mean
and scales it to unit variance, the RobustScaler relies on the median and interquartile
range /)R, making it significantly less sensitive to extreme values. This is particularly
important in petrophysical datasets, where measurement anomalies and tool limitations
can lead to unrealistic spikes or heavy-tailed distributions. By using RobustScaler,
the scaling process preserves the integrity of the data and improves the stability and

performance of subsequent machine learning models.

6.4 Model Fitting

6.4.1 Linear Regression (LR)

A model was employed as a baseline model for predicting petrophysical parameters,
namely water saturation (S,), volume of clay (V,;), and effective porosity (PHIE).
The model was trained using Scikit-learn’s LinearRegression class with default
hyperparameter settings.

The linear regression model learns a linear mapping between the input features and the

target variable based on the following equation:

U= Bo+ Prxy + Boxa + - + Bray

e y: Predicted value (S, Vi, or PHIE)

e z;: Input features (e.g., GR, DTP, RHOB, etc.)
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e (3;: Learned coefficients for each feature

e [(y: Intercept term

6.4.2 XGBoost

The XGBoost model used in this study is a gradient boosting decision tree model optimized
for regression tasks. Its architecture relies on an ensemble of decision trees, where each

tree attempts to correct the residual errors of the previous ones.

Architecture & Model Parameters

The following hyperparameters were used to configure the XGBoost model. Each plays
a specific role in controlling the learning process, model complexity, and generalization

performance:

e n_estimators
Defines the number of boosting rounds; each round builds a new tree to reduce

previous prediction errors.

e max_depth
Sets the maximum depth of individual trees; controls model complexity and helps

prevent overfitting.

e colsample bytree
Specifies the fraction of features randomly selected for each tree; improves generalization

and reduces overfitting.

e subsample
Indicates the fraction of training samples used per boosting round; adds regularization

and enhances robustness.

e random _state

Ensures reproducibility of results by setting a fixed random seed.

Table 6.2: XGBoost Architecture and Model Parameters

Parameter Value
n_estimators 100
max_depth 6
colsample bytree 0.8
subsample 0.8
random _state 42
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Training parameters

Key parameters such as boosting rounds and learning rate define the learning dynamics

and convergence speed of the XGBoost model.

e Boosting Rounds
This refers to the number of iterations the XGBoost algorithm performs to sequentially
build decision trees. In each round, the model focuses on correcting the errors made

by the previous trees.

e Learning Rate

The learning rate controls how much each new tree contributes to the final prediction.

Table 6.3: XGBoost Training Parameters

Parameter Value
Training Strategy | 100 boosting rounds
Learning Rate 0.05

Optimization & Regularization Settings

XGBoost uses a method called gradient boosting, where it builds decision trees one after
another to improve predictions.Parameters like subsample and colsample bytree help by

randomly selecting data and features, which makes the model more robust.

e Gradient Boosting
It builds a model sequentially, where each new decision tree corrects the errors made
by the previous ones. This is done by minimizing a loss function using gradient

descent.

e Subsample
Uses a random portion of the training data for each tree. This helps prevent

overfitting by introducing randomness and diversity.

e Colsample Bytree
Randomly selects a subset of features for each tree. Like subsample, this reduces

overfitting and increases model robustness.

Table 6.4: XGBoost Optimization and Regularization Settings

Parameter Value

Boosting Strategy Gradient Boosting
Regularization Method | subsample and colsample bytree
colsample bytree 0.8

subsample 0.8
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Hyperparameter Tuning: Grid Search vs Random Search

Optimizing hyperparameters is a key step in improving the performance of an XGBoost

model. Two used strategies for this task are Grid Search and Random Search.

e Grid Search:

— Exhaustively tests all possible combinations from a predefined grid of hyperparameter

values.
— Guarantees that the best combination (within the grid) is evaluated.

— However, it becomes computationally expensive when the search space is large

or includes many parameters to test.
e Random Search:

— Randomly samples a fixed number of combinations from the full hyperparameter

space.

— Significantly faster than Grid Search and often sufficient to find near-optimal

settings.

— Recommended when time or computational resources are limited.

6.4.3 Hyperparameter Tuning Strategy

To optimize the performance of our XGBoost models, we employed a two-step hyperparameter
tuning approach combining both Randomized Search and Grid Search.

We began with a RandomizedSearchCV to explore a broad range of hyperparameter
combinations efficiently. This method samples a fixed number of parameter settings from
specified distributions, making it particularly useful for identifying promising regions in
the hyperparameter space in a limited time and computational resources.

Once the most influential parameters and their approximate ranges were identified,
we refined our search using a more focused GridSearchCV. In this second step, we
performed an exhaustive search over a narrower grid centered around the best-performing
candidates from the randomized search.

This two-phase strategy allowed us to balance exploration and precision: leveraging
the speed of random search to detect good zones, followed by the exhaustive nature of
grid search to fine-tune model performance.

This approach enabled us to efficiently converge toward a promising model architecture

without the need to evaluate possible hyperparameter combination.
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Listing 6.1: Hyperparameter tuning using GridSearchCV for XGBoost

from sklearn.model_selection import GridSearchCV
from xgboost import XGBRegressor
# Define the grid of hyperparameters to search
param_grid = {
‘n_estimators’: [50, 100], # Number of boosting roundg
"max_depth’: [3, 6], # Maximum depth of a tree
’>learning_rate’: [0.01, 0.05, 0.1], # Step size shrinkage
>subsample’: [0.8, 1.0], # Subsample ratio of the training inc
>colsample_bytree’: [0.8, 1.0] # Subsample ratio of columns when co:
b
# Initialize the XGBoost regressor
xgb = XGBRegressor (random_state=42)
# Set up the GridSearchCV
grid_search = GridSearchCV(
estimator=xgb,
param_grid=param_grid,
scoring=’neg_mean_absolute_error’, # Evaluation metric (can be|changed t«
cv=3, # 3-fold cross-validation
verbose=1, # Print progress messages
n_jobs=-1 # Use all available CPU corgs
)
# Fit the model on training data
grid_search.fit(X_train_reg, y_train_reg)

GridSearchCV was performed over 48 parameter combinations using a 3-fold cross-validation,
resulting in a total of 144 fits. The best model was obtained with the following hyperparameters:
colsample_bytree = 1.0, learning rate = 0.05, max_depth = 6, n_estimators =

100, and subsample = 0.8.

Feature Importance in XGBoost

XGBoost, being a tree-based ensemble method, inherently supports the estimation of
feature importance during training. This importance reflects the contribution of each
input feature in predicting the target variable, and can be computed using different

strategies:

e Weight (Frequency): The number of times a feature is used to split the data
across all boosting trees. A higher count implies that the feature is more frequently

selected, though not necessarily more informative.
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e Gain: The average improvement in the loss function brought by splits using the
feature. This is often considered the most relevant measure of importance, as it

directly reflects predictive power.

e Cover: The number of observations affected by a particular feature when it is used
to split data. It is weighted by the number of data points passing through those
splits.

Feature importance in XGBoost can be visualized using the plot_importance function

from the xgboost package:

Listing 6.2: Plotting feature importance based on gain

xgb.plot_importance (model, importance_type=’gain’)

Which shows :

Feature importance
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Figure 6.2: PHIFE Feature Importance
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Figure 6.3: S, Feature Importance.

This analysis helps in understanding the internal decision logic of the model and in
performing feature selection for optimization or interpretability purposes.

Feature importance is available in various other models, particularly tree-based algorithms
such as Random Forest, Light GBM, and CatBoost.

6.4.4 Deep Learning (MLP & CNN)

Architecture & Model Parameters

In a deep learning model, the architecture defines the overall structure and flow of data
through the network.

It typically consists of three main types of layers and activation functions:

e Input Layer
This is the first layer of the model, where data is introduced into the network. Each

neuron in the input layer corresponds to one feature in the dataset neurons.

e Hidden Layers
These are the intermediate layers between the input and output layers. They are
composed of neurons that apply transformations to the input data using weights,
biases, and activation functions. The number of hidden layers and neurons per layer

determines the depth and capacity of the model.

e Output Layer
This layer produces the final predictions. Its size depends on the number of output
variables. For regression tasks such as predicting water saturation (.S,,), clay volume
(Viq), or effective porosity (PHIE)

e ReLU Activation Function
The Rectified Linear Unit (ReLU) is a widely used activation function in deep
learning models. It outputs zero for any negative input and returns the input
directly if it is positive. This function introduces non-linearity into the network

while maintaining computational efficiency, helping models learn complex patterns
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without vanishing gradient issues, based on the following equation:
ReLU(z) = max(0, 2)

Where:

— z: Linear output before applying the sigmoid, typically computed as

2=w'x+0b.

x: Input feature(s) to the neuron.

— w: The learned weights.

— b: The bias

e Sigmoid Activation Function
The Sigmoid function maps input values to a range between 0 and 1. It is
especially useful in binary classification problems or in the output layer when probabilities

are needed using the update rule:

Where:

— z: Linear output before applying the sigmoid, typically computed as

2 =w'x+0b.

Propagation Mechanisms

e Forward Propagation
It is the process where the input data passes through the layers of the neural network.
At each layer, the data is transformed using weights, biases, and activation functions.
This continues until the model produces a prediction. The output of each layer [ is

computed by:

SO — p00-1 L p0

a® = ¢(z(l))

where:

— W® and b® are the weights and biases,
— a7V is the activation from the previous layer,

— ¢ is the activation function (ReLU or sigmoid).

e Backpropagation

comes after the output is generated. It compares the predicted output to the actual
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target and calculates the error. Then, it moves backward through the network,

updating the weights using optimization algorithms like gradient descent as followed:

oL L 9V 920
oW D — 9a® 920 oW

We update the weights by subtracting the learning rate times the gradient.

oL

® n_,_ 7=
WY «— W n S0

Where:

e 1 is the learning rate.

Training parameters

e Epochs
An epoch represents one complete pass through the entire training dataset. During
each epoch, the model updates its weights based on the error it makes. Using more

epochs allows the model to learn more deeply, but too many can lead to overfitting.

e Batch Size
Batch size refers to the number of samples the model processes before updating its

weights, this helps speed up training and stabilize the optimization process.

e Validation Split
The validation split determines the portion of the training data that is set aside for
validation. A value of 0.3 means 30% of the training data is used to evaluate the

model’s performance during training, helping to detect overfitting or underfitting.

e Loss Function (Mean Squared Error - MSE) The loss function measures
how well the model’s predictions match the actual values. Mean Squared Error
calculates the average squared difference between predicted and actual values, penalizing
larger errors more. It is commonly used for regression problems like predicting 5,
V., and PHIFE.

Optimization and Regularization

To ensure efficient and stable training of the deep learning model, several optimization
and regularization strategies were implemented. These include the use of an adaptive
optimizer, a carefully selected learning rate, and a checkpoint mechanism to preserve the

best-performing model.

e Optimizer

This algorithm helps the model learn by adjusting weights to reduce error. RMSprop
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is good at handling changes in the learning process by adapting how fast or slow

the model learns.

e Learning Rate

This controls how big each step is when the model updates itself.

e Checkpoint Callback
This saves the best version of the model during training, so if the performance

worsens later, the best one is kept and used.

Multilayer Perceptron (MLP)

The development process followed the stages below, using Python and TensorFlow/Keras

frameworks

1. Architecture & Model Parameters
The Multilayer Perceptron (MLP) used as a simple yet effective feedforward neural
network.
The architecture is composed of three fully connected layers ,and in this approach,

three Architectures were used to choose the best combinaison:

Table 6.5: MLP Architecture with 16 Neurons per Hidden Layer

Layer Index | Layer Type | Neurons | Activation
1 Dense 16 ReLU
2 Dense 16 ReLLU
3 Dense 1 Sigmoid

Table 6.6: MLP Architecture with 32 Neurons per Hidden Layer

Layer Index | Layer Type | Neurons | Activation
1 Dense 32 ReLLU
2 Dense 32 ReLU
3 Dense 1 Sigmoid

Table 6.7: MLP Architecture with 64 Neurons per Hidden Layer

Layer Index | Layer Type | Neurons | Activation
1 Dense 64 ReLLU
2 Dense 64 ReLLU
3 Dense 1 Sigmoid

The ReLU function outputs the input directly if it is positive, and zero if it is
negative. It makes the model train faster and helps solve the vanishing gradient
problem.

The sigmoid function is used in the output layer to constrain the output between 0

and 1, aligning with the expected range of V. values.
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2. Training parameters:

During the training phase of the MLP model, several key hyperparameters were

defined to control the learning process.

The main hyperparameters used in this configuration are:

Table 6.8: Training Hyperparameters for the MLP Model

Parameter Value

Epochs 100

Batch Size 32

Validation Split 0.3

Loss Function | Mean Squared Error (MSE)

3. Optimization and Regularization Settings

To enhance training, optimization and regularization techniques were applied, including

the RMSprop optimizer, a learning rate, and a checkpoint callback to retain

the best model.

Table 6.9: Training Configuration Parameters

Parameter Value
Optimizer RMSprop
Learning Rate 0.001
Checkpoint Callback | Enabled

Convolutional Neural Network (CNN)

1. Architecture and Model Parameters:

The model is based on a one-dimensional convolutional neural network (ConvlD),

designed to process well log data treated as sequences of features, and extract

high-level patterns relevant for regression tasks.

Table 6.10: Summary of ConvlD model architecture

Layer Type Configuration Details

Input Shape = (1, 14) 1 timestep, 14 features
Conv1D Filters = 32, Kernel size = 1 | Activation = ReLU
Batch Normalization - -

ConvlD Filters = 32, Kernel size = 1 | Activation = ReLU
Batch Normalization — —

Conv1D Filters = 32, Kernel size = 1 | Activation = ReLLU

Batch Normalization
Global Max Pooling1D
Dense

Dropout

Dense

Output

Units = 32

Rate = 0.3
Units = 32
Units = 1

Reduces spatial dimensions
Activation = ReLLU
Regularization

Activation = ReLLU

Linear activation (for regression)
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2. Training Parameters:

This table outlines the essential settings used during the training process chose

according to the tuning, including the choice of optimizer, learning rate, and loss /metric

functions used to evaluate model performance.

Table 6.11: Training configuration
Parameter Value
Loss Function Mean Squared Error (MSE)
Optimizer Adam
Learning Rate 0.001
Evaluation Metric | Mean Absolute Error (MAE)

3. Optimization and Regularization Techniques:

To ensure both fast convergence and generalization to unseen data, the model

integrates several optimization and regularization strategies, as shown below.

Table 6.12: Regularization and optimization components

Technique

Purpose

Dropout

Batch Normalization

Global Max Pooling

Stabilizes and accelerates training by normalizing
intermediate activations

Prevents overfitting by randomly dropping units during
training (rate = 0.3)

Reduces dimensionality and captures dominant features
across time steps

6.5 Prediction

After training the models, predictions were conducted on a separate test dataset consisting

of four wells, where each well was evaluated individually to preserve geological coherence

and better observe the model’s behaviour across different reservoir conditions.

The input features were normalized using the same RobustScaler applied during training

for consistency.

Then, the trained model predicted the target variable (V;, PHIFE, S,) at each depth

point in the well.

For each well, results were visualized through:

e A depth-wise plot comparing measured and predicted V,;,, PHIFE, S, values for

each well.

e A comparison plot was generated showing predicted vs. measured V, PHIE, S,

values for the whole test dataset.

e A summary table showing the evaluation metric of the models.
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6.6 Evaluation Metrics

Model performance is evaluated using the following metrics on a test dataset:

1. Mean Absolute Error (MAE):
It measures the average absolute difference between the actual values and the
predicted values. A lower MAE indicates that the predictions are, on average,
closer to the true values, since it provides a linear score without squaring the errors,

it treats all individual differences equally.
| N
i=1

Where:

e N is the total number of samples,
e y; is the actual value of the i-th sample,
e ¢; is the predicted value of the i-th sample,

e  is the mean of all actual values, computed as y = % Zfil Yi-

2. Mean Squared Error (MSE): It calculates the average squared difference between
the actual values and the predicted values. By squaring the errors, MSE penalizes
larger errors more heavily than smaller ones, making it more sensitive to outliers
than MAE. A lower MSE indicates that the model’s predictions are generally closer

to the true values.
| N
MSE = — i — i)
N ;:1 (i — 1)
Where:

e N: the total number of samples
e y;: the actual (true) value for the i-th sample

e 7;: the predicted value for the i-th sample

3. Coefficient of Determination (R?):
The coefficient of determination, denoted as R?, measures how well a regression
model explains the variance in the target variable. It indicates the proportion of
the total variation in the actual values that is captured by the model’s predictions.
An R? value of 1 means the model perfectly predicts the data, while a value of 0
indicates that the model does no better than simply predicting the mean of the
target values. Negative values suggest that the model performs worse than this
basic baseline. Overall, a higher R’reflects a better fit between the predicted and

actual values. N
R2—1_ > iz (Wi — 4i)*
SN (v — 9)?
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Where:

N is the total number of samples,

y; is the actual value,

; is the predicted value,

y is the mean of the actual values.

6.7 Limitations of Each Model in the Context of Petrophysical

Parameter Prediction

6.7.1 Linear Regression (LR)

e Assumes linearity: Cannot model complex or nonlinear relationships between features

and target variables (e.g., PHIE, SW).

e Sensitive to multicollinearity: Performance degrades when input features are highly

correlated.

e Limited flexibility: Struggles with feature interactions and cannot capture hierarchical

or conditional dependencies.

e Poor handling of noisy or skewed data: Especially problematic for targets like SW

that often have saturation effects (e.g., many values near 1).

6.7.2 Multilayer Perceptron (MLP)

e Requires careful tuning: Model performance is highly dependent on architecture

(number of layers/neurons), learning rate, and regularization.
e Prone to overfitting: Especially with small datasets or insufficient regularization.
e Less interpretable: Difficult to understand how input features influence the output.

e Computationally expensive: Training deep MLPs can be resource-intensive and

slower compared to tree-based models.

6.7.3 XGBoost

e Sensitive to hyperparameters: Requires careful tuning of tree depth, learning rate,

number of estimators, etc.

e Can struggle with extrapolation: Tree-based models do not predict well outside the

range of the training data.
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e May not capture subtle spatial or sequential patterns: Unlike CNNs or RNNs,
XGBoost lacks built-in structure for handling ordered or spatial data.

e Performance may plateau: If the dataset has strong noise or if critical nonlinearities

are not captured by the available features.

6.7.4 1D Convolutional Neural Network (CNN 1D)

e Requires large amounts of data: CNNs are data-hungry and may underperform with

limited or sparse datasets.

e Sensitive to window size and filter configuration: Poor parameter choices can lead

to ineffective feature extraction.

e Less intuitive feature interpretability: The internal convolutional filters are difficult

to interpret in a geological context.

e Higher computational cost: Training CNNs, even in 1D, typically requires more

time and resources compared to models like LR or XGBoost.

6.8 Conclusion

The workflow of this study was carefully structured to progressively explore and evaluate
a range of modelling techniques, from the most interpretable to the most powerful.
We began with classical regression models to establish a baseline of performance and
to understand the linear relationships between the input well log data and the target
petrophysical parameters. This initial step allowed us to interpret the basic correlations
and set a reference for comparison.

Following this, we introduced a Multi-Layer Perceptron (MLP), a simple form of neural
network capable of modelling non-linear relationships. The MLP served as a natural
next step, providing greater flexibility in capturing complex interactions between features
without significant computational cost.

To improve accuracy and leverage feature interactions more effectively, we then employed
the XGBoost algorithm — a gradient boosting framework known for its robustness and
high performance on structured data. XGBoost also provided additional interpretability
through feature importance scores, which guided further analysis and model refinement.

Finally, we applied one-dimensional Convolutional Neural Networks (1D CNNs), which
are particularly suited to sequential data like well logs. These models allowed us to exploit
the spatial continuity in the log measurements, capturing local patterns and trends that
previous models might have overlooked.

This structured progression (from simple to more complex and domain-adapted models)
ensured both interpretability and performance, while providing insights at each stage of

the modelling pipeline.
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Chapter 7

Predicted Petrophysical Parameter

Results and Discussions

(Objective: Present and analyse the predicted petrophysical parameters (S, PHIE

, and V) and evaluates their accuracy using visualizations and statistical metrics.)

7.1 Simulation Results For Volume of Clay (V)

7.1.1 Linear Regression (LR) Results

The model was trained using a set of petrophysical features, and its performance was

evaluated on the test dataset using standard regression metrics, including Mean Absolute
Error (MAE), Mean Squared Error (MSE), and R? score.

The results obtained from the Linear Regression (LR) model for predicting the volume of

clay V,; are presented below:

Table 7.1: Evaluation Metrics per Well

Well MAE R? MSE Samples
Well 1 0.1498 0.7531 0.0333 4141
Well 2 0.0719 0.8702 0.0075 4554
Well 3 0.0718 0.8758 0.0082 5112
Well 4 0.0890 0.8939 0.0118 6142
All Wells 0.0933 0.8585 0.0144 19949

The following plots illustrate the predictive performance of this model across the

different test wells:
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Figure 7.1: Prediction performance of Linear regression model for each test well.

The following plot presents the comparison between measured and predicted V,; values

for the entire test dataset:

True vs. Predicted VCL (Linear Regression)
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Figure 7.2: Measured vs Predicted V,; for the test set using the Linear Regression
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The Linear Regression (LR) performed relatively well in predicting clay volume V,
this is primarily because V,; tends to exhibit a strong linear relationship with input
features, most notably the gamma ray (GR) log, which is widely used as a direct indicator

of shale content in formations.

7.1.2 Multilayer Perceptron (MLP) Results

Three MLP models with different hidden layer sizes (64, 32, and 16 neurons) were trained
on the same petrophysical dataset to evaluate how the MLP network size affects training

performance and the predictions on the testing dataset.

Predictions Evaluations

To evaluate the generalization capability of the trained MLP models, we tested them on
a separate dataset consisting of four wells that were not seen during training. This test
set allows us to assess the model’s ability to predict petrophysical parameters on new,

unseen data.

The performance of each model was compared using three key regression metrics:

Mean Absolute Error (MAE), Mean Squared Error (MSE), and R? score.

1. With 64 Neurons per Hidden Layer

Table 7.2: Summary of test performance for each well.

Well MAE MSE R? Samples
Well 1 0.1198  0.0264  0.8040 4161
Well 2 0.1245  0.0240 0.5868 4554
Well 3 0.0809 0.0140 0.7884 5112
Well 4 0.1241 0.0322 0.7096 6151

All Wells 0.1122 0.0245 0.7593 19978

2. With 32 Neurons per Hidden Layer

Table 7.3: Summary of test performance for each well

Well MAE MSE R? Samples
Well 1 0.1042 0.0195 0.8557 4161
Well 2 0.1222  0.0227  0.6094 4554
Well 3 0.0781 0.0122 0.8156 5112
Well 4 0.1360 0.0344 0.6892 6151

All Wells 0.1114 0.0230 0.7742 19978

3. With 16 Neurons per Hidden Layer
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Table 7.4: Summary of test performance for each well.

Well MAE MSE R? Samples
Well 1 0.0968 0.0174 0.8433 6142
Well 2 0.1075  0.0204 0.8489 4141
Well 3 0.1101  0.0188  0.6757 4554
Well 4 0.0711  0.0092 0.8618 5112
All Wells 0.0955 0.0162 0.8322 19949

Best MLP Model

By comparing the test results obtained on the four unseen wells, it is clear that the
MLP model with 16 neurons per hidden layer demonstrates the best performance. This
architecture achieves the lowest MAE and MSE while maintaining high R? scores across
most wells, confirming its strong generalization ability.

The following plots illustrate the predictive performance of this model across the different

test wells:
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Figure 7.3: Prediction performance of best MLP model for each test well.

The following plot presents the comparison between measured and predicted (V,; values

for the entire test dataset, using the best-performing MLP model:
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VCL: Measured vs Predicted
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Figure 7.4: Measured vs Predicted (V) for the test set using the best MLP model

Even though the MLP model with 16 neurons in each hidden layer performed well,
Linear Regression (LR) achieved slightly better results. This is likely due to the relatively
simple and linear nature of the clay volume (V,;) prediction task, where a straightforward
model like LR was sufficient to capture the strong correlations, particularly with features

like gamma ray (GR).

After evaluating the performance of the MLP models, we opted for the XGBoost (Extreme
Gradient Boosting) algorithm to predict petrophysical parameters. XGBoost is a powerful
and efficient method that combines the predictive strength of decision trees with gradient

boosting optimization.

7.1.3 XGBoost Results

Compared to a neural network, XGBoost requires fewer computational resources and is
particularly effective at capturing linear and moderately nonlinear relationships between
input features and target variables.

The following results present the performance of the XGBoost model in predicting the

target variable across each test well, evaluated using standard metrics:

Table 7.5: Performance Metrics per Well (Sorted by Sample Count)

Well MAE MSE R? Samples
Well 1 0.1175 0.0231 0.8291 4141
Well 2 0.0982 0.0155 0.7325 4554
Well 3 0.0666  0.0094 0.8582 5112
Well 4 0.1051  0.0179 0.8385 6142

All Wells 0.0962 0.1275 0.8400 19949
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The following plots illustrate the predictive performance of this model across the

different test wells:
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Figure 7.5: Prediction performance of the XGBoost model for each test well.

The following plot presents the comparison between measured and predicted V,; values

for the entire test dataset:
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Figure 7.6: Measured vs Predicted V,; for the test set using XGBoost

102



The XGBoost model performed well compared to the MLP models, particularly due
to its direct regression approach and its ability to efficiently handle feature interactions

without requiring deep architectures.

7.1.4 CNN Results

Compared to gradient boosting, Convolutional Neural Networks (CNNs) are more computationally
demanding but offer powerful capabilities to learn complex and non-linear spatial relationships
from structured data. In this work, CNNs were tested as an alternative approach for
predicting the volume of clay (V) from well log measurements. Two architectures were
explored: one using a kernel size of 1 with 32 filters, and another using a kernel size of 3

with 16 filters.

Architecture 1

The following results correspond to the architecture with 32 filters and a kernel size of 1.

The model’s performance was evaluated on a well-by-well basis using standard metrics.

Well MAE MSE R?

Well 1 0.0859 0.0120  0.8489
Well 2 0.0484 0.0056  0.9366
Well 3 0.0365 0.0029  0.9644
Well 4 0.1268 0.0291  0.5818

All Wells 0.0773 0.0135 0.8502

Table 7.6: Prediction metrics per well using the optimized CNN model (Kernel size = 1, Filters
= 32)

The CNN model demonstrated competitive performance, achieving an overall R? score
of 0.85, comparable to that of XGBoost. However, higher variance was observed across
individual wells, suggesting that CNNs may benefit from further tuning or regularization

strategies to improve generalization across different reservoir conditions.

Architecture 2

A second convolutional architecture was explored using a kernel size of 3 and 16 filters.
This design was motivated by the hypothesis that a slightly wider receptive field could
help the network better capture local spatial dependencies in the well log data.

The table below summarizes the model’s predictive performance across the different

test wells using standard evaluation metrics.
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Well MAE MSE R?

Well 1 0.0671  0.0070  0.9120
Well 2 0.0619 0.0054  0.9395
Well 3 0.0617  0.0050  0.9396
Well 4 0.1062  0.0201  0.7109

All Wells 0.0766 0.0101 0.8873

Table 7.7: Prediction metrics per well using CNN model (Kernel size = 3, Filters = 16)

While the average performance was slightly lower than the previous architecture for
well 3, the overall R? score remains strong at 0.887. These results suggest that both
architectures are viable, though the choice of kernel size and filter count can lead to
trade-offs in generalization across different geological settings.

Architecture Comparison and Synthesis
Two convolutional neural network (CNN) architectures were evaluated for water saturation

(Sw) prediction:

e Architecture 1: 32 filters with a kernel size of 1

e Architecture 2: 16 filters with a kernel size of 3

Both models demonstrated strong predictive performance, with global R? scores exceeding
0.85. Architecture 2 achieved the best overall performance, with a global R? = 0.8873
compared to 0.8502 for Architecture 1, and lower average errors (MAE and MSE).

Architecture 1 exhibits a noticeable drop in Well 4 (R?* = 0.5818) compared to
its relatively consistent predictions of the other wells. Hence, architecture 2 obviously
outperformed Architecture 1 in three individual wells, including the challenging Well 4
(R? = 0.7109 vs. 0.5818 for the first), indicating better generalization and robustness,
even under varying geological conditions. The larger kernel size may have helped the
model better capture local spatial dependencies in the well log data.

Given its superior accuracy both globally and per well, Architecture 2 (kernel size
= 3, filters = 16) was selected for final deployment.

The following plots illustrate the predictive performance of this model across the

different test wells:
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Figure 7.7: Prediction performance of the CNN model for each test well.
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The prediction of the volume of clay (V,;) has shown promising results across all models

used in this study, suggesting that V,; is the easiest petrophysical parameter to predict

among those examined. This is primarily attributed to the strong linear relationship

between V,; and the gamma ray (GR) log, which serves as a highly informative input

feature.

Table 7.8: Metrics for V;

Model MAE MSE R?

LR 0.0933 0.0144 0.8585
MLP 0.0955 0.0162 0.8322
XGBoost 0.0962 0.1275 0.8400
CNN 0.0766 0.0101 0.8873

Key observations include:

R2 for ‘/cl
1 ‘ ‘
i 0.89 |
0.9 10,86 ok
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Model

| | |
LR MLP XGBoost CNN

e Linear Regression (LR) performs very well (R? = 0.8585), reflecting the strong

linear relationship between GR and V.
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e MLP and XGBoost models offer decent performance but do not significantly surpass

LR, indicating limited added value from their complexity in this case.

e CNN achieves the best performance (R? = 0.8873), leveraging its deep structure to

capture both linear and subtle nonlinear patterns, as well as spatial depth-dependent

features.

This confirms that while simpler models suffice for V,;, deep learning can still enhance

prediction accuracy and this can be observed more clearly in the log interpretation of each

well presented below:
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Figure 7.9: Log comparisons and V,; predictions for selected wells



7.2 Simulation Results For Effective Porosity (PHIFE)

7.2.1 Linear Regression (LR) Results

The results obtained from the Linear Regression (LR) model for predicting the effective
porosity (PHIFE) are presented below:

Table 7.9: Metrics Summary per Well

Well MAE RMSE R? Samples
Well 1 0.0250 0.6377 0.0011 4141
Well 2 0.0123  0.6249  0.0004 4554
Well 3 0.0195 0.5422  0.0006 5112
Well 4 0.0234 0.5099 0.0010 6142

All Wells 0.0202 0.6144 0.0008 19949

The following plots demonstrate how the model generalizes across different wells in
the test set for predicting PHIE:
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Figure 7.10: Prediction performance of Linear regression model for each test well.

The following plot presents the comparison between measured and predicted PHIE

values for the entire test dataset:
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Figure 7.11: Measured vs Predicted PHIFE for the test set using Linear Regression

As we can observe from the overall performance metrics and the Measured vs. Predicted
PHIE plot, the Linear Regression (LR) model performed poorly in predicting effective
porosity (PHIE). This is mainly because PHIFE is a more complex and nonlinear target
compared to parameters like V.

Its accurate estimation requires capturing intricate and multidimensional relationships
among several input features something that a simple linear model is not capable of
modeling effectively.

Consequently, more advanced and deeper learning architectures, such as MLPs, are better

suited for generating accurate and reliable predictions of PHIFE.

7.2.2 Multilayer Perceptron (MLP) Results

Predictions Evaluations

In this section, we evaluate the performance of the MLP models using standard regression
metrics (MAE, MSE, and R?) calculated for each well in the unseen test dataset. This
evaluation aims to determine how well the models generalize the predicted PHIFE and

whether they are capable of producing accurate predictions across different wells.

1. With 64 Neurons per Hidden Layer
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Table 7.10: Summary of test performance for each well.

Well MAE MSE R? Samples
Well 1 0.0142  0.0005 0.8294 4161
Well 2 0.0162 0.0011 0.0606 4554
Well 3 0.0110 0.0004 0.6640 5112
Well 4 0.0144 0.0008 0.6396 6151

All Wells 0.0139 0.0007 0.6597 19978

2. With 32 Neurons per Hidden Layer

Table 7.11: Summary of test performance for each well.

Well MAE MSE R? Samples
Well 1 0.0159 0.0006  0.7919 4161
Well 2 0.0156  0.0010 0.1716 4554
Well 3 0.0113 0.0004 0.6746 5112
Well 4 0.0143  0.0007 0.6845 6151

All Wells 0.0142 0.0007 0.6785 19978

3. With 16 Neurons per Hidden Layer

Table 7.12: Summary of test performance for each well.

Well MAE MSE R? Samples
Well 1 0.0149  0.0005  0.8297 4161
Well 2 0.0174 0.0013 -0.0444 4554
Well 3 0.0113  0.0004  0.6662 5112
Well 4 0.0151  0.0007  0.6940 6151

All Wells 0.0146 0.0007 0.6635 19978

Best MLP Model

By comparing the test results obtained on the four unseen wells, we can confirm the
conclusion drawn during the training evaluation: the MLP model with 32 neurons per
hidden layer demonstrates the best performance in predicting PHIFE. This architecture
achieves the lowest MAE and MSE while maintaining high R? scores across most wells,
confirming its strong generalization ability. The following plots demonstrate how the best

MLP model generalizes across different wells in the test set for predicting PHIE:
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Figure 7.12: Prediction performance of Linear regression model for each test well.

The following plot presents the comparison between measured and predicted PHIFE

values for the entire test dataset, using the best-performing MLP model.
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Figure 7.13: Measured vs Predicted PHIFE for the test set using the best MLP model
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Comparing to LR, the MLP model achieved better results.

Its layered structure,

combined with the use of ReLU activation functions in the hidden layers and sigmoid

activation in the output layer, allowed it to learn and model more complex feature

interactions, which led to more accurate predictions of PHIFE across the test wells.

7.2.3 XGBoost Results

The following results present the performance of the XGBoost model in predicting the

target variable PHIFE across each test well, evaluated using standard metrics:

Table 7.13: Regression Performance Metrics Sorted by Sample Count (Ascending)

Well MAE MSE R? Samples
Well 1 0.0163 0.0006  0.7997 4141
Well 2 0.0155 0.0009 0.2276 4554
Well 3 0.0110 0.0004 0.6410 5112
Well 4 0.0158 0.0006  0.6991 6142
All Wells 0.0146 0.0255 0.6866 19949

different test wells:
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Figure 7.14: Prediction performance of XGBoost model for each test well.

The plot shown below presents the comparison between measured and predicted
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PHIFE values for the entire test dataset:
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Figure 7.15: Measured vs Predicted PHIFE for the test set using XGBoost

Overall, the XGBoost model outperformed both Linear Regression and MLP, achieving
better generalization across the test wells. This superior performance can be attributed to
XGBoost’s ability to efficiently handle complex feature interactions, its robustness against
overfitting, and its flexible structure, which allows it to capture both linear and nonlinear

patterns more effectively than traditional models.

7.2.4 CNN Results

After evaluating the predictive performance of XGBoost for PH I E estimation, we propose

a shift to Convolutional Neural Networks (CNNs) because of its use of convolutional
kernels to automatically extract local patterns, hierarchies of features, and spatial dependencies.
The proposed CNN architecture consists of multiple 1D convolutional layers designed to
extract spatial features from sequential log data, followed by fully connected layers for
regression. Batch normalization and dropout were applied to improve generalization and
training stability. The model was trained using the mean squared error loss and optimized
with the Adam optimizer. Its compact yet effective design ensures a balance between
performance and computational efficiency.

The results are shown below:

Table 7.14: Results by Well for PHIE prediction using the optimized CNN model

Well MAE MSE R?

Well 1 0.0226  0.0010  0.6622
Well 2 0.0089  0.0002  0.8044
Well 3 0.0082  0.0002  0.8450
Well 4 0.0150  0.0006  0.7418

All Wells 0.0134 0.0005 0.7651
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The following plots provide a visual representation of the model’s predictive performance

on the various test wells:
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Figure 7.16: Prediction performance of Linear Regression model for each test well on PHIE.

The next plots display the Measured and Predicted PH I E values of the train dataset
and test dataset, respectively:
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The results highlight the effectiveness of the optimized CNN model for predicting
effective porosity PHIE. The overall performance is strong, with a global R? of 0.7651
and a low mean absolute error (MAE) of 0.0134, indicating good predictive accuracy
across the wells.

Well 2 and Well 3 show the best performance, with R? values of 0.8044 and 0.8450
respectively, along with very low error values. This suggests that the model successfully
captured the underlying patterns in these wells, possibly due to more homogeneous
lithology or higher-quality input data. Well 4 also displays solid performance, achieving
an R? of 0.7418.

In contrast, Well 1 shows a slightly lower performance with an R? of 0.6622. While
still acceptable, this drop might be explained by increased geological complexity, noisier
measurements, or a feature distribution less represented during training.

Despite these slight variations, the overall results confirm the model’s ability to generalize
across wells while maintaining reliable predictive performance. These outcomes also

suggest opportunities for further improvement through localized refinement.

7.2.5 Comparative Study (PHIFE)

It is evident that effective porosity (PHIE) is more difficult to predict than VCL because
it depends on a combination of logs, including neutron, density, and sonic. The sonic log
(DT) affects PHIE since wave travel time changes with porosity, but it’s also influenced

by lithology and fluid type, which introduces variability. This makes the relationship
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between inputs and PH [ E more complex and less directly linear, requiring more advanced

models to capture it accurately.

R? for PHIE
Table 7.15: Metrics for PHIE 1 ‘ ‘
Model MAE MSE R?
. 08¢ 0.77
LR 0.0202 0.0008 0.6144 o't 0.68 0.69
MLP 0.0142 0.0007 0.6785 0.6 0.61
XGBoost 0.0146 0.0255 0.6866 .
| | | |
CNN 0.0134 0.0005 0.7651 LR MLP XGBoost CNN
Model

Based on the comparative plot and table, we can conclude that:

e Linear Regression (LR) yields modest results (R? = 0.6144), suggesting that PHIE

cannot be well predicted using linear relationships alone.

e MLP and XGBoost provide improved performance, capturing more complex, nonlinear

patterns present in the data.

e CNN again performs best (R? = 0.7651), indicating its strength in modeling complex

geological features and capturing fine-scale spatial dependencies.

This is further illustrated in the following well log interpretations, where model predictions

are displayed:
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Figure 7.18: Log comparisons and PHIFE predictions for selected wells
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7.3 Simulation Results For Water Saturation (5,))

7.3.1 Linear Regression (LR) Results

The results obtained from the Linear Regression (LR) model for predicting Water Saturation
(Sw) are illustrated below:

Table 7.16: Evaluation Metrics per Well

Well MAE RMSE R? Samples
Well 1 0.2664  0.3106  0.3286 4141
Well 2 0.1662  0.2383  0.2716 4554
Well 3 0.1741  0.2302  0.3431 5112
Well 4 0.2669  0.3182  -0.1727 6142

All Wells 0.2200 0.2790 0.2741 19949

The following plots provide a visual representation of the model’s predictive performance

on the various test wells:
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Figure 7.19: Prediction performance of Linear Regression model for each test well.

This plot illustrates the Measured vs Predicted S, for the test set using LLinear

Regression across the whole test dataset:

Figure 7.20: Measured vs Predicted Sy, for the test set using Linear Regression
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The prediction of water saturation (5,) using Linear Regression (LR) was relatively
poor. This is due to the complex nature of S, which is strongly influenced by resistivity-based
measurements that are highly sensitive to formation conditions and can exhibit significant

nonlinear behavior.

7.3.2 Multilayer Perceptron (MLP) Results

Predictions Evaluations

In this section, we evaluate the performance of the MLLP models using standard regression
metrics (MAE, MSE, and R?) calculated for each well in the unseen test dataset for

estimating S,:

1. With 64 Neurons per Hidden Layer

Table 7.17: Model Evaluation Metrics per Well

Well MAE MSE R? Samples
Well 1 0.1715 0.0791 0.4481 4161
Well 2 0.1536  0.1104 -0.4149 4554
Well 3 0.2208 0.1470 -0.8233 5112
Well 4 0.1554 0.1027 -0.1869 6151

All Wells 0.1751 0.1109 -0.0343 19978

2. With 32 Neurons per Hidden Layer

Table 7.18: Model Evaluation Metrics per Well

Well MAE MSE R? Samples
Well 1 0.1668 0.0743  0.4813 4161
Well 2 0.1425  0.0950 -0.2173 4554
Well 3 0.1698  0.0936 -0.1611 5112
Well 4 0.2067  0.1354 -0.5654 6151

All Wells 0.1743 0.1028 0.0412 19978

3. With 16 Neurons per Hidden Layer

Table 7.19: Model Evaluation Metrics per Well

Well MAE MSE R? Samples
Well 1 0.1546  0.0600 0.5815 4161
Well 2 0.1369 0.0808 -0.0362 4554
Well 3 0.1249 0.0604  0.2502 5112
Well 4 0.1570  0.0950 -0.0986 6151

All Wells 0.1437 0.0756 0.2943 19978
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Best MLP Model

Based on the evaluation results, we conclude that the best-performing MLP architecture
for predicting water saturation (S,,) is the one with 16 neurons in each hidden layer.
Deeper models with more neurons tend to overfit the training data, especially when the
number of informative features is limited or when the target distribution (often skewed
with many values near 1) does not benefit from additional model capacity. The predictive

accuracy of the best MLP model on each test well is illustrated in the following figures:
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Figure 7.21: Prediction performance of the best MLP model for each test well.

The following plot presents the comparison between measured and predicted S,, values

for the entire test dataset, using the best-performing MLP model:
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Figure 7.22: Measured vs Predicted S,, for the test set using the best MLP model

Predicting Water Saturation (S,) is inherently more complex than predicting the
other parameters due to its strong dependence on resistivity-based measurements, which
tools are highly sensitive and often subject to measurement noise or environmental effects,

which can introduce uncertainty into the logs.

7.3.3 XGBoost Results

These results present the performance of the XGBoost model in predicting the target

variable S, across each test well, evaluated using standard metrics:

Table 7.20: Prediction Metrics per Well for XGBoost

Well MAE RMSE R? Samples
Well 1 0.1766  0.0595  0.5890 4141
Well 2 0.1365 0.0710  0.0972 4554
Well 3 0.1396  0.0572  0.2869 5112
Well 4 0.1937  0.0719  0.2021 6122

All Wells 0.1632 0.0653 0.4021 19949

The graphs below illustrate how the model performed when applied to unseen data

from the various test wells:
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Figure 7.23: Prediction performance of the XGBoost model for each test well.

The following plot presents the comparison between measured and predicted S, values
for the entire test dataset, using XGBoost:
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Figure 7.24: Measured vs. Predicted S, for the test set using the XGBoost model

Compared to Linear Regression and MLP, the XGBoost model achieved better performance
in predicting water saturation (.S,). This improvement can be attributed to XGBoost’s

ability to perform both regression and classification-like handling within its gradient

boosting framework.
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Additionally, XGBoost handles imbalanced or skewed data distributions more effectively,
which is particularly relevant for S, where the dataset often contains numerous values
close to 1.

However, despite the improved performance of XGBoost in predicting water saturation
(Sw), the R? score remains relatively low. This suggests that the model is still unable
to fully capture the underlying complexity of S,,, which is heavily influenced by sensitive
and nonlinear resistivity responses. Therefore, there is a need to explore more advanced
approaches, such as Convolutional Neural Networks (CNNs), to enhance the model’s

ability to generalize and achieve more accurate predictions.

7.3.4 CNN Results

In this section, we present the results of the optimized 1D convolutional neural network
(CNN) architecture applied to water saturation (S,) prediction. The CNN model is
composed of stacked 1D convolutional layers with a kernel size of 1 and 32 filters,
followed by batch normalization, global max pooling, and fully connected dense layers
with dropout for regularization.

Specifically, the network input shape is (1, 14), corresponding to 14 features arranged
as a single timestep with multiple channels. This feature set includes the original
logging measurements alongside predicted values of V,; and PHIFE from previously trained
models, simulating a sequential inference workflow.

The model was compiled with the Adam optimizer and trained to minimize the mean
squared error (MSE) loss while monitoring mean absolute error (MAE) as an evaluation
metric. Early stopping and checkpoint callbacks were applied to prevent overfitting, with
a maximum of 150 epochs and a patience of 50 epochs based on validation MAE.

This dynamic pipeline—injecting predicted V., and PHIFE values as inputs for 5,
prediction—reflects a realistic deployment scenario in petrophysical workflows. Strict
separation of training and testing datasets was maintained throughout to avoid data
leakage.

After prediction, the S, values were clipped to the physically meaningful range
[0, 1], leveraging domain knowledge about saturation limits. This clipping step did not
negatively impact overall model performance.

The final feature set for S, prediction thus consisted of:

e Original log measurements: GR, AT10, AT20, AT30, AT60, AT90, DTP, NPHI,
RHOB, URAN, THOR, POTA

e Predicted logs of V; and PHIE from prior models

Evaluation on the test dataset showed robust predictive performance, with R? exceeding
0.81, confirming the effectiveness of this staged hybrid CNN approach.

The following table summarizes the key prediction metrics—Mean Absolute Error
(MAE), Mean Squared Error (MSE), and coefficient of determination (R?)—evaluated
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for each Well as well as for the combined dataset. These metrics provide insight into the

accuracy and reliability of the model’s performance across different wells.

Table 7.21: Prediction Metrics by Well

Well MAE MSE R?

Well 1 0.0400 0.0046 0.9678
Well 2 0.0210 0.0028 0.9638
Well 3 0.0219 0.0027 0.9662
Well 4 0.1386  0.0560 0.3523

All Wells 0.0614 0.0195 0.8177

The following figure illustrates the model’s predictive performance for each individual
well, highlighting variations in accuracy and error metrics across different geological

settings:
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Figure 7.25: Prediction vs. Measured performance of the CNN model for each test well for S,.

The overall distribution of the true and predicted water saturation (S,,) values across
all wells in the test dataset is displayed next. These visualizations provide an intuitive
comparison of the model’s predictive performance, highlighting its ability to capture
the general trends and variability of S,,. While the true values represent the measured
data, the predicted values demonstrate the CNN model’s capacity to approximate these

measurements, validating the model’s practical application potential.
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Figure 7.26: Overall Predicted vs. Actual S,, Values

The results demonstrate strong predictive accuracy for Well 1, Well 2, and Well 3,
with R? values exceeding 0.96 and low MAE and MSE, indicating effective modeling of
petrophysical properties in these wells.

In contrast, Well 4 exhibits a notable decrease in performance, with a much lower
R? of 0.35 and higher error metrics. This drop may be due to more complex geological
variability, such as heterogeneous lithology, changes in fluid saturation, or poorer quality
of logging data. Additionally, Well 4 could contain reservoir zones that differ significantly
from the training set distribution, challenging the model’s generalization capability.

These observations suggest that while the model performs reliably in most wells,
specialized treatment or model adaptation may be necessary to maintain accuracy in

more geologically complex wells like Well 4.

7.3.5 Comparative Study (S,)

It is observed that the progression of model performance in predicting water saturation
(Sw), is more complicated since it depends on indirect factors such as porosity, resistivity,
clay content, and saturation models (like Archie’s equation), which varies significantly

across formations.
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Table 7.22: Metrics for Sy,

Model MAE MSE R?

LR 0.2200 0.0778 0.2741
MLP 0.1437 0.0756 0.2943
XGBoost  0.1632 0.0653 0.4021
CNN 0.0614 0.0195 0.8177

0.8
0.6

~
0.4

0.2

R? for S,

0.81

1 0.27 0.29 |

LR MLP XGBoost CNN
Model

From the table of the summary matrix and the plot, the performance insights are as

follows:

e Linear Regression (LR) performs poorly (R? = 0.2741), confirming the complex,

non-linear nature of water saturation behavior.

e MLP and XGBoost offer small improvements but still suffer from relatively low R?

values, indicating difficulty in capturing the necessary features from the base input

alone.

e CNN using additional features (V,;, PHIE) shows a major improvement (R?* =
0.8177), highlighting the importance of including V,; and PHIE as input features

and the ability of CNNs to handle complex, multi-feature interactions.

This is further illustrated through the following well log sections:
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Figure 7.27: Log comparisons and .S, predictions for selected wells
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7.4 Conclusion

Across all three target variables—clay volume (Vy;), effective porosity (PHIFE), and
water saturation (S, )—the Convolutional Neural Network (CNN) model achieved the
best performance when compared to Linear Regression (LR), Multi-Layer Perceptron
(MLP), and XGBoost. For V,;, CNN yielded the lowest MAE (0.0766) and highest R?
(0.8873), outperforming other models in both accuracy and reliability. In the case of
PHIE, CNN again led with an R? of 0.7651 and the smallest error metrics. Most notably,
for S, prediction—a particularly complex task—CNN significantly outperformed the rest,
achieving an R? of 0.8177 compared to only 0.4021 with XGBoost, despite using additional
features (V; and PHIE) as inputs. This superiority stems from CNN'’s ability to extract
local patterns and spatial dependencies within the well log data, allowing for more nuanced
and robust learning than traditional methods. These findings clearly establish CNN as

the most capable and generalizable model for petrophysical prediction in this study.

Pilot Well Log

The aim of these predictions is to shift from human-based interpretations and calculations,
to a more automised and intelligent approach. Here is the pilot logging of our final work,
that can be implemented in-situ for real-time predictions, where the main well logs (such
as Gamma Ray, Density, and Neutron Porosity) are displayed alongside the predicted
petrophysical parameters: S,,, PHIFE, and V.
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(General Conclusion

The purpose of this study focused on the prediction of petrophysical properties using
machine learning techniques, with the aim of improving the characterization of hydrocarbon
reservoirs despite many challenges faced with the data related to oil and gas exploration.

We performed a detailed exploratory data analysis (EDA) to filter and transform the
raw dataset. Then, we selected, developed, and evaluated several machine learning models
suitable for the problem, including XGBoost and neural networks for predicting effective
porosity PHIE, volume of clay V,;, and water saturation S,,. These models were carefully
assessed using metrics, such as R? and MSE, to select the best performing ones for further
deployment.

However, the best retained model consists of the conventional neural network trained
with a custom Focal Loss function, whose performance achieved R? scores above 0.76,
0.88, and 0.81 for PHIFE, V., and S, prediction respectively, demonstrating an ability
to handle class imbalance and noisy data.

One of the major limitations was the obvious imbalance in the data distribution,
leading to a bias in the model. Despite this imperfection, the richness of logs provided
enough information to adjust the models for producing meaningful predictions.

Future projects related to this research work could include integrating drilling parameters
such as penetration rate and torque, which could further improve the model performance.
Additionally, applying these models to a wider range of wells would help assess generalization,
or exploring advanced machine learning algorithms that allow the integration of physical
concepts to train the model based on strong logical reasoning.

In conclusion, this modest study demonstrates that even with input well log data,
reliable predictions of key petrophysical parameters are achievable with great interest
through careful data preparation and judicious use of machine learning techniques. These
models enable promising real-time predictions during Logging While Drilling (LWD) or
Wireline Logging, likely to revolutionize the characterization of hydrocarbon reservoirs

by providing faithful and valuable information.
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