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Résumé

Cette these présente une approche novatrice pour l'interprétabilité des réseaux de neu-
rones en intégrant les Réseaux de Petri Colorés (RPC) avec les architectures de perceptron
multicouche (PMC), donnant naissance au modele de Réseau de Neurones de Petri Coloré.
Ce modele répond aux enjeux d’explicabilité dans ’apprentissage profond en permettant un
suivi formel et détaillé du flux d’informations lors de la propagation. Cette approche offre
une lecture transparente des contributions des caractéristiques et du processus de décision.

En tirant parti des capacités de vérification formelle des RPC, le modele permet une
analyse rigoureuse sans compromettre les performances prédictives — en particulier dans
des domaines critiques comme la santé. De plus, une analyse mathématique de I'impact des
hyperparametres du réseau de neurones sur la complexité de I'espace d’états met en évidence
I'influence de facteurs tels que la profondeur du réseau ou la taille des mini-lots sur les besoins
en calcul, orientant ainsi vers une conception et une vérification plus efficaces.

Ce travail pose les fondations pour développer des systémes d’apprentissage profond in-
terprétables, efficaces et vérifiables dans les applications critiques.

Mots-clés : Réseaux de Petri Colorés, Réseaux de Neurones, Vérification Formelle, Intelli-
gence Artificielle Explicable (IAX), Vérification de Modeéles




Abstract

This thesis introduces the Colored Petri Neural Network (CPININ), a novel frame-
work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to
enhance the interpretability of neural networks. The CPNN model addresses the challenge
of explainability in deep learning by enabling formal, fine-grained tracking of information
flow during forward propagation. This approach provides transparent insights into feature
contributions and decision-making processes.

By leveraging the formal verification strengths of CPNs, the model supports rigorous anal-
ysis without compromising predictive performance—particularly in critical domains such as
healthcare. Additionally, a mathematical investigation of the neural network hyperparam-
eters effects on state space complexity reveals the influence of factors like layer depth and
mini-batch size on computational requirements, guiding more efficient design and verification.

This work lays the foundation for developing interpretable, efficient, and verifiable deep
learning systems in critical applications.

Keywords: Colored Petri Nets, Neural Networks, Formal Verification, Explainable Artificial
Intelligence (XAI), Model Checking
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General Introduction

Context and Background

In recent decades, Artificial Intelligence (AI) has emerged as a revolutionary field aim-
ing to endow machines with capabilities that mimic human intelligence. These capabilities
include learning, reasoning, decision-making, perception, and natural language understand-
ing [1]. AI’s goal is not just automation but the creation of intelligent systems that can
autonomously adapt to new circumstances.

One of the most transformative subdomains of Al is Machine Learning (ML). Instead
of relying on explicit rules programmed by humans, ML systems learn from data. This
paradigm shift is clearly illustrated in Figure 1, which compares classical programming to
machine learning. In classical programming, a human provides both the input and the rules
(program/algorithm), and the machine produces a result. In contrast, machine learning
systems are fed data and a desired outcome (goal); from these, the machine learns the rules
(model) that map inputs to outputs.

| Classical Programming

\.:\ b Q Progra - f ‘/

Results

Program

Figure 1: The difference between Classical Programming and Machine Learning [2].

This data-driven approach has proven particularly powerful in environments characterized
by uncertainty, noise, or complexity [3] —situations where writing precise rules is infeasible.
However, many ML models, especially traditional ones like decision trees or logistic regression,
still rely on feature engineering and domain knowledge.

To address problems of higher complexity, Deep Learning (DL) has emerged as a powerful
subclass of machine learning [4]. Deep learning algorithms use Artificial Neural Networks
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(ANNs), which are computational models inspired by the human brain’s neural structure.
These networks are composed of layers of nodes (neurons), where each node processes a piece
of the input and passes it forward. In networks with many such hidden layers—so-called deep
neural networks—the model can automatically extract and hierarchically represent features
from raw input data, such as images or audio.

Despite their powerful performance, deep neural networks are often criticized for their
lack of transparency. These models are typically considered ”black boxes,” meaning that
even their creators may not understand precisely how specific decisions are made [5].

This issue has led to two important areas of research:

« Explainable Artificial Intelligence (XAI) — A field aiming to make Al systems
more interpretable and trustworthy. XAI seeks to provide human-understandable jus-
tifications for model predictions [6].

o Formal Verification — A set of mathematical techniques used to prove or disprove
the correctness of a system’s behavior with respect to a formal specification [7].

While traditionally used in hardware and safety-critical software systems, formal verifi-
cation methods are increasingly being adapted for Al systems [7], particularly in high-stakes
applications such as autonomous vehicles and medical diagnostics. The integration of formal
verification with XAI represents a powerful approach, as it combines intuitive explanations
with mathematical certainty—formal methods can verify that explanations accurately repre-
sent model behavior, while explanations can be grounded in mathematically proven properties
rather than heuristic interpretations.

As AT systems continue to evolve and are deployed in mission-critical contexts, the ability
to rigorously verify their correctness and explain their behavior becomes essential. This
research work is positioned at the intersection of these concerns: exploring a new method for
the formal verification of neural networks through Coloured Petri Net modeling.

Problem Statement

This thesis aims to address the following research questions: How can we overcome the
fundamental "black box” problem of deep neural networks by developing a unified framework
that simultaneously provides mathematical transparency, visualization and formal verifica-
tion capabilities ?

Our Approach and Contributions

The contributions of this thesis can be summarized as follows:

e Development of the CPNN Framework: This work introduces the Colored Petri Neural
Network (CPNN) as a novel methodology to enhance the interpretability and trans-
parency of neural networks. The integration of Colored Petri Nets with MLP architec-
tures has provided a formal, visual, and verifiable representation of the training and
evaluation processes of neural networks.
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o Formal Verification of Neural Networks: The application of CPNs’ formal verification
capabilities allows for the capture and analysis of intermediate computational states
during forward propagation. This deepens our understanding of information flow and
decision-making within the network.

o Feature Importance Analysis: the novel approach that we use to calculate feature
importance each iteration is proposed through the use of our CPNN Model’s state space
report. This enables a transparent examination of how individual features influence the
output predictions, improving the explainability of complex deep learning models.

o Mathematical Modeling of Hyperparameter Impact: The impact of hyperparameters on
state space complexity is analyzed mathematically. A predictive model is developed to
help practitioners understand the computational implications of various configurations,
aiding in the optimization of deep learning models for better efficiency and performance.

o Applications in Healthcare: The CPNN framework, with its focus on both interpretabil-
ity and performance, holds significant promise in healthcare applications, where under-
standing Al-driven decisions is crucial. This work paves the way for further research
and implementation of interpretable and verifiable AI models in critical domains like
healthcare.

Structure of the Thesis

Our thesis will be structured around four main parts, each dedicated to a fundamental
aspect of our research and providing an in-depth synthesis of the work carried out. Each
part aims to address our research question and achieve the defined objectives.

First: State of the Art (Chapters 1 & 2)

This part establishes the theoretical foundation and reviews existing work. Chapter
1 examines machine learning fundamentals, neural network architectures, Explainable Al
(XAI), formal verification techniques, and Petri Nets theory. Chapter 2 provides a critical
analysis of existing approaches to modeling neural networks with Petri Nets, reviewing key
contributions and identifying gaps that position our research within the broader context of
interpretable Al.

Second: Methodology and Model Development (Chapter 3)

This core section presents our novel Colored Petri Neural Network (CPNN) model, de-
tailing the architecture formalization, color sets, learning mechanisms, and backpropagation
design that enable interpretability while maintaining performance.

Third: Mathematical Analysis and Complexity Study (Chapter 4)

We provide a rigorous mathematical examination of neural network hyperparameters’
effects on state space complexity, introducing batch-based complexity concepts and deriving
predictive models for computational requirements.
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Fourth: Experimental Validation and Explainability Analysis (Chapter 5)

This section validates our CPNN model through comprehensive experiments, exploring
explainability aspects and providing comparative validation against baselines to demonstrate
interpretability advantages.

18



Chapter 1

Foundational Concepts

Introduction

This chapter introduces the key theoretical concepts that underpin the work presented
in this thesis. It begins with an overview of machine learning, covering its main types—
supervised and unsupervised learning—along with essential evaluation metrics.

Next, we present the fundamentals of deep learning and neural networks, including their
architecture, training process, and activation functions.

We then explore the emerging field of explainable ATl (XAI), highlighting the need for
model transparency and the trade-offs between accuracy and interpretability.

Finally, we introduce formal verification and Petri nets, which provide rigorous tools for
modeling, analyzing, and verifying complex systems.

1.1 Machine Learning

Machine learning is a subset of artificial intelligence that involves building computer mod-
els capable of learning and making independent predictions or decisions based on provided
data [8]. These models continually improve their accuracy through learned data. Arthur
Samuel, who coined the term “machine learning” in 1959, described it as “the ability of
computers to learn without programming new skills directly” [9]. Using available datasets,
machine learning algorithms supported by mathematical models generate predictions or spe-
cific decisions. The main categories of machine learning are supervised and unsupervised
learning [10].

1.1.1 Supervised Learning

Supervised machine learning operates on datasets where both input data and correspond-
ing output data are provided. Once the model learns the relationship between input and
output, it can classify new unknown datasets and make predictions or decisions based on
them [11]. This type of learning is divided into two primary methods: classification and
regression [12].
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Foundational Concepts

In classification, the solutions are typically binary or categorical. For example, an al-
gorithm might classify a photograph as either a cat or a dog, representing a two-class clas-
sification problem. Another example is handwriting recognition, where software matches
handwritten characters (output data) to their corresponding printed counterparts (classes).

Regression, a fundamental type of supervised learning, predicts continuous values using
input data. In healthcare applications, regression can forecast medical costs based on input
data such as drug prices, required medical equipment, and staff expenses. Through training
these models with input and output data, predictions for total treatment costs can be made
for new inputs.

Metrics of evaluation

Machine learning models require robust evaluation frameworks to assess their performance
and guide optimization. The specific metrics used depend largely on the problem type,
with classification and regression tasks employing distinct evaluation approaches. Selecting
appropriate performance metrics enables researchers and practitioners to quantify model
efficacy, compare algorithms, and determine fitness for specific applications [13].

Regression Metrics: Regression metrics evaluate how well a model predicts continuous
numerical values:

+ Mean Squared Error (MSE) calculates the average of squared differences between
predicted and actual values. By squaring errors, it penalizes larger mistakes more
severely.

« Root Mean Squared Error (RMSE) provides the square root of MSE, expressing
the error in the same units as the target variable, making interpretation more intuitive.

e« Mean Absolute Error (MAE) measures the average magnitude of errors with-
out considering their direction. Unlike MSE, it weights all errors linearly rather than
quadratically.

o Mean Absolute Percentage Error (MAPE) expresses accuracy as a percentage of
error, making it scale-independent and useful for comparing predictions across different
scales.

» R-squared (Coefficient of Determination) quantifies the proportion of variance
in the dependent variable explained by the independent variables. Values range from
0 to 1, with higher values indicating better fit.

e Adjusted R-squared modifies standard R-squared by penalizing excessive use of
variables, providing a more accurate measure when comparing models with different
numbers of predictors.
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Classification Metrics: Classification metrics evaluate how well a model categorizes data

into discrete classes:

e Accuracy measures the proportion of correct predictions among all predictions. While
intuitive, it can be misleading with imbalanced datasets where the majority class dom-
inates the metric.

» Precision (positive predictive value) quantifies the proportion of positive identifica-
tions that were actually correct. It answers: “Of all instances predicted as positive,
how many were truly positive?”

» Recall (sensitivity) measures the proportion of actual positives correctly identified. It
addresses: “Of all actual positive instances, how many did the model detect?”

o F1 Score represents the harmonic mean of precision and recall, providing a balance
between the two metrics, particularly useful when class distribution is uneven.

o Area Under the Receiver Operating Characteristic curve (AUROC) evaluates
classification performance across various threshold settings by plotting the true positive
rate against the false positive rate. A higher AUROC indicates better discrimination
capability.

o Confusion Matrix provides a comprehensive view of classification performance by
tabulating predicted classes against actual classes, enabling the calculation of various
metrics and visualization of error patterns.

Actually Actually
Positive (1) | Negative (0)
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Predicted r.uAe é §e
. Positives Positives
Positive (1) (TPs) (FPs)
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Predicted 5 S_e rug
. Negatives Negatives
Negative (0) (FNs) (TNs)

Figure 1.1: Confusion Matrix for Classification Performance Evaluation

1.1.2 Unsupervised Learning

Unsupervised machine learning differs fundamentally from supervised learning in its use
of unannotated data that has not been previously labeled by humans or algorithms. The
model learns from input data without expected values, and the available dataset does not
provide answers to the given task. Instead of labeling or predicting outputs, this algorithm
focuses on grouping data based on their inherent characteristics. The goal is to enable the
machine to detect patterns and group data without a single correct answer [9].

There are two primary types of unsupervised learning approaches:
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e Clustering: This involves grouping data based on their similarities and differences.
For example, animals can be divided into groups based on their visual features deter-
mined using the model [14].

o Association: This method analyzes relationships between data in a dataset. For
instance, the algorithm can pair people buying mattresses for pressure sores with those
ordering products to aid in the healing of pressure sores. This method is commonly
used in marketing strategies [15].
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Figure 1.2: Unsupervised Learning @M ATLAB

1.2 Deep Learning

Deep learning [4] is an advanced form of machine learning that enables computers to
learn from experience and understand the world in terms of a hierarchy of concepts. Because
the computer gathers knowledge from experience, there is no need for a human operator to
formally specify all of the knowledge needed by the computer. The power of deep learning
stems from its fundamental architectural component—mneural networks—which serve as the
computational foundation for these sophisticated learning systems.

Artificial Machine [ Deep

intelligence learning learning

Figure 1.3: Deep Learning, Machine Learning and Al

22



Foundational Concepts

1.3 Neural Networks

Artificial neural networks resemble the human brain in structure and function, comprising
multiple perceptrons (or neurons) that process and transmit information. Understanding
their functioning requires examining how data flows through the network. These networks
form the backbone of deep learning systems, with their layered structure allowing for the
hierarchical concept learning that defines deep learning approaches. While simple neural
networks contain only a few layers of neurons, deep learning utilizes deep neural networks
with many hidden layers, enabling the automatic extraction and representation of increasingly
complex features from raw data.

Neural networks begin with inputting data, such as images, text, or sound. This data
traverses the network, processed through successive layers of perceptrons until reaching the
output. Each layer contains multiple neurons that process the input data.
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Figure 1.4: Basic Structure of a Neural Network [16]

a

1.3.1 Formal Definition of a Feedforward Neural Network

A feedforward neural network can be formally defined as a 6-tuple:
NN = (L,N,C,W, B, A) (1.1)
Where:
1. L=A{Ly,Ly,...,L,} is an ordered set of layers, where:

o Ly is the input layer
o Iy, Ly,...,L, 1 are hidden layers
e L, is the output layer

2. N={N(i)|i € [0,n]} where N(i) represents the set of neurons in layer L;:

e N(i) = {ni(i),n2(i),...,nk(i)} where k is the number of neurons in layer L;
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e |N(i)| denotes the number of neurons in layer L;

3.C C {(my(i — 1), m(0) | i € [Lin],j € [LING — D[,k € [L,|NG)[]} is the set of
connections between neurons:

« Each connection is an ordered pair (n;(i — 1), n4(i)) representing a directed link
from neuron j in layer ¢ — 1 to neuron £ in layer ¢

e In a fully connected feedforward network, C' contains all possible connections
between adjacent layers

4. W :C — R is a weight function that maps each connection to a real-valued weight:

o W(n(i —1),n(i)) = wip(i) € R

o W can alternatively be represented as a set of matrices {W (1), W (2),...,W(n)}
where W (i) € RING=DIXING)]

5. B={B(i) | i € [1,n]} where B(i) is a vector of bias values for layer L;:
e B(i) = {ba(i). i), ... by(i)} where k = [N (i)
. B(i) € RVOI

6. A= {A(:) | i € [1,n]} where A(i) represents the activation function applied to layer
LZ‘I
e A(i):R—=R
o Common examples: ReLLU, Sigmoid, Tanh, etc.
The formal architecture defined as the 6-tuple 1.1 is engaged in two primary computa-
tional processes: forward propagation and backward propagation. These two phases

leverage different elements of the tuple to respectively compute outputs and update the
network’s parameters during training.

1. Forward Propagation. The forward propagation phase computes the output of the
neural network for a given input. It proceeds layer by layer, from the input layer Ly to the
output layer L,,, using the following components:

o L (Layers) and N (Neurons)

« (' (Connections)

W (Weights)
» B (Biases)

o A (Activation Functions)
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The computation at each neuron ng) € N(i), for i € [1,n], is given by:
Ly INaoE , A o
z,?) = Y wj(z) -ag-l_ ) + b§§) and a,(;) = A(Z)(z,(;))
j=1

where:

% i—1 7
o wii = Wni™ )

(i-1)

. . i—1
* a; is the activation of neuron n(Z )

J
. b,(:) is the bias of neuron n,(f)
o AW is the activation function applied at layer L;

This process produces the final output vector at layer L,,, representing the prediction of
the network.

2. Backward Propagation. The backward propagation phase computes gradients of the
loss function with respect to each parameter in the network (weights and biases) and updates
them accordingly. This phase uses the following elements:

o W (Weights) and B (Biases): updated based on the computed gradients.
o A (Activation Functions): their derivatives are needed for gradient computation.

o (' (Connections): defines the dependencies between layers for propagating errors back-
ward.

o L (Layers) and N (Neurons): the layers and neurons guide the reverse computation
order.

For each layer ¢ from n down to 1, the gradients are computed as:

5(1’) _ (W(i+1))T6(i+1) o A/(i)(z(z‘)> (1‘2)
VIVE = qli-D(50)T
vB® = 50

where:
+ 0 is the error signal at layer i
o A’ ig the derivative of the activation function

o denotes the Hadamard (element-wise) product
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The parameters are then updated using gradient descent:

WO —wt —pyw®  BO . BO _pyRBO

where 7 is the learning rate.

Tuple Element | Used in Forward Propagation | Used in Backward Propagation
L Defines flow direction Defines reverse pass
N Neuron activations Gradient propagation
C Connection traversal Dependency tracking
%4 Input weighting Updated via gradients
B Threshold shifting Updated via gradients
A Non-linear transformation Derivative used in backprop

Table 1.1: Tuple component usage in forward and backward propagation

1.3.2 Types of Neural Networks

Neural networks are widely used in image recognition, natural language processing, speech
recognition, and stock price prediction. They come in various types:

Perceptron Networks: [17] The simplest neural networks with an input and output
layer composed of perceptrons. Perceptrons assign a value of one or zero based on the
activation threshold, dividing the set into two.

Layered Networks (Feed Forward): [18] These contain multiple layers of inter-
connected neurons where the outputs of the previous layer neurons serve as the inputs
for the next layer. The neurons of each successive layer always have a +1 input from
the previous layer. These networks enable the classification of non-binary sets and are
used in image, text, and speech recognition.

Recurrent Networks: [19] Neural networks with feedback loops where the output
signals feed back into the input neurons. They can generate sequences of phenomena
and signals until the output stabilizes and are used for sentiment analysis and text
generation.

Convolutional Networks: [20] Also known as braided networks, these are specialized
for processing data with grid-like topology, such as images.

Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) Net-
works: [21, 22| These perform recursive tasks with the output dependent on previous
calculations. They possess network memory, allowing them to remember data states
across different time steps. These networks have longer training times and are ap-
plied in time series analysis (e.g., stock prices), autonomous car trajectory prediction,
text-to-speech conversion, and language translation.
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1.3.3 Training Process

To train perceptrons, weights are adjusted to minimize the difference between the output
and the expected signal. The network also learns through the gradient descent method [23],
adjusting the step lengths in the opposite direction. If the target value at a new point
surpasses the starting point, the steps are reduced until the desired value has been achieved.
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Figure 1.5: Gradient Descent Optimization Process [24]

Backpropagation [23] is another type of machine learning method that calculates the error
for neurons in the last layer and propagates it backwards to the earlier layers.

> Qutput
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layers

Figure 1.6: Backpropagation Process in Neural Networks. Source: GeeksforGeeks [25]

This efficient algorithm has been widely used in research. The trained network can be
tested with new data to assess its performance in recognizing previously unseen information.
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1.3.4 Activation Functions

Activation functions are crucial components of neural networks that introduce non-
linearity into the system, enabling the network to learn complex patterns. They determine
whether a neuron should be activated based on the weighted sum of its inputs. As shown
in Figure 1.7, the most commonly used activation functions each have their own specific
characteristics and applications.

Activation Functions in Neural Networks
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Figure 1.7: Common Activation Functions in Neural Networks

Linear Activation Function The linear activation function, also known as the identity
function, simply passes the input value directly to the output:

f(x) =« (L5)

While simple, this function lacks the ability to learn complex patterns as it does not introduce
non-linearity. It is primarily used in the output layer for regression problems.

Rectified Linear Unit (ReLU) ReLU is one of the most widely used activation functions
due to its computational efficiency:

f(z) = max(0, z) (1.6)

It outputs 0 for negative inputs and the input value itself for positive inputs. ReLU helps
mitigate the vanishing gradient problem but can suffer from “dying ReLLU” where neurons
can become inactive.
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Sigmoid Function The sigmoid or logistic activation function maps input values to a
range between 0 and 1:
1
xTr) =
fla) =
This function is useful for binary classification problems and was historically popular. How-
ever, it suffers from the vanishing gradient problem during backpropagation.

(1.7)

Hyperbolic Tangent (tanh) The tanh function maps input values to a range between -1

and 1:
et — et
fo) = S (1.9
It is similar to the sigmoid but provides stronger gradients and is zero-centered, making it
easier to optimize.

Softmax Function The softmax function is commonly used in the output layer for multi-
class classification problems:
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Figure 1.8: Softmax Function for Multi-class Classification

It converts a vector of real numbers into a probability distribution, with outputs summing
to 1.

Leaky ReLU Leaky ReLLU addresses the dying ReLLU problem by allowing a small gradient
for negative inputs:

f(z) = max(ax,z) where « is a small constant (e.g., 0.01) (1.10)

This prevents neurons from becoming completely inactive.
Exponential Linear Unit (ELU) ELU combines the benefits of ReLLU while addressing

the dying neuron problem:
x if x>0
) = 1.11
/(@) {oz(e:”—l) if x <0 (L11)
It produces negative outputs, allowing for better handling of negative inputs while still pre-

venting the vanishing gradient problem.
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1.4 Explainable AI (XAI)

1.4.1 What’s XAI ?

Explainable Artificial Intelligence (XAI) encompasses methodologies and techniques aimed
at making Al systems more transparent, interpretable, and understandable to human users.
At its core, XATI addresses the “black box” problem in modern machine learning systems (par-
ticularly deep learning models) where the internal decision-making processes remain opaque
despite impressive performance metrics. As Al systems increasingly impact critical domains
like healthcare, finance, and criminal justice, the ability to understand, trust, and validate
their decisions becomes paramount [26].

XAI serves multiple purposes beyond mere technical transparency. It enables domain
experts to verify model reasoning, helps developers debug and improve systems, assists end-
users in building appropriate trust, and supports regulators in ensuring compliance with
emerging Al governance frameworks. As Arrieta et al. (2020) [27] note: “Explainability
becomes a prerequisite for building trust in intelligent systems, but also a way to enhance
the acceptance of Al in society.”

1.4.2 Historical Development of XAI
Origins and Evolution

Explainability in Al dates back to the 1970s and 1980s, when expert systems like MY CIN
used transparent, rule-based logic and could justify their decisions step by step. These early
systems emphasized explanation as a knowledge-sharing process between the system and the
user [28, 29]. However, as machine learning gained traction in the 1990s, the focus shifted
toward performance, sidelining interpretability [30].

Modern Resurgence

Since the resurgence of deep learning around 2012, the field has witnessed rapid ad-
vances driven by increasingly powerful-—but often opaque—models. This opacity has re-
newed concerns about transparency and accountability, particularly in high-stakes domains
like healthcare, finance, and law. In response, the European Union’s General Data Protection
Regulation (GDPR, 2018) introduced the “right to explanation” for individuals affected by
automated decisions [31], sparking ongoing legal and ethical concerns [32]. Around the same
time, DARPA launched its Explainable AT (XAI) program in 2017 to promote the develop-
ment of AT systems whose decisions can be understood and trusted by humans [33]. Today,
XAI stands at the intersection of machine learning, cognitive science, and human-computer
interaction, aiming to produce explanations that are both technically sound and accessible
to end users.
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1.4.3 The Performance-Interpretability Trade-off
Understanding the Dichotomy

A persistent narrative in machine learning suggests an inherent trade-off between model
performance and interpretability. This view holds that more complex models (like deep
neural networks) achieve higher accuracy at the cost of reduced transparency, while simpler
models (like decision trees) offer clarity but potentially sacrifice predictive power [34].

This dichotomy stems from fundamental differences in model architecture. Simple models
like linear regression or decision trees make predictions through explicitly defined, human-
readable structures. In contrast, deep learning models distribute knowledge across thousands
or millions of parameters, creating distributed representations that resist straightforward
interpretation.

However, recent research challenges the universality of this trade-off. Rudin (2019) [34]
argues that in many cases, the performance gap between interpretable models and black-
box systems is smaller than commonly assumed when interpretable models are properly
optimized.Chen et al. (2022) [35] demonstrates that for structured data problems, carefully
designed interpretable models can sometimes match or even exceed the performance of opaque
alternatives.

The empirical reality appears more nuanced than a simple inverse relationship between
performance and interpretability. Rather, the trade-off varies considerably across problem
domains, data types, and specific tasks—suggesting opportunities for domain-specific opti-
mization that balances both objectives.
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Figure 1.9: The traditional view of the performance-interpretability trade-off in machine
learning models - Source : DAPRA XAI Program [36]

Application-Specific Considerations

The importance of explainability versus raw performance varies dramatically across appli-
cation contexts. Medical diagnosis systems, financial credit scoring algorithms, and judicial
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risk assessment tools operate in domains where trust, accountability, and fairness considera-
tions may outweigh marginal performance improvements [37].

In these high-stakes domains, explainability serves multiple functions beyond user trust.
It enables detection of problematic patterns such as unwanted bias, facilitates regulatory
compliance, and supports effective human-Al collaboration. Conversely, applications like
image recognition for consumer photo organization or recommendation systems for enter-
tainment may prioritize performance over detailed explanations. Here, users may accept
limited explainability if the system delivers superior results [30].

This application-dependent perspective suggests moving beyond the binary question of
“interpretable or accurate?” toward a more nuanced approach asking “what type and degree
of explainability is necessary for this specific context?” This framing acknowledges that
appropriate levels of transparency depend on the stakes involved, regulatory requirements,
user needs, and operational constraints.

1.4.4 Main Approaches in Explainable Al

XAI methods can broadly be categorized into two families:

1. Model Transparency (Intrinsic Explainability)

Transparency-focused approaches aim to build models that are interpretable by design,
rather than explaining them after training. These models are often simpler and easier to
inspect directly.

e Decision Trees: Use a hierarchy of if-then rules, which can be visualized and easily
understood by humans [34].

o Linear and Logistic Regression: Offer transparency through their coefficients,
which directly quantify the influence of each input feature on the output [38].

» Prototype-based Models (e.g., k-NN): Classify instances by comparing them with
similar examples from the training set, aligning with human reasoning based on analo-
gies [39].

These models are valuable when interpretability is prioritized over raw performance, es-
pecially in domains requiring human oversight and accountability.
2. Post-hoc Explanations (Black-box Explainability)

Post-hoc methods aim to interpret complex, black-box models, such as deep neural
networks, after they have been trained. They do not modify the underlying model architec-
ture but provide insights into its behavior.
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a) Feature Attribution Methods These techniques explain predictions by assigning
importance scores to input features:

« SHAP (SHapley Additive exPlanations): Uses game theory to fairly distribute
the model output among the input features [40].

« LIME (Local Interpretable Model-agnostic Explanations): Approximates the
model locally using a simple, interpretable surrogate model to explain individual pre-
dictions [41].

» Layer-wise Relevance Propagation (LRP): Decomposes the neural network’s out-
put by redistributing the prediction score layer by layer, assigning relevance scores to
each input feature based on its contribution. LRP ensures relevance conservation,
meaning that the sum of scores is preserved across layers [42].
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Figure 1.10: SHAP (SHapley Additive exPlanations) method

b) Gradient-based Visual Explanations Primarily used for image data:

o Grad-CAM: Produces class-specific heatmaps by leveraging the gradients of the out-
put with respect to intermediate feature maps, showing which parts of the input image
influenced the decision [43].

c) Counterfactual Explanations Focus on "what-if” scenarios:

o Counterfactual Examples: Identify minimal changes to input features that would
alter the model’s prediction, helping users understand model behavior in actionable
terms [44].

d) Example-based Explanations These rely on influential training examples:

o Help explain model predictions through comparisons to similar past cases, leveraging
cognitive processes based on analogical reasoning [45].
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Why Choose LRP in This Thesis ?

Among the various post-hoc explanation techniques, Layer-wise Relevance Propaga-
tion (LRP) was chosen as the most appropriate for this thesis for several reasons:

o Compatibility with Neural Architectures: LRP is specifically designed for neural
networks, making it well-suited for analyzing the behavior of the multi-layer perceptron
used in the Colored Petri Neural Network (CPNN) model.

o Fine-Grained Interpretability: Unlike global methods such as SHAP or LIME that
rely on approximation, LRP provides a detailed, layer-by-layer explanation that is
closely tied to the internal structure of the network.

« Relevance Conservation: The conservation principle in LRP ensures that the total
relevance is preserved across layers, enhancing the reliability and trustworthiness of the
explanation—a crucial requirement in domains like healthcare.

o Integration with Formal Methods: The structured relevance scores produced by
LRP can be embedded within Colored Petri Net reachable states, allowing the tracing
of explanations to be aligned with formal verification workflows.

Thus, LRP was not only technically compatible but also conceptually aligned with the
thesis’s goal of combining interpretability with formal verification. It serves as an effective
bridge between black-box neural computation and transparent, verifiable explanations.
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1.5 Formal Verification

In the realm of critical systems, where failure can lead to severe consequences, the need
for rigorous guarantees about system behavior has led to the adoption of formal verification
techniques. Unlike traditional testing, which samples a system’s behavior, formal verification
aims to exhaustively prove the correctness of a system with respect to a formal specification.

1.5.1 Definition

Formal Methods constitute a collection of mathematically rigorous techniques and tools
employed for the specification (Defining what a system is supposed to do), design (Creating a
formal model of the system), and verification (Ensuring that a system meets its specifications)
of software and hardware systems. These methods are grounded in formal logic, set theory,
and discrete mathematics to provide precision and unambiguous representation of system
behaviors [46]. Unlike conventional testing approaches that can only demonstrate the pres-
ence of errors, formal methods aim to establish correctness guarantees through mathematical
proof.

Formal Verification specifically refers to the process of using mathematically-based tech-
niques to confirm that a system meets its formal specification under all possible scenarios
within the defined model. The objective is to systematically establish that an implementa-
tion adheres to its intended specification through rigorous mathematical analysis rather than
empirical testing [47]. This approach provides stronger assurances about system correctness,
particularly for safety-critical applications where failures could have severe consequences.

1.5.2 Overview of Existing Techniques

Formal verification encompasses several complementary approaches, each with distinct
strengths and application domains:

e Theorem Proving involves constructing mathematical proofs of system correctness
using logical inference rules and axioms. Modern theorem provers like Coq, Isabelle/HOL,
(48] and PVS provide interactive environments where human guidance directs the proof
development while the system ensures logical consistency. This approach offers excep-
tional expressive power but often requires significant expertise and manual effort [49].

e Model Checking automates the verification process by exhaustively exploring all pos-
sible states of a finite-state representation of the system. The technique algorithmically
determines whether specified properties hold across the entire state space, providing
counterexamples when violations are detected. This automation makes model checking
particularly accessible for industrial applications [50]. Petri Nets, and especially Col-
ored Petri Nets (CPNs), are widely used as modeling formalisms in model checking due
to their expressiveness in capturing concurrent, distributed, and data-dependent behav-
iors. They enable a structured representation of system states and transitions, making
them particularly suited for verifying neural network behavior, protocol correctness,
and resource allocation properties.
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o Abstract Interpretation employs sound approximations of program semantics to
verify properties without exploring the complete concrete state space. By mapping
concrete states to abstract domains, this technique can verify invariant properties even
for infinite-state systems, though with potential loss of precision. The approach has
proven effective for detecting runtime errors in large-scale software [51].

« Symbolic Execution [52] systematically explores program paths by representing in-
puts symbolically rather than with concrete values. This technique enables reasoning
about multiple execution paths simultaneously and has shown success in detecting
subtle software errors and security vulnerabilities.

While each approach has distinct characteristics, industrial adoption has particularly
embraced model checking due to its automation capabilities and pragmatic balance between
expressiveness and computational feasibility.

Formal Method

Description

Key Strengths

Common Applica-
tions

Theorem Proving

Constructs math-
ematical proofs to
verify system correct-
ness.

o High  expressive-
ness

o Guarantees cor-
rectness with
rigorous proofs

o Safety-critical sys-
tems (e.g., avia-
tion, automotive)

o Cryptographic pro-
tocols

Model Checking

Exhaustively explores
system states to check
if properties hold.

o Automation

o Handles large state
spaces efficiently

o Provides coun-
terexamples

e Hardware verifica-
tion

¢ Protocol validation
(e.g., network pro-
tocols)

Abstract Interpre-
tation

Uses approximations
to verify properties
without complete
state exploration.

o Handles infinite
state spaces

e Detects runtime er-
rors

o Static analysis of
software

» Verification of large
systems

Symbolic  Execu-
tion

Explores program
paths symbolically
to detect errors and
vulnerabilities.

o Can explore multi-
ple paths simulta-
neously

o Detects subtle
software errors and
vulnerabilities

e Software security
» Bug finding in com-
plex systems

Table 1.2: Comparison of Formal Methods
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1.6 Petri Nets

Petri nets represent a powerful mathematical and graphical modeling formalism for de-
scribing and analyzing concurrent, asynchronous, distributed, parallel, nondeterministic, and
stochastic systems. Developed by Carl Adam Petri in his 1962 dissertation [53] , these nets
have evolved into a comprehensive framework with extensive theoretical foundations and
practical applications across diverse domains .

The distinctive feature of Petri nets lies in their dual nature—combining graphical rep-
resentation with formal mathematical semantics [54]. This duality facilitates both intuitive
understanding and rigorous analysis, making them accessible to practitioners while ensuring
mathematical soundness for theoretical investigation.

1.6.1 Basic Structure
A Petri net is formally defined as a tuple PN = (P, T, F, W, M) [55] where:

o« P ={p1, p2, ---, Pm} is a finite set of places

o T = {ty, tg, ..., t,} is a finite set of transitions

FC (P xT)U(T x P) is the flow relation representing arcs
« W: F — N, is the weight function assigning positive integers to arcs
e My: P — N is the initial marking (initial distribution of tokens)

The sets P and T are disjoint (P N T = ()), representing the distinction between states
(places) and events (transitions).

L1 t1

[

t2 t2

Figure 1.11: Tllustration of basic Petri nets: (left) a sequential firing pattern; (right) a loop
with token consumption and production

Graphically, places are depicted as circles, transitions as rectangles or bars, and the flow

relation as directed arcs connecting them. Tokens, represented as dots within places, indicate
the current state of the system [56].
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1.6.2 Dynamic Behavior

The execution semantics of Petri nets are governed by the firing rule, which defines how
transitions change the system state:

A transition t is enabled when each input place p contains at least W(p,t) tokens.

o An enabled transition may fire, consuming W(p,t) tokens from each input place p.

o When a transition fires, it produces W(t,p) tokens in each output place p.

This firing mechanism creates a state space of possible markings (distributions of tokens)
reachable from the initial marking. The nondeterministic nature of transition firing—where
any enabled transition may fire at any time—captures the essence of concurrent behavior,
where the exact ordering of events may vary across different executions [57].

1.6.3 Mathematical Representation

Petri net dynamics can be expressed mathematically using the state equation:

M =M+C-u (1.12)

Where:

M is the current marking (represented as an mx1, m = |P|, vector)
M’ is the resulting marking after firing
C is the incidence matrix (an mxn, n = |T|, matrix) where C[i,j] = W(t;,p;) - W(p:,t;)

u is the firing vector (an nx1 vector) indicating which transitions fire

This algebraic representation facilitates analytical techniques for studying Petri net prop-
erties, particularly for structural analysis methods that examine the incidence matrix inde-
pendent of specific markings.

1.6.4 Modeling Power

Petri nets offer a rich set of modeling capabilities that make them suitable for representing
complex dynamic systems, particularly those involving concurrency, synchronization, and
resource sharing [55], the expressive power of Petri nets lies in their ability to capture a
variety of behavioral patterns observed in real-world systems:

Sequential Execution: A transition can only fire after another, imposing precedence
constraints typical in operation scheduling and modeling causal relationships between
activities.

Conflict: Multiple simultaneously enabled transitions where firing one disables the
others. This situation represents choices between alternatives, resolvable non-deterministically
or probabilistically.
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e Concurrency: Independent transitions can activate in parallel, representing processes
executing simultaneously without interference, an essential characteristic of distributed
systems.

e Synchronization: A transition requiring tokens in all its input places models resource
or process synchronization, capturing rendezvous points between parallel activities.

o Mutual Exclusion: Structure representing processes that cannot execute simultane-
ously due to shared resources, such as a robot serving multiple machines.

o Priorities: Implemented via inhibitor arcs, allowing precedence relationships between
transitions, essential for modeling systems with priority orders.

P
m t b Ps
H 4 t

(a) Sequential (b) Conflict
P t
P
( ) : 4
P2
p2 t
(c) Concurrent (d) Synchromzation
t t b
1 3 o
4]
P i
t ty P 5]
(&) Mutual exclusive () Priority

Figure 1.12: Representing complex dynamic systems with Petri Nets

1.6.5 Behavioral Properties

Petri nets exhibit several important behavioral properties [55] that characterize system
dynamics:

« Reachability: A marking M’ is reachable from M if there exists a sequence of transition
firings that transforms M into M’ The reachability problem—determining whether a
specific marking is reachable—is central to many verification questions.
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Boundedness: A place is k-bounded if the number of tokens it contains never exceeds
k for any reachable marking. A Petri net is bounded if all its places are bounded,
indicating finite state space.

Liveness: A transition is live if, from any reachable marking, it can eventually be-
come enabled through some firing sequence. Different levels of liveness characterize the
potential for deadlock-free operation.

Deadlock-freedom: A marking is deadlocked if no transition is enabled. Deadlock-
freedom ensures the system can always progress from any reachable state.

Reversibility: A Petri net is reversible if the initial marking is reachable from any
reachable marking, indicating the system can always return to its starting state [58].

1.6.6 Analysis Methods

The analysis of Petri nets encompasses several complementary approaches:

Reachability Graph Analysis: Constructing the full state space by generating all
reachable markings and transitions between them. While comprehensive, this approach
suffers from state explosion for complex systems.

Simulation: Executing the Petri net model through random or guided firing sequences
to explore system behavior and detect potential issues.

Model Checking: Verifying whether specific temporal logic properties hold across all
reachable states, often using specialized algorithms for Petri net state spaces.

Place and Transition Invariants: Invariant analysis provides powerful structural
insights into Petri net behavior, it can establish boundedness, detect structural dead-
locks, and identify subsystems with independent behavior, often without generating
the complete state space [56]:

— Place Invariants (P-invariants): Vectors x that satisfy x* - C = 0, representing
weighted sets of places whose token sum remains constant regardless of transition
firings. These invariants identify conservation laws in the system.

— Transition Invariants (T-invariants): Vectors y that satisfy C - y = 0, rep-
resenting transition firing sequences that return the net to its original marking.
These invariants identify potential cycles or steady-state behaviors.

1.6.7 Extensions and Variants
Colored Petri Nets (CPNs)

Colored Petri Nets (CPNs) extend the basic model by attaching data values (”colors”)
to tokens and defining transition guard conditions and arc expressions. This extension sig-
nificantly enhances modeling power by incorporating data manipulation while maintaining
the fundamental concurrency semantics. CPNs facilitate compact representation of complex
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systems by distinguishing between different token types and specifying transformation rules
[59].

Timed Petri Nets (TPNs)

Timed Petri Nets [60] are an extension of classical Petri nets that incorporate the concept
of time into transitions. In a standard Petri net, a transition fires as soon as it’s enabled.
But in a TPN, each transition is associated with a time delay, meaning it only fires after a
specified amount of time has passed since it became enabled.

This addition is particularly useful for modeling systems where timing matters, such
as real-time controllers, hardware circuits, or neural networks where computations may be
layered or time-dependent.

Hierarchical Petri Nets (HPNs)

Hierarchical Petri Nets [61] are designed to handle the complexity of large systems by
supporting abstraction and modularity. They allow you to group a subset of places and
transitions into a submodel (or ”subnet”), which can be collapsed into a single node in a
higher-level net. This way, large systems can be modeled in a top-down fashion, making
them easier to manage, visualize, and analyze.

Conclusion
This chapter outlined the essential concepts of machine learning, neural networks, ex-

plainable AI, formal verification, and Petri nets. These foundations provide the necessary
background for the methods and model developed in the following chapters.
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Chapter 2

Existing Approaches to Modeling
Neural Networks with Petri Nets

Introduction

Neural networks have proven effective in modeling complex systems, including those found
in critical industries such as drilling operations. However, their black-box nature poses a chal-
lenge for applications that demand transparency, interpretability, and formal verification.
Colored Petri Nets (CPNs) offer a promising formalism for modeling the structure and be-
havior of neural networks, enabling both simulation and verification. This chapter presents
and analyzes three major papers that propose methods for modeling neural networks us-
ing Colored Petri Net formalisms, with varying objectives and outcomes. Each method is
reviewed in terms of its methodology, contributions, strengths, and weaknesses.

2.1 Key Papers and Their Contributions

2.1.1 Paper 1: Simulating Artificial Neural Network Using Hier-
archical Coloured Petri Nets (Jitmit & Vatanawood, 2021)

Jitmit and Vatanawood propose a systematic methodology [62] to convert a trained ar-
tificial neural network (ANN) into a modular, reusable model using Hierarchical Coloured
Petri Nets (HCPNs). Their primary goal is to enhance the formal verification, modularity,
and reusability of ANNs within larger symbolic systems, leveraging the structure and seman-
tics of Petri Nets to encapsulate neural behavior in a formally analyzable framework. This
paper [62]contributes to the growing intersection between artificial intelligence and formal
modeling, offering a visual and structural alternative to purely numerical representations.

Methodology and Core Contributions

At the core of their work lies the definition of a formal 7-tuple ANN model that includes
inputs, hidden and output neurons, arcs, weights, biases, and activation functions. This
ANN is mapped onto a hierarchical CPN through a set of four conversion rules:
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Rule 1: Maps the ANN into a Level 0 HCPN module with input and output ports.

Rule 2 & 3: Converts hidden and output neurons into Level 1 modules, with places
representing intermediary states (buffers).

Rule 4: Decomposes each neuron into Level 2 submodules with transitions modeling (1)
weighted summation and bias addition, and (2) the application of an activation function
(specifically, a step function with a 0 threshold).

Each neuron is implemented as a black-box module, which encapsulates its functionality
while exposing input and output interfaces through ports and sockets. The modularity of
the approach allows for clean composition of neurons into layers and networks. A case study
demonstrates the successful conversion and simulation of a neural network solving the classic
XOR problem, with correct propagation and activation behavior observed in CPN Tools.

Strengths

« Systematic Conversion Framework by offering clearly defined transformation rules,
the authors ensure that any feedforward ANN can, in principle, be systematically
converted into an HCPN structure.

o Clean Modularization through the hierarchical decomposition of neurons supports
reusability and clarity—crucial for scaling or integrating within larger symbolic systems
and it facilitates simulation and verification in CPN Tools.

o Demonstrated correctness through a working XOR example.

Weaknesses and Critical Reflection

e No Support for Learning: The model is entirely static. It assumes that training has
already been performed externally. There is no modeling of weight adaptation, learning
dynamics, or error-driven updates—key elements in any realistic neural model. There
is no discussion of performance metrics, error margins, or robustness of the CPN-
based model when compared to its ANN counterpart. This sharply limits its utility to
educational or symbolic representation contexts.

o Minimal Interpretability Beyond Structure: Although the HCPN representation
clarifies the flow of computation, it offers no embedded mechanisms for explanation or
interpretation of decisions beyond simply visualizing the network’s structure.

o Scalability Not Addressed: While modular, the model is only demonstrated on the
XOR problem—arguably the simplest non-linearly separable task. The computational
and visual complexity of manually constructing and simulating deeper networks with
real-world data remains unaddressed.

« No Integration with Real Datasets or Pipelines: All ANN parameters (weights,
biases) must be inserted manually or via a pre-defined XML schema. There is no sup-
port for importing model parameters directly from common ML libraries (e.g., PyTorch,
TensorFlow), nor any tooling for automatic conversion.
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2.1.2 Paper 2: Coloured Petri Nets Modeling Multilayer Percep-
tron Neural Networks (Oliveira et al., 2023)

In this paper [63] , Oliveira et al. present a novel method for modeling multilayer per-
ceptron (MLP) neural networks using Coloured Petri Nets (CPNs), with a clear focus on
improving interpretability and transparency for critical applications—most notably in the
healthcare sector. Unlike many existing works that treat neural networks as black boxes,
this approach introduces a formal and visual methodology that allows for tracing the prop-
agation of input influences through the layers of an MLP. The model notably stops short
of implementing learning or training dynamics, prioritizing instead the representation and
interpretability of already-trained models.

Methodology and Technical Contributions

The authors adopt a hierarchical CPN structure, where each neuron is implemented as a
modular submodel using substitution transitions. Inputs and weights are encoded as struc-
tured color sets, and neural operations (such as weighted sums) are defined using recursive ML
functions. The principal innovation of the work [63] is the introduction of a relevance matrix,
a dynamic data structure that tracks the influence of each input neuron on each subsequent
neuron in the network across layers. This matrix is updated during forward propagation to
reflect the cumulative weight impact of inputs, allowing developers to visualize and quantify
how each input contributes to final outputs.

In practical terms, the model is validated using a COVID-19 test prioritization dataset
from Brazil. An MLP is trained using scikit-learn, and its structure (weights and biases) is
manually transposed into the CPN model. The outputs of both models are then compared,
demonstrating a high degree of alignment, thus confirming the functional equivalence of the
CPN-based representation.

Strengths

This work stands out for its concrete and original attempt to bridge the gap between
symbolic modeling and neural network behavior representation. Key strengths include:

o Interpretability through Relevance Tracing: The use of a relevance matrix to
visualize and propagate input influence provides a compelling mechanism for under-
standing the internal decision-making of an MLP. This can serve as a valuable tool for
transparency in high-stakes decision systems, aligning with principles of explainable Al
(XAI).

o Hierarchical and Modular Structure: By modeling each neuron and layer hier-
archically, the authors ensure extensibility and potential reusability across different
network architectures.

« Validation via Output Comparison: The model is thoroughly validated by compar-
ing its predictions against those of a conventional scikit-learn implementation, lending
confidence in its correctness.

44



Existing Approaches to Modeling Neural Networks with Petri Nets

e Domain Applicability: The healthcare use case illustrates the model’s practical
relevance, especially where interpretability and formal verification are vital.

Limitations and Critical Analysis

o Lack of Learning or Adaptation: The model does not support training or weight
updates. All weights and biases must be imported from an external system, severely
limiting the model’s ability to adapt or improve. This omission means the model cannot
simulate or analyze learning dynamics—a key limitation in contexts requiring full-cycle
neural modeling.

o Manual Parameter Transfer: The process of exporting trained weights from scikit-
learn and inputting them manually into the CPN model is both error-prone and un-
scalable. Although the authors suggest future work involving automated XMIL-based
CPN generation, no implementation or prototype of this functionality is yet presented.

o Scalability Concerns: While the model is conceptually extensible to larger architec-
tures, the practical visual and computational complexity of tracking relevance matrices
across many layers and neurons could become prohibitive. The model shown includes
only three hidden layers, each with three neurons—minimal by modern deep learning
standards.

2.1.3 Paper 3: A Novel Fully Adaptive Neural Network Modeling
and Implementation Using Colored Petri Nets (Albuquerque
et al., 2023)

In their recent contribution, Albuquerque et al. [64] introduce HTCPN-MLP, a Hier-
archical Timed Colored Petri Net (HTCPN) model of a multilayer perceptron that aims
to replicate the complete learning dynamics of a neural network, including weight updates
via the backpropagation algorithm. This work represents a notable milestone in the for-
mal modeling of neural networks using high-level Petri nets, bridging discrete event systems
with adaptive learning paradigms. By leveraging the expressiveness of HTCPNs, the authors
manage to encapsulate all essential learning phases—data ingestion, forward propagation,
backpropagation, and validation/testing—within modular, visually interpretable subnets.

Methodological Innovations

The model [64] is built bottom-up, starting from a CPN-based implementation of the
McCulloch-Pitts neuron, which is then extended to a perceptron layer with error-driven
learning. These components serve as the foundation for the final HTCPN-MLP model that
incorporates a full feedforward and backward training cycle using a tanh activation function.

Notably, time constraints are used to emulate epochs in training, and modular subnets
are designed for training, validation, and testing. The authors implement all computations—
activations, gradients, and weight updates—using Standard ML (SML) functions inside the
CPN Tools framework, showcasing the technical feasibility of full-fledged neural training in
a symbolic and formal model.
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Contributions and Strengths

The most significant contribution of this work lies in its completeness: it is arguably the
first attempt to implement a fully adaptive, trainable MLP using Colored Petri Nets, rather
than merely illustrating structure or flow. The use of time-annotated tokens allows model-
ing sequential processes like epochs, and the modularity of their HTCPN design allows for
reuse and potential scaling. The validation on six benchmark datasets, including Iris, Wine,
Cardiotocography, and Seismic-bumps, demonstrates the model’s applicability to real-world,
diverse tasks, and its performance is shown to be on par with a standard MLP implemented
in MATLAB.

Other merits include:

o A rigorous and layered model construction, from single neuron to full MLP.
o Explicit coding of neural dynamics using Standard ML functions.

e Support for both classification and regression tasks.

Limitations and Critical Evaluation

o Scalability: While the authors claim modularity and generality, their model is visually
and computationally heavy, even for relatively small datasets. Scaling it to deeper
architectures or real-time applications would likely be impractical without substantial
abstraction or automation layers.

e Limited Architecture: The network modeled contains only one hidden layer, which,
although pedagogically convenient, is not sufficient for more complex real-world prob-
lems requiring deep learning. A growing network is mentioned as future work but not
yet realized.

o Genericity vs. Usability: While the model is declared "general” and capable of
handling arbitrary datasets, in practice, each change in architecture or data format
still requires manual intervention. Thus, full generality remains more theoretical than
applied.

Conclusion

These three approaches illustrate the evolving capacity of Colored Petri Nets to model,
simulate, and verify neural network architectures. While the first method offers modularity
and reuse for already-trained networks, the second enhances interpretability and visualiza-
tion. The third approach stands out for incorporating full learning dynamics within a formal
framework. Together, they provide a foundation for future work, including our aim to develop
a formal, interpretable, and adaptive modeling.
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Method

Strengths

Weaknesses

Paper 1: Simulating Artificial
Neural Network Using Hierar-
chical Coloured Petri Nets (Jit-
mit & Vatanawood, 2021)

¢ Clear modularization for reuse.

o Provides a systematic conversion
framework.

e Demonstrated with XOR case
study.

o No support for learning; static
model.

e Minimal interpretability beyond
structure.

o Scalability issues with larger net-
works.

o No integration with real datasets.

Paper 2: Coloured Petri Nets
Modeling Multilayer Percep-
tron Neural Networks (Oliveira
et al., 2023)

o Relevance tracing improves inter-
pretability.

e Hierarchical and modular struc-
ture.

e Validated with a real dataset
(COVID-19).

o No support for training or weight
updates.

o Manual parameter transfer is
error-prone.

o Scalability issues with larger ar-
chitectures.

e No support for full-cycle neural
modeling.

Paper 3: A Novel Fully Adap-
tive Neural Network Modeling
and Implementation Using Col-
ored Petri Nets (Albuquerque
et al., 2023)

o Complete and adaptive MLP
modeling.

o Validated with multiple bench-
mark datasets.

o Support for both classification
and regression.

o High computational cost and
scalability issues.

e Model only includes one hidden
layer.

o Lack of formal verification for
learning correctness.

e No explicit explainability tech-
niques.

Our Proposal: CPNN for Neu-
ral Networks with Petri Nets

o Full learning cycle with back-
propagation.

o Formal and visual representation.

o Integrates explainability with for-
mal methods.

o Scalable with more hidden layers.

o Computational complexity in
larger networks.

e Lack of automatic model param-
eter import.

e Requires further validation with
other types of NN like CNN,
RNN, etc.

Table 2.1: Comparison of Existing Approaches to Modeling Neural Networks with Petri Nets
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Chapter 3

A New Approach of Modeling Neural
Network Using Colored Petri Nets

Introduction

In this chapter, we present our approach to modeling the training and evaluation of a
feedforward neural network using Colored Petri Nets (CPNs), implemented in CPN Tools.
This model provides a formal, visual, and verifiable representation of the learning process, of-
fering transparency into every step, from input processing to weight updates and performance
evaluation.

The integration of neural networks with Colored Petri Nets offers several advantages:

o Formal representation of complex neural network architectures.
o Clear visualization of data flow and computational processes.

Ability to verify structural properties and detect potential issues.

o Mathematical foundation for analyzing network behavior.

Unified framework for representing both structure and functionality.

However, This work establishes the foundation for our ultimate goal: explaining neural net-
work behavior through model checking and features importance tracking within the CPN
framework.

3.1 Neural Network Architecture

We modeled a three-layer feedforward neural network with the following structure:
« Input Layer (Lj): 3 binary features (0 or 1).
« Hidden Layer 1 (L;): 2 neurons with ReLU activation.

« Hidden Layer 2 (Ly): 2 neurons with ReLU activation.
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o Output Layer (L3): 1 neuron with Sigmoid activation for binary classification.

Output Layer
(Ls)
Hidden Hidden
Input Layer  Layer 1 Layer 2

(Lo) (L1) (L2)

Figure 3.1: The Neural Network Architecture

Each layer is formally modeled with tokens representing activations, weights, and biases.
Transitions represent the functional transformations (e.g., weighted sum, activation, error
computation), and arcs implement the data dependencies and flow. This modular architec-
ture is visualized in Figure 3.1. To support clarity and traceability, Table 3.1 provides a
description of the role and function of each place and transition in the model. This struc-
tural mapping is essential for understanding how data and computations propagate across
the network during both forward and backward passes.
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Place/Transition | Colorset | Description Connected To | Role
Data (P) Dataset Contains the full dataset with IDs and | [Load] Forward
features
Load (T) UNIT Triggers splitting dataset into batches | [inputs, AQ, | Control
ControlUpdate,
NBepoch]
Inputs (P) Inputs Input data features [Suml] Forward
A0 (P) Inputs Stores batch input samples [Updatelst] Forward
WBI1 (P) WB Weight matrix for Layer 1 [Suml, Up- | Forward
datelst]
Suml (T) - Computes weighted sum for Layer 1 [H1] Forward
H1 (P) Inputs Stores pre-activations for Layer 1 [Actvl] Forward
Actvl (T) - Applies Activation Function to Layer 1 | [h1] Forward
h1 (P) Inputs Activated outputs of Layer 1 [Sum?2] Forward
WB2 (P) WB Weight matrix for Layer 2 [Sum?2, Up- | Forward
date2nd]
Sum?2 (T) - Computes weighted sum for Layer 2 [H2] Forward
H2 (P) Inputs Pre-activations of Layer 2 [Actv2] Forward
Actv2 (T) — Applies Activation Function to Layer 2 | [h2] Forward
h2 (P) Inputs Activated outputs of Layer 2 [Sum3| Forward
WB3 (P) WB Weight matrix for Output Layer [Sum3, Up- | Forward
date3rd]
Sum3 (T) - Computes weighted sum and applies | [H3] Forward
sigmoid
H3 (P) Outputs Output predictions [Actv3] Forward
Actv3 (T) - Applies sigmoid [Output) Forward
Output (P) Outputs Final predictions [LossFun] Forward
True Labels (P) Labels Ground truth labels [LossFun, Error] | Backward
LossFun (T) - Computes loss from predictions [Acc, Error] Backward
Acc (P) REAL Tracks accuracy on current batch I Forward
Error (P) VectReal | Prediction error (delta3) [Update3rd] Backward
Delta2 (T) - Error propagated to Layer 2 [Delta2] Backward
Delta2 (P) Matrix Error propagated to Layer 2 [Update2nd] Backward
Deltal (T) - Error propagated to Layer 1 [Deltal] Backward
Deltal (P) Matrix Error propagated to Layer 1 [Updatelst] Backward
W2Delta (P) Matrix Weighted delta from Output to L2 [Delta2] Backward
W1Delta (P) Matrix Weighted delta from L2 to L1 [Deltal] Backward
A2 (P) Matrix Activations of Layer 2 [Delta2] Backward
Al (P) Matrix Activations of Layer 1 [Deltal] Backward
Actv’2 (P) Matrix Activation’s derivations of Layer 2 [Update3rd] Backward
Actv’'l (P) Matrix Activation’s derivations of Layer 1 [Update2nd] Backward
Update3rd (T) - Updates WB3 weights [WB3] Backward
Update2nd (T) - Updates WB2 weights [WB2] Backward
Updatelst (T) - Updates WB1 weights [WB1] Backward
ControlBatch (P) | INTEGER | Manages minibatch updates [Suml] Control
NBEpoch (P) INTEGER | Stores the number of epochs [Load] Control
CountEpoch (P) INTEGER | Tracks number of completed epochs [LossFun,  Up- | Control
date3rd]
ControlUpdate (P) | UNIT Controls new epoch initiation [Load] Control

Table 3.1: Description of Places and Transitions in the CPN Model

Note: See Appendix B for complete color set definitions used in the model.
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This three-layer structure lays the foundation for a generalized, modular architecture
that can be extended to neural networks with any number of hidden layers. Each layer
in the current model is implemented as a repeatable block consisting of a standardized set
of CPN components: places for inputs, weights, and activations, and transitions for linear
transformation, non-linear activation, and error propagation. By decoupling the operations
per layer and ensuring all data dependencies are passed through tokens, we can simply
replicate the structural pattern of a hidden layer to introduce further depth into the network.

Notably, this represents, to our knowledge, the first Colored Petri Net-based imple-
mentation of a neural network with more than one hidden layer, moving beyond
simple perceptron or single-layer MLP models typically found in the literature, and inte-
grating the entire learning algorithm from forward propagation through backpropagation.
Furthermore, We analyze how the number of hidden layers, epochs, and mini-batch sizes af-
fect model complexity. The model preserves semantic clarity and execution traceability even
as depth increases, thus demonstrating that CPNs can scale structurally with the com-
plexity of modern neural network topologies. Each additional layer simply involves
extending the weight structures (with generalized color sets) and maintaining the forward
and backward propagation sequences already established in the model.

3.2 Formalization with Colored Petri Nets

In our approach, we establish the following mapping between the components of the
neural network and the elements of the CPN:

Each layer in the neural network Fig. 3.2 is modeled using a place to hold the inputs
(for input layer) or activations (for hidden layers) and a corresponding transition to compute
the transformation it applies.

The input processing begins with the Data place containing input samples. The Load
transition extracts individual samples and forwards them to the first layer.

For each layer L; in the neural network, the forward propagation process is decomposed
into two core operations, represented by two successive transitions:

©

— WB

Activation(o)

Inputs Inputs

Figure 3.2: A Layer in CPN Tools

3.2.1 Weighted Sum (Ponderation) — Transition Sum;

This transition computes the pre-activation outputs for each neuron in layer L; as a
weighted sum of the activations from the previous layer L; i, plus a bias term.
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Formally, for an input vector X~ € R”, and a weight matrix W ¢ RC*+*D*m (includ-
ing bias as the (n + 1)™ input), the output of the ponderation step is:
, ‘ (i-1)
20 — WOT . le ] (3.1)

In the CPN model:
o The place Inputs (or h;_;) contains tokens of type Inputs, holding the vector X1,
« The place WB_i holds the current weight matrix W® typed as WB.

e The transition Sum_i consumes both tokens and applies the function:

ponderation(X~ Y WB;) = z® (3.2)
e The result is stored in place H;.

3.2.2 Activation Function — Transition Actv;

This transition applies a non-linear activation function element-wise to each component
of z() to obtain the activations of the current layer:

a) = 70 (519) (3.3)
The activation function f@ is:
e ReLU fori=1,2.
o Sigmoid for ¢ = 3.

The transition Actv_i applies this function to the contents of H; and produces the acti-
vated vector in h;.

3.2.3 Modular Propagation Pattern

This pattern — Swum,; followed by Actv; — is replicated for each layer i, enabling a
modular and scalable modeling of forward propagation across arbitrarily deep feedforward
neural networks.

The data flow is implemented using arcs that link transitions to places. The weights
connecting neurons are defined as structured color sets (WB) which store vectors or matri-
ces of real numbers (i.e., colset WB = list VectReal), enabling dynamic updating during
training. The model also accommodates the accumulation of activations for batch processing
by appending them to matrices during forward propagation.

By organizing each layer as a modular unit with consistent internal logic (places for
inputs and activations, transitions for ponderation and activation), we can reproduce the full
behavior of a neural network in a visually and formally tractable CPN model.
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3.3 Color Sets, Data Types and Functions Definition

The CPN model employs a comprehensive type system to represent the various data
elements used in neural networks. Since CPN Tools operates with a language called Standard
ML (SML), all declarations and code examples in this chapter are written in SML.

3.3.1 Basic Color Sets

There are several primitive color sets already defined in the CPN Tools Left panel (
Appendix A ) to represent fundamental data types:

Listing 3.1: Basic Color Sets in CPN Tools

colset UNIT = unit;
colset BOOL = bool;
colset TIME = time;

colset REAL = real;
colset STRING = string;
colset INTEGER = int;

3.3.2 Complex Color Sets

Building upon the basic types, we define more complex data structures:

Listing 3.2: Complex Color Sets

colset ID = string;

colset InputBatch = product ID * VectReal; (x e.g., (0, [0.0, 0.0,
0.01) =*)

colset Ins = list InputBatch; (¥ list of inputs *)

colset Inputs = product ID * Ins; (x e.g., (batch_id, list
of inputs) *)

colset Dataset = 1list Inputs; (* e.g., [Inputs, Inputs,

1 o*)
colset VectReal = 1list REAL;
colset Matrix = 1list VectReal;
colset WB = 1list VectReal;
colset Label = product ID * INT;
colset Labels = 1list Label;

3.3.3 Variables and Functions

The computational core of our CPN-based neural network relies on a comprehensive suite
of Standard ML (SML) functions that encapsulate the mathematical operations required for
deep learning algorithms [65]. These functions serve as the operational backbone for imple-
menting complex neural network behaviors within the Petri Net framework, transforming
the traditional imperative programming approach into a token-based, event-driven compu-
tational model.
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To maintain mathematical precision and computational efficiency, each function is de-
signed with specific input and output signatures that align with the color sets defined in
our CPN model. For instance, the ponderation functions operate on structured data types
representing weight matrices and input vectors, while the error computation functions handle
vector-based loss calculations.

Listing 3.3: Ponderation Function Implementation

fun ponderation ((batch_id, inputs) : Inputs, wb : WB) : Inputs =
let
fun dotproduct ([], [1) = 0.0
| dotproduct (x::xs, y::ys) = x * y + dotproduct(xs,ys)

| dotproduct _ = raise Fail "Vector length mismatch";
fun computeOne ((id, inputVect) : InputBatch) =
let

val weights = List.take (wb, List.length wb - 1); (* Exclude
bias vector *)
val biases = List.nth (wb, List.length wb - 1); (x Bias
vector *)
fun computeNeuron (w,b) = dotproduct(inputVect, w) + b;
val outputs = ListPair.map computeNeuron (weights, biases);
in
(id, outputs)
end;
in
(batch_id, List.map computeOne inputs)
end;

The variable declaration system within our model serves as the binding mechanism
between the functional operations and the token-based execution model of Colored Petri
Nets. These variables act as formal parameters that capture the state of inputs, intermediate
computations, and outputs at each transition firing. The variable binding ensures that data
dependencies are explicitly maintained and that token consumption and production follow
the mathematical constraints of neural network operations.

Listing 3.4: Variable Declarations

var i : Inputs;
var wbl, wb2, wb3 : WB;
var d1, D1, d2, D2: Matrix;
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3.4 Learning and Backpropagation Mechanism

3.4.1 Loss Calculation

For binary classification with sigmoid activation, the cross-entropy loss function is defined
as:
m

L= Y [yloa(d) + (1 — yi) log(1 — 1) (3.4

=1

Where:
« m is the dataset size ( number of examples )

e y; is the true label (0 or 1)

e {; is the predicted probability from sigmoid activation: ¢; = O'(Zi(g)) = ﬁ

14+e i

3.4.2 Error Terms Computation
Error of the Output Layer

Our neural network employs a sigmoid activation function at the output layer combined
with cross-entropy loss for binary classification. This combination leads to a simplified gra-
dient computation. The derivative of the loss with respect to the pre-activation output z®
becomes:

B — - .2
50 " 95 520 (3:5)
y  l=y\ .. .
=|—=+ ~ |-yl -9 3.6
(441250~ 0 36)
=—y(1 -9+ 1 -y)g 3.7
=9y 3.8

Error of the Hidden Layer [,

Using the chain rule:

0 = (W 6@) @ f(z) (3.9)
Where ReLU derivative is:
1 ifz>0
(%) = 3.10
e {O o (310)

Implemented in Delta?2:
o Compute d2 = weightedDeltaWB3(WB3, D3)

o Multiply element-wise with ReLLU derivative from Actv'2'
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Error of the Hidden Layer [,

s — (W(2) : 5(2)) ® f'(zW)
Implemented in Deltal :

o Compute d1 = weightedDeltaWB2(WB2, D2)

o Multiply element-wise with ReLU derivative from Actv'1'

3.4.3 Weight Update Mechanism
Gradient Computation for Weights and Biases

For each layer [, the gradients are computed as:

L
agv S
obl)

Where a1 represents the activations from the previous layer.

Weight Update for W B; (Output Layer)

AWE = L3550 5@
mi4
Ab® = L f: 5&
m—= "

Update rule:

WO .— Ww® _ n- AW®)
b® — p® _ n- Ab®

Implemented in updateWB3(a2, D3, WB3) function.
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Matrix

weightedDeltaWB3(WB3',D3)

o :

Matrix
> updateWB3(a2,D3, WB3') [(j mod nbatch = 0 ) andalso (D3 <> []) ]
J‘ }I Update3rd
WB WwB3'

Figure 3.3: Update part of the net from CPN Tools (update3)

Weight Update for W B; (Second Hidden Layer)

AW® — L5504
mi=
1 m
Ab®? = =36
m iz

Update rule:

delta2(r2,d2)

4 weightedDeltaWB2(WB2',D2)
Y

Matrix

Matrix

Figure 3.4: Update mechanism in the second hidden layer (update2)

o8
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Delta2 @
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Weight Update for WB; (First Hidden Layer)

Where x; is the input stored in matrix AO.
Update rule:

ri

Matrix

Figure 3.5: Update mechanism in the first hidden layer (updatel)

We give the example of Update3rd (for third vector of weights):
Listing 3.5: Weight Update Example for Layer 3

di

(3.22)

(3.23)

Matrix

fun updateWB3 (a : Matrix, deltaSum : REAL, wb : WB) : WB =
let
val 1lr = 0.01;
val m = Real.fromInt(List.length a);

fun transpose ([]::_) = []

| transpose rows = List.map List.hd rows :: transpose (List.map

List.tl rows);

val aT = transpose a;
val avgDelta = deltaSum / m;
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fun avgActivation row =

List.foldl op+ 0.0 row / m;

val avgActivations = List.map avgActivation aT;

val w = List.nth(wb, 0);

val newW = ListPair.map (fn (wi, ai) => wi - 1lr * avgDelta * ai)

, avgActivations);

val b = List.nth(wb, 1);

val newB = List.map (fn bval => bval - 1lr * avgDelta) b;

in
[newW, newB]
end;

(w

3.4.4 Control and Synchronization Mechanisms

A core strength of our CPN modeling lies in its ability to explicitly encode control logic
that ensures deterministic and synchronized training across epochs and batches. To achieve
this, we have designed several dedicated control places that orchestrate the flow of data and
trigger updates only under precise conditions.

Control of Epoch Transitions: ControlUpdate and NBEpoch

The place ControlUpdate acts as a trigger signal to initiate the loading of a new dataset
segment at the beginning of each epoch. Its marking reflects the state of the training cycle
and ensures that the transition Load is only enabled once a new epoch is ready to begin.
This allows for clean synchronization between epochs, avoiding premature or repeated data

reloads.

ControlUpdate

al

Matrix

datasetToMatrix(data)

data

split(data id,ins
R L Ve

TN
1) Data =
e

Datasat

[f< nbepaoch] Inpuss

Figure 3.6: ControlUpdate place
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To prevent indefinite looping through epochs, the place NBEpoch (an INTEGER-typed place)
is introduced. It carries a counter f , initially set to 0, which is incremented after every full
pass through the dataset. A guard [f < nbeepoch] on the Load transition uses this value to
ensure that training is terminated once the number of epochs reaches a predefined constant
nbeepoch. This constant is declared in the CPN declaration panel and provides configurable
control over training length.

Batch Sequencing: ControlBatch

Tnputs Tnputs Outputs ‘Output:

0

SR S (ind+1) mad nbateh ypred
Control Batch J-1

ind e -
INTEGER ind

| LossFun
1'[(0,{0,1)).(0.(1,1)).(0,(2,1)),{0,(3,1

[(0,(0,1). IL0.2,1)).40,(3,1)
00,0, 1), (oo DASAULOGID06,1.0.7 21
1,1))
Labels

(0, (1, 1)),
(0 1))

Figure 3.7: ControlBatch place

In order to enforce strict mini-batch sequencing, we introduced a dedicated place ControlBatch,
also of type INTEGER. This place stores a counter ind that tracks the current batch index.

The design ensures that batches are processed one after another in a deterministic order,
avoiding non-determinism in state space generation.

The first responsible transition for processing a batch (Suml) include the guard [id =
ind], meaning only the batch whose index matches the current counter is permitted to pro-
ceed. This sequential activation eliminates branching in the state space and ensures full cov-
erage of the dataset in an ordered manner. After each batch is processed, the ControlBatch
counter is incremented by one using (ind + 1) mod nbatch, maintaining a cyclic yet con-
trolled batch loop.

Epoch Finalization and Weight Updates: CountEpoch

¥ |

; Update3rd | [{i mod nbatch = 0') andalso (D3 <> [1) ]

D3

cH{deltaz{yprad,ytrue),e) |
% Error i1

& \ectReal

J+1) mod nbatch

CountEpoch  #1 1'U|

>
MTEGER

Figure 3.8: Counter of Epoch’s number
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To ensure that model updates only occur after all batches in the dataset have been
processed, we introduced the place CountEpoch, another INTEGER counter that synchronizes
with ControlBatch. A guard such as:

[(j mod nbatch = 0) andalso (D3 <> [])]

is applied on the transition Update3rd, which updates the final layer weights. This guard
guarantees that:

 All batches have been passed through (j mod nbatch = 0)

e The error vector D3 is not empty, i.e., error accumulation has occurred

Only under these two conditions will the network update its weights and start a new epoch
cycle. This mechanism ensures batch-wise accumulation of errors followed by centralized
backpropagation at the end of each epoch, mimicking traditional gradient descent with full-
batch error averaging.

Control Place | Type Function
ControlUpdate | UNIT Triggers loading of new epoch dataset
NBEpoch INTEGER | Limits training to a fixed number of epochs

via guard [f < nbepoch]

ControlBatch | INTEGER | Ensures sequential and deterministic mini-
batch processing

CountEpoch INTEGER | Enables updates only after full dataset pass
with complete error vector

Table 3.2: Summary of control places and their roles in the synchronization of training

3.5 Performance Evaluation

Accuracy Calculation

The accuracy is calculated as the proportion of correct predictions:
1 m
Accuracy = — > I(y; = §;) (3.26)
mis

Where [ is the indicator function that equals 1 when the prediction matches the true
label.

Listing 3.6: Accuracy Function

fun accuracy(yp : REAL, ytrue : INT) : REAL =
let
val predicted = if yp >= 0.5 then 1 else O
in
if predicted = ytrue then 1.0 else 0.0
end;
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Conclusion

In this chapter, we proposed a modular and scalable modeling of neural networks using
Colored Petri Nets. Our approach formalizes each step of the learning process—from input
handling and forward propagation to error backpropagation and weight updates—within a
visually traceable and verifiable framework. By leveraging CPN Tools, we demonstrated
how deep learning architectures can be structured, synchronized, and analyzed, laying the
foundation for formal verification and explainability in neural networks.
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Chapter 4

Comparative Analysis of Neural
Networks Hyperparameters and Their
Impact on State Space Complexity

Introduction

In this chapter, we explore the effects of different hyperparameters on the state space
complexity of neural networks modeled using CPNs. This analysis focuses on how neural
network hyperparameters systematically influence the state space complexity in
Coloured Petri Net models.

Understanding how hyperparameters affect the behavior of the CPNN state space is
critical not only for optimizing performance but also for enabling effecient formal analysis
and verification. When neural networks are modeled using CPNs, the state space—which
represents all possible system configurations—becomes a central consideration.

Through rigorous empirical investigation and theoretical derivation, we establish a closed-
form formula that precisely predicts the number of reachable states ( nodes ) as a function
of network architecture depth, mini-batch configuration, and training epochs.

The methodology we employed follows a structured approach where each component of the
model was carefully analyzed. This included the observation of how forward propagation,
backpropagation, and the interplay of mini-batch processing influence the growth of state
space with respect to epochs. By extending this investigation to multiple hidden layers and
mini-batches, we derive a formula that accurately captures the complexity of state space in
relation to these hyperparameters.

Before delving into the empirical effects of each hyperparameter, it is essential to clarify
the core concepts and terminologies used throughout this chapter.

4.0.1 State Space in Coloured Petri Nets

In the context of Coloured Petri Nets, the state space represents the collection of all
possible reachable markings (states) that the model can assume during its execution. Each
state is defined by the distribution of tokens across the places in the net, including their
associated data values (colors).
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Nodes (States): Each node in the state space corresponds to a unique marking — that
is, a specific assignment of tokens to places. These markings reflect the progression of the
neural network’s computation, including weight values, activations, errors, and other relevant
data structures.

main'we1l 1: 1°[[0.2,0.4,0.6],[0.5,0.1,0.3],[0.1,0.2]]
main'H1 1: empty

main'we2 1: 1°[[0.4,~0.2],[0.3,0,5],[0.0,0.1]]
main'hl 1: empty

main'H2 1: empty

main'h2 1; empty

main'WwB3 1: 17[[0.4,0.6],[0.2]]

main'H3 1: empty

main'Output 1: empty

main'True_Labels 1: 1°[(0,(0,1)),(0,(1,1)),(0,(2,1)),(0,(3,1)),(0,{4,1)),(0,(5,1)),(0.(6,1)).(0,(7,1))]
main'Error 1: 17[]

main'a2 1: 1°[]

main'Ww2Delta 1: empty

main'Acty'2 1; 17[]

main'Dalta2 1; empty

main'al 1: 17[]

main'WwibDelta 1: empty

main'Acty'l 1: 1°[]

main'Deltal 1: empty

main'A0 1: empty

main'Data 1: 1°[(0,[(0,[0.0,0.0,0.0]),(1,(0.0,0.0,1.0]),(2,[0.0,1.0,0.0]},(%,[0.0,1.0,1.0]},(4,[1.0,0.0,0.0]},(5,[1.0,0.0,1.0]},(6,[1.0,1.0,0.0]},(7,[1.0,1.0,1.0])])]
main'Acc 1: 1°0.0

main'inputs 1: empty

main'Control_Batch 1: 1°0

main'CountEpoch 1: 170

main'ContralUpdate 1: 17 ()

main'Neepoch 1: 1°0

Figure 4.1: Excerpt from the state space graph (occurrence graph) generated by CPN Tools.
Each box represents a unique node, i.e., a reachable marking that defines the state of the
system at a given point. The marking includes the token values in places such as weight
matrices (WB), activation vectors (H1, H2, etc.), and control variables. Arcs between nodes
correspond to transition firings, representing steps such as forward propagation or weight
updates

Arcs (Transitions): Arcsin the state space represent the firing of transitions that cause
the system to evolve from one marking (state) to another. They encode computational steps
such as forward propagation, error backpropagation, or weight updates.

4.1 Initial Observations: Transition Complexity in Sim-
ple Model

Our investigation begins with a comprehensive analysis of the baseline two-hidden-layer
neural network architecture, Figure 3.1., which served as the foundational model throughout
our methodology development. This architecture, consisting of an input layer, two hidden
layers, and an output layer, provides the essential framework for understanding the funda-
mental transition patterns inherent in neural network training processes. The architecture
was simple yet effective in showing how the network’s complexity changes with each hyper-
parameter.
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4.1.1 Epoch Number Effect on State Space Growth

Definition : An epoch refers to a complete pass through the entire training dataset.
During one epoch, the neural network processes all available training examples once.

To understand how the training duration affects the complexity of our model, we sys-
tematically analyzed the transition patterns within each training epoch. Our baseline two-
hidden-layer architecture exhibits a well-defined sequence of computational steps that repeat
consistently across training iterations.

During each epoch, the network executes a complete training cycle consisting of two
distinct phases: forward propagation for prediction and backward propagation for parameter
optimization. Through careful observation and analysis of the CPN model behavior, we
identified the fundamental operations that constitute each training iteration.

Forward Propagation Phase Analysis: The forward pass through our baseline ar-
chitecture involves a sequence of computational transitions that process input data through
the network layers:

« Data Loading Operation: Initial transfer of training samples to the input layer,
preparing the network for computation = 1

o First Hidden Layer Processing: Computation of weighted linear combinations
followed by activation function application = 2

e Second Hidden Layer Processing: Similar weighted sum computation and activa-
tion transformation at the deeper layer = 5

e Output Layer Computation: Final layer processing including weighted sum calcu-
lation, activation function application, and loss computation = 3

This systematic progression through the network architecture results in exactly 8 distinct
forward propagation transitions per epoch.

Backward Propagation Phase Analysis: The backward pass implements the gradient-
based learning mechanism through error backpropagation and parameter updates:

e Output Layer Weight Update: Application of computed gradients to modify the
final layer’s parameters = 1

« Second Hidden Layer Error Computation: Calculation of error terms for gradient
propagation = 1

e Second Hidden Layer Weight Update: Parameter modification based on computed
gradients = 1

o First Hidden Layer Error Computation: FError term calculation for the initial
hidden layer = 1

o First Hidden Layer Weight Update: Final parameter update completing the learn-
ing cycle = 1

66



Comparative Analysis of Neural Networks Hyperparameters and Their Impact on State
Space Complexity

This backward propagation sequence consistently generates 5 distinct transitions per
epoch, regardless of the specific training data or network parameters.

State Space Formula Derivation: Combining both phases, each complete training
epoch produces exactly 8 +5 = 13 transitions within our CPN model. As training progresses
through multiple epochs, these transition patterns repeat, creating a linear growth in the
state space complexity.

The total number of reachable states in our CPN model includes an additional compo-
nent: the initial state node, which represents the network’s starting configuration ( initial
marking M, ) before any training operations commence. This initial state is crucial for CPN
modeling as it serves as the entry point for all subsequent transitions and must be included
in the complete state space enumeration.

Therefore, for a number of epochs e, our comprehensive analysis yields the fundamental
relationship:

Total Nodes = (13 x e) + 1 (4.1)

Linear Growth of Nodes with Epochs for Two Hidden Layers

—8— Nodes = 13xe + 1
6000 +

5000 +

4000

3000 +

Number of Nodes

2000 +

1000 A

Epochs

Figure 4.2: Linear Growth of State Space Nodes for Baseline architecture

4.2 Mini-Batch Effects on State Space Complexity: In-
troducing Batch-Based State Space Complexity

4.2.1 Mini-Batch Processing Mechanism

The introduction of mini-batching into the model further increased the complexity of
the state space, as the dataset was divided into smaller subsets, denoted as b (where b € N
represents the number mini-batches, and nb; representing the batch number ¢ with i € [1, b]).
This division enabled more frequent updates during training, which in turn had a noticeable
impact on the size of the state space.
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batch batch

Figure 4.3: Dividing the dataset into smaller batchs

4.2.2 First Mini-Batch Processing Pattern

Our analysis showed that the first mini-batch in each epoch follows the full forward
propagation pattern, involving all eight (8) forward propagation transitions. This is due to
the fact that the initial mini-batch triggers the Load transition only once per mini-batch.

4.2.3 Subsequent Mini-Batch Optimization

For subsequent mini-batches (i.e., nb; with ¢ = 2,3,...,b), while the first mini-batch
passes by all 8 transitions, each subsequent batch after that one processes only 7 transitions.
This reduction occurs because the Load transition is no longer needed after the first batch,
as the data has already been loaded.

4.2.4 Backward Propagation Batch Independence

In contrast, backward propagation maintains a consistent pattern of 5 transitions re-
gardless of the mini-batch configuration. This consistency is due to the fact that gradient
computation and parameter updates must process the accumulated information from all
mini-batches within an epoch before progressing to the next iteration.
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Nodes vs Epochs for Different Mini-batch Sizes (c = 2)

17500 4 Mini-batches

- b=1
b=2
15000 1 —g— b =4

12500

10000

7500

Number of Nodes

5000 -

2500

T T T r T r
o] 100 200 300 400 500
Epochs (e)

Figure 4.4: Nodes vs Epochs for Different Mini-batch Sizes for Baselien Architecture

4.2.5 Mini-Batch State Space Formula Derivation

After analyzing the effects of mini-batches on the state space, we derived the following
relationship:

Forward Propagation Transitions per Epoch = 8 +7(b — 1) (4.2)
The total number of transitions per epoch is therefore:
Total Transitions per Epoch =8+ 7(b—1)+5=13+7(b—1) (4.3)

Consequently, the total number of nodes in the state space is given by:

Total Nodes = [13+7(b—1)] x e + 1‘ (4.4)

Where:

e b is the number of mini-batches,

e ¢ is the number of epochs.

This formula captures the relationship between mini-batches and their effect on the state
space. As the number of mini-batches increases, the number of transitions during forward
propagation also increases, leading to a more complex state space.

4.3 The Impact of Hidden Layer Count on State Space
Complexity

The next phase of our analysis examined how the number of hidden layers systemati-
cally affects state space complexity. We incrementally varied the hidden layer count while
maintaining consistent network width and tracked the resulting state space evolution.
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4.3.1 Transition Pattern Analysis per Additional Layer

Our systematic investigation revealed a consistent pattern: each additional hidden layer
introduces exactly four new transitions to the overall training process, distributed equally
between forward and backward propagation phases.

Forward Propagation Impact: Each new hidden layer adds 2 transitions:

e Sum operation transition: Computes weighted linear combinations from the previ-
ous layer

o Activation function transition: Applies non-linear transformation to produce layer
outputs

Backward Propagation Impact: Each new hidden layer similarly adds 2 transitions:

e Delta computation transition: Calculates error gradients for the layer’s parameters

« Weight update transition: Applies computed gradients to modify layer weights

Number of Nodes vs Epochs for Different Architectures (b = 1)

—o— [=1 (1 hidden layer)
1=2 (2 hidden layers)

80007 _, =3 (3 hidden layers)

6000 1

4000 -

Number of Nodes

2000 1

T T T T T T
0 100 200 300 400 500
Epochs (e)

Figure 4.5: Number of Nodes vs Epochs for Different Architectures using one batch

4.3.2 Empirical Validation Across Layer Configurations

To validate this pattern, we analyzed three distinct architectures with the following re-
sults:

Architecture | Layers Forward Backward Total per Epoch
1) Propagation | Propagation

Single Layer =1 6+5(0b—1) 3 9+5(b—1)

Baseline =2 8+7(b—1) 5 13+7(b—1)

Triple Layer =3 10+9(b—1) 7 17+9(b—1)

Table 4.1: Transition patterns across different layer configurations
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Architecture Complete Formula

Single Layer Nodes =[9+5(b—1)] xe+1
Baseline Nodes = [13+7(b—1)] x e+ 1
Triple Layer Nodes = [17+9(b—1)] x e + 1

Table 4.2: Complete state space formulas for each architecture

The transition count progression confirms our theoretical model:
o 1 hidden layer: 9 base transitions + 5(b — 1) mini-batch overhead

3 hidden layers: 17 base transitions + 9(b — 1) mini-batch overhead

4.4 Mathematical Derivation and Observations

Through extensive calculations, we derived the general pattern for the number of nodes
in the state space based on the number of hidden layers, mini-batches, and epochs. The final
expression, which accounts for the complexity introduced by each hyperparameter, is:

Nodes(l,b,e) = [(2l +2) + b(20 +3)] x e+ 1 (4.5)

Where:
e [ is the number of hidden layers,
e b is the number of mini-batches,

e ¢ is the number of epochs.
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Node Complexity: Nodes(c,b,e) = [(2c+2) + b(2c+3)I xe + 1

® c=1 hidden layers
W c=2 hidden layers
A c=3 hidden layers
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Figure 4.6: Growth of State Space Complexity as a Function of Hyperparameters

The plot illustrated in Fig 4.6 provides strong empirical validation. It effectively illus-
trates how deeper architectures and increased batch granularity can dramatically increase
the state space, which is crucial for formal verification scalability.

Conclusion and Insights

This comprehensive analysis establishes a rigorous mathematical foundation for under-
standing the effects of hyperparameters on state space complexity in our neural network
modeling verification. The derived formula Nodes(l,b,e) = [(2l + 2) + b(2l + 3)] x e + 1
provides unprecedented precision in predicting the computational requirements for formal
verification tasks.

Our work demonstrates that a systematic empirical investigation, combined with theoret-
ical analysis, can yield powerful predictive models for complex computational processes. The
linear relationship with epochs, along with the quadratic scaling effects of layer depth and
mini-batch processing, underscores the significance of hyperparameter choices. Additionally,
the fact that the number of neurons per layer does not affect the complexity of the state
space graph—an important feature of our modeling—makes this approach both efficient and
effective.
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These insights not only advance our understanding of neural network training dynam-
ics but also lay the foundation for optimizing network architectures and batch processing
strategies in practice. By utilizing these models, practitioners can predict the computational
requirements and complexity of state space exploration, which is critical for tasks such as
model verification, explainability, and efficiency analysis in neural network design.
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Chapter 5

Experiments

Introduction

In this section, we present the experimental results for our Colored Petri Neural Network
(CPNN) model applied to Parkinson’s disease classification. The goal of these experiments
is to validate the performance of the proposed model, evaluate its formal verifiability us-
ing model checking with Computation Tree Logic (CTL), explore its explainability through
feature importance, and compare it to a standard model such as Random Forest. We first
introduce the dataset and experimental setup, then analyze the results and discuss the ex-
plainability aspects of the model.

5.1 Validating the CPNN model

5.1.1 Setup Environment

Hardware: Experiments were conducted on a Windows 11 system with an Intel(R)
Core(TM) i7-7600U CPU @ 2.80GHz, 16GB RAM.
Software: Code was developed in Python 3.11.12 and CPN Tools v4.0.0 for Petri net

modeling.

5.1.2 Dataset Description

The dataset used for validating the CPNN model is from ”Collection and Analysis
of a Parkinson Speech Dataset With Multiple Types of Sound Recordings” [66].
This dataset consists of 288 samples ( vowels voice samples ), of 48 Parkinson’s patients and
20 healthy person, each with 26 acoustic features extracted from voice recordings. These
features are crucial in diagnosing Parkinson’s disease, as they capture the changes in voice
patterns associated with the disease.

The features include:

e Jitter metrics: Local, absolute, RAP, PPQ5, DDP.
o Shimmer metrics: Local, dB, APQ3, APQ5, APQ11, DDA.
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o Pitch statistics: Median, mean, standard deviation, minimum, and maximum pitch.

e Voice break metrics: Number of unvoiced frames, number of breaks, degree of voice
breaks.

o Harmonicity metrics: AC, NTH, HTN.

Additionally, the Status column indicates whether a sample corresponds to a Parkinson’s
patient (1) or a healthy individual (0).
Preprocessing:

 Features were normalized using Min-Max scaling (range [0, 1]).

o The dataset was split into two parts: 70% for training and 30% for testing. This
split ensures the model can generalize well to unseen data.
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Figure 5.1: Training screenshot from cpn tools

5.1.3 Neural Network Architecture

We adopted an MLP-based CPNN inspired by the architecture of the model proposed in
[67] :

Input Layer: 26 nodes, corresponding to each of the acoustic features in the dataset.
Additionally, we included a unique sample ID to track tokens within the Petri net.

Hidden Layer: 5 neurons with ReLLU activation.

Output Layer: A single neuron with sigmoid activation, used for binary classification
(Parkinson’s vs. Healthy).

Loss Function: Binary cross-entropy was used, which is suitable for binary classifi-
cation tasks.
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5.1.4 Results and Analysis

The results obtained from the CPNN model were analyzed in terms of accuracy:

o Training Accuracy: The model achieved an accuracy of 71.01% after 100 epochs of
training.

50 Training Accuracy Over Epochs

= Training Accuracy

70 4

60 4

Accuracy (%)

40 +

30 4

Epoch

Figure 5.2: Training Accuracy Over Epochs for the CPNN model

e Test Accuracy: Upon evaluation on the test set, the model achieved a test accuracy
of 82%, indicating reasonable generalization capability.

Acc (1,1 0.B29545454545 |
REAL

Figure 5.3: Testing Accuracy for the CPNN model
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5.2 Exploring the explainability aspect of the CPNN
model

To bridge the gap between traditional post-hoc explainability methods and intrinsic inter-
pretability approaches, we use the formal verification tools provided by Petri Net theory—
specifically, the generated state space report. This report allows us to extract clear and
mathematically sound explanations of how the neural network makes decisions.

Our experimental framework, centered around the analysis of the CPN-generated state
space, is organized into three core phases:

1. Systematic extraction of intermediate computational states from CPN reachability re-
ports with parsing algorithms.

2. Implementation of a layer-wise feature importance calculation methodology based on
relevance propagation principles.

3. Comparative validation against established interpretability baselines using Random
Forest classifiers.

Neural Network Explanation Process

Layer-wise feature Compare against
Opagque decision- Parse CPN relevance interpretability Transparent decision-
making in network reachability reports propagation baselines making process
Q @

Figure 5.4: Ilustration of the CPN-based neural network explanation process

5.2.1 Data Extraction Methodology from CPIN Reachability Anal-
ysis

The CPN Tools state space report [.txt file generated using the SS tool *Appendix. A ]
serves as a comprehensive computational trace that captures the complete state evolution of
the neural network during forward propagation. Unlike conventional black-box approaches
that only observe input-output relationships, the CPN framework provides access to all
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possible paths between transitions of the system. Therefore, we can extract intermediate
layer activations, weight matrices, and bias vectors at each computational step, enabling
fine-grained analysis of information flow through the network architecture.

Traditional approaches provide static feature importance, typically computed after
training. In contrast, our report provides a pathway-level analysis: we can observe how
each feature’s relevance propagates at each layer of the neural network and how intermediate
computations affect the final output, at every iteration.

Algorithm 1 Data Extraction from CPN Report

1: function EXTRACTDATAFROMREPORT(report_ file path)

2 // Extract hl, wbl, and wb2 from the CPN report

3 h1l_raw < EXTRACTPLACEDATA(report_ file path, "main'hl ")

4: wbl_raw <+ EXTRACTPLACEDATA (report_ file path, "main'WB1 ")
5: wb2_raw <+ EXTRACTPLACEDATA (report_ file path, "main'WB2 ")
6 // Parse the extracted raw data
7 h1l_data < PARSEH1DATA (A1 raw, hidden dim = 5)
8

: wbl_data <+ PARSEWEIGHTBIAS(wbl raw, expected num_vectors = 6, ex-
pected_ lengths = [26, 26, 26, 26, 26, 6])
9: wb2_data < PARSEWEIGHTBIAS(wb2_raw, expected num_ vectors = 2, ex-

pected_ lengths = [5, 1])
10: return hl data, wbl data, wb2 data

The algorithm starts by calling the ExtractPlaceData function to retrieve raw data
for hl _raw, wbl_raw, and wb2_raw from the CPN report, corresponding to hidden layer
activations and the weight matrices between input-hidden (WB1) and hidden-output (WB2)
layers.

It then parses this data using two functions: ParseH1Data converts hl_raw into a nu-
merical array of shape (samples, hidden dim) with hidden dim = 5, and ParseWeightBias
transforms wb1_raw and wb2_raw into numerical arrays—expecting six vectors for WB1 (five
weight vectors of size 26 and one bias vector of size 6), and two vectors for WB2 (one weight
vector and one bias vector, each of size [5, 1]). The processed data—h1_data, wb1l_data,
and wb2_data—is then returned for further model computation.

— The extracted data can be utilized within any explainability approach. See Fig. 5.5.
For the purposes of this thesis, we have chosen to employ it for calculating feature importance.
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l

XAI

Explainable Artificial Intelligence

Figure 5.5: Pipeline for explainability via state space analysis in CPN Tools. (1) The state
space and state space report tools are entered within the CPN Tools environment. (2) A
full state space report is generated (3) Algorithm 1 extracts and structures the relevant
numerical data into a tabular format. (4) This data is then used as input for Explainable
Artificial Intelligence (XATI) methods to analyze and interpret the behavior of the modeled
neural network.

5.2.2 Feature Importance Calculation Methodology
Theoretical Framework: Layer-wise Relevance Propagation

The feature importance calculation is grounded in the principles of Layer-wise Relevance
Propagation (LRP) [42] , which provides a principled approach for decomposing neural net-
work predictions into input feature contributions. The core insight of LRP is that the rel-
evance of each input feature can be computed by propagating relevance scores backward
through the network layers while preserving the total relevance at each step.

Relevance Score for a Single Feature and Sample

Given the components above, we calculate the relevance score R;; for each input feature
j in sample 7. The relevance score indicates how much feature j contributed to the output
decision of the neural network for that sample.

The formula for relevance calculation is:

Rij = zh: Xi’j ' Wl’?j ) Hi,k ) WQi,k
Y T S (X - W, - Hyg - Wa,,)

(5.1)

Where:
o X, ; is the value of the input feature j for sample 7,
o Wy, is the weight for feature j from the input layer to the hidden layer,

e H,;} is the activation of the k-th hidden neuron for sample ¢,
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o Wy, is the weight from hidden neuron % to the output.

The relevance score R; ; calculates how much input feature j contributed to the network’s
output for sample ¢, by considering the contributions from all hidden neurons k.

The total feature importance for feature j across all samples is then computed as the
average relevance score across all samples:

Where:
e F; is the total importance of feature j,
e N is the number of samples.

This calculation gives us the overall feature importance by averaging the individual rele-
vance scores for feature j across all samples. The result is a global measure of how important
each feature is to the model’s predictions.

Algorithmic Implementation

Algorithm 2 Layer-wise Relevance Propagation from CPN Report

1: procedure COMPUTELRPFROMREPORT(report_ file_path, X, hidden__size)
2: hl data, wbl_data, wb2  data — ExTrRACTDATAFROMRE-
PORT(report__file_path)

3: wbl__flat < FLATTENDATA(wbl_data)

4: wb2_ flat < FLATTENDATA(wb2_ data)

5: feature__importance <— ZEROS(number of features in X)

6: for j = 1 to number of features do

7: importance__sum < 0

8: for : = 1 to number of samples do

9: denominator < 0

10: for £ = 1 to hidden size do

11: numerator < X[i, j| - wbl__flat[i, j] - h1_datali, k] - wb2__flat|i, k]
12: denominator < denominator + numerator

13: if denominator # 0 then

14: importance__sum <— importance__sum + %
15: feature__importance|j] < —i?n’iﬁga&c:;rjg{;

16: return feature importance

The algorithm begins by calling the ExtractDataFromReport function to retrieve raw
data for the h1, wb1, and wb2 matrices from the CPN report. After extracting the raw data,
the wb1 and wb2 matrices are flattened using the FlattenData function to convert them into
one-dimensional arrays for easier processing. The algorithm then proceeds by looping through
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each input feature (j) and each data sample (i), calculating the numerator for each feature
and sample as the product of the input feature value X[i, j], the corresponding weight
from wbl_flat wbl_flat[i, j], the hidden layer activation value from hil_datali, k],
and the corresponding weight from wb2_flat wb2_flat[k]. This numerator is added to the
denominator, which is the sum of these terms for each hidden neuron (k). If the denominator
is not zero, the numerator divided by the denominator is added to the importance_sum. After
looping over all samples, the importance_sum for each feature is normalized by dividing it
by the total number of samples to calculate the final feature importance. The algorithm then
returns the feature_importance array, which contains the relevance score for each input
feature, representing its contribution to the model’s predictions.

— Unlike gradient-based methods that only consider local derivatives, this approach
provides a complete decomposition of prediction contributions across network layers.

5.2.3 Comparative Validation Against Random Forest Baselines
Benchmark Selection Rationale

We chose Random Forest classifiers’ feature importance to serve as a benchmarking base-
line for feature importance validation due to their simplicity and interpretability. After
obtaining both results, we generated a comparative analysis figure.

Feature Importance Comparison: Neural Network vs Random Forest
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Figure 5.6: Comparison between Feature Relevance between CPNN and RF

All values are normalized. However, we observe that CPNN contributions are mostly
close to zero for many features, suggesting the model relies on only a few features to make
decisions.

Notably, the most important features for the neural network appear to be:

e NumPeriods

e UnvoicedFraction
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e NumPulses

RF assigns more distributed importance across features compared to the CPNN. Some
standout features for RF include:

PitchStdDev

NumPeriods

¢ UnvoicedFraction

JitterPPQ5

Relevance Analysis Results

o The Random Forest model appears to leverage a broader range of features, possibly
due to its ensemble nature, which benefits from many weak learners picking up weak
signals.

e The CPNN seems to focus on a few dominant features, due to its optimization process
favoring stronger gradient signals.

e The high concordance on UnvoicedFraction suggests this feature is likely a robust
biomarker for Parkinson’s across model types.

Conclusion

This section validates our CPNN model through comprehensive experiments, exploring
explainability aspects and providing comparative validation against baselines to demonstrate
interpretability advantages. The data extracted from the state space report proved invalu-
able, as it gave us access to all possible states, allowing for detailed analysis and enabling
us to perform various calculations. Given the limited time during the internship, we fo-
cused on making a solid start in feature importance analysis, which forms a crucial part of
understanding the model’s decision-making process.
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General Conclusion

Summary of Findings

This thesis successfully introduced the Colored Petri Neural Network (CPNN) framework,
a pioneering approach that integrates Colored Petri Nets with Multi-Layer Perceptron archi-
tectures to address the critical "black box” problem in deep learning. The research demon-
strated that CPNs can effectively model neural network computations, providing explicit
mechanisms for capturing intermediate computational states during forward propagation
and enabling fine-grained analysis of feature importance and decision-making processes. The
CPNN framework proved particularly valuable for applications requiring high transparency,
such as medical diagnostics.

Limitations and Challenges

The research identified two primary limitations that constrain the current framework’s
applicability :

o Computational Complexity: The method involves generating a state space and
computing the reachability for each epoch, which is directly influenced by the number
of hidden units and mini-batches used in training. This results in linear complexity
under these parameters, as defined by Equation (4.5). However, as the number of
training samples or dataset size increases, the time required for graph generation grows
significantly. The trade-off between model explainability and computational efficiency
thus becomes an important consideration for future work.

o Architecture Dependency: The current implementation of the CPNN framework
has been specifically designed for Multi-Layer Perceptron (MLP) networks. As a result,
it may not be directly applicable to other neural network architectures such as Con-
volutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs) without
significant modifications.

Future Directions for Research

Several promising avenues emerge for advancing this work, ensuring that the Colored Petri
Neural Network (CPNN) framework can be applied to more complex, real-world scenarios.
These include:
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o Automated Transformation Tools: The development of automated tools for trans-
forming diverse neural network architectures into CPNNs could significantly reduce
manual effort and broaden the applicability of this methodology. This would make the
process more efficient and scalable, particularly in large-scale applications.

« Computational Efficiency Optimization: By leveraging parallel computing, ap-
proximation methods, and state space reduction techniques, we could address the scal-
ability challenges posed by large neural network models. This would allow the CPNN
to handle more complex networks while maintaining performance and efficiency.

« Hybrid Models and Reinforcement Learning: Extending the framework to in-
corporate hybrid models (e.g., combining CPNNs with other types of machine learning
models) and reinforcement learning systems would significantly enhance the versatility
of CPNNs. This extension could enable applications in dynamic environments where
learning and adaptation are continuous.

e ASK-CTL Model Checking: One exciting area for future research is the integra-
tion of ASK-CTL model checking within the CPNN framework. ASK-CTL (extension
of CTL logic used within CPN Tools to query the state space and transitions of a
model) provides the ability to query the state space and transitions of the model to
ensure correctness, deadlock-free operation, and proper behavior under all conditions.
By integrating ASK-CTL, we can formalize and verify dynamic processes such as back-
propagation, weight updates, and learning convergence before deployment in mission-
critical systems. This is a promising step toward guaranteeing that Al systems operate
as expected without unexpected failures, thus increasing trust in Al-driven decisions,
especially in high-stakes applications like healthcare and autonomous driving.

The ultimate goal is to create a flexible, computationally efficient framework that bal-
ances high performance and interpretability, which are essential for mission-critical Al de-
ployments. As these avenues of research are explored, the potential for real-world applications
that require both transparency and performance—such as automated diagnosis, autonomous
driving, and financial modeling—will continue to grow.

While this thesis has laid the foundation for the development of interpretable and ver-
ifiable neural network models using Petri Nets, future work will continue to expand upon
these initial steps. The inclusion of more complex network architectures, deeper layers, and
more sophisticated verification techniques will ultimately lead to more robust, reliable, and
explainable Al systems.
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Appendix A
CPN Tools

A.1 General Presentation of the Software

CPN Tools is a comprehensive modeling and simulation software originally developed
by Aarhus University, Denmark. It is specifically tailored for modeling, simulating, and
analyzing systems using Colored Petri Nets (CPN). The tool emerged from the necessity to
have a robust, intuitive, and formally precise environment capable of effectively handling
complex, data-driven concurrent systems [59].

Figure A.1: CPN Tools Logo

The primary goal of CPN Tools is to provide users, researchers, and engineers with
an intuitive graphical platform for designing Colored Petri Nets models, simulating their
behavior, and performing rigorous formal analysis to verify critical system properties.

A.2 Main Features of CPN Tools

CPN Tools includes an extensive set of functionalities to leverage the full capabilities of
Colored Petri Nets, notably:

e Intuitive Graphical Editor: Users can visually design models by drawing and con-

necting places, transitions, and arcs, and by annotating these components with colors,
variables, and expressions directly within the graphical interface.
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e Dynamic Simulation: A core strength of CPN Tools is its ability to perform in-
During simulations, users can dynamically observe
the movement and transformation of colored tokens through the network. This visual
feedback facilitates rapid validation of the model’s intended behavior.

teractive, real-time simulation.

o Formal Analysis via State-Space Exploration: CPN Tools incorporates robust
state-space analysis functionality, enabling users to formally verify essential system
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Figure A.3: Dynamic Simulation in CPN Tools

properties, such as:

Reachability of particular states.
Detection of potential deadlocks or infinite loops.
Verification of invariants and safety properties.

Critical-path analysis.
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o Hierarchical Modeling: CPN Tools allows hierarchical structuring of models through
sub-networks or modules, significantly enhancing clarity, manageability, and scalability

of large and complex systems.
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o

Figure A.5: Hierarchical Modeling Feature

o Integrated Programming Language (CPN ML): The software integrates a vari-
ant of Standard ML known as CPN ML, enabling users to write complex and domain-
specific functions. This feature substantially enhances modeling flexibility and expres-

siveness.

A.3 Graphical User Interface

The graphical user interface of CPN Tools emphasizes visual clarity and ease of use,

structured around several tool palettes:

e Tool box: Contains fundamental modeling components such as places, transitions,
and arcs, nets management, view and styling, etc.

« Working Area (Canvas): Allows direct drawing and configuration of the CPN model.
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Figure A.6: Canvas Working Area

e Simulation Pane: Displays dynamic simulation outputs, token flows, and intermedi-
ate states.

e Declaration Windows: Enables definition of color sets, variables, functions, and
expressions necessary for formal specification of the network.

Create

O[S (S
X B &=

Figure A.7: Declaration Windows in CPN Tools

A.4 Formal Analysis via State-Space Exploration

The State Space Analysis Report provides detailed information about the behavior and
properties of a Colored Petri Net (CPN) model by exploring its reachability graph (also called
the occurrence graph). This report helps verify system correctness, detect deadlocks, and
check other behavioral properties.

A.4.1 What’s Included in the State Space Analysis Report?

The report typically contains the following sections:

1. Statistics

o Number of nodes (states) — Total unique states in the system.
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o Number of arcs (transitions) — Total possible state changes.

» Dead markings (deadlocks) — States where no further transitions are possible.

« Strongly Connected Components (SCCs) — Groups of states where each state is
reachable from any other state in the group.

2. Boundedness Properties

o Checks if places in the net are k-bounded (i.e., no place ever exceeds k tokens).

» Reports unbounded places (if any).
3. Home Properties

o Home markings — States that can be reached from any other state in the state
space.

o Useful for checking if the system can always return to a desired state.
4. Liveness Properties

o Dead transitions — Transitions that can never fire in any reachable state.
o Live transitions — Transitions that can always fire again in some future state.

o L1-14 Liveness (varying degrees of liveness for transitions).
5. Fairness Properties

 Impartial / Just / Fair transitions — Checks if transitions occur infinitely often
under certain conditions.

6. Model Checking (Temporal Logic)

o CTL (Computation Tree Logic) / LTL (Linear Temporal Logic) properties (if
explicitly checked).

o Examples:
— 7Is it always possible to reach a given state?”
— "Does the system eventually deadlock?”

CPN Tools state space report Home Markings
None

Report generated: Sun May 4 15:42:57 2025

Liveness Properties

Statistics

Dead Markings

State Space 6720 [50573,58572,50571,50570,50569, ...]

Nodes: 58573 ips
Arcs: 508572 Dead Transition Instances

: Training'CalcDl 1
Secs: 300 Training'CaleD2 1
Training'Updatelst 1
Training'Update2nd 1
Training'Update3rd 1

Status: Partial

Scc Graph
Nodes: 58573
Arcs: 58572

Live Transition Instances
Secs: 1

None

Boundedness Properties

Fairness Properties

Figure A.8: Reachability Graph Visualization
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Appendix B

Colorset Definitions for the CPNN
Model

Listing B.1: Colorset Declarations Used in the CPNN Model

(* Basic types x*)

colset UNIT = unit;
colset BOOL = bool;
colset TIME = time;
colset REAL = real;

colset STRING = string;
colset INT = int with 0..1; (* Binary integer for label x)
colset INTEGER = int ;

(* Integer vectors *)
colset VectINT = 1list INT;
colset ID = INTEGER;

(* Real-valued vectors and matrices *)
colset VecReal = 1list REAL;

colset Matrix = 1list VecReal;

(* Input structure x*)

colset InputBatch = product ID * VecReal; (* One sample with ID and
features *)
colset Ins = 1list InputBatch; (* A batch of input samples
*)
colset Inputs = product ID * Ins ; (* Batch with batch ID *)
colset Dataset = list Inputs; (x* Full dataset: list of

batches *)

(¥ Variables and functions x*)

var data : Dataset ;

fun split (batch : Dataset) : Inputs list = batch;
var batch : Inputs ;
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(* Label structure *)

colset Label = product ID * INT; (x* Label with ID and class
value *)

colset IDxLabel = product ID * Label ;

colset Labels = list IDxLabel;

(x Output structure x*)

colset Output = product ID * REAL; (¥* Prediction with ID and
value *)

colset IdxOut = product ID*Output;

colset Outputs = list IdxOut;

(* Weight structure *)
colset WB = 1list VecReal; (* Weight matrix: list of
real vectors *)

Notes :

o INT is constrained to 0. .1, suitable for binary classification labels.

e VecReal and Matrix define vector and matrix structures of real values, essential for
encoding neural network weights and activations.

o Inputs, Dataset, and Ins represent structured ways to store inputs, batched per epoch.

e WB captures a generalized weight configuration, where each list element is a weight
vector going into one output neuron.

e Output and Outputs are used to track prediction values from the network with their
sample IDs.
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