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Résumé

La Société de transport de Montréal (STM), s’est engagée a électrifier I'intégralité de sa
flotte de véhicules dans le cadre de ses initiatives de durabilité. Ce travail aborde un défi
majeur découlant de cet engagement : 'optimisation du déploiement et de 'affectation
des véhicules électriques de service attribués aux superviseurs d’exploitation afin de garan-
tir une perturbation minimale du réseau de bus. Le probleme est formulé sous la forme
d’un programme linéaire en nombres entiers mixtes qui minimise le nombre de véhicules
déployés et le temps de réponse total en utilisant une approche lexicographique. La capac-
ité du modele est évaluée par des expérimentations computationnelles utilisant le solveur
d’optimisation commercial CPLEX. Ce travail fournit a la STM un outil précieux d’aide
a la décision stratégique et opérationnelle, visant a optimiser la taille et le déploiement de
sa nouvelle flotte de véhicules électriques, tout en soutenant ses objectifs de durabilité.

Mots clés : Optimisation, Déploiement des véhicules, Dimensionnement de la flotte,
Véhicules électriques, Itinéraires, Affectation des véhicules.

Abstract

The Société de transport de Montréal (STM), the public transport agency of Montreal,
has committed to electrifying its entire vehicle fleet as part of its broader sustainability
initiatives. This work addresses a critical challenge that arises from this commitment: op-
timizing the deployment and dispatching of electric service vehicles assigned to operations
supervisors to ensure minimal disruption to the bus network. The problem is formulated
as a mixed-integer linear program that minimizes the number of deployed vehicles and to-
tal response time using a lexicographic approach. The capacity of our model is evaluated
through computational experiments using the commercial CPLEX optimization solver.
This work provides the STM with a valuable strategic and operational decision-support
tool, aimed at optimizing the size and deployment of its new electric vehicle fleet, while
supporting its sustainability objectives.

Keywords : Optimization, Vehicle deployment, Fleet sizing, Electric vehicles, Routing,
Dispatching.
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General Introduction

Global greenhouse gas (GHG) emissions surged by 51% between 1990 and 2021, driving
an alarming rate of planetary warming and contributing to the increasingly devastating
environmental crises worldwide [15]. This profound impact has established climate change
as a preeminent challenge to sustainable economic development. A primary driver of this
global crisis is often identified as “fossil” capitalism, reflecting the extensive pollution
from greenhouse gas emissions, with traffic, heavily reliant on fossil-fueled vehicles, being
a major contributor to this ecological and economic predicament [16].

The transportation sector is central to this issue, exhibiting the highest reliance on fos-
sil fuels of any sector and accounting for nearly a quarter of global GHG emissions in
2021. Within this, road transport encompassing passenger cars, buses, and commercial
vehicles is the dominant emitter, responsible for approximately 77% of transportrelated
GHG emissions [17]. Consequently, transitioning to sustainable, low-carbon mobility has
become a high policy priority globally. In response, vehicle electrification has been iden-
tified as a major lever for achieving sustainable and decarbonized mobility [18]. Notably,
the electrification of third-party transport fleets, such as those used for public and opera-
tional services, offers benefits up to three times greater than electrifying private passenger
vehicles, due to their higher utilization rates and mileage [19].

In urban contexts, sustainable mobility has emerged as a critical objective. As cities
grow and environmental concerns intensify, public transportation systems are increasingly
viewed as pivotal in reducing greenhouse gas emissions, minimizing air pollution, and opti-
mizing energy use [20]. This shift towards cleaner mobility is an environmental imperative
and an economic and social necessity for effective city management. Accordingly, public
transit agencies worldwide are undertaking a significant transition: the electrification of
their vehicle fleets. This ambitious move promises substantial reductions in emissions and
local pollution, alongside potential long-term cost savings and operational enhancements
[21].

Our work focuses on the Société de transport de Montréal (STM), Montreal’s public trans-
port agency, which has committed to electrifying its entire fleet by 2030. This initiative
includes not only passenger transport vehicles but also the crucial fleet of Operational
Supervisor (OS) service vehicles. These OS vehicles are pivotal for maintaining network
fluidity, responding proactively to incidents such as detours, malfunctions, and passenger-
related events, thereby ensuring service punctuality and contributing to Montreal’s urban
quality of life. However, electrifying these critical support vehicles introduces complex
strategic and operational questions, particularly concerning optimal fleet sizing and de-
ployment. Determining the ideal number of vehicles and their strategic distribution across

10
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Figure 1: Global greenhouse gas emissions by the transportation sector [1]

depots is vital for minimizing incident response times and ensuring network resilience.
This leads to the central research question guiding this work: How can the Société de
transport de Montréal optimally size its electrified Operational Supervisor vehicle fleet
and strategically deploy these vehicles across its depots to minimize incident response
times while considering operational constraints and the specific characteristics of electric
vehicles?

This Master’s thesis proposes a methodological framework to guide critical decisions re-
garding the electrification of STM’s OS vehicle fleet. It focuses on determining the optimal
fleet size and strategic deployment across depots to minimize response times to network
incidents. To this end, we develop an optimization-based decision support tool that com-
bines both strategic fleet allocation and operational routing. By addressing these chal-
lenges, the project contributes to STM’s broader efforts to streamline support operations
in an electrified context and improve service reliability for Montreal residents.

This thesis is structured as follows:

Chapter 1 This chapter introduces the research problem by detailing the operational
context of the STM. It describes the specific challenges related to the optimization of
its electrified OS vehicle fleet, outlining the characteristics and scope of the problem
addressed in this thesis.

Chapter 2 will provide a comprehensive review of relevant literature on classical opti-
mization problems pertinent to our study. This includes focusing on facility location,
fleet sizing, vehicle assignment/deployment, and Vehicle Routing Problems (VRP)
literature, highlighting existing approaches and their limitations in the specific con-
text of electrified operational support vehicles.

chapiter 3 This chapter focuses on the formal development of the solution methodolo-
gies. It will present the detailed mathematical formulation of the optimization model
designed to capture the complexities of the STM’s OS vehicle fleet problem. Addi-
tionally, a decomposition-based heuristic approach, developed to address potential
scalability challenges, will be introduced and elaborated upon.

Page 11
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Chapter 4 will be dedicated to the proposed solution approaches and discussion of
results. It will detail the exact method and the heuristic used to solve the problem
and the numerical experiments conducted. The chapter will also include a critical

analysis of these results, offering insights into the effectiveness and limitations of
each approach.

Finally, the thesis will conclude with a general conclusion summarizing the contributions
of this research and outlining potential avenues for future work.

Page 12



Chapter 1

Industrial Engineering Context and
Problem Definition

This chapter establishes the foundational context for the research presented in this thesis.
Before delving into the specific operational challenge faced by the Société de transport de
Montréal (STM), we will first frame the problem within the broader principles of indus-
trial engineering and operations management. This involves understanding the nature of
service logistics, the hierarchical levels of decision-making involved in fleet management,
the economic imperatives driving optimization, and the critical link between operational
performance and service quality. By establishing this framework, the specific problem of
the STM will be positioned as a practical and relevant case study in applied industrial
engineering.

13



Problem Description

1.1 Industrial Engineering Context

1.1.1 Service Logistics

Logistics, in its traditional sense, is primarily concerned with the efficient planning, im-
plementation, and control of the flow and storage of tangible goods from a point of origin
to a point of consumption. Service logistics, however, extends this paradigm to a context
where the "product" being delivered is an intangible service or an on-site intervention.
Instead of managing an inventory of physical goods, service logistics focuses on managing
the inventory and deployment of service capacity namely, skilled personnel, specialized
vehicles, and necessary equipment to points of demand in a timely and cost-effective
manner.

In many urban service systems, such as public transportation, energy utilities, or telecom-
munications, this demand does not manifest as a predictable customer order but rather
as an unplanned, stochastic event. These events, or "incidents," are often spatially and
temporally distributed across a wide operational area. The core challenge of service logis-
tics in this environment is therefore to strategically position and dispatch mobile service
units to these unpredictable demand points to perform tasks such as repairs, inspections,
or operational support.

The effectiveness of a service logistics system is defined by a fundamental trade-off, a
classic industrial engineering problem, between service level and operational cost. On
one hand, the goal is to maximize the quality and responsiveness of the service, often
measured by minimizing the response time the duration between the notification of an
incident and the arrival of a service unit. On the other hand, organizations must minimize
the total operational costs, which include significant capital investment in the vehicle fleet
and ongoing expenses related to personnel, maintenance, and energy.

Addressing this trade-off requires solving a set of interconnected optimization problems
that are central to industrial engineering. These include the strategic placement of opera-
tional bases (a facility location problem), determining the optimal number of service units
required (a fleet sizing problem), and designing efficient daily routes to serve incidents (a
vehicle routing problem). The goal is to design a system that is both highly responsive and
economically efficient, ensuring operational resilience and high-quality service delivery.

1.1.2 The Levels of Decision-Making in Operations Manage-
ment

Effective operations management in any large-scale organization relies on a structured
and hierarchical approach to decision-making. These decisions are typically categorized
into three distinct levels based on their time horizon, scope, and impact on the organi-
zation: strategic, tactical, and operational. Understanding this hierarchy is crucial for
contextualizing the specific challenges of fleet optimization.

1. Strategic Decisions are made at the highest level and focus on the long term,

Industrial Engineering Context Page 14
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typically spanning several years. They are characterized by high capital investment,
low flexibility, and a significant impact on the organization’s overall capabilities and
competitive positioning. For a public transit agency, strategic decisions include
committing to a major technological transition, such as the electrification of its
vehicle fleet, making significant investments in infrastructure like the construction
of new depots or charging facilities, and determining the overall long-term size of
the fleet through major procurement contracts. These decisions set the stage for all
subsequent planning.

2. Tactical Decisions bridge the gap between long-term strategy and daily oper-
ations, with a medium-term focus (e.g., monthly, quarterly, or annually). They
involve the allocation of resources within the framework established by strategic
choices. Examples in fleet management include determining the optimal number of
vehicles to have active during specific seasons, creating master schedules for person-
nel, and the general deployment of vehicles to specific home depots to best cover
anticipated demand across different regions of the network.

3. Operational Decisions are concerned with the day-to-day, short-term manage-
ment of resources to execute tasks as efficiently as possible. These decisions are
highly frequent, have an immediate impact, and are constrained by the tactical and
strategic plans already in place. In the context of a service fleet, operational deci-
sions include the real-time dispatching of a specific vehicle to an incoming incident,
the detailed routing and sequencing of multiple incidents for a single vehicle during
its shift, and managing immediate schedule adjustments.

The problem addressed in this thesis, which involves determining the optimal fleet size and
its deployment across various depots, primarily resides at the intersection of the strategic
and tactical levels. Fleet sizing is a strategic decision that directly impacts long-term
capital investment. The deployment of these vehicles is a tactical choice that dictates
resource availability for daily operations. However, the effectiveness of these strategic
and tactical decisions is ultimately measured by their impact on operational performance,
specifically the ability to provide fast and efficient routing to incidents, thereby minimizing
response times. This interplay across all three levels makes the problem a complex and
representative challenge in industrial engineering.

1.1.3 Industrial Investment: Economic Justification and Cost
Optimization

From an industrial engineering perspective, operational decisions are inextricably linked
to their economic implications. The management of a service fleet, particularly one un-
dergoing a significant technological transformation like electrification, is not merely a
logistical exercise but a major strategic investment that requires rigorous economic jus-
tification. The decision to electrify a fleet introduces a fundamental trade-off between
long-term operational savings and substantial upfront capital expenditure.

The primary economic challenge lies in balancing two categories of costs:

Industrial Engineering Context Page 15



Problem Description

- Capital Expenditures (CAPEX): These are the significant, one-time invest-
ments required to acquire the assets. In the context of fleet electrification, CAPEX
includes not only the purchase price of the electric vehicles themselves which are
often more expensive than their internal combustion engine counterparts but also
the substantial costs associated with building the necessary charging infrastructure
at depots and potentially along routes.

- Operating Expenditures (OPEX): These are the ongoing, recurring costs asso-
ciated with the daily operation of the fleet. Fleet electrification promises consider-
able long-term reductions in OPEX, primarily through lower energy (electricity vs.
fuel) costs and reduced maintenance needs, as EVs have fewer moving parts than
traditional vehicles.

The role of the industrial engineer is to provide a quantitative basis for validating that the
long-term OPEX savings justify the initial CAPEX. This is where optimization becomes
an indispensable tool for strategic financial planning. A key risk in such a large-scale
investment is the misallocation of capital. Simply replacing the existing fleet on a one-
for-one basis fails to account for the different operational characteristics of EVs (e.g., range
limitations, charging times) and misses a critical opportunity for process re-engineering.

Optimization, therefore, serves as a crucial tool for "right-sizing" the investment. The
model developed in this thesis aims to answer the fundamental question: "What is the
minimum number of electric vehicles required to maintain or improve the current level of
service?" By determining this optimal fleet size, the model directly informs the investment
decision, preventing two costly errors:

1. Over-investment: Purchasing too many vehicles leads to underutilized assets and
unnecessary capital expenditure, tying up funds that could be used elsewhere.

2. Under-investment: Purchasing too few vehicles results in a degradation of service
quality (e.g., longer response times), which can lead to larger operational disrup-
tions, decreased customer satisfaction, and ultimately, higher indirect costs.

Ultimately, this work provides a quantitative methodology to support management in
making an informed, data-driven investment decision. It helps justify the significant
expenditure on electrification by demonstrating how an optimally sized and deployed fleet
can meet service objectives efficiently, thereby ensuring that the financial and operational
benefits of this strategic shift are fully realized.

1.1.4 Service Quality and Operational Performance

In public transportation, the ultimate goal of any operational system is to deliver a high-
quality service to its users. From an industrial engineering standpoint, service quality
is not an abstract concept but a set of measurable performance characteristics that di-
rectly impact customer satisfaction and system reliability. For a public transit network,
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key dimensions of service quality include punctuality (adherence to schedules), regular-
ity (consistent intervals between vehicles), and overall reliability (the predictability and
dependability of the service).

Operational incidents such as vehicle breakdowns, traffic accidents causing detours, sig-
nal malfunctions, or passenger-related issues are primary sources of non-quality. These
unplanned events introduce variability and disruptions into the system, leading to delays,
service gaps, and a degradation of the passenger experience. Consequently, the ability to
manage and mitigate the impact of these incidents is a critical component of maintaining
a high level of service quality.

This is precisely where the role of the Operational Supervisor (OS) vehicle fleet becomes
paramount. These vehicles function as an essential corrective action system, dispatched to
resolve disruptions and restore normal operations as quickly as possible. The efficiency of
this response system is, therefore, directly linked to the overall quality of service delivered
by the transit agency. The effectiveness of the OS fleet can be measured by a set of Key
Performance Indicators (KPIs) that are fundamental to industrial engineering and service
management:

- Average Response Time: The time elapsed from the moment an incident is
reported to the arrival of an OS vehicle on the scene. This is a primary driver
of service restoration speed; a lower response time directly translates to a shorter
disruption for passengers.

- Incident Resolution Time: The total time required to manage and clear an
incident. While partly dependent on the nature of the incident itself, it is heavily
influenced by the timely arrival of the OS unit.

- Network Availability /Uptime: The percentage of time the transportation net-
work operates according to its planned schedule. By efficiently resolving incidents,
the OS fleet helps maximize this crucial system-level KPIL.

Therefore, the core problem of optimizing the OS vehicle fleet is not merely a cost-
reduction exercise. It is fundamentally an effort to enhance the operational performance
of the incident response system. Minimizing the response time, which is a central objec-
tive of the model developed in this thesis, is a direct lever for improving the reliability
and punctuality of the entire public transport network, thereby contributing to a higher
standard of service quality for all passengers.

1.1.5 Incident Management and Continuous Improvement

A core tenet of modern industrial engineering is viewing complex operations through
the lens of process management and continuous improvement, concepts popularized by
methodologies such as Lean and Six Sigma. From this perspective, a public transportation
network can be modeled as a large-scale production process where the "product" being
delivered is a reliable and timely mobility service. The success of this process depends on
its stability, predictability, and ability to consistently meet defined quality standards.
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Within this framework, operational incidents (e.g., vehicle breakdowns, unexpected de-
tours) are not just isolated events but are analogous to defects or deviations in a manu-
facturing process. They represent departures from the standard, planned operation and
introduce variability that degrades the final product’s quality. The role of the industrial
engineer, therefore, involves designing systems to manage this variability through two
complementary strategies:

1. Prevention: Implementing proactive measures to reduce the frequency of incidents,
such as robust preventative maintenance schedules for vehicles and infrastructure.

2. Reaction: Establishing an efficient and effective system to respond to incidents
when they inevitably occur, in order to minimize their impact on the overall process.

The work presented in this thesis focuses squarely on the second strategy: optimizing the
reactive system. The Operational Supervisor (OS) vehicle fleet constitutes the primary
mechanism for "process correction."” When a deviation occurs, an OS vehicle is dispatched
to the "point of defect" to diagnose the problem, implement a solution, and restore the
transportation process to its stable state as quickly as possible.

Therefore, the problem of sizing and deploying the OS fleet is fundamentally a problem
of designing an optimal incident response process. An insufficient or poorly deployed fleet
leads to a slow and inefficient correction process, allowing the negative effects of a single
incident (e.g., a bus delay) to propagate and amplify throughout the network. Conversely,
an optimally designed fleet with the right number of vehicles strategically positioned
across the territory ensures that the "correction" process is executed efficiently and at the
lowest possible cost. By providing a quantitative method to right-size and deploy this
critical response asset, this thesis contributes directly to the continuous improvement of
the STM’s core service delivery process, enhancing its resilience and ability to manage
operational disruptions.

1.2 Problem Description: STM case study

1.2.1 Introduction to the STM Context

Public transportation in Montreal boasts a rich history spanning over 150 years, originat-
ing in 1861 with the city’s first horse-drawn trams. The operating entity, now known as
the Société de transport de Montréal (STM), has since evolved into a major public corpo-
ration, progressively introducing buses (since 1919), the metro system (since 1966), and
paratransit services (since 1980). Today, supported by its nearly 10,600 employees [22],
the STM’s official mission is to "develop and offer an essential public service to the Mon-
treal community by delivering a safe, accessible, human, and high-performing mobility
experience, while playing a key role in the fight against climate change" [22].

Aligning with this mission, and under the guidance of its Organizational Strategic Plan
2030 (PSO 2030), the STM has cemented its vision to become a leader in sustainable
mobility. A cornerstone of this vision is the ambitious plan to electrify its entire fleet
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Table 1.1: Overview of STM’s Key Statistics for 2024

Financial Data

Annual Budget 1.8 B$

10-Year Investment 21.1 B$

Credit Ratings Long-term Debt: AA (Standard and Poor’s), Aa2
(Moody’s)
Short-term Borrowing: A-1+ (Standard and Poor’s),
P-1 (Moody’s)

Client Profile

Unique Clients 500,000 per average working day

Female Clients 54%

Student Clients 40%

Place of Residence 82% Montreal, 9% North Shore, 9% South Shore
Workforce

Number of Employees | 10,603

Diversity 42% ethnic minorities, visible minorities, or Indigenous
22.7% women

Company Rank in | 8" largest employer
Quebec

by 2030. This represents a monumental undertaking, given the scale of its operations.
For instance, as of its 2024 report, the bus network alone comprised 1,849 vehicles, of
which only 41 were fully electric [22]. This thesis focuses on another critical component
of this transition: the service vehicles utilized by Operations Supervisors (OS). The elec-
trification of this specific fleet is already well underway, with the STM reporting a 37.8%
electrification rate for its service vehicles in 2024 [22].
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Figure 1.1: Example of a Bus from the STM Public Transport Fleet [2]
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Figure 1.2: Overview of STM Bus Network [2]

The OS vehicles play a pivotal role in maintaining the fluidity and reliability of the bus
network—the "operational performance' that the STM has oriented itself towards [22].
They enable supervisors to intervene quickly across the Island of Montreal to resolve a
variety of issues that could disrupt service, such as unexpected detours, signage problems,
light equipment failures, and passenger-related conflicts. The core mission of the OS team
is to ensure a constant presence across the network, thereby minimizing the negative
impact of these unforeseen events on passengers and contributing to the overall quality
and reliability of Montreal’s public transit system.

1.2.2 Problem Statement and Objectives

As the STM undertakes the ambitious and significant investment of electrifying its entire
vehicle fleet, including both buses and service vehicles, strategic planning is paramount to
ensure both financial prudence and operational excellence. This thesis specifically focuses
on the Operational Supervisor vehicle fleet, aiming to assist the STM in this transfor-
mative process. A key aspect of this assistance is to minimize the capital investment
associated with electrification by determining the optimal fleet size for these specialized
OS vehicles that is, the minimum number of electric vehicles required to effectively satisty
all anticipated operational incidents while maintaining high service standards.
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Figure 1.3: Example of Electric OS Vehicles [3]

When an incident occurs on the bus network, the STM’s Central Operations Center (COC)
is responsible for maintaining service continuity by dispatching the nearest available OS
vehicle to the scene. While this approach ensures a rapid response and is straightforward
to implement, it raises challenges in the context of an electrified fleet, particularly due to
the limited range and charging constraints of electric vehicles.

Figure 1.4 illustrates the key interactions within the STM system. An incident triggers an
intervention request, which is communicated to the COC. The COC then dispatches an
available OS vehicle, initiating both an information flow (from the bus to the COC, then
from the COC to the vehicle) and a physical flow (the vehicle traveling from its current
location or depot to the incident site, and subsequently between incidents or back to a
depot).

The scope of this study focuses on the Island of Montreal, which is geographically divided
into 15 distinct operational sectors as illustrate figure 1.5. The OS vehicles operate from
eight strategically located depots, which serve dual purposes as bus depots and main-
tenance operations centers, including electric charging infrastructure. OS personnel are
typically assigned to one of these depot and work in rotating shifts.
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Figure 1.4: OS vehicle operations and system interactions

The primary objective is to determine the optimal size of the electrified OS service vehicle
fleet and its strategic deployment across depots. This will support the STM in its vehicle
electrification process by identifying the minimal number of vehicles required, considering
the specific constraints of electric vehicle operation, while ensuring the continued efficiency
and responsiveness of its service vehicle fleet.

It is important to clarify that the approach developed in this thesis is not intended as a
real-time operational dispatch system, given the inherently unpredictable nature of inci-
dents in both time and location. Rather, its primary objective is to serve as a strategic
planning tool to optimize the sizing and spatial allocation of the OS vehicle fleet across
depots. This aims to achieve cost-efficient investment decisions without compromising
service quality or responsiveness. Since the core mission of these vehicles is to address
operational incidents, this operational dimension is incorporated into the modeling frame-
work by leveraging incident data, potentially generated by a forecasting model trained
on historical observations, which will be detailed in the next section. The developed tool
also supports post-hoc analysis, enabling the evaluation of ideal fleet sizes and deploy-
ment strategies for effectively managing past incidents, thereby offering valuable insights
for future planning. This work constitutes an initial step toward the development of a
more dynamic, operational system capable of integrating real-time incident data.
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Figure 1.5: STM Depots Across Montreal’s Divided Sectors

1.2.3 Analysis of the Current STM Operational Supervisor Sys-
tem

To gain a comprehensive understanding of the existing operational dynamics of the STM’s
OS vehicle fleet, an analysis of current practices and incident data was undertaken. This
section details observations derived from a representative dataset, focusing on incident
distribution, depot workload, shift patterns, and current dispatching strategies.

For this analysis, operational data from a typical day, encompassing approximately 200
incidents requiring OS intervention, was meticulously examined. To effectively explore
and present the key spatial and operational characteristics inherent in this data, visual-
izations were developed using Microsoft Power Bl. Power BI is a business analytics service
by Microsoft that provides interactive visualizations and business intelligence capabilities
with an easy-to-use interface, enabling users to create their own reports and dashboards.
It allows for the connection to, and transformation of, various data sources into coherent,
visually immersive, and interactive insights.

An example of such a visualization is presented in Figure 1.6. This particular dashboard,
created using Power BI, depicts the geographical distribution of the STM’s depots along-
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side the precise locations of the recorded interventions (incidents) across the Island of
Montreal. Such visual representations are invaluable for gaining an intuitive understand-
ing of demand patterns, depot coverage, and potential areas of operational focus.

Key Observations from Data Analysis:
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Figure 1.6: Analysis of OS Intervention Demand and Depot Workload on a Typical Day

1. Centralized Demand: A prominent observation from Figure 1.6 is the concentra-
tion of demand for OS interventions in the central areas of the island. This spatial
clustering suggests that depots located centrally, or those with service areas covering
these high-demand zones, inherently handle a larger proportion of incidents.

2. Depot Workload and Vehicle Allocation: The visualization also provides in-
sights into the number of OS vehicles assigned to each depot (average of 5 vehicles)
and, consequently, the number of interventions handled by vehicles originating from
these respective depots which change depending on the time period and the sector.
Notably, Depot 5, situated in a geographically central position, appears to manage
a significant portion of the daily incidents.

3. Shift-Based Demand Variation: The OS operations are structured around dis-
tinct shifts. Our analysis indicates a clear variation in incident frequency across
these shifts. Specifically, Shift 2 and Shift 3, which correspond to peak daytime and
evening periods, exhibit a considerably higher volume of interventions compared to
other shifts (e.g., early morning or late night). This temporal variation in demand
has direct implications for vehicle availability and deployment strategies throughout
the day.

4. Current Dispatching Strategy and Routing Inefficiencies: The current dis-
patching protocol employed by the STM appears to prioritize assigning the closest
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available OS vehicle to an incident, irrespective of the vehicle’s designated depot
or optimal routing considerations. This "nearest available" strategy, while simple
to implement, can lead to situations where vehicles travel extensive distances from
their home depot to attend to an incident (in some observed cases, up to 70 km).
This practice indicates a lack of consideration for predefined service zones or depot
assignments in the dispatch decision, and suggests that the current system does not
actively seek to optimize vehicle utilization or minimize overall travel distances for
the fleet.

These observations highlight that while the current system aims for rapid response by
dispatching the nearest unit, it may inadvertently lead to inefficiencies in terms of travel
distances, imbalanced workload distribution among depots (beyond what natural demand
dictates), and suboptimal utilization of the OS vehicle fleet. This analysis underscores the
opportunity and the need for a more strategic approach to fleet sizing, deployment, and
potentially dispatching, particularly as the STM transitions to an electrified fleet with
its inherent range and charging considerations. The objective of our work, therefore, is
to develop a framework that addresses these inefficiencies by optimizing the deployment
and sizing of the OS vehicle fleet to better match demand patterns and improve overall
operational performance.

The STM evaluates the performance of its OS interventions through a set of key perfor-
mance indicators, which this study seeks to influence positively. These metrics offer a
quantitative foundation for analyzing operational efficiency, service quality, and resource
allocation. They are presented below in descending order of strategic importance to the
company, from the most critical to the least:

1. Overall Fleet Size: Refers to the total number of vehicles available. A smaller
fleet reduces capital and operational costs but must be large enough to ensure quick
and effective responses to incidents.

2. Average Fleet Utilization: Measures how actively vehicles are used (e.g., number
of incidents handled or time spent on service). High utilization indicates efficiency,
but excessive levels may overwhelm the system.

3. Average Response Time: The average time between an incident report and
vehicle arrival. It reflects service quality and is impacted by fleet size and how well
vehicles are deployed.

4. Average Traveling Time: The average time vehicles spend traveling to incidents.
Lower travel time reduces costs (e.g., energy, wear and tear) and improves availabil-
ity for future tasks.

5. Average Waiting Time: The time incidents must wait for an available vehicle
when all are occupied. Long waiting times may signal inadequate fleet size or
inefficient deployment strategies.

6. Total Daily Distance Traveled: The cumulative distance covered by all vehicles
in a day. Reducing this metric helps cut costs, conserve energy, and minimize
environmental impact.
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In our work, we aim primarily to optimize the most critical indicator the overall fleet size
as it has the greatest impact on cost and strategic planning. At the same time, we strive
to take into account the other indicators to ensure a balanced and effective operational
performance.

1.2.4 Forecasting Approach for Incident Occurrence

A fundamental input for effectively planning and optimizing the OS vehicle fleet is the
forecasted incident demand. Given the inherently unpredictable nature of when and
where incidents will occur, and since our objective is to determine the optimal fleet size,
we adopt a deterministic approach for the optimization model. To support this, we utilize
an existing incident forecasting model previously developed for the STM. This model was
built using four years of historical incident data provided by the STM, encompassing key
information such as the time and date of each incident, its location, the duration of the
intervention (service time), the specific OS vehicle and depot involved, and other relevant
operational details.

The primary output of this forecasting model, relevant to our study, is the prediction
of future incident occurrences specifically their expected timing and spatial distribution.
Although our optimization model does not account for the dynamic or stochastic nature
of real-time demand, these forecasts serve as a critical input to inform strategic decisions
regarding fleet sizing and deployment.
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Figure 1.7: Demand Forecasting Model

1.3 Conclusion

This chapter has laid the essential groundwork for this thesis by providing a comprehen-
sive description of the operational challenge faced by the STM concerning its OS vehicle
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fleet, particularly in light of its ambitious electrification goals. The core problem ad-
dressed in this study has been clearly defined: to determine the optimal fleet size for the
electrified OS vehicles and their most effective deployment across the STM’s eight depots
on the Island of Montreal. This strategic decision aims to minimize operational costs and
ensure efficient incident response, directly supporting the STM’s objectives of maintain-
ing service reliability while transitioning to a more sustainable fleet. Key performance
indicators, including overall fleet size, average fleet utilization, response times, and total
distance traveled, have been identified as crucial metrics for evaluating the success of any
proposed solution. Furthermore, a set of operational assumptions has been outlined to
define the scope and boundaries of the problem, enabling a focused and tractable analysis.
An analysis of the current OS operational system, supported by data from a typical day
of operations, revealed several key insights. These include the current "nearest available'
dispatching strategy. This strategy, while simple, often leads to extensive travel distances
for individual vehicles. Crucially, since the spatial and temporal distribution of incidents
directly affects the number of vehicles needed and their operational efficiency, understand-
ing how vehicles will serve sequences of interventions essentially, their routing based on
forecasted demand becomes an important consideration for effective planning and better
vehicle utilisation performance. The insights gained from this chapter underscore a clear
opportunity for developing a strategic-operational tool to support the decision making
and assist STM in this transition. Specifically, this research will focus on addressing three
interconnected decisions:

1. Optimal Fleet Sizing: Determining the minimum number of electrified OS vehi-
cles required to meet forecasted service demands.

2. Optimal Fleet Deployment: Strategically allocating these vehicles across the
available depots to minimize response times, enhance overall network coverage, and
balance workload.

3. Efficient Vehicle Routing: While not developing a real-time dynamic routing sys-
tem, the planning framework must consider how deployed vehicles would efficiently
cover sequences of forecasted incidents to accurately assess fleet requirements and
deployment effectiveness.
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Chapter 2

Literature Review

This chapter provides a comprehensive understanding of key concepts related to our study,
beginning with a review of similar problems found in the literature, particularly in the
context of emergency vehicle management, as they offer valuable insight to treat our prob-
lem. We will then explore foundational problems that are central to our research, such
as facility location, fleet sizing, vehicle allocation, deployment, dispatching, and routing.
These problems form the core of the operational challenges faced in fleet management and
are essential to our study of the STM’s electrified service vehicle optimization. Further-
more, we will examine the methods most commonly used to solve these types of problems,
including classical optimization techniques and more recent advancements. This review
will highlight existing approaches and their limitations, particularly in relation to the
specific context of electrified operational support vehicles, to frame the contribution of
our research.
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2.1 The Challenge of Combinatorial Optimization and
NP-Hardness

Many real-world optimization problems, especially in logistics, scheduling, and network
design, involve discrete decision variables (e.g., whether to use a vehicle, which route to
select, whether to open a facility). These fall under the umbrella of combinatorial op-
timization, a subfield of mathematical optimization concerned with finding an optimal
object from a finite, or countably infinite, set of objects, where the set of feasible solu-
tions is discrete. Classic examples include the Traveling Salesman Problem (TSP), the
minimum spanning tree problem, and the knapsack problem. The primary challenge in
combinatorial optimization lies in its computational complexity. As the size of a problem
instance increases (e.g., the number of cities or incidents), the number of possible solu-
tions can grow exponentially or even factorially. This "combinatorial explosion" makes
an exhaustive search for the optimal solution computationally infeasible for all but the
smallest instances.

A critical aspect of studying these problems is understanding their formal computational
complexity, which relates to the resources, particularly time and memory, required by an
algorithm to solve a problem instance. While some problems are considered "tractable"
and can be solved by algorithms whose runtime grows polynomially with the input size
(these belong to the complexity class P), many important combinatorial optimization
problems belong to a class known as NP-hard problems [23, 24]. For NP-hard problems,
no known algorithm can find an optimal solution in polynomial time for all instances
(unless P=NP, a major open question in computer science). When linear programs are
restricted by requiring some or all variables to take on integer values, they become Integer
Linear Programs (ILPs) or Mixed-Integer Linear Programs (MILPs), which are, in their
general form, NP-hard.

The NP-hard nature of problems like vehicle routing and facility location, which are cen-
tral to this thesis, has profound implications for developing solution methods. It means
that there is often little hope of finding a complete polyhedral characterization that would
allow them to be solved as easily and efficiently as standard Linear Programs (LPs) [23].
This inherent difficulty necessitates the development of specialized approaches. Conse-
quently, the field has developed two main streams of solution methodologies. The first
involves exact algorithms, such as branch-and-bound and cutting plane methods, which
guarantee finding the optimal solution but may still have exponential worst-case runtimes.
The second stream involves approximate methods, such as heuristics and metaheuristics,
which forgo the guarantee of optimality in exchange for finding high-quality solutions
within a reasonable computational timeframe. Linear Programming relaxations, where
integer constraints are temporarily ignored, have been a foundational technique since the
1960s, often serving as a basis for both exact and approximate algorithms [23].

This inherent complexity underscores the fine line often observed between "very easy"
(polynomially solvable) problems and "very hard" (NP-hard) problems, even when they
appear structurally similar [24]. Understanding this landscape of computational complex-
ity is therefore crucial for selecting, designing, and evaluating the solution methodologies
for the optimization challenges addressed in this thesis.
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Figure 2.1: NP Problems [4]
2.2 Introduction to Fleet Management

Fleet management refers to the coordinated administration and optimization of a group
of vehicles used for transporting goods or passengers. It encompasses a wide range of
activities such as vehicle acquisition, maintenance, fuel management, routing, driver su-
pervision, and compliance with regulations. The primary objective of fleet management is
to ensure that transport operations are carried out efficiently, cost-effectively, and reliably
while meeting service quality and safety standards.

In the context of both private logistics companies and public transportation agencies, fleet
management plays a vital role at tactical and operational levels. It is especially critical
for aligning available resources with fluctuating customer demand, ensuring punctuality,
and minimizing environmental and financial costs.

To address these complex objectives, various mathematical models and computational
methods have been developed to support the planning and execution of fleet operations.
These methods often aim to optimize vehicle routing, scheduling, and allocation prob-
lems that typically fall into the category of combinatorial optimization. Such problems,
including the well-known VRP and Vehicle Scheduling Problem (VSP), are notoriously
difficult to solve due to their large solution spaces and operational constraints. More-
over, dynamic fleet management introduces additional challenges, as it requires real-time
decision-making to respond to unexpected events such as traffic congestion, equipment
failures, or emergency incidents. In this setting, systems must adapt rapidly while pre-
serving service reliability and efficiency [25].

As transport systems evolve particularly through digitalization, automation, and electri-
fication, fleet management is becoming increasingly sophisticated. These technological
advancements offer new opportunities for improving sustainability, reducing emissions,
and enhancing operational resilience. Consequently, modern fleet management is not
only a logistical necessity but also a strategic lever for achieving broader environmental
and societal objectives.
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2.3 Fleet Management of Emergency Service Vehi-
cles

Effective fleet management is a critical challenge within emergency service systems, which
operate under demanding, time-sensitive, and often uncertain conditions. These systems
encompass a variety of crucial services, including ambulance dispatch, fire department
operations, traffic incident response, and disaster relief efforts. Efficiently managing these
diverse fleets involves grappling with complex decisions across multiple domains. Key
problem areas in this field address facility location, vehicle deployment to bases, as-
signment of service providers to demands, real-time dispatching of units, and proactive
relocation of available resources [26, 27].

Figure 2.2: Examples of emergency vehicles [5]

Successfully tackling these issues is paramount for achieving primary system objectives,
which consistently include minimizing response times, maximizing coverage of the service
area, and optimizing the utilization of valuable resources [28, 29, 30]. Research often
considers these problems within a multi-level planning hierarchy, distinguishing between
strategic (long-term), tactical (medium-term), and operational (short-term) decision hori-
zons [31, 32, 33]. The specific operational context can vary significantly depending on the
type of service; for instance, the operational environment and typical stationing points
for freeway emergency vehicles differ from those for ambulances or fire trucks based at
static stations [34]. Furthermore, decision-making in this domain often relates to or builds
upon established frameworks from areas such as vehicle routing problems and coverage
problems [35], sometimes specifically addressing the routing of vehicles that may handle
sequential tasks [36]. Given the inherent complexity and dynamic nature of emergen-
cies, sophisticated modeling approaches, including mathematical programming, queueing
theory, and various simulation techniques (such as discrete event simulation), are widely
employed to analyze system performance and derive optimal strategies [37, 38, 39, 26].
To provide a structured understanding of this domain, the fundamental problems treated
in this context are detailed in the subsequent subsections.

2.3.1 Facility Location Problem

One of the fundamental decisions in the design and operation of emergency service sys-
tems, directly impacting efficiency and response times, is the strategic placement of facili-
ties or bases from which vehicles are dispatched. The formal study of facility location has
a rich history, often traced back to the early 20th century with Alfred Weber’s work in
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Figure 2.3: Maximal covering location problem [6]

1909, which addressed the problem of determining the optimal site for a single warehouse
to minimize transportation costs to customers [40]. This foundational concept spurred
interest, which was significantly revitalized in the 1960s by researchers like Hakimi (1964).
Hakimi extended location theory to network-based problems, motivated by practical appli-
cations such as positioning switching centers in communication networks or police stations
along highways. His work explored the general problem of locating one or more facilities
on a network to minimize either the total distance to the closest facility or the maximum
such distance to any point on the network.

Since these pioneering efforts, the field of location theory has flourished, becoming a well-
established area of operations research with over a century of development [41]. While
initial formulations were often static and deterministic, focusing on single objectives like
minimizing distance or cost, the field has evolved to address more complex scenarios in-
volving uncertainty, dynamics, and multiple conflicting objectives, particularly relevant
for public service and emergency contexts [40]. Within this domain, several core problem
formulations have been extensively studied and applied, serving as the basis for determin-
ing optimal facility sites in various service systems. These fundamental models include:

- Covering models: These models are focused on ensuring service accessibility
within a predefined standard, typically a maximum allowable response time. Two
prominent variants are the Set Covering Problem, which identifies the minimum
number of facilities needed to ensure that all demand points are within the service
time standard, and the Maximal Covering Problem, which aims to locate a fixed
number of facilities (P) to maximize the total demand covered within that stan-
dard. These models are essential for establishing and maintaining minimum service
guarantees and equitable coverage.

- The P-median problem: This classic problem seeks to locate a fixed number of
facilities (P) such that the sum of the distances (or weighted distances, representing
travel time or cost) between each demand point (e.g., potential incident location)
and its nearest assigned facility is minimized. In the context of emergency services,
the P-median objective often translates to minimizing the total system-wide travel
time to incidents, aiming for overall operational efficiency.
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- The P-center problem: This problem addresses the worst-case response by se-
lecting the location of P facilities to minimize the maximum distance (or travel
time) from any demand point to its closest facility. The P-center objective is partic-
ularly important in emergency services for minimizing the longest possible response
time across the entire service region, thereby focusing on equity and guaranteeing a
minimum level of accessibility for all areas.

The P-median, P-center, and various covering problems (such as Set Covering and Max-
imal Covering) represent foundational models in facility location theory, each addressing
distinct strategic objectives. These classical formulations often serve as a starting point for
understanding location decisions. However, real-world applications frequently necessitate
extensions and variations of these basic models to incorporate more specific operational
requirements and constraints. For instance, if the assumption in the standard P-median
problem that facilities have unlimited capacity is not realistic, and facilities (e.g., depots)
are indeed capacity-constrained, the problem evolves into a capacitated variant. One of
the most well-known and widely studied extensions addressing this is the Capacitated Fa-
cility Location Problem (CFLP), which explicitly considers both the fixed costs of opening
facilities and their finite service capacities.

The Capacitated Facility Location Problem can be introduced with the following nota-
tions:let I be the set of customers and J the set of potential facility locations. Each
customer ¢ € I has a demand h;, and each facility j € J has a capacity S; and a fixed
opening cost f;. The cost of serving customer ¢ from facility j is denoted by ¢;;. Addi-
tionally, at most p facilities can be opened.

The decision variables are: Y; = 1 if a facility is opened at site j, and X;; = 1 if customer
1 is assigned to facility j.
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This model aims to minimize the total cost, which includes the fixed costs of opening
facilities and the variable costs of assigning customers. The constraints ensure that the
number of opened facilities does not exceed p, each customer is assigned to exactly one
facility, and the total demand assigned to any open facility does not exceed its capacity.

2.3.2 Fleet Deployment Problem

The fleet deployment problem is a critical operational and tactical challenge addressed
extensively across various domains in academic literature. It fundamentally concerns the
optimal allocation and assignment of a finite set of resources (the fleet) to meet a given set
of demands or tasks, typically under specific constraints and objectives. The perspectives
on this problem vary depending on the sector, the specific decisions being made, and the
primary goals of the organization.

In the maritime industry, particularly liner shipping, fleet deployment is a well-studied
area. For instance, [42] describe the problem as determining an optimal strategy for as-
signing a shipping company’s vessels to a defined set of voyages for an upcoming planning
horizon. This involves not only assigning vessels to voyages to ensure all are served at min-
imum cost but also determining the sequence of voyages each vessel will undertake. The
possibility of chartering additional vessels to cover capacity shortfalls is also often consid-
ered. Reinforcing this, [43] state that in liner shipping, fleet deployment aims to assign
ships to port rotations in a way that either maximizes profits or minimizes operational
costs. From a broader merchant shipping perspective, [44] note that fleet deployment
encompasses a wide array of issues, including fleet operations, scheduling, routing, and
even aspects of fleet design, all typically guided by economic criteria such as profitabil-
ity, income, or cost reduction. Even earlier, addressing bulk carrier management, [45]
highlighted the challenge of managing excess transport capacity, where decisions include
which ships to operate versus keep idle, or even sell or charter out, alongside strategies
like slow steaming to optimize profitability while meeting customer demands.

The fleet deployment problem is not confined to maritime logistics. In the context of
modern mobility solutions like EV sharing systems, [46] identify fleet deployment as a
crucial tactical planning issue, distinct from daily operational concerns like fleet rebal-
ancing. Here, planning decisions include determining station locations, overall fleet size,
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and the strategic deployment of vehicles across these stations. This perspective, which
emphasizes the number and initial placement of vehicles, is also echoed in the domain of
emergency services. For example, [26] frame the deployment problem for emergency med-
ical services as one that optimizes the number of ambulances hosted at each designated
station to ensure efficient response capabilities.

Across these diverse applications, the fleet deployment problem often involves a core set
of decisions: determining the appropriate number of vehicles or vessels (fleet sizing),
allocating these units to specific bases or stations, and assigning them to tasks, routes,
or service areas. The overarching goal is typically to enhance efficiency, minimize costs,
maximize service levels, or improve profitability, making it a cornerstone of operational
research and management science.

2.3.3 Assignment Problem

The assignment problem stands as a cornerstone in the field of optimization and oper-
ations research. As noted by [47], it was among the first linear programming problems
to be extensively studied. Its enduring relevance stems from its frequent occurrence in
practical applications and its fundamental role within network flow theory, underpinning
a variety of other significant problems such as the shortest path, weighted matching,
transportation, and minimum cost flow problems [47]. Broadly, the assignment problem
addresses the challenge of allocating a set of resources to a set of tasks in the most efficient
manner. [12] describe it as the minimization of the cost associated with assigning N tasks
to M machines or agents, where each task is assigned to precisely one machine, subject to
the capacity constraints of the machines. The versatility of this problem is evident in its
wide range of applications across diverse domains, including facility location, transporta-
tion networks, communication systems, machine scheduling, and vehicle routing problems
[12]. A specific instance of this can be seen in emergency services, where, as [26] point
out, the assignment problem can involve determining which serving stations are assigned
to respond to specific demands. [48] characterizes the assignment problem as a classic
example of a combinatorial problem for which efficient algorithms exist. A common il-
lustrative scenario involves assigning the best person for each task. In this setup, there
are n persons available to perform n distinct tasks, and a cost, denoted as , is associated
with assigning person ¢ to task j. The objective is to find an assignment that minimizes
the total cost. [48] present the following mathematical formulation for this problem:

mxin Z = Z Z Cij Lij (27)

i=1 j=1
S.C. zn:x” = 1,VZ: 1,...,71 (28)
j=1
1=1
vy €{0,1},¥i,j=1,...,n (2.10)
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Figure 2.5: Linear Assignment Problem [§]

Here, is a binary decision variable that equals 1 if person is assigned to task , and 0
otherwise. The first set of constraints ensures that each person is assigned to exactly one
task, while the second set ensures that each task is performed by exactly one person.

2.3.4 Dispatching Problem

Dispatching represents a crucial operational decision process, particularly prominent in
service systems that require timely responses to incoming demands. It involves the real-
time allocation of available resources (e.g., vehicles, personnel) to incoming requests or
tasks. In the context of emergency medical services (EMS), [28] describe the ambulance
dispatching model as one that allocates emergency calls to vehicles based on their loca-
tion. Similarly, [49] define dispatching as the act of selecting which ambulance to send
to an emergency call. The inherent nature of these problems often aligns with what [50]
described as "online” and “real-time” optimization, where decisions must be made sequen-
tially as new information (e.g., new service requests) arrives, often without full knowledge
of future events.

The dispatching process itself, especially in emergency contexts, involves a sequence of
well-defined steps. As detailed by [51], the process typically begins when a request is
received and logged by a dispatcher. This initial phase involves gathering relevant data
and determining the priority of the call. Once a request is processed and if a suitable idle
vehicle is available, it is assigned to the task and is expected to proceed to the incident
location. The overall time taken for this dispatching action includes periods for informa-
tion gathering, identifying the appropriate resource, and any necessary preparation for
the crew or vehicle. Following travel to the scene, the assigned unit provides the required
service. Upon service completion, the unit then departs the scene, potentially proceeding
to another destination such as a hospital if applicable [51].

The challenge of dispatching, while extensively studied in EMS, is not limited to this
domain. It is also a key consideration in other transportation systems, such as the op-
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Figure 2.6: Illustration of the Ambulance Dispatching Process in Emergency Medical
Services [9]

erational dispatching of buses [52] and the real-time dispatching of trains [53]. Across
these applications, the core objective remains the efficient and effective assignment of
operational units to demands as they arise.

2.3.5 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a cornerstone of combinatorial optimization and
logistics, with its origins tracing back to the seminal work of [54]. It addresses the chal-
lenge of designing optimal routes for a fleet of vehicles, typically originating from and
returning to a central depot, to serve a set of geographically dispersed customers. The
primary objective is often to minimize total travel distance or cost, while adhering to
various constraints such as vehicle capacity and ensuring each customer is visited exactly
once. The VRP is known to be NP-hard, meaning that finding an exact optimal solution
becomes computationally intractable for large-scale instances, yet its practical applica-
tions are widespread, including goods distribution, waste collection, and parcel delivery
[55].

Given its broad applicability, numerous VRP variants have been developed to address
specific operational complexities encountered in real-world scenarios. A general mathe-
matical formulation for the VRP can be described as follows: V' = {vg, v1,...,v,} be the
set of nodes, where vy represents the depot and (v, ..., v,) represent the customers. Let
c;j be the cost of travel between node ¢ and node j The binary variable J;Z equals 1 if
vehicle k travels directly from node ¢ and node 5 and 0 otherwise. The objective is to:

kEK i€V jeV,it]
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Subject to various constraints, including:

Each customer is visited exactly once by one vehicle.

All routes start and end at the depot.

Vehicle capacity constraints are respected.

Subtour elimination constraints.

The precise formulation and constraints will vary significantly depending on the specific
VRP variant being addressed.

2.3.5.1 Vehicle Routing Problem with Time Windows (VRPTW)

The Vehicle Routing Problem with Time Windows (VRPTW) is a significant extension
of the classic Vehicle Routing Problem (VRP), where each customer must be serviced
within a predefined time interval, known as a time window |[e;, [;]. Here, e; represents the
earliest service start time and [; the latest service start time for customer . This added
temporal constraint, requiring adherence to specific service periods, significantly increases
the problem’s complexity compared to the basic VRP [55].

The primary objective in VRPTW typically remains the minimization of total travel
distance or operational cost, while ensuring that all customers are served within their
respective time windows and that vehicle capacities are not exceeded.

A key set of constraints in VRPTW formulations ensures that the arrival time at a
customer, say a;, respects the time window and logically follows from the departure from
a preceding customer ¢ (with service time s; and travel time ¢;; from ¢ to j). This can be
represented conceptually as:

a; > a; +s; +t; (if arc (4,7) is used by the same vehicle) (2.12)

€j S aj S lj (2].3)

The VRPTW has been extensively studied, with numerous exact and heuristic algorithms
proposed for its solution, reflecting its importance in real-world logistics.

2.3.5.2 Multi-Depot Vehicle Routing Problem with Time Windows (MDVRP-
TW)

Many practical logistics operations involve not just a single central depot but multiple
distribution centers from which vehicles are dispatched. The Multi-Depot Vehicle Rout-
ing Problem (MDVRP) addresses such scenarios where a company operates from several
depots to serve its customers [56]. In the MDVRP, each vehicle is typically assigned to
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a specific origin depot, and its route must start and end at that designated depot. This
introduces an additional layer of complexity, as the problem involves simultaneously as-
signing customers (or service areas) to depots and then constructing optimal routes for
vehicles from those assigned depots.

When the constraints of customer time windows are integrated with a multi-depot op-
erational structure, the problem evolves into the Multi-Depot Vehicle Routing Problem
with Time Windows (MDVRPTW). This variant, illustrated in Figure 2.7 and with key
time points shown in Figure 2.8, considers both multiple dispatch locations and strict
service time intervals for customers simultaneously [57]. In the MDVRPTW, each vehicle
originates from and must return to one of several available depots, and every customer
must be served within their specified time window. This problem formulation is highly
relevant for organizations with distributed logistics networks that are committed to meet-
ing stringent service level agreements regarding delivery or service times. The primary
goal in MDVRPTW is to minimize overall operational costs (such as total travel distance
or the number of vehicles deployed) while satisfying all depot assignment, vehicle capac-
ity, route continuity, and customer time window constraints. Due to its compounded
complexity arising from both multi-depot operations and time window restrictions, the
MDVRPTW remains an active and challenging area of research in operations research
and combinatorial optimization [10].
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Figure 2.7: MDVRPTW Illustration [10]
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2.3.5.3 Electric Vehicle Routing Problem (EVRP)

The increasing adoption of electric vehicles (EVs) in logistics and transportation has given
rise to the Electric Vehicle Routing Problem (EVRP) and its many variations. Unlike
conventional VRPs that primarily focus on minimizing distance or time with fuel being a
less restrictive constraint, the EVRP must explicitly account for the limited driving range
of EVs and the operational necessity for recharging [58, 55]. This introduces new sets of
decision variables and constraints related to:

- Battery capacity and energy consumption rates, which can be influenced by factors
such as vehicle load, speed, terrain, and ambient temperature.

- The strategic location and operational availability of charging stations.

- The time required for recharging, which can vary significantly based on the type of
charger (e.g., Level 2, DC fast charger) and the battery’s state of charge.

- Policies regarding charging, such as whether partial or full charging is permitted or
optimal.

The objective in EVRPs often involves minimizing total operational costs, which may
include not only travel costs (related to energy consumption) but also costs associated
with charging, battery degradation over time, and potentially the cost of time spent
charging. EVRPs can also incorporate additional complexities such as customer time
windows (leading to the E-VRPTW), multiple depots (MD-EVRP), and heterogeneous
fleets. Effectively addressing the EVRP is crucial for the efficient, economically viable,
and sustainable deployment of electric vehicle fleets. Recent research continues to explore
sophisticated extensions, including applications in on-demand electric bus routing [59]
and the integration of autonomous delivery EVs [60], reflecting the evolving landscape of
electric mobility.
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To address STM’s challenge, the literature on emergency vehicle management offers valu-
able insights. Researchers have long examined problems analogous to STM’s, including
those encountered in ambulance, fire truck, and other emergency service operations. In
this context, the literature is generally divided into several interconnected problems: loca-
tion, deployment, assignment, dispatching, and relocation. The location problem focuses
on identifying the best sites for stations, while the deployment problem determines the
number of vehicles that should be stationed at each location. The assignment problem
determines which service areas or demand zones are covered by which stations, and the
dispatching problem decides which vehicle is sent to respond to an incident [26]. Addition-
ally, the relocation problem involves repositioning idle vehicles to reduce future response
times. In the realm of traffic emergency systems, [27] defines deployment as the process
of allocating vehicles to stations, and dispatching as the real-time decision of sending a
vehicle to meet an incident demand. [28] further emphasizes that most dispatching mod-
els assign tasks to the nearest available resource, a strategy also highlighted by [29], who
notes that recent work has increasingly focused on the joint problem of dispatching and
proactive relocation to enhance overall coverage.

These operational issues are closely linked to strategic planning. According to the clas-
sification proposed by [31], decision-making can be divided into three levels: first, there
is the strategic level with long-term decisions involved such as station location and fleet
sizing. Second, the tactical level is covering medium-term issues like baseline deployment
and shift scheduling. Finally, the operational level is focusing on short-term decisions
like dispatching and dynamic relocation. This classification is considered in [32] and [33]
with strategic decisions laying the groundwork for operational efficiency by determining
where vehicles should be stationed, while operational decisions ensure that vehicles are
dispatched and, if necessary, redeployed effectively in real time.

Recent reviews, such as that by [37], indicate a trend towards integrated approaches.
These models combine multiple methodologies often sequentially or iteratively to harness
the strengths of each, thereby optimizing both deployment and dispatching simultane-
ously. This integrated perspective is particularly relevant for STM’s challenge of managing
an electric fleet to improve performances.

Because of the dynamic and uncertain conditions, simulation modeling has emerged as a
crucial tool. Researchers employ various types of discrete event simulations [38], contin-
uous, hybrid, Monte Carlo, and agent based [30] to capture the uncertainty inherent in
emergency scenarios. Simulations help in two main ways: by assessing the impact of pa-
rameter changes on system performance and by evaluating the robustness of mathematical
programming solutions [37]. Others stochastic approaches, such as queuing theory and
Markov decision processes, provide additional insights into system dynamics and response
times [26, 39).

Compared to similar studies in emergency services where the primary objective is mini-
mizing rescue time due to its direct impact on saving lives, our research takes a distinct
approach. Our study focuses on optimizing the fleet size of STM’s electric service vehicles.
This decision is crucial from an operational perspective: for instance, if multiple incidents
occur simultaneously or if there is a consistent pattern in incident frequency, the STM
must avoid unnecessary capital expenditure on acquiring redundant vehicles. Therefore,
our goal is to reduce investments by integrating long-term strategic decisions with short-
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term operational ones. In addition to the decisions related to fleet sizing, deployment and
dispatching, the routing of service vehicles plays an equally critical role at the operational
level. Although the classic VRP primarily focuses on minimizing routing costs [63] and
has evolved to include numerous practical constraints such as vehicle capacity, time win-
dows, and multi-trip operations [35] its adaptations in the emergency response context
have been less extensively explored. For example, [36] emphasizes that while research in
disaster response typically concentrates on stationing and dispatching ambulances, only
limited attention has been paid to ambulance routing, particularly when multiple pick-ups
are involved. In our framework, however, the routing of STM’s service vehicles is crucial
since a single vehicle may respond to several incidents during the same shift. Drawing
inspiration from the MDVRP-TW [64, 57], our model leverages established routing prin-
ciples to efficiently manage the complex interplay between multiple depots, dispatching,
and time window constraints driven by the incident’s occurrence date and the need for
prompt intervention while also accommodating multi-incident pickups.

Table 2.1 presents a comparative overview of related works, highlighting the nature of the
challenges tackled, the methodological approaches adopted, and the distinctive aspects
of our contribution most notably, the adoption of a multi-objective optimization model.
Our work introduces a strategic decision-support tool for operations planning, aiming
to minimize response times when feasible while simultaneously optimizing fleet size to
balance cost-efficiency with demand satisfaction.

Despite the extensive focus on emergency vehicle deployment and dispatching, to the best
of our knowledge, no previous work has specifically addressed the optimization of electric
fleet sizing, deployment and routing under urban operational conditions for public transit
operations, while simultaneously considering both strategic and operational challenges.
This study aims to fill this gap. Our contribution lies in formulating a real-world problem
and developing a novel mathematical model that incorporates detailed factors such as
incident timing and location, travel times, distances, and the specific constraints of electric
vehicles.

2.4 Demand Forecasting in Operational Planning

Effective operational planning, particularly for strategic decisions such as fleet sizing,
resource allocation, and service deployment, is critically dependent on accurate forecasts
of future demand. As highlighted by [65], demand forecasting is a crucial component for
any organization aiming to predict and estimate future requirements to facilitate better
decision-making. In the context of the STM’s Operational Supervisor (OS) vehicles,
"demand" translates to the anticipated number, timing, and geographical distribution of
incidents necessitating OS intervention. Generating reliable forecasts, often at a granular
level (e.g., hourly or by shift) over a defined planning horizon, is essential for aligning
OS vehicle availability with expected service calls, thereby optimizing response times and
overall operational efficiency [66].

The field of demand forecasting, a key area of predictive analytics, controls numerous
downstream activities in service and supply chain management. Accurate projections
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inform decisions on capacity expansion (e.g., fleet size), resource allocation (e.g., vehicle
deployment to depots), and can even influence longer-term strategic planning. While
advanced technology enables the dissemination of real-time data, forecasting remains
vital for proactive planning to remove bottlenecks and ensure the efficient use of resources.
The literature presents a spectrum of methodologies, from traditional statistical models
to more contemporary machine learning and hybrid approaches [65].

2.4.1 Time Series Forecasting Methods

Many established forecasting techniques analyze historical time series data to identify
underlying patterns such as trends, seasonality, and cyclical variations, which are then
extrapolated to predict future values. The choice of method often depends on the char-
acteristics of the data. [65] categorize these traditional statistical models as one of the
main approaches to demand forecasting. Some commonly employed methods include:

- Simple Averages and Moving Averages: These fundamental techniques provide
a baseline. A simple average uses the mean of all historical data. A Moving Average
(MA) smooths out short-term fluctuations by calculating the average of a fixed
number of recent observations, giving equal weight to each.

- Linear Regression: As described in [66] (implicitly, as they use regression mod-
els R1, R2, R3), regression models can be used to establish relationships between
the demand (dependent variable, e.g., number of incidents) and various influencing
factors (independent variables, e.g., time, day of week, special events, promotions).
For instance, their R1 model considers variables like special days and promotions,
R2 adds weekly partial-regressive terms, and R3 incorporates monthly and weekly
dummy variables to capture seasonality [66]. This allows for the modeling of trends
and the impact of external factors.

- Exponential Smoothing Methods: This family of methods assigns exponentially
decreasing weights to past observations, giving more importance to recent data.

o Simple Exponential Smoothing (SES): Suitable for data with no clear
trend or seasonality, it computes a weighted average where weights decline
exponentially for older data [66, 65].

o Holt’s Linear Trend Method: An extension of SES, Holt’s method is de-
signed for time series exhibiting a linear trend. It uses two smoothing param-
eters for the level and the trend of the series [66, 65].

o Holt-Winters Method (Triple Exponential Smoothing): This powerful
method extends Holt’s approach to incorporate seasonality, in addition to level
and trend [66, 65]. It is well-suited for time series with regular seasonal patterns
(e.g., incidents varying by time of day, day of week, or month). The Holt-
Winters equations can be adapted for additive seasonality (where seasonal
variations are roughly constant) or multiplicative seasonality (where seasonal
variations are proportional to the series level) [66].
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- ARIMA Models (Autoregressive Integrated Moving Average): Also known
as the Box-Jenkins method, ARIMA models are a comprehensive class of statistical
models for analyzing and forecasting time series data. They combine autoregressive
(AR) components (where the variable depends on its own past values) and moving
average (MA) components (where the variable depends on past forecast errors),
along with an integration (I) component to make the series stationary if needed [66,
65]. These models are quite robust for data that is non-stationary after differencing.

2.4.2 Advanced and Hybrid Forecasting Approaches

While classical methods are foundational, the increasing complexity of demand patterns
and the availability of richer datasets have spurred the development and application of
more advanced techniques.

- Machine Learning Models: [65] discusses various machine learning models for
forecasting, including regression variants (like Poisson regression for count data,
Lasso regression for high-dimensional data), Support Vector Regression (SVR), and
tree-based ensemble methods like XGBoost. These models can often capture com-
plex non-linear relationships and interactions between variables more effectively
than traditional statistical models.

- Deep Learning Models: Models like Long Short-Term Memory (LSTM) net-
works, a type of recurrent neural network, have gained popularity for time series
forecasting due to their ability to learn long-range dependencies and handle volatile
demand scenarios effectively [65]. Generative Adversarial Networks (GANs) have
also been explored for time series generation and prediction [65].

- Ensemble Learning and Hybrid Models: Recognizing that individual models
may not always perform optimally across all conditions, ensemble learning tech-
niques combine the predictions of multiple diverse forecasting models to produce a
more robust and often more accurate final forecast [66]. [66] specifically proposes
a new heuristic ensemble approach for retail demand forecasting, which involves
calculating a weighted average of MAPE (Mean Absolute Percentage Error) from
different algorithms for previous weeks and adjusting weights accordingly. The idea
is that different algorithms might be "champions" for different products or time peri-
ods. Hybrid models, which sequentially combine different approaches (e.g., ARIMA
with a neural network to model residuals), are also a common strategy to leverage
the strengths of various techniques [65].

The selection of an appropriate forecasting methodology depends on several factors, in-
cluding the specific characteristics of the demand data (e.g., presence of trend, seasonality,
intermittency, volatility), the nature of influencing factors [66], the forecast horizon, data
availability, and the desired trade-off between model complexity, interpretability, and pre-
dictive accuracy. For the STM context, predicting the spatio-temporal occurrence of inci-
dents will likely benefit from models that can capture seasonality, trends, and potentially
the impact of external events.
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2.5 Solution Approaches in the Literature

The majority of studies addressing transportation-related challenges, researchers employ
tools and techniques rooted in combinatorial optimization. These solution methods are
broadly classified into two main categories, as depicted in Figure 2.9. On one hand, exact
methods are designed to find and rigorously prove the optimality of a solution. However,
for many practical problems, particularly those of significant scale, the computation time
required by these methods can increase exponentially with problem size. Consequently, on
the other hand, approximate methods (often referred to as heuristics or metaheuristics)
are utilized. These approaches aim to identify feasible solutions, typically of high quality,
within reasonable computational timeframes, though they do not offer a guarantee of
optimality.

Resolution
Methods
Approximate
Exact Methods Methods
[
v V
Metaheuristics Heuristics
Branch and Constraint Dynamic Linear Population- Single-Solut . .
. . . . Diverse Constructive
Bound Programming Programming Programming Based ion Based

Figure 2.9: Solution Methods for Combinatorial Optimization [12]

2.5.1 Optimization Models

Mathematical optimization models provide a formal framework for finding the best pos-
sible solution to a problem given a set of constraints and one or more objectives. In the
simplest case, mono-objective optimization, the goal is to identify a solution that
optimizes a single, well defined objective function such as minimizing total operational
cost, minimizing total travel distance, or maximizing service level, subject to various op-
erational constraints. The outcome of such an optimization is typically a single "best"
feasible solution according to this sole criterion. However, many real world problems,
especially in complex systems like transportation and logistics, inherently involve multi-
ple, often conflicting, objectives that decision-makers wish to address simultaneously. For
example, an organization might aim to minimize operational costs while simultaneously
minimizing vehicle response times and maximizing the equity of service coverage across
different areas. This leads to the domain of Multi-Objective Optimization (MOO).
In MOO problems, it is generally not possible to find a single solution that is optimal
for all objectives at the same time, as improving one objective often necessitates a com-
promise or degradation in another. Consequently, the focus shifts from finding a single
optimal solution to identifying a set of solutions that represent the best possible trade-offs
among the competing objectives.
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2.5.1.1 Pareto Optimality:

In MOO, the concept of a single optimal solution is replaced by the notion of Pareto opti-
mality (also known as Pareto efficiency or non-dominated solutions). A feasible solution is
considered Pareto optimal if it is impossible to improve its performance on one objective
function without worsening its performance on at least one other objective function.[13]

In MOO, the concept of a single optimal solution is replaced by the notion of Pareto opti-
mality (also known as Pareto efficiency or non-dominated solutions). A feasible solution is
considered Pareto optimal if it is impossible to improve its performance on one objective
function without worsening its performance on at least one other objective function [67].

Formally, assuming all k£ objective functions f;(x) for j = 1,...,k are to be minimized,
a feasible solution x* is (strongly) Pareto optimal if there is no other feasible solution x
such that:

fi(x) < fi(z*) forallj=1,... k,

with at least one strict inequality:

fm(x) < fr(z*)  for some m.

A feasible solution x* is weakly Pareto optimal if there is no feasible solution x such that:

fi(x) < fi(z*) forallj=1,... k.

The set of all Pareto optimal solutions forms the Pareto front (or efficient frontier). In
problems with non-convex feasible objective and decision spaces (e.g., Mixed-Integer Pro-
grams), the set of efficient solutions can be further partitioned into supported and non-
supported efficient solutions.

Supported efficient solutions are those that can be found as optimal solutions to a weighted
sum of the individual objective functions for some set of non-negative weights. Non-
supported efficient solutions, however, cannot be found this way and lie in the "gaps'
between supported solutions, as illustrated in Figure 2.10.

Various methods exist to generate or approximate the Pareto front, or to select a preferred
solution from it. These are often categorized as:

- a-priori (preferences defined before optimization),
- interactive (decision-maker iteratively refines preferences),

- a-posteriori (Pareto set is generated first, then the decision-maker chooses).
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Figure 2.10: Supported and non-supported efficient solutions in the objective space Z [13]

2.5.1.2 Lexicographic Approach:

One straightforward a priori method for handling multiple objectives, particularly when
a clear hierarchy of importance among them can be established by the decision-maker, is
lexicographic optimization. This approach assumes that the decision-maker has a strict
ordinal preference for the objectives, meaning they can rank them from most important
to least important. As highlighted by [68], in lexicographic optimization, a finite number
of objective functions are considered and are optimized on a feasible set in a lexicographic
order. This implies that lower-priority objectives are optimized only to the extent that
their optimization does not degrade the optimal values already achieved for higher-priority
objectives. The relevance of lexicographic optimization can be found in multiple criteria
decision-making as well as in mathematical programming [68].

A lexicographic minimization problem with k objective functions can be generally stated
as:

min  (fi(2), f2(2), ..., fr(z)) (2.14)
st. xeX (2.15)
where x is the vector of decision variables, X is the feasible region, and fi, f,..., fi are

the k objective functions ordered from most to least important. This problem can be
solved by a sequence of k single-objective optimization problems as outlined in Algorithm
1:
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Algorithm 1: Lexicographic Optimization Procedure

Input: A set of k objective functions fi(z), fo(x),. .., fe(x) ranked in decreasing
priority; feasible region X.

1: Forp=1,...,k:
2: Solve the single-objective optimization problem:
min f,(z)

subject to z € X and f;(z) < f; Vj < p, where f; is the optimal value from
iteration j

3: Let fy be the optimal value found for f, ()
4: End for

Output: Lexicographically optimal solution x* that satisfies all hierarchical prefer-
ences

The solution obtained after optimizing for the k' (least priority) objective function, while
respecting the optimal values achieved for all k1 higher-priority objectives, is termed the
lexicographically optimal solution. [68] notes that for linear problems (Linear Lexico-
graphic Programs or LLP), this procedure can be adapted, and specialized methods like
the lexicographic simplex method can be employed, which consider all objective functions
simultaneously but prioritize them according to the lexicographic order during pivot selec-
tion. An example of an implicit application of lexicographic optimization is the two-phase
method of linear programming, where the first phase minimizes the sum of artificial vari-
ables (highest priority) before the actual objective function is optimized in the second
phase (lower priority) [68]. This hierarchical approach is particularly useful when the
decision-making entity, such as a company, can clearly define an ordered list of goals or
targets, where achieving a higher-ranked goal takes absolute precedence over lower-ranked
ones.

2.5.2 Exact Methods

Exact methods aim to find a provably optimal solution to an optimization problem. Many
transportation problems can be modeled as mathematical programs, often involving inte-
ger decision variables, leading to Integer Linear Programs (ILPs). While the underlying
Linear Programs (LPs) where variables are continuous can often be solved efficiently,
the introduction of integrality significantly increases computational complexity. When
addressing such problems, a fundamental distinction arises based on the number of ob-
jectives being optimized.

2.5.2.1 Linear, Integer, and Mixed-Integer Linear Programming

Linear Programming (LP) stands as a cornerstone of mathematical optimization,
gaining prominence with G.B. Dantzig’s development of the simplex method in 1947 [69].
An LP problem involves the optimization (maximization or minimization) of a linear
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objective function, subject to a finite set of linear equality or inequality constraints. A
standard formulation can be written as:

Min (or Max) Z =) cja; (2.16)
=1
subject to: Y ajz; <b; Vie{l,...,m} (2.17)
j=1
2, >0 Yje{l,... n} (2.18)

Here, x; are the decision variables, ¢; are the objective function coefficients, a;; are the con-
straint coefficients, and b; are the right-hand side values of the constraints.While problems
with very few variables (typically two or three) can be solved graphically by identifying
the feasible region and the optimal corner point, as illustrated in Figure 2.11, the simplex
algorithm provides a systematic and efficient procedure for solving larger LLP instances by
iteratively moving between extreme points (vertices) of the feasible polytope [69].

x
‘a
Cont, ~ Sol Opt: (x4, x3)
conts A\ N\ S \"X~\.  fctObj
Cont,
Cont, »

Figure 2.11: Example of a graphical solution of a linear program with 5 constraints[12]

Many real-world decision problems, however, require some or all decision variables to take
on only integer values (e.g., the number of vehicles to dispatch, or binary decisions like
whether to open a facility). This leads to Integer Linear Programming (ILP), where
all decision variables are restricted to be integers, or Mixed-Integer Linear Program-
ming (MILP), which allows for a combination of integer and continuous variables [70].
A standard form for an MILP can be represented as:

n P
Min (or Max) Z = cjz;+ Y deyk (2.19)
j=1 k=1
n P
subject to: Z a;;T; + Z ety < b; Vie{l,...,m} (2.20)
j=1 k=1
r; €2t Vje{l,...,n} (2.21)
yr € RY Vke{1,...,p} (2.22)

Unlike LPs, which can generally be solved efficiently in polynomial time, ILPs and MILPs
are often NP-hard. A common initial step in solving an ILP/MILP is to consider its LP
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relaxation, where the integer constraints (e.g., z; € Z* ) ) are relaxed to allow continuous
values (e.g., z; € RT). However, the optimal solution to this LP relaxation frequently does
not satisfy the original integer requirements and may provide a bound that is not tight
enough. The optimal integer solution often lies within the feasible region defined by the
LP relaxation but not necessarily at one of its extreme points. Consequently, specialized
techniques that systematically explore or decompose the integer solution space, such as
branch and bound or cutting plane methods, are necessary to solve ILPs and MILPs to
optimality.

2.5.2.2 Branch and Bound (B&B)

The Branch and Bound (B&B) method, with early roots in the work of [71], is a common
algorithm for solving ILPs and MILPs. It’s an implicit enumeration technique. The core
idea is to:

- Branch: Systematically divide the original problem into smaller, more manageable
subproblems by fixing integer variables or adding constraints. This creates a search
tree.

- Branch: Systematically divide the original problem into smaller, more manageable
subproblems by fixing integer variables or adding constraints. This creates a search
tree.

- Prune: If a subproblem’s bound indicates it cannot lead to a better solution than
one already found, or if the subproblem is infeasible or yields an integer solution,
that branch of the tree can be pruned (discarded), avoiding exhaustive enumeration.

Figure 2.12: Principle of the Branch and Bound Method

The efficiency of B&B heavily depends on the quality of the bounds and the branching
strategy used [70].
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2.5.2.3 Other Exact Approaches

Beyond Branch and Bound, several other exact methods have been developed to tackle
Integer Linear Programs (ILPs) and other combinatorial optimization problems. Dynamic
Programming (DP), pioneered by R.E. Bellman in the 1950s [72], is a powerful technique
particularly suited for problems that can be decomposed into a sequence of overlapping
subproblems. It operates based on Bellman’s "Principle of Optimality," which states that
an optimal policy has the property that whatever the initial state and initial decision, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from that first decision. DP systematically solves these simpler subproblems, stores their
solutions (often in a table) to avoid redundant computations, and combines them to find
the overall optimal solution, typically through a recursive formulation.

Further exact methodologies for ILPs include cutting plane methods, which iteratively
add valid inequalities (cuts) to the Linear Programming (LP) relaxation to progressively
tighten it and cut off fractional solutions, thereby moving closer to an integer optimum
(e.g., [73]). For problems characterized by an exceptionally large number of variables,
column generation techniques are often employed; these methods start with a restricted
subset of variables and iteratively generate and add new variables (columns) that have
the potential to improve the current solution, making them particularly useful in con-
texts like large-scale routing or scheduling problems (e.g., [74]). Constraint Programming
(CP) offers another distinct paradigm, focusing on finding feasible solutions by defining
variables with their domains and a set of constraints. CP solvers then use techniques
like constraint propagation (to reduce variable domains) and systematic search to find
solutions that satisfy all constraints [75]; while primarily a feasibility-finding tool, it can
also be used for optimization.

While these exact methods can guarantee optimality, their computational requirements,
particularly for NP-hard problems, can grow exponentially with problem size. This often
renders them impractical for large-scale real-world instances, thereby underscoring the
critical need for efficient approximate methods capable of finding high-quality solutions
within reasonable timeframes.

2.5.3 Approximate Methods

When exact methods become computationally prohibitive due to problem size or com-
plexity, approximate methods offer a practical alternative. The primary goal of these
approaches is to efficiently find high-quality feasible solutions, often sacrificing the guar-
antee of proven optimality for speed and applicability to large-scale, real-world problems.
A major advantage of approximate methods is their ability to generate solutions rela-
tively quickly, making them suitable for industrial applications with tight operational
constraints. These methods can be broadly categorized as follows:
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2.5.3.1 Heuristics

The term "heuristic," derived from a Greek word meaning "to discover and explore" [76],
typically refers to problem-specific rules or sets of rules. Their main objective, as high-
lighted by [76], is to construct an optimization model that is easily comprehensible and
provides good solutions within a reasonable computational time. In this sense, they serve
to "guide discovery" or improve problem-solving [77]. Heuristics often employ intuitive
strategies based on domain knowledge or human experience, which [76] notes can be cru-
cial in designing heuristics that approach solutions faster and are more relevant to real-life
situations. While generally very fast, a defining characteristic of heuristics is that they do
not necessarily converge toward an optimal solution and sometimes may not even guar-
antee a feasible one, though the latter is less common in practical implementations [78].
This can lead to a perception of heuristics as a "less than perfect method or a lack of
solution guarantee" [77]. Despite this, they are invaluable when quick, workable solutions
are needed, especially under strict time or computational resource limitations, or when
more sophisticated methods are not viable. Heuristics can often be distinguished by their
operational strategy:

- Constructive Heuristics: These algorithms build a feasible solution from scratch,
typically by making a sequence of decisions to add components incrementally, often
based on a greedy criterion at each step, until a complete solution is formed.

- Improvement or Exploratory Heuristics: These approaches often start with an
existing solution (which might be generated by a constructive heuristic or randomly)
and attempt to enhance it through local modifications. Some heuristics in this
category might also incorporate elements to explore different parts of the solution
space rather than strictly following a single improvement path, thereby introducing
a diversifying aspect to avoid premature convergence to poor local optima.

2.5.3.2 Metaheuristics

Metaheuristics represent a more advanced class of approximate algorithms designed to
find near-optimal solutions for complex combinatorial optimization problems that are
intractable for exact methods or simple heuristics. Emerging prominently in the 1980s,
they have seen significant development and application. According to [79], a metaheuristic
can be described as an iterative process that guides a subordinate heuristic by combin-
ing various techniques to effectively explore the solution space. They often incorporate
strategies for both intensification (focusing the search in promising regions) and diversifi-
cation (exploring new, unvisited areas of the solution space) to avoid getting trapped in
local optima. Learning mechanisms are often employed to structure information gathered
during the search process, aiming to find solutions that are very close to, or in some cases,
actually optimal. Metaheuristics can be broadly classified into two main families:

- Single-solution based metaheuristics: These methods iteratively improve a
single candidate solution (e.g., Simulated Annealing, Tabu Search).
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- Population-based metaheuristics: These methods maintain and evolve a set
of multiple candidate solutions simultaneously (e.g., Genetic Algorithms, Particle
Swarm Optimization, Ant Colony Optimization).

The generic nature of metaheuristics allows them to be adapted to a wide variety of
optimization problems, making them a versatile tool in operations research.

2.6 Conclusion

This chapter has provided a comprehensive review of the foundational concepts and rel-
evant research pertaining to the optimization of vehicle fleets, particularly in contexts
similar to emergency or operational support services. We have explored the core prob-
lems of facility location, fleet sizing, vehicle deployment, dispatching, and routing, exam-
ining various established and emerging solution methodologies, from exact optimization
techniques to heuristics and metaheuristics. The review also highlighted the specific chal-
lenges and considerations introduced by vehicle electrification, such as range limitations
and charging infrastructure, which are increasingly pertinent.

While the literature offers a wealth of knowledge on individual aspects of fleet manage-
ment, a notable gap exists in integrated approaches specifically addressing the strategic
sizing and deployment of electrified operational support vehicle fleets, considering their
unique constraints and objectives. Given that the electrification of an entire vehicle fleet,
such as the one undertaken by the STM, represents a substantial financial investment,
and the optimal sizing and deployment of this specialized electric fleet has not yet been
comprehensively addressed in a holistic manner, this study seeks to fill that gap. The in-
sights gained from this literature review will inform the model development, and solution
approach presented in the subsequent chapters, aiming to provide a robust framework for
the STM’s critical decision-making process.
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Chapter 3

Problem formulation and
Mathematical Modeling

Following the detailed description of the problem and contextual analysis of the opti-
mization challenge presented in Chapter 1, and the comprehensive review of the relevant
literature and existing methodologies discussed in Chapter 2, this chapter focuses on the
formal development of a mathematical model to address this multifaceted problem. The
previous chapters have established the operational needs, identified the existing gaps in
research, and provided the theoretical underpinnings for our approach. Now, we transition
to translating these insights into a precise and solvable mathematical framework.

This chapter presents the formal mathematical formulation of the optimization problem
faced by the STM. We begin by developing a conceptual model that captures the essential
dynamics of the OS vehicle system. This conceptual understanding is then translated into
a rigorous mathematical formulation. This model aims to incorporate the key decision
variables related to fleet sizing, deployment, and routing. The operational constraints im-
posed by electric vehicle characteristics (such as range and charging) and service level ex-
pectations, and the strategic objectives of minimizing costs while maximizing operational
effectiveness. The resulting formulation will serve as the foundation for the computational
experiments and analysis detailed in the subsequent chapter.
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3.1 Conceptual model

To effectively address the STM’s challenge of optimizing its electrified OS vehicle fleet, a
clear understanding of the operational needs and the interactions between different sys-
tem components is essential. The core need is to strategically size the OS vehicle fleet
and deploy these vehicles from various depots to respond to incidents across the bus net-
work in a timely and efficient manner, especially considering the transition to electric
vehicles with their inherent range and charging constraints. The nature of the decisions
involved such as whether a vehicle is used, which depot a vehicle starts from, and the
sequence of incidents a vehicle serves lends itself naturally to a Mixed-Integer Linear
Programming (MILP) approach. This modeling paradigm enables the representa-
tion of different types of variables, including binary variables (e.g., whether a vehicle is
assigned), integer variables (e.g., the number of used vehicles), and real-valued variables
(e.g., travel times), all of which are critical to effective fleet deployment and routing.

The typical operational process for an OS vehicle during a shift can be summarized as
follows:

Vehicle Dispatch Handling Route Planning
from Depot Incidents (Sequencing)

Return to Depot End of Shift

Figure 3.1: Typical Shift Process for an OS Vehicle

1. Vehicle Dispatch from Depot: At the commencement of each operational shift,
OS vehicles are dispatched from one of the available depots. Each vehicle is typically
assigned to a specific depot as its starting and ending point for the shift, based on
strategic considerations related to incident distribution and network coverage.

2. Handling incidents: Incidents occur across the network and require an OS vehi-
cle’s intervention. Each incident is characterized by an occurrence time.

3. Route Planning (Sequencing of Incidents): After initiating or completing
service at one incident, an OS vehicle may proceed to the next assigned incident on
its planned route. The sequence in which a vehicle visits multiple assigned incidents
during its shift must be optimized to ensure timely responses and efficient resource
utilization.

4. End of Route and Return to Depot: After servicing all assigned incidents
within its tour, or as dictated by other constraints (e.g., shift duration, battery
level), the vehicle proceeds to its designated final destination, which is typically its
originating depot for recharging and shift changeover.

5. End of Shift: Each OS vehicle operates within a defined shift duration (e.g., 6
hours), after which its tour must conclude.

To address the STM’s optimization challenge, our goal is to develop a comprehensive
decision-support tool based on the MILP framework. This tool will process key inputs,
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such as a list of incidents (each with its specific time of occurrence and geographical
location), depot locations, vehicle characteristics (like battery capacity), and operational
rules (e.g., shift durations). The primary objective of the model will be to minimize
critical performance metrics, notably the total number of OS vehicles required (fleet size)
and the overall system response time to incidents. This minimization will be subject to
a set of operational and routing constraints ensuring that all incidents are serviced, shift
durations are not exceeded, and vehicles operate out of designated depots. The desired
outputs from this optimization model will be the optimal number of OS vehicles needed
and the detailed routes and schedules for each deployed vehicle, ensuring all incident
demands are met efficiently. Figure 3.2 provides a overview of this input-process-output
structure.

Solving the problem:

Outputs:

Inputs:
-List of incident - ‘ -Optimal Fleet Size
1% 0 HeIces [Objective J[Constraints}[ Solver ] P

(time and location)

Figure 3.2: Overview of the solution method process

3.2 Modeling the Problem

The problem is modeled as a graph G = (V, A), where V is the set of nodes and A the
set of arcs connecting them. The node set V includes both the set of potential incident
locations A and the set of depots D, such that V = DUN. Each arc (i, ) € A represents
a feasible direct travel path between nodes i and j, with an associated travel time ¢;; or
distance. Figure 3.3 provides a conceptual illustration of the spatial distribution of depots
and incident locations across the service region, which is divided into operational sectors.

This study addresses two primary, potentially conflicting, objectives:

- Minimizing the total number of OS vehicles deployed (fleet size).

- Minimizing the overall response time to incidents (time taken from incident occur-
rence to OS vehicle arrival).
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Figure 3.3: Distribution of depots and incidents across the service region

The STM has defined a clear priority between these objectives: minimizing fleet size
takes precedence over minimizing response time. Consequently, our formulation adopts
a lexicographic bi-objective Mixed-Integer Linear Programming (MILP) approach. This
approach first optimizes the primary objective (fleet size) and then, subject to achieving
that optimal fleet size, optimizes the secondary objective (response time). This model
is designed to support both strategic planning (determining the number of vehicles and
their depot assignments) and operational efficiency (optimizing vehicle routes during ser-
vice shifts). To facilitate the mathematical modeling of this complex problem, several
simplifying assumptions are made:

- All incidents or interventions are treated with equal operational priority for dispatch.

- Fach incident requires the intervention of exactly one OS vehicle.

- The service time required to resolve each incident is known and deterministic, based
on empirical historical data.

- The timing and location of incident occurrences for a given planning horizon are
assumed to be known (e.g., derived from the incident forecasting model discussed
in Chapter 2).

- The OS vehicle fleet consists of homogeneous vehicles, meaning all vehicles share
identical performance characteristics, including speed, battery capacity, and service
capabilities.

- The travel speed of the vehicles is assumed to be known and constant, allowing for
accurate and deterministic travel time estimations between locations.
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- Travel distances (and thus times) between any two nodes are pre-calculated, for
instance using the Haversine formula for geodesic distances, and are considered
symmetric.

3.2.1 Building the model

This section details the notations, decision variables, and constraints that constitute the
MILP formulation developed. Figure 3.4 provides a visual aid to better understand some
of the key variables and their relationships.

0dk =1

yk=1

Figure 3.4: Illustration of key notations

Let I denote the set of OS vehicles. Each vehicle operates at a constant speed v and is
equipped with a battery capacity B, expressed as the maximum travelable distance before
requiring a recharge. The service region contains a set of depots D, each with a limited
parking and recharging capacity denoted by @, and a set of incidents N that require
intervention. The complete set of nodes in the network is then defined as V = DUN.

For each pair of nodes ¢, 5 € V, t;; represents the travel time between node 7 and node 7,
computed based on vehicle speed and known distances. Each incident ¢ € N is character-
ized by a deterministic service time s;, corresponding to the duration needed for an OS
vehicle to resolve the incident. Additionally, incidents must be addressed within specific
time windows denoted by [e;,[;], where e; is the earliest allowable start time and [; is
the latest. Finally, all vehicles operate within a fixed shift duration denoted by S, which
imposes a hard constraint on the total duration of travel and service activities that can
be performed by a single vehicle during its route.

To model the optimal assignment and routing of OS vehicles, we began by identifying our
main operational needs: determining whether a vehicle is used, which depot it is assigned
to, how it travels between nodes, and when it arrives at each incident. These requirements
naturally led us to define the following decision variables:
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- xfj € {0,1}: indicates whether vehicle k travels directly from node i to node j;
-y, € {0,1}: indicates whether vehicle k is used in the solution;

- ogr € {0,1}: indicates whether vehicle k is assigned to depot d;

- a;, € R, represents the arrival time of vehicle k at node i;

- wy € R represents the waiting time of vehicle k at node 1.

Based on the STM’s priority structure, our model is built with two objectives, formulated
in a lexicographic bi-objective approach:

1. Primary objective — minimize the number of vehicles:

minZ; = »_ yi (3.1)
kek

This objective ensures that we only use the minimum number of vehicles necessary
to satisfy all interventions.

2. Secondary objective — minimize the response time:

For each incident i € N, let e; denote its occurrence time. If vehicle k is assigned
to respond to incident i, its response time is defined as the time difference d;, =
a;; —e;. Since e; is a fixed known value (provided by the incident forecasting model),
minimizing d;;, is equivalent to minimizing a;;. Therefore, the second objective can
be written as:

min Zy = Z Z Qi (3.2)

ieEN kek

This allows us to ensure that all incidents are handled as quickly as possible, after
minimizing the fleet size.

Statistical Independence Analysis Between the two objectives

1. Hypothesis Formulation

To assess whether the two objective functions Fleet Size and Response Time are
statistically dependent, we conducted a correlation analysis. The hypotheses are
formulated as follows:

- Null Hypothesis (Hp): There is no statistical correlation between fleet size
and response time.

- Alternative Hypothesis (H;): There is a statistically significant correlation
(either positive or negative) between fleet size and response time.
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Objectif 1 vs Objectif 2
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Figure 3.5: Scatter Plot of Fleet Size vs. Response Time

2. Statistical Tests Used

To test the independence between the two objectives, we used two complementary
correlation metrics:

- Pearson’s correlation coefficient (r): Measures the strength and direction
of a linear relationship between two continuous variables.

- Spearman’s rank correlation coefficient (p): A non-parametric test that
assesses whether the relationship between two variables is monotonic, regard-
less of its linearity.

3. Results and Interpretation Based on a sample of 31 solutions generated by
our multi-objective model, we obtained the following results:

Metric Correlation p-value
Pearson correlation (r) -0.0130 0.9446
Spearman correlation (p) -0.0274 0.8837

Both correlation coefficients are very close to zero, and their p-values are significantly
higher than 0.05, indicating no statistically significant relationship between fleet size
and response time.
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4. Conclusion

Since both Pearson and Spearman tests failed to reject the null hypothesis, we
conclude that fleet size and response time are statistically independent within the
considered solution space. This independence suggests that optimizing one objective
does not inherently affect the other in a linear or monotonic manner. Thus, the bi-
objective formulation is meaningful and justifies the exploration of trade-offs on the
Pareto front.

Model Constraints:

In order to define a mathematically sound and operationally relevant model, we started
by brainstorming the essential operational rules and limitations that the system must
satisfy. This led us to the following considerations:

All incidents must be satisfied by exactly one vehicle.

Each vehicle’s route must start and end at its assigned depot.

Vehicles must not exceed their shift duration.

Vehicles must not exceed their maximum travelable distance (battery constraint).

Each vehicle should have a fairly balanced workload to avoid overloading or under-
using any vehicle.

We will now formulate mathematical expressions to satisfy these constraints. For clarity
and organization, the constraints are grouped into the following categories:

1. Classical VRP constraints: To ensure the validity and efficiency of vehicle routes

in our model, we start by introducing the classical constraints typically encountered
in VRP formulations. These constraints ensure that each incident is served exactly
once and that the routes are continuous.

- Demand satisfaction (each incident is visited exactly once) This con-

straint guarantees that every incident (or customer node) is visited once and
only once by one vehicle. In our formulation, we use a binary decision variable
xfj, which equals 1 if vehicle k£ travels from node ¢ to node j, and 0 otherwise.
As shown in Figure 3.6, we model the network as a directed graph where each
node represents an incident, and arcs represent possible travel paths between

them.

To ensure that every incident node is entered exactly once, we impose the
following constraint:

Yoo Y alhi=1, VjeN (3.3)

i€V itj kek
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This means that each node must have exactly one incoming arc across all
vehicles. Similarly, to ensure that each node is exited exactly once, we add:

YooY ali=1, VieN (3.4)
JEV,itj kek
Together, these two constraints guarantee that: no incident is skipped, no
incident is served multiple times and each vehicle visits a node only once,
respecting service feasibility.

- Flow conservation (continuity of vehicle paths) This set of constraints
ensures the continuity of vehicle routes. That is, for any node visited by a
vehicle, the same vehicle must also leave that node to go to another. This avoids
routes where a vehicle arrives at an incident and doesn’t continue further.

Formally, we write:
Yooahi= Y af, VieVvVkek (3.5)
i€V,i#] 1EV,I#]

This constraint applies individually to each vehicle £ and ensures that inflow
equals outflow at every node : if a vehicle arrives at a node, it must also leave
it, ensuring a valid and complete path for each vehicle.

Figure 3.6: Graphical Representation of Node Visit and Flow Balance Constraints

2. Time-related constraints: This group of constraints ensures that all vehicles
adhere to temporal requirements along their assigned routes, including arrival within
time windows and proper chronological sequencing of visited locations.

- Respect of the time windows: Each incident i € N is characterized by
an occurrence period, defined by an earliest start time e; and a latest start
time [;. This effectively creates a time window within which an OS vehicle
k € K must arrive to begin service. If a vehicle k serves incident i (indicated
by > iev.izi xfl = 1), its arrival time a;; at incident ¢ must fall within this
specified interval. This is formally expressed as:

e >, ah<ag<li- > b, VieNVkek (3.6)
JEV,it JEV i
The summation term ensures these bounds are only active if incident ¢ is indeed
visited by vehicle k.
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- Chronological Routing Phases:To accurately model the progression of a
vehicle along its route, we must establish the chronological relationship between
arrival times at successive nodes. This involves considering the travel time
between nodes, service time at an incident (if applicable), and any potential
waiting time incurred by the vehicle. We can conceptualize a vehicle’s route in
segments, as illustrated in Figure 3.7:

Start of Route Middle of Route End of Route
|, i - W ] tig -]
A0 | G | (o
adk aik Si ajk Sj adk
+ +
ik ajk
+ +
Wik Wik

Figure 3.7: Graphical Representation of Chronological Routing Phases

To enforce these chronological relationships conditionally based on whether
an arc is actually traversed by a vehicle (i.e., xfj = 1), one might intuitively
think of a direct multiplication. For example, if vehicle k travels from depot
d to incident i (zf, = 1), its arrival time ay would be tg + wg. If it doesn’t
make this trip (z% = 0), then a;; related to this specific path initiation should
effectively be zero or unconstrained by this particular relationship. This could

be represented non-linearly as:
ai = (tg +wae) -2, Vi€ N,¥d € D,Vk € K (3.7)
Similarly, for travel between an incident ¢ and a subsequent node j:

aji = (i + si +wy + ti) - xl;, Vie NVjeV,i#jVkek (3.8)
However, this formulations involve the multiplication of a decision variable by
a binary variable (zf; or zf,), which results in a non-linear constraint. Since we
are developing a Mixed-Integer Linear Program (MILP), these non-linearities
must be transformed into equivalent linear forms.

A standard technique in mathematical programming to linearize such products
is the "big-M" method. This method uses a sufficiently large constant M
to activate or deactivate parts of a constraint based on the value of the binary
variable. The value of M must be chosen carefully: it needs to be large enough
so that it doesn’t incorrectly restrict feasible solutions when the binary vari-
able deactivates the core relationship, yet not so large as to cause numerical
instability in the solver. In our context, a suitable value for M could be the
maximum shift duration (e.g., 6 hours or 360 minutes), as no single activity or
arrival time should logically exceed this overall operational limit.

Thus, applying the big-M linearization to the start of the route (from a depot
d to an incident ¢ by vehicle k), the non-linear relationship is replaced by the
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following pair of linear inequalities:

ain < ta + war + M - (1 — k), Vie N,Vd € D,Vk € K (3.9)
ik > ta; + wa, — M - (1= zk), Vie N,Vie D Vke K  (3.10)

These constraints effectively enforce a;, =~ tg + wg if vehicle k travels from
depot d to incident i (i.e., % = 1). In this case, 1 — 2% = 0, and the M
terms vanish. If 2% = 0, then 1 — 2% = 1, and the constraints become a;, <
tai +war + M and a;, > tg; +wg — M. Given that M is large, these effectively
become a;; < large value, and a;; > small or negative value, rendering them
non-restrictive for a;, in this specific path context (other constraints, like time
windows, will bind a;). Note that if depots have fixed departure times, wg
might be zero, or it could represent waiting until the earliest service time e;
of the incident. The arrival time a;; is also bounded by the incident’s time
window constraints.

Similarly, for the sequencing between nodes (from an incident i to any subse-
quent node j, which could be another incident or a depot, by vehicle k), the
non-linear relationship is linearized as:

ajk §a1k+81+wlk+t”+M(l—iL’fj), VZEN,\V/] GV,i;«éj,VkEIC
(3.11)

Ak Zaik—i—smtwik—l—tij—M~(1—:Uf;), VZEN,VJ EV,i?éj,VkEIC
(3.12)

These constraints enforce aj; ~ a;; + s; + wi, + t;; if vehicle k travels from
incident 4 to node j (i.e., zj; = 1). The decision variables for waiting times
(war, and wy) and arrival times (a;x, ajx) are determined by the model dur-
ing optimization to ensure feasibility and contribute to the overall objective
function (e.g., minimizing total response time or operational costs). The use
of inequalities (upper and lower bounds with big-M) instead of attempting to
force a strict equality when an arc is active is a robust modeling practice, par-
ticularly when dealing with decision variables like waiting times that provide
flexibility for the optimizer. The "End of Route and Return to Depot" phase

is implicitly covered by these sequencing constraints when node j is a depot.

3. Depot assignment constraints: These constraints govern how vehicles are as-
signed to depots and how their routes must originate and terminate, ensuring logical
fleet operations and adherence to depot assignments.

- Unique Depot Assignment per Vehicle: A fundamental requirement is
that if a vehicle is utilized, it must be assigned to exactly one home depot
from which it operates for its entire shift. This ensures clear accountability
and operational structure. This is enforced by ensuring that each vehicle k is
assigned to at most one depot, or exactly one if it is used. If a vehicle is not
used, it will not be assigned to any depot.

Z Odk = Uk, Vk e K (313)

deD
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- Consistency between Depot Assignment and Route Origination: If a
vehicle k starts its route by traveling from a depot d to any incident j € N
(ie., Yjen x’éj = 1), then that vehicle & must indeed be assigned to operate
out of that specific depot d (i.e., oz = 1). This links the operational routing
decision (leaving a depot) with the strategic depot assignment.

Ogk = Z xflj? Vd € D,Vk € K (314)
JEN
This inequality ensures that if the sum on the right is 1 (meaning vehicle k
leaves depot d for an incident), then o4 must be at least 1 (and thus 1, since
it’s binary). If the vehicle does not leave depot d for an incident, the sum
is 0, and og can be 0 or 1 (its value being determined by the firstprevious
constraint.

- Route Start and End at the Same Assigned Depot: A key operational
rule is that each vehicle’s tour must be a closed loop, starting and ending at its
assigned home depot. This means if a vehicle k departs from a depot d (i.e.,
ey xflj = 1, indicating it leaves depot d for any node j), it must also return
to that same depot d (i.e., ¥ ;cp 2¥, = 1, indicating it arrives at depot d from
any node 7). Conversely, if it doesn’t start from depot d, it cannot end there.
This is enforced by:

doaly <> ay, VdeDVkek (3.15)

=, jev

- At Most One Departure and Arrival per Depot per Vehicle: To further
ensure that a vehicle’s route is well-defined and associated with a single depot,
we must explicitly state that a vehicle k can depart from at most one depot,
and arrive at at most one depot. If the vehicle is not used, it will not depart
from or arrive at any depot.

daf, <1, VdeD,VkekK (3.16)
2%
Y aki <1, VdeDVkek (3.17)
JjEV

4. Capacity Constraints: These constraints impose limits on various operational
aspects, including vehicle operational duration (shift length), travel range (battery
capacity for EVs), and depot capacity for hosting vehicles.

- Shift Duration Constraint: Each OS vehicle k € I operates within a maxi-
mum allowed shift duration, denoted by S (e.g., 360 minutes for a 6-hour shift).
To ensure that no vehicle exceeds its shift limit, we must constrain the timing
of all its activities. A straightforward way to enforce this linearly is to ensure
that the arrival time a;; of vehicle k at any node i € V (which includes incidents
and its return to the depot) does not exceed the maximum shift duration S. If
a vehicle returns to its depot, that return arrival time must be within S. If it
serves an incident, the arrival at that incident (and implicitly the subsequent
service and travel) must allow for completion within S. This is expressed as:

ap <S5, VieVVkek (3.18)
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- Vehicle Range Constraint (Battery Capacity for EVs): For electric
vehicles, a critical constraint is their limited driving range, often defined by
battery capacity, which can be translated into a maximum travel distance B
(e.g., 150 km). To ensure that the total distance traveled by each EV k € K
on its route does not exceed this limit, we sum the distances of all traversed
segments. Assuming a constant average vehicle speed v, the travel time t;;
between nodes i and j can be related to distance d;; by d;; = v - t;;. Therefore,
the constraint on total travel distance can be expressed using the travel times
t;j and the decision variables x};:

i€V jeV

This constraint sums the travel times ¢;; for all arcs (i, j) that are actually part
of vehicle k’s route (where xfj = 1). Multiplying this total travel time by the
average speed Vspeeq gives the total distance covered by vehicle k, which must
not exceed the maximum battery range B,,q..

- Depot Capacity Constraint: As depots are often multi-purpose facilities,
they may have a limited capacity @) for hosting or basing OS service vehicles.
This means that the total number of OS vehicles assigned to operate out of a
specific depot d € D cannot exceed its designated capacity. Using the binary
variable o4, this constraint is formulated as:

Z og < Q, VdeD (320)
kel

This ensures that for each depot d, the sum of vehicles k assigned to it does
not surpass its capacity Q.

5. Load balancing constraints: While the primary objectives often revolve around
minimizing fleet size and response times, organizations may also consider aspects of
equity and workload distribution among their employees for socio-economic reasons
or to maintain operational sustainability. Although not the primary focus for the
STM at this juncture for this specific OS vehicle problem, we explored how load
balancing could be incorporated as a constraint. The aim would be to ensure that
all deployed OS personnel (represented by their vehicles) handle a relatively similar
amount of work.

Workload for an OS vehicle £ € K can be conceptualized in at least two ways:

a. Based on the number of interventions: Ensuring that each active OS vehicle
handles a roughly equal number of incidents during its shift.

b. Based on the total work duration or travel time: Ensuring that the total time
spent actively working (traveling to incidents, servicing incidents) is distributed
equitably among active OS vehicles.

The two workload balancing approaches differ in focus and complexity. Balancing
by number of interventions ensures a simple, equal task count among personnel but
ignores variation in effort or time per task. Balancing by total duration or travel
time offers a more accurate reflection of actual workload by incorporating service
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and travel times, but it requires more detailed data. The choice depends on data
availability, equity objectives, and desired model complexity.

An initial approach to formulate load balancing, for example, based on total travel

time, might involve ensuring that the total travel time for each active vehicle k

(Xiev Tjev tij - xf;) stays within a certain percentage (e.g., £20%) of the average
i#]

travel time per active vehicle. This could be expressed as:

Dokek 2iev Zjiy tij - l‘?j D ke 2aiev Zi?{ tij - xfj
17] 7]

(1—a)- < tijal < (1+a)- Vk e K
> kek Yk ZGZV]%\:/ T > kex Yk
i#]
(3.21)

where y, = 1 if vehicle k is used, and « is the allowable deviation (e.g., 0.2 for
20%). A similar formulation could be conceptualized for balancing the number of

incidents:
Dokek 2iev Zii‘? 7 i D kek 2iev Zii‘? w3
(1-a)- ) < i < (14 a)- e Yk e K
2kek Yk zezv;) v 2kek Yk
i#£]
(3.22)

However, the formulation above involving division by a sum of decision variables
(X kex Yk, the total number of active vehicles) introduces non-linearity, making it
unsuitable for a standard MILP solver.

To linearize the concept of load balancing, a common strategy is to compare the
workload of every pair of active vehicles. Let W}, represent the workload of vehicle
k (this could be its total travel time, number of incidents served, or total service
duration). We want to ensure that for any two active vehicles k and &', the absolute
difference in their workloads, |W) — Wy|, does not exceed a predefined allowable
difference, A,z This can be linearized using the big-M method to activate the
comparison only when both vehicles k and k" are in service (i.e., yp = 1 and ypr = 1).
The constraints would be formulated as:

Wk — Wk/ S Amax + M(l - yk) + M(l — yk/) (323)
Wk’ - Wk S Ama,x + M(l - yk) + M(]- - yk") (324)

for all pairs k, k' where k < k', and W}, would be substituted by the linear expression
for workload, e.g., >3, >; tl‘j:l':fj for travel time, or 37, 3=, xfj (if 7 is an incident) for
number of incidents.)

These pairwise constraints ensure that no two active vehicles have workloads that
differ by more than A,,,,. While this increases the number of constraints, it main-
tains the linearity required for MILP solvers. The specific definition of W (as
number of incidents or total time) would then be substituted into these linearized
constraints.

6. Variable Definition and Domain Constraints: A Mixed-Integer Linear Pro-
gram involves different types of decision variables, each with a specific domain. It is
crucial to define these domains correctly. In our model, we utilize binary variables
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to represent yes/no decisions, and continuous (real-valued) variables to represent
quantities such as time.

For instance, binary variables like xf] indicate whether vehicle k travels directly
from node i to node j. Similarly, oy is a binary variable indicating if vehicle £ is
assigned to depot d. Another important binary variable, let’s denote it as y;, could
be defined to be 1 if and only if vehicle k is actually used (i.e., assigned to serve at
least one incident or makes at least one trip from a depot). This y, variable is often
linked to other decision variables; for example, if 37 > ey xfj > 0, then y; must
be 1.

Continuous variables in our model primarily relate to timing aspects. For example,
a;, represents the arrival time of vehicle £ at node ¢, and w;; represents the waiting
time of vehicle k at node 7. These can take any non-negative real value, determined
by the optimization process.

The domains for the primary decision variables used in this model are therefore
defined as follows:

25, Y, oan € {0, 1}, Vi,j € V,i# j,Vk € K,Vd € D (3.25)
i, Wi, > 0 (and € R), VieV,Vk e K (3.26)

The binary variables enforce discrete choices, while the real-valued variables allow
for continuous adjustments in timing, all within the constraints of the overall system.

3.2.2 The mathematical model

Based on the previously defined notations, decision variables, objectives, and constraints,
we now present the complete MILP formulation of the problem. This model integrates
all operational considerations, including vehicle routing, time windows, and resource lim-
itations.

We begin this section with a summary table of the main notations used throughout the
model, followed by the complete mathematical formulation.

It is important to note that, although workload balancing was initially considered among
the relevant constraints, we decided not to include it in the final version of the model. This
is due to the additional complexity it introduces. In fact, even without this constraint,
we observed significant computational challenges in solving large-scale instances.

The problem can be described using the following notations:
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Table 3.1: Notation used in the MILP model

Sets and indices:

N ={1,2,...,n} Set of incidents.
D={n+1,...,n+d} Set of depots, indexed by d.
Y =NUD Set of all nodes.

IC  Set of vehicles, indexed by k.

niParameters:

ti;; Traveling time between two nodes ¢ and j.
lei, ;] Time window for each incident i.

s; Service time for incident .

v Vehicle speed.
B Vehicle battery capacity.
S Vehicle shift.
@ Depot capacity.
M  Positive large number.
Variables:
xffy 1 if vehicle k travels from ¢ to j, 0 otherwise.

yr 1 if vehicle k is used, 0 otherwise.
ogr 1 if vehicle k is assigned to the depot d, 0 otherwise.
a;; Arrival time of the vehicle k at 7.

w;,  Waiting time for vehicle k at node i.

Based on these elements and the previously discussed modeling choices, the optimization

problem is formulated as follows:

min Z, = Z Yk
kek

min 7y = Z Z i

ieN kek
Subject to:
Z Z xfj =1, VjeN
i€V, i#j kek

> fojzl, Vie N

JEV,i#j kek

(3.27)

(3.28)

(3.29)

(3.30)
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> :Ef] = > m?i, VeV, Vke K (3.31)
i€V i#] i€V, i#]
e Y. x?igaikgli- > xfi, Vie N,Vk e K (3.32)

JEViF#] JEViF£]

aip <lg+wap +M-(1—2l), VieN, VieDVkek (3.33)
Qi > tgi +wae — M- (1 —2%), VieN, VdeDVkek (3.34)
ajkgaik—i—si—l—wik—i—tij—i—M‘(l—xZ), V’iEN, VJGV,Z#j,VkEIC (335)
ajkzazk—i—sl—i—wlk—i—tw—M(1—952),%6/\/', VJGV, Z7éj, Vk e K (336)
ain < S, VieVVkek (3.37)
v-d > akiti; < B, Vkek (3.38)

i€y jey
Z Oqr = 1, Vk e K (339)
deD
og > >k, VdeDVkek (3.40)

JEN
doaly <> al, VdeDVkek (3.41)
% JjEV
doaf, <1, VdeDVkeK (3.42)
=%
Y alh <1, VdeDVkek (3.43)
JjEV
M-ye > > al, Vkek (3.44)
eV jey

Z oar < Q, Vd € D (345)
kel
Tl Ui 0ak, € {0,1}, Vi, j € V,Vk € K,Vd € D (3.46)
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a, Wik, € R, Vie V. Vke (347)

Where (3.27-3.28) are the two objective functions, representing the minimization of fleet
size and total response time, respectively. Constraints (3.29-3.30) ensure that each inci-
dent is served by exactly one vehicle, thus ensuring full coverage of all incidents. Con-
straints (3.31) guarantee flow conservation, which means that every vehicle that arrives at
an incident node will leave it. Time-related constraints, including time windows, waiting
time, and service time, are defined in constraints (3.32-3.36). Constraints (3.37) ensure
that no vehicle is assigned to an incident occurring after the end of its designated shift.
Constraints (3.38) impose battery capacity limitations on each vehicle. Constraints (3.39-
3.43) require that each vehicle is assigned to a specific depot and that each route both
starts and ends at the same depot. Constraints (3.44) define the variable yj, indicating
whether vehicle k is used. Finally, constraints (3.45) impose the capacity limits of the
depots. while constraints(3.46-3.47) represent the integrality constraints.

3.2.3 Model Functioning Example

To illustrate the conceptual functioning of the optimization approach, which can be seen
as a form of lexicographic optimization where objectives are prioritized, let us consider
the example depicted in Figure 3.8. This example involves a network with 10 nodes: 7
incidents requiring service (represented by circles and labeled 0 through 6) and 3 potential
depots from which vehicles can operate (represented by squares and labeled 7, 8, and 9).

The optimization process can be envisioned in two main steps, prioritizing different ob-
jectives sequentially:

1. Step 1 — Minimizing Fleet Size (Objective 1) In the first step, the primary
goal is to determine the minimum number of OS vehicles (and consequently, active
depots) required to service all incidents while satisfying all fundamental operational
constraints (such as shift durations, vehicle capacities, and ensuring every incident
is attended). At this stage, the model does not primarily focus on minimizing the
response time to each individual incident but rather on achieving coverage with the
leanest possible fleet.

The left panel of Figure 3.8 (Objective 1) illustrates a potential outcome of this first
optimization phase.

- Depot 7 is active and serves incidents 0, 1, 3, 5 and 6.
- Depot 8 is active and serves incident 2 and 4.

- Depot 9 is not active.

In this configuration, Just two depots are utilized, implying that a minimum of two
vehicles (assuming one route per active depot for simplicity in this example) are
necessary to cover all seven incidents. because of the conditions and time constraints
nd the data of the time window two vehicles are not suffitient to satify all the demand
respecting the model constraints, that why we need more vehicles which lead us to
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the optimal solution found by the model 4 vehicles, every vehicle got a route and
order of incidents to visit.

2. Step 2 — Minimizing Response Time (Objective 2) In the second step, the
optimal number of vehicles found in the first step (in our example, 4 vehicles) is now
taken as a fixed constraint or an upper bound. The model’s objective then shifts
to minimizing a measure of total response time (e.g., the sum of arrival times at all
incidents or total travel time), given that no more than 4 vehicles can be used.

The right panel of Figure 3.8 (Objective 2) shows how the routes and depot assign-
ments might be reorganized to achieve this second objective.

- Depot 7 is now shown as inactive.

- Depot 8 becomes more central, now serving incidents 1, 2, 3, 4, and 5 with
more compact routes.

- Depot 9 now serves incidents 0 and 6, also with seemingly more direct paths.

Visually, the routes in "Objective 2" appear shorter and more efficient in terms of travel to
individual incidents. This reorganization is achieved while adhering to the constraint that
the number of vehicles used does not exceed the optimal number determined in Step 1.
In this visual example, it appears that the 4 vehicles (or their workload equivalent) might
have been re-assigned to operate more efficiently from just 2 depots (8 and 9) to reduce
overall response times. The crucial aspect is that the primary objective of minimizing
vehicles (to 4 in this example) was satisfied first, and then, within that constraint, response
times were improved.

This two-step process effectively emulates a lexicographic approach where fleet size is the
highest priority objective, and response time is the secondary priority objective, optimized
only after the first objective’s optimal value has been achieved and fixed.

Objective 1 ) Objective 2

Figure 3.8: Ilustration of the Model’s Operation
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3.3 Heuristic Algorithm: A Decomposition-Based Ap-
proach

While the MILP model provides a rigorous framework for finding optimal solutions, its
computational demands can become significant for very large-scale instances, such as
those representing multiple days of STM operations or highly granular incident data. To
address these potential scalability challenges and provide a more agile solution approach,
we propose a heuristic algorithm based on problem decomposition. The STM problem
exhibits natural decomposability due to its inherent temporal (shifts) and spatial (de-
pots, sectors) structure, offering a promising strategy to tackle larger problem instances
efficiently.

3.3.1 Multi-Level Problem Decomposition

The proposed decomposition heuristic operates on three hierarchical levels:

Level 1 : Decomposition by Shift The first level of decomposition addresses the temporal
dimension by dividing the overall planning horizon into distinct operational shifts
(e.g., 6-hour or 8-hour periods). Historical data indicates that a typical day for
the STM involves approximately 200 incidents requiring OS vehicle intervention,
distributed across these shifts, with incident density varying between peak and off-
peak periods. By considering each shift independently, we significantly reduce the
number of concurrent incidents and decision variables that need to be handled at
once. For each shift:

- Isolate all incidents occurring within that specific shift’s timeframe.

- If the total number of incidents within a single shift is still large (e.g., exceeds
a predefined threshold, say 10-15 incidents, which is a common manageable
size for exact solvers on subproblems), further decomposition is triggered.

Level 2 : Decomposition by Depot (or Depot Service Area) If a single shift still contains
a large number of incidents, the second level of decomposition leverages the spatial
distribution of depots. The STM operates 8 depots, and company policy often
dictates which depots are primarily responsible for servicing incidents within certain
geographical areas or sectors. For a given shift:

- Incidents are provisionally assigned or associated with their closest or desig-
nated primary service depot.

- If the number of incidents associated with a single depot within that shift still
exceeds the manageable threshold (e.g., 10-15 incidents), a finer-grained spatial
decomposition is applied.

Level 3 : Decomposition by Sector The Island of Montreal is partitioned into 15 distinct
operational sectors. If, after shift and depot-level considerations, the incident load
for a particular depot (within a shift) remains too high, this third level further
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divides the problem. For the subset of incidents associated with an overloaded
depot during a specific shift:

- These incidents are further grouped based on the sector in which they occur.

- This aims to create smaller, more localized subproblems, each ideally con-
taining a manageable number of incidents (e.g., targeting approximately 10
incidents per subproblem, as suggested by preliminary findings).

In scenarios where, even after the three-level decomposition (by shift, depot, and
sector), a particular subproblem still includes an excessive number of incidents (e.g.,
during high-demand peak periods), additional refinement strategies can be employed
to maintain computational tractability. These include:

- Intra-sector clustering: Incidents within an overly dense sector-depot-shift
subproblem can be further partitioned into smaller spatial clusters based on
geographic proximity. This produces more granular subproblems, each with
fewer incidents, allowing for more efficient resolution.

- Demand aggregation: Incidents that are both temporally and spatially close
can be temporarily aggregated into a single meta-incident. The aggregated
service time corresponds to the sum of the individual service times, and the
location is approximated by a centroid or a representative point. After solving,
the meta-incident is disaggregated back into the original incidents to preserve
demand fidelity.

- Time-window segmentation: Incidents within a subproblem are divided
into smaller subsets according to predefined or adaptive time intervals. These
time-segmented subproblems are then solved sequentially or in parallel, im-
proving MILP tractability while respecting temporal demand dynamics.

The overarching goal of these techniques is to ensure that all subproblems remain
within a manageable size threshold, thereby improving the efficiency and robust-
ness of the decomposition heuristic under varying operational intensities. Future
work will address the refinement of the decomposition logic, subproblem definitions
(particularly vehicle sharing), and the integration of these advanced strategies.
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Algorithm 2: Three-Level Decomposition Heuristic

Input: Set of incidents A, partitioned by days into ¢ shifts T = {T3,Ts,...,T,}.
Each shift is associated with depots D = {Dy, Ds, ..., Ds}, and each depot covers a
subset of sectors S = {51, 5, ..., S13}.

1: For each shift T € T
2: If [Nr| < 10:

3 Solve MILP on N7 directly

4 Else

5 For each depot D € D associated with shift 7"

6: If [Nz p| < 10:

7 Solve MILP on N7 p

8 Else

9: For each sector S € Sp:

10: If |[N7ps| < 10:

11: Solve MILP on N7 p.s

12: Else

13: Apply a refinement strategy on Nrp g
14: Solve the resulting MILP on the refined subproblem
15: End if

16: End for

17: End if

18: End for

19: End if

20: End for

21: Aggregate all local MILP solutions to build the global solution (fleet size, response
time, etc.)

Output: Aggregated operational plan combining all subproblem solutions

3.3.2 Solution Consolidation

Once the problem is decomposed into these smaller, more manageable subproblems (e.g.,
incidents within a specific sector, served by a specific depot, during a specific shift), the
core MILP formulation (as described in Section 3.2) can be applied to solve each sub-
problem independently. The objective within each subproblem would be to optimize fleet
usage and response times for the incidents contained within it, using vehicles notionally
assigned to the relevant depot.

After solving all subproblems, a post-processing and aggregation step is required. This
involves:
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Figure 3.9: Structure of the Heuristic Decomposition Algorithm
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1. Consolidating Vehicle Requirements: Summing the number of vehicles re-
quired by each subproblem can provide an initial estimate of the total fleet size.
However, careful consideration is needed as a vehicle might potentially serve inci-
dents across subproblem boundaries if shifts or geographical areas are very close, or
if a more sophisticated global aggregation is performed. For this heuristic, a simpler
approach might be to sum depot-level vehicle needs per shift.

2. Aggregating Performance Metrics: Response times, travel distances, and other
relevant metrics from each subproblem are collected and aggregated to estimate the
overall system performance.

3. Potential Refinements (Future Work): More advanced aggregation might in-
volve re-optimizing vehicle assignments at the boundaries of decomposed units or
using the heuristic solution as a high-quality starting point for a global MILP solve
with a very short time limit.

The general logic of the decomposition-based technique is illustrated in Figure 3.9.

3.4 Conclusion

This chapter has comprehensively detailed the formulation of the mathematical opti-
mization model designed to address STM’s challenge, alongside the development of a
complementary heuristic approach. We began by establishing a conceptual model of
the operational process, which was then systematically translated into a rigorous Mixed-
Integer Linear Program (MILP). This involved defining the necessary sets, parameters,
decision variables, the objective function aimed at minimizing fleet size and operational
response times, and a detailed set of constraints capturing the intricate operational rules.
An illustrative example was also provided to demonstrate the fundamental mechanics of
the proposed mathematical model.

Recognizing the potential computational challenges associated with solving large-scale
instances of this complex problem with an exact MILP, we also proposed and detailed a
multi-level decomposition-based heuristic. This heuristic leverages the natural temporal
and spatial structure of the STM’s operations to break down the overarching problem into
smaller, more manageable subproblems. The methodology for this multi-level problem
decomposition and the subsequent consolidation of solutions from these subproblems were
outlined.

With these models now formally defined and their underlying logic explained, the subse-
quent chapter will focus on their practical implementation, computational testing using
generated instances, and a thorough analysis of the results obtained.
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Chapter 4

Experimental Phase: Two
Approaches to Solve the Problem

After having presented the mathematical formulation of the integrated model encompass-
ing both the strategic deployment and operational routing aspects of the STM electrified
OS vehicle fleet in the preceding chapter, we now transition to the resolution phase. This
phase initially involved leveraging the capabilities of the commercial integer programming
solver, IBM ILOG CPLEX, to obtain exact solutions for our model. Subsequently, recog-
nizing the potential computational demands of solving large-scale instances to optimality,
we also explored the development of heuristic approaches.

This chapter will first detail the crucial instance generation phase, which provides the
necessary data for testing our models. We will then separately analyze the implementation
and resolution using the exact solver (CPLEX) and discuss the heuristic development.

79



Problem Resolution

4.1 Instance Generation

The generation of test instances is a critical preliminary phase in computational optimiza-
tion studies. It involves creating specific problem examples used to rigorously test and
evaluate the performance of mathematical models and solution algorithms. The validity
of this generation process is fundamental to ensuring the consistency and reliability of the
entire validation and resolution process.

In the context of this research, while the STM provided valuable real-world operational
data, relying solely on this single dataset would limit our ability to rigorously assess the
scalability, robustness, and general performance characteristics of the proposed mathe-
matical model under varying conditions. Publicly available benchmark instances that
precisely match the specific problem characteristics including multiple depots, incident
time windows reflecting their occurrence patterns, diverse service times, and the unique
operational aspects of OS vehicles are not readily available.

Therefore, to comprehensively evaluate the capacity of our optimization model across a
spectrum of scenarios and to ensure statistically sound performance analysis, a tailored
instance generator was developed. This generator allows for the creation of multiple in-
stance families, where each family is defined by a specific combination of key structural
parameters (e.g., the number of incidents N, the number of available vehicles K, and
the number of depots D). For each defined family, we systematically generate a set of
25 distinct instances. This number (25 instances per family) was chosen to provide a
sufficient sample size for performance evaluation, allowing for more reliable statistical in-
ferences about the model’s behavior for a given problem size and structure. While the
structural parameters define a family, the specific data within each of the 25 instances
(such as incident locations, exact occurrence times within windows, and service dura-
tions) are generated in a uniform manner, drawing inspiration from the characteristics
and distributions observed in the real operational data provided by the STM. This ap-
proach ensures that our test instances are not only diverse but also grounded in realistic
operational contexts.

Instance Format: Each test instance is stored in a plain text file with the following
format:

N: The total number of incidents to be serviced.

D: The total number of depots from which OS vehicles can be dispatched.

K: The total number of available OS vehicles (this parameter is subject to opti-
mization).

- V: The total number of nodes in the network, where V"= N + D (representing all
incidents and all depots).

- ¢;: A vector of length NV, where ¢; is the occurrence time for incident i.

- 1;: A vector of length N, where [; is the maximum allowable duration for an incident
to remain unresolved (e.g., a bus cannot remain out of service for more than a
specified time limit after its occurrence).
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- s;: A vector of length IV, where s; is the service time required to resolve the incident
1.

- ti;: An'V x V matrix representing the travel times between all pairs of nodes (depots
and incidents). This matrix is derived by first calculating the geographical distances
between nodes and then converting these distances to travel times, assuming a
constant vehicle speed.

Figure 4.1 illustrates an example of an instance file for a small problem with N = 5
incidents, D = 3 depots, and K = 4 vehicles, where the yellow rectangle corresponds to
N, the blue to D, the orange to K, the green to V', the gray to the time windows with the
first line e; and the second line [;, the purple to the vector s;, and the red to the matrix
of t”

J *famille_2_instance_12.txt - Bloc-notes

Fichier Edition Format Affichage Aide
5

B
4

8 |

20 35 0 40 40
40 55 20 60 60
1@ 9 186 9 7 |
0.0 22.785 17.293 24.337 12.081 24.055 20.051 21.162
22.785 0.0 22.695 20.303 22.654 7.159 11.035 18.315
17.293 22.695 0.0 9.171 5.472 18.538 27.887 7.206
24.337 20.303 9.171 0.0 14.043 13.992 28.685 3.257
12.081 22.654 5.472 14.043 0.0 20.131 25.623 11.4
24.055 7.159 18.538 13.992 20.131 0.0 17.717 12.689
20.051 11.035 27.887 28.685 25.623 17.717 0.0 25.966
21.162 18.315 7.206 3.257 11.4 12.689 25.966 0.0

Figure 4.1: Example structure of an instance file (N=5, D=3, K=4)

Instance Generation Process: A dedicated instance generation algorithm was de-
veloped to automate this process. Each family is generated by varying the structural
parameters N, D, and K incrementally most often using a step size of 1 to assess how the
model performs as problem complexity increases.

The geographical coordinates of incidents are randomly generated within the Island of
Montreal to reflect the uncertainty of demand locations, as incidents can occur anywhere
on the island. To calculate travel times more realistically, considering the curvature of the
Earth, the Haversine formula is used instead of the Euclidean distance. This approach
provides more accurate distances between nodes on the spherical surface of the Earth.
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Service times s; are sampled from empirical distributions based on historical intervention
durations, which typically average around 30 minutes. Regarding time windows [e;, ;]
their generation takes into account operational constraints observed in real data. In
particular, time windows are set within the first five hours of the shift, with an upper
bound of one hour for incident occurrence. This prevents generating incident times near
the end of the shift, which could lead to infeasible schedules.

For example, if a 6h-shift starts at 2:00 pm and an incident occurs at 7:50 pm and the
shift ends at 8:00 pm, with a service time of 30 minutes plus travel times to and from the
depot, it would be impossible for the model to find a feasible solution since the incident
cannot be serviced within the shift. By restricting incident occurrence times to the early
part of the shift, the model ensures all incidents can be feasibly served, and it respects
the operational rule that a bus cannot remain broken down for more than one hour.

The data generator for the instances was developed using Python. The underlying algo-
rithm is detailed in Algorithm 3 below:

Algorithm 3: Instance Data Generator

Input: Parameters of the instance family (e.g. family index, number of in-
stances)

1: Initialize fixed parameters: N, D, K

2: Generate earliest time windows e[i] randomly within the shift
3: Set latest time windows [[i| = e[i]+ fixed margin defined by the company
4: Generate random service times s[i]

5: Generate random GPS coordinates for all V' = N + D points
6: For each pair of points (i, j):

7 Compute distance using Haversine formula

8 Multiply by a factor (1/speed) to obtain travel time

9: End for

10: Write all data into a text file

11: Save the file into the dedicated output folder

Output: A folder containing all generated instances for the same family

4.2 Model Implementation Using CPLEX

To evaluate the computational performance of the proposed Mixed-Integer Linear Pro-
gram (MILP) formulation for optimizing the STM’s OS vehicle fleet, we implemented
the model and conducted numerical experiments. This section details the development
environment, programming language, optimization solver, and the steps involved in trans-
lating our mathematical model into a solvable format.
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Figure 4.2: Process of Model Development [14]

4.2.1 Development Environment

Mathematical optimization models can be implemented using a variety of programming
languages such as C++, Java, and Python. These languages offer different trade-offs in
terms of performance, ease of use, and integration capabilities with optimization solvers.
To solve Mixed Integer Linear Programming (MILP) models, a wide range of solvers is
available, including commercial solutions like IBM ILOG CPLEX and Gurobi, as well as
open-source alternatives such as SCIP and CBC. These solvers are designed to efficiently
handle complex optimization problems involving thousands of variables and constraints.

For this work, we chose to use IBM ILOG CPLEX Optimization Studio, one of the most
powerful and widely recognized solvers for mathematical programming and among the
supported programming languages, we selected Java for the implementation. Java is
an object-oriented language known for its platform independence, robustness, and rich
standard libraries. In our project, Java was used to define the MILP model structure,
load input instance data, interact with the CPLEX API to solve the model, and retrieve
the results for analysis.

Numerical experiments were conducted on a machine equipped with an Intel Core i5-
6300U (2 cores, 4 threads, 2.4 GHz base frequency) and 8 GB of RAM. A computational
time limit of 600 seconds (10 minutes) was imposed for each optimization run to ensure
practical solution times.
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4.2.2 Programming Language (Java)

Java is an object-oriented programming language known for its platform independence,
robustness, and extensive standard libraries. It facilitates the development of structured
and maintainable code, making it particularly suitable for optimization-based applica-
tions. In this work, Java was chosen as the primary language for implementing the MILP
model and interfacing with the CPLEX solver. Its main advantages include high portabil-
ity across operating systems, strong security features, and broad library support. These
characteristics make Java well-suited for developing complex optimization systems that
demand both computational efficiency and long-term maintainability. We used Java to
define the model structure, load instance data, invoke the CPLEX solver, and process the
resulting solutions.

4.2.3 Solver (IBM ILOG CPLEX Optimization Studio)

IBM ILOG CPLEX Optimization Studio (referred to as CPLEX) is a powerful software
suite dedicated to mathematical optimization. Originally developed by ILOG and later
acquired by IBM, CPLEX is designed to solve a wide range of optimization problems,
including linear programs (LP), quadratic programs (QP), and notably for our purposes,
mixed-integer linear programs (MILP). These MILPs are particularly relevant as they
can model complex decision-making problems with both continuous and discrete vari-
ables, aiming to find the best possible solution from a potentially vast set of feasible
options. CPLEX’s functionalities include advanced algorithms for solving these prob-
lem types and the capability to handle intricate constraints and objective functions. It
provides Application Programming Interfaces (APIs) for several popular programming
languages, including C++, Java, and Python, facilitating the integration of its optimiza-
tion capabilities into custom applications. We opted for CPLEX due to several compelling
reasons:

- Popularity and Trust: It is one of the most widely used and respected solvers
among operations research practitioners and academics.

- Academic Availability: It is offered free of charge for academic research, which
is crucial for university-led projects.

- Comprehensive Documentation: While some suggest updates have been less
frequent post-IBM acquisition, the existing documentation remains extensive and
highly valuable for users.

- Solver Performance: Its advanced branch-and-bound and cutting plane algo-
rithms ensure efficient solution times for large-scale MILPs.

4.2.4 Modeling Steps in Java using CPLEX Concert Technology

To implement the proposed MILP model within the Java environment and utilize the
CPLEX solver, we leveraged CPLEX’s Concert Technology. Concert Technology pro-
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vides an object-oriented API that allows users to define optimization models, variables,
objective functions, and constraints in a way that is independent of the underlying solver
algorithm.

This section outlines the general steps involved in modeling our problem using this library:

1. Import the required libraries

import ilog.concert .x;
import ilog.cplex.x;

This step gives access to the CPLEX optimization and Concert API classes.

2. Create the environment

[loCplex cplex = new IloCplex ();
The IloCplex object represents both the model and the environment in Java.

3. Declare and add decision variables to the model

IloNumVar [| y = new IloNumVar [K];

for (int k = 0; k < K; k++) {
v[k] = cplex.boolVar ();

}

Here, we define a binary decision variable y;, for each vehicle k € {1,..., K'}. The
method cplex.boolVar() creates variables that can only take the values 0 or 1.
These are typically used to model on/off decisions for example, indicating whether
a vehicle k is used in the solution (y; = 1) or not (yx = 0).

4. Define the objective function

[loLinearNumExpr obj = cplex.linearNumExpr ();
for (int k = 0; k < K; k++) {

obj.addTerm (1, y[k]);
¥

cplex.addMinimize (obj );

In this formulation, the objective is to minimize the total number of vehicles used.
The expression sums all binary variables y, where y, = 1 indicates that vehicle &
is activated. Thus, Zszl yr represents the total number of active vehicles in the
solution. By minimizing this sum, the model encourages using as few vehicles as
necessary to satisfy the problem constraints.

5. Define constraints

for (int j = 0; j < N; j++) {
[loLinearNumExpr expr = cplex.linearNumExpr ();
for (int k = 0; k < K; k++) {
for (int 1 = 0; i < V; i+4) {
(1= i) |
expr.addTerm (1, x[i][j][k]);
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}
}
cplex.addEq(expr, 1);

}

This constraint ensures that each incident node j is visited exactly once by one

vehicle. The decision variable z[i][j][k] equals 1 if vehicle k travels from node i to

node 7, and 0 otherwise. The inner loops sum all such possible incoming routes to

node j across all vehicles k and origin nodes i (excluding ¢ = j to avoid loops). The

equality constraint Zﬁ(zl Zél x5 = 1 enforces that exactly one vehicle enters each
¥

node j, satisfying the single-visit requirement.
6. Solve the model

if (cplex.solve()) {
// Proceed if solved successfully
}

7. Retrieve and display results

System.out. println (" Status = " + cplex.getStatus ());
System.out . println ("' Objective Value = " + cplex.getObjValue ());
System.out.println ("Gap = " + cplex.getMIPRelativeGap ());

Display values of a[i][k]
for (int 1 = 0; i < N; i+4) {
for (int k = 0; k < K; k++) {
if (cplex.getValue(ali][k]) >
System.out.println ("a[" +
}

) {

0.5
i+ ll][“ +k+ ll] — 1");

}

After solving the model, this code block prints the solver status (e.g., ‘Optimal’,
‘Feasible), the value of the objective function, and the MIP relative gap, which
quantifies the optimality gap for mixed-integer programs. The loop iterates through
the binary assignment variables a;;, printing the pairs where the variable is activated
(i.e., equals 1), indicating that technician £ is assigned to incident i. Execution time
can also be displayed if you manually record timestamps before and after the solve
process.

8. Release memory

cplex.end ();

It’s essential to close the model to avoid memory leaks.
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4.3 Results and Discussion

This section presents the computational results obtained by solving the proposed Mixed-
Integer Linear Programming (MILP) model. We evaluate its performance across various
families of instances and discuss the implications of the results.

To systematically investigate the scalability of the model, we gradually increased the
size and complexity of the instances by expanding the parameters N, D, and K within
each family. We then applied our solution method to these progressively larger instances,
continuing the process until the model could no longer find a solution within the predefined
computational time limit.

This approach enabled us to pinpoint the practical limits of the model’s solvability and
to identify where performance bottlenecks or infeasibilities begin to emerge. These in-
sights are essential for evaluating the model’s real-world applicability, particularly in time-
sensitive operational settings.

4.3.1 MILP Results

To evaluate the computational efficacy of the MILP model, we conducted a series of
experiments across varying instance families, primarily differing in the number of inci-
dents, depots, and available vehicles. Table 4.1 summarizes the key performance metrics
obtained from these experiments. For each instance family, we report the structural char-
acteristics, namely the number of decision variables and constraints generated by the
model. Subsequently, for each of the two objective functions within our lexicographical
approach, two rows are displayed: the first corresponds to the results obtained when
optimizing Objective 1 (minimizing fleet size, 3.27), and the second to the results when
optimizing Objective 2 (minimizing total arrival time, 3.28), given the fleet size fixed by
the first objective.

For each objective, we indicate the number of instances (out of 25 per family) that were
solved to proven optimality (i.e., with an optimality gap of 0%) within the allocated time
limit. For instances not solved to optimality, we report the average and standard deviation
of the final optimality gap. We also report the average execution time in seconds, along
with its standard deviation, for each objective function. It is important to note that
the overall 10-minute (600 seconds) time limit was applied cumulatively for solving both
objectives within the lexicographic approach for each instance.

4.3.2 Discussion of MILP Results

The computational results presented in Table 4.1 provide valuable insights into the per-
formance and scalability of the exact solution approach. Overall, the results indicate that
the first objective, minimizing fleet size (Objective 1), is generally solved more rapidly
and to optimality more frequently than the second objective, which aims to minimize
the total arrival time (Objective 2). The model demonstrates its ability to consistently
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solve instances with up to 9 incidents to optimality for both objectives within the 10-
minute time limit. However, as the problem size increases, particularly to 10 incidents,
the model’s ability to find and prove optimal solutions for the second objective within
the time limit diminishes. For instance, while Objective 1 is solved to optimality for all
25 instances in the 10-incident family, there are 11 instances where Objective 2 yields an
average optimality gap of approximately 15%, indicating that the exact approach begins
to struggle with these larger, more complex scenarios. Furthermore, the performance
varies notably even across instances of similar nominal size (e.g., same number of inci-
dents, depots, and vehicles). This suggests that specific characteristics of an instance,
such as the spatial distribution of incidents relative to depots or the tightness of time
windows, significantly impact the underlying problem complexity and, consequently, the
solver’s efficiency. These observations highlight the inherent limitations of the current ex-
act method in consistently handling complex or particularly challenging scenarios within
practical time limits, pointing towards the need for more scalable and potentially adaptive
approaches, such as the heuristic or decomposition-based techniques discussed earlier. To
further understand the behavior of the solution times and optimality gaps, box plots were
generated for these metrics across different instance families, comparing the performance
for Objective 1 and Objective 2.

A box plot is a standardized way of displaying the distribution of data based on a five-
number summary: minimum, first quartile (Q1), median (Q2), third quartile (Q3), and
maximum. It can also highlight outliers.

For the box plot of solution times, a logarithmic scale was used on the y-axis. This
choice was made because the values for small instances are very low and then increase
significantly for larger instances. Using a logarithmic scale allows for better visualization
and comparison across the full range of values. A logarithmic scale is a nonlinear scale that
represents data by orders of magnitude rather than a fixed unit interval; it is particularly
useful when the data spans several orders of magnitude. In contrast, for the box plot
of the optimality gaps, a logarithmic scale was not necessary, as many of the values are
equal to zero and the range is relatively limited.
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Figure 4.3: Boxplot of Execution Time (log scale) per Family
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Figure 4.4: Boxplot of Gap(%) per Family

Analyzing Figures 4.3 and 4.4, several key observations emerge:

1. Execution Time Discrepancy: Figure 4.3 clearly shows that the execution time
for Objective 1 is consistently lower than that for Objective 2 across all instance
families. The model typically finds the optimal number of vehicles relatively quickly.
This is likely because determining the minimum fleet size is a structurally simpler
problem compared to the subsequent detailed routing and scheduling required to
minimize total arrival times, which also incorporates the fixed fleet size constraint
from the first objective as imposed by the lexicographic approach.

2. Combinatorial Explosion and Time Increase: As the problem instances grow
in size (e.g., more incidents), the solution time particularly for Objective 2 tends
to increase significantly, sometimes exponentially. This is characteristic of NP-hard
combinatorial optimization problems, reflecting the "combinatorial explosion" where
the number of possible solutions grows immensely with problem size.

3. Presence of Outliers: Both box plots exhibit outliers, particularly for larger in-
stance sizes. These outliers represent instances within a family that are significantly
harder to solve (requiring more time or resulting in larger gaps) than their peers.
This variability underscores the point that instance-specific characteristics, beyond
just the raw number of incidents or vehicles, heavily influence computational dif-
ficulty. Testing across a representative family of instances (25 in our case) helps
capture this variability and ensures more robust conclusions about model perfor-
mance.

4. Time Limit Impact: Given the cumulative 10-minute time limit for both ob-
jectives, there are scenarios—especially with larger instances where a substantial
portion of the allocated time is consumed by solving (or attempting to solve) Ob-
jective 1. In some extreme outlier cases, the solver might exhaust the time limit on
the first objective, leaving little to no time for the second, which directly impacts
the reported time and gap for Objective 2.
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5. Interpretation of Gaps for Objective 1: The optimality gaps reported for
Objective 1 (minimizing fleet size) can sometimes appear large (e.g., 25% or 33%)
even if the absolute difference in the number of vehicles is small. Since the objective
value (number of vehicles) is a small integer (e.g., 2, 3, 4), if the optimal solution
is, for example, 3 vehicles and the solver finds a solution with 4 vehicles before
terminating, the gap would be (4—3)/3 ~ 33%. This is a consequence of the discrete
and small-valued nature of this particular objective function and often occurs in
outlier instances where finding that last optimal vehicle assignment is particularly

difficult.

6. Larger Gaps for Objective 2: Figure 4.4 generally shows larger and more vari-
able optimality gaps for Objective 2 compared to Objective 1. This is expected,
as Objective 2 is solved after Objective 1, often with less remaining time from the
cumulative limit. Additionally, it is a more complex objective involving intricate
routing and scheduling decisions. The performance on Objective 1 both time taken
and quality of the fixed fleet size passed to Objective 2 directly influences the re-
sources available and the starting point for optimizing Objective 2.

In conclusion, the analysis of the MILP model’s performance demonstrates its capability
to effectively solve smaller to moderately sized instances of the STM OS vehicle optimiza-
tion problem. However, as instance size and complexity increase, the exact approach faces
significant computational challenges, manifested in longer solution times and non-zero op-
timality gaps within the practical time limits imposed. This is characteristic of NP-hard
combinatorial optimization problems where the solution space explodes with increasing
size. Relying solely on an exact solver like CPLEX to find proven optimal solutions for
large-scale, real-world instances within operational timeframes (which might be minutes,
not hours or days) is often not feasible. This underscores the necessity for developing effi-
cient methods, which can provide high-quality solutions for larger instances in a tolerable
amount of computation time, making them more suitable for practical deployment.

4.3.3 Heuristic Results

As demonstrated in the preceding analysis, while the MILP model provides optimal so-
lutions for smaller instances, its computational performance degrades significantly when
applied to larger, more complex scenarios representative of a full operational day for the
STM. The exact model was unable to consistently solve instances beyond a certain size
(e.g., around 10 incidents) to optimality within the imposed time limits. This scalabil-
ity challenge necessitates the development of alternative approaches capable of handling
larger problem instances efficiently.

To this end, we proposed a decomposition-based heuristic technique, as detailed in Chap-
ter 3, Section 3. This heuristic is inspired by the natural hierarchical organization of the
STM'’s operational work, which involves shifts, depot service areas, and distinct geograph-
ical sectors. The core idea is to strategically break down the overall large-scale problem
into a series of smaller, more manageable subproblems. The key advantage of this ap-
proach is its ability to leverage the proven capability of the developed MILP model to
solve these smaller subproblems (notably those with a maximum of around 10 incidents).
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While the full automation and comprehensive testing of this decomposition heuristic are
still ongoing, preliminary experiments have been conducted to validate its potential and
gather initial performance insights. For this initial validation, we considered a historical
data sample representing a significant portion of daily operations (approximately one-
third of a day). This sample focused on a region encompassing 5 specific sectors where,
in reality, approximately 80 incidents are typically handled over a day (divided into 4
operational shifts). These incidents are serviced by vehicles operating from 3 designated
depots, with the assignment of sectors to their primary servicing depots defined by existing
STM operational policy, as outlined in Table 4.2.

Depot ‘ Sectors
depotl S6, S7
depot2 S1, S2, S3
depot3 S5, S15
depot4 S8, S9
depotb S4, S14
depot6 S5, S10
depot7 S11, S12, S13
depot8 S6, S7

Table 4.2: Assignment of Sectors to Depots

By applying the decomposition technique to this data sample, the problem was broken
down into 12 distinct subproblems. Each of these subproblems was then solved using the
exact MILP formulation described in Section 3.2.

The results obtained from solving these subproblems are summarized in Table 4.3. All
12 subproblems were solved to proven optimality (optimality gap = 0%) for both lexi-
cographical objectives. Notably, the total cumulative computation time to solve all 12
subproblems for both objectives was remarkably low, under 6 seconds. Analyzing the
performance for each objective within these subproblems:

- For Objective 1 (minimizing fleet size per subproblem), the average execution time
was approximately 0.18 seconds, with a standard deviation of 0.3 seconds.

- For Objective 2 (minimizing total arrival time per subproblem, given the fleet size
from Objective 1), the average execution time was approximately 0.83 seconds, with
a standard deviation of 1.41 seconds.

Consistent with the findings from the direct MILP application on varying instance sizes,
the time required to solve the second objective (routing and scheduling) was generally
higher than that for the first objective (fleet sizing) within each subproblem.

These preliminary findings are highly encouraging. They suggest that the decomposition-
based technique is an effective strategy for tackling the STM OS vehicle optimization
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Shift ‘ Depot ‘ Sector ‘ Incidents Time 1 (s) Time 2 (s) ‘

Shift 1 D6 S5, S10 6 0.071 0.095
D4 58, 59 6 0.059 0.229
D6 S10 7 0.121 0.698
Shift 2 D7 S11 4 0.023 0.04
D6 S5 8 0.104 0.742
D6 S10 6 0.042 0.411
Shift 3 D7 S11 9 0.199 0.119
D6 SH 6 0.043 0.378
D4 S8, 59 9 0.157 0.592
D7 S11 6 0.064 0.199
Shift 4 D6 S5, S10 ) 0.055 0.246
D4 58, S9 7 0.2 0.647

Table 4.3: Results of the Execution of the Heuristic on a Test Instance

problem. By breaking the larger problem into smaller pieces that the exact MILP can
handle efficiently, we can achieve optimal solutions for these sub-units rapidly. While the
complete automation of the decomposition process and the development of sophisticated
aggregation methods for the subproblem solutions are still under development, these initial
results strongly indicate the viability and significant potential of this heuristic approach
to provide high-quality, scalable solutions for the STM.

4.4 Action Plan for Model Integration and Use

Having developed and experimentally validated the mathematical models in the preced-
ing sections, this final technical part of this thesis outlines a practical action plan for
integrating these optimization tools into the STM’s operational planning processes. The
ultimate value of a mathematical model is realized through its consistent application in
a real-world environment. Therefore, this section proposes the development of a compre-
hensive Decision Support Platform designed to transform the MILP and heuristic models
into a tangible, user-friendly tool for STM planners and managers. This platform would
not only solve the optimization problems but also provide crucial functionalities for data
visualization, scenario analysis, and strategic planning.

The proposed platform would be built around four core functionalities, supported by a
robust and scalable system architecture.

4.4.1 Core Platform Functionalities

1. Real-Time Data Monitoring and Visualization:
The platform’s foundation would be a dynamic dashboard, potentially developed
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using a business intelligence service like Power BI. This component would connect
to STM’s operational databases to provide a real-time or near-real-time overview
of incident data. Users could visualize incident locations on a map of Montreal,
filter by type, time of day, or sector, and track key performance indicators (KPIs),
providing essential situational awareness for daily operations and a rich data source
for strategic analysis.

2. Scenario Generation and Management:
A key feature for strategic planning would be the ability to generate and analyze
"what-if" scenarios. The platform would provide an interface for users to:

- Define Scenario Parameters: Planners could easily set parameters to create
new instances, such as the number of expected incidents (N), the set of available
depots (D), potential fleet sizes (K), and other operational constraints (e.g.,
shift durations, EV range).

- Visualize Scenarios: Upon generation, the system would display the instance
graphically on a map, showing the locations of incidents and depots. This
visual feedback is crucial for ensuring the generated scenario is realistic and
for intuitive understanding before launching the optimization.

3. Optimization Model Resolution (MILP & Heuristic):
The core of the platform would be its optimization engine. The user interface would
allow a planner to:

- Select an Instance: Choose a generated scenario or a historical dataset to
solve.

- Choose a Solution Method: Select either the Exact MILP Solver for smaller,
critical problems where optimality is required, or the Decomposition Heuristic
for larger-scale instances where a fast, high-quality solution is preferred.

- Execute and Display Results: The system would dispatch the problem to
a specialized computational unit for resolution. Upon completion, the results
would be displayed clearly, including:

o The optimal fleet size and vehicle-to-depot assignments.
o Detailed vehicle routes and schedules visualized on the map.

o A summary of key performance indicators (e.g., total response time, aver-
age vehicle utilization, total distance traveled).

4. Heuristic Resolution:
As the decomposition heuristic relies on solving smaller MILP subproblems, this
functionality would be integrated within the optimization engine. When a user
selects the heuristic approach, the platform would automatically execute the multi-
level problem decomposition (by shift, depot, and sector), solve each subproblem
using the MILP solver, and then run the solution aggregation logic to present a
cohesive global solution.
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4.4.2 Proposed System Architecture

To support these functionalities, a flexible and scalable software architecture is necessary.
A microservices-based architecture is proposed, as it allows each core functionality (e.g.,
instance generation, optimization, data storage) to be developed, deployed, and updated
independently. This modularity is ideal for complex applications, enhancing maintain-
ability and resilience.

These independent services would communicate via a standardized REST API (Repre-
sentational State Transfer Application Programming Interface). The REST API acts as
a universal gateway, allowing the user-facing application to interact with the backend
services using standard HTTP requests. For example, a user action in the interface would
translate to an API call: a GET request to retrieve historical incident data, a POST
request to create and save a new scenario, or another POST request to launch an opti-
mization job. This decouples the user interface from the complex logic of the backend,
allowing for greater flexibility in development.

The systemic needs to support this architecture include:

- User Interface: A web-based application providing access to all platform func-
tionalities.

- API Gateway: A central point for managing and routing all REST API requests.
- Backend Services:

o A Storage Service connected to a dedicated database for storing instances,
historical data, and solution results.

o An Optimization Service that manages the queue of solving jobs and interfaces
with the CPLEX solver.

- Specialized Compute Units: Powerful servers dedicated to running the compu-
tationally intensive MILP and heuristic algorithms.

- Data Visualization Service: A service to process solution data and render it on
maps and charts for the user interface.

4.4.3 User Workflow and Activity Diagram

The typical user workflow on the proposed platform is illustrated in the activity diagram
below (Figure 4.5). This diagram shows the sequence of actions a user, such as an STM
planner, would take to analyze a problem and obtain an optimized solution. The process
begins with either analyzing existing data or creating a new scenario, proceeds through
the selection of a solution method, and concludes with the visualization and storage of
the results.

This structured action plan provides a clear roadmap for translating the academic contri-
butions of this thesis into a powerful, practical tool that can directly support the strategic
and operational goals of the STM.
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4.5 Conclusion

This chapter has presented a comprehensive evaluation of the solution approaches pro-
posed in the previous chapter through a carefully designed experimental framework. Be-
ginning with the generation of diverse and representative instances and the implementa-
tion of the model.

The computational results have confirmed the strengths of the exact MILP approach
in solving small to moderately sized instances, particularly in minimizing fleet size, the
primary objective. However, as the problem size increased, the MILP model revealed its
limitations especially in addressing the secondary objective of minimizing arrival times
due to the computational complexity of NP-hard problems. The difficulty in obtaining
optimal solutions within a reasonable time frame for larger instances highlighted the need
for scalable and more flexible alternatives.

In response to these limitations, a decomposition-based heuristic was introduced and
preliminarily validated. By breaking down the problem into smaller, more manageable
subproblems aligned with the STM’s operational structure, this approach leverages the
strengths of exact optimization on a reduced scale. Initial experiments using this heuristic
on representative data yielded promising results, demonstrating its potential for address-
ing real-world problem sizes more efficiently.

In conclusion, this chapter has not only illustrated the practical boundaries of exact MILP-
based optimization for STM problems but also demonstrated the limitations of exact
approaches in addressing NP-hard problems. Additionally, it laid the groundwork for a
promising heuristic alternative, which is still under development particularly regarding
automation and the aggregation of subproblem solutions.

Conclusion Page 97



General Conclusion

This thesis has addressed the complex challenge of optimizing the electrified Operational
Supervisor (OS) vehicle fleet for the Société de transport de Montréal (STM). Driven by
the STM’s commitment to sustainability and operational efficiency, our research aimed
to develop a robust decision-support framework for determining the optimal fleet size and
deployment strategy for these critical service vehicles, particularly considering the unique
constraints introduced by electrification.

The study commenced with a detailed problem description, contextualizing the opera-
tional environment of the STM and the pivotal role of OS vehicles in maintaining net-
work reliability. This was followed by a comprehensive literature review, which surveyed
foundational concepts in optimization, relevant problems such as facility location and ve-
hicle routing with its many variants (including those with time windows, multiple depots,
and electric vehicle considerations), and established solution methodologies. This review
confirmed that while individual components of fleet management are well-studied, an in-
tegrated approach for the strategic sizing and deployment of an electrified operational
support fleet, like the STM’s OS vehicles, represented a notable gap in existing research.

Subsequently, we developed a conceptual model capturing the operational dynamics of the
OS fleet, which was then translated into a rigorous Mixed-Integer Linear Program (MILP).
This mathematical formulation was designed to integrate key decision variables related
to fleet sizing and deployment, operational constraints (including shift durations, vehicle
range, depot capacities, and incident time windows), and the lexicographical objectives
of first minimizing the total number of vehicles and then minimizing the total incident
arrival time.

The experimental phase involved the generation of diverse test instances, inspired by
STM’s operational data, and the implementation of the MILP model using Java and
the IBM ILOG CPLEX solver. The results demonstrated the MILP’s efficacy in solv-
ing smaller to moderately sized instances to optimality. However, as anticipated for an
NP-hard combinatorial optimization problem, scalability limitations became evident with
larger instances, where finding proven optimal solutions within practical time limits proved
challenging. This led to the exploration and preliminary validation of a decomposition-
based heuristic. This heuristic, inspired by the STM’s operational structure (shifts, de-
pots, sectors), aims to break down the larger problem into manageable subproblems that
can be efficiently solved by the core MILP. Initial results for this decomposition ap-
proach were highly promising, showcasing its potential to provide high-quality solutions
for larger-scale scenarios in significantly reduced computation times.
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Summary of Findings

The primary contributions and findings of this research can be summarized as follows:

1. Problem Formulation for a Real-World Challenge: We addressed a pertinent
and practical problem faced by a major public transit agency (STM) concerning
the optimization of its specialized electrified OS vehicle fleet. To the best of our
knowledge, this specific integrated problem of sizing and deploying such a fleet,
with its unique operational context, has not been extensively treated in the existing
academic literature.

2. Development of a Novel Mathematical Model: A comprehensive Mixed-
Integer Linear Program (MILP) was developed. This model integrates crucial as-
pects of fleet sizing, multi-depot assignment, vehicle routing with time windows, and
considerations relevant to electric vehicles, all within a lexicographical optimization
framework.

3. Validation of MILP Performance: The computational capabilities of the exact
MILP model were rigorously evaluated. We identified its strengths in solving smaller
instances and clearly demarcated its scalability limits, providing a benchmark for
the performance of exact methods on this class of problem.

4. Proposal and Preliminary Validation of a Decomposition-Based Heuris-
tic: Recognizing the limitations of the exact model for large-scale instances, a
multi-level decomposition heuristic was conceptualized and its initial feasibility and
effectiveness were demonstrated. This approach shows significant promise for prac-
tical application by leveraging the strengths of the MILP on smaller, more tractable
subproblems.

5. Academic Dissemination: The significance and novelty of this research have
been recognized through the acceptance of a research paper based on this work for
publication and presentation at the [Name of IEEE/IFAC Conference, e.g., “IEEE
Conference on X” or “IFAC Symposium Y?”], scheduled for July 2025. This serves
as an external validation of the research quality and its contribution to the field.

Limitations and Challenges

Despite the promising results, this study is subject to certain limitations and encountered
several challenges:

1. Computational Resources: The computational experiments for the MILP model
were conducted on a standard desktop computer (Intel Core i5, 8 GB RAM). While
sufficient for initial validation, it is acknowledged that many academic and indus-
trial optimization studies utilize significantly more powerful computing resources
(e.g., servers with 16+ cores and larger memory). Access to such resources could
potentially extend the solvable range of the exact MILP or reduce solution times.
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2. Heuristic Development Stage: The proposed decomposition-based heuristic is
currently in its preliminary stages of development. While initial results are encour-
aging, the full automation of the decomposition logic, the sophisticated aggregation
of subproblem solutions (especially managing interdependencies or vehicle sharing
across subproblem boundaries), and comprehensive testing across a wider range of
large-scale instances are yet to be completed.

3. Data Assumptions and Simplifications: Like any modeling effort, certain as-
sumptions were made to render the problem tractable, such as constant vehicle
speeds, deterministic service times, and treating incidents with equal priority. Real-
world operations often involve greater variability and dynamic events that are not
fully captured in the current static model.

4. MILP Scalability: The inherent NP-hard nature of the underlying combinatorial
optimization problem means that even with advanced solvers like CPLEX, finding
proven optimal solutions for very large, real-world instances within tight operational
deadlines will always remain a significant challenge for direct MILP application.

Future Directions for Research

The findings and limitations of this thesis open up several exciting avenues for future
research and development:

1. Full Development and Refinement of the Decomposition Heuristic: A
primary focus will be to complete the development of the decomposition heuristic,
including robust methods for subproblem definition, efficient solution aggregation,
and comprehensive benchmarking against the MILP and potentially other heuristics
on large-scale instances.

2. Exploration of Metaheuristic Approaches: Given the problem’s complexity,
exploring established metaheuristics could yield effective solutions. Genetic Algo-
rithms (GAs), for instance, are known for their efficacy in solving complex routing
problems and could be adapted for this integrated sizing, deployment, and routing
challenge. Other metaheuristics like Tabu Search, Simulated Annealing, or Adaptive
Large Neighborhood Search (ALNS) also warrant investigation.

3. Advanced Mathematical Modeling Techniques: To enhance the solvability
of the exact model for larger instances, advanced MILP techniques could be ex-
plored. This includes applying Benders decomposition, which is well-suited for
problems with a particular structure, or column generation. Reformulating parts
of the problem, perhaps drawing inspiration from how some routing problems have
been successfully modeled as scheduling problems where efficient solution methods
exist, could also be a fruitful direction.

4. Incorporating Stochasticity and Dynamics: Real-world incident occurrences,
travel times, and service times are often stochastic. Future work could focus on
incorporating this uncertainty. This might involve:
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- Simulation-Optimization: Coupling the deterministic optimization model with
a simulation model to evaluate solution robustness under uncertainty and to
refine parameters.

- Stochastic Programming or Robust Optimization: Formulating models that ex-
plicitly account for uncertainty in input parameters.

- Dynamic Approaches: Developing dynamic dispatching or re-optimization strate-
gies using techniques like rolling horizon planning or Markov Decision Processes
to adapt to real-time information as incidents unfold.

5. Evaluation of Alternative Solvers: While CPLEX is a powerful solver, compar-
ing its performance with other leading commercial solvers like Gurobi, or innovative
solvers like Hexaly (which utilizes a list-based system for variable definition that
can be efficient for certain problem structures), could provide insights into the best
tools for this specific problem class.

6. Integration of More Detailed EV Constraints: Further refining the model
to include more detailed aspects of electric vehicle operation, such as non-linear
charging functions, battery degradation, or the impact of ambient temperature on
range, would enhance its real-world applicability.

In conclusion, this thesis has laid a solid foundation for optimizing the STM’s electrified
OS vehicle fleet. The developed models and the promising initial results from the de-
composition heuristic provide valuable tools and insights. The identified limitations and
future research directions offer a clear roadmap for continued work towards even more
sophisticated and robust solutions for this critical operational challenge.
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Appendix

Table 4: Detailed Results for Instance Family 1

108

0,0948

0,0339

0,2470
0,1008

(N.D.K) Instances Gap1 (%) Gap2 (%) Timel (s) Time2 (s) Total time
(5.2.3) instance 1 0.00% 0.00% 0.138 0.474 0.61
(5.2.3) instance 2 0.00% 0.00% 0.061 0,177 0.24
(5.2.3) instance 3 0.00% 0.00% 0.046 0.075 0.12
(5.2.3) instance 4 0.00% 0.00% 0.171 0.354 0.53
(5.2.3) instance 5 0.00% 0.00% 0.087 0.086 0.17
(5.2.3) instance 6 0.00% 0.00% 0.065 0.238 0.30
(5.2.3) instance 7 0.00% 0.00% 0.141 0.213 0.35
(5.2.3) instance 8 0.00% 0.00% 0.047 0,189 0.24
(5.2.3) instance 9 0.00% 0.00% 0.111 0.185 0.30
(5.2.3) instance 10 0.00% 0.00% 0.067 0.324 0.39
(5.2.3) instance 11 0.00% 0.00% 0.076 0.268 0.34
2l s mstance 12 L00% .00% . 212 .
5.2.3 i 12 0.00% 0.00% 0.086 0.212 0.30
2. mstance ,00% .00% . K .5
52.3 i 13 0.00% 0.00% 0.126 0.419 0.55
R mstance L00% L00% N . .
5.2.3 i 14 0.00% 0.00%% 0,116 0.143 0.26
2l s mstance .00% .00% . 25 .
5.2.3 i 15 0.00% 0.00% 0.145 0.255 0.40
22, mstance ,00% .00% . K .5
52.3 i 16 0.00% 0.00% 0,118 0.415 0.53
s mstance .00% L00% 8 . .
5.2.3 i 17 0.00% 0.00%% 0,114 0.233 0.35
2, mstance ,00% ,00% A B ,
52.3 i 18 0.00% 0.00% 0.097 0.231 0.33
2, mstance L00% .00% A B .
52.3 i 19 0.00% 0.00% 0.066 0.293 0.36
2. mstance .00% .00% . 15 22
5.2.3 i 20 0.00% 0.00% 0.067 0.156 0.22
(5.2.3) instance 21 0.00% 0.00% 0.067 0.226 0.29
(5.2.3) instance 22 0.00% 0.00% 0.096 0.37 0.47
(5.2.3) mstance 23 0.00% 0.00% 0.124 0.271 0.40
(5.2.3) instance 24 0.00% 0.00% 0.072 0.201 0.27
(5.2.3) instance 25 0.00% 0.00% 0.065 0.167 0.23

0,3418




Appendix

Table 5: Detailed Results for Instance Family 2

(N.D.K) Instances Gapl (%) Gap2 (%) Timel (s) Time2 (s) Total time
(6.2.4) instancel 0.00% 0.00% 0,1630 0,2810 0,44
(6.2.4) instance2 0.00% 0.00% 0,1560 0,3580 0,51
(6.2.4) instance3 0,00% 0,00% 0,1450 0,5300 0,68
(6.2.4) instance4 0.00% 0,00% 0,0920 0,5820 0,67
(6.2.4) instance$ 0.00% 0.00% 0,1250 0.5110 0,64
(6.2.4) instance6 0,00% 0,00% 0.1160 0,3570 0,47
(6.2.4) instance? 0.00% 0,00% 0,2010 0,6360 0,84
(6.2.4) instance8 0.00% 0.00% 0,4400 0,9150 1.36
(6.2.4) instance9 0,00% 0,00% 0,0770 0,2870 0,36
(6.2,4) instancel0 0.00% 0.00% 0,1240 0,2660 0,39
(6.2.4) instancell 0.00% 0.00% 0,1620 0,3700 0,53
(6.2.4) instancel2 0,00% 0,00% 0,1250 0,2720 0,40
(6.2,4) instance13 0.00% 0.00% 0,1950 0,4870 0,68
(6.2.4) instancel4 0,00% 0,00% 0,1160 0,2960 0,41
(6.2.4) instancel$ 0,00% 0,00% 0,0830 0,3410 0,42
(6.2,4) instancel6 0.00% 0.00% 0.1110 0,3180 0.43
(6.2.4) instancel7 0,00% 0,00% 0,0520 0,1580 0,21
(6.2.4) instancel8 0.00% 0.00% 0,1920 0,3340 0,53
(6.2.4) instancel9 0.00% 0.00% 0,1790 0,2930 0.47
(6.2.4) instance20 0,00% 0,00% 0,1480 0,3710 0,52
(6.2.4) instance21 0.00% 0,00% 0,0920 0,2150 0.31
(6.2.4) instance22 0.00% 0.00% 0.1120 0,3870 0,50
(6.2.4) instance23 0,00% 0,00% 0.1150 0,2570 037
(6.2.4) instance24 0.00% 0,00% 0,1520 0,3680 0,52
(6.2.4) instance25 0.00% 0.00% 0,0600 0,1660 023
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Table 6: Detailed Results for Instance Family 3

(N.D.K) Instances Gap1 (%) Gap2 (%) Timel (s) Time2 (s) Total time
(7.3,5) instancel 0,00% 0,00% 0,4850 1,2010 1,69
(7.3,5) instance2 0,00% 0,00% 02150 1,9180 2,13
(7.3.5) instance3 0.00% 0.00% 0,1690 1,6990 1,87
(7.3,5) instanced 0,00% 0,00% 0,2010 0,3430 0,54
(7.3.5) mstances 0.00% 0.00% 0,2220 1,8580 2,08
(7.3,5) instance6 0,00% 0,00% 0,1540 0,6740 0,83
(7.3,5) instance7 0,00% 0,00% 0,3240 1,5650 1,89
(7.3.5) instance8 0.00% 0.00% 0.3540 1,9370 2,29
(7.3,5) instanced 0,00% 0,00% 0,3460 2,1690 2,52
(7.3.5) instancel0 0.00% 0.00% 0,1870 1,0240 1.21
(7.3,5) instancel1 0,00% 0,00% 0,2880 1,4510 1,74
(7.3,5) instancel2 0,00% 0,00% 0,1450 0,5870 0,73
(7.3.5) instancel3 0.00% 0.00% 0,2990 0.4590 0.76
(7.3,5) instance14 0,00% 0,00% 0,2700 0,6760 0,95
(7.3.5) instancel5 0.00% 0.00% 0,1400 0.5510 0.69
(7.3,5) instance16 0,00% 0,00% 0,2250 1,1970 142
(7.3,5) instancel7 0,00% 0,00% 0,2020 1,0820 1,28
(7.3.5) instancel8 0.00% 0.00% 0,1800 0.,9330 1,11
(7.3,5) instance19 0,00% 0,00% 0,2090 0,5030 0,71
(7.3.5) instance20 0.00% 0.00% 0,1350 0.9760 111
(7.3,5) instance21 0,00% 0,00% 0,1090 1,1230 1,23
(7.3,5) instance22 0,00% 0,00% 0,1880 0,0980 1,19
(7.3.5) instance23 0.00% 0.00% 0.1440 1,0780 1,22
(7.3,5) instance24 0,00% 0,00% 0,1240 0,0540 1,08
(7.3.5) instance25 0.00% 0.00% 0.2600 2,3940 2,65
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Table 7: Detailed Results for Instance Family 4

0,54912

(,3639

(ND.K) Instances Gapl (%) Gapl (%) Timel (s) Time2 (s) Total time
(8.3.5) instancel 0,00% 0,00% 0,392 2,177 2,57
(8.3.5) instancel 0,00% 0,00% 0,344 2514 2.86
(8.3.5) instance3 0,00% 0,00% 0.6 3.861 4.46
(8.3.5) instanced 0,00% 0,00% 277 0.837 1.13
(8.3.5) instance3 0,00% 0,00% 0,396 3,263 3,66
(8.3.5) instanced 0,00% 0,00% 1,003 15,657 16,66
(8.3.5) instance7 0,00% 0,00% 0,19 2,886 3,08
(8.3.5) instance8 0,00% 0,00% 0,313 3424 3,74
(8.3.5) instanced 0,00% 0,00% 0.27 0,642 0.91
(8.3.5) instance10 0,00% 0,00% 1.318 14,934 16,23
(8.3.5) instancell 0,00% 0,00% 0.27 0870 1.15
(8.3.5) instancel2 0,00% 0,00% 0,506 4372 4.88
(8.3.5) instancel3 0,00% 0,00% 0,748 5.534 6,28
(8.3.5) instance14 0,00% 0,00% 0,314 1,209 1,32
(8.3.5) instancel? 0,00% 0,00% 0.414 3.963 4.38
(8.3.5) instancel6 0,00% 0,00% 0,316 2.018 2,33
(8.3.5) instancel7 0,00% 0,00% 0,726 4191 4.92
(8.3.5) instancel8 0,00% 0,00% 0,502 8.735 0.26
(8.3.5) instancel? 0,00% 0,00% 0,403 2,763 3,17
(8.3.5) instance2( 0,00% 0,00% 1.414 17,584 19,00
(8.3.5) instance2 ] 0,00% 0,00% 0,316 0,892 1.21
(8.3.5) instance22 0,00% 0,00% 0,398 1,524 1,92
(8.3.5) instance23 0,00% 0,00% 0,523 2,102 2.63
(8.3.5) instance24 0,00% 0,00% 1.433 23,477 24,91
(8.3.5) instance23 0,00% 0,00% 0.34 2471 2.81

5277196
6.0455

5.8271
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Table 8: Detailed Results for Instance Family 5

1,35108

1,0253

(N.D.K) Instances Gapl (%) Gap2 (%) Timel (s) Time?2 (s) Total time
(9.3.6) instancel 0.00% 0.00% 1,38 9.981 11,36
(9.3,6) instance? 0,00% 0,00% 0,817 3,222 4,04
(9.3.6) instance3 0,00% 0,00% 1,144 9,877 11,02
(9.3.6) instanced 0.00% 0.00% 1,828 45,745 47,57
(9.3,6) instance$ 0,00% 0,00% 0,539 3,406 3,05
(9.3.6) instance6 0.00% 0.00% 0.519 14,446 14,97
(9.3.6) instance? 0.00% 0.00% 1,03 10,944 11,97
(9.3,6) instance8 0,00% 0,00% 1,361 18,082 19.44
(9.3.6) instance9 0.00% 0.00% 2222 5,744 7,07
(9.3.6) instancel0 0.00% 0.00% 0.713 2,638 3,35
(9.3,6) instancel1 0,00% 0,00% 1,331 2,033 3,36
(9.3.6) instancel2 0.00% 0.00% 0,57 2,558 3,13
(9.3,6) instance13 0,00% 0,00% 0,656 2,784 3,44
(9.3,6) instance14 0,00% 0,00% 1,598 9,428 11,03
(9.3.6) instancel5 0.00% 0.00% 0.845 5.008 5,85
(9.3,6) instance16 0,00% 0,00% 0,933 5.65 6,58
(9.3.6) instance17 0,00% 0,00% 1,695 6,862 8,56
(9.3.6) instancel8 0.00% 0.00% 1,228 2,28 3.51
(9.3,6) instance19 0,00% 0,00% 3,912 31,836 35,75
(9.3.6) instance20 0,00% 0,00% 0,229 5,519 5,75
(9.3.6) instance21 0.00% 0.00% 1,348 62,727 64,08
(9.3,6) instance22 0,00% 0,00% 1,348 29,348 30,70
(9.3.6) instance23 0.00% 0.00% 0.696 6.154 6.85
(9.3.6) instance24 0.00% 0.00% 4,812 44,819 49,63
(9.3,6) instance2$ 0,00% 0,00% 1,023 7,606 8,63

13,94788
16,2078

15,2990
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Table 9: Detailed Results for Instance Family 6

(10,4,7)

51,43956
73,7858

(N.D,K) Instances Gapl (%) Gap2 (%) Timel (s) Time2 (s) Total time
(10.4.7) instancel 0,00% 0.00% 204,278 135.85 340,13
(10,4.7) instance2 0.00% 0.00% 1.309 136.271 137,58
(10,4.7) instance3 0.00% 0.00% 27,424 58,879 86,30
(10,4.7) instanced 0.00% 20,02% 51,285 548,738 600,02
(10,4,7) instance5 0,00% 0,00% 2.993 4,619 7,61
(10,4,7) instance6 0,00% 0,00% 1,487 201,306 202,79
(10,4,7) instance? 0.00% 0,00% 1.886 352,564 354,45
(10,4,7) instance8 0.00% 0,00% 11,02 236,281 247.30
(10.4.7) instance9 0.00% 0.00% 21,368 202,342 223,71
(10.4.7) | instancel0 0.00% 16.68% 101,169 498,856 600,03
(10,4.7) instancell 0.00% 0.00% 50,127 539,053 589.18
(10,4.7) instancel2 0.00% 20.39% 18,184 582.195 600,38
(10,4.7) mstancel3 0.00% 12,21% 7.138 592,893 600,03
(10,4.7) instancel4 0.00% 3,29% 107,043 492,987 600,03
(10,4,7) inetancelS 0,00% 0,00% 318 81,237 84,42
(10,4.7) instancel6 0,00% 6.30% 4,623 595,301 600,01
(10,4,7) instancel7 0.00% 19.41% 188,381 411,627 600,01
(10,4,7) instancel8 0.00% 0,00% 1,65 259.277 260,93
(10.4.7) | instanceld 0.00% 19,15% 157.676 44235 600,03
(10.4.7) | instance20 0,00% 19.83% 252,981 347,035 600,02
(10,4.7) mstance21 0.00% 10,60% 7,711 592,304 600,02
(10,4.7) instance22 0.00% 0.00% 1,211 438,33 439,54
(10,4.7) nstance23 0.00% 0.00% 41,752 42,423 84,18
(10,4,7) instance24 0,00% 0,00% 1,932 26.803 28.74
(10,4,7) instance25 0.00% 8.50% 18,181 581,843 600,02

336,05816
209,2313

387.4977
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Table 10: Detailed Results for Instance Family 7

1354074

164,7250

(N,D.K) Instances Gapl (%) Gap2 (%) Timel (s) Time2 (s) Total time
(11.4,7) instancel 0.00% 36.23% 425,738 174,273 600,01
(11.4,7) instance2 0.00% 0,00% 16,028 197,135 213,16
(11.4,7) instance3 0.00% 24.15% 58.623 541,405 600,03
(11.4.7) instanced 0.00% 18.98% 38,394 561,63 600,02
(11.4.7) instance5 0.00% 0.00% 2,584 73,364 75,95
(11.4.7) mstance6 0.00% 26,63% 168.714 431,317 600,03
(11.4.7) mnstance7 0.00% 28,41% 363.804 236,214 600,02
(11.4.7) mstance8 0.00% 1.44% 28,642 571,363 600,01
(11.4.7) mnstance? 0.00% 25,30% 276,988 323,024 600,01
(11.4.7) instancel0 0.00% 24,10% 334,664 265,344 600,01
(11.4.7) mstancell 0.00% 0.00% 2,718 278,125 280,84
(11.4.7) instancel2 0.00% 23,11% 30,986 569,021 600,01
(11.4.7) instancel3 0.00% 0.00% 17,12 16,759 33.88
(11.4.7) instancel4 0.00% 0.00% 5.5 408,08 413,58
(11.4.7) instancel5 0.00% 26,04% 11.543 588,466 600,01
(11.4.7) instancel6 0.00% 29,34% 46,905 553,121 600,03
(11.4.7) instancel7 0.00% 31.40% 31,324 568,698 600,02
(11.4.7) instancel8 0.00% 0.00% 46,593 340,905 387,50
(11.4,7) instanccl9 0,00% 29.42% 186,821 413,199 600,02
(11.4,7) instance20 0,00% 26.61% 362,931 237,085 600,02
(11.4,7) instance21 0,00% 22.82% 152,308 447,709 600,02
(11.4,7) instance22 0,00% 6.24% 5,873 504,14 600,01
(11.4,7) instance23 0,00% 0,00% 56,547 9,071 65,62
(11.4.7) instancc24 33,33% % 600,03 - 600,03
(11.4.7) instance25 0,00% 15.64% 113,807 486211 600,02

370,2357917

188,0220

505,6432
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Table 11: Detailed Results for Instance Family 8

(N,.D.K) Instances Gapl (%) Gap2 (%) Timel (s) Time2 (s) Total time
(12.4.7) instancel 0.00% 37.30% 53,932 546,093 600,03
(12.4,7) instance? 33,33% % 600,028 - 600,03
(12.4,7) instance3 0,00% 36,68% 97.439 502,611 600,05
(12.4.7) instance4 0.00% 32.66% 231,322 368,707 600,03
(12.4.7) instance5 0.00% -% 600,031 - 600,03
(12.4,7) inetance6 0,00% 29.61% 52,521 547,508 600,03
(12.4,7) instance7 0,00% 31.80% 518,75 81,281 600,03
(12.4.7) instance8 0.00% 30,39% 56,073 543,968 600,04
(12.4.7) instance9 0.00% 20,65% 48,888 551,134 600,02
(12.4,7) instance10 0,00% 34,03% 204,127 395,881 600,01
(12.4.7) instance]1 0.00% 6.78% 27.399 572,629 600,03
(12.4.7) instancel2 0.00% 15,26% 18,876 581,154 600,03
(12.4,7) instance13 0,00% 20.01% 145,329 454,681 600,01
(12.4,7) instancel4 0,00% 31.41% 315,666 284,352 600,02
(12.4.7) instancel 5 0.00% 24.86% 30,882 569,155 600,04
(12.4.7) instancel6 0.00% 0.00% 23,99 576,047 600,04
(12.4,7) instancel7 33,33% % 600,032 - 600,03
(12.4,7) instance18 0,00% 32.62% 56,981 543,051 600,03
(12.4.7) instancel9 33.33% %o 600,04 - 600,04
(12.4.7) instance20 33.33% % 600,025 - 600,03
(12,4, 7) instance21 0.00% 27.39% 191.05 408,97 600,02
(12.4,7) instance22 0,00% 38,86% 24.692 575,32 600,01
(12.4.7) instance23 0.00% % 600,039 - 600,04
(12.4,7) instance24 0,00% % 60027 - 600,27
(12.4,7) instance2$ 0,00% % 600,046 - 600,05

(12,4,7)

33,33%
0,00%

28,71%
8,42%

275,93712
252,1420

476,6201176
134,5932

752,5572
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