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Résumé

La planification des horaires des infirmiers en milieu hospitalier est une tâche com-
plexe, soumise à de nombreuses contraintes réglementaires, contractuelles et opéra-
tionnelles. Les modèles classiques d’optimisation permettent d’élaborer un planning
initial faisable, mais ils restent inadaptés face aux absences imprévues de dernière
minute. Ces perturbations dégradent la qualité des soins, déséquilibrent la charge
de travail et nécessitent des ajustements coûteux en urgence. Très peu d’approches
actuelles intègrent des mécanismes prédictifs ou proactifs pour y faire face. La
problématique centrale de ce mémoire consiste donc à concevoir un système de
planification et de replanification capable d’absorber les absences quotidiennes de
manière réactive et robuste, tout en minimisant les perturbations du planning ini-
tial.
Mots-Clés : Planification des infirmiers, replanification, heuristique, absence, hur-
dle, modèle prédictif, programmation multi-objective.

Abstract

Nurse scheduling in hospitals is a highly constrained and uncertain task. While
traditional optimization models can generate feasible baseline schedules, they of-
ten fail to account for unplanned disruptions such as last-minute absences. These
absences compromise care quality, create workload imbalances, and force costly
last-minute adjustments. Existing models rarely integrate predictive insights or
proactive mechanisms to handle such volatility. The core challenge addressed in
this work is to design a scheduling and rescheduling system that anticipates and
reacts to daily absences with minimal disruption, while maintaining fairness, regu-
latory compliance, and staffing quality.
Keywords: Nurse scheduling, rescheduling, heuristic, absence, hurdle model, pre-
dictive modeling, multi-objective programming.



Acknowledgements

I would like to sincerely thank my academic supervisors: Mr. Yassine Ouazene, Ms.
Yasmine Alaouchiche, and Ms. Samia Beldjoudi, for their valuable support and guidance
throughout this internship. I am particularly grateful to Mr. Ouazene for his availability,
clear explanations, and constructive advice. His support helped me better understand
many technical aspects, and his structured approach made our online meetings efficient
and productive.

I also wish to thank Ms. Alaouchiche for her relevant suggestions and her help in solving
several difficulties, especially during the early phases of the project. Her guidance clearly
contributed to improving the direction and quality of this work.

My appreciation goes as well to Ms. Beldjoudi for her continuous support and for encour-
aging me to pursue this research opportunity. Her involvement was very helpful throughout
the internship.

I would like to extend my thanks to all the professors who contributed to my academic
journey. I am especially thankful to Mr. Zouaghi for his constant availability and ded-
ication. His support went beyond teaching, and he was always ready to assist students
whenever needed.

Finally, I would like to acknowledge Mr. Boukabous, Ms. Bouchafaa, Ms. Bareche,
Mr. Gourine, Ms. Bouazza, and Mr. Fourar for their teaching and their support during
my studies. Their contribution played an important role in my academic and personal
development.

Hadil CHORFI



Dedication

First and foremost, I am deeply grateful to God, whose guidance and mercy have accompanied
me through every step of my life.

I also want to thank myself, for rising after every fall, pushing through every moment of doubt,
and becoming stronger, more determined, and more resilient each time.

To my mother, the most precious person in my life, your sacrifices, love, and unwavering support
shaped the person I am today. You are the foundation of all my success.

To my father, your love and sacrifice are equal in every way. You work tirelessly every day to
give me everything I need. I promise: you will always be proud of me.

To my grandfather, who left us too soon. I have finally become the engineer you always hoped to
see one day. I will never forget the values and lessons you taught me. You remain alive in my
heart, always.

To my little sister, even though you’re younger, you’ve done more for me than you know. Thank
you for being there.

To my little brother, my source of comfort, my listener, my cheerleader. I can’t imagine this
journey without you.

To my extended family, even from afar, your presence and affection were always felt. Thank you
for being there in your own way.

To Asma, my soul sister since childhood. Thank you for all the hours of listening, for your care,
and for standing by me. Your friendship is a blessing.

To Samia, the most precious gift of my ENP journey. Your genuine support and presence this
year in every step meant the world to me.

To Serine, your strength has always been a source of motivation for me. Thank you for being
there, truly.

To Lyna, even though our friendship is recent, you’ve shown a closeness and support that feel
like they’ve always been there. I’m truly grateful for you.

To all those with whom I shared unforgettable moments at ENP, my second home: Mehdi, whose
sense of humor made difficult days a little lighter. Samir, the kindest friend. Idir, the most loved
one, thank you for everything, especially your help at the very beginning of this project. Sofiane,
for your wise advice. To the kindest people ENP brought into my life, I will always carry the
warmth of your friendship in my heart.

And finally, to everyone not mentioned by name but who holds a place in my heart, your love
and support meant more than words can say.

Hadil CHORFI



Contents

List of Tables

List of Figures

List of Acronyms

General Introduction 14

1 State of the Art 17

State of the Art 17

1.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Operations Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.2 Scheduling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.3 Healthcare Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Key Terminology in Nurse scheduling . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Problem Constraints in Nurse scheduling . . . . . . . . . . . . . . . . . . 25

1.2.3 Optimization Approaches for Nurse Scheduling . . . . . . . . . . . . . . . 26

1.2.4 Uncertainty in Nurse Scheduling . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.5 Nurse Rescheduling under Uncertainty . . . . . . . . . . . . . . . . . . . . 29

1.2.6 Proactive-Reactive Strategies in Nurse Scheduling . . . . . . . . . . . . . 30

1.2.7 Review of Relevant Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.8 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Methodology 36

2.1 Nurse Scheduling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



2.2 Data-Driven Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Data-Driven Identification of Critical Shifts . . . . . . . . . . . . . . . . . 44

2.2.2 Integrating Criticality into the Optimization Model . . . . . . . . . . . . . 45

2.3 Heuristic: Nurse Reassignment with Overflow Unit . . . . . . . . . . . . . . . . . 46

3 Computational Study 51

3.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Nurse Preference Generation Method . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Absence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Rolling Horizon Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Initialization of scheduling Parameters . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Baseline Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Small Instance: 10 Nurses, 1 Week . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Results: 1 unit : 32 Nurses, 4 Weeks . . . . . . . . . . . . . . . . . . . . . 59

3.5.3 Results: 2 units : 65 Nurses, 4 Weeks . . . . . . . . . . . . . . . . . . . . 59

3.5.4 Results: 3 units 104 Nurses, 4 Weeks . . . . . . . . . . . . . . . . . . . . . 59

3.6 Comparison of Baseline and Data-Driven Scheduling Models . . . . . . . . . . . . 60

3.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Exploratory Absence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1.1 Boxplot visualizations . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1.2 criticality score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.2 Predictive Analysis of Staff Absenteeism . . . . . . . . . . . . . . . . . . . 72

General Conclusion 80

Bibliography 82

Appendices 87

A Comprehensive Absence Analysis 88

1.1 Comprehensive Absence Analysis for Section 1 . . . . . . . . . . . . . . . . . . . 88

1.1.1 Morning Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.1.2 Evening Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



1.1.3 Night Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1.2 Comprehensive Absence Analysis for Section 2 . . . . . . . . . . . . . . . . . . . 91

1.2.1 Morning Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

1.2.2 Evening Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.2.3 Night Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.3 Comprehensive Absence Analysis for Section 3 . . . . . . . . . . . . . . . . . . . 94

1.3.1 Morning Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1.3.2 Evening Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.3.3 Night Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Tables

1.1 Common nurse scheduling constraints (adapted from Ngoe, 2022) . . . . . . . . . 26

1.2 Comparison of Selected Nurse Scheduling and Rescheduling Studies . . . . . . . 32

1.3 Comparative analysis of nurse scheduling and rescheduling approaches (chrono-
logical order) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 List of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 List of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Auxiliary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Details of software and hardware specifications . . . . . . . . . . . . . . . . . . . 52

3.2 Model Parameters, Descriptions, and Values . . . . . . . . . . . . . . . . . . . . . 56

3.3 Comparison of multi-objective approaches on an instance with 10 nurses and 1 unit 57

3.4 Comparison of multi-objective approaches on an instance with 32 nurses and 1 unit 59

3.5 Comparison of multi-objective approaches on an instance with 65 nurses and 2
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Distribution of Nurses by Hospital Section . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Comparison of multi-objective approaches on an instance with 104 nurses and 3
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Global Summary of Simulation Results and Scheduling KPIs (July 2022, 32 Nurses) 61

3.9 Global Summary of Simulation Results and Scheduling KPIs (COVID-19 Period,
32 Nurses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Global Summary of Simulation Results and Scheduling KPIs (January 2018, 104
Nurses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 Global Summary of Simulation Results and Scheduling KPIs (COVID-19 Period,
104 Nurses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Weekly criticality comparison by shift . . . . . . . . . . . . . . . . . . . . . . . . 71



3.13 Proportion of zero absences per shift and section . . . . . . . . . . . . . . . . . . 72

3.14 Dispersion analysis based on mean, variance, and Pearson index . . . . . . . . . . 73

3.15 Performance of logistic models for predicting absence occurrence . . . . . . . . . 75

3.16 Comparaison des performances prédictives sur la section 1 (MAE et RMSE par
shift) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 Comparaison des performances prédictives sur la section 2 (MAE et RMSE par
shift) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.18 Comparaison des performances prédictives sur la section 3 (MAE et RMSE par
shift) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.19 Simulation Summary with Absences Predicted by Hurdle Model (28 Days, 193
Total Absences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Total number of days analyzed for all shifts by weekday . . . . . . . . . . . . . . 88

A.2 Count of days by number of morning absences . . . . . . . . . . . . . . . . . . . . 88

A.3 Frequency of morning absences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.4 Criticality scores by weekday for morning shift . . . . . . . . . . . . . . . . . . . 89

A.5 Count of days by number of evening absences . . . . . . . . . . . . . . . . . . . . 89

A.6 Frequency of evening absences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.7 Criticality scores by weekday for evening shift . . . . . . . . . . . . . . . . . . . . 90

A.8 Count of days by number of night absences . . . . . . . . . . . . . . . . . . . . . 90

A.9 Frequency of night absences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.10 Criticality scores by weekday for night shift . . . . . . . . . . . . . . . . . . . . . 91

A.11 Count of days by number of morning absences (Section 2) . . . . . . . . . . . . . 91

A.12 Frequency of morning absences (Section 2) . . . . . . . . . . . . . . . . . . . . . . 92

A.13 Criticality scores by weekday for morning shift (Section 2) . . . . . . . . . . . . . 92

A.14 Count of days by number of evening absences (Section 2) . . . . . . . . . . . . . 92

A.15 Frequency of evening absences (Section 2) . . . . . . . . . . . . . . . . . . . . . . 93

A.16 Criticality scores by weekday for evening shift (Section 2) . . . . . . . . . . . . . 93

A.17 Count of days by number of night absences (Section 2) . . . . . . . . . . . . . . . 93

A.18 Frequency of night absences (Section 2) . . . . . . . . . . . . . . . . . . . . . . . 94

A.19 Criticality scores by weekday for night shift (Section 2) . . . . . . . . . . . . . . 94

A.20 Count of days by number of morning absences (Section 3) . . . . . . . . . . . . . 94

A.21 Frequency of morning absences (Section 3) . . . . . . . . . . . . . . . . . . . . . . 95

A.22 Criticality scores by weekday for morning shift (Section 3) . . . . . . . . . . . . . 95



A.23 Count of days by number of evening absences (Section 3) . . . . . . . . . . . . . 95

A.24 Frequency of evening absences (Section 3) . . . . . . . . . . . . . . . . . . . . . . 96

A.25 Criticality scores by weekday for evening shift (Section 3) . . . . . . . . . . . . . 96

A.26 Count of days by number of night absences (Section 3) . . . . . . . . . . . . . . . 96

A.27 Frequency of night absences (Section 3) . . . . . . . . . . . . . . . . . . . . . . . 97

A.28 Criticality scores by weekday for night shift (Section 3) . . . . . . . . . . . . . . 97

A.29 Criticality scores comparison by shift (Section 3) . . . . . . . . . . . . . . . . . . 97



List of Figures

1.1 Nurse Restoring solutions method . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 The Methodological framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Hierarchy of qualification levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Examples of forbidden rest patterns involving night, F1, and day/evening shifts . 43

2.4 Framework connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Integration of Scheduling and Rescheduling within a Simulation- Based Framework 49

3.1 Rolling Horizon Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Weekly Planning for 10 Nurses(Lexicographic with slack) . . . . . . . . . . . . . 57

3.3 Weekly Planning for 10 Nurses(Lexicographic without slack) . . . . . . . . . . . . 58

3.4 Weekly Planning for 10 Nurses (scalar approach) . . . . . . . . . . . . . . . . . . 58

3.5 The boxplots for Section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 The boxplots for Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 The boxplots for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Distribution of Daily Absences by Weekday and Shift (Section 1) . . . . . . . . . 68

3.9 Distribution of Daily Absences by Weekday and Shift (Section 2) . . . . . . . . . 69

3.10 Distribution of Daily Absences by Weekday and Shift (Section 3) . . . . . . . . . 70

3.11 Histograms of Absences – Distributional Shape . . . . . . . . . . . . . . . . . . . 74



List of Acronyms

- CPLEX : IBM Optimization Solver for Linear and Integer Programming

- EDA : Exploratory Data Analysis

- KPI : Key Performance Indicator

- LR : Linear Regression

- MAE : Mean Absolute Error

- MILP : Mixed Integer Linear Programming

- NSGA-II : Non-dominated Sorting Genetic Algorithm II

- NSP : Nurse Scheduling Problem

- OR : Operations Research

- RF : Random Forest

- RMSE : Root Mean Squared Error

- XGB : Extreme Gradient Boosting



General Introduction



Over the past decades, healthcare systems worldwide have faced growing pressure to optimize re-
sources while maintaining high standards of patient care. Among the most critical and resource-
intensive components of hospital operations is the management of the nursing workforce. Nurses
represent not only the largest group of healthcare professionals but also the most operationally
constrained due to labor laws, contractual regulations, and the continuous nature of care. As
such, nurse scheduling has long been recognized as a key logistical and strategic challenge in
hospital management.

Initially approached using manual methods and administrative experience, the field of nurse
scheduling evolved significantly in the 1990s and 2000s with the advent of mathematical op-
timization techniques. Integer programming, constraint programming, and later meta-
heuristics became the dominant tools for generating fair, feasible, and efficient schedules. These
models aimed to balance supply (nurses’ availability and preferences) with demand (patient care
needs) while adhering to institutional rules. Many successful systems were deployed to generate
optimal or near-optimal baseline schedules, planned weekly or monthly.

However, these systems were largely static, assuming that once the schedule is set, it can be
followed as-is. In real-world hospitals, this is rarely the case. Unexpected events such as sud-
den absences, patient influx, or shift swaps routinely disrupt the planned roster. The rise of
pandemics (e.g., COVID-19), seasonal fluctuations, and staffing shortages has only made such
disruptions more frequent and harder to manage. These unforeseen events have exposed a critical
gap in traditional scheduling systems: their inability to adapt dynamically.

To address this challenge, the field has progressively shifted towards rescheduling, the ability
to update schedules in real time to reflect new constraints and realities. This transition requires
moving from static optimization to dynamic, responsive systems that can proactively plan
for uncertainty and react swiftly when disruptions occur. It also calls for an integration of
predictive analytics, drawing on historical data to identify high-risk situations and prepare
mitigation strategies in advance.

In this era of data-driven decision-making and intelligent automation, new approaches
are being developed that go beyond the initial schedule to embed resilience and flexibility
into the planning process. These include the use of predictive models to anticipate absenteeism,
hybrid frameworks that combine optimization with machine learning, and real-time heuristics
to adjust assignments as the situation evolves.

Beyond their theoretical contributions, these intelligent rescheduling solutions hold concrete op-
erational value for hospitals. By allowing timely and intelligent adjustments to sudden absences,
these solutions limit the reliance on rushed last-minute fixes, which can lead to poor shift bal-
ance, unfair workloads, and costly overtime. Proactively protecting critical shifts with buffer
staff based on historical risk patterns allows better resource allocation and lowers the risk of
under-coverage, which directly impacts patient care quality. Furthermore, the ability to simulate
various disruption scenarios such as epidemic surges or chronic absenteeism offers hospital man-
agers a strategic tool to plan contingency responses and validate staffing policies. Ultimately,
these solutions contribute to creating more sustainable and resilient healthcare systems, better
equipped to face operational uncertainty.

It is in this evolving context that our final-year project is situated, addressing the following
guiding question:

“How can we design an intelligent nurse scheduling and rescheduling system that effectively
absorbs staff absences with minimal disruption to the original plan?”

To answer this, we propose a two-stage hybrid approach:

- A baseline optimization model, built using Mixed-Integer Linear Programming (MILP),
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which integrates a criticality score computed from historical absence data. This score iden-
tifies shifts with high absenteeism risk, where overstaffing is introduced proactively as a
buffer.

- A lightweight rescheduling heuristic, executed in real time, that reallocates surplus
nurses (initially assigned to a virtual overflow unit) to fill uncovered shifts without recal-
culating the full schedule.

The proposed solution is embedded in a rolling horizon simulation framework, where each
day:

1. Staff absences are either drawn from historical records or generated via a predictive Hurdle-
based model.

2. The heuristic reassigns nurses from the overflow unit to cover these absences.

This simulation enables robust evaluation of the system’s performance across different absence
scenarios, normal and crisis conditions and facilitates comparison between our data-driven so-
lution and a conventional baseline.

The structure of this work is as follows:

- Chapter 1: State of the Art: Presents a comprehensive review of the literature on
nurse scheduling and rescheduling, from classical optimization to data-driven and hybrid
approaches. We position our contribution relative to recent works that emphasize adapt-
ability and operational robustness.

- Chapter 2: Optimization Model and Algorithmic Framework: Describes the
formulation of our MILP model, the design of the criticality score, and the rescheduling
heuristic using an overflow unit, all within a modular and flexible simulation environment.

- Chapter 3: Computational Study: Evaluates the effectiveness of the proposed solu-
tion using real hospital data under various absence conditions. We analyze metrics such as
absence coverage, preference satisfaction, under- and overstaffing, and planning stability.

We conclude with a discussion of the implications of our work, its relevance to modern hospital
operations, and perspectives for future research on intelligent, resilient workforce planning in
healthcare.
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Chapter 1

State of the Art



Introduction

This chapter provides the theoretical and methodological foundations for our work on nurse plan-
ning in dynamic healthcare environments. We begin with fundamental concepts from operations
research and scheduling theory, which support the development of optimization models.

The focus then narrows to healthcare-specific planning problems, notably the Nurse Scheduling
Problem (NSP), which must account for institutional rules, staff preferences, and operational
uncertainty. We review the main modeling approaches including deterministic, stochastic, and
hybrid methods and examine how recent contributions address unpredictability through proac-
tive and reactive mechanisms.

A dedicated section explores the need for rescheduling, which is increasingly relevant in the face
of unexpected absences or demand fluctuations. Finally, a review of the literature highlights
representative works and positions our contribution: a data-driven two-stage framework aimed
at improving staffing resilience with minimal disruption.

1.1 Background Theory

1.1.1 Operations Research

Operations research (OR) is a multidisciplinary field that applies mathematical and analytical
techniques to improve decision-making. Emerging during World War II, OR has evolved to
address complex problems across many sectors. The field includes various techniques such as
simulation, optimization, linear programming, game theory, and search theory. OR’s main goal
is to find optimal or near-optimal solutions using these methods.

OR has wide-ranging applications in global health, including health systems, clinical medicine,
public health, and health innovation .

Mathematical Programming

Mathematical programming is a branch of operations research that helps optimize resource allo-
cation. It involves constructing a mathematical model of a real-world problem and determining
the optimal solution, typically by minimizing a cost or maximizing a benefit, while satisfying
certain constraints.

Let:

- x ∈ Rn be the vector of decision variables,

- f(x) be the objective function,

- gi(x) ≤ 0, for i = 1, ..., m, be the inequality constraints,

- hj(x) = 0, for j = 1, ..., p, be the equality constraints.

Then, the general form of a constrained optimization problem is:
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Minimize (or Maximize) f(x)
subject to gi(x) ≤ 0 for i = 1, ..., m

hj(x) = 0 for j = 1, ..., p

x ∈ X

Where:

- f(x) represents the objective to optimize,

- gi(x), hj(x) represent the constraints on the variables,

- X ⊆ Rn is the feasible set, including domain restrictions like non-negativity or bounds on
variables.

Multi-Objective Optimization and Modeling

Among the various problem types, multi-objective optimization involves the simultaneous op-
timization of several potentially conflicting objectives. In such cases, the participation of a
decision maker is often essential to identify acceptable trade-offs [2].

Solution approaches for multi-objective problems are generally categorized based on when the
decision-maker’s preferences are incorporated:

- A priori, where preferences are set before solving the problem,

- Interactive, where preferences are refined during the solution process,

- A posteriori, where a set of solutions is first generated, and preferences are applied
afterward [3].

The lexicographic method, for example, represents an a priori approach, in which objectives are
prioritized and solved sequentially.

In terms of modeling, mathematical programming models can be either:

- Deterministic, assuming all parameters are known with certainty,

- Stochastic, accounting for uncertainty using probability distributions [4].

For complex stochastic systems where the objective functions cannot be expressed analytically,
simulation optimization techniques offer a powerful alternative. These methods often incorporate
interactive algorithms that facilitate the resolution of multi-objective problems under uncertainty
[5].

1.1.2 Scheduling Theory

Scheduling problems constitute a fundamental domain within operations research and artificial
intelligence concerning the temporal allocation of resources to tasks subject to various con-
straints. One common method for addressing scheduling problems is through constraint satis-
faction techniques. These techniques aim to find solutions that satisfy a set of constraints, such
as precedence relations, resource limits, or timing requirements. This approach is particularly
useful due to its flexibility in representing complex problem structures [6].
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Static vs. Dynamic Scheduling

Traditional scheduling approaches are often static. In static scheduling, a schedule is generated
in advance and is assumed to remain fixed throughout execution. However, in real-world envi-
ronments, unexpected disruptions, delays, or changes in resource availability often occur. This
makes static approaches less effective for practical applications [7].

Dynamic scheduling has emerged as an alternative. Continually updates schedules based on
real-time information, allowing systems to adapt to unforeseen events and improve resilience
and performance [7].

Techniques for Dynamic Scheduling

To support dynamic scheduling, various techniques have been proposed. In the following, we
present the most prominent ones.

Heuristics algorithms are simplified, rule-based approaches that aim to find good-quality solu-
tions within a reasonable computational time. They are particularly useful for complex problems
where exact methods are too slow or computationally infeasible.

Many real-world scheduling problems are combinatorial in nature, resulting in large and complex
search spaces. As highlighted by Juan et al. [9], solving such problems using exact optimization
techniques can be impractical due to the excessive time and resources required. In these cases,
heuristics provide a more efficient way to obtain feasible and near-optimal solutions.

Heuristics often rely on intuitive strategies and prior knowledge to guide the search process.
Their design can range from simple decision-making rules to more advanced iterative procedures
that progressively construct a solution [8, 11].

A well-known category of heuristics is greedy algorithms, which iteratively select the most ben-
eficial component at each step based on a specific evaluation criterion [10]. Although they offer
fast and easy implementations, they do not guarantee optimal results and may converge to
suboptimal solutions.

Despite these limitations, heuristics are widely adopted due to their practicality and ability to
deliver satisfactory results within a limited time frame.

Meta-heuristics such as genetic algorithms or simulated annealing are designed to explore
large and complex solution spaces efficiently. Unlike basic heuristics, meta-heuristics incorporate
mechanisms to avoid local optima and improve the chances of finding near-global solutions.

Multi-agent Systems involve several intelligent agents that collaborate or compete to build,
evaluate, and adjust schedules dynamically. These systems are particularly relevant in environ-
ments requiring decentralized decision-making and high adaptability.

Artificial Intelligence Methods AI-based techniques, including machine learning and adap-
tive algorithms, aim to improve scheduling performance over time by learning from historical
data and evolving through experience [7]. These methods are gaining popularity in highly dy-
namic or uncertain scheduling environments.

1.1.3 Healthcare Scheduling

Healthcare scheduling is a complex field that covers various aspects of patient care coordina-
tion. Recent research has focused on capacity planning in hospital units, outpatient clinics, and
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healthcare networks, as well as appointment scheduling, surgery, and workforce management
[12]. These scheduling problems are challenging due to uncertainty in healthcare environments,
including unpredictable patient arrivals, emergency cases, variable treatment times, and staff
availability.

Effective healthcare scheduling aims to balance resource utilization, patient satisfaction, and
clinical outcomes while working within operational and regulatory constraints.

Types of Healthcare Scheduling Problems

Patient Admission Scheduling (PAS) : is a critical subdomain of healthcare scheduling
that involves determining the optimal assignment of patients to hospital beds or units, often
across multiple departments. This process must respect various clinical, operational and ad-
ministrative constraints, such as bed availability, patient urgency, medical specialties, infection
control protocols, and patient preferences. The complexity of PAS increases due to the dynamic
and uncertain nature of hospital environments, where emergency admissions, discharges, and
changes in patient condition can disrupt planned schedules.

Unlike basic bed allocation, PAS is typically performed in advance and must account for both
elective and urgent patients, requiring a balance between operational efficiency and quality
patient care. It plays a key role in managing hospital flow, reducing overcrowding, avoiding last-
minute cancellations, and ensuring timely treatment. Properly executed admission scheduling
can improve continuity of care and resource utilization across different hospital units, including
intensive care, surgery, and general medicine.

Recent research in PAS reflects its significance in modern healthcare management. Studies such
as those by Liu et al. [13], Demeester et al. [14], Bamigbola et al. [15], and Abdalkareem et al.
[16] have explored increasingly sophisticated methods to enhance the decision-making process
in PAS.

Nurse Scheduling: In healthcare, efficient staff allocation is essential to maintain continuous
high-quality care. The Nurse Scheduling Problem (NSP) involves assigning shifts to nurses over
a planning horizon while respecting institutional rules, contractual constraints, and individual
preferences [17].

What makes NSP particularly challenging is its multidimensional nature: schedules must ensure
coverage across all shifts and units, account for varying qualifications, comply with labor regu-
lations, and consider staff fairness. Combined with the 24/7 nature of hospital operations and
unpredictable disruptions such as absences, this results in a highly constrained, combinatorial
problem.

The next sections delve into the types of constraints, terminologies, and optimization strategies
that have emerged to address this complex challenge.

Operating Room Scheduling : Another critical category of healthcare scheduling is the
management of operating rooms (ORs), which involves coordinating elective and emergency
surgical procedures. OR scheduling is particularly complex due to the need to balance planned
surgeries with the unpredictable nature of emergency cases. This challenge is especially evident
in Level-1 trauma centers, where urgent interventions are frequent and time-sensitive [18].

One of the key difficulties in the scheduling of the operating room is managing uncertainty,
such as variability in the duration of surgery, last-minute changes in patient conditions, and
the limited availability of medical personnel and equipment. Effective scheduling requires close
coordination among surgical teams, anesthesiologists, nurses, and specialized resources, while
ensuring patient safety and continuity of care.
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Beyond operational concerns, OR scheduling has a significant impact on broader hospital perfor-
mance metrics. It influences patient wait times, the risk of surgery cancellations, the distribution
of staff workload, and the overall utilization of costly resources such as operating theaters.

Recent research emphasizes the importance of integrated planning that accounts for the inter-
dependencies between operating rooms, healthcare professionals, and surgical procedures. For
example, Tsang et al. [19] highlight the relevance of coordinated scheduling frameworks that
are robust to uncertainty and adaptable to real-time changes in the surgical environment.

Other Scheduling Problems

In addition to the core categories of healthcare scheduling, several other types also play an
essential role in ensuring efficient and responsive care delivery.

Physician scheduling involves assigning doctors shifts or on-call duties between departments,
often considering specializations, availability, work-hour regulations and preferences. This type
of scheduling must ensure adequate coverage, especially in departments with limited staff or a
high volume of patients.

Home healthcare scheduling focuses on planning visits by caregivers or nurses to patients’
homes. It must consider travel time, visit duration, patient needs, staff skills, and geograph-
ical constraints, making it similar to vehicle routing problems with added healthcare-specific
considerations.

Telemedicine scheduling has emerged more recently with the rise of digital health services.
It involves coordinating virtual appointments between patients and healthcare providers, often
between different time zones or platforms. While more flexible in terms of logistics, it still
requires attention to provider availability, consultation time slots, and technology readiness.

1.1.4 Data Analysis

Data analysis is a multifaceted process of building understanding and extracting insights from
complex datasets, often similar to cognitive sensemaking [48]. In the context of data-driven
scheduling, this involves exploring and interpreting operational or workforce-related data poten-
tially structured as complex or functional objects [49] to inform and optimize scheduling deci-
sions. Techniques such as exploratory data analysis (EDA) are especially valuable in identifying
hidden patterns, trends, and constraints that affect scheduling outcomes [50], while addressing
issues such as incomplete information and bias [51]. This highlights the importance of flexible,
context-aware methods and interdisciplinary collaboration in modern data-driven scheduling
practices.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a foundational approach in statistics, aimed at examining
datasets to uncover underlying structures, detect anomalies, and formulate hypotheses without
relying on prior assumptions. First introduced by John W. Tukey, EDA emphasizes graphical
techniques such as histograms, boxplots, and scatterplots to visualize data distribution and vari-
ability [56, 57]. It is typically applied before confirmatory analysis and is considered essential for
guiding model development, especially when dealing with complex or high-dimensional datasets
[59]. Beyond visualization, EDA also includes methods such as Exploratory Factor Analysis
(EFA), which are useful for identifying latent constructs and reducing dimensionality [58]. De-
spite the advent of automated analytics, EDA remains a critical first step in any rigorous data
science or machine learning pipeline.

Predictive Data Analysis
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Predictive analytics involves the use of statistical models and machine learning techniques to
forecast future events based on historical data [60, 61]. In healthcare workforce planning, such
methods are particularly useful for anticipating staff absences, a key source of operational un-
certainty. By identifying recurring patterns and risk factors, predictive models enable proactive
scheduling strategies that can reduce last-minute disruptions. While predictive analytics has
been widely applied in public health and operational planning [62], its integration into criti-
cal systems such as hospital staffing requires both methodological rigor and interpretability to
ensure safe and effective decision-making [60].

Among the many predictive models applicable to count data, one frequently encountered chal-
lenge is dealing with excess zeros common in operational healthcare datasets such as absenteeism
records. To address this, specialized models such as the hurdle model have been developed.

Count-Based Modeling with the Hurdle Model

When modeling count data, such as daily staff absences, a common issue is the presence of
excess zeros and asymmetric distributions. Standard models like Poisson or Negative Binomial
regressions often fail to capture this structure, particularly when a large proportion of observa-
tions correspond to structural zeros. The hurdle model addresses this limitation by splitting the
process into two components: one models the probability that an event occurs, and the other
estimates the count, conditional on its occurrence. This approach has shown excellent perfor-
mance in fields such as dental epidemiology [63], mental health [64], HIV treatment analysis
[65], and financial risk modeling [66].

The mathematical formulation of the hurdle model reflects its two-part nature. Let us define
the general form of the model and its most common variants.

Formally, let Yi denote the count response for observation i = 1, . . . , n. The general structure
of a hurdle model is the following:

P (Yi = yi) =


pi if yi = 0,

(1− pi)
p(yi; µi)

1− p(0; µi)
if yi > 0,

(1.1)

where pi is the probability of a structural zero, p(yi; µi) is the probability mass function (PMF)
of a count distribution with mean µi, and p(0; µi) is the PMF evaluated at zero.

If the count component follows a Poisson distribution, the hurdle Poisson model becomes:

P (Yi = yi) =


pi if yi = 0,

(1− pi)
e−µiµyi

i /yi!
1− e−µi

if yi > 0.
(1.2)

To account for overdispersion, a Negative Binomial (NB) distribution is often used. The hurdle
NB (HNB) model is given by:

P (Yi = yi) =


pi if yi = 0,

1− pi

1−
(

r

µi + r

)r ·
Γ(yi + r)
Γ(r)yi!

(
µi

µi + r

)yi
(

r

µi + r

)r

if yi > 0, (1.3)

where r is the dispersion parameter, and Γ(·) denotes the gamma function.

Covariates can influence both the zero-generation and count processes through two link functions:
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log(µi) = x⊤
i α, logit(pi) = z⊤

i β, (1.4)

where α and β are the regression coefficients for covariates xi and zi respectively [67].

The Interaction Between Data Analytics and Operations Research

The integration of data analytics and operations research (OR) is transforming decision-making
in complex domains such as healthcare. OR methods such as linear programming, Markov De-
cision Processes, and simulation are widely applied to optimize various aspects of healthcare
delivery, including diagnosis, treatment, organ transplantation, and patient flow [52]. These
approaches help address challenges related to hospital resource organization, surgical schedul-
ing, and healthcare facility location planning [53]. The growing availability of electronic health
records and other observational data has enabled the development and validation of data-driven
OR models [54]. Recent research also highlights the importance of optimization in advanc-
ing both predictive and prescriptive analytics, such as through optimal estimation of clustered
models and the optimization of objective functions derived from tree ensemble models [55].
This interaction between data analytics and OR is essential for creating sustainable, long-term
solutions in healthcare management and policy.

1.2 Literature Review

1.2.1 Key Terminology in Nurse scheduling

Before diving into the different approaches found in the literature, it is helpful to clarify some
commonly used terms in the field of nurse scheduling. These concepts serve as a foundation for
understanding how scheduling models are built and evaluated [20].

Planning Period: This refers to the total time span covered by the schedule. It can vary
widely from a few weeks to several months and defines the window within which all shifts must
be assigned.

Skill Category: Nurses are often grouped according to their qualifications, certifications, or
responsibilities, for example, general nurses, specialized nurses, or team leaders. These categories
must be taken into account to ensure the right mix of skills is present in each shift.

Shift Type: Shifts are usually divided by start and end times, such as morning (e.g. 7:00 am
– 3:00 pm), evening (e.g. 3:00 pm – 10:00 pm), or night (e.g. 10:00 pm – 7:00 am). Each shift
type has its own staffing and regulatory considerations.

Work Regulations: These are the contractual or institutional rules that define how much and
how often a nurse can work. For instance, one nurse might work five days a week, while another
is scheduled for six, depending on their contract.

Hard Constraints: These are rules that must always be respected in any valid schedule.
Examples include minimum staffing levels, mandatory rest periods, or restrictions on maximum
working hours.

Soft Constraints: These represent preferences or flexible guidelines such as shift requests or
fairness in shift distribution that can occasionally be violated, but typically with a penalty.
Balancing these constraints helps improve staff satisfaction and schedule quality.
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Coverage: This refers to the number of nurses needed for each shift and skill category. Ensuring
proper coverage is essential for maintaining safe and effective patient care.

Time Restrictions: These are limitations designed to prevent overwork and promote fair
distribution of shifts, such as restrictions on consecutive workdays or ensuring adequate rest
between shifts.

Request: Nurses can express preferences regarding their schedules, for instance, asking for a
specific day off or requesting not to work nights if possible.

1.2.2 Problem Constraints in Nurse scheduling

In nurse scheduling, constraints are generally divided into two main categories: hard constraints
and soft constraints. Hard constraints are mandatory rules that must always be respected if
even one of them is violated, the resulting schedule is considered invalid. Soft constraints, on
the other hand, are more flexible. They can be violated, but doing so usually comes at a cost that
is measured by a penalty function. The goal is to generate schedules with the lowest possible
penalty, meaning a better balance between feasibility and staff preferences [21, 22].

Typically, coverage requirements such as ensuring that each shift has the right number of nurses
with the appropriate skills are modeled as hard constraints. Meanwhile, many time-related
constraints (such as preferred rest days or avoiding long stretches of work) are treated as soft
constraints [23].

Soft constraints are often grouped into three broad types:

Series Constraints: These limit how often something can occur in a row, for example, a nurse
working too many consecutive night shifts or having too many consecutive days off.

Successive Series Constraints: These manage transitions between patterns, like how many
workdays can be followed by rest days, or vice versa.

Counter Constraints: These set limits on how many times a specific event can occur over
a certain period, such as the total number of working hours, weekend shifts, or off-days over a
planning horizon.

As noted by Burke and Curtois [33], the specific types of constraints applied often depend
on hospital regulations and practical considerations. However, some constraints are commonly
found across the literature and scheduling models [20], as shown in Table 1.1:
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Code Constraint Description
C1 Minimum/maximum workload
C2 Minimum/maximum consecutive working days
C3 Minimum/maximum consecutive days off
C4 Minimum/maximum/exact number of identical consecutive

shifts
C5 Minimum/maximum number of shifts during weekends
C6 Minimum/maximum number of consecutive working week-

ends
C7 Minimum/maximum number of shift rotations
C8 Minimum/maximum rest time between two shifts
C9 Minimum/maximum/exact number of working hours (e.g.,

6–8 hours/day)
C10 Nurse skill or qualification categories
C11 Individual nurse-specific requirements and preferences
C12 Scheduling history (e.g., previously assigned shifts)
C13 Constraints related to specific shift types
C14 Nurse requests for specific days off/on
C15 Nurse requests for specific shifts off/on
C16 Leave or holidays (e.g., annual leave, sick leave)
C17 Group constraints (e.g., nurses who must or must not work

together)
C18 Shift-related constraints (e.g., no double shifts, no overlap-

ping)

Table 1.1: Common nurse scheduling constraints (adapted from Ngoe, 2022)

1.2.3 Optimization Approaches for Nurse Scheduling

Nurse scheduling is a complex problem influenced by multiple constraints, ranging from institu-
tional policies to staff preferences and unpredictable events. To address this complexity, a wide
variety of optimization approaches have been developed in the literature. These approaches can
be broadly categorized into deterministic, stochastic, and hybrid methods, each offering distinct
advantages depending on the nature of the scheduling environment and the objectives pursued.
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Figure 1.1: Nurse Restoring solutions method

Deterministic Approaches

Deterministic approaches in optimization refer to methods in which all the data involved in the
problem (such as costs, resources, and time) are known with certainty and do not change. In
these approaches, the model behavior is fully predictable and the same set of inputs will always
lead to the same result. Mathematical programming is a widely used deterministic approach with
two main types: Linear Programming (LP) and Nonlinear Programming (NLP). LP involves
only linear functions and is widely used in problems where the relationships between variables
are straightforward. On the other hand, NLP deals with more complex relationships and can
accommodate both discrete and continuous variables. These deterministic approaches assume
that all parameters are fixed and known, which simplifies the problem-solving process, ensuring
that the solutions obtained are repeatable and reliable [20].Here are some of the deterministic
approaches commonly used in nurse scheduling.

INTEGER PROGRAMMING

Integer Programming (IP) is a specific form of LP in which all decision variables are constrained
to take integer values. It is often applied in nurse scheduling due to its ability to precisely model
scheduling constraints. Zanda et al. proposed a linear integer programming approach for long-
term nurse scheduling in the surgery department of a university hospital in Italy. Their model
handled sudden changes in nurse availability and allowed real-time schedule updates through a
Decision Support System [25].

Branch-and-price

Branch-and-price algorithms have been successfully applied to various nurse scheduling prob-
lems. These approaches typically model the problem as an integer program and use column
generation to solve large instances efficiently [26, 27]. The pricing subproblem often involves
solving a shortest path problem with resource constraints, where dominance rules and accel-
eration techniques can significantly improve performance [27]. Some models use rotations or
sequences of consecutive worked days as columns, which can be effective for certain problem
variants [26]. Others employ context-free grammars to model complex shift construction rules
[28]. These approaches have demonstrated success in solving various nurse scheduling problems,
including those with multiple activities, tasks, and personalized constraints [28, 27].
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Constraint Programming

Constraint Programming (CP) has emerged as a powerful approach for addressing complex
scheduling challenges such as nurse scheduling. Unlike traditional optimization techniques, CP
emphasizes the satisfaction of constraints over the optimization of objective functions, making
it particularly suitable for generating feasible schedules under intricate rules and regulations
[29]. One notable application is the introduction of a bound-consistent spread constraint, which
allows an even distribution of values across variable vectors, improving the ability of the model
to balance the workload and respect institutional policies [29].

Lexicographic Goal Programming

Lexicographic Goal Programming (LGP) has been increasingly utilized in nurse scheduling prob-
lems as a powerful multi-objective optimization technique. It allows decision-makers to prioritize
conflicting objectives by assigning a hierarchical order of importance to each goal. In the context
of healthcare, LGP has been particularly effective in balancing operational efficiency with staff
and patient satisfaction. For example, Lim et al. [30] applied LGP to minimize labor costs,
patient dissatisfaction, and nurse idle time, while simultaneously maximizing job satisfaction.
This prioritization framework ensures that more critical goals, such as maintaining adequate
nurse-patient ratios, are addressed before less urgent concerns like individual preferences. Fur-
thermore, Ang et al. [31] demonstrated the applicability of LGP in emergency departments,
where the complexity of scheduling increases due to fluctuating demand and high pressure en-
vironments. Their study focused on optimizing shift preferences and the equitable distribution
of rest days, showing that LGP can effectively manage trade-offs between organizational con-
straints and personal preferences. By structuring goals lexicographically, healthcare institutions
can generate feasible and fair schedules that reflect both institutional priorities and human
factors.

Stochastic approaches in nurse scheduling address the complexities of resource allocation and
the inherent uncertainty in healthcare environments. These methods consider fluctuations in
patient demand, staff availability, and unforeseen events such as last-minute absences or surges in
admissions. The core objective of stochastic nurse scheduling models is to optimize staffing costs,
minimize overtime, and ensure a high level of patient care quality. Such models often explicitly
integrate uncertainty through probability distributions or scenario-based analyses, making them
more realistic than deterministic models in dynamic healthcare contexts.

Stochastic Approaches

Stochastic approaches can be classified into two main categories: heuristic and metaheuristic
methods. Heuristics provide problem-specific strategies that are computationally efficient and
offer quick solutions, although they may not guarantee optimality. Metaheuristics, on the other
hand, are higher-level procedures designed to explore the solution space more extensively and
avoid local optima, making them suitable for complex and large-scale scheduling problems.

For instance, hybrid evolutionary algorithms, which combine genetic algorithms with techniques
like simulated annealing, have demonstrated significant potential in solving nurse scheduling
problems [32]. These metaheuristic frameworks exploit the strengths of each component: the
global search capability of genetic algorithms and the local refinement ability of simulated an-
nealing, enabling the discovery of high-quality schedules even under uncertainty.

Moreover, stochastic programming, particularly two-stage stochastic models, allows decision-
makers to plan under uncertainty by considering both initial staffing decisions and subsequent
recourse actions. Aydas et al. [34] demonstrated that such models could dynamically adjust
short-term nurse schedules to better align with fluctuating patient demand. Their results indi-
cated that this approach could reduce total staffing costs by up to 18%, highlighting the practical
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benefits of incorporating uncertainty into scheduling frameworks.

Hybrid Approaches

Hybrid approaches in nurse scheduling combine traditional methods with advanced optimization
techniques to take advantage of their complementary strengths. A method is considered hybrid
if it integrates two or more techniques, either within the same step or across different stages,
especially when combining methods from different categories, such as metaheuristics and hyper-
heuristics [35, 39].

For instance, Burke et al. [35] developed a hybrid method called Time Predefined Variable
Depth Search (VDS), which improved initial solutions created using a greedy algorithm. This
approach performed better than other hybrid methods in most test cases. Awadallah et al.
[36] proposed a Hybrid Artificial Bee Colony (HABC) algorithm by combining ABC and Hill-
Climbing Optimization (HCO), achieving 37 new best-known results on the INRC-I benchmark.

Jin et al. [37] studied two hybrid methods that combine the Harmony Search Algorithm (HSA)
with Artificial Immune Systems (AIS). Their results showed that the cooperation-based hybrid
(CHSAIS) produced better average results, although it required more computation time. An-
other example is the Hybrid Harmony Search Algorithm (HHSA), which integrates HSA, HCO,
and Particle Swarm Optimization (PSO), achieving 38 best-known results out of 69 instances
[39].

Finally, Chen and Zeng [38] applied a hybrid approach combining decision trees, greedy search,
the Bat Algorithm (BA), and PSO to a real hospital scheduling problem. Their method improved
both the quality of solutions and the computation speed by using decision trees to generate good
initial solutions and metaheuristics for further improvement.

1.2.4 Uncertainty in Nurse Scheduling

Uncertainty is one of the main problems in nurse scheduling. It is caused by factors such
as unexpected changes in patient demand, sudden staff absences, and variations in hospital
service needs [47]. These factors make it difficult to create fixed schedules that work well in all
situations. Traditional deterministic models assume that everything is known in advance, but in
real healthcare settings, this is rarely true. As a result, these models often create schedules that
are not flexible and cannot respond well to changes. This leads to the need for last-minute fixes,
which can increase costs, reduce efficiency, and put extra stress on both managers and nurses.
To deal with uncertainty, more advanced methods like stochastic models, robust optimization,
or simulation-based planning are used. These approaches try to create schedules that are more
flexible and can adapt to changes, reducing the impact of unexpected events, and improving the
overall stability of staffing plans.

1.2.5 Nurse Rescheduling under Uncertainty

Nurse rescheduling has become an essential extension of traditional scheduling due to the un-
predictable nature of hospital operations. Unplanned absences caused by illness, personal leave,
or emergencies can disrupt initial rosters and cause imbalances in workload and coverage. To
address this challenge, researchers have proposed various reactive and preventive strategies. Re-
active approaches rely on real-time reallocation of staff, often guided by heuristics or predefined
policies, while preventive approaches integrate flexibility into the initial schedule through buffers
or backup assignments [45, 41].
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More advanced strategies model the scheduling and rescheduling process as a two-stage stochastic
optimization problem, where initial assignments are made under estimated conditions, followed
by adjustments when new information arises. For example, Long et al. [47] introduced a multi-
method rescheduling framework that allows reallocations both within and across departments
or hospitals, showing improved adaptability to demand fluctuations. Such models highlight the
importance of designing schedules that are both robust and responsive to dynamic healthcare
environments.

1.2.6 Proactive-Reactive Strategies in Nurse Scheduling

Proactive scheduling strategies try to reduce problems before they happen by making the plan
more flexible and strong from the start. These methods often use tools such as predictive models,
robust optimization, and stochastic programming to deal with uncertainty, such as staff absences,
changing patient demand, or delays in operations [40, 41]. In nurse scheduling, for example,
proactive strategies may include assigning backup nurses, adding extra shifts as a buffer, or
creating schedules where staff can easily replace one another [42]. These strategies help avoid
last-minute changes, making the schedule more stable and improving staff satisfaction. Proactive
planning is especially useful in healthcare, where unexpected absences can affect patient care.
By including extra resources in the schedule from the beginning, hospitals can continue working
smoothly without needing urgent changes [43].

Reactive strategies are used to make changes in real time when unexpected problems occur.
These methods are important when proactive plans are not enough or when events are hard to
predict [44]. Common reactive methods include updating the schedule using algorithms, calling
in backup staff, or using simple rules to switch shifts [45]. For example, if a nurse is suddenly
absent, a reactive strategy may involve calling other staff, changing who works where, or sharing
tasks differently to cover the absence [41]. Although reactive strategies give quick answers, they
can also lead to more work for managers, stress for staff, and less efficiency [46]. More and more,
hospitals use hybrid systems that mix proactive and reactive methods like using data to start
pre-planned backup actions to stay both prepared and flexible.

1.2.7 Review of Relevant Works

The problem of nurse scheduling and its dynamic counterpart, rescheduling under uncertainty,
has been extensively studied in the literature. Numerous approaches have been proposed, rang-
ing from exact optimization models and heuristics to hybrid methods integrating predictive
analytics and machine learning. However, these works differ significantly in terms of their ob-
jectives, constraints, adaptability to uncertainty, and the healthcare systems they are designed
for.

To contextualize and position our approach within the broader research landscape, we have
selected a set of representative and influential studies. These studies have been chosen based
on their methodological diversity, relevance to practical scheduling and rescheduling challenges,
and their focus on uncertainty, flexibility, and optimization strategies. Our selection includes
models applied to different healthcare systems, including but not limited to European contexts,
and reflects a variety of solution techniques ranging from robust optimization to multi-objective
approaches and heuristic frameworks.

In order to conduct a comprehensive yet focused review, we conducted an extensive literature
search covering the last five years. While many studies have addressed nurse scheduling and
rescheduling under uncertainty, only a subset of them directly aligns with our research context
and goals. Therefore, we compiled a broader list of ten recent and relevant works, summarized in
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Table 1.2, but chose to discuss in detail only three studies that are most pertinent to our frame-
work. These selected studies stand out for their methodological rigor, their explicit treatment
of uncertainty and sudden absences, and their alignment with practical healthcare scheduling
needs. The complete list provides a broader view of current trends and contributions in the field,
whereas the in-depth discussion highlights the most influential and comparable approaches to
ours.

Table 1.3 provides an overview of the selected studies, including their main objectives, modeling
techniques, and key contributions, and compares these works with our proposed framework,
highlighting distinctions in handling uncertainty, the integration of predictive analytics, the use
of overstaffing buffers, and the methodological innovation introduced through our two-stage
approach.

This comparative analysis serves not only to underline the novelty and applicability of our
framework, but also to identify current gaps in the literature. In particular, we emphasize
the lack of real-time, data-driven, and low-disruption strategies that address nurse absences
proactively while ensuring minimal perturbation of baseline schedules. By addressing these
aspects, our work aims to contribute meaningfully to both theoretical and practical advances in
the field.
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Authors Year Title Methodology
Otero-Caicedo
et al.

2023 Preventive-Reactive Nurse
Scheduling with Absenteeism

Multi-objective MILP solved
by NSGA-II

Nagayoshi &
Tamaki

2023 A Dynamic Nurse Scheduling
Using Reinforcement Learning

Reinforcement Learning

Johansen et al. 2023 Nurse Scheduling &
Rescheduling : Combining
Optimization with Machine
Learning-Driven Demand
Predictions

MILP optimization + ML
prediction (NN/DT) in rolling
horizon

de Greef 2022 A Two-Stage Nurse
Scheduling for Residential
Care in the Netherlands

Two-stage scheduling with
practical constraints

Long et al. 2022 Nurse Rescheduling with
Multiple Methods under
Uncertainty

Stochastic Programming &
Distributionally Robust
Optimization

Muniyan et al. 2022 Artificial Bee Colony
Algorithm with Nelder-Mead
for NSP

Metaheuristic optimization

Sari et al. 2021 An Innovation Scheduling
Program During Covid-19

Heuristic scheduling

Valdano et al. 2021 Reorganization of Nurse
Scheduling Reduces Infection
Risk

Epidemic modeling &
scheduling adjustment

Schoenfelder et
al.

2020 Nurse Scheduling with
Quick-Response Methods

Heuristics and simulation

Nagayoshi &
Tamaki

2021 A Dynamic Nurse Scheduling
for Various Sudden Absences

Reinforcement Learning

Karpuz &
Batun

2019 Scheduling and Rescheduling
in ICUs Under Uncertainty

Two-stage stochastic integer
programming

Table 1.2: Comparison of Selected Nurse Scheduling and Rescheduling Studies

Among the vast literature on nurse scheduling and rescheduling, we selected four representative
studies by Karpuz & Batun (2019), Long et al. (2022), Otero-Caicedo et al. (2023), and
Johansen et al. (2023) to highlight diverse methodological perspectives and better position our
proposed approach. These works cover a wide spectrum: from stochastic and distributionally
robust formulations, to multi-objective optimization under absenteeism, and hybrid frameworks
combining optimization with machine learning. Each provides valuable insights on handling
uncertainty, designing reactive mechanisms, and validating results on real or simulated data. By
comparing our contribution against these benchmarks, we aim to clearly illustrate the originality
and relevance of our solution in addressing nurse scheduling disruptions in a dynamic and data-
driven context.

Work 1: Johansen et al. (2023) – Nurse Scheduling and Rescheduling: Combining
Optimization with Machine Learning-Driven Demand Predictions

Johansen et al. (2023) introduced a hybrid approach combining optimal nurse scheduling with
dynamic rescheduling, embedded within a rolling horizon simulation. Their framework includes
two MILP models: the first generates an initial schedule based on a weighted multi-objective
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function (covering hours, preferences, skills, etc.), while the second performs localized reschedul-
ing to cover absences that remain unresolved by a heuristic phase. A distinctive feature of the
study is the integration of machine learning models (neural networks and decision trees) to
predict demand, which guides proactive scheduling decisions. Tested on real hospital data, the
approach improved robustness to absences, enhanced coverage, and minimized disruptions to
planned assignments.

Work 2: Otero-Caicedo et al. (2023) – Preventive-Reactive Nurse Scheduling with
Absenteeism

Otero-Caicedo et al. (2023) proposed a preventive-reactive scheduling framework that antici-
pates absenteeism while integrating nurse preferences. A multi-objective MILP was solved using
NSGA-II, enabling backup nurse assignments and schedule optimization. Reactive rescheduling
was tested using three policies under simulated absenteeism and refusal rates. In a Colombian
hospital case study, their approach improved nurse satisfaction by 11% and reduced workload
disparities by 76%. Policy 1 (using backup nurses with minimal schedule change) achieved the
best balance of performance and nurse satisfaction. Implementation via a desktop application
demonstrated significant time savings and practical feasibility.

Work 3: Long et al. (2022) – Nurse Rescheduling with Multiple Methods under
Uncertainty

Long et al. (2022) explored the nurse rescheduling problem under uncertain patient demand
using real data from hospitals in China. The authors developed two optimization models: a
stochastic programming model (SM) using historical scenarios and a distributionally robust
model (DRM) leveraging ambiguity sets to handle limited data reliability. The models inte-
grated multiple rescheduling methods (e.g., inter-departmental and inter-hospital transfers) and
were reformulated into tractable integer programs. Results showed that SM achieved a 78.71%
cost reduction, while DRM offered more robustness under high uncertainty with a 38.92% cost
reduction. The DRM was more resilient to demand fluctuations, highlighting its suitability for
unstable environments.

Work 4: Karpuz & Batun (2019) – Scheduling and Rescheduling in ICUs Under
Uncertainty

Karpuz and Batun (2019) tackled the challenge of integrated scheduling and rescheduling in
ICU settings, modeling the problem as a two-stage stochastic integer program. Monthly shift
schedules formed the first stage, while daily rescheduling due to uncertain demand constituted
the second. Using an AR(1) time series model to generate demand scenarios, they tested various
cases with CPLEX. Their results showed that stochastic modeling provided substantial improve-
ments: VSS ranged from 0.3% to 9.9%, while EVPI reached up to 89.8%, underscoring the value
of uncertainty-aware planning. The study also explored cost sensitivity and proposed heuristics
for low- and high-demand situations.

1.2.8 Our Contribution

This thesis is inspired by the work of Anne-Sofie Johansen, Bendik Nag, and Herborg Hermansen
Tveit, from their 2023 Master’s thesis at NTNU. They proposed a smart approach to nurse
scheduling by combining optimization techniques with machine learning to predict demand.
Their model was a strong starting point for handling uncertainty in nurse planning.

In our work, we start from their model and make several changes to better fit our goals. We
modify the structure of the objective function by replacing the lexicographic method with a
weighted-sum approach. This makes the model easier to use and much faster to solve, which is
important for real-time or daily scheduling situations.
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The main contribution of this thesis is a two-stage framework for dealing with unexpected
absences in a smart and efficient way. In the first stage, we add a data-driven component
that analyzes past absence data to calculate criticality scores for each shift. These scores show
which periods are more at risk. Then, we adjust the model so that it gives more importance to
having extra staff during these critical shifts. This helps make the schedule more stable from
the beginning.

In the second stage, we design a simple heuristic that creates a buffer section in the schedule.
This buffer is made up of additional nurses who are available to cover future absences. These
nurses are chosen based on their skills, so they can replace others if necessary. When an absence
occurs, the heuristic quickly checks if someone from the buffer can cover it. If so, the replacement
is done immediately, without changing the rest of the schedule or running a new optimization.

Our results show that this heuristic can solve many absences on its own, with no cost and no
disruption. By combining smart predictions with flexible planning, this two-step method brings
a practical and effective solution for managing uncertainty in nurse scheduling.

Conclusion

In summary, this chapter has reviewed the foundational theories and recent advances in nurse
scheduling, highlighting the shift toward data-driven and uncertainty-aware approaches. Despite
progress, existing models often lack practical mechanisms to proactively manage unexpected
absences with minimal disruption. Our proposed two-stage framework addresses this gap by
integrating predictive analytics with operational flexibility, offering a promising solution for
real-world healthcare planning.
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Chapter 2

Methodology



Introduction

In this chapter, we present the baseline model for optimizing nurse scheduling, which serves as the
basis of our approach. This model establishes the core structure, constraints, and initial objective
formulation. We then introduce a series of enhancements that aim to improve the efficiency and
robustness of the model in the face of uncertainty. These include a weighted-sum objective
function that enables flexible prioritization among multiple goals, a criticality scoring function
that identifies high-risk shifts based on historical absence trends, and a heuristic procedure for
constructing a buffer section of surplus nurses, allowing for instant, hierarchy-aware substitutions
before resorting to full rescheduling.

The analysis of absence data used in the criticality scoring function is detailed in the next
chapter, Computational study. The figure below illustrates the overall methodology developed
in this work, including the integration of proactive and reactive scheduling strategies within a
unified two-stage framework.

Figure 2.1: The Methodological framework

2.1 Nurse Scheduling Model

The optimization model presented in this section is based on the formulation developed by
Johansen, Nag, and Tveit [24]. Their work, titled Nurse Scheduling and Rescheduling: Com-
bining Optimization with Machine Learning-Driven Demand Predictions, provides a comprehen-
sive mixed-integer programming approach for solving complex nurse scheduling problems. The
model has been adapted to fit the context and data of the current study, while preserving its
core structure and constraint logic.
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The model aims to generate feasible nurse schedules that satisfy a wide range of operational con-
straints while optimizing multiple objectives such as demand coverage and contract compliance.
The section begins by defining the relevant indices, sets, parameters, and decision variables.
This is followed by the mathematical formulation of the objective functions and the constraints
that govern the scheduling rules. Each component of the model is presented in detail to ensure
clarity and reproducibility. Finally, the complete list of decision variables is declared, complete
with the definition of the model.

Objective Description

z1 Minimize the number of understaffed shifts relative to the demand
z2 Minimize total weekly deviation from contracted working hours for all nurses
z3 Maximize the fair distribution of overstaffed shifts
z4 Minimize the number of violations of individual nurse preferences
z5 Minimize deviations from the required experience levels and the number of

specialized nurses per shift

Table 2.1: Objective functions

Index Description

n ∈ N Nurse
q ∈ Q Qualification level
e ∈ E Experience level
u ∈ U Unit or ward
s ∈ S Shift (e.g., morning, afternoon, night)
d ∈ D Day
w ∈ W Week

Table 2.2: Index
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Sets Description

U Set of hospital units or departments (e.g., U = {1, 2, 3})
Q Set of professional qualification levels (e.g., Q = { AN: assistant nurse, N: nurse, SN: specialized nurse})
E Set of experience categories assigned to nurses (e.g., E = {Junior, Mid-level, Senior})
N Complete set of nurses in the planning period
N (q) ⊆ N Subset of nurses with competence level c ∈ C
N (e) ⊆ N Subset of nurses with experience level e ∈ E
N (u) ⊆ N Subset of nurses assigned to unit u ∈ U
W Set of weeks in the planning horizon
D Set of all days in the planning period
Dw ⊆ D Days corresponding to week w ∈ W
Dsun ⊆ D Set of Sundays within the planning period
S Set of shift types (e.g., S = {D, E, N, F, F1})
Swork ⊆ S Subset of working shifts (e.g., {D, E, N})
Soff ⊆ S Subset of non-working shifts (e.g., {F, F1})

Table 2.3: List of sets

SN: Specialized Nurse

N: Nurse

AN: Assistant Nurse

Figure 2.2: Hierarchy of qualification levels

In the model, the qualification levels are structured hierarchically. A Specialized Nurse (SN)
possesses the highest qualification and can perform any task assigned to a Nurse (N) or an
Assistant Nurse (AN). Similarly, a Nurse (N) can cover tasks of an Assistant Nurse
(AN). This hierarchical substitution principle is essential for both scheduling and rescheduling
phases, as it allows flexible reallocation of personnel based on competence levels when absences
occur or shifts need to be reinforced.
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Parameter Description

Dmin
usd Minimum staffing requirement in unit u for shift s on day d

Davg
usd Average historical demand in unit u for shift s on day d

Dexp
usd Preferred number of nurses with experience level e in unit b, shift s, day d

DAN
usd Maximum number of assistant nurses needed in unit b, shift s, day d

DSN
usd Desired number of senior nurses in unit b, shift s, day d

Mday Maximum allowed number of consecutive workdays
Mnight Maximum allowed number of consecutive night shifts
Hmax Maximum total work hours allowed per week
H Standard weekly hours for a full-time contract
Hs Duration (in hours) of shift s

Irec Minimum interval between working weekends
Cn Contracted working percentage for nurse n

F Upper limit on deviation from contracted weekly hours
F Lower limit on deviation from contracted weekly hours
K Total number of weeks in the planning horizon
In

usd 1 if nurse n wants to avoid working shift s on day d in unit u, 0 otherwise

Table 2.4: List of parameters

Auxiliary Variables Description

δH−
nw Hours missing from the contractual workload for nurse n during week w

δH+
nw Hours exceeding the contractual workload for nurse n during week w

δSN−
usd Shortage of specialized nurses in unit u during shift s on day d

δE
usd Shortage of nurses with experience level e in unit u, shift s, day d

δD−
usd Staffing shortfall vs. average demand in unit u, shift s, day d

δD+
usd Staffing surplus vs. average demand in unit u, shift s, day d

Table 2.5: Auxiliary Variables

Decision Variables

xnust =
{

1, if nurse n in section u is scheduled for shift s on day d

0, otherwise

αust =
{

1, if there is overstaffing in section u on shift s on day d

0, otherwise

Objective functions
z1 =

∑
u∈U

∑
s∈S

∑
d∈D

δD−
usd (2.1)
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z2 =
∑
n∈N

∑
w∈W

(
δH−

nw + δH+
nw

)
(2.2)

z3 =
∑
u∈U

∑
s∈S

∑
d∈D

αusd (2.3)

z4 =
∑
n∈N

∑
u∈U

∑
s∈S

∑
d∈D

In
usd · xnust (2.4)

z5 =
∑
u∈U

∑
s∈S

∑
d∈D

(
δE

usd + δSN−
usd

)
(2.5)

min
∑

(w1z1 + w2z2 − w3z3 + w4z4 + w5z5) (2.6)

Objective Related Constraints∑
n∈N

xnusd = Davg
usd − δD−

usd + δD+
usd ∀u ∈ U , s ∈ Swork, d ∈ D (2.7)

(2.7) measures the deviation from the average demand by allowing both understaffing and over-
staffing

∑
u∈U

∑
s∈S

∑
d∈Dw

Hs xnusd = CnH + δH−
nw − δH+

nw ∀n ∈ N , ∀w ∈ W (2.8)

(2.8) measures the deviations from contracted hours.∑
n∈Ne

xnusd ≥ Dqusd − δE
usd e ∈ E , u ∈ U , s ∈ Swork, d ∈ D (2.9)

(2.9) measures the deficit from desired demand for experience.

∑
n∈NSN

xnusd ≥ DSN
usd − δSN−

usd u ∈ U , s ∈ Swork, d ∈ D (2.10)

(2.10) measures the deficit from desired demand for competence.∑
n∈N (AN)

xnusd ≤ D
AN
usd ∀u ∈ U , s ∈ Swork, d ∈ D (2.11)

(2.11) limits the number of assistant nurses assigned to each shift.

∑
n∈N

xnuNd ≤ DuNd
min + 3 ∀u ∈ U , d ∈ D (2.12)

(2.12) permits night shift staffing to exceed the minimum requirement Dmin by up to 3 nurses
when necessary.

xn1sd = 0 ∀n ∈ N \ N (u = 1), s ∈ S, d ∈ D (2.13)

xn2sd = 0 ∀n ∈ N \ N (u = 2), s ∈ S, d ∈ D (2.14)

xn3sd = 0 ∀n ∈ N \ N (u = 3), s ∈ S, d ∈ D (2.15)

Constraints (2.13)–(2.15) ensure nurses cannot be scheduled outside their assigned units (N (u)
denotes nurses assigned to unit u).
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Legislative Constraints

∑
u∈U

∑
s∈S

xnusd = 1 ∀n ∈ N , d ∈ D (2.16)

(2.16) ensures each nurse is assigned exactly one shift per day.

∑
u∈U

∑
s∈Swork

∑
d∈Dw

Hsxnusd ≤ L ∀n ∈ N , w ∈ W (2.17)

(2.17) limits weekly working hours for each nurse.

F
∑
k∈K

CnH ≤
∑
u∈U

∑
s∈Swork

∑
d∈D

Hsxnusd ≤ F
∑
k∈K

CnH ∀n ∈ N (2.18)

(2.18) defines the contractual hours interval for each nurse.

d+M
day∑

d′=d

∑
u∈U

∑
s∈Swork

xnusd′ ≤M
day ∀n ∈ N , d ∈ {1, 2, ..., |D| −M

day} (2.19)

(2.19) limits consecutive working days.

d+M
night∑

d′=d

∑
u∈U

xnuNd′ ≤M
night ∀n ∈ N , d ∈ {1, 2, ..., |D| −M

night} (2.20)

(2.20) limits consecutive night shifts.

Weekend Constraints
W −1∑
w′=0

∑
u∈U

∑
s∈Swork

xnus(d+7w′) = 1 ∀n ∈ N , d ∈ Dsun (2.21)

(2.21) ensures each nurse works exactly one weekend every W weeks.

∑
u∈U

(
xnuDd − xnuE(d−1)

)
= 0 ∀n ∈ N , d ∈ Dsun (2.22)

∑
u∈U

(
xnuEd − xnuD(d−1)

)
= 0 ∀n ∈ N , d ∈ Dsun (2.23)

∑
u∈U

(
xnuNd − xnuN(d−1)

)
= 0 ∀n ∈ N , d ∈ Dsun (2.24)

Constraints (2.22)-(2.24) enforce legal weekend shift patterns.

Rest Regulations

∑
u∈U

(
xnuNd + xnuD(d+1)

)
≤ 1 ∀n ∈ N , d ∈ D (2.25)

(2.25) prohibits night-to-morning shift transitions.

∑
u∈U

(
xnuNd + xnuE(d+1)

)
≤ 1 ∀n ∈ N , d ∈ D (2.26)
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(2.26) prohibits night-to-evening shift transitions.

∑
u∈U

(
xnuN(d−1) + xnuF1d + xnuD(d+1)

)
≤ 2 ∀n ∈ N , d ∈ D (2.27)

∑
u∈U

(
xnuN(d−1) + xnuF1d + xnuE(d+1)

)
≤ 2 ∀n ∈ N , d ∈ D (2.28)

∑
u∈U

(
xnuE(d−1) + xnuF1d + xnuD(d+1)

)
≤ 2 ∀n ∈ N , d ∈ D (2.29)

(2.27),(2.29) regulate weekly rest day (F1) patterns.

∑
n∈N

∑
u∈U

∑
d∈Dw

xnuF1d = 1 ∀w ∈ W (2.30)

(2.30) ensures one rest day (F1) per week per nurse.

∑
u∈U

(xnuF 1d−6 + xnuDd−5) ≤ 1 ∀n ∈ N , d ∈ Dsun (2.31)

(2.31) prevents nurses from working both:

- An F1 (off-shift) on the last day before the weekend (xnuF 1d−6)

- A Day shift on the first day after the weekend (xnuDd−5)

Figure 2.3: Examples of forbidden rest patterns involving night, F1, and day/evening
shifts

Model Assumptions This model makes the following assumptions:
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- Nurse availability and absence data are known or predicted prior to schedule generation.

- The planning horizon is segmented into days and fixed shift types (D, E, N).

- Each nurse is assigned exactly one shift per day and cannot be split between units.

- Absences are not anticipated within the optimization but handled in the second stage.

- The qualification hierarchy (SN > N > AN) is strictly respected in substitution.

2.2 Data-Driven Model

The base scheduling model presented above incorporates both understaffing and overstaffing
through soft constraints. It also integrates a variety of operational, contractual, and regulatory
rules to ensure the feasibility of the generated schedules. However, an important limitation
is that it treats all shifts equally when allocating surplus staff. In other words, any allowed
overstaffing is distributed uniformly throughout the planning horizon, without considering the
varying levels of risk associated with different shifts.

In practice, not all shifts are equally exposed to disruptions. Certain combinations of weekday
and shift type, such as Monday mornings or weekend nights, are statistically more prone to
nurse absences. Ignoring this heterogeneity may result in inefficient use of surplus resources, as
the model might assign additional staff where the risk of absence is low, while failing to reinforce
the shifts that are statistically more likely to face staffing shortages.

Overstaffing, when used strategically, can serve as a powerful tool to absorb unplanned absences
and reduce the need for disruptive rescheduling actions. However, its effectiveness depends on
the ability to anticipate which shifts are at higher risk. To address this issue, we introduce a
data-driven approach to identify what we define as critical shifts: those shifts that, based on
historical data, have shown consistently higher levels of absenteeism.

Once identified, these critical shifts will be used to guide the optimization process. In the
enhanced version of the model, overstaffing is no longer uniformly rewarded but instead becomes
shift-specific encouraging surplus capacity where it is most likely to have a positive impact. This
refinement aims to make the schedule not only feasible and compliant but also more robust in
the face of real-world uncertainty.

2.2.1 Data-Driven Identification of Critical Shifts

This identification is based on the historical absence records for each hospital section. For each
record, we compute the actual absence levels per shift (Morning, Evening, Night) by comparing
the planned and actual number of nurses. Negative absence values are discarded by applying a
non-negativity constraint.

For each shift and weekday, we aggregate the data to compute:

- Criticality score: a weighted average of observed absence levels. This score reflects how
critical a shift is in terms of expected staffing shortfalls.

A shift is classified as critical based on its criticality score. The output is a ranked list of shifts
that decrease in criticality.

The pseudocode below summarizes the algorithm used:
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Algorithm 1 Identify Critical Shifts from Historical Absence Data
Input: Historical shift-level absence data for each hospital section
Output: Sorted list of shifts ranked by criticality score
foreach hospital section in the dataset do

Import historical records containing planned and actual staffing levels per shift; For
each date entry, determine the corresponding weekday (Monday, Tuesday, ...);

ruby Copier Modifier Compute the number of absent nurses per shift using non-
negativity:

- Morning_absences ← max(0, Planned_Morning− Actual_Morning)

- Evening_absences ← max(0, Planned_Evening− Actual_Evening)

- Night_absences ← max(0, Planned_Night− Actual_Night)

foreach shift ∈ {Morning, Evening, Night} do
Aggregate absence data by weekday For each weekday:

- Count the number of days with different absence levels

- Let nd be the total number of days observed for that shift and weekday

- Let ai be the number of days with i absences (i ∈ N)

Compute the criticality score as:

Criticality Score =
∑k

i=1 i · ai

nd

where k is the maximum number of observed absences
Add shift, weekday, section, and criticality score to results list

Sort the list of shifts by descending criticality score; return Ranked list of critical shifts

Identified critical shifts serve as the foundation for improving the model of optimization of nurse
scheduling. In the next section, we explain how these scores inform a criticality-aware allocation
strategy and guide the optimization process toward resilient staffing decisions.

2.2.2 Integrating Criticality into the Optimization Model

After identifying the shifts that are most often affected by absences, the next step is to include
this information in the scheduling model. The aim is to move from a uniform way of allocating
surplus nurses to a more focused approach that gives priority to overstaffing where it can reduce
the risk of future absences.

For this purpose, we use the criticality scores that were calculated earlier. These scores rep-
resent the level of risk for each shift and help the model assign additional staff to the most
vulnerable periods. The effect of this approach on staffing performance will be analyzed in the
Computational Study chapter.

The enhancement consists in replacing the original static surplus reward term w3 with a more
adaptive mechanism based on two components:

- A binary reward λ1 · αusd, activated whenever at least one surplus nurse (αusd = 1) is
assigned to a shift.
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- A continuous reward λ2 · δD+
usd , proportional to the amount of overstaffing, weighted by

the shift’s criticality score.

These two components are combined into the enhanced surplus objective function:

Note on notation. The term z3 was originally defined as a basic surplus tracking component.
In this section, it is replaced by zenhanced

3 to reflect critical-aware overstaffing. Unless otherwise
stated, all later formulations refer to this improved version.

zenhanced
3 =

∑
(u,s,d)∈C

(
λ1αusd + λ2δD+

usd

)
· criticalityusd (2.32)

In this formulation, C denotes the set of shifts classified as critical, and criticalityusd)isthenormalizedabsenceriskassociatedwithunitu,
shift s, and day d. Because the criticality score reflects both the severity and frequency of past
absences, it implicitly prioritizes the shifts with the highest vulnerability.

To prevent excessive overstaffing, we impose a constraint that caps the maximum surplus as-
signed to any shift.

δD+
usd ≤M

surp ∀u ∈ U , s ∈ Swork, d ∈ D (2.33)

This constraint ensures a balance between flexibility and cost-efficiency while keeping surplus
staffing focused on high-risk periods.

The enhanced surplus reward is then incorporated into the global objective function, which
maintains all other components and constraints from the base model:

min
∑ (

w1z1 + w2z2 − zenhanced
3 + w4z4 + w5z5

)
(2.34)

In summary, this enhancement transforms the base model into a more robust and data-aware
system. By leveraging absence history through criticality scores, it directs surplus capacity to
the most sensitive shifts, reinforcing resilience without compromising feasibility or operational
constraints.

2.3 Heuristic: Nurse Reassignment with Overflow
Unit

Since maximizing overstaffing in critical shifts is a key objective in our scheduling model, we also
reflect this principle in the absence management strategy. To address unplanned absences in a
simple yet effective way, we develop a post-optimization heuristic called Nurse Reassignment with
Overflow Unit. This approach allows local adjustments to be made to the initial schedule without
re-running the full optimization process, which can be time-consuming and computationally
expensive.

The heuristic operates in two phases. In the first phase, it scans the schedule to detect surplus
staff. For each unit, shift, and day, it compares the current number of nurses assigned to the
target demand. If a surplus is detected, the algorithm removes the least qualified nurses from
their original assignments and reassigns them to a dedicated overflow unit. This overflow unit
acts as a flexible pool of standby nurses, available for reassignment when needed.
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In the second phase, the algorithm processes the list of unplanned absences. For each absent
nurse, it checks whether the remaining staff still meet the required demand. If not, it looks into
the overflow unit for candidates who are available in the same shift and day. The replacement
nurse must have a qualification level equal to or higher than that of the absent nurse. Among
eligible candidates, the algorithm selects the one with the lowest acceptable qualification to
preserve higher-skilled staff for future reassignments if needed.

This method enables quick and targeted corrections to the schedule. By relying only on pre-
allocated surplus capacity and basic qualification checks, the heuristic avoids major disruptions
and maintains operational feasibility. Moreover, since the reassignments are performed locally,
the computation time remains negligible.

The algorithm also tracks statistics such as the number of absences covered, the number of
surplus nurses reassigned, and the average qualification gap between absent and replacement
nurses. These indicators provide useful feedback on the effectiveness of the heuristic and can
guide future adjustments to buffer size or qualification allocation policies.

The full pseudo-code and the logic of this heuristic is summarized below:

Algorithm 2 Simple Reassignment Heuristic with Overflow and Absence Management
(without average gap)
Input: Initial nurse assignment X(n, u, s, d),
Desired demand Ddes[u, s, d],
Nurses grouped by qualification levels Nq,
Absence indicator A(n, u, s, d) (1 if absent, 0 otherwise)
Output: Updated nurse assignment X,
Statistics on reassignments and covered absences
Initialize qualification levels:
level(n)← i if n ∈ Nq[i]
Initialize counters: surplus_reassigned← 0, absences_covered← 0

foreach u ∈ U \ {overflow}, s ∈ Swork,d ∈ D do
Compute current coverage:
C ← ∑

n X(n, u, s, d)
Surplus: surplus← C −Ddes[u, s, d]

if surplus > 0 then
Sort nurses assigned to (u, s, d) by ascending qualification level
foreach lowest qualification nurse nk among surplus do

Remove nurse from unit b: X(nk, u, s, d)← 0
Assign nurse to overflow unit: X(nk, overflow, s, d)← 1
surplus_reassigned← surplus_reassigned + 1

foreach absent nurse (n, u, s, d) with A(n, u, s, d) = 1 do
Remove absent nurse: X(n, u, s, d)← 0
if ∑

m X(m, u, s, d) ≥ Ddes[u, s, d] then
continue ▷ Demand already met

Find candidates in overflow unit at (s, d) with qualification ≥ level(n)
if candidates exist then

Select candidate m⋆ with minimal qualification level
Reassign candidate: X(m⋆, overflow, s, t)← 0, X(m⋆, u, s, d)← 1
absences_covered← absences_covered + 1

return Updated assignment X and statistics {surplus_reassigned, absences_covered}
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Figure 2.4: Framework connection

Integration of Scheduling and Rescheduling within a
Simulation-Based Framework

The proposed methodology adopts a simulation-based modular approach structured around a
two-phase decision process. This framework is designed to balance proactive planning with
reactive adaptability, enabling robust management of the nurse workforce under uncertainty.

Phase 1: Optimized Initial Scheduling

At the beginning of each simulation cycle, a mixed-integer linear programming model is executed
to generate a high-quality schedule over a fixed planning horizon. This optimization considers a
comprehensive set of operational constraints, including staffing requirements, contractual obliga-
tions, rest regulations, and hierarchical qualification rules. Importantly, the model integrates a
criticality-aware overstaffing strategy, leveraging historical absence patterns to prioritize staffing
in high-risk shifts. The output of this phase is a feasible, optimized plan that incorporates the
targeted surplus capacity in the form of a virtual overflow unit.

Phase 2: Daily Rescheduling through Heuristic Adjustment
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Once the initial schedule is generated, the system enters a rolling-horizon simulation loop. Each
day, new absences are simulated. In response, a rescheduling heuristic is triggered to locally
reassign nurses. This heuristic searches the overflow unit for qualified surplus nurses available
on the current day and reassigns them to uncovered shifts while strictly respecting hierarchical
substitution rules (i.e., a specialized nurse can replace a regular nurse, but not vice versa). The
process is efficient, non-disruptive, and avoids recomputing the full schedule.

This architecture ensures a continuous interaction between long-term planning and short-term
responsiveness. Rather than relying on external predictors, the method leverages historical
absence patterns (through criticality scores) and internal flexibility (through the overflow buffer)
to dynamically absorb daily disruptions. The simulation framework supports two approaches
to generate absence scenarios: initially, it uses real historical absence data to evaluate the
model in realistic conditions; subsequently, it can integrate a predictive machine learning model
trained on historical patterns to simulate plausible future absences. As a result, the framework
remains simple, adaptable, and computationally tractable qualities that are essential for real-
world hospital deployment.

Figure 2.5 illustrates the conceptual integration of these two phases within the rolling simulation
loop.

Figure 2.5: Integration of Scheduling and Rescheduling within a Simulation- Based Frame-
work

Conclusion

This chapter introduced a two-phase nurse scheduling framework that combines robust opti-
mization with a lightweight rescheduling heuristic. The core model incorporates operational
and regulatory constraints, while a criticality-aware objective function directs surplus capacity
toward high-risk shifts.

To handle daily disruptions, a heuristic uses an overflow unit of pre-allocated nurses for rapid,
hierarchy-compliant reassignments. In the next chapter, we present the results of the different
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tests conducted to evaluate the effectiveness and robustness of this framework under various
absence scenarios.
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Chapter 3

Computational Study



Introduction

This chapter builds on the models developed in the previous section by moving from design
to experimentation. We aim to assess the performance of the proposed nurse scheduling and
rescheduling solutions through a series of computational tests. These experiments are based on
synthetic data that reflect real hospital conditions, including staffing constraints, preferences,
and absenteeism. We describe the different steps of our approach, from data initialization to
schedule evaluation, and analyze the results to validate the quality, robustness, and practical
relevance of the proposed methods.

3.1 Test Environment

All models and analytical procedures were implemented in Python. The optimization mod-
els were solved using the commercial IBM ILOG CPLEX Optimizer. All experiments were
performed on a personal computer with moderate computational capacity. The hardware and
software specifications of the test environment are summarized in Table 3.1.

Specification Details

Processor Intel(R) Core(TM) i7-7500U
Cores / Frequency 2 / 2.70–2.90GHz
Operating System Windows 10 Home, 64-bit
RAM 8 GB
Python version 3.10.9
CPLEX version 22.1.1

Table 3.1: Details of software and hardware specifications

3.2 Data Generation

To evaluate the performance of our nurse scheduling and rescheduling models under realistic
conditions, we generated synthetic data that simulate real-world hospital environments. This
data includes nurse shift preferences and unplanned absences, both of which introduce signifi-
cant complexity into the scheduling process. The goal is to simulate scenarios that reflect the
actual variability and uncertainty faced by healthcare planners. In the following subsections, we
describe the methods used to generate preference and absence data.

3.2.1 Nurse Preference Generation Method

To better reflect real-world behavior in our scheduling model, we created a method to simulate
nurse preferences for different shifts. This method is based on historical data showing when
nurses reported not wanting to work called “violations.” These violations are classified by shift
type: day (ViolD), evening (ViolE), and night (ViolN ). A detailed analysis of the original
preference data can be found in Section 3.7.

We first analyze how often these violations occur for each day of the week and for each type of
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shift. From this we calculate probabilities that indicate the likelihood that a nurse would not
like a particular shift on a given day. For example, if many nurses tend to avoid night shifts on
Mondays, our model assigns a higher probability to that combination of shift-day.

We also pay special attention to the weekends. Since nurses often prefer to avoid working
both Saturday and Sunday, we calculate separate weekend-specific probabilities. These weekend
preferences are smoothed: if a nurse dislikes working one weekend day, the model assumes that
they are also likely to dislike the other. This generates more realistic patterns that reflect actual
human behavior.

Using these probabilities, we construct a preference matrix for each nurse. This matrix, denoted
as Inst, has one row for each day and one column for each shift type (day, evening, night).
Each value in the matrix is binary: 1 means that the nurse does not want to work that shift on
that day, and 0 otherwise. Uniform random numbers are generated and compared against the
corresponding probability; if the random number is less than the probability, a 1 is assigned;
otherwise, a 0. This procedure ensures that preferences are both data-driven and individualized
(Hillier Lieberman, 2015).

In summary, our method uses past behavior to simulate realistic, personalized nurse preferences.
These preferences are critical for testing and improving our scheduling algorithms, as they
capture the complexity of human availability and satisfaction.

3.2.2 Absence Data

To introduce realistic disturbances into the planning process, we construct a dictionary of ex-
pected absences for each day, section, and shift. This dictionary serves as an input to the
simulation framework and defines the number of staff expected to be absent at each point in
time.

The structure is as follows:

absences_dict[(d, u, s)] = nabs

Where:

- d is the day index,

- u is the unit identifier,

- s is the shift (morning, evening, night),

- nabs is the number of absentees expected for that combination.

This absence dictionary was generated using two approaches:

- Empirical data: Directly extracted from historical records, measuring the gap between
planned and actual staffing.

- Hurdle model prediction: A two-part statistical model trained on features such as
weekday, month, workload indicators, and public holidays. Estimate both the probability
and the magnitude of absenteeism.

The resulting dictionary does not assign absences to specific individuals, but only specifies the
expected number of absentees, which are drawn dynamically during the simulation.
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3.3 Rolling Horizon Simulation Framework

To evaluate the behavior of the scheduling system under dynamic and uncertain conditions, we
implemented a rolling horizon simulation framework. This framework simulates the evolution
of the planning process day by day, incorporating unexpected absences and triggering reactive
reassignment strategies.

Each day in the planning horizon is treated as a simulation step during which the following
operations are executed sequentially:

1. Planning extraction: The daily schedule is extracted from the initial planning. This
includes all nurse assignments for each section and shift.

2. Absence sampling: For each day d, section u, and shift s, a predefined number of
absentees nabs is drawn based on the dictionary absences_dict[(d, u, s)] (Section 3.2.2).
Among the nurses scheduled to work at (u, s, d), a random sample of size nabs is selected
without replacement. If fewer than nabs nurses are available, all are marked absent. This
ensures that absences are only assigned to staff who were effectively planned to work.

3. Reassignment heuristic: Once absences are identified, a reassignment heuristic is in-
voked to mitigate their impact. We use the Nurse Reassignment with Overflow Unit
described in Section 2.3, which reallocates surplus staff from overstaffed units to an over-
flow unit and reassigns them to uncovered shifts based on qualification constraints. This
approach allows for rapid and localized adjustment of the schedule without re-optimizing
entire planning.

4. Logging and evaluation: Key indicators are recorded for each day, including the num-
ber of simulated absences, the number of successfully reassigned staff and the residual
uncovered demand. These metrics are then aggregated to assess the robustness of plan-
ning and rescheduling strategies.

This rolling procedure allows us to simulate a realistic operational environment, where planning
is constantly challenged by uncertainty. It also enables the evaluation of reactive strategies
over an extended horizon, providing insights into the strengths and limitations of the scheduling
system.
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Figure 3.1: Rolling Horizon Simulation Process

3.4 Initialization of scheduling Parameters

To simulate a realistic nurse scheduling environment, the dataset was initialized with a diversified
pool of nurses categorized by experience levels. Specifically, nurses were grouped into three
categories according to their professional experience: junior, intermediate, and senior.

The planning horizon was set at four weeks, broken down into daily time steps and weekly
partitions to align with hospital operational cycles. The shifts were categorized into five types,
distinguishing between weekday shifts (SW ) and weekend shifts (SO). The corresponding de-
mand data, both minimum and desired staffing levels, was initialized for each combination of
department, day, and shift, using multi-dimensional arrays Dmin

usd and Davg
usd. These were derived

from domain-specific estimates and reflect typical hospital demand fluctuations during the week
and weekends.

Each nurse was assigned an individual contractual workload, expressed as a percentage, which
made up the array Cn. These values determine the expected working hours over the entire
planning horizon, computed using the formula:

Cn[i] = K ×H × percentagei

where H represents the standard weekly workload in hours and K is the number of weeks in the
planning horizon.
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Parameter Description Value

Mday Maximum allowed number of consecutive workdays 5
Mnight Maximum allowed number of consecutive night shifts 3
L Maximum total work hours over the planning horizon (4 weeks) 48
H Standard weekly hours for a full-time contract 35.5
Hday Duration of a day shift in hours 7.5
Heve Duration of an evening shift in hours 7
Hnight Duration of a night shift in hours 10
Irec Minimum interval between working weekends (in weeks) 2
F Upper limit on deviation from contracted weekly hours 105%
F Lower limit on deviation from contracted weekly hours 95%
K Total number of weeks in the planning horizon 4

Table 3.2: Model Parameters, Descriptions, and Values

3.5 Baseline Model Evaluation

To evaluate the effectiveness and scalability of the proposed multi-objective nurse scheduling
model, we conducted a series of experiments on instances of increasing complexity. The evalua-
tion began with a small instance of 10 nurses over a one-week planning horizon and was extended
to larger, more realistic scenarios involving 104 nurses over one to four weeks. This progression
allows for clearer and more precise visualization of the schedules and highlights how the model
performs under different constraints.

In our analysis, we focus on comparing two main multi-objective optimization strategies: the
weighted-sum (scalarization) approach and the lexicographic approach, both with and without
slack variables. This comparison aims to reveal how each method balances trade-offs between
conflicting objectives, and how the presence or absence of slack influences performance and
feasibility.

Based on the results obtained from these experiments, we will identify the most suitable approach
and use it to generate the final nurse planning solutions for larger instances.

The metrics considered are defined as follows:

- Understaffing (z1): Number of understaffed shifts.

- Hours deviation (z2): The total weekly hours deviated from the contracted hours.

- Max deviation: Maximum number of hours deviated for a single nurse.

- Overstaffing (z3): Number of overstaffed shifts.

- Preference (z4): Percentage of satisfied nurse preferences.

- Experience violation (z5): Number of shifts that violate the required level of experi-
ence.

- Competence violation: Number of shifts that violate the required competence level.

- Run Time
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3.5.1 Small Instance: 10 Nurses, 1 Week

This initial test case provides a detailed look at the behavior of the model in a simplified scenario.
Table 3.3 presents the results obtained using the three optimization strategies: scalarization,
lexicographic with slack, and lexicographic without slack.

Scalar Approach: 12Z1 + 8Z2 − 6Z3 + 4Z4 + 2Z5

Metric Lexicographical Scalar-
With slack Without slack approach

Understaffing (x1) 0.00 0.00 0.00
Hours deviation (x2) 2.67 1.67 2.67
Max deviation 1.00 0.5 1.00
Overstaffing (x3) 6.00 6.00 6.00
Preference (x4) 86.47 86.47 86.47
Experience violation (x5) 1.00 3.00 1.00
Competence violation 2.00 4.00 2.00
Run Time (s) 1.98 17.00 2.22

Table 3.3: Comparison of multi-objective approaches on an instance with 10 nurses and
1 unit

Figure 3.2: Weekly Planning for 10 Nurses(Lexicographic with slack)
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Figure 3.3: Weekly Planning for 10 Nurses(Lexicographic without slack)

Figure 3.4: Weekly Planning for 10 Nurses (scalar approach)

The comparison of multi-objective approaches reveals significant differences in performance met-
rics. The lexicographical method without slack achieves better results in hours deviation and
max deviation compared to both the lexicographical method with slack and the scalar approach,
but at the cost of substantially longer runtime. Both the lexicographical with slack and scalar ap-
proaches demonstrate superior performance in minimizing experience violations (1.00 vs. 3.00)
and competence violations. All methods maintain identical results for understaffing, overstaffing
and preference satisfaction. This suggests that while the lexicographical method without slack
optimizes certain scheduling metrics better, it comes with significantly increased computational
time, making the with-slack and scalar approaches more efficient for practical implementations
where experience and competence constraints are prioritized.

To confirm these observations, further tests on additional instances will be conducted. Given
that the lexicographic approach without slack, while yielding marginally better results on some
metrics, incurs a significantly higher computational cost, it will be excluded from the next
comparative analysis. Instead, we will focus on the lexicographic approach with slack and
the scalar approach, as they offer a better balance between solution quality and efficiency,
particularly in minimizing experience and competence violations within acceptable runtimes.
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3.5.2 Results: 1 unit : 32 Nurses, 4 Weeks

Scalar Approach: 12Z1 + 8Z2 − 6Z3 + 4Z4 + 2Z5

Metric Lexicographic with
slack

Scalar Approach

Understaffing 0.00 0.00
Hours Deviation 78.25 78.25
Max Deviation 3.38 3.38
Overstaffing 60.00 60.00
Preference satisfaction 96.4% 96.4%
Experience violation 0 0
Competence violation 0 0
Run time (s) 330.55 325.80

Table 3.4: Comparison of multi-objective approaches on an instance with 32 nurses and 1 unit

3.5.3 Results: 2 units : 65 Nurses, 4 Weeks

Scalar Approach: 12Z1 + 8Z2 − 6Z3 + 4Z4 + 2Z5

Metric Lexicographic with
slack

Scalar Approach

Understaffing 14.00 0.00
Hours Deviation 15.5 22.85
Max Deviation 0.38 1.00
Overstaffing 41.00 42.00
Preference satisfaction 99.3% 99.5%
Experience violation 0 0
Competence violation 0 0
Run time (s) 535.39 242.80

Table 3.5: Comparison of multi-objective approaches on an instance with 65 nurses and 2 units

3.5.4 Results: 3 units 104 Nurses, 4 Weeks

The workforce consists of 104 nurses distributed across three sections as shown in Table 3.7.
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Section Number of Nurses

Section 1 32
Section 2 33
Section 3 39

Total 104

Table 3.6: Distribution of Nurses by Hospital Section

Scalar Approach : 12Z1 + 8Z2 − 6Z3 + 4Z4 + 2Z5

Metric Lexicographic
(with slack)

Scalar Approach

Understaffing 42.00 0.00
Hours Deviation 270.10 253.65
Max Deviation 2.25 4.25
Overstaffing 232 180
Preference satisfaction 99.1% 99.0%
Experience violation 0 2
Competence violation 0 2
Run time (s) 6147 3600

Table 3.7: Comparison of multi-objective approaches on an instance with 104 nurses and 3 units

The results obtained on different instance sizes highlight the trade-offs between the lexicographic
approach with slack and the scalar multi-objective formulation. On a small instance with a single
unit and 32 nurses (Table 3.4), both methods yield identical outcomes in terms of coverage,
preference satisfaction, and constraint compliance, with a slightly shorter runtime for the scalar
approach.

For the medium-sized instance with two units and 65 nurses (Table 3.5), the scalar approach
completely eliminates understaffing, whereas the lexicographic method records 14 uncovered
shifts. This improvement comes with a moderate increase in total extra hours, but the execution
time is more than halved, showing a significant gain in computational efficiency.

The largest instance involves three units and 104 nurses distributed in sections, as shown in
Table 3.7. In this scenario, the scalar approach again achieves perfect coverage but incurs minor
violations in experience and skill constraints. However, it reduces total overtime and significantly
improves runtime performance, decreasing the solution time from 6147 seconds to 3600 seconds.

3.6 Comparison of Baseline and Data-Driven Schedul-
ing Models

In this section, we evaluate the effectiveness of the proposed heuristic in managing absences
based on the initial schedules generated by two different models: the baseline version and the
enhanced data-driven version introduced in Chapter 2. The objective is to measure how well

60



the heuristic performs in covering daily absences over a realistic planning horizon and to assess
the overall quality of the resulting schedules.

The evaluation is carried out using four real-world instances that combine two staffing scales and
two absence contexts. A small-scale case with 32 nurses and a large-scale case with 104 nurses
are each tested on two distinct months: one from 2018, representing a period with moderate
absenteeism, and one during the COVID-19 crisis, characterized by high and volatile absences.
This setup allows for a consistent comparison of performance across different planning scales
and stress conditions, thereby assessing both the robustness and scalability of the proposed
approach.

Absence Coverage Performance

The performance of the heuristic in covering daily absences was evaluated over a 28-day rolling
horizon for both the baseline and data-driven initial schedules.

Simulation Results for 32 Nurses, 1 Unit – Moderate Absence Period (July 2022)

Metric / KPI Baseline Model Data-Driven Model

Absence Coverage
Total Simulated Absences 47 47
Total Covered Absences 11 14
Coverage Rate (%) 23.4% 29.8%

Scheduling Quality
Understaffing (nurse-shifts) 0.00 0.00
Total Hours Deviation (hours) 66.25 78.25
Max Individual Deviation (hours) 2.38 3.38
Experience Violations 0 0
Competence Violations 0 0
Preference Satisfaction (%) 96.1 96.4
Run Time (seconds) 112.98 302.58

Table 3.8: Global Summary of Simulation Results and Scheduling KPIs (July 2022, 32
Nurses)

Simulation Results for 32 Nurses, 1 Unit – High Absence Period (COVID-19)
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Metric / KPI Baseline Model Data-Driven Model

Absence Coverage
Total Simulated Absences 126 126
Total Covered Absences 24 32
Coverage Rate (%) 19.0% 25.4%

Scheduling Quality
Understaffing (nurse-shifts) 0.00 0.00
Total Hours Deviation (hours) 66.25 91.50
Max Individual Deviation (hours) 2.38 4.25
Experience Violations 0 0
Competence Violations 0 0
Preference Satisfaction (%) 96.1% 97.7%
Run Time (seconds) 122.81 406.75

Table 3.9: Global Summary of Simulation Results and Scheduling KPIs (COVID-19 Pe-
riod, 32 Nurses)

Comparison between baseline and data-driven models across both moderate and high absence pe-
riods reveals consistent improvements in absence coverage when using the data-driven approach.
In the moderate absence scenario (July 2022), the data-driven model achieved a coverage rate
of 29.8%, compared to 23.4% for the baseline. This performance gap widened under the more
challenging conditions of the COVID-19 peak, where the data-driven model covered 25.4% of
absences, versus only 19.0% for the baseline. These results suggest that the data-driven model
is more effective in anticipating and structurally absorbing potential absences.

In terms of scheduling quality, both models maintained zero understaffing and no violations of
experience or competence constraints. Although the total hours deviation is slightly higher for
the data-driven model, this metric aggregates deviations across all nurses and is therefore less
informative on its own. What is more relevant is the maximum individual hours deviation, which
indicates the highest workload imbalance among staff. This value increases from 2.38 hours in
the baseline to 3.38 hours in the data-driven model during the moderate absence period, and
to 4.25 hours during the high absence period. This suggests a slightly higher individual burden
in the data-driven scenario, likely as a trade-off for improved absence coverage. Nevertheless,
preference satisfaction remains high in both cases, with a slight advantage for the data-driven
model.

Simulation Results for 104 Nurses, 3 Units – Moderate Absence Period(January
2018)
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Metric / KPI Baseline Model Data-Driven Model

Absence Coverage
Total Simulated Absences 278 278
Total Covered Absences 82 115
Coverage Rate (%) 29.5% 41.4%

Scheduling Quality
Understaffing (nurse-shifts) 0.00 0.00
Total Hours Deviation (hours) 236.40 286.15
Max Individual Deviation (hours) 4.25 4.25
Experience Violations 0 0
Competence Violations 0 0
Preference Satisfaction (%) 98.6% 98.8%

Table 3.10: Global Summary of Simulation Results and Scheduling KPIs (January 2018,
104 Nurses)

Simulation Results for 104 Nurses, 3 Units – High Absence Period (COVID-19)

Metric / KPI Baseline Model Data-Driven Model

Absence Coverage
Total Simulated Absences 336 336
Total Covered Absences 78 124
Coverage Rate (%) 23.2% 36.9%

Scheduling Quality
Understaffing (nurse-shifts) 0.00 0.00
Total Hours Deviation (hours) 236.65 286.15
Max Individual Deviation (hours) 4.25 4.25
Experience Violations 0 0
Competence Violations 0 0
Preference Satisfaction (%) 98.6% 98.8%

Table 3.11: Global Summary of Simulation Results and Scheduling KPIs (COVID-19
Period, 104 Nurses)

The results observed on the larger-scale test case, involving 104 nurses and three care units, con-
firm the trends highlighted in the smaller-scale simulations. The data-driven model consistently
outperforms the baseline in terms of absence coverage, regardless of the level of absenteeism.
During the moderate absence period (January 2018), the data-driven model covers 41.4% of
the absences compared to 29.5% for the baseline. This improvement is even more pronounced
during the COVID-19 period, where the data-driven model achieves a coverage rate of 36.9%,
while the baseline reaches only 23.2%.
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Regarding scheduling quality, both models ensure zero understaffing and full compliance with
experience and competence constraints, even under high pressure. As in previous scenarios, the
total hours deviation is slightly higher for the data-driven model. However, the maximum indi-
vidual deviation remains identical at 4.25 hours for both models, indicating that no additional
burden is placed on individual staff members despite the higher global coverage.

Preference satisfaction remains excellent in both configurations and slightly favors the data-
driven model. One noticeable difference lies in the optimization gap: while the baseline model
converges to tighter bounds (3.07%–3.41%), the data-driven model exhibits a wider gap (around
14%). This suggests that while the data-driven solution achieves better operational performance,
it may require more advanced optimization strategies or tuning to reduce solution uncertainty
in larger instances.

3.7 Data Analysis

3.7.1 Exploratory Absence Analysis

As a first step, we conducted an in-depth exploratory analysis of historical staffing records. The
aim was to better understand the dynamics of absenteeism by comparing the number of nurses
scheduled (planned) to the number who actually reported to work (actual) across three years of
data, for each section and shift.(This evaluation was conducted using our large-scale dataset of
104 nurses and 3 units)

This analysis was structured in three stages:

1. Boxplot visualizations were used to capture the distribution of absences on weekdays
and shifts, highlighting variability, outliers and central trends within each section.

2. We then examined the weekly distribution of absences in percentage terms, sepa-
rately for each shift. This allowed us to identify which days concentrate the highest share
of absences in a typical week without comparing shifts directly.

3. Finally, we introduced a shift-day level metric to support planning decisions: the
criticality score, which combines both the intensity and frequency of absences for each
(weekday, shift, section) combination.This score is the one used in the objective function
of the data-driven scheduling model, allowing us to assign differentiated weights across
(weekday,shift) combinations. It provides a quantitative basis for comparing staffing pres-
sure between time slots and ensures that the model prioritizes the most critical periods
when reallocating resources.

3.7.1.1 Boxplot visualizations

We begin this analytical sequence with the first component: the exploration of daily absenteeism
patterns using boxplot visualizations. This step aims to assess the variability and distribution of
absences across shifts and weekdays, rather than focusing solely on average rates. By observing
the spread, concentration, and outliers of daily absences, we gain a clearer picture of which shifts
exhibit the greatest instability and which days are more prone to extreme absenteeism.

The analysis was conducted separately for each section to preserve the specific structural and
operational characteristics of each unit.
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Figure 3.5: The boxplots for Section 1

The boxplot for Section 1 shows clear differences between the three shifts. Morning shifts have
the highest variation in absences. On weekdays, especially from Tuesday to Friday, some days
had very high numbers of absences. The spread is wide, which means that the number of
absentees changes a lot from one day to another.

In evening shifts, the number of absences is usually lower and more stable. Most days have 0 to
2 absences, and large values are rare. There is still some variation, especially at the start of the
week.

Night shifts are the most stable. Absences are low on most days, often just 0 or 1. There are
very few extreme cases. Across all shifts, weekends show a noticeable reduction in both the
median number of absences and their variability. Weekdays, on the other hand, are marked by
increased fluctuations, especially during the morning shift. These trends are consistent across
the entire historical window.
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Figure 3.6: The boxplots for Section 2

The absenteeism profile in Section 2 is slightly more balanced compared to Section 1, but some
differences still appear between shifts and weekdays. The morning shifts show a clear concentra-
tion of higher absences, especially on weekdays. The spread is moderate to wide, indicating that
some days have very few absences and others have higher, less predictable numbers. Tuesday,
Wednesday, and Friday show larger spreads, suggesting more staffing instability.

In the evening shifts, the variation in absences is smaller. Most values are centered on low
counts, though some days show moderate peaks, particularly midweek. The pattern seems to
be more stable than in the mornings.

Night shifts remain the most stable and predictable. The absences here are typically very low,
often 0 or 1, with only occasional deviations. The consistency suggests a lower risk of absence
during night shifts.

Across all shifts, weekends again show fewer absences, with smaller ranges and fewer outliers
consistent with reduced demand or different working dynamics during weekends.
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Figure 3.7: The boxplots for Section 3

In Section 3, absenteeism patterns are more pronounced than in the other sections, particularly
for morning shifts, which show both high central tendency and wide dispersion. The upper
quartiles and several outliers on Wednesday, Thursday, and especially Friday confirm a recurring
problem in morning coverage on those days.

Evening shifts show moderate absenteeism with relatively tight distributions during the week.
Although the variation is not as high as that for mornings, certain weekdays, such as Thursday,
still show extended ranges, indicating potential planning challenges.

Night shifts continue to display the most stable attendance across the week. Absences are low
and consistent, with almost no outliers, reinforcing the idea that night coverage is generally
more reliable.

Once again, weekend shifts show the smallest absenteeism across all three periods, with tight
boxes and fewer extreme values. This suggests lighter staffing needs or possibly stronger atten-
dance culture on weekends in this section.

Weekly Distribution of Absences

To analyze the concentration of absences throughout the week, we computed the share of total
absences occurring on each weekday, separately, for each shift. This allows for intra-shift com-
parisons while preserving temporal patterns. The percentage of absences for a given weekday d
and shift s is calculated as follows:

AbsenceShared,s =

K∑
k=0

k ·N (k)
d,s∑

d′

K∑
k=0

k ·N (k)
d′,s

× 100 (3.1)

where:

- k is the number of absences observed on a given day,
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- N
(k)
d,s is the number of days with exactly k absences on weekday d and shift s,

- the numerator gives the total number of absences accumulated on weekday d,

- the denominator gives the total number of absences across all weekdays for shift s.

This metric highlights which weekdays contribute most to overall absenteeism in each shift,
without comparing shifts directly.

The figures below illustrate this distribution for each section.

Figure 3.8: Distribution of Daily Absences by Weekday and Shift (Section 1)

In Section 1, the morning shift shows a fairly balanced distribution of absences across the
core weekdays, with Tuesday through Friday each accounting for roughly 17% to 19% of total
absences. Monday is slightly lower (~13%), while Saturday and Sunday clearly show reduced
absenteeism, each contributing under 10%. This confirms that most morning shift absences are
concentrated during the typical workweek.

The evening shift displays a more uneven profile. Monday and Wednesday show the highest
proportions (~17–18%), suggesting increased absenteeism early to midweek. Friday, on the other
hand, accounts for the lowest share, around 10%, with weekend values slightly higher (around
12%), resulting in a modest U-shaped trend across the week.

For the night shift, absences are more evenly spread across all days, but a slight increase is
visible midweek. Wednesday and Friday reach the highest values (~16%), while Monday is the
lowest at approximately 11%. Unlike the morning shift, there is no clear drop in the weekend
shift in the night shift, indicating a more stable distribution throughout the week.
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Figure 3.9: Distribution of Daily Absences by Weekday and Shift (Section 2)

The morning shift shows a clear concentration of absences on the weekday, with Wednes-
day and Friday recording the highest shares (both close to 19%). Tuesday and Thursday also
contribute significantly, maintaining a fairly elevated level of absenteeism across the central
workweek. In contrast, Saturday and Sunday are visible lower, accounting for around 7% and
9%, respectively, confirming a drop in absences during the weekend.

In the evening shift, the distribution is more varied. Tuesday and Wednesday stand out with
the highest proportions, each reaching nearly 18% of the weekly evening absences. Monday
follows at a moderate level, while Friday, Saturday, and Sunday show reduced shares, especially
Sunday which drops just above 10%. This indicates a concentration of evening shift absences
earlier in the week.

For the night shift, the distribution is more polarized. Tuesday and Wednesday dominate
the week, each accounting for more than 17% of night shift absences. Monday is the lowest
day (around 10%), and the weekend remains relatively low and stable (about 12–13%). This
confirms a stronger mid-week absenteeism load for night shifts in Section 2.
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Figure 3.10: Distribution of Daily Absences by Weekday and Shift (Section 3)

In Section 3, the morning shift shows the most pronounced weekly concentration of absences
among all three sections. Friday alone accounts for over 22% of total morning absences, followed
by Wednesday (19%) and Tuesday (17%). In contrast, Saturday and Sunday register very low
proportions, each contributing around 4% to 6%, highlighting a strong weekday dominance in
absenteeism.

For the evening shift, the distribution is slightly more balanced but still variable. Thursday
emerges as the peak day, concentrating 20% of evening shift absences. Monday and Wednesday
also show elevated shares (~16–17%). In contrast, Friday, Saturday, and Sunday remain the
least affected, all below or around 12%, suggesting a reduced evening absenteeism towards the
end of the week.

The night shift displays a more uniform distribution of absences throughout the week. The
shares range from 12% to 17%, with no day defining with a sharp difference. Wednesday and
Thursday show slightly higher values, while Monday and Sunday are at the lower end. This
regularity reinforces the overall stability of night shift attendance in Section 3.

3.7.1.2 criticality score

To complement the previous analyses on absenteeism distributions, we now introduce a compos-
ite indicator that captures both the intensity and the recurrence of absenteeism: the Criticality
Score Cads. Unlike raw frequency or percentage-based metrics, this score takes into account the
actual number of absences on each day and how often each level of absence occurs. It provides
a more nuanced understanding of which weekday–shift combinations truly concentrate high-risk
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staffing situations.

The following table summarizes the values of this score across all three sections and shifts,
offering a comparative view of the most critical periods throughout the week.

- Criticality Score Cads:

Cads =
∑

a a×D
(a)
ads

N total
d

(3.2)

where:

◦ a: A specific number of absences (e.g., 1, 2, 3, . . . )

◦ D
(a)
ads: Number of days (among weekday d) where exactly a absences occurred in shift

s, in the given section
◦ N total

d : Total number of occurrences of weekday d in the dataset

More detailed results and a breakdown by section can be found in: 1.1 1.2 1.3

Weekday
Section 1 Section 2 Section 3

Morning Evening Night Morning Evening Night Morning Evening Night

Monday 1.084 0.962 0.395 1.038 0.720 0.299 1.536 0.816 0.146
Tuesday 1.352 0.862 0.529 1.184 0.900 0.521 1.628 0.674 0.153
Wednesday 1.464 1.015 0.582 1.379 0.931 0.525 1.874 0.770 0.211
Thursday 1.368 0.862 0.548 1.215 0.759 0.467 1.559 0.969 0.199
Friday 1.410 0.598 0.579 1.307 0.556 0.448 2.146 0.506 0.176
Saturday 0.628 0.667 0.448 0.517 0.701 0.372 0.402 0.590 0.180
Sunday 0.700 0.665 0.465 0.646 0.546 0.392 0.531 0.519 0.158

Table 3.12: Weekly criticality comparison by shift

The criticality table highlights several consistent patterns across the three hospital sections.
Morning shifts systematically exhibit the highest criticality scores in all sections, particularly
on Wednesdays and Fridays. For example, in Section 3, the Friday morning shift reaches a peak
of 2.146, indicating both a high number of absences and frequent recurrence.

In Section 1, Wednesday mornings also stand out (1.464), along with Friday (1.410), confirming
that mid-to-late week morning shifts are generally the most strained. Section 2 displays a similar
pattern, although with slightly lower criticality levels overall, particularly in the evening and
night shifts.

Evening shifts show more moderate criticality scores. In Section 1 and 2, Wednesday evenings
are the most problematic, while in Section 3, the peak shifts slightly to Thursday evening (0.969).
The contrast with Friday evenings, especially in Sections 1 and 2, is notable and suggests lower
planning risk toward the weekend.

As expected, night shifts consistently report the lowest criticality across all sections. However,
the scores are not negligible. Wednesday and Friday nights still show peaks (e.g., 0.582 and 0.579
in Section 1), suggesting that while rarer, night absences can still present operational challenges
on certain days.
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In all sections, weekends (Saturday and Sunday) display uniformly lower criticality values for
all shifts, reinforcing the patterns seen in earlier boxplots and bar charts: staffing pressure is
markedly reduced on weekends.

3.7.2 Predictive Analysis of Staff Absenteeism

The objective of this analysis is to predict the number of absentees per shift on a daily basis.
Since the target variable is a count (the number of nurses absent), this constitutes a regression
task, not a classification problem. We are not simply interested in determining whether an
absence occurs, but rather in estimating its magnitude. This distinction is fundamental for
selecting appropriate predictive models and evaluation metrics.

To develop a robust and well-adapted model, we performed a thorough diagnostic of the statisti-
cal structure of the data. The aim was to detect any distributional patterns such as zero-inflation,
over-dispersion, or skewness that would invalidate the assumptions of classical regression models
(e.g linear or Poisson) and instead motivate the adoption of more flexible modeling strategies
like the Hurdle model.

Three empirical patterns were identified:

1. Excess Zeros (Zero-Inflation)

A substantial number of days exhibited no absences at all, particularly during night shifts. In
some configurations, the proportion of zeros exceeded 80%, as reported in Table ??. This zero-
inflation violates the assumptions of standard count models like Poisson or Negative Binomial,
which typically underestimate the frequency of zeros.

Section Shift Zero Proportion

1 D 38.6%
1 A 46.2%
1 N 61.8%
2 D 41.3%
2 A 49.2%
2 N 64.0%
3 D 34.8%
3 A 50.8%
3 N 84.1%

Table 3.13: Proportion of zero absences per shift and section

2. Overdispersion (Variance > Mean)

We formally assessed whether the data showed an overdispersion where the variance exceeds
the mean, which contradicts the core assumption of the Poisson distribution (Var(Y ) = E(Y )).
Following [68], we compute the Pearson dispersion index ϕ̃:
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ϕ̃ = X2

n− p
, where X2 =

∑ (yi − ȳ)2

ȳ

An index ϕ̃ > 1 indicates overdispersion. The results shown in Table ?? confirm mild to moderate
overdispersion in most combinations of shift sections.

Section Shift Mean Variance ϕ̃ (Pearson)

1 D 1.14 1.51 1.32
1 A 0.80 0.85 1.06
1 N 0.51 0.54 1.06
2 D 1.04 1.38 1.33
2 A 0.73 0.75 1.02
2 N 0.43 0.40 0.94
3 D 1.38 1.93 1.39
3 A 0.69 0.68 0.98
3 N 0.17 0.18 1.02

Table 3.14: Dispersion analysis based on mean, variance, and Pearson index

3. Skewed and Sparse Count Distributions

Figure 3.11 illustrates that all shift distributions are right-skewed, with a spike at zero and a
long positive tail. This pattern reinforces the need for a model that separates zero generation
from count intensity.

73



Figure 3.11: Histograms of Absences – Distributional Shape

Modeling Strategy: The Hurdle Model

These three findings: excess zeros, overdispersion, and skewness jointly motivate the use of a
two-part count model. We implemented a Hurdle model, which separately models:

- the occurrence of absences using logistic regression;

- the intensity of absences (conditional on being positive) using truncated count models.

Implementation and Results

Step 1: Predicting Occurrence (Logistic Regression) We trained a logistic regres-
sion to predict whether absences would occur (y > 0), using calendar and workload-related
variables. Performance was evaluated using McFadden’s pseudo-R2 and the Area Under the
Curve (AUC).

McFadden’s pseudo-R2 measures how much better the model fits the data compared to a model
without predictors. Unlike R2 used in linear regression, its values are usually much lower.
According to Hu et al. [69], values between 0.1 and 0.3 already suggest a model with a good
fit. Even when predictors have a strong effect, pseudo-R2 values often stay below 0.2, which is
normal in logistic regression.

The AUC indicates how well the model distinguishes between days with and without absences.
An AUC of 0.5 means random guessing, while values closer to 1.0 show that the model ranks
positive cases (days with absence) higher than negative ones. According to Google Develop-
ers [70], AUC values between 0.7 and 0.8 are considered acceptable, between 0.8 and 0.9 are
good, and above 0.9 are excellent.
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Section Shift Pseudo-R2 (McFadden) AUC

1 D 0.121 0.731
1 A 0.094 0.704
1 N 0.448 0.886
2 D 0.182 0.777
2 A 0.211 0.798
2 N 0.311 0.826
3 D 0.190 0.788
3 A 0.205 0.797
3 N 0.204 0.786

Table 3.15: Performance of logistic models for predicting absence occurrence

Step 2: Predicting Intensity (Count Regression on Positive Cases) For cases
with absences (y > 0), we compared four models:

- Hurdle model (conditional part : Linear Regression, poisson, negative binomial)

- Linear Regression

- Random Forest

- XGBoost

Target Variables and Feature Set : We built separate regression models for each shift:
morning (abs_D), afternoon (abs_A), and night (abs_N). These three count targets were predicted
using the following features:

- Days: day of the week (0–6).

- is_weekend, is_holiday, month: calendar variables.

- n_sejours: number of inpatients.

- D_plan, A_plan, N_plan: number of planned staff per shift.

All models were trained and evaluated using an 80/20 train-test split, ensuring consistent eval-
uation across configurations.

Performance was evaluated using MAE = Mean Absolute Error, RMSE = Root Mean Squared
Error.

RF = Random Forest, LR = Linear Regression, lin = linear, pois = poisson, nb = negative
binomial.
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Shift Hurdle (lin) XGBoost RF LR Poisson Hurdle (pois)

MAE
abs_D 0.798 0.798 0.818 0.794 0.824 0.804
abs_A 0.663 0.684 0.704 0.678 0.689 0.661
abs_N 0.321 0.324 0.325 0.397 0.537 0.315

Shift Hurdle (lin) Hurdle (nb) XGBoost RF LR Poisson

RMSE
abs_D 0.804 1.005 1.021 1.034 1.002 1.011
abs_A 0.661 0.845 0.861 0.889 0.856 0.868
abs_N 0.320 0.455 0.458 0.472 0.496 0.630

Table 3.16: Comparaison des performances prédictives sur la section 1 (MAE et RMSE
par shift)

Shift Hurdle (lin) XGBoost RF LR Poisson Hurdle (pois)

MAE
abs_D 0.750 0.748 0.765 0.757 0.795 0.756
abs_A 0.546 0.529 0.533 0.572 0.626 0.546
abs_N 0.339 0.346 0.360 0.391 0.507 0.338

Shift Hurdle (lin) Hurdle (nb) XGBoost RF LR Poisson

RMSE
abs_D 0.757 0.955 0.967 0.985 0.959 0.986
abs_A 0.549 0.686 0.671 0.698 0.707 0.750
abs_N 0.340 0.450 0.463 0.481 0.486 0.576

Table 3.17: Comparaison des performances prédictives sur la section 2 (MAE et RMSE
par shift)
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Shift Hurdle (lin) XGBoost RF LR Poisson Hurdle (pois)

MAE
abs_D 0.897 0.899 0.931 0.901 0.919 0.903
abs_A 0.532 0.544 0.577 0.542 0.611 0.532
abs_N 0.244 0.256 0.259 0.277 0.309 0.244

Shift Hurdle (lin) Hurdle (nb) XGBoost RF LR Poisson

RMSE
abs_D 0.902 1.144 1.153 1.189 1.149 1.158
abs_A 0.533 0.683 0.701 0.734 0.695 0.733
abs_N 0.245 0.396 0.398 0.412 0.410 0.460

Table 3.18: Comparaison des performances prédictives sur la section 3 (MAE et RMSE
par shift)

The analysis of predictive performance, measured by MAE and RMSE across all sections and
shifts, clearly highlights the superiority of the linear Hurdle model. This model consistently
achieves the best or joint-best results across all shifts and all three sections. In particular,
it records the lowest root mean squared errors (RMSE) for each shift in every section,
demonstrating its robustness in predicting absences, even for less frequent shifts, such as night
shifts. While other models such as XGBoost or the Poisson Hurdle model occasionally perform
well on specific shifts or sections in terms of MAE, none manage to outperform the linear Hurdle
model overall. This joint dominance in both average accuracy and error stability justifies its
selection as the benchmark model for the subsequent analyses.

In summary, the Hurdle model is both statistically justified and empirically competitive across
shifts and sections, especially for night shifts where standard models struggle with zero-inflated
and skewed distributions.

Comparative Evaluation of Scheduling Models Using Hurdle-Based Absence
Predictions

After comparing several approaches for simulating absences, predictive analysis demonstrated
the superior performance of the Hurdle model, particularly due to its ability to model both
the occurrence and the intensity of absences separately. Based on this finding, we now use the
absences predicted by the Hurdle model as a fixed input to evaluate and compare the performance
of the two scheduling approaches: the baseline model and the data-driven model. The following
table 3.19 summarizes the key performance indicators obtained over a 28-day horizon, with a
total of 193 simulated absences.
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Metric / KPI Data-Driven Model Baseline Model

Absence Coverage
Total Simulated Absences 193 193
Total Covered Absences 84 53
Coverage Rate (%) 43.5% 27.5%

Scheduling Quality
Understaffing (nurse-shifts) 0.00 0.00
Total Hours Deviation (hours) 280.15 249.65
Max Individual Deviation (hours) 4.25 4.25
Experience Violations 0 2
Competence Violations 0 2
Preference Satisfaction (%) 98.8% 99.1%

Table 3.19: Simulation Summary with Absences Predicted by Hurdle Model (28 Days,
193 Total Absences)

The results in Table 3.19 reinforce the conclusions drawn from previous scenarios: the data-
driven model significantly outperforms the baseline in terms of absence coverage, managing
to absorb 84 out of 193 predicted absences, compared to only 53 for the baseline. This
translates to a coverage rate of 43.5%, versus 27.5%, confirming that proactive allocation of
buffer capacity toward high-risk shifts, guided by historical absence patterns, effectively improves
the resilience of the system.

Both models maintain complete compliance with the staffing requirement, achieving zero un-
derstaffing across the entire horizon. However, this gain in coverage comes with a moderate
increase in total hours deviation (+30.5 hours), a logical consequence of the greater flexibility
introduced in the data-driven schedule. Despite this, the maximum workload imbalance per
nurse remains identical in both cases (4.25 hours), showing that the additional adjustments are
spread across the team rather than concentrated on a few individuals.

In addition, the data-driven model fully respects both experience and competence require-
ments, while the baseline solution violates each of these constraints twice. This demonstrates
the added value of incorporating risk-aware allocation mechanisms that prioritize not only cov-
erage, but also regulatory and professional standards of care delivery.

Finally, preference satisfaction remains high for both approaches, with a slight advantage for the
baseline (99.1% vs. 98.8%). This marginal difference confirms that the improvements in coverage
and constraint satisfaction achieved by the data-driven model do not come at the expense of
individual nurse preferences.

In general, the integration of predictive modeling into the scheduling process enables more
effective anticipation of disruptions, leading to a more robust and regulatory-compliant schedule
without significantly compromising workload balance or staff satisfaction.
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Conclusion

This chapter presented a comprehensive computational study designed to evaluate the perfor-
mance of the proposed initial nurse scheduling model, enhanced with a data-driven compo-
nent. Through a series of tests on instances of increasing size, we compared two multi-objective
optimization approaches, lexicographic with slack and scalar weighting in terms of coverage,
workload balance, preference satisfaction, and computational efficiency.

The introduction of a weighted objective function, guided by a criticality score derived from
historical absence patterns, enabled the generation of schedules that are more resilient to dis-
ruptions. Absences were simulated using a Hurdle model, which is particularly well-suited for
discrete, skewed, and zero-inflated data. These simulated absences were then integrated into a
rolling horizon simulation framework, where a local reallocation heuristic based on an overflow
unit was applied day by day to mitigate their impact.

The results showed that the schedules generated by the data-driven model led to significantly
higher absence coverage up to 43.5% compared to 27.5% for the baseline model, while maintain-
ing compliance with the skills, experience, workload and preference constraints.

In summary, this study confirms the value of incorporating predictive analytics into the initial
scheduling phase to enhance system resilience in the face of staff absences, even in the absence
of explicit real-time rescheduling mechanisms.
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General Conclusion

This project tackled the nurse scheduling problem in hospital settings by focusing on improving
the robustness of initial planning in the face of staff absenteeism. Rather than relying on reac-
tive rescheduling, we proposed a proactive approach that integrates historical data, predictive
modeling, and optimization techniques to generate more resilient baseline schedules.

We first formulated a multi-objective mixed-integer programming model that respects oper-
ational constraints such as workload balance, legal limits, and skill requirements, while also
integrating nurse preferences. A criticality score computed from historical absence patterns was
used to weigh time periods according to their risk level, allowing the model to better anticipate
disruptions.

A statistical exploration of absenteeism data revealed significant temporal structures, such as
weekday effects and shift-based patterns, as well as zero-inflation and overdispersion. These
findings motivated the use of a Hurdle model to predict absences per shift and day. This two-
part model offered improved predictive accuracy and was used to simulate realistic absenteeism
scenarios.

We then evaluated the robustness of baseline schedules in a rolling horizon simulation framework.
Each day, a simple yet effective heuristic based on a buffer assignment strategy (overflow unit)
was used to manage unexpected absences. The results showed that schedules generated by the
data-driven model significantly outperformed those of the baseline model, covering up to 43.5%
of absences versus 27.5%, while maintaining feasibility and high satisfaction of preferences and
regulatory constraints.

In essence, this work demonstrates that combining predictive analytics with anticipatory opti-
mization can significantly strengthen nurse scheduling under uncertainty. By embedding his-
torical absence patterns directly into the planning process, we were able to generate schedules
that are both operationally feasible and inherently more resilient to disruption. The use of a
criticality-weighted objective function, informed by data, allowed the model to focus resources
where and when they are most needed. In parallel, the Hurdle model provided a realistic sim-
ulation of absences, enabling robust stress-testing of schedules. Altogether, this framework
provides a practical foundation for building smarter, more adaptive workforce planning systems
in healthcare environments.

Future Perspectives

Building on this work, several avenues can be explored to further improve performance and
generalizability:

- Integrate a rescheduling optimization model (MIP) to handle absences that cannot
be resolved by the heuristic. This would provide a more structured and optimal way of
reallocating staff when simple reassignments fail.
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- Combine multiple coverage strategies, such as overflow plus cross-unit reassignment,
with prioritization rules based on criticality or multi-skilled staff. This hybrid logic could
enhance flexibility without compromising care quality.

- Shift to nurse-level absence prediction, allowing for more precise anticipation of dis-
ruptions and more targeted overstaffing on critical shifts. This granularity could improve
both predictive power and resource utilization.
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Appendix A

Comprehensive Absence Analysis

1.1 Comprehensive Absence Analysis for Section 1

Total Days Analyzed by Weekday

Weekday Total Days
Monday 261
Tuesday 261
Wednesday 261
Thursday 261
Friday 261
Saturday 261
Sunday 260

Table A.1: Total number of days analyzed for all shifts by weekday

1.1.1 Morning Shift

Weekday 0 1 2 3 4 5 6 7 8
Monday 104 75 52 20 6 4 0 0 0
Tuesday 78 75 66 26 12 4 0 0 0
Wednesday 78 72 56 36 11 5 1 1 1
Thursday 85 71 55 31 13 5 1 0 0
Friday 78 79 55 27 15 4 3 0 0
Saturday 150 72 27 10 2 0 0 0 0
Sunday 132 88 29 8 3 0 0 0 0

Table A.2: Count of days by number of morning absences
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Weekday 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Monday 0.398 0.287 0.199 0.077 0.023 0.015 0.000 0.000 0.000
Tuesday 0.299 0.287 0.253 0.100 0.046 0.015 0.000 0.000 0.000
Wednesday 0.299 0.276 0.215 0.138 0.042 0.019 0.004 0.004 0.004
Thursday 0.326 0.272 0.211 0.119 0.050 0.019 0.004 0.000 0.000
Friday 0.299 0.303 0.211 0.103 0.057 0.015 0.011 0.000 0.000
Saturday 0.575 0.276 0.103 0.038 0.008 0.000 0.000 0.000 0.000
Sunday 0.508 0.338 0.112 0.031 0.012 0.000 0.000 0.000 0.000

Table A.3: Frequency of morning absences

Weekday Criticality Score
Monday 1.084
Tuesday 1.352
Wednesday 1.464
Thursday 1.368
Friday 1.410
Saturday 0.628
Sunday 0.700

Table A.4: Criticality scores by weekday for morning shift

1.1.2 Evening Shift

Weekday 0 1 2 3 4 5
Monday 95 99 53 12 0 2
Tuesday 112 93 40 13 2 1
Wednesday 94 97 47 18 5 0
Thursday 111 96 36 15 3 0
Friday 152 73 27 7 2 0
Saturday 141 79 30 9 2 0
Sunday 139 83 25 12 1 0

Table A.5: Count of days by number of evening absences
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Weekday 0.0 1.0 2.0 3.0 4.0 5.0
Monday 0.364 0.379 0.203 0.046 0.000 0.008
Tuesday 0.429 0.356 0.153 0.050 0.008 0.004
Wednesday 0.360 0.372 0.180 0.069 0.019 0.000
Thursday 0.425 0.368 0.138 0.057 0.011 0.000
Friday 0.582 0.280 0.103 0.027 0.008 0.000
Saturday 0.540 0.303 0.115 0.034 0.008 0.000
Sunday 0.535 0.319 0.096 0.046 0.004 0.000

Table A.6: Frequency of evening absences

Weekday Criticality Score
Monday 0.962
Tuesday 0.862
Wednesday 1.015
Thursday 0.862
Friday 0.598
Saturday 0.667
Sunday 0.665

Table A.7: Criticality scores by weekday for evening shift

1.1.3 Night Shift

Weekday 0 1 2 3 4
Monday 181 60 17 3 0
Tuesday 161 71 20 9 0
Wednesday 143 89 25 3 1
Thursday 154 75 28 4 0
Friday 142 92 23 3 1
Saturday 175 57 27 2 0
Sunday 173 56 28 3 0

Table A.8: Count of days by number of night absences
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Weekday 0.0 1.0 2.0 3.0 4.0
Monday 0.693 0.230 0.065 0.011 0.000
Tuesday 0.617 0.272 0.077 0.034 0.000
Wednesday 0.548 0.341 0.096 0.011 0.004
Thursday 0.590 0.287 0.107 0.015 0.000
Friday 0.544 0.352 0.088 0.011 0.004
Saturday 0.670 0.218 0.103 0.008 0.000
Sunday 0.665 0.215 0.108 0.012 0.000

Table A.9: Frequency of night absences

Weekday Criticality Score
Monday 0.395
Tuesday 0.529
Wednesday 0.582
Thursday 0.548
Friday 0.579
Saturday 0.448
Sunday 0.465

Table A.10: Criticality scores by weekday for night shift

1.2 Comprehensive Absence Analysis for Section 2

1.2.1 Morning Shift

Weekday 0 1 2 3 4 5 6 7
Monday 102 86 41 26 5 1 0 0
Tuesday 98 75 52 20 12 2 2 0
Wednesday 79 82 51 26 18 4 1 0
Thursday 101 72 40 34 8 5 1 0
Friday 84 80 57 25 7 6 0 2
Saturday 156 78 24 3 0 0 0 0
Sunday 135 91 25 9 0 0 0 0

Table A.11: Count of days by number of morning absences (Section 2)
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Weekday 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Monday 0.391 0.330 0.157 0.100 0.019 0.004 0.000 0.000
Tuesday 0.375 0.287 0.199 0.077 0.046 0.008 0.008 0.000
Wednesday 0.303 0.314 0.195 0.100 0.069 0.015 0.004 0.000
Thursday 0.387 0.276 0.153 0.130 0.031 0.019 0.004 0.000
Friday 0.322 0.307 0.218 0.096 0.027 0.023 0.000 0.008
Saturday 0.598 0.299 0.092 0.011 0.000 0.000 0.000 0.000
Sunday 0.519 0.350 0.096 0.035 0.000 0.000 0.000 0.000

Table A.12: Frequency of morning absences (Section 2)

Weekday Criticality Score
Monday 1.038
Tuesday 1.184
Wednesday 1.379
Thursday 1.215
Friday 1.307
Saturday 0.517
Sunday 0.646

Table A.13: Criticality scores by weekday for morning shift (Section 2)

1.2.2 Evening Shift

Weekday 0 1 2 3 4
Monday 128 91 29 13 0
Tuesday 116 76 50 17 2
Wednesday 104 96 41 15 5
Thursday 118 98 35 10 0
Friday 153 77 26 4 1
Saturday 128 92 32 9 0
Sunday 151 80 25 4 0

Table A.14: Count of days by number of evening absences (Section 2)

92



Weekday 0.0 1.0 2.0 3.0 4.0
Monday 0.490 0.349 0.111 0.050 0.000
Tuesday 0.444 0.291 0.192 0.065 0.008
Wednesday 0.398 0.368 0.157 0.057 0.019
Thursday 0.452 0.375 0.134 0.038 0.000
Friday 0.586 0.295 0.100 0.015 0.004
Saturday 0.490 0.352 0.123 0.034 0.000
Sunday 0.581 0.308 0.096 0.015 0.000

Table A.15: Frequency of evening absences (Section 2)

Weekday Criticality Score
Monday 0.720
Tuesday 0.900
Wednesday 0.931
Thursday 0.759
Friday 0.556
Saturday 0.701
Sunday 0.546

Table A.16: Criticality scores by weekday for evening shift (Section 2)

1.2.3 Night Shift

Weekday 0 1 2 3
Monday 194 58 7 2
Tuesday 147 93 20 1
Wednesday 148 90 22 1
Thursday 159 83 18 1
Friday 165 78 15 3
Saturday 179 70 9 3
Sunday 176 69 12 3

Table A.17: Count of days by number of night absences (Section 2)
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Weekday 0.0 1.0 2.0 3.0
Monday 0.743 0.222 0.027 0.008
Tuesday 0.563 0.356 0.077 0.004
Wednesday 0.567 0.345 0.084 0.004
Thursday 0.609 0.318 0.069 0.004
Friday 0.632 0.299 0.057 0.011
Saturday 0.686 0.268 0.034 0.011
Sunday 0.677 0.265 0.046 0.012

Table A.18: Frequency of night absences (Section 2)

Weekday Criticality Score
Monday 0.299
Tuesday 0.521
Wednesday 0.525
Thursday 0.467
Friday 0.448
Saturday 0.372
Sunday 0.392

Table A.19: Criticality scores by weekday for night shift (Section 2)

1.3 Comprehensive Absence Analysis for Section 3

1.3.1 Morning Shift

Weekday 0 1 2 3 4 5 6 9
Monday 75 70 49 40 23 3 1 0
Tuesday 63 69 66 39 14 9 1 0
Wednesday 52 57 75 41 24 9 3 0
Thursday 72 60 74 34 13 6 1 1
Friday 41 52 62 66 24 6 10 0
Saturday 179 62 17 3 0 0 0 0
Sunday 154 79 22 5 0 0 0 0

Table A.20: Count of days by number of morning absences (Section 3)
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Weekday 0.0 1.0 2.0 3.0 4.0 5.0 6.0 9.0
Monday 0.287 0.268 0.188 0.153 0.088 0.011 0.004 0.000
Tuesday 0.241 0.264 0.253 0.149 0.054 0.034 0.004 0.000
Wednesday 0.199 0.218 0.287 0.157 0.092 0.034 0.011 0.000
Thursday 0.276 0.230 0.284 0.130 0.050 0.023 0.004 0.004
Friday 0.157 0.199 0.238 0.253 0.092 0.023 0.038 0.000
Saturday 0.686 0.238 0.065 0.011 0.000 0.000 0.000 0.000
Sunday 0.592 0.304 0.085 0.019 0.000 0.000 0.000 0.000

Table A.21: Frequency of morning absences (Section 3)

Weekday Criticality Score
Monday 1.536
Tuesday 1.628
Wednesday 1.874
Thursday 1.559
Friday 2.146
Saturday 0.402
Sunday 0.531

Table A.22: Criticality scores by weekday for morning shift (Section 3)

1.3.2 Evening Shift

Weekday 0 1 2 3 4
Monday 113 99 34 14 1
Tuesday 135 81 41 3 1
Wednesday 116 98 38 9 0
Thursday 97 91 57 16 0
Friday 161 72 24 4 0
Saturday 144 84 29 4 0
Sunday 161 68 27 3 1

Table A.23: Count of days by number of evening absences (Section 3)
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Weekday 0.0 1.0 2.0 3.0 4.0
Monday 0.433 0.379 0.130 0.054 0.004
Tuesday 0.517 0.310 0.157 0.011 0.004
Wednesday 0.444 0.375 0.146 0.034 0.000
Thursday 0.372 0.349 0.218 0.061 0.000
Friday 0.617 0.276 0.092 0.015 0.000
Saturday 0.552 0.322 0.111 0.015 0.000
Sunday 0.619 0.262 0.104 0.012 0.004

Table A.24: Frequency of evening absences (Section 3)

Weekday Criticality Score
Monday 0.816
Tuesday 0.674
Wednesday 0.770
Thursday 0.969
Friday 0.506
Saturday 0.590
Sunday 0.519

Table A.25: Criticality scores by weekday for evening shift (Section 3)

1.3.3 Night Shift

Weekday 0 1 2 3
Monday 225 34 2 0
Tuesday 223 36 2 0
Wednesday 212 44 4 1
Thursday 217 37 6 1
Friday 221 35 4 1
Saturday 216 43 2 0
Sunday 221 37 2 0

Table A.26: Count of days by number of night absences (Section 3)
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Weekday 0.0 1.0 2.0 3.0
Monday 0.862 0.130 0.008 0.000
Tuesday 0.854 0.138 0.008 0.000
Wednesday 0.812 0.169 0.015 0.004
Thursday 0.831 0.142 0.023 0.004
Friday 0.847 0.134 0.015 0.004
Saturday 0.828 0.165 0.008 0.000
Sunday 0.850 0.142 0.008 0.000

Table A.27: Frequency of night absences (Section 3)

Weekday Criticality Score
Monday 0.146
Tuesday 0.153
Wednesday 0.211
Thursday 0.199
Friday 0.176
Saturday 0.180
Sunday 0.158

Table A.28: Criticality scores by weekday for night shift (Section 3)

Weekly Criticality Comparison by Shift

Weekday Morning Evening Night
Monday 1.536 0.816 0.146
Tuesday 1.628 0.674 0.153
Wednesday 1.874 0.770 0.211
Thursday 1.559 0.969 0.199
Friday 2.146 0.506 0.176
Saturday 0.402 0.590 0.180
Sunday 0.531 0.519 0.158

Table A.29: Criticality scores comparison by shift (Section 3)
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