REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale Polytechnique

Département : Génie Industriel

Entreprise: PricewaterhouseCoopers Algérie

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Industriel option Management Industriel

Réalisation d'une étude de faisabilité du plan de développement d'un site sidérurgique

Application : Entreprise algérienne cliente de PwC

Réalisé par : OULD ALI Nazim Imrane & ZITOUNI Noor Yasmine

Sous la direction de :

• M Ali BOUKABOUS

Présenté et soutenu publiquement le (30/06/2025)

Composition du Jury:

Président M. ZOUAGHI Iskander

Promoteur M. Ali BOUKABOUS

Examinatrice Mme. BELDJOUDI Samia

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale Polytechnique

Département : Génie Industriel

Entreprise: PricewaterhouseCoopers Algérie

Mémoire de projet de fin d'études

Pour l'obtention du diplôme d'ingénieur d'état en Génie Industriel option Management Industriel

Réalisation d'une étude de faisabilité du plan de développement d'un site sidérurgique

Application : Entreprise algérienne cliente de PwC

Réalisé par : OULD ALI Nazim Imrane & ZITOUNI Noor Yasmine

Sous la direction de :

• M Ali BOUKABOUS

Présenté et soutenu publiquement le (30/06/2025)

Composition du Jury:

PrésidentM. ZOUAGHI Iskander

Promoteur M. Ali BOUKABOUS

Examinatrice Mme. BELDJOUDI Samia

Remerciements

Nous tenons tout d'abord à exprimer notre profonde gratitude à Monsieur Ali Boukabous, notre encadrant au sein de l'École Nationale Polytechnique. Présent tout au long de notre projet de fin d'études, il a su veiller avec rigueur et bienveillance au bon déroulement de chaque étape. Enseignant dévoué depuis notre deuxième année, il a grandement contribué à notre formation, et nous lui sommes particulièrement reconnaissants pour l'exigence, la disponibilité et l'intérêt qu'il a toujours manifestés à notre égard. Nous remercions aussi Madame Kamelia Hammachi pour ses conseils avisés et orientations précieuses qui ont permis de concrétiser ce travail, ainsi que l'excellence de l'enseignement qu'elle nous a transmis durant notre parcours.

Nous souhaitons également remercier l'ensemble des enseignants de l'École Nationale Polytechnique, qui ont participé à faire de nous les ingénieurs que nous sommes aujourd'hui. Une reconnaissance toute particulière va au département de Génie Industriel et à ses formateurs exceptionnels. Nous adressons un merci du fond du cœur à Madame Beldjoudi, Monsieur Zouaghi et Madame Boukadoum – des enseignants hors du commun qui nous ont profondément marqués autant sur le plan académique qu'humain. Leurs cours ont su allier exigence intellectuelle et inspiration personnelle. Leur confiance, leur écoute, leur bienveillance et leur passion nous ont portés et motivés. Nous leur devons une part importante de notre évolution et nous leur en seront toujours reconnaissants. Ils incarnent à nos yeux l'image même de l'ingénieur et de l'enseignant idéal.

Nous voulons aussi adresser nos remerciements les plus chaleureux à Monsieur Karim Saci et Madame Myriam Saouli, ainsi qu'à toute l'équipe Advisory de PwC, pour leur accueil si humain et professionnel, et pour nous avoir offert l'opportunité d'évoluer à leurs côtés durant notre stage. Grâce à eux, nous avons pu découvrir de nouveaux horizons du conseil, apprendre aux côtés de professionnels inspirants, et nous enrichir de leurs expériences.

Un merci tout particulier à Naila Cheriet et Soraya Ferhi, nos encadrantes chez PwC durant ce stage. Leur accompagnement a été d'une valeur inestimable. Merci pour votre patience, vos conseils précieux, votre écoute constante et vos compétences remarquables. Vous avez su faire de ce stage une aventure humaine et professionnelle unique, et nous sommes infiniment reconnaissants de nous avoir transmis bien plus qu'un savoir-faire : un véritable savoir-être. Nous n'oublions pas Adel Walid BOUZEBOUDJA et Ayoub Menasria pour leurs conseils bienveillants, Yasmine Kouidri pour sa gentillesse contagieuse et sa bonne humeur quotidienne, ainsi que Fifi, ce rayon de soleil au sein de l'équipe, qui a égayé tant de nos journées par ses rires et sa joie de vivre.

Merci à toute l'équipe Advisory, pour votre accueil chaleureux, vos attentions, et les excellentes conditions de travail que vous nous avez offertes. Vous avez rendu cette étape de notre parcours à la fois enrichissante et inoubliable.

Dédicaces

Essayer de résumer cinq années d'études supérieures — et la concrétisation de dix-sept années d'école — en quelques lignes... ce n'est vraiment pas une tâche facile. Parce que derrière ce diplôme, il y a des nuits blanches, des doutes, des larmes parfois... mais surtout des gens. Des gens qui ont fait de moi la personne, l'étudiante, et l'ingénieure que je suis aujourd'hui.

Je commencerai par la première personne à qui je dois tout : ma mère. Une femme exceptionnelle. Les mots ne suffisent pas pour dire la force qu'elle incarne, ni le courage qu'elle m'inspire. Elle a toujours été là, toujours crue en moi, sans jamais douter, peu importe le sujet, les contraintes ou les obstacles. Quand quelqu'un d'aussi incroyable croit en vous de cette manière-là, l'échec n'est tout simplement pas une option. Maman, tu es mon modèle, ma boussole et ma plus grande fierté. Merci de m'avoir appris à rêver grand, et à ne jamais abandonner.

Je veux aussi remercier mon père, qui m'a appris à être indépendante, à penser par moi-même, à suivre ma propre voie sans jamais me comparer aux autres. Il m'a toujours appris à me relever, à réussir, à être responsable. Il a toujours été là dans les moments charnières, solide, droit, fier... Papa, ma réussite est la tienne.

À mon grand frère Racim, merci d'avoir tracé le chemin avant que je n'aie à le braver. Toujours là, dans l'ombre, à me guider, à me protéger, à veiller sur moi.

À mes amis, sans qui ces années auraient été bien trop sérieuses. Merci pour les fous rires, les moments de panique partagée, et cette complicité qui a tout rendu plus léger. Merci pour tout, les pauses café volées entre deux cours, les sorties, les projets terminés à la dernière minute, les nuits blanches. Avec vous, les moments ordinaires devenaient uniques. Vous avez été, chacun à votre manière, mon équilibre. Merci d'avoir ri à mes blagues, qu'elles soient drôles ou non. Merci d'avoir été là, simplement.

Et puis, une mention toute spéciale à mon binôme, mon meilleur ami : Nazim. On s'est rencontrés il y a cinq ans, et depuis, on a tout partagé : les réussites, les échecs, les doutes, les rires, les projets. Tout. Nazim, la plupart des gens te connaissent pour tes prouesses académiques — mais ce n'est rien à côté de la personne généreuse, humble et profondément humaine que tu es. J'ai eu la chance, l'immense chance, de terminer mon PFE et de devenir ingénieure à tes côtés. Et je n'aurais pas pu rêver meilleur compagnon de route.

Yasmine

Dédicaces

Ce projet de fin d'études, plus qu'un travail remis, représente la conclusion d'un long parcours : 5 ans à l'ENP, 17 d'études, des souvenirs inoubliables, et d'innombrables nuits blanches. Je ne serais pas arrivé là où sans ces personnes qui m'ont épaulé, et à qui je dédie ce travail.

Avant tout, à mes parents : Ma chère mère ! Les mots sont tout aussi impuissants à décrire mon amour que ma gratitude envers toi. Si je perds le nord, ta tendresse infinie et ton soutien inébranlable sauront toujours me rappeler le chemin. Mon père, sans qui je ne serais pas l'homme que je suis aujourd'hui, et qui s'est tant sacrifié pour ma réussite. J'espère pouvoir vous rendre une fraction de cette immense dette que je vous dois : la vie.

A ma grande sœur, Walaa, qui a toujours su me porter bon conseil. Tu as éclairé la lanterne pour moi, même quand je t'embêtais derrière.

Et à mon petit frère, Rachad, qui me rend la monnaie de ma pièce, mais dont l'humour rattrape le coup.

A mon cousin Mounib, le grand frère que je n'ai pas eu. Et mes cousines Douaa et Manel, parce qu'une grande sœur c'est bien, mais 3 c'est mieux.

A la mémoire de ma grand-mère Mima, dont les prières me guident encore vers l'avant, et de mon grand-père Sidi, qui voyait pour moi un grand futur que j'espère pouvoir honorer.

A mes tantes : Afaf, qui a été pour moi une seconde mère ; Inâm, qui malgré la distance me porte toujours près dans son coeur; et Dahbia, qui ne manquait pas de me gâter tous les weekends.

A tous mes amis, ces rencontres qui apportent de la couleur à la vie, même(surtout) quand tout va mal. Aux indus, particulièrement les M9N, Idir, Ilyas, Lyna et Mehdi. A travers les petits moments piqués au quotidien, vous avez égayé une routine parfois morose.

A Lina et sa sœur Yasmine, qui m'ont offert des visages familiers lorsque j'étais dépaysé. A Dounia, qui a éprouvé tout autant que moi les difficultés de ces 6 derniers mois.

Et le meilleur pour la fin, mon binôme et mon complice de ces 5 années: Yasmine. C'était un honneur et un plaisir pour moi d'avoir partagé l'expérience Polytech avec toi, avec tous ces hauts et bas, ces joies et peines, ces rires - ta spécialité - et pleurs, et ces tasses de café. Ne perds jamais ton esprit et ta passion uniques, même s'ils peuvent te porter préjudice, ce sont tes plus grandes qualités. L'aventure est loin d'être finie, et j'ai hâte de te voir briller sur ton chemin.

Nazim

يهدف العمل الحالي إلى إجراء دراسة جدوى لمشروع تطوير مصنع تعدين في الجزائر، في إطار تحولها التكنولوجي و الطاقوي نحو إنتاج الصلب الأخضر. يندرج هذا العمل في إطار تحول استراتيجي، يضم تحليل أداء الشرك، دراسة السوق، تصميم سلسلة القيمة، وأخيراً تقييم مالي وبيئي للحل المقترح.

ترمي هذه الدراسة إلى تحديد شروط نجاح نموذج صناعي يكون تنافسيًا، منخفض الانبعاثات، ومتكيفًا مع السياق الجزائري، وتعتمد بشكل خاص على دمج تقنيات مبتكرة مثل الاختزال المباشر، واستكشاف فرص تثمين الموارد المحلية لتحقيق سيادة صناعية مستدامة على المدى الطويل.

الكلمات المفتاحية صلب أخضر، الاختزال المباشر للحديد، دراسة جدوى، سلسلة القيمة، تحول تكنولوجي وطاقوي، نموذج صناعي.

Summary

This work consists of a feasibility study for the industrial development plan of an Algerian steel plant, as part of its technological and energy transition towards green steel solutions. It was carried by a strategic transformation approach, integrating an analysis of the company's performances; an in-depth market study; a technical framework of the value chain; and an economic and environmental assessment of the proposed scenarios.

The study aims to identify the success conditions for an industrial model that is both competitive, low-carbon, and adapted to the Algerian context. It notably relies on the integration of innovative technologies such as Direct Reduced Iron (DRI), and explores the opportunities offered by the valorization of local resources to establish long-term industrial sovereignty.

Keywords: green steel, direct reduction of iron, feasibility study, value chain, technological and energy transition, industrial model

Résumé

Le présent travail consiste en une étude de faisabilité d'un plan de développement industriel pour un site sidérurgique algérien, dans le cadre de sa transition technologique et énergétique vers la production d'acier vert. Il s'inscrit dans une démarche de transformation stratégique, intégrant une analyse des performances de l'entreprise ; une étude de marché ; un cadrage technique de la chaîne de valeur et une évaluation économique et environnementale des scénarios envisagés.

L'approche adoptée vise à identifier les conditions de réussite d'un modèle industriel à la fois compétitif, sobre en carbone et adapté au contexte algérien. L'étude s'appuie notamment sur l'intégration de technologies innovantes telles que la réduction directe du fer (DRI), et explore les opportunités offertes par la valorisation des ressources locales pour asseoir une souveraineté industrielle durable.

Mots clés : acier vert, réduction directe du fer, étude de faisabilité, chaîne de valeur, transition technologique et énergétique, modèle industriel.

Tables des matières

Liste des tableaux

Liste des figures

Liste des abréviations

Introduction générale		12
Chapit	re 1 : Etat de l'existant	14
1.1	Présentation de l'organisme d'accueil	16
1.1.1	PwC International	16
1.1.2	PwC France et Maghreb	16
1.1.3	PwC Algérie	18
1.2	Présentation de l'entreprise cliente	18
1.3	Diagnostic stratégique	19
1.3.1	Partie 1 : Etude des performances du client X	19
1.3.2	Partie 2 : Etude de marché	25
Conclusi	on	45
2 Ch	napitre 2 : Etat de l'art	46
2.1	Présentation de la filière sidérurgique	48
2.1.1	Définition de la sidérurgie	48
2.1.2	Les matériaux et produits sidérurgiques	48
2.1.3	La chaîne de valeur sidérurgique	49
2.2	Durabilité, GES et enjeux environnementaux	52
2.2.1	La décarbonation de la filière sidérurgique : les enjeux du défi de l'acier vert	52
2.2.2	Les voies de réduction des émissions de GES du secteur de la sidérurgie	52
2.2.3	Méthodologie de calcul du bilan carbone	53
2.3	Concepts sur les études de faisabilité	54
2.3.1	L'étude de faisabilité	54
2.3.2	La faisabilité financière	54

2.4	Aide multicritère à la décision	57
2.4.1	Définition d'un problème de décision multicritère	57
2.4.2	Démarche de l'aide à la décision multicritère	58
2.4.3	Analytical Process Hierarchy(AHP)	61
2.4.4	ELECTRE III	63
2.5	L'aménagement industriel	66
Conclus	sion	69
3 C	hapitre 3 : Solutions proposées	70
3.1	Conception de la chaîne de valeur	72
3.1.1	Choix de la technologie d'acier vert	72
3.1.2	Conception de l'amont : classement des minerais	76
3.1.3	Conception de l'aval : rénovation / acquisition des équipements	82
3.1.4	Conception du lay-out général	85
3.2	Dimensionnement des flux	89
3.2.1	Détermination du mix minerai	89
3.2.2	Détermination du mix produit	91
3.3	Evaluation du projet	92
3.3.1	Etude de rentabilité	92
3.3.2	Analyse des sensibilités	99
3.3.3	Evaluation de l'empreinte carbone du projet	102
3.3.4	Tableaux de bord	105
Conclu	ısion Générale	108
Biblio	graphie	109
Annex	es	115

Liste des tableaux

Tableau 1-1: Projections actuelles du client X	39
TABLEAU 1-2: PARTS DE MARCHE LOCAL DU CLIENT EN PRODUITS PLATS [DATA CLIENT]	39
TABLEAU 1-3: PARTS DE MARCHE LOCAL DU CLIENT EN PRODUITS LONGS [DATA CLIENT]	40
TABLEAU 1-4: SEGMENTATION DU MARCHE LOCAL DE ROND A BETON [DATA CLIENT]	40
TABLEAU 1-5: MARGES UNITAIRES DU CLIENT X EN 2023 [DATA CLIENT]	41
TABLEAU 1-6: CHOIX DE LA GAMME DE PRODUITS A GARDER	43
TABLEAU 1-7: OFFRE DU CLIENT EN TSS	
TABLEAU 1-8: OFFRE DU CLIENT EN PRODUITS PLATS	43
TABLEAU 2-1: TYPOLOGIE DES PROBLEMES D'AMD [30]	58
TABLEAU 2-2: RELATIONS BINAIRES EN AMD [30]	
TABLEAU 2-3: CLASSIFICATION DES METHODES ELECTRE.	
TABLEAU 2-4: ECHELLE DE SAATY	62
TABLEAU 2-5: VALEURS TABULEES DE L'INDICE DE COHERENCE ALEATOIRE	
TABLEAU 2-6: ECHELLE DE NOTATION DES RELATIONS	67
TABLEAU 2-7: SYMBOLES DU DIAGRAMME SPATIAL	
TABLEAU 3-1: MATRICE DE PREFERENCES ENTRE CRITERES	77
TABLEAU 3-2: POIDS CALCULES DES CRITERES	
TABLEAU 3-3: CALCUL DU RATIO DE COHERENCE	
TABLEAU 3-4: POIDS TOTAL DES CRITERES	
TABLEAU 3-5: LISTE FINALE DES CRITERES ET DES POIDS	
TABLEAU 3-6: TABLEAU DE PERFORMANCES	80
TABLEAU 3-7: LISTE DES CRITERES D'EVALUATION DES EQUIPEMENTS	
TABLEAU 3-8: MATRICES DE CRITICITE	
TABLEAU 3-9: NOTATION DES EQUIPEMENTS	
TABLEAU 3-10: CAPACITES DE CHAQUE UNITE	
TABLEAU 3-11: FLUX DES PRODUITS FINIS EN MT	
TABLEAU 3-12: ECHELLE DE NOTATION DES FLUX	
TABLEAU 3-13: NOTATION DES FLUX PHYSIQUES	87
TABLEAU 3-14: LISTE DES RAISONS	
TABLEAU 3-15: CONSOMMATION PREVISIONNELLE DE MINERAI	
TABLEAU 3-16: MIX MINERAI PREVISIONNEL	
TABLEAU 3-17: MIX PRODUIT	
TABLEAU 3-18: ANALYSE COMPARATIVE DES PRODUITS FINIS	
TABLEAU 3-19: CHIFFRE D'AFFAIRES PREVISIONNELS	
TABLEAU 3-20: COUTS OPERATIONNELS ESTIMES.	
TABLEAU 3-21: MARGES BRUTES SUR CHAQUE PRODUIT	
TABLEAU 3-22: ESTIMATION DES CAPEX	
TABLEAU 3-23: HYPOTHESES D'INVESTISSEMENTS	96
TABLEAU 3-24: CALCULS DES INVESTISSEMENTS ET AMORTISSEMENTS	97
TABLEAU 3-25: TABLEAU DE COMPTE RESULTAT PREVISIONNEL	
TABLEAU 3-26: INDICATEURS DE RENTABILITE	
TABLEAU 3-27: RESULTATS DES SCENARIOS	
TABLEAU 3-28: CALCUL DE L'EMPREINTE CARBONE DE LA FILIERE HF	
TABLEAU 3-29: CALCUL DE L'EMPREINTE CARBONE DE LA FILIERE DRI+SMELTER	
TABLEAU 3-30: CALCUL DE L'EMPREINTE TOTALE DU COMPLEXE	104

Liste des figures

Figure 1: Cadrage logique du projet	
FIGURE 1-1: CADRAGE LOGIQUE DE LA STRUCTURE DU CHAPITRE 1	
FIGURE 1-2: RESEAU PWC INTERNATIONAL	
FIGURE 1-3: CHIFFRES PWC FRANCE ET MAGHREB	
FIGURE 1-4: CHAINE DE VALEUR DU CLIENT X	
FIGURE 1-5: EVOLUTION DU CHIFFRE D'AFFAIRES DU CLIENT X	19
FIGURE 1-6: EVOLUTIONS DES PARTS DE MARCHE	
FIGURE 1-7: EVOLUTION DE LA PRODUCTION DE FONTE DU CLIENT	
FIGURE 1-8: VOLUMES DE PRODUCTION ANNUELS PREVISIONNELS ET REALISES EN 2023	
FIGURE 1-9: DIAGRAMME D'ISHIKAWA	
FIGURE 1-10: DIAGRAMME PARETO DES ARRETS DU HAUT FOURNEAU	22
FIGURE 1-11: CONSOMMATION DE MINERAI DU CLIENT X 2020-2024	22
FIGURE 1-12: PROVENANCE DU COKE DE L'ENTREPRISE CLIENTE	23
FIGURE 1-13: EVOLUTION DU PRIX DU COKE EN 2023	23
FIGURE 1-14: REPARTITION DES TYPES D'INTERVENTION EN 2024	24
FIGURE 1-15: TAUX DE PANNE OBJECTIF ET REEL DES DIFFERENTES UNITES	24
FIGURE 1-16: UTILISATION DU BUDGET MAINTENANCE POUR CHAQUE UNITE	25
FIGURE 1-17: CARTE DES 10 PRINCIPAUX PAYS PRODUCTEURS D'ACIER BRUT EN 2023	26
FIGURE 1-18: TOP DES PAYS PRODUCTEURS DE DRI EN 2023	26
FIGURE 1-19: CONSOMMATION D'ACIER PAR REGIONS DU MONDE EN 2023	27
FIGURE 1-20: PRODUCTION MONDIALE DE MINERAI DE FER PAR PAYS EN 2023	28
FIGURE 1-21: TOP 10 DES ENTREPRISES SIDERURGIQUES EN 2023	29
FIGURE 1-22: CARTE DES PRINCIPAUX GISEMENTS DE FER EN ALGERIE	
FIGURE 1-23: EVOLUTION DE LA PRODUCTION D'ACIER EN ALGERIE EN MILLIERS DE TONNE	31
FIGURE 1-24: EVOLUTION DE LA CONSOMMATION DES PRODUITS LONGS EN ALGERIE (MILLIERS DE TONNES)	33
FIGURE 1-25: EVOLUTION DE LA CONSOMMATION DES PRODUITS PLATS EN ALGERIE (MILLIERS DE TONNE)	
FIGURE 1-26: EVOLUTION DE LA CONSOMMATION DE TSS EN ALGERIE	
FIGURE 1-27: PREVISION DU BESOIN EN TSS EN ALGERIE (MILLIERS DE TONNE)	
FIGURE 1-28: PREVISION DU BESOIN EN TSS DE SONATRACH	
FIGURE 1-29: CARTE DES PRINCIPAUX PRODUCTEURS D'ACIER EN ALGERIE	
FIGURE 1-30: VOLUMES ET CAPACITES DE PRODUCTION DES PRINCIPAUX ACTEURS SIDERURGIQUES ALGERIENS	3.38
FIGURE 2-1: CADRAGE LOGIQUE DE LA STRUCTURE DU CHAPITRE 2	
FIGURE 2-2: EMISSIONS CARBONE DES DIFFERENTES FILIERES D'ACIER	
FIGURE 2-3: FILIERES DE PRODUCTION D'ACIER	
FIGURE 2-4: COMPARAISON DES FILIERES HF ET ELECTRIQUE	
FIGURE 2-5: HIERARCHIE DE L'AHP	
FIGURE 2-6: EXEMPLE D'UN DIAGRAMME DES RELATIONS	67
FIGURE 3-1: CADRAGE LOGIQUE DE LA STRUCTURE DU CHAPITRE 3	71
FIGURE 3-2: EVOLUTION DES PRIX ENERGETIQUES	
FIGURE 3-3: TECHNOLOGIES DE PRODUCTION D'ACIER VERT	73
FIGURE 3-4: HIERARCHIE DES CRITERES ET SOUS CRITERES	
FIGURE 3-5: FLUX PHYSIQUES ENTRE LES INSTALLATIONS	
FIGURE 3-6: DIAGRAMME RELATIONNEL	
FIGURE 3-7: DIAGRAMME SPATIAL	89
FIGURE 3-8: EVOLUTION DU MIX MINERAI	
FIGURE 3-9: MIX MINERAI DU SCENARIO 2	
FIGURE 3-10: MIX MINERAI DU SCENARIO 3	
FIGURE 3-11: COMPARAISON DES EMISSIONS CARBONE DES 2 PROCEDES	
FIGURE 3-12: TABLEAU DE BORD : FINANCE	
FIGURE 3-13: TABLEAU DE BORD : COMMERCIAL	
FIGURE 3-14: TABLEAU DE BORD : OPERATIONNEL	

Liste des abréviations

ACO Aciérie à oxygène

ACE Aciérie électrique

AHP Analytic Process Hierarchy

AMD Aide multicritère à la décision

AMDEC Analyse des modes de défaillance, leurs effets et leur criticité

AQS Algerian Qatari Steel

BF Blast Furnace

BFR Besoin en fonds de roulement

BOF Basic Oxygen Furnace

BTP Bâtiments et travaux publics

CA Chiffre d'affaires

CAPEX Capital Expenditures

CF Cash-Flow

DR Délai de récupération

DRI Direct Reduced Iron

DRP Direct reduction plant

EAF Electric Arc Furnace

EBE Excédent brut d'exploitation

GD Gara Djebilet

GES Gaz à effet de serre

GN Gaz Naturel

HF Haut Fourneau

IBS Impôt sur les bénéfices des sociétés

IP Indice de profitabilité

MPF Matière première et fonte

LAC Laminage à chaud

LAF Laminage à froid

LRB Laminage de rond à béton

OPEX Operational Expenditures

PAT Parachèvement

PPL Produits plats

PwC PricewaterhouseCoopers

RC Ratio de coherence

SEH Sider El Hadjar

SLP Systemic Layout Planning

SR Smelting Reduction

TRI Taux de rendement interne

TSS Tubes sans soudure

VAN Valeur Actuelle Nette

Introduction générale

L'industrie sidérurgique joue un rôle fondamental dans le développement économique des nations. Elle fournit des matériaux essentiels à de nombreuses filières stratégiques telles que la construction, les infrastructures, l'automobile, la fabrication d'équipements industriels et les transports. L'acier, en particulier, est un matériau incontournable par sa robustesse, sa durabilité et ses multiples applications.

Dans un contexte mondial marqué par une urbanisation accélérée, une croissance démographique soutenue et la modernisation des infrastructures, la demande en acier continue de croître. Cependant, ce secteur industriel fait face à des défis majeurs : d'une part, la nécessité de répondre aux attentes du marché en termes de qualité et de volumes ; d'autre part, la pression croissante pour réduire son empreinte environnementale. En effet, la sidérurgie est l'une des industries les plus émettrices de gaz à effet de serre (GES), et elle se retrouve ainsi au cœur des enjeux de la transition énergétique et de la décarbonation des activités industrielles.

L'Algérie, dotée de ressources naturelles abondantes telles que le minerai de fer et le gaz naturel, dispose d'un potentiel important pour développer une industrie sidérurgique nationale moderne et compétitive. Néanmoins, elle doit relever plusieurs défis : augmenter significativement ses capacités de production pour réduire sa dépendance aux importations d'acier, valoriser ses ressources locales de manière efficiente, et intégrer des procédés industriels respectueux des normes environnementales internationales.

C'est dans ce contexte qu'un acteur clé du secteur sidérurgique en Algérie a sollicité le cabinet PricewaterhouseCoopers (PwC), au sein duquel nous avons effectué notre projet de fin d'études, afin de l'accompagner dans la conception d'un plan de développement d'un complexe sidérurgique moderne. L'objectif de ce plan est d'intégrer des technologies innovantes, notamment la réduction directe du fer (DRI), afin de produire un « acier vert », plus respectueux de l'environnement, tout en assurant la rentabilité économique du projet à long terme.

La problématique centrale de ce travail s'articule autour de la question suivante : Comment concevoir un complexe sidérurgique performant et durable, capable de répondre aux besoins du marché national et international, tout en respectant les contraintes économiques, environnementales et techniques ?

Pour y répondre, le travail est structuré en trois chapitres :

- Le **premier chapitre**, État de l'existant, présente l'entreprise cliente, ses performances actuelles et les principaux dysfonctionnements identifiés. Il s'appuie également sur une étude de marché qui analyse l'offre et la demande dans les différents segments du secteur sidérurgique, afin d'identifier les opportunités et les menaces qui orienteront les choix stratégiques.
- Le **deuxième chapitre**, *État de l'art*, propose un cadre théorique et technique en lien avec le projet. Il aborde les caractéristiques des procédés sidérurgiques, les technologies permettant de réduire les émissions de gaz à effet de serre, ainsi que les outils d'évaluation économique et les méthodes d'aide multicritère à la décision utilisés pour guider le choix des solutions.

• Le **troisième chapitre**, *Solutions proposées*, décrit le plan de développement élaboré. Il expose le choix technologique retenu pour la production d'acier vert, les aménagements industriels et le dimensionnement des flux de production. Ce chapitre comprend également une évaluation financière et environnementale du projet, afin de vérifier sa rentabilité et sa contribution aux objectifs de durabilité.

Figure 1: Cadrage logique du projet

Chapitre 1 : Etat de l'existant

Introduction:

Ce chapitre pose les bases de notre étude en réalisant un diagnostic complet du contexte interne et externe du projet. Après la présentation de l'organisme d'accueil PwC ainsi que son client, nous analyserons ses performances actuelles afin d'identifier les contre-performances qui freinent sa compétitivité et d'en déterminer les causes.

Ensuite, nous mènerons une étude de marché approfondie qui explore en détail les dynamiques du secteur sidérurgique à l'échelle mondiale et nationale, en confrontant l'offre et la demande sur les différents segments de ce secteur. Cela nous permettra d'identifier les perspectives du client et de définir la future gamme de produits à proposer.

Cette étape permet ainsi de mettre en lumière les dysfonctionnements à corriger et les opportunités à saisir pour bâtir un projet industriel viable et compétitif. Le déroulement de ce chapitre est présenté dans la figure suivante :

Figure 1-1: Cadrage logique de la structure du Chapitre 1

1.1 Présentation de l'organisme d'accueil

1.1.1 PwC International

PwC internationale PricewaterhouseCoopers (PwC) est l'un des quatre grands cabinets d'audit et de conseil (Big Four) dans le monde, aux côtés de Deloitte, Ernst & Young et KPMG. PwC est un réseau d'entreprises britannique de grande envergure, spécialisé dans des missions d'audit, d'expertise comptable et de conseil, en mettant l'accent sur des approches sectorielles pour répondre aux besoins spécifiques des entreprises.

Figure 1-2: Réseau PwC International

Historique du cabinet :

- 1849 et 1854 : fondation à Londres des cabinets Price et Cooper Brothers.
- **2010**: PricewaterhouseCoopers devient PwC.
- 2013 : L'entité conseil en stratégie s'étoffe avec la création de Strategy&.

Activités de PwC

Audit (commissariat aux comptes) et conseil en gestion des risques	2 500+ associés et collaborateurs
Conseil en stratégie, en management et en solutions opérationnelles	1 800+ associés et collaborateurs
Transactions (<i>Deals</i>): accompagnement des projets d'acquisition, cession ou restructuration	300+ associés et collaborateurs
PwC Société d'avocats : fiscalité, droit des affaires et droit social	450+ associés et collaborateurs

1.1.2 PwC France et Maghreb

PwC France et Maghreb, membre du réseau international PwC fort de plus de 370 000 collaborateurs dans 149 pays, regroupe les entités de PwC France, PwC Algérie, PwC Maroc

et PwC Tunisie. Avec plus de 6 750 collaborateurs et associés répartis sur 141 sites en France et dans 3 pays du Maghreb, le cabinet incarne une vision audacieuse : créer la confiance et accompagner des transformations durables, à travers sa stratégie mondiale The New Equation.

Figure 1-3: Chiffres PwC France et Maghreb

PwC France et Maghreb intervient dans trois grands domaines d'excellence :

- Assurance (Audit et gestion des risques)
- Consulting (stratégie, management, transactions, digital)
- Tax & Legal (fiscalité, droit social et juridique)

Cette approche intégrée, combinée à une community of solvers, permet de traiter les problématiques les plus complexes avec un regard transversal, mêlant expertises sectorielles, technologiques et humaines.

Sous la présidence de Patrice Morot depuis 2021, PwC France et Maghreb est structuré autour d'un comité de direction pluridisciplinaire. L'engagement en faveur de la qualité, de l'éthique et de l'innovation responsable est au cœur de la stratégie, notamment via des programmes tels que :

- Next Generation Audit
- Upskilling digital & durabilité
- Evolved PwC Professional, un référentiel comportemental éthique et orienté impact.

Des résultats qui parlent d'eux-mêmes

En 2024:

- 11 000 mandats clients, dont 18 sociétés du CAC 40 et 24 du SBF 120
- 437 millions d'euros de chiffre d'affaires générés en France.
- 96 % des dossiers audités jugés conformes aux normes de qualité.
- 100 % des associés signataires sont accrédités pour la certification CSRD (durabilité).

Une culture d'entreprise fondée sur l'humain, l'excellence et l'inclusion : PwC valorise ses talents à travers :

• Des politiques RH innovantes : FlexWork, FlexTime, Dress for your day.

- Des engagements forts en faveur de la diversité, de l'égalité des chances et du bien-être au travail (programmes Be Well Work Well, Family Care, Seed, Shine).
- Une formation continue ambitieuse : 278 000 heures de formation dispensées, dont une part significative dédiée à la transformation digitale et à la durabilité.

1.1.3 PwC Algérie

En Algérie, PwC rassemble près de 100 collaborateurs au sein d'un bureau à Alger, et offre à ses clients une réactivité, une proximité et une connaissance accrue du tissu économique local.

Les équipes déploient un large éventail d'expertises : audit et expertise comptable, conseil en management et en stratégie, expertise juridique et fiscal, conseil en fusions et acquisitions.

Fort de son expérience acquise auprès d'entreprises algériennes et de filiales d'entreprises étrangères implantées en Algérie, PwC a développé une connaissance approfondie de l'environnement juridique, fiscal, économique et financier algérien. En Algérie, PwC intervient à travers deux entités juridiques : PricewaterhouseCoopers Algérie et PASA Audit Services Algérie. Elles travaillent en étroite collaboration avec l'ensemble des autres entités membres du réseau PwC International Ltd au sein de l'organisation PwC France et Maghreb. Elles peuvent ainsi faire bénéficier leurs clients, en Algérie, des expertises techniques et sectorielles de l'ensemble du réseau. PwC participe au développement de l'Algérie dans de nombreux secteurs d'activité : agroalimentaire, industrie manufacturière, pharmaceutique, financial services, Oïl & Gas, Sidérurgie et Métallurgie, etc.

1.2 Présentation de l'entreprise cliente

L'Entreprise X est un complexe sidérurgique public intégré, opérant sous la tutelle des autorités industrielles nationales. Elle a accompagné les grandes étapes du développement industriel du pays et a progressivement évolué vers un statut juridique d'entreprise publique économique sous forme de SPA, renforçant ainsi sa présence sur le marché national. Celle-ci structurée en trois principales zones de production : la zone MPF (matières premières et fonte), qui regroupe la cokerie, la PMA (préparation des matières premières et agglomération) ainsi que les hauts fourneaux ; la zone PPL (produits plats), composée du laminoir à chaud, et laminoir à froid (LAF); et la zone PLG (produits longs), qui comprend l'ACE et le PAT (parachèvement). En complément, le site est équipé de centrales thermiques, de centrales à oxygène et d'usines de traitement de l'eau, garantissant le soutien énergétique et opérationnel des installations. Elle dispose également d'une infrastructure logistique efficace, facilitant l'approvisionnement en matières premières ainsi que la distribution des produits finis sur les différents marchés.

L'entreprise X emploie un effectif important de plusieurs milliers de personnes et réalise un chiffre d'affaires de 28 milliards DZD. Sa mission principale est la production et la commercialisation de produits sidérurgiques semi-finis et finis, destinés au marché national et à l'exportation. Elle s'appuie pour cela sur un réseau de sept points de vente répartis sur l'ensemble du territoire.

1.3 Diagnostic stratégique

1.3.1 Partie 1 : Etude des performances du client X

1.3.1.1 Cartographie de la chaine de valeur

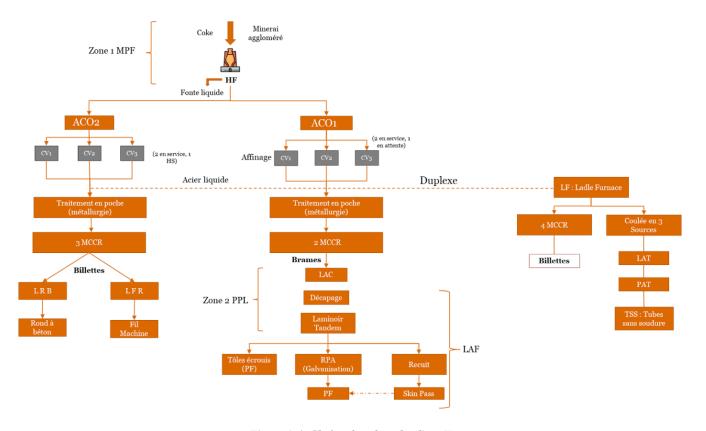


Figure 1-4: Chaîne de valeur du client X

1.3.1.2 Analyse des performances du complexe :

-Performances économiques :

L'évolution du chiffre d'affaires entre **2019 et 2023** montre une trajectoire instable. Après une chute en 2020 liée à la pandémie de COVID-19, l'entreprise connaît une reprise en 2021. Toutefois, cette reprise est de courte durée : les années 2022 et 2023 affichent un recul progressif du chiffre d'affaires. Cette baisse est en corrélation avec la chute des parts de marché de l'entreprise pour les produits plats, qui sont passés de 45% à seulement 13% du marché en 2 ans, comme le met en évidence les figures ci-dessous.

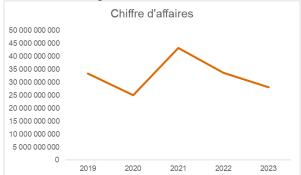


Figure 1-5: Evolution du chiffre d'affaires du client X [data client]

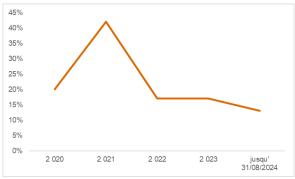


Figure 1-6: Evolutions des parts de marché [data client]

Cette baisse de performance économique trouve son origine dans des facteurs structurels internes, notamment des contre-performances industrielles que nous analysons ci-après.

-Performances opérationnelles :

La figure suivante présente l'évolution de la production de fonte du client. Après une phase d'arrêt planifié en 2016, liée à des investissements majeurs, la production a progressivement repris pour atteindre un niveau relativement stable avant 2020. La reprise après la crise sanitaire n'est pas assurée et la production chute nettement en 2022 et se confirme en 2023, atteignant des niveaux largement inférieurs aux performances enregistrées avant la crise sanitaire.

Figure 1-7: Evolution de la production de fonte du client [data client]

Ce recul en production se traduit en une incapacité à atteindre les objectifs fixés. En effet, la réalisation des objectifs de production planifiée pour 2023 n'a été que de 71%. Ce retard touche principalement les unités de produits finis à forte valeur ajoutée (LAF, LAC, LRB, RPA).

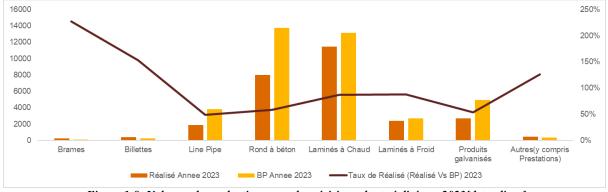


Figure 1-8: Volumes de production annuels prévisionnels et réalisés en 2023[data client]

L'analyse approfondie des rapports internes révèle que le haut fourneau a été à l'arrêt pendant **200** jours en 2023, soit plus de 6 mois d'inactivité. Cet arrêt massif a généré :

- Un manque à gagner de 434 000 tonnes d'acier.
- Une surconsommation estimée à **1,87 milliard DZD**, représentant 7% de la consommation annuelle.
- Une perte économique totale évaluée à plus de 6,46 milliards DZD.

Cette situation appelle une analyse des causes profondes de ces arrêts répétés et prolongés, tant du point de vue technique que stratégique.

Diagramme d'Ishikawa:

Afin d'identifier les causes racines possibles, une analyse selon les 5M (Main-d'œuvre, Méthodes, Machines, Matières, Milieu) a été conduite.

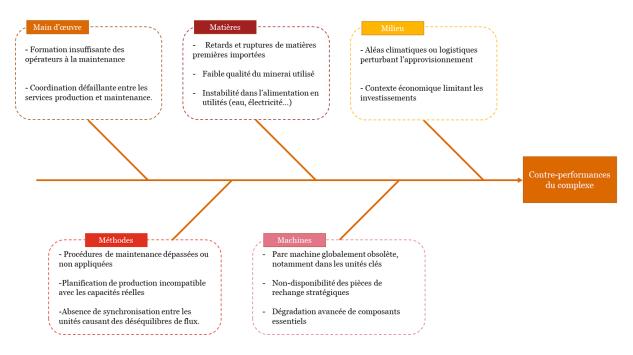


Figure 1-9: Diagramme d'Ishikawa

Analyse Pareto des arrêts

Une analyse Pareto a été menée pour hiérarchiser les causes principales des arrêts du complexe. Elle met en évidence que 80% des arrêts sont concentrés autour de deux causes majeures :

1. Le manque de coke sidérurgique : en raison d'importations exclusivement européennes et d'une forte dépendance logistique, l'entreprise a subi de multiples retards de livraison. Ces interruptions ont rendu impossible l'allumage du haut fourneau, entraînant des arrêts prolongés et des pertes de production conséquentes. Cette situation reflète la fragilité de la stratégie d'approvisionnement en matière critique.

2. Les arrêts répétés de l'unité PMA : cette unité, essentielle car située à l'amont immédiat du haut fourneau, a connu une forte dégradation de ses équipements due au vieillissement. Les nombreuses pannes et dysfonctionnements observés ont provoqué des blocages de flux, empêchant l'alimentation régulière du haut fourneau, et révélant le manque d'anticipation dans la maintenance de cette unité clé.

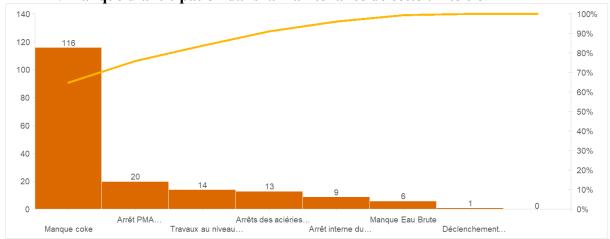


Figure 1-10: Diagramme Pareto des arrêts du haut fourneau

Nous allons pousser l'analyse de ces deux éléments afin d'identifier les causes racines des contre-performances

1.3.1.3 Analyse des approvisionnements :

-Approvisionnements en minerai

Le graphique ci-dessous montre la consommation des minerais du complexe, exprimée en tonnes. La consommation suit la même tendance que la production, en baisse depuis 2021. L'approvisionnement se fait depuis deux mines locales : Ouenza et Boukhadra, avec une part plus importante pour la première.

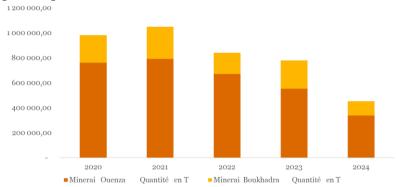


Figure 1-11: Consommation de minerai du client X 2020-2024[data client]

Même si ces deux mines représentent un avantage logistique part leur proximité, elles se caractérisent cependant par une faible teneur en fer : 52% pour Boukhadra et de 41% pour Ouenza en moyenne. Cet approvisionnement de mauvaise qualité mène à une surconsommation de matières premières, notamment le coke, et un fonctionnement dégradé des équipements.

-Approvisionnement de coke :

Le coke, carburant utilisé dans les hauts fourneaux, est entièrement importé depuis des pays européens, principalement la Pologne. En raison de cette forte dépendance logistique,

l'entreprise a subi de multiples retards de livraison. Ces interruptions ont rendu impossible l'allumage du haut fourneau, entraînant des arrêts prolongés et des pertes de production conséquentes. Cette situation est d'autant plus exacerbée par la volatilité des prix du coke, reflétant la **fragilité de la stratégie d'approvisionnement** en matière critique

Figure 1-12: Provenance du coke de l'entreprise cliente [data client]



Figure 1-13: Evolution du prix du coke en 2023 [data client]

1.3.1.4 Analyse de la maintenance

L'étude des interventions de maintenance montre que **près d'un tiers des interventions** réalisées en 2023 étaient des interventions urgentes, bien au-dessus de **l'objectif fixé à 10%**. En parallèle, seulement 40% des interventions étaient planifiées, contre une cible de 85%. Les unités **PMA** (amont du haut fourneau) et **LAF** (aval à haute valeur ajoutée) figurent parmi les plus touchées. Ces chiffres traduisent une prédominance du mode curatif au détriment d'une approche préventive ou prédictive.

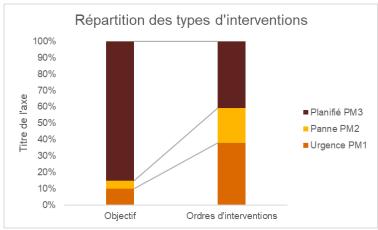


Figure 1-14: Répartition des types d'intervention en 2024 [data client]

En ce qui concerne les taux de pannes, plusieurs unités stratégiques présentent des niveaux alarmants, au-delà des seuils tolérés. C'est particulièrement le cas pour les unités **LAC** et **ACO2**, qui cumulent des incidents fréquents affectant directement la continuité des opérations.

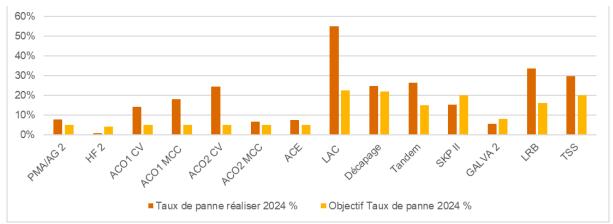


Figure 1-15: Taux de panne objectif et réel des différentes unités [data client]

Par ailleurs, l'analyse des consommations budgétaires révèle des **dépassements notables dans les unités LAC, ACE et ACO2**, qui absorbent une part importante des ressources allouées à la maintenance, bien au-delà des prévisions initiales.

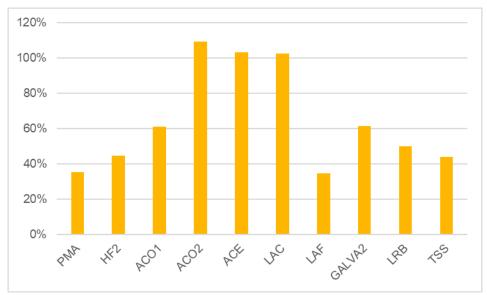


Figure 1-16: Utilisation du budget maintenance pour chaque unité [data client]

Ces éléments confirment que **l'état de vieillissement avancé des équipements constitue l'un des freins majeurs à la fiabilité du système industriel**. L'absence d'investissements dans la rénovation ou le remplacement des machines a progressivement fragilisé la chaîne de production et rendu la maintenance réactive, coûteuse et inefficace.

1.3.2 Partie 2 : Etude de marché

1.3.2.1 Etude du marché mondial du secteur sidérurgique :

-La production mondiale d'acier brut en 2023 est **largement dominée par l'Asie**, en particulier la Chine, qui à elle seule produit plus d'un milliard de tonnes, suivie par l'Inde et le Japon. Ces trois pays concentrent à eux seuls plus de **60** % de la production mondiale, ce qui traduit une forte polarisation géographique du secteur sidérurgique autour de l'Asie.

En comparaison, les grandes puissances occidentales comme les États-Unis, la Russie ou encore les pays de l'Union européenne conservent un rôle important mais secondaire, avec des volumes nettement inférieurs.

Des pays émergents comme le Brésil et l'Iran s'affirment quant à eux comme leaders régionaux, tandis que la Turquie, à la croisée de l'Europe et de l'Asie, dispose d'un secteur sidérurgique dynamique tourné vers l'exportation, notamment en direction de l'Afrique du Nord.

En revanche, l'absence totale des pays africains parmi les principaux producteurs met en lumière le retard industriel du continent, notamment en matière d'infrastructures et de capacité de transformation.

Pour l'Algérie, cette carte révèle une marginalisation sur la scène mondiale de la sidérurgie brute et une forte dépendance aux importations pour couvrir ses besoins en acier. Cette situation représente toutefois une opportunité stratégique : en renforçant ses capacités locales de production, l'Algérie pourrait réduire cette dépendance et se positionner comme un **acteur régional** clé dans une Afrique en quête d'industrialisation.

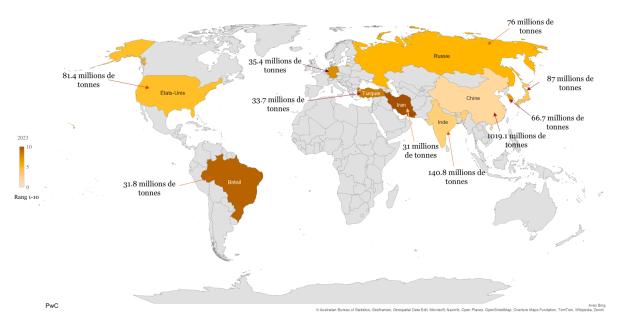


Figure 1-17: Carte des 10 principaux pays producteurs d'acier brut en 2023 [1]

Quant aux principaux pays producteurs de fer à réduction directe (DRI) en 2023. On observe que l'Inde domine largement la production mondiale avec 49,6 millions de tonnes, suivie de l'Iran avec 33,4 millions de tonnes. Ces deux pays représentent à eux seuls une part majeure de l'offre mondiale, confirmant la centralité de l'Asie dans ce secteur stratégique. Viennent ensuite des producteurs significatifs comme les Émirats arabes unis (7,8 Mt), la Russie (7,2 Mt), le Mexique (6,8 Mt) et les États-Unis (5,9 Mt). Le Moyen-Orient joue également un rôle important avec plusieurs pays producteurs comme l'Arabie Saoudite, l'Égypte ou encore l'Algérie. Cette dernière, avec environ 4 millions de tonnes produites, se positionne comme un acteur émergent sur le marché régional. La concentration géographique de la production révèle des dynamiques industrielles spécifiques, souvent liées à la disponibilité en gaz naturel, ressource clé dans le procédé de réduction directe.

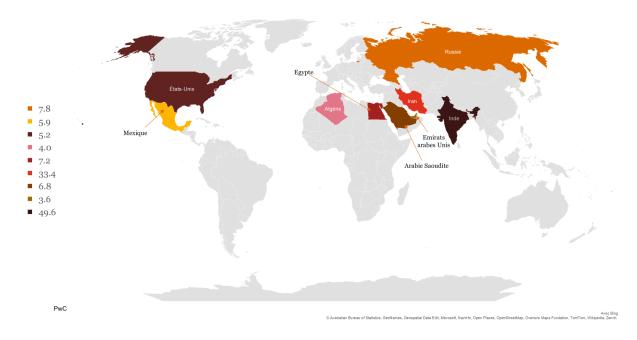


Figure 1-18: Top des pays producteurs de DRI en 2023 [1]

-En 2023, comme le démontre la figure 20, la consommation mondiale d'acier est très inégalement répartie, avec une domination nette de l'Asie, qui utilise à elle seule **1 251,6 millions de tonnes**, soit environ **75** % de la demande mondiale. Ce chiffre est en parfaite cohérence avec la production asiatique observée précédemment, ce qui traduit une forte intégration industrielle entre la production et l'utilisation d'acier dans cette région, portée par l'urbanisation rapide, les mégaprojets d'infrastructure et un tissu industriel dense.

À l'opposé, l'Afrique n'en consomme que 35 millions de tonnes, soit moins de 2 %, confirmant son retard structurel en matière d'industrialisation et d'investissement dans les infrastructures. L'Europe, l'Amérique du Nord et le Moyen-Orient présentent des niveaux de consommation plus élevés (respectivement 181 Mt, 136,3 Mt et 54,9 Mt), en lien avec leurs économies développées et leurs industries matures. Pour l'Algérie, cette faible demande africaine constitue un frein potentiel au développement d'une sidérurgie lourde, les économies d'échelle étant difficiles à atteindre sans un marché intérieur ou régional solide.

Toutefois, cette situation représente également une opportunité stratégique : avec l'urbanisation croissante et les ambitions d'industrialisation du continent, l'Algérie pourrait se positionner comme un futur hub régional de transformation ou de distribution d'acier. Cela nécessiterait une stratégie industrielle volontariste, capable à la fois de stimuler la demande locale et de structurer des chaînes de valeur intégrées à l'échelle maghrébine ou sahélienne.

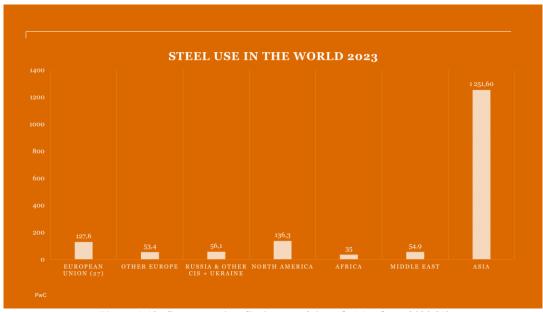


Figure 1-19: Consommation d'acier par régions du Monde en 2023 [1]

-Le graphique en barres ci-dessous démontre que l'Australie domine très nettement le marché avec 38,6 % de la production mondiale de minerai de fer, suivie par le Brésil (17,7 %). À eux deux, ces pays forment un véritable **duopole** qui contrôle plus de **56 % de** l'approvisionnement mondial. La Chine (11,2 %) et l'Inde (10,8 %) figurent également parmi les principaux producteurs, mais leur production est majoritairement destinée à leur propre consommation industrielle. D'autres pays tels que la Russie, l'Iran, l'Afrique du Sud, le Canada et le Kazakhstan participent de manière significative (entre 2 % et 3,5 % chacun), tandis que les États-Unis ne représentent que 1,8 %, et les pays restants regroupés atteignent 6,3 %. Cette forte concentration du marché expose les pays importateurs à des risques structurels, notamment liés aux tensions géopolitiques, aux politiques commerciales restrictives ou aux perturbations logistiques. Dans ce contexte, l'absence de l'Algérie parmi les producteurs souligne sa forte dépendance aux importations de minerai de fer, ce qui constitue une faiblesse

stratégique pour le développement de son industrie sidérurgique. Cette dépendance la rend vulnérable aux fluctuations des prix mondiaux et aux interruptions d'approvisionnement, renforçant la nécessité d'une réflexion sur la sécurisation de ses chaînes d'approvisionnement ou le développement de ressources locales.

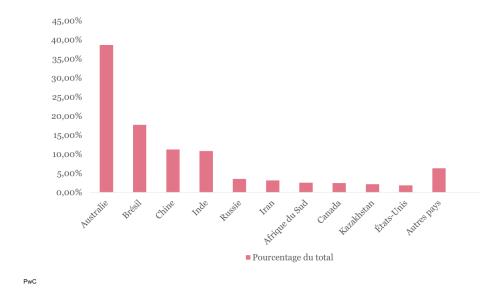


Figure 1-20: Production mondiale de minerai de fer par pays en 2023 [1]

-Pour les dix plus grandes entreprises sidérurgiques mondiales en 2023 : on retrouve la forte concentration de ces acteurs en Asie, en particulier en **Chine**, qui abrite la majorité des géants du secteur, tels que Baowu, Ansteel, HBIS, Shagang et Jianlong. Cette domination chinoise reflète l'importance stratégique de la sidérurgie dans l'économie nationale et l'ampleur de la demande intérieure. On retrouve également des entreprises majeures dans d'autres pays asiatiques comme Tata Steel en Inde, Nippon Steel au Japon et POSCO Holdings en Corée du Sud, ce qui confirme la centralité du continent asiatique dans la production mondiale d'acier. En dehors de l'Asie, seul le groupe ArcelorMittal, basé au Luxembourg, figure dans ce classement, illustrant la présence limitée mais significative de l'Europe dans le paysage sidérurgique mondial. Cette répartition géographique traduit les dynamiques économiques actuelles, où la sidérurgie reste un pilier industriel fondamental, étroitement lié aux politiques d'infrastructure, à l'urbanisation et au développement économique

Figure 1-21: Top 10 des entreprises sidérurgiques en 2023 [1]

1.3.2.2 Etude du marché local : marché algérien

-La sidérurgie en Algérie :

Une analyse des tendances de la sidérurgie en Algérie, présentée en Annexe 1, nous mène à situer la sidérurgie comme un pilier de la stratégie de réindustrialisation et de diversification économique engagée par l'Algérie depuis la dernière décennie. Longtemps marquée par une dépendance quasi-totale aux importations d'acier, l'Algérie a investi massivement dans le développement de capacités de production locales. Aujourd'hui, le pays dispose de plusieurs complexes sidérurgiques modernes qui produisent aussi bien des aciers longs que des produits plats, avec une orientation croissante vers l'autosuffisance et l'exportation.[3]

Entre 2020 et 2024, les exportations de produits sidérurgiques ont connu une croissance rapide, dépassant 800 millions de dollars en 2023. Ce dynamisme s'inscrit dans un objectif plus large visant à porter les exportations hors hydrocarbures à 30 milliards de dollars d'ici 2030. L'acier algérien s'exporte vers les marchés internationaux, notamment en Europe, au Moyen-Orient, en Afrique de l'Ouest et l'Amérique du Nord.[4]

Le développement du gisement de Gara Djebilet, l'un des plus importants d'Afrique, est également central dans cette stratégie. L'ambition est de produire jusqu'à 10 millions de tonnes de concentré de minerai de fer par an à l'horizon 2027, afin d'assurer l'approvisionnement durable des unités de production.[3]

En parallèle, l'État adopte une politique de protectionnisme stratégique, en limitant les importations de certains produits sidérurgiques afin de favoriser l'écoulement de la production nationale sur le marché intérieur. Cette politique vise aussi à encourager la montée en gamme et la compétitivité à l'international. Ainsi, la sidérurgie algérienne se positionne aujourd'hui comme un levier de souveraineté industrielle et un vecteur de croissance des exportations non énergétiques.[5]

- Principaux gisements de fer :

1. Mine de Gara Djebilet (Tindouf) – Exploitée par FERAAL

Située dans la région de Tindouf, la mine de Gara Djebilet est l'un des plus grands gisements de fer au monde, avec des réserves estimées à 3,5 milliards de tonnes, dont 1,7 milliard de tonnes exploitables. Le minerai est caractérisé par une teneur en fer d'environ 58,57%, susceptible d'être enrichi, mais présente une forte teneur en phosphore, rendant nécessaire un processus de déphosphoration complexe. Le gisement est également de nature oolithique, ce qui peut compliquer le traitement du minera. [53]

2. Mines de Boukhadra et Ouenza (Tébessa) – Exploitées par MFE (filiale de MANAL)

Ces deux mines historiques, situées dans la wilaya de Tébessa, sont exploitées par la société Mines de Fer de l'Est (MFE), une filiale du groupe public MANAL.

- Mine de Ouenza : réserves estimées à 80,3 millions de tonnes. La teneur en fer est d'environ 41,63%.
- Mine de Boukhadra: Réserves estimées à 41,7 millions de tonnes. La teneur en fer est d'environ 52,14%.

Ces gisements sont principalement exploités à ciel ouvert et alimentent les aciéries locales.

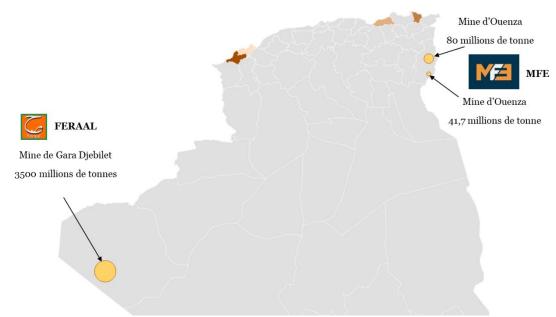


Figure 1-22: Carte des principaux gisements de fer en Algérie

Le coke métallurgique

L'Algérie ne produit pas de coke métallurgique, un composant essentiel pour les hauts fourneaux. Les aciéries dépendent entièrement des importations pour s'approvisionner en coke. Des retards ou des problèmes de qualité dans les livraisons peuvent entraîner des arrêts de production, comme cela a été le cas en décembre 2024.[15]

Le marché algérien de l'acier :

-Evolution de la production

En 2020, la production nationale d'acier atteignait un niveau bas de l'ordre de **3 millions** de tonnes, conséquence de la pandémie Covid-19 sur l'industrie sidérurgique mondiale et algérienne. Toutefois, à partir de 2021, on observe une nette reprise, traduisant la relance des projets d'infrastructures, de construction et d'investissements industriels. Le graphique en

courbe montre une trajectoire ascendante continue de la production, passant de à 4,5 Mt en 2024, soit une croissance de plus de 50 % en quatre ans. Cette dynamique reflète à la fois le redressement de la demande intérieure et l'augmentation des capacités de production.

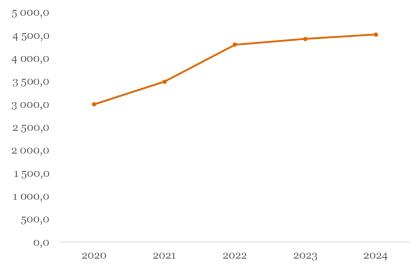


Figure 1-23: Evolution de la production d'acier en Algérie en milliers de tonne [1]

1-Analyse de la demande du marché :

Le marché sidérurgique algérien est historiquement dominé par la consommation de produits longs, tels que le rond à béton et les profilés, principalement en raison de l'importance du secteur du BTP dans le pays. Cette prédominance s'explique par les besoins en infrastructures et en logements d'une nation en développement, où la construction représente une part significative de l'activité économique.

Cependant, une transition notable est en cours avec l'émergence de la demande pour les produits plats, tels que les tôles laminées à chaud et à froid, galvanisées ou non. Cette évolution est stimulée par le développement des industries automobile, électroménagère et de la construction navale, qui requièrent des aciers plats de haute qualité. En réponse à cette demande croissante, des complexes sidérurgiques tels que Tosyali Algérie ont investi dans la production d'acier plat. Par exemple, en août 2024, Tosyali Algérie a exporté pour la première fois 25 000 tonnes de tôles d'acier plat, marquant une étape significative dans l'histoire industrielle du pays [6][7]. Cette diversification de la production sidérurgique permet non seulement de répondre aux besoins internes, mais aussi de positionner l'Algérie sur le marché international. En 2024, Algerian Qatari Steel (AQS) a exporté 700 000 tonnes de produits sidérurgiques, générant 400 millions de dollars de revenus. De même, Tosyali Algérie a réalisé des exportations vers des pays tels que l'Italie et la Turquie, renforçant ainsi la présence de l'Algérie sur les marchés internationaux [8].

Dans les pays développés (Europe, États-Unis, Corée, Japon), les produits plats sont **largement majoritaires** dans la consommation sidérurgique. Cela s'explique par la structure de leurs économies : ces pays disposent de secteurs industriels avancés qui consomment des aciers plats à haute valeur ajoutée dans la fabrication de véhicules, d'équipements électriques, de pipelines, ou encore dans la construction métallique. À titre d'exemple, en Europe, la consommation

d'aciers plats était en moyenne de 82,96 millions de tonnes par an entre 2013 et 2022, contre seulement 49,58 millions de tonnes pour les produits longs [9].

Ce différentiel structurel entre les types de produits consommés rend les **produits plats bien plus recherchés à l'export**, notamment dans des régions où la production locale est en recul. L'Europe, par exemple, voit sa production d'aciers plats reculer depuis 2021 à cause de la flambée des coûts énergétiques, des régulations environnementales strictes et de la concurrence étrangère : elle est passée de 84,5 millions de tonnes en 2021 à 71,3 millions en 2023[10].

D'autre part, la Chine, longtemps principal exportateur mondial, commence à ralentir sa production à cause de la saturation du marché, de la baisse des grands projets d'infrastructures, et des contraintes écologiques. Elle se retrouve même avec des **stocks excédentaires**, et sa politique pourrait évoluer vers une réduction des volumes exportés à moyen terme [10]. Cette **conjoncture internationale offre une fenêtre d'opportunité à l'Algérie**: en investissant dans la production d'aciers plats, elle peut se positionner comme **fournisseur alternatif et fiable** pour des marchés développés en recherche de nouveaux partenaires commerciaux. En effet **grâce à sa position stratégique sur la rive sud de la Méditerranée, l'Algérie dispose d'un avantage logistique majeur pour exporter vers l'Europe.** À moins de deux jours de navigation des ports clés comme Marseille, Barcelone ou Gênes, elle peut offrir des délais de livraison courts, des coûts de transport réduits et une empreinte carbone plus faible, ce qui est particulièrement attractif dans un contexte où les entreprises européennes cherchent à décarboner leurs chaînes d'approvisionnement. De plus, les tensions géopolitiques actuelles incitent les acteurs européens à privilégier des partenaires régionaux fiables, renforçant ainsi l'attractivité de l'Algérie comme fournisseur alternatif de proximité.

Donc, en capitalisant sur cette dynamique mondiale et en diversifiant son offre vers des produits plats à haute valeur ajoutée, l'Algérie peut non seulement répondre à ses besoins industriels internes, mais aussi **devenir un acteur stratégique de la sidérurgie mondiale**, capable d'exporter vers des marchés européens ou africains, dans un contexte géopolitique où la proximité géographique, la stabilité et la capacité de production sont devenues des avantages compétitifs majeurs.

• Consommation des produits longs en Algérie :

L'évolution de la consommation des produits longs en Algérie entre 2021 et 2024 confirme une dynamique soutenue, caractéristique des économies en phase d'expansion infrastructurelle. La demande est passée d'environ 1 650 kilotonnes (kt) en 2021 à plus de 3 200 kt en 2024, soit une croissance quasi continue de près de 100 % en quatre ans. Cette tendance s'explique essentiellement par la forte mobilisation de l'État algérien dans les secteurs du BTP, du logement social, des routes, des barrages et autres projets structurants nécessitant massivement des produits longs tels que les barres à béton ou les profilés. Cette consommation élevée illustre la dépendance actuelle du marché sidérurgique algérien à ces grands chantiers nationaux. Toutefois, cette prédominance des produits longs pourrait progressivement s'équilibrer avec la montée de l'activité industrielle orientée vers les produits plats.

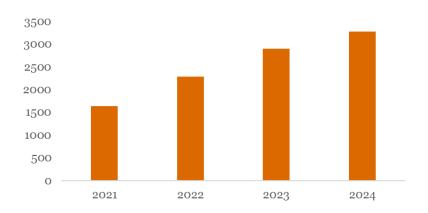


Figure 1-24: Evolution de la consommation des produits longs en Algérie (milliers de tonnes) [data client]

Consommation des produits plats :

Le graphique présente l'évolution de la consommation des produits plats en Algérie entre 2020 et 2023, mettant en évidence une dynamique de reprise progressive après un creux enregistré en 2021. En effet, après un niveau élevé en 2020 (autour de 820 kt), la consommation chute à environ 550 kt en 2021, en raison des ralentissements industriels liés à la pandémie de COVID-19. Toutefois, dès 2022, la courbe repart à la hausse avec près de 760 kt, atteignant environ 930 kt en 2023. Cette tendance montre une montée en puissance de la demande en produits plats – utilisés notamment dans les secteurs de l'électroménager, de la fabrication de tubes et de pièces industrielles. Elle reflète une amorce d'industrialisation et de diversification de l'économie algérienne, en dehors des grands chantiers de construction. Cette évolution positionne les produits plats comme un levier stratégique pour répondre à la fois aux besoins du marché local en transformation industrielle et aux futures opportunités d'exportation vers les marchés européens, très demandeurs de ce type de produits à forte valeur ajoutée.

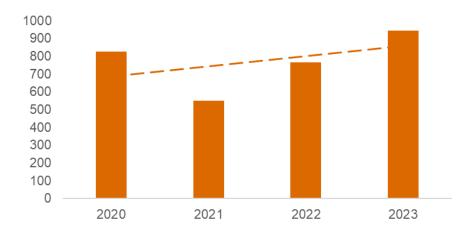


Figure 1-25: Evolution de la consommation des produits plats en Algérie (milliers de tonne) [data client]

Consommation du TSS en Algérie (2011–2023)

Entre 2011 et 2023, la consommation de TSS en Algérie a connu une évolution marquée par une forte volatilité. En 2012, elle atteint un pic remarquable d'environ **450 000 tonnes**, porté par une dynamique soutenue de projets industriels et d'infrastructures, notamment dans les secteurs de l'énergie et des transports. Cependant, à partir de 2013, on observe une tendance baissière prolongée, avec une consommation chutant sous les **200 000 tonnes en 2016**, signe d'un ralentissement de l'activité économique nationale. Cette période correspond à la chute des prix du pétrole (fin 2014) et à la mise en veille de plusieurs projets d'investissement publics, en particulier dans les hydrocarbures.

L'année 2019 marque un point bas avec une consommation avoisinant les **120 000 tonnes**, conséquence probable de la crise politique (Hirak), de l'instabilité économique et du gel de nombreux chantiers. Après cette phase critique, une **reprise modérée** s'installe à partir de 2020, avec un retour à des niveaux proches de **190 000 tonnes en 2023**, signe d'une relance industrielle progressive et d'une reprise de certains investissements stratégiques.

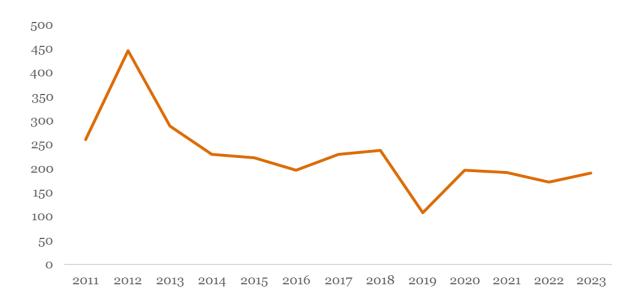


Figure 1-26: Evolution de la consommation de TSS en Algérie [data client]

Prévision du besoin en TSS (2023–2035): une croissance maîtrisée mais continue Les prévisions montrent une croissance régulière et soutenue du besoin en TSS sur la période 2023–2035. Le volume attendu passe de 228 000 tonnes en 2023 à 409 000 tonnes en 2035. Sur la période 2023–2030, le taux de croissance annuel moyen (TCAM) est estimé à 5 %, traduisant un retour de la confiance dans le tissu industriel algérien et un regain d'activité dans les grands secteurs utilisateurs de TSS.

Selon les données du rapport de Data Bridge Market Research, le marché mondial des tubes sans soudure (TSS) devrait connaître un taux de croissance annuel moyen (TCAM) d'environ 6 % entre 2023 et 2030. Toutefois, dans le cadre de notre étude appliquée à l'Algérie, nous avons volontairement retenu un TCAM plus modéré de 5 %, afin de mieux refléter les spécificités économiques et industrielles locales. Ce choix s'appuie sur plusieurs facteurs : une dépendance encore forte aux importations, des investissements publics fluctuants, une capacité industrielle limitée pour ce type de produit à haute technicité, ainsi qu'un climat d'affaires encore perfectible. En optant pour une hypothèse de croissance prudente mais soutenue, nous visons à garantir une projection réaliste, crédible et en phase avec les rythmes de développement que peut raisonnablement atteindre le marché algérien des TSS dans les années à venir.

Cette progression s'explique notamment par la reprise et l'expansion de projets dans les hydrocarbures, la construction de réseaux de transport d'énergie (gazoducs, oléoducs), les grands travaux d'infrastructure, ainsi que par le développement de l'industrie pétrochimique. La projection laisse penser que l'Algérie se positionne comme un acteur majeur de la demande régionale en tubes sans soudure.

Dans ce contexte, la dépendance actuelle de l'Algérie vis-à-vis des importations de TSS représente une **vulnérabilité stratégique**. Aujourd'hui, la quasi-totalité des besoins est couverte par des importations depuis la Chine, la Turquie, l'Italie ou encore la Russie. Cela pèse sur la balance commerciale et expose le pays aux fluctuations des prix internationaux, aux risques logistiques et aux tensions géopolitiques. En parallèle, l'absence d'un tissu industriel local pour la fabrication de TSS en quantités suffisantes constitue une **perte d'opportunité économique** et un frein à la souveraineté industrielle.

Le développement d'une unité de production locale de TSS représenterait une réponse stratégique à ces enjeux. Cela permettrait non seulement de réduire la facture d'importation, mais aussi de renforcer les capacités nationales, de créer des emplois industriels qualifiés, et potentiellement, de développer un pôle exportateur vers l'Afrique ou le bassin méditerranéen.

Le marché des TSS est mondialement stratégique, notamment pour les applications à haute exigence (pression, température, corrosion) dans les domaines du forage pétrolier et gazier, de la pétrochimie, ou encore des infrastructures lourdes. Les perspectives de croissance de la demande en TSS dans la région Afrique du Nord et Afrique subsaharienne sont également favorables, faisant de l'Algérie un candidat idéal pour devenir un hub régional de production.

L'ensemble des données historiques et prévisionnelles sur la consommation des TSS en Algérie montre clairement qu'il s'agit d'un secteur en mutation, offrant des perspectives industrielles et économiques considérables à moyen et long terme.

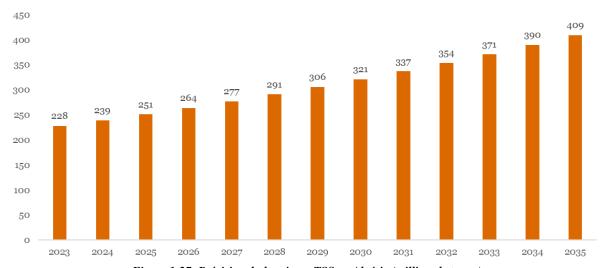


Figure 1-27: Prévision du besoin en TSS en Algérie (milliers de tonne)

En Algérie, la consommation de tubes sans soudure (TSS) est très largement dominée par Sonatrach, la compagnie nationale des hydrocarbures. Selon son rapport annuel 2023, l'entreprise a consommé environ 190 000 tonnes de TSS, ce qui représente près de 83 % de la consommation nationale totale estimée à 228 000 tonnes. Cette part significative s'explique par l'importance des infrastructures nécessaires à ses projets pétroliers et gaziers, que ce soit pour l'exploration, la production ou le transport des hydrocarbures.

L'ampleur de ces besoins est bien illustrée par le **contrat stratégique** conclu entre Sonatrach et **Sider El Hadjar** portant sur la **livraison de 1 000 km de TSS** sur la période 2023–2027. Ce partenariat vise à **renforcer l'intégration industrielle locale** dans les grands projets énergétiques et témoigne d'une planification à long terme, favorisant la régularité de la demande en tubes [54]

Toujours dans ce cadre, **540 km de tubes sans soudure** ont déjà été livrés à Sonatrach depuis le lancement de la coopération, ce qui montre la montée en puissance de la **production nationale** de TSS pour répondre aux besoins spécifiques de l'entreprise, tout en réduisant la dépendance aux importations [55].

Ainsi, un taux de croissance annuel moyen (TCAM) de 5 % sur la période 2023–2030 est cohérent avec les dynamiques observées dans le secteur et les perspectives d'investissements annoncées par le groupe [56]. Enfin, bien que des acteurs comme Naftal (filiale de distribution de Sonatrach) utilisent aussi des TSS pour leurs pipelines et infrastructures de transport, leur consommation reste très marginale par rapport à la maison-mère. Le marché algérien des TSS est donc très concentré autour de Sonatrach, ce qui permet d'anticiper les tendances du secteur en suivant ses projets et ses besoins.

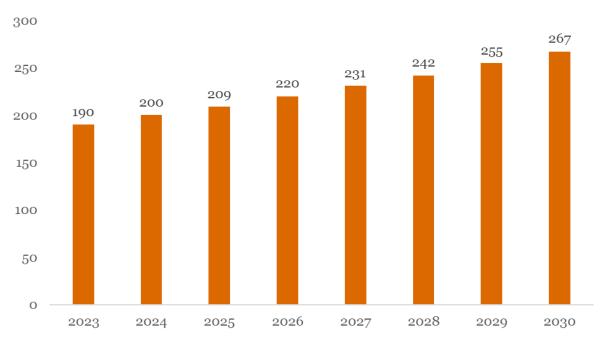


Figure 1-28: Prévision du besoin en TSS de Sonatrach [57]

2-Offre du marché Algérien

Au cours des dernières années, l'Algérie a amorcé un tournant vers l'exportation de produits sidérurgiques, notamment à travers l'essor de certains complexes industriels modernes. Cette dynamique traduit une montée en compétitivité des producteurs nationaux, appuyée par des capacités de production accrues, une diversification des gammes exportées (notamment les produits plats), et une stratégie étatique de soutien aux exportations hors hydrocarbures.[4][11][12][13]

-Principaux acteurs de la sidérurgie en Algérie :

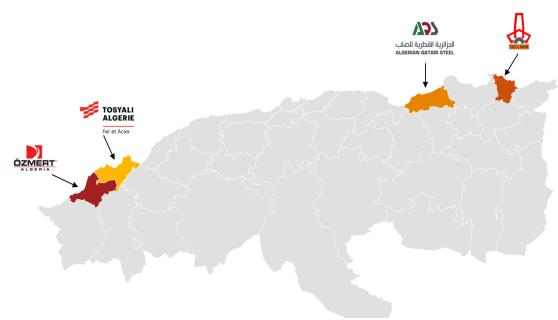


Figure 1-29: Carte des principaux producteurs d'acier en Algérie

Le tissu sidérurgique algérien s'appuie aujourd'hui sur un noyau restreint mais dynamique d'acteurs industriels majeurs, qui structurent l'ensemble de la chaîne de valeur de l'acier, avec une orientation croissante vers la modernisation des procédés, l'augmentation des capacités de production et le développement de nouvelles filières comme la réduction directe du fer (DRI). Parmi ces acteurs, quatre principaux se distinguent :

- Tosyali Algérie : Basé à Oran, leader national avec une capacité de 2,5 Mt/an, spécialisé dans les produits longs et plats. L'entreprise a introduit la filière DRI-EAF pour une production à faible émission.
- Algerian Qatari Steel (AQS): Installé à Jijel, AQS possède également une capacité de 2,5 Mt/an. Doté d'une aciérie moderne et d'unités de réduction directe, il est actif sur les marchés d'exportation des produits longs.
- **Sider El Hadjar (SEH)**: Situé à Annaba, ce complexe public dispose d'une capacité de **750 000 t/an**, mais n'en exploite qu'environ **500 000 t**. Il est présent sur les segments de produits longs et de produits plats.
- Ozmert Group : Nouvel entrant avec une capacité projetée de 500 000 t/an, axé sur les produits longs et orienté vers l'export.

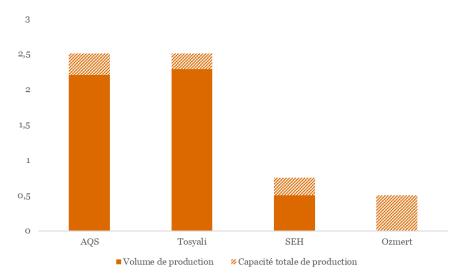


Figure 1-30: Volumes et capacités de production des principaux acteurs sidérurgiques algériens [6]

L'un des faits marquants du paysage sidérurgique algérien réside dans l'adoption croissante de la filière DRI couplée à l'aciérie électrique (EAF). Ce choix technologique permet une réduction significative des émissions de CO₂, tout en valorisant les ressources gazières nationales. La filière DRI-EAF, plus flexible et moins énergivore que la voie traditionnelle BF-BOF (haut fourneau/convertisseur), s'impose ainsi comme une solution adaptée au contexte algérien, notamment en termes d'indépendance vis-à-vis des matières premières importées comme le coke métallurgique.[14]

3-Offre du client X : Analyse du marché actuel

Gamme proposée actuellement :

- -Produits longs:
- Rond à béton
- Tubes sans soudure(TSS)
- -Produits plats:
- Tôles laminés à chaud (LAC)
- Laminés à froid (LAF)
- Produits galvanisés

Parmi l'ensemble des produits sidérurgiques que le client X souhaite proposer, on retrouvera produits plats, les tubes sans soudure (TSS), les profilés, les rails et les ronds à béton.

Tout d'abord, les **ronds à béton** sont principalement destinés au secteur du bâtiment et des travaux publics (BTP), qui, bien que dynamique, est confronté à des cycles économiques et à des contraintes budgétaires limitant la croissance de la demande. De plus, ces produits sont considérés comme des commodités, avec une faible valeur ajoutée, ce qui les rend sensibles aux fluctuations du marché et à la concurrence internationale [16]

Ensuite, les **rails et les profilés** sont utilisés dans des projets d'infrastructure spécifiques, tels que les constructions métalliques et les réseaux ferroviaires. En Algérie, le développement de ces infrastructures progresse à un rythme modéré, ce qui limite la demande pour ces produits. Par exemple, bien que des investissements aient été réalisés dans la production de rails, la consommation reste relativement faible en raison du nombre limité de projets ferroviaires en cours.

Produits\Demande	2024	2030	2035	2040
Produits plats	1100000	1550000	1975000	2500000
Profilés	250000	350000	450000	570000
TSS(tubes sans soudure)	300000	400000	600000	900000
Rails	10000	50000	100000	100000
Total(T)	1660000	2350000	3125000	4070000

Tableau 1-1: Projections actuelles du client X

En revanche, les **produits plats** et les **TSS** connaissent une demande croissante, soutenue par des secteurs tels que l'industrie pétrolière et gazière, l'automobile et l'électroménager, qui nécessitent des aciers de haute qualité et à forte valeur ajoutée. Cette dynamique reflète une orientation vers des produits plus sophistiqués et une montée en gamme de l'industrie sidérurgique algérienne.

Ci-dessous le tableau explicitant les parts de marché local du client en produits plats :

	2 020	2 021	2 022	2 023	jusqu' 31/08/2024
VENTE Client	168 325	229 473	129 210	156 673	91 908
IMPORTATION	656 577	320 200	638 134	786 477	625 604
Consommation					
locale	824 902	549 673	767 344	943 150	717 512
PART DE MARCHE	20%	42%	17%	17%	13%

Tableau 1-2: Parts de marché local du client en produits plats [data client]

4-Offre des concurrents du client X :

L'analyse de l'offre concurrentielle sur le marché algérien du rond à béton montre clairement une saturation quasi totale de ce segment. Les données issues des deux tableaux révèlent que la consommation locale de ronds à béton a atteint environ 3,27 millions de tonnes en 2024, tandis que les ventes combinées des deux principaux concurrents (Concurrent 1 et Concurrent 2) totalisent à elles seules environ 4,36 millions de tonnes, bien au-delà de la demande nationale, ce qui implique une importante part dédiée à l'exportation (1,3 million de tonnes prévues pour 2024).

Dans cette configuration, Concurrent 2 domine largement le marché local avec des ventes s'élevant à 3 millions de tonnes en 2024, suivi de Concurrent 1 avec 1,36 million de tonnes, laissant très peu de place au Client X, qui n'a commercialisé que 210 193 tonnes cette même année. Cette dynamique démontre que les deux concurrents principaux couvrent déjà l'essentiel du besoin national, rendant toute tentative d'expansion significative sur ce segment très difficile pour un nouvel entrant ou un acteur secondaire, en raison de la surcapacité de production déjà installée et d'un marché intérieur arrivé à maturité.

Par conséquent, le marché local du rond à béton ne représente **pas un levier stratégique** de croissance pour le Client X. Cette saturation suggère plutôt l'importance de se **positionner sur des segments moins saturés**, à plus forte valeur ajoutée, comme les **Tubes Sans Soudure** (**TSS**), dont la demande est en croissance constante et portée par de grands donneurs d'ordre industriels comme **Sonatrach**.

Vente national	2 313 160	3 181 970	3 861 613	4 570 000
Importation	50 924	25 592	56 535	0
Exportation	728 804	927 384	1 021 725	1 300 000
Consommation				
locale	1635280	2280178	2896423	3270000

Tableau 1-3: Parts de marché local du client en produits longs [data client]

Année	2 021	2 022	2 023	2024 OP
Client X	153 306	90 505	79 640	210 193
Concurrent 1	322 660	768 060	1 133 913	1 360 000
Concurrent 2	1 837 194	2 323 405	2 648 060	3 000 000

Tableau 1-4: Segmentation du marché local de rond à béton [data client]

Justification stratégique du choix d'investissement du Client X : Quelle gamme de produits garder ?

Le choix du Client X de concentrer ses investissements industriels sur les **tubes sans soudure** (**TSS**) et les **produits plats**, tout en écartant le **rond à béton** et les **rails**, s'appuie sur une analyse approfondie des dynamiques de marché, de la rentabilité par produit, ainsi que du niveau de concurrence sur chaque segment. Ce positionnement repose sur une volonté de capter des segments à forte valeur ajoutée, en phase avec les besoins industriels de demain, tout en évitant les marchés saturés ou à faible rentabilité.

1. Une demande en forte croissance sur les TSS et produits plats

Les prévisions de la demande nationale en produits sidérurgiques à l'horizon 2040 démontrent clairement que les **TSS** et les **produits plats** sont les segments les plus porteurs. La demande en **TSS** est appelée à **nettement augmenter entre 2025 et 2035**, passant de 251 000 tonnes à 410 000 tonnes, tandis que les **produits plats** verront leur consommation nationale croître de **1,1 million à 2,5 millions de tonnes**, soit une progression de plus de 127 %. Ces volumes témoignent d'une transformation structurelle de l'industrie algérienne, orientée de plus en plus vers des besoins en acier à usage technique, notamment dans les secteurs de l'énergie, des hydrocarbures, de la mécanique de précision et de l'automobile, tous consommateurs de TSS et de produits plats.

2. Une rentabilité nettement supérieure sur les produits ciblés

Le second levier majeur justifiant ce choix est celui de la **rentabilité unitaire**. L'analyse des marges démontre une hiérarchie très marquée entre les différents produits. Le **tube sans soudure** est de loin le plus rentable, avec une marge unitaire dépassant **57 000 DA par tonne**, contre environ **48 000 DA** pour la tôle galvanisée (GALVA) ou **39 000 DA** pour les laminés à froid (LAF). Cette rentabilité traduit une forte **valeur ajoutée industrielle**, souvent liée à la technicité du produit, à la complexité des procédés de fabrication, et à un positionnement sur des marchés professionnels et industriels à haute exigence.

Le **rond à béton**, en revanche, présente une marge unitaire très faible, de l'ordre de **5 172 DA**, soit **près de 11 fois inférieure à celle du TSS**. Cela s'explique par le fait que ce produit est standardisé, peu transformé, et facilement substituable, avec peu d'espace pour se différencier. En concentrant son activité sur les produits les plus rentables, le Client X s'assure une meilleure

résilience économique face aux fluctuations de marché et une plus grande capacité d'investissement dans la montée en gamme.

Produits	Prix de vente	Marge
Rond à béton	95 673	5 172,00
LAC	92 607	11 489,00
Décapée	103 188,00	14 236,00
LAF	136 227,00	39 521,00
GALVA	157 234,00	48 330,00
TSS	211 049,00	57 745,00

Tableau 1-5: Marges unitaires du client X en 2023 [data client]

3. Un environnement concurrentiel saturé dans le segment du rond à béton

Enfin, la décision de ne pas se positionner sur le marché du rond à béton découle d'une analyse concurrentielle défavorable. Le marché national est d'ores et déjà dominé par deux acteurs majeurs, dont les capacités combinées dépassent déjà 4,3 millions de tonnes/an en 2023. Ce niveau de production couvre largement la demande intérieure actuelle, ce qui signifie que tout nouvel entrant sur ce segment serait contraint de lutter pour des parts de marché dans un environnement saturé, en comprimant encore davantage ses marges. Cette guerre des prix serait d'autant plus défavorable que les marges sont déjà extrêmement faibles.

Au contraire, les **TSS** et certains produits plats (décapés, GALVA, LAF) bénéficient d'un **niveau de concurrence beaucoup plus modéré**. De plus, ces produits requièrent **des procédés techniques plus sophistiqués**, constituant ainsi **une barrière à l'entrée naturelle** qui permet de préserver des marges stables et de maintenir une différenciation concurrentielle.

1.3.2.3 Synthèse : Analyse SWOT du client x :

Forces

Emplacement stratégique de l'Algérie facilitant l'importexport et réduisant les coûts logistiques.

Intégration partielle de la chaîne de Valeur : plusieurs étapes de production sont assurées en interne (de la fonte à l'acier plat), permettant un meilleur contrôle des coûts, des délais et de la qualité.

Positionnement sur des produits techniques et à forte valeur ajoutée : choix stratégique de se concentrer sur les TSS et produits plats, en phase avec les besoins industriels modernes (hydrocarbures, énergie, automobile, électroménager).

Orientation vers l'exportation alignée avec les standards internationaux, sur des segments techniques moins exposés à la guerre des prix.

Faiblesses

Dépendance persistante aux intrants importés, en particulier au coke métallurgique, qui alimente une fragilité structurelle de la filière sidérurgique nationale et celle du client.

Chaîne d'approvisionnement vulnérable, exposée à des retards logistiques récurrents du fait de l'absence de production locale de coke, provoquant des interruptions de production et une instabilité des revenus.

Consommation énergétique excessive de la fillière haut fourneau, associée à des émissions de CO₂ élevées et à des coûts de modernisation particulièrement lourds.

Équipements vieillissants et peu fiables, notamment sur les lignes de produits à forte valeur ajoutée, aggravés par des retards de maintenance, un déficit de planification et une coordination opérationnelle insuffisante.

PwC

Opportunités

Exploitation prochaine du gisement de Gara Djebilet, offrant un approvisionnement local massif, à bas coût logistique, avec des synergies possibles dans l'ensemble de la filière sidérurgique algérienne.

Potentiel de substitution aux importations, en particulier sur les segments des produits plats et TSS.

Ressources naturelles mobilisables (minerai de fer national, gaz naturel), favorisant l'émergence d'une sidérurgie intégrée, moins dépendante des importations critiques comme le coke.

Soutien croissant de l'État à la réindustrialisation et à la diversification hors hydrocarbures, à travers des politiques incitatives, un accompagnement à l'export, et un intérêt stratégique pour la souveraineté industrielle.

Trajectoire de décarbonation industrielle à saisir, avec des leviers technologiques comme le DRI, soutenus par les standards internationaux et les exigences futures en matière d'émissions.

Menace:

Concurrence internationale agressive: Les producteurs asiatiques (ex. Chine, Inde) pratiquent des prix bas pouvant menacer les marges, surtout à l'export.

Exposition aux aléas géopolitiques et logistiques internationaux, notamment pour les matières premières critiques importées actuellement par le client X (coke, brames), fragilisant la stabilité de l'approvisionnement et de la production.

Fluctuations des prix des matières premières

Le minerai de fer et les dérivés sont sensibles à la conjoncture mondiale, ce qui rend les prévisions complexes.

Risque de dépendance commerciale excessive à un seul client, comme Sonatrach pour les TSS, qui concentre l'essentiel de la demande locale et dont les investissements sont soumis à des arbitrages politiques.

Infrastructure ferroviaire encore insuffisante La faiblesse logistique (rail, port, transport intérieur) freine le potentiel d'exportation.

Volatilité du marché mondial de l'acier Les prix du fer, de l'énergie et du transport restent instables. Sans contrats sécurisés ni stratégie d'achat mutualisé, l'entreprise subit des variations brutales de marge.

1.3.2.4 Stratégie produit et offre du client X sur le marché

À l'issue de l'analyse SWOT, de l'étude approfondie du marché actuel ainsi que de l'environnement concurrentiel et des perspectives d'évolution du secteur, une réflexion stratégique a été menée afin d'adapter au mieux l'offre du client X. La section suivante présente ainsi la stratégie produit envisagée, illustrée par une proposition de gamme structurée en fonction des résultats obtenus.

-Gammes de produits

Catégorie	Produit	Potentiel marché & justification	Décision stratégique
	TSS (Tubes sans soudure)	Marché en forte croissance (400k t → 520k t d'ici 2040). Très forte valeur ajoutée. Faible concurrence. Demande soutenue par le secteur énergétique (Sonatrach absorbe 80% du marché).	À conserver
Produits longs	Rond à béton	Marché local déjà saturé par deux concurrents majeurs. Faible marge (∼5 000 DA/t), produit standardisé.	× À écarter
Rail	Rails	Demande marginale à l'échelle nationale (100k t en 2040). Segment de niche sans potentiel d'export significatif.	X À écarter
	GALVA (Tôle galvanisée)	Produit le plus rentable de la catégorie (marge > 48 000 DA/t). Forte valeur ajoutée. Fort potentiel à l'export (secteurs auto, électroménager, BTP).	À conserver
Produits plats LAF	LAF	Bon potentiel industriel, marge élevée (~39 000 DA/t), utilisé dans divers secteurs transformateurs. Marché en expansion.	À conserver
LAC		Pilier de la stratégie d'exportation. Base indispensable à l'aval industriel.	À conserver

Tableau 1-6: Choix de la gamme de produits à garder

-Offre du client pour le TSS et les produits plats 1-TSS

Dans le cadre du projet, la production **de 400 000 tonnes** de tubes sans soudure (TSS) repose sur une analyse approfondie du marché local et des besoins spécifiques de Sonatrach. Selon le rapport d'activité de Sonatrach, l'entreprise a consommé 190 000 tonnes de TSS en 2023, ce qui représente environ **80%** de la consommation nationale totale de 228 000 tonnes cette année-là.

TSS	2035
Gros diamètre	100,00
Petit diamètre	300,00
Total	400,00

Tableau 1-7: Offre du client en TSS

Cette orientation stratégique vers les TSS est également motivée par la faible concurrence sur le marché local. Les TSS nécessitent des procédés de fabrication complexes et des investissements technologiques importants, constituant ainsi une barrière à l'entrée pour de nouveaux acteurs. Cette situation permet à l'entreprise de bénéficier d'une position favorable sur le marché national.

Concernant l'exportation, il est important de noter que le marché local, principalement dominé par Sonatrach, absorbe la majeure partie de la production de TSS. De plus, l'exportation de TSS présente des défis logistiques et économiques significatifs. Les coûts de transport élevés, notamment en raison du poids et du volume des TSS, ainsi que les exigences strictes en matière de conformité et de certification, rendent l'exportation de ces produits moins rentable. Selon une analyse de marché, les tarifs douaniers et les coûts logistiques associés à l'exportation de tubes en acier sans soudure augmentent considérablement les prix, réduisant ainsi la compétitivité sur les marchés internationaux.[17]

2-Produits plats:

Taille du marché local	700
Parts de marché	40%
Production locale	280

Tableau 1-8: Offre du client en produits plats

Dans le cadre du projet, la montée en charge de la production de produits plats sera progressive, **280 000 tonnes** seront destinées au marché local, représentant environ **40 %** de part de marché, dans un contexte où la demande nationale est estimée à **700 000 tonnes**. Cette estimation tient compte d'une dynamique de **substitution progressive aux importations**, qui s'élevaient encore à environ **630 000 tonnes** en 2024 comme le présente le **tableau 2**. La croissance attendue de la consommation intérieure, couplée à une politique industrielle favorable au contenu local, justifie ainsi cette cible de **700 000 tonnes** à l'horizon 2030.

Cette entrée graduelle sur le marché prend également en considération la présence d'acteurs bien établis. La stratégie prévoit une **progression annuelle maîtrisée de la part de marché locale**, accompagnée d'une orientation croissante vers l'exportation. Cette double approche permettra au client de s'imposer progressivement comme un acteur compétitif sur le plan régional, en réponse à la demande croissante et à l'évolution des dynamiques du marché international.

-Énoncé de la problématique :

Le but de ce projet est la réalisation d'une étude de faisabilité du plan de développement d'un site sidérurgique qui concerne la **transition technologique et énergétique** vers le procédé d'acier vert, avec diversification stratégique de l'offre en produits sidérurgiques commercialisables, plus adaptée aux besoins du marché, augmentation de la capacité de production annuelle et minimisation des émissions de GES.

Il faudra donc élaborer un scénario de transition pour remplacer les hauts fourneaux à coke industriels actuels, et s'assurer de la viabilité et rentabilité de cette solution. Pour guider notre résolution, nous avons posé 3 **questions de recherche** qui englobe différentes dimensions : Opérationnels et technique, environnementale et faisabilité financière :

- 1)-Dans quelle mesure une transition technologique et énergétique est-elle envisageable, et quelles solutions permettraient d'assurer une montée en capacité, une meilleure intégration de la chaîne de valeur et une optimisation des performances opérationnelles du site ?
- 2)-Quel scénario de transformation permettrait de réduire durablement l'empreinte carbone du site sidérurgique, tout en s'inscrivant dans une trajectoire de décarbonation progressive et réaliste vers une production d'acier à faible impact environnemental ?
- 3)-Le projet de transformation industrielle envisagé est-il économiquement viable à moyen et long terme, au regard des investissements nécessaires, des dynamiques de marché, et des indicateurs de rentabilité financière mobilisés ?

Conclusion

L'analyse conduite dans ce chapitre a mis en lumière la position centrale que peut occuper la filière sidérurgique dans la transformation économique de l'Algérie. Dans un contexte mondial en recomposition, où la souveraineté industrielle devient un enjeu majeur, la sidérurgie se révèle comme un **levier stratégique de réindustrialisation**, de création de valeur et d'autonomie productive.

Sur le plan international, une distinction claire apparaît entre les pays développés, tournés vers les aciers plats à haute valeur ajoutée, et les pays en développement, encore largement consommateurs de produits longs, notamment dans le secteur de la construction. L'Algérie n'échappe pas à cette dynamique. Pourtant, l'évolution de sa demande industrielle et les mutations régionales suggèrent un besoin croissant en produits plats, ouvrant des perspectives concrètes de diversification, de montée en gamme, et de développement de l'export.

L'analyse du marché national a révélé un déséquilibre structurel entre l'offre et la demande, offrant un véritable potentiel de substitution aux importations et de développement d'une offre locale compétitive. Ce potentiel est d'autant plus pertinent que l'Algérie dispose de ressources naturelles mobilisables, d'un marché intérieur dynamique, et d'un positionnement géographique stratégique.

Cependant, l'analyse détaillée des performances de notre client met en évidence des **faiblesses profondes**, tant au niveau économique qu'opérationnel. L'entreprise peine à assurer la continuité de sa production, en particulier sur les lignes de produits finis à forte valeur ajoutée. Ces contre-performances s'expliquent par des causes structurelles : **obsolescence des équipements, dépendance aux intrants importés, retards de maintenance, et absence de planification intégrée**. Ces limites freinent sa capacité à répondre efficacement à la demande du marché et à s'inscrire dans une dynamique de croissance durable.

Ainsi, la sidérurgie apparaît non seulement comme un secteur clé, mais aussi comme un catalyseur de souveraineté économique, d'autosuffisance industrielle et de rayonnement régional. Pour que ce potentiel devienne réalité, il est essentiel que les acteurs du secteur – et notre client en particulier – s'engagent dans une transformation stratégique en profondeur, axée sur l'innovation, l'investissement, la durabilité et une gouvernance industrielle renforcée.

Ce chapitre a donc permis de définir la nature des produits la plus pertinente à produire pour le client, sur la base d'une étude de marché et d'un diagnostic stratégique approfondi. Il constitue le socle des recommandations à venir, qui viseront à repositionner notre client de manière durable, dans une trajectoire cohérente avec les ambitions économiques de l'Algérie.

Chapitre 2 : Etat de l'art

Introduction:

Ce chapitre a pour objectif de présenter le cadre théorique et technique sur lequel repose ce travail. Nous présentons d'abord les fondements de la filière sidérurgique, ses principales étapes de transformation, ainsi que les enjeux actuels liés à sa décarbonation et aux contraintes environnementales. Nous exposons ensuite les notions principales des études de faisabilité, et particulièrement les indicateurs de la faisabilité financière. Enfin, nous aborderons les méthodes d'aide à la décision multicritère et d'optimisation que nous appliquerons pour la résolution de notre problématique. Le schéma suivant présente la structure de ce chapitre :

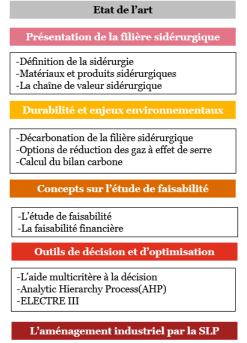


Figure 2-1: Cadrage logique de la structure du Chapitre 2

2.1 Présentation de la filière sidérurgique

2.1.1 Définition de la sidérurgie

La **sidérurgie** est la branche de l'industrie métallurgique dédiée à la production de fer et d'acier, à partir de minerais contenant du fer, de ferrailles recyclées ou d'autres formes d'oxydes métalliques. Elle comprend un ensemble de procédés industriels permettant :

- La préparation du minerai (agglomération, pelletisation).
- La réduction du minerai en métal (par haut fourneau, réduction directe, etc.).
- La fusion et l'affinage du métal (convertisseurs, fours électriques).
- La coulée (continue ou en lingots).
- Le laminage ou formage en produits finis.

La sidérurgie ne couvre pas l'extraction minière elle-même, mais elle est étroitement dépendante de la disponibilité et de la qualité des matières premières (minerai de fer, charbon à coke, ferrailles, gaz naturel), cette partie a été détaillée en Annexe 2.

Elle se distingue de la métallurgie non ferreuse, qui concerne les métaux autres que le fer (aluminium, cuivre, zinc, etc.), bien que les deux branches partagent des logiques de transformation thermique et d'élaboration métallurgique.

2.1.2 Les matériaux et produits sidérurgiques

La filière sidérurgique transforme des intrants minéraux et carbonés en une large gamme de matériaux métalliques et coproduits. Ces matériaux diffèrent selon leur composition, leur fonction dans le procédé ou leur destination commerciale.

La fonte : La fonte est le premier métal obtenu par réduction du minerai de fer. Elle se caractérise par une teneur élevée en carbone (généralement entre 3,5 % et 4,5 %), ce qui lui confère une grande dureté mais une faible ductilité. La composition chimique de la fonte est ajustée selon son usage ultérieur, notamment pour faciliter son affinage ou son usinabilité.

L'acier : L'acier est un alliage de fer et de carbone dont la teneur en carbone est contrôlée (inférieure à 2,11 %). Il présente un compromis optimal entre résistance, ductilité et aptitude au formage. On distingue :

- Les aciers au carbone : non alliés, utilisés dans la construction et l'automobile ;
- Les aciers alliés : inoxydables (avec Cr, Ni), ou à haute résistance (avec Mn, Mo, etc.).

La sidérurgie moderne produit également des aciers à propriétés mécaniques ou physiques spécifiques (aciers électriques, aciers pour outils, etc.).

Le laitier : Le laitier est un coproduit issu de la fusion du minerai dans le haut fourneau ou de l'affinage de l'acier. Il se forme par réaction chimique entre les impuretés du minerai ou du métal (silice, alumine, oxydes) et les fondants (notamment la chaux) ajoutés pour faciliter leur élimination.[18]

Le laitier se présente à l'état liquide à haute température, surnageant sur le métal en fusion. Après refroidissement, il est valorisé dans plusieurs domaines :

- En cimenterie (laitiers granulés de haut fourneau);
- En travaux publics (granulats pour chaussées);
- En amendement des sols.

Le coke métallurgique : Le coke métallurgique est un combustible et réducteur obtenu par pyrolyse du charbon à haute température (environ 1100–1200°C) dans des batteries de fours à coke, en absence d'air. Il présente une forte teneur en carbone fixe (85–90 %) et une bonne résistance mécanique. Dans le haut fourneau, le coke assure trois fonctions essentielles :

- **Réducteur chimique** du minerai de fer ;
- Combustible apportant l'énergie nécessaire à la fusion ;
- Agent structurateur permettant une bonne perméabilité du lit de charge.

Les produits semi-finis : La sidérurgie connaît principalement 3 produits semi-finis:

- **Brames**: des produits semi-finis de section rectangulaire large et plate, généralement obtenus par coulée continue. Leur épaisseur varie entre 150 et 300 mm, leur largeur peut atteindre 2 mètres. Elles sont destinées à être laminées en produits plats.
- **Blooms**: semi-produits de section carrée ou rectangulaire massive, plus grands que les billettes, avec des dimensions typiques supérieures à 150 × 150 mm. Ils sont produits par coulée continue ou à partir de lingots et sont généralement laminés pour obtenir des produits longs lourds, comme les poutrelles, rails ou profilés structuraux.
- **Billettes**: semi-produits de section carrée ou ronde, plus petites que les blooms (typiquement de 100×100 mm à 150×150 mm). Elles sont utilisées comme intrants pour le laminage ou l'extrusion de barres, fils machine, ronds à béton ou produits tubulaires.

Les produits finis : Les produits finis sidérurgiques sont destinés à être utilisés directement par les industries de transformation ou les secteurs utilisateurs finaux. Ils résultent du formage thermique ou mécanique des semi-produits. Ils se classent en trois grandes catégories :

- **Produits plats** : tôles, bobines, feuillards. Ils sont utilisés dans la carrosserie automobile, la construction navale, les appareils électroménagers, ou les pipelines.
- **Produits longs**: barres, profilés, poutrelles, rails, ronds à béton et produits tubulaires. Ces produits sont essentiels pour le secteur du BTP, les infrastructures ferroviaires, ainsi que les industries pétrochimiques.

2.1.3 La chaîne de valeur sidérurgique

La chaîne de valeur sidérurgique regroupe l'ensemble des opérations industrielles nécessaires à la transformation du minerai de fer, du charbon et de la ferraille en produits sidérurgiques finis, utilisables dans la construction, l'automobile, l'énergie ou les infrastructures. Cette chaîne se décompose en plusieurs étapes successives, allant de la préparation des matières premières jusqu'au traitement final des produits.

Préparation des matières premières

a) Agglomération et pelletisation

Le minerai de fer extrait des mines est généralement sous forme fine (poudreuse) et nécessite un **traitement préparatoire** avant d'être introduit dans les réacteurs métallurgiques.

• L'agglomération (sintering) consiste à chauffer un mélange de fines de minerai, de fondants (chaux, dolomie) et de fines de coke pour produire des blocs poreux appelés aggloméré (sinter). Ceux-ci présentent une granulométrie et une porosité adaptées au haut fourneau.

• La pelletisation, plus courante dans les installations modernes, produit des pellets sphériques (10–15 mm) par pressage et cuisson de fines de minerai. Ces pellets présentent une composition contrôlée et sont adaptés à la réduction directe.

b) Cokéfaction

Ce procédé permet d'éliminer les composants volatils, tout en obtenant un combustible solide riche en carbone, indispensable au fonctionnement du haut fourneau.

c) Préparation de la ferraille

Dans les aciéries électriques, la **ferraille** (acier recyclé) est collectée, triée, découpée et parfois briquetée. Sa qualité est essentielle pour garantir un acier de bonne composition chimique.

Réduction et fusion

La réduction du minerai de fer consiste à extraire le fer métallique à partir de ses oxydes (Fe₂O₃ ou Fe₃O₄), en éliminant l'oxygène contenu dans le minerai. Cette étape essentielle précède la fusion et permet d'obtenir un matériau utilisable pour la production d'acier.

Deux principales technologies sont utilisées pour cette réduction :

- Hauts fourneaux (HF): le minerai est réduit par le monoxyde de carbone produit lors de la combustion du coke à haute température, générant une fonte liquide qui sera affinée ensuite dans un convertisseur à oxygène (BOF).
- **Réduction directe** (**DRI**): le minerai est réduit à l'état solide, sans fusion, à l'aide d'un gaz réducteur (gaz naturel, hydrogène ou charbon), produisant du fer spongieux (DRI) qui sera ensuite fondu dans un four électrique.

Ces deux filières se distinguent par leur **mode opératoire**, leurs **matières premières** et leur **impact environnemental**, ouvrant des choix variés selon les ressources disponibles et les objectifs industriels.

Métallurgie en poche

La métallurgie secondaire regroupe les opérations réalisées sur l'acier liquide entre la fusion (BOF ou EAF) et la coulée continue. Elle vise à :

- Ajuster la composition chimique (ajout d'alliages, désulfuration, décarburation).
- Contrôler avec précision la température.
- Améliorer la propreté métallurgique (désoxydation, élimination d'inclusions).
- Garantir une homogénéisation thermique et chimique.

Coulée, formage et finition

a) Coulée continue

L'acier liquide est généralement **coulé en continu** dans des moules refroidis, permettant une solidification rapide sous forme de **brames**, **blooms ou billettes**. Cette étape garantit une meilleure qualité interne du métal et une meilleure productivité que la coulée en lingotière.

b) Laminage

Les produits semi-finis passent ensuite par des laminoirs à chaud pour être transformés en :

- **Produits plats**: tôles, bobines, feuillards.
- **Produits longs**: barres, ronds à béton, rails.

Chapitre 2. Etat de l'art

Un laminage à froid peut suivre pour des tolérances dimensionnelles plus fines et de meilleures propriétés mécaniques.

c) Traitements de surface

Pour améliorer la **résistance à la corrosion** et les propriétés esthétiques, des traitements sont appliqués :

- Galvanisation : revêtement de zinc (Zn).
- Revêtements organiques : peinture, laquage.
- Recuit et trempe : pour ajuster la microstructure.

2.2 Durabilité, GES et enjeux environnementaux

Au cours des deux dernières décennies, l'intérêt des chercheurs pour les chaînes logistiques vertes s'est intensifié, porté par la montée des préoccupations environnementales à l'échelle mondiale. La gestion de la chaîne logistique verte vise à intégrer des considérations environnementales tout au long du cycle de vie des produits, en particulier lors de leur conception et de leur fin de vie, afin de limiter les déchets et la pollution. La croissance économique, en entraînant une hausse de la consommation d'énergie et de matières premières, accentue les pressions sur l'environnement et les ressources naturelles. Dans ce contexte, il devient essentiel pour les organisations, soumises à une concurrence accrue, à des exigences réglementaires strictes et à une pression croissante de la part de la société, de parvenir à concilier performance économique et responsabilité environnementale.

2.2.1 La décarbonation de la filière sidérurgique : les enjeux du défi de l'acier vert

La sidérurgie est confrontée à un énorme défi, celui de **ramener à zéro ses émissions de gaz à effet de serre (GES) d'ici à 2050**, ce que l'on appelle l'objectif « **Net Zéro** » ou la neutralité carbone, que la Commission européenne a fixé pour toutes les activités humaines dans son pacte vert européen (PVE) (Commission européenne, 2019). Le défi à relever est important au regard de la taille de ce secteur économique (1 951 Mt d'acier en 2021), de l'intensité carbone de l'acier (environ 2 tCO2 /t acier) et du fait que l'acier est un matériau essentiel au fonctionnement de la société. Les émissions mondiales de GES de la sidérurgie constituent **8 %** des émissions anthropiques. Il est à noter qu'il n'y a pas de fer métal natif dans la géosphère, seulement des oxydes : pour rompre la liaison fer-oxygène, une combinaison entre un haut « pouvoir réducteur » et beaucoup d'énergie est nécessaire, ce qui explique l'intensité carbone élevée de la production d'acier. Le réducteur disponible en quantité suffisante et le moins onéreux est le carbone, lequel provient soit du charbon, soit du gaz naturel (GN), soit de la biomasse, selon les lieux et les époques.

2.2.2 Les voies de réduction des émissions de GES du secteur de la sidérurgie

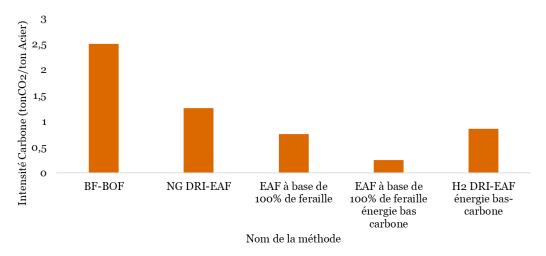


Figure 2-2: Emissions carbone des différentes filières d'acier

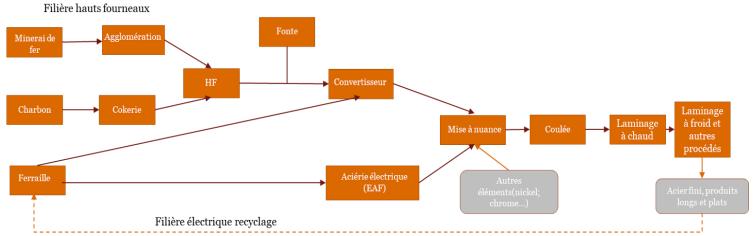


Figure 2-3: Filières de production d'acier

Filière hauts fourneaux

Un procédé historique efficace mais fortement consommateur de charbon et générant des émissions importantes de GES.

Le minerai de fer est transformé en fonte dans le haut fourneau. Le coke de charbon sert d'agent réducteur et de combustible. La fonte est décarburée avec de l'oxygène dans le convertisseur de l'aciérie, qui intègre également entre 10 et 15% de ferrailles. ~2.0 tCO2 émises et ~5-6 MWh par tonne de fonte La réduction par le carbone génère des émissions que l'efficacité énergétique, déjà très poussée, ne permet d'abattre.

Filière électrique recyclage

Les aciéries électriques recyclent de la ferraille en acier en la chauffant à plus de 1500°C par arc électrique. Ce processus requiert 0.5-0.8 MWh d'électricité/tonne d'acier fondu, les aciers fortement alliés nécessitant généralement un apport thermique plus important. Par exemple : Avec le mix électrique français, le recyclage d'une tonne de ferraille permet d'éviter 75%-80% des émissions.

Figure 2-4: Comparaison des filières HF et électrique [19]

Les stratégies de décarbonation de la filière sidérurgique sont présentées en Annexe 3.

2.2.3 Méthodologie de calcul du bilan carbone

L'ADEME propose une évaluation globale des émissions de gaz à effet de serre, qu'elles soient directes ou indirectes, c'est-à-dire de scopes 1, 2 et 3 :

Le scope 1 représente les émissions directes de GES produites par l'entreprise sur son site ou avec des équipements dont elle est propriétaire.

Le scope 2 correspond aux émissions indirectes liées à l'énergie, mais qui ne se produisent pas directement sur le site de l'entreprise (électricité, vapeur d'eau produite ailleurs).

Le scope 3 est lié aux émissions indirectes qui ne sont pas sous le contrôle de l'entreprise en amont et en aval de ses opérations. La méthode Bilan Carbone repose sur les données d'activité de l'entreprise et sur une banque de facteurs d'émissions [58] permettant de convertir les données d'activité en tonnes de CO2 équivalent.

Le calcul est simple et se fait suivant la formule mathématique suivante :

Émissions de CO₂ = quantité consommée x facteur d'émission.

Afin d'obtenir l'équivalent CO₂ d'un gaz, il faut suivre la formule suivante :

Tonne d'Équivalent CO₂ d'un gaz = quantité du gaz × Potentiel de réchauffement global du gaz souhaité.

À noter que l'empreinte carbone se quantifie en kilogrammes d'équivalent dioxyde de carbone (kg CO₂eq).[20]

2.3 Concepts sur les études de faisabilité

2.3.1 L'étude de faisabilité

Une étude de faisabilité est une analyse systématique visant à évaluer la viabilité d'un projet sous tous ses aspects (technique, économique, juridique, etc.) avant tout engagement de ressources importantes. Elle permet de déterminer si un projet est réalisable, rentable et aligné avec les capacités de l'organisation. [21]

L'architecture méthodologique d'une étude de faisabilité complète s'articule traditionnellement autour de plusieurs volets interdépendants : marché, technique, socio-environnemental et financier. Cependant, cette structure n'est ni systématique ni exhaustive ; son application doit être adaptée en fonction des spécificités du projet et des caractéristiques de l'entreprise porteuse. Dans la pratique, ces volets s'alimentent mutuellement selon une dynamique itérative plutôt que strictement séquentielle, bien que l'analyse de marché constitue généralement le point de départ naturel.[22] Les différents volets non-financiers sont présentés en Annexe 4.

2.3.2 La faisabilité financière

L'étude de faisabilité financière permet d'apprécier la capacité du projet à générer des flux de trésorerie suffisants pour couvrir ses coûts tout en dégageant une marge bénéficiaire satisfaisante. Pour qu'un investissement soit considéré comme acceptable, il doit démontrer sa capacité à créer de la richesse et de la valeur au travers de plusieurs critères de rentabilité. L'analyse ne prétend pas fournir des prévisions exactes, mais plutôt établir des projections réalistes permettant de comparer différents scénarios d'investissement.

On retient principalement 4 indicateurs pour évaluer la rentabilité d'un projet d'investissement: La valeur actuelle nette (**VAN**), le taux de rendement interne (**TRI**), le délai de récupération (**DR**), et l'indice de profitabilité (**IP**), que l'on va détailler. Ces différentes mesures sont basées sur le calcul du cash-flow et du taux d'actualisation.

Cash-flow:

Le cash-flow représente l'ensemble des flux monétaires effectifs générés par les activités d'une entreprise sur une période donnée. Il constitue un indicateur financier clé permettant d'apprécier sa capacité d'auto-financement et son potentiel d'investissement [23]

La formule pour le calcul du CF est comme suit :

 $Cash\ flow = EBE - Variation\ BFR - Impôts - Investissements\ net\ [24]$

Avec

-EBE : excédent brut d'exploitation -BFR : besoin en fonds de roulement

Taux d'actualisation:

L'actualisation est une méthode financière qui permet de déterminer la valeur présente d'un flux futur en appliquant un taux reflétant le temps (inflation) et le risque. Elle pondère les flux monétaires en fonction de leur éloignement dans le temps, rendant ainsi comparables des capitaux disponibles à différentes dates. [25]

Les taux d'actualisation suivants sont généralement admis :

- 6 % pour des projets peu risqués ;

- 10 % pour des projets assez risqués ;
- -15 % et plus pour des projets très risqués.[26]

La valeur actuelle nette (VAN):

La VAN est l'indicateur de base pour évaluer la rentabilité d'un investissement. Elle se calcule comme la différence entre la somme des flux de trésorerie futurs actualisés et le montant de l'investissement initial. Concrètement, la VAN mesure la richesse supplémentaire générée par le projet après avoir couvert l'intégralité des coûts d'investissement et d'exploitation et rémunéré les capitaux engagés au taux exigé compte tenu du risque du projet.[22]

Formule de calcul:

$$VAN = \sum_{t=1}^{N} \frac{CF_{t}}{(1+i)^{t}} - I_{0}$$

Avec:

- I₀: Investissement initial.
- CFt : Cash-flows prévisionnels de l'année t.
- N : Durée de vie du projet.
- i : Taux d'actualisation.

Règle de décision :

• Si la VAN>0:

Le projet est jugé rentable : le taux de rentabilité est supérieur à celui du marché, et le retour sur l'investissement est supérieur aux ressources utilisées. Il est recommandé d'accepter le projet. La VAN est représentative de la création de valeur de l'investissement

• Si la VAN=0:

Le projet est jugé acceptable : le taux de rentabilité est égal à celui du marché, la rentabilité de l'investissement suffit seulement à récupérer les ressources mises en œuvre

• Si la VAN<0:

Le projet n'est pas rentable : le taux de rentabilité est inférieur à celui du marché, et le projet est à rejeter

Si deux projets sont mutuellement exclusifs, on accepte le projet dont la VAN positive est la plus élevée. [8]

L'avantage de la VAN est de pouvoir tenir en compte les facteurs temps et risque, cependant elle ne permet pas à elle seule de comparer des projets dont les montants ou les horizons de temps sont différents.[26]

Le taux de rendement interne (TRI) :

Le taux de rendement interne (TRI) est le taux qui annule la VAN. Le taux de rentabilité interne (TRI) doit nécessairement dépasser le coût d'opportunité du capital applicable au contexte géographique et sectoriel du projet.

Formule:

VAN=0 ou
$$\sum_{t=1}^{N} \frac{cF_t}{(1+TRI)^t} = I_0$$

Règle de décision :

- -Le TRI doit être supérieur au taux de rendement exigé par l'entreprise pour que le projet soit accepté, sinon il est rejeté.
- -Entre deux projets mutuellement exclusifs, il faut retenir celui dont le TRI est le plus élevé.[22]
- -En cas de conflit entre la VAN et le TRI, la pratique recommande d'appliquer la VAN. [25]

Même si le TRI est facile à comprendre et appliquer, il ne représente pas de signification financière réelle. De plus, il peut exister pour un même projet plusieurs TRI, dans ce cas il faut utiliser la VAN. [22]

Le délai de récupération actualisé (DR) :

Le DR représente le temps nécessaire pour qu'un projet génère suffisamment de flux de trésorerie cumulés pour couvrir son investissement initial. Il privilégie les projets solvables rapidement.[27]

Formule:

$$DR = \frac{I_0 - cumul \, inf\'{e}rieur}{cumul \, sup\'{e}rieur - cumul \, inf\'{e}rieur} + \, ann\'{e}e \, du \, cumul \, inf\'{e}rieur$$

Cumul inférieur : correspond au cumul des Cash-flows avant que le projet n'atteigne la rentabilité

Règle de décision :

- -Pour l'évaluation d'un seul projet, il est accepté si le DR est inférieur au seuil fixé par l'entreprise pour récupérer ses fonds. Sinon le projet est rejeté.
- -Pour comparer plusieurs projets mutuellement exclusifs, un projet avec un DR plus court est rentable plus rapidement et est donc préféré.

Ce critère présente l'avantage d'être facile à appliquer et favoriser la liquidité. Cependant, il ne tient pas compte des flux générés après la récupération de l'investissement, et défavorise les projets à long terme. [26]

L'indice de profitabilité (IP):

L'IP mesure le rapport entre la valeur actuelle des flux de trésorerie futurs générés par un projet et le montant de l'investissement initial. Il représente l'efficacité d'un investissement, en quantifiant combien rapporte chaque unité monétaire investie.

Formule:

$$IP = \frac{\sum_{t=1}^{N} \frac{CF_{t}}{(1+t)^{t}}}{I_{0}} = 1 + \frac{VAN}{I_{0}}$$

Règle de décision :

- Si l'IP>1 : le projet est rentable.
- Si l'IP=1 : le projet est sans rendement.
- Si l'IP<1 : le projet n'est pas rentable.
- Entre des projets mutuellement exclusifs, on retient celui dont l'IP est le plus élevé [22]

L'indice de profitabilité permet de comparer l'efficience des projets indépendamment de leur taille, mais il présente les mêmes inconvénients que la VAN par rapport au taux d'actualisation et l'horizon temporel du projet.

2.4 Aide multicritère à la décision

Selon Roy, "L'aide à la décision est l'activité de celui qui, prenant appui sur des modèles clairement explicités mais non nécessairement complètement formalisés, aide à obtenir des éléments de réponse aux questions que se pose un intervenant dans un processus de décision, éléments concourant à éclairer la décision et normalement à recommander, ou simplement à favoriser, un comportement de nature à accroître la cohérence entre l'évolution du processus d'une part, les objectifs et le système de valeurs au service desquels cet intervenant se trouve placé d'autre part."

2.4.1 Définition d'un problème de décision multicritère

Un problème de décision multicritère se définit comme une situation où, face à un ensemble **d'actions potentielles** (décisions, alternatives, scénarios) et une famille cohérente de **critères**, l'objectif est d'orienter un choix selon plusieurs objectifs souvent conflictuels [28]. Sa formulation structurée, formalisée par Vansnick, repose sur le modèle "A, A/G, E" :

-L'ensemble A : représenté les actions envisageables pour résoudre le problème. Ces actions peuvent prendre diverses formes : choix de sites d'implantation, stratégies d'investissement, ou variantes techniques. Elles sont définies soit explicitement (liste finie d'alternatives, avec contraintes implicites), soit implicitement (ensemble infini décrit par des contraintes mathématiques explicites, relevant de la programmation multi-objectifs). Leur nature varie : stables (fixées a priori), évolutives (modifiables durant l'analyse), globalisées (mutuellement exclusives) ou fragmentées (combinaisons possibles).

L'élément A/G : correspond à la famille de critères utilisée pour évaluer les actions. Ces critères, nécessairement conflictuels, traduisent les dimensions clés du problème (coûts, qualité, impacts sociaux ou environnementaux). Leur sélection est une étape centrale de la structuration du problème, car ils rendent explicites les valeurs des acteurs impliqués et fondent l'évaluation comparative.

L'élément E : désigne les évaluations de performances des actions selon chaque critère. Il s'agit d'une matrice où chaque action est associée à un vecteur de performances, généralement noté g, reflétant ses résultats mesurés ou estimés pour l'ensemble des critères. Ces évaluations peuvent être quantitatives (mesures objectives) ou qualitatives (jugements d'experts), mais intègrent souvent des incertitudes et imperfections liées à la complexité du réel. [29]

La difficulté fondamentale de ce problème réside dans son caractère mathématiquement "mal posé": aucune action n'est optimale sur tous les critères simultanément, car ceux-ci sont incommensurables et reflètent des objectifs antagonistes. Cette complexité est accentuée par l'indétermination, le manque d'information, et la nécessité d'intégrer des préférences subjectives. Ainsi, la solution n'est jamais unique ou objective, mais constitue un compromis dépendant de la personnalité du décideur, du contexte opérationnel, et de la méthode d'agrégation choisie.[30]

Roy 1993 a identifié 3 formulations de base pour classifier les problèmes d'aide à la décision, présentées dans le tableau suivant :

Problématique	Objectif	Résultat
P_{α}	Eclairer la décision par le choix d'un sous- ensemble aussi restreint que possible en vue d'un choix final d'une seule action	Un choix ou une procédure de sélection.
P_{eta}	Eclairer la décision par un tri résultant d'une affectation de chaque action à une catégorie, les catégories étant définies a priori en fonction des normes ayant trait à la suite à donner aux actions qu'elles sont destinées à recevoir.	Un tri ou une procédure d'affectation.
P_{γ}	Eclairer la décision par un rangement obtenu en regroupant tout ou partie (les « plus satisfaisantes ») des actions en classes d'équivalence, ces classes étant ordonnées de façon complète ou partielle, conformément aux préférences.	Un rangement ou une procédure de classement.

Tableau 2-1: Typologie des problèmes d'AMD [30]

2.4.2 Démarche de l'aide à la décision multicritère

L'AMD suit une démarche rigoureuse qui se décline en 4 étapes principales :

Formulation du problème et détermination de l'objet de décision :

Cette étape initiale consiste à cadrer rigoureusement le problème de décision en interaction avec les acteurs impliqués. Elle vise à comprendre le contexte opérationnel, les enjeux stratégiques, et la nature de la décision à prendre. L'objectif central est d'identifier l'objet de la décision, matérialisé par l'ensemble A des actions potentielles envisageables.[31]

A représente l'ensemble des alternatives admissibles pour résoudre le problème. Une action peut être stable ou évolutive, globale (exclusive d'autres actions) ou fragmentaire (combinaison d'actions permise). La construction de A formalise ainsi le champ des possibles et constitue le socle de l'analyse multicritère. [28]

Analyse des conséquences et détermination des critères :

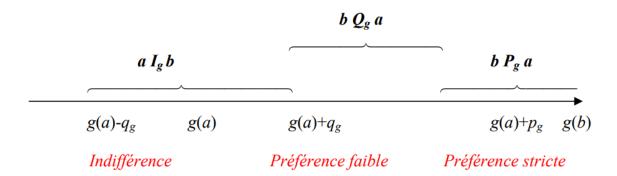
La construction des critères repose sur deux démarches complémentaires pour modéliser les conséquences des actions. Bernard Roy propose une approche ascendante (**bottom-up**) : elle part de l'identification exhaustive des conséquences concrètes découlant de la mise en œuvre des actions. Ces conséquences sont structurées en dimensions transversales, puis en axes de signification homogènes, servant de base à l'élaboration des critères d'évaluation.

À l'inverse, Ralph Keeney défend une approche descendante (**top-down**) : celle-ci débute par la formulation d'un objectif global, décomposé hiérarchiquement en sous-objectifs spécifiques jusqu'à atteindre un niveau opérationnel et mesurable, appelé "attribut", permettant de quantifier la performance des actions.

Ces deux logiques : ascendante (inductive, centrée sur les impacts réels) et descendante (déductive, centrée sur les finalités stratégiques), offrent des cadres méthodologiques distincts pour traduire la complexité décisionnelle en critères pertinents et cohérents. [28]

La famille de critères construite doit répondre à des propriétés précises : exhaustivité, cohésion, indépendance, non redondance. [30] Les critères peuvent être soit des vrai-critères ou pseudo-critères selon la **modélisation des préférences :**

- **Vrai critère** : Modèle idéalisé où la moindre différence numérique implique une préférence stricte. Cette approche est peu réaliste, car la différence n'est pas toujours significative.[30] Pour deux actions (a) et (b):


$$g(b) = g(a) \Leftrightarrow b I_g a \text{ (indifférence)}$$

et
 $g(b) > g(a) \Leftrightarrow b P_g a \text{ (préférence stricte)}$ [31]

- Pseudo-critère : Modèle robuste intégrant des seuils de discrimination :
- Seuil d'indifférence (q) : Tolérance en dessous de laquelle les différences sont négligeables.
- **Seuil de préférence** (\mathbf{p}) (($\mathbf{p}>\mathbf{q}\geq 0$) : Différence minimale au-delà de laquelle on exprime une préférence claire. [80]

$$g(b) - g(a) \le q_g(g(a)) \Leftrightarrow b I_g a$$

$$p_g(g(a)) < g(b) - g(a) \Leftrightarrow b P_g a$$

$$q_g(g(a)) < g(b) - g(a) \le q_g(g(a)) \qquad b Q_g a$$
[31]

La zone (Qg) traduit l'hésitation entre indifférence et préférence stricte.

- **Seuil de veto** (v) (v>p) : Limite au-delà de laquelle une faiblesse sur un critère invalide la supériorité globale. Si g(a)-g(b)>vj, l'action (b) ne peut surclasser (a), même si elle domine sur d'autres critères. [30]

Ces seuils permettent de définir 4 relations binaires qui reflètent les situations présentées plus haut, que l'on présente dans ce tableau :

Situation	Définition	Relation binaire (propriétés)
Indifférence	Elle correspond à l'existence de raisons claires et positives qui justifient une équivalence entre deux actions.	I: relation symétrique réflexive
Préférence stricte	Elle correspond à l'existence de raisons claires et positives qui justifient une préférence significative en faveur de l'une (identifiée) des deux actions.	
Préférence faible	Elle correspond à l'existence de raisons claires et positives qui infirment une préférence stricte en faveur de l'une (identifiée) des deux actions. Mais ces raisons sont insuffisantes pour en déduire soit une préférence stricte en faveur de l'autre, soit une indifférence entre ces deux actions.	
Incomparabilité	Elle correspond à l'absence de raisons claires et positives justifiant l'une des trois situations précédentes	R: relation symétrique irréflexive

Tableau 2-2: Relations binaires en AMD [30]

Choix de la méthode d'agrégation :

Le choix de la méthode d'AMD dépend de la nature du problème et des exigences décisionnelles. Trois approches d'agrégation principales existent :

- **-L'agrégation complète** combine tous les critères en une fonction d'utilité globale. Adaptée aux problèmes où les critères sont commensurables et les préférences transitives, elle offre simplicité et classement complet, mais masque les conflits par compensation excessive entre critères. Parmi ces méthodes, on peut citer la somme pondérée, le minimax, ou l'AHP.
- **-L'agrégation partielle :** compare les actions via des relations binaires de sur-classement. Elle préserve l'incomparabilité et intègre des seuils (concordance, veto), idéale pour les critères conflictuels ou incertains. Son coût est une complexité accrue et des résultats parfois non transitifs. C'est le cas des méthodes ELECTRE et PROMETHEE par exemple.

	Nature du problème		
Critères	α	β	γ
	(sélection)	(affectation)	(classement)
Vrai	I	-	II
critère			
Pseudo-	IS	Tri	III, IV
critère			

Tableau 2-3: Classification des méthodes ELECTRE

-L'agrégation locale explore progressivement l'espace des solutions via des cycles interactifs décideur/analyste. Réservée aux ensembles d'actions vastes ou infinis, elle est flexible mais exige un engagement temporel fort sans garantie d'optimalité globale.

Le choix entre ces approches dépend fondamentalement de la nature du problème :

- L'agrégation complète convient aux décisions structurées avec des critères commensurables et des préférences stables.
- L'agrégation partielle s'impose face à des critères conflictuels et des incertitudes nécessitant une modélisation fine des veto et seuils.
- L'agrégation locale est réservée aux problèmes complexes à large espace de décision, où l'interaction humaine est cruciale.

Aucune méthode n'étant universelle, ce choix implique un arbitrage conscient entre exhaustivité, robustesse et pragmatisme opérationnel.

Performance des alternatives :

Cette étape consiste à l'application de la méthode multicritère choisie. Pour chaque alternative considérée, et pour chaque critère on pourra définir un seuil de préférence P, d'indifférence Q et un seuil de veto V.

Chaque critère se voit attribuer un poids K traduisant sa contribution dans la décision finale. Le poids de ces critères est déterminé à partir des pondérations des parties prenantes, en suivant des méthodes comme la méthode Delphi, les méthodes de choix social (Borda, Condorcet), ou des méthodes d'agrégation (AHP). Tout ça sera résumé dans une matrice appelée "Matrice de performance", cette dernière contient les performances de chaque solution probable par rapport à chaque critère retenu. Finalement, à l'aide de toutes ces données, le résultat sera de faire ressortir la meilleure action, de trier les actions ou de classer les alternatives en catégories.

2.4.3 Analytical Process Hierarchy(AHP)

La méthode AHP (Analytic Hierarchy Process), introduite par Thomas Saaty dans les années 1980, est une méthode d'aide à la décision multicritère fondée sur une approche hiérarchique et des comparaisons par paires. Elle est conçue pour traiter des problèmes complexes en les structurant sous forme hiérarchique et en permettant l'élicitation des préférences du décideur, même en présence d'informations subjectives ou qualitatives. [32]

L'idée centrale de l'AHP est de décomposer le problème décisionnel en niveaux successifs (objectif, critères, alternatives), puis d'évaluer l'importance relative des éléments à chaque niveau par des jugements par paires. Le résultat de cette évaluation permet d'attribuer à chaque élément un poids reflétant son influence dans la décision finale. L'AHP peut être utilisée pour pondérer un ensemble de critères, ainsi que mesurer les performances d'alternatives face à chacun des critères.[28]

Démarche de la méthode

a) Modélisation hiérarchique du problème

Le problème de décision est tout d'abord structuré sous forme hiérarchique :

- -Au sommet, on place l'objectif global de la décision.
- -Le niveau intermédiaire contient les critères (et sous-critères éventuels) influant sur l'objectif.
- -À la base se trouvent les **alternatives** en concurrence.

Cette représentation facilite la compréhension du système décisionnel et permet d'organiser les jugements à fournir. [32]

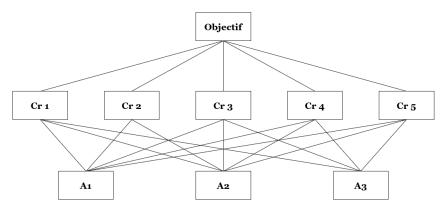


Figure 2-5: Hiérarchie de l'AHP

b) Comparaisons par paires

Les éléments de chaque niveau sont comparés **deux à deux** relativement à un élément du niveau supérieur, selon **l'échelle de Saaty** allant de 1 à 9 (et leurs réciproques), comme illustré dans le tableau suivant.

Degré d'importance	Définition	Explication
1	Importance égale	Les deux éléments contribuent de manière égale à l'objectif.
3	Importance modérée	Un élément est légèrement favorisé par rapport à un autre
5	Importance forte	L'expérience et le jugement personnel favorisent fortement une activité plutôt qu'une autre.
7	Importance très forte	Un élément est très fortement favorisé par rapport à un autre.
9	Importance extrême	Les preuves favorisant un élément par rapport à un autresont aussi convaincantes que possible.
2,4,6,8	Valeurs intermédiaires Un compromis est nécessaire entre deux appréciations.	
Valeurs inverse	Si un élément i se voit attribuer l'une des valeurs précédentes lorsqu'elle est comparée à l'élément j, alors celui-ci aura donc la valeur inverse lorsqu'on la compare à i.	

Tableau 2-4: Echelle de SAATY

Les jugements sont saisis dans des **matrices de comparaison**, qui possèdent les propriétés suivantes :

$$a_{ij} > 0$$
; $a_{ij} = 1/a_{ji}$; $a_{ii} = 1$

c) Calcul des poids relatifs

À partir de chaque matrice, on calcule un **vecteur propre normalisé** représentant le **poids** (ou priorité relative) de chaque critère ou alternative. La méthode usuelle consiste à :

- 1. Calculer la somme de chaque colonne ;
- 2. Diviser chaque élément de la matrice par le total de sa colonne ;
- 3. Calculer la **moyenne des lignes**, ce qui donne le poids de chaque élément Ce processus est répété pour chaque niveau de la hiérarchie si nécessaire.[28]

d) Vérification de la cohérence

Afin de s'assurer de la fiabilité des jugements fournis, la méthode AHP propose de calculer un **indice de cohérence** (IC) :

$$IC = \frac{\lambda_{max} - n}{n - 1}$$

Sachant que:

 λ_{max} : Valeur propre maximale n: Nombre d'éléments de la matrice

$$RC = \frac{IC}{IA}$$

Et un ratio de cohérence (RC):

Où IA est l'indice de cohérence aléatoire, tabulé en fonction de la taille de la matrice:

Dimension de la matrice	1	2	3	4	5	6	7	8	9	10
IA	0	0	0,58	0,9	1,12	1,24	1,32	1,41	1,45	1,49

Tableau 2-5: Valeurs tabulées de l'indice de cohérence aléatoire

Une valeur de RC<0,10 est généralement considérée comme acceptable [28].

2.4.4 ELECTRE III

ELECTRE III est une méthode d'agrégation partielle qui permet de résoudre des problématiques de classement (ou de rangement). Développée par Bernard Roy au sein du laboratoire LAMSADE dans les années 1980, cette méthode est spécifiquement conçue pour traiter des situations dans lesquelles l'évaluation des alternatives comporte des incertitudes, des imprécisions, ou une gradation dans les préférences, exprimés par des seuils. Contrairement à d'autres approches (comme l'agrégation par somme pondérée), ELECTRE III ne vise pas à identifier une unique solution optimale mais à établir un classement partiel ou complet des actions, en tenant compte des préférences floues ou hésitantes des décideurs.

Principes fondamentaux

Le cœur de la méthode repose sur la construction d'une **relation de sur classement floue** entre toutes les paires d'actions. Une alternative **a** surclasse une autre alternative **b**, notée **a S b**, si l'on dispose d'éléments suffisamment probants pour affirmer que **a** est au moins aussi satisfaisante que **b** pour l'ensemble des critères pris en compte. Cette relation repose sur deux familles d'indices :

- Un **indice de concordance globale**, qui mesure le degré de soutien à l'affirmation "a est au moins aussi bon que b", en agrégeant les contributions individuelles des critères.
- Des **indices de discordance**, qui identifient les éventuels critères opposés à cette affirmation, jouant un rôle de "veto" partiel ou total.

La méthode ELECTRE III se distingue également par sa capacité à intégrer **des seuils de préférence**, **d'indifférence et de veto** pour chaque critère, permettant de mieux modéliser la réalité des préférences humaines, souvent non linéaires ou imprécises.

Données et paramètres requis

Soit $A=\{a_1,a_2,...,a_m\}$ l'ensemble d'alternatives et $G=\{g_1,g_2,...,g_n\}$ la famille de critères, on associe à chaque critère g_i les paramètres suivants :

- -Un **poids** k_i reflétant son importance relative.
- -Un sens de préférence (croissant ou décroissant).
- -Un seuil d'indifférence q_i, en-dessous duquel deux performances sont jugées équivalentes.
- -Un seuil de préférence p_i, au-dessus duquel une différence est jugée significative.
- -Un **seuil de veto v**_j, au-delà duquel une contre-performance remet en cause la supériorité de a sur b malgré l'avis majoritaire des autres critères.

Ces seuils peuvent être **constants** ou **fonctionnels**, c'est-à-dire dépendre de la valeur de la performance observée (formulation affine, par exemple).[31]

Étapes de la méthode ELECTRE III

La démarche se décompose en plusieurs étapes systématiques :

a) Calcul des indices de concordance partiels

Pour chaque critère g_j, et pour chaque paire (a, b), on détermine le **degré de soutien** apporté par le critère à l'affirmation "a est au moins aussi bon que b". Pour un sens de préférence croissant, on obtient :

$$C_{j}(a,b_{h}) = \begin{cases} 0 sig_{j}(b) - g_{j}(a) \geq p_{j}(g_{j}(a)) \\ 1 sig_{j}(b) - g_{j}(a) \leq q_{j}(g_{j}(a)) \\ p_{j}(g_{j}(a)) + g_{j}(b) - g_{j}(a) \\ p_{j}(g_{j}(a)) - q_{j}(g_{j}(a)) \end{cases}$$

Soit:

- -cj(a,b)=1 si la différence est inférieure au seuil d'indifférence q_i,
- -cj(a,b) décroît linéairement entre 1 et 0 entre q_i et p_i,
- -cj(a,b)=0 si la différence dépasse le seuil de préférence p_i.

b) Calcul de l'indice de concordance global

Les indices partiels sont agrégés en un indice de concordance global C(a,b) par une moyenne pondérée :

$$C(a,b) = \frac{\sum_{j \in F} k_j c_j(a,b)}{\sum_{i \in F} k_j}$$

Cet indice représente le niveau global de soutien à l'idée que a surclasse b, en tenant compte du poids relatif de chaque critère.

c) Calcul des indices de discordance

Pour chaque critère g_j , on vérifie s'il existe une discordance forte entre a et b. L'indice de discordance $d_j(a,b)$ mesure dans quelle mesure la performance de a est nettement inférieure à celle de b sur ce critère. Il est calculé par la même logique que les indices de concordance de la façon suivante :

d) Calcul de l'indice de crédibilité

L'indice de crédibilité d(a,b) combine l'indice de concordance global avec les indices de discordance. Il s'agit d'un ajustement du soutien initial à l'affirmation "a surclasse b" en prenant en compte les éventuelles oppositions :

$$d(a,b) = C(a,b) \prod_{j \in \bar{F}} \frac{1 - D_j(a,b)}{1 - C(a,b)}$$

$$\bar{F} = \{ j \in F : d_j(a,b) > C(a,b) \}$$
Avec

Plus l'indice de crédibilité est élevé (proche de 1), plus l'hypothèse que a surclasse b est jugée plausible.

e) Construction du classement (distillation)

Après le calcul de l'indice de crédibilité d(a,b) pour toutes les paires d'alternatives (a,b), la méthode ELECTRE III procède à un **classement global** des alternatives via un processus appelé **distillation**. Ce processus permet d'établir un **ordre partiel ou total** en tenant compte du degré de surclassement entre alternatives.

La première étape consiste à transformer la relation de surclassement floue en une **relation de** surclassement nette, en fixant un seuil de coupe $\lambda \in [0,1]$.

Deux conditions doivent être satisfaites pour que l'on considère que l'alternative a surclasse l'alternative b :

Chapitre 2. Etat de l'art

```
d(a,b) > \lambda et d(a,b) > d(b,a) + s(d(a,b))
où :
s(\sigma(a,b)) = -0.5 \cdot \sigma(a,b) + 0.30
```

Ces relations de surclassement nettes permettent de définir un **classement partiel ou complet** des alternatives à travers un processus de **distillation**, qui peut être :

- **Descendante**: on identifie les alternatives dominantes (les "meilleures").
- **Ascendante** : on identifie les alternatives dominées (les "pires").

Les deux distillations sont ensuite **fusionnées** pour obtenir un classement final (souvent un préordre, donc avec des classes d'équivalence possibles).

Avantages et limites de la méthode

La méthode ELECTRE III présente plusieurs avantages notables :

- Elle permet d'intégrer des **préférences imprécises**, via les seuils et les indices flous.
- Elle est adaptée aux **contextes de conflit** ou de divergence entre critères, en présence d'incommensurabilité.
- Elle est capable de générer **un classement partiel**, reflétant des situations d'incomparabilité légitimes.

Cependant, elle requiert une **modélisation fine** des seuils et des poids, ce qui suppose une **forte implication du décideur** ou des experts du domaine. De plus, la méthode peut devenir complexe à implémenter manuellement pour un grand nombre d'alternatives.

2.5 L'aménagement industriel

L'aménagement industriel représente une discipline stratégique pour la conception d'installations manufacturières complexes, particulièrement dans la sidérurgie où les flux massifs de matières premières, les contraintes énergétiques et les impératifs de sécurité exigent une optimisation spatiale rigoureuse [33]. Deux typologies structurent cette démarche :

- Les projets **nouveaux** (greenfield), nécessitant une conception ex nihilo.
- Les projets **d'amélioration** (brownfield), visant à optimiser des installations existantes réalité dominante dans l'industrie, bien que moins documentée académiquement [33].

Dans les complexes sidérurgiques, l'agencement des départements relève d'une hybridation entre organisation **par procédé** (regroupement des équipements similaires) et **par produit** (séquence linéaire dédiée à une famille de produits), avec un impact direct sur la productivité et les coûts logistiques [34], [33].

La Méthode Systematic Layout Planning (SLP)

Développée par Richard Muther dans les années 1960, la méthode SLP constitue un référentiel structuré pour l'implantation industrielle. Son efficacité réside dans son approche systématique et itérative, applicable aussi bien aux projets nouveaux qu'aux réaménagements [33], [34]. La démarche s'articule en quatre phases interconnectées :

Localisation

Cette phase détermine le site géographique du complexe en évaluant :

- La proximité des matières premières.
- L'accès aux infrastructures logistiques (ports, voies ferrées).
- La disponibilité énergétique (électricité, gaz) et hydrique.
- Les réglementations environnementales et les incitations fiscales [33], [34].

Implantation Générale

Phase centrale du SLP, elle définit l'agencement macroscopique des départements. Elle transforme les exigences opérationnelles (inputs) en configurations spatiales via une séquence rigoureuse :

- a) Analyse des données primaires : identifier et caractériser les données sur les :
 - **Produits** (**P**): Identification exhaustive des matières premières, produits intermédiaire et finis.
 - Quantités (Q): Projection des volumes annuels de production par famille de produits.
 - Séquence de fabrication (R): Définition des étapes de transformation
 - Services supports(S): Recensement des utilités critiques (énergie, eau, gaz).[33], [34].
- **b**) Évaluation des flux : construire une matrice Origine-Destination formalisant les mouvements de matière inter-départements. Les volumes des flux seront ensuite traduits sur l'échelle de notation conventionnelle suivante :

Notation	Signification		
A	Abnormally high intensity of flow		
E	Especially high intensity of flow		
I	Important intensity of flow		
О	Ordinary intensity of flow		
U	Unimportant intensity of flow		

Tableau 2-6: Echelle de notation des relations

c)Diagramme des relations : Le diagramme relationnel (REL Chart) permet de formaliser de manière systématique les interactions entre les différents départements du complexe sidérurgique, en intégrant non seulement les flux logistiques mais aussi des critères opérationnels, de sécurité et environnementaux à lister. Chaque relation est évaluée selon l'échelle précédente de A à U, avec une nouvelle note X qui représente la nécessité d'éloigner les départements. Cette représentation visuelle synthétique sert de base scientifique pour concevoir un agencement spatial optimal qui équilibre efficacité industrielle et contraintes techniques. [33],[34]

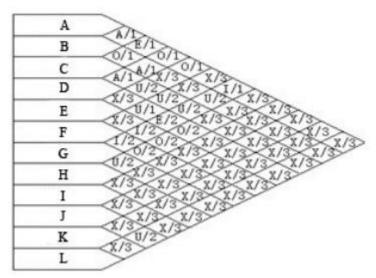


Figure 2-6: Exemple d'un diagramme des relations

d)Diagramme relationnel spatial: Cette phase commence par estimer les surfaces nécessaires pour chaque département. Les données spatiales sont ensuite intégrées dans un schéma directeur où les départements sont représentés par des blocs dimensionnés, positionnés selon les impératifs de proximité ou d'éloignement identifiés précédemment. Les relations entre départements seront représentées par des arcs différents selon l'importance de la relation. La convention suivante est adoptée:

Vowel Letter	No. Value	No. of Lines	Closeness Rating		
Α	4	///	Absolutely Necessary		
E	3	//	Especially Important		
- 1	2	//	<u>I</u> mportant		
0	1	/	<u>O</u> rdinary		
U	0		<u>U</u> nimportant		
х	-1	W	Not Desirable		

Tableau 2-7: Symboles du diagramme spatial

Ce diagramme spatial, qui tient compte à la fois des contraintes techniques et des relations fonctionnelles, permet de visualiser concrètement différentes alternatives d'implantation. [33][34][35]

e) Génération d'alternatives : consiste à élaborer plusieurs scénarios d'implantation à partir du diagramme relationnel spatial. Les variantes seront confrontées aux contraintes de réalisation. Cette étape créative permet d'explorer différentes configurations avant de les évaluer objectivement. [33],[34]

Implantation Détaillée

Cette phase précise l'agencement interne des équipements au sein de chaque département défini lors de l'implantation générale. Elle intègre :

- La disposition des machines et convoyeurs.
- Les voies de circulation internes.
- Les zones de stockage temporaire et les espaces de sécurité [33], [34].

Installation

Phase opérationnelle couvrant :

- La planification du déploiement physique (séquence d'installation).
- L'adaptation des infrastructures existantes.
- La gestion de la transition pour minimiser les perturbations de production [33].

Conclusion

Ce chapitre a permis de poser les bases techniques essentielles à la compréhension du secteur sidérurgique. À travers la présentation des différentes étapes de transformation — de la préparation des matières premières à la finition des produits — il met en lumière la complexité et l'interdépendance des opérations constituant la **chaîne de valeur sidérurgique**. Il aborde également les **enjeux environnementaux majeurs** auxquels fait face l'industrie sidérurgique, notamment en matière d'émissions de gaz à effet de serre.

De plus, ce chapitre pose les fondations méthodologiques du travail à venir. Afin d'élaborer une stratégie robuste et rationnelle, nous mobiliserons plusieurs outils décisionnels complémentaires : la méthode AHP et ELECTRE III pour le choix optimal des mines, en intégrant des critères techniques, économiques, logistiques et environnementaux ; l'AMDEC pour déterminer quels équipements doivent être conservés, modernisés ou remplacés, selon leur criticité et leur impact sur la chaîne de valeur ; la méthode SLP (Systematic Layout Planning) pour optimiser le plan de masse du site en assurant la fluidité des flux physiques et la cohérence des implantations ; puis une étude de rentabilité approfondie afin d'évaluer la viabilité économique des différents scénarios proposés. Enfin, un bilan carbone complet sera mené afin d'intégrer la dimension environnementale dans toutes les décisions clés, en assurant la compatibilité du projet avec les objectifs de réduction des GES et les standards internationaux émergents. Ces outils combinés permettront de structurer une trajectoire industrielle cohérente, durable et alignée avec les ambitions de transformation du client X.

Chapitre 3 : Solutions proposées

Introduction:

Ce chapitre constitue la concrétisation de l'étude de faisabilité sur la base des résultats du chapitre 1. La solution proposée est structurée de la manière suivante :

- La chaîne de valeur du client est repensée afin de répondre à la problématique posée. Un benchmark technologique permet tout d'abord de sélectionner le processus de production d'acier vert le mieux adapté. Ensuite, la partie amont (approvisionnement) fait l'objet d'une analyse multicritère pour le classement des minerais, avec une pondération des critères calculée selon l'AHP et un classement réalisé grâce à ELECTRE III. Cette phase se poursuit par une analyse AMDEC modifiée visant à identifier les équipements à maintenir, à rénover ou à remplacer, et se conclut par la conception du layout général du complexe.
- La deuxième partie porte sur le dimensionnement des flux de matières et de produits. Le mix minerai est déterminé sur l'ensemble de l'horizon du projet en intégrant les contraintes d'exploitation des différentes sources, tandis que le mix produit est défini en fonction de la montée en charge progressive du complexe.
- Enfin, la dernière partie constitue l'évaluation globale du plan de développement proposé. Elle comprend une étude de rentabilité à long terme visant à apprécier la pertinence de l'investissement, complétée par une analyse de sensibilité pour tester la robustesse du modèle financier face à différents scénarios. L'évaluation environnementale repose sur le calcul de l'empreinte carbone de la nouvelle configuration. La solution est conclue par des tableaux de bord interactifs pour faciliter la lecture et la visualisation des impacts du projet.

La structure de ce chapitre est illustrée dans la figure suivante :

Figure 3-1: Cadrage logique de la structure du Chapitre 3

3.1 Conception de la chaîne de valeur

3.1.1 Choix de la technologie d'acier vert

3.1.1.1 Filière traditionnelle : Hauts-fourneaux

La filière traditionnelle de production d'acier, connue sous l'appellation BF-BOF (*Blast Furnace – Basic Oxygen Furnace*), constitue aujourd'hui la voie dominante à l'échelle mondiale à hauteur de **70%** de la production mondiale d'acier [1]. Elle repose sur deux étapes fondamentales et complémentaires : la réduction et fusion du minerai de fer dans un haut fourneau, suivie de l'affinage de la fonte liquide dans un convertisseur à oxygène.

Malgré sa robustesse technologique et sa large adoption à l'échelle industrielle, la filière BF–BOF présente plusieurs inconvénients majeurs qui en limitent aujourd'hui la viabilité, notamment dans le contexte économique et énergétique de l'Algérie. Ces contraintes, déjà mises en évidence à travers l'analyse des performances de l'entreprise cliente au chapitre 1, affectent de manière significative la compétitivité et la résilience du modèle industriel.

L'un des principaux facteurs limitants réside dans la dépendance structurelle au coke métallurgique, un combustible et réducteur indispensable au fonctionnement du haut fourneau. Or, ce matériau n'est pas produit localement en Algérie, ce qui oblige les opérateurs à s'approvisionner sur les marchés internationaux. Cette contrainte d'importation expose l'industrie sidérurgique à une double vulnérabilité : d'une part, des coûts énergétiques structurellement élevés, du fait du caractère carboné et transformé du coke ; d'autre part, une instabilité accrue liée aux fluctuations du marché mondial et aux perturbations potentielles des chaînes logistiques.

Le graphe ci-après met en évidence l'évolution des coûts de coke importé et de gaz naturel pour la production d'une tonne d'acier, de 2019 à 2025. Il est évident que la consommation de coke est bien moins économique que le gaz naturel, revenant en moyenne 20 fois plus cher pour le même volume de production.

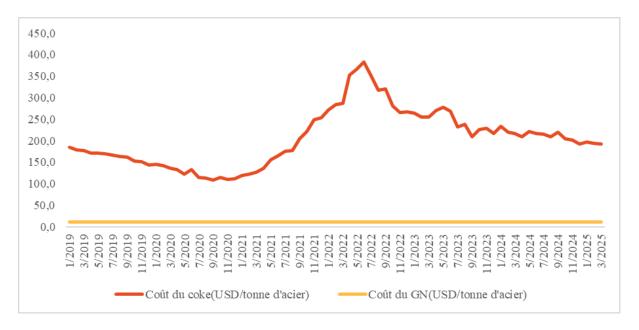


Figure 3-2: Evolution des prix énergétiques [36]

Au-delà de ces enjeux économiques, la filière haut fourneau—convertisseur à oxygène est également l'une des plus polluantes de l'industrie lourde. Son empreinte carbone moyenne est estimée à environ 2,3 tonnes de CO₂ par tonne d'acier produite, en faisant l'un des procédés les plus émetteurs de gaz à effet de serre. Cette réalité environnementale place la filière BF—BOF en contradiction croissante avec les exigences de plus en plus strictes des régulations internationales, ainsi qu'avec les engagements en matière de transition énergétique et de réduction des émissions. Dans une perspective de durabilité et de conformité future, ces facteurs expliquent l'intérêt du passage aux technologies de production d'acier vert.[37]

3.1.1.2 Technologies de production d'acier vert

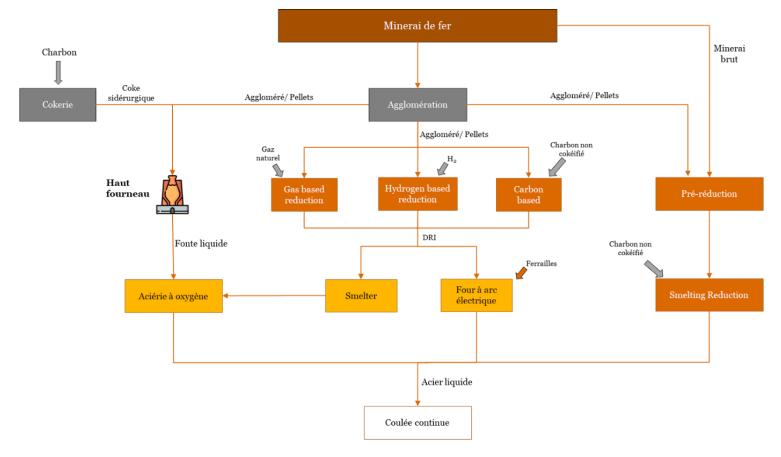


Figure 3-3: Technologies de production d'acier vert

a) La filière DRI (Direct Reduced Iron):

La filière DRI constitue l'un des axes centraux de la stratégie de décarbonation du secteur sidérurgique. Elle repose sur la réduction du minerai de fer à l'état solide, à des températures modérées (800–1000 °C), sans passage par une phase de fusion. Cette opération s'effectue au sein d'un réacteur de réduction, généralement un four rotatif ou à lit fluidisé, dans lequel les oxydes de fer (Fe₂O₃ ou Fe₃O₄) sont transformés en fer métallique (Fe) sous l'effet d'un gaz réducteur. Le produit final est appelé **fer spongieux** ou **DRI** (*Direct Reduced Iron*), qui peut être compacté sous forme de briquettes à chaud (HBI – *Hot Briquetted Iron*) pour faciliter sa manutention.

Trois types de réducteurs sont aujourd'hui utilisés dans la technologie DRI:

• Gaz naturel (CH₄) – utilisé dans les technologies MIDREX® ou HYL Energiron. C'est la technologie dominante à l'échelle mondiale, notamment dans les régions riches en

gaz. Elle présente une empreinte carbone modérée, et constitue une solution de transition, pouvant évoluer vers l'hydrogène [38].

- Hydrogène (H₂) vecteur énergétique propre, produit par électrolyse de l'eau à partir d'électricité renouvelable. Le procédé HYBRIT (Suède) et certaines évolutions de MIDREX® prévoient une utilisation intégrale de l'hydrogène vert, réduisant drastiquement les émissions de CO₂. Ce modèle reste encore limité par les coûts et la disponibilité de l'hydrogène [38].
- Charbon non cokéfié utilisé dans certaines régions, notamment en Inde, via des technologies comme le Rotary Kiln Process. Moins polluantes que les hauts fourneaux, ces technologies présentent toutefois des émissions de CO₂ encore élevées, en raison de la nature du combustible [38].

Une fois le fer réduit obtenu, deux voies principales de fusion peuvent être envisagées pour produire de l'acier liquide :

• Fusion par four à arc électrique (DRI-EAF)

Le DRI, seul ou en mélange avec de la ferraille recyclée, est introduit dans un **four à arc électrique** (**EAF**). Ce four utilise des électrodes en graphite pour générer un arc électrique à haute température (jusqu'à 1600 °C), assurant la fusion de la charge métallique. L'énergie nécessaire à la fusion peut être entièrement électrique, ce qui rend le procédé particulièrement attractif dans des contextes où l'électricité est bas carbone.

Le couple DRI–EAF représente aujourd'hui une option industrialisée, mature et bien implantée dans de nombreux pays (États-Unis, Inde). Il permet une production d'acier avec une empreinte carbone réduite, surtout lorsque l'électricité utilisée est d'origine renouvelable [38].

• Fusion par four de type smelter avec affinage BOF (DRI-Smelter-BOF)

Une variante plus récente de la filière DRI consiste à introduire une étape de fusion intermédiaire par **smelter électrique**, suivie d'un affinage dans un **convertisseur à oxygène** (**BOF**). Le smelter, fonctionnant à l'électricité, permet de liquéfier le fer spongieux tout en éliminant une partie de ses impuretés, notamment le phosphore. Le métal fondu est ensuite transféré dans un convertisseur BOF, technologie déjà largement présente dans les aciéries traditionnelles.

Cette configuration hybride présente plusieurs intérêts : elle permet de traiter des minerais de qualité plus variable et de mieux maîtriser l'élimination des impuretés par gestion des laitiers basiques. Bien que la technologie soit encore émergente, plusieurs projets pilotes sont en cours, et la faisabilité industrielle est déjà envisagée à court ou moyen terme [39][40][41].

b)La filière Smelting Reduction : réduction-fusion directe avec charbon

La réduction par fusion, ou Smelting Reduction, constitue une autre alternative au haut fourneau. Elle consiste à combiner en un ou deux réacteurs les étapes de réduction et de fusion, en utilisant du charbon non cokéfié comme agent réducteur et source thermique. Cette technologie vise à contourner les étapes coûteuses de cokéfaction et d'agglomération du minerai, tout en réduisant les émissions par rapport à la filière BF classique.

Ces procédés présentent l'avantage d'accepter des minerais de qualité moyenne, ce qui les rend intéressants dans les pays ne disposant pas de gisements à haute teneur. Ils permettent également une simplification des infrastructures. Toutefois, le recours au charbon, bien que non cokéfié, implique des émissions de CO₂ toujours significatives, ce qui limite leur potentiel dans une perspective de neutralité carbone à long terme.

3.1.1.3 Benchmark mondial:

Nous avons réalisé un benchmark des processus de production d'acier utilisés à travers le monde. Cette étude a été détaillée en annexe 5.

A partir de cette analyse, on peut identifier 3 facteurs principaux influençant l'adoption d'une technologie sidérurgique : l'approvisionnement énergétique disponible, la qualité du minerai exploité, ainsi que la possibilité d'intégration aux capacités et installations locales existantes. Le contexte algérien, à cet égard, est similaire à la région MENA, où ces mêmes facteurs structurent les trajectoires technologiques adoptées. Nous allons analyser plus en détail la conjoncture économique et industrielle du client.

3.1.1.4 Analyse du contexte local

-Analyse de l'approvisionnement énergétique

Les procédés de Smelting Reduction (tels que COREX®, FINEX®, HIsarna®) reposent sur l'utilisation de charbon non cokéfié. Bien qu'ils permettent de contourner l'étape de cokéfaction, ils conservent une dépendance forte au charbon comme source d'énergie. C'est aussi le cas des variantes DRI basées sur le charbon (ex. : fours rotatifs en Inde). Les autres variantes de DRI reposent principalement sur le gaz naturel, et certains projets pilotes s'alimentent purement hydrogène.

Comme souligné dans la présentation de la filière traditionnelle pour le coke, la dépendance au charbon, importé et fortement carboné, engendre des coûts élevés et une vulnérabilité face aux perturbations des chaînes d'approvisionnement. A l'inverse, le gaz naturel représente un atout stratégique dans le cas algérien. Il confère un avantage comparatif considérable aux technologies DRI à base de gaz. De plus, ces procédés sont conçus pour être progressivement convertis à l'hydrogène vert, ce qui en fait une solution durable à long terme.

Dans ce contexte, la filière DRI utilisant le gaz naturel s'impose comme la plus adaptée à la conjoncture algérienne. Elle allie compétitivité économique, faible impact environnemental, et capacité d'évolution vers des solutions neutres en carbone. Les autres procédés fondés sur le charbon apparaissent obsolètes ou inadaptés à une stratégie industrielle durable.

-Contraintes sur la qualité du minerai de fer

Les procédés DRI, en particulier la filière DRI–EAF, nécessitent des minerais à haute teneur en fer (généralement > 62 %) et à faible taux d'impuretés, notamment en phosphore. Cela s'explique par la nature du four à arc électrique, dont la capacité de raffinement est limitée. À l'opposé, la filière DRI–Smelter–BOF introduit une étape de fusion intermédiaire permettant une meilleure extraction des impuretés grâce à un laitier basique abondant. Quant aux procédés SR, ils tolèrent des minerais plus impurs, en raison également de la formation de laitiers en grande quantité.

Actuellement, le principal gisement de minerai de fer algérien – Gara Djebilet – présente une forte teneur en phosphore, ce qui le rend difficilement exploitable dans une filière DRI–EAF. Par ailleurs, l'offre mondiale en minerai de haute qualité devient plus rare, avec un déficit projeté de plus de 70 millions de tonnes à l'horizon 2030 [42]. Cette tendance renchérit le coût d'approvisionnement et rend les filières exigeantes en qualité de minerai plus vulnérables.

Ainsi, la filière DRI-Smelter-BOF apparaît comme la mieux positionnée pour valoriser le minerai algérien, son exploitation permettrait de réduire le coût de revient du minerai et de renforcer la résilience des approvisionnements. Elle offre une alternative viable à l'importation de minerais premium tout en maintenant un potentiel de décarbonation significatif. Les procédés SR, bien qu'adaptés à des minerais impurs, restent freinés par leur profil énergétique défavorable.

-Intégration des nouvelles technologies dans les installations existantes

La transition vers une sidérurgie décarbonée peut s'appuyer sur une réutilisation partielle des installations existantes, réduisant ainsi les besoins en investissements lourds et facilitant l'implémentation de nouveaux procédés. Dans le cas présent, le complexe sidérurgique du client dispose à la fois de convertisseurs BOF et d'un four à arc électrique (EAF), ce qui ouvre la voie à l'intégration de deux filières alternatives : DRI–Smelter–BOF et DRI–EAF d'autre part. Cependant, la capacité réduite de l'EAF constitue un facteur limitant pour un déploiement à grande échelle de la filière DRI–EAF, qui repose fortement sur cette technologie de fusion. En comparaison, la filière DRI–Smelter–BOF permettrait une meilleure valorisation de l'infrastructure BOF existante, en limitant les besoins de renforcement capacitaire et en assurant une continuité plus fluide avec l'organisation industrielle actuelle.

3.1.1.5 Conclusion :

Au regard des contraintes énergétiques, minières et industrielles, la filière **DRI-Smelter-BOF** apparaît comme la solution la mieux adaptée pour la transition du complexe sidérurgique. Elle combine la capacité à valoriser des minerais locaux de qualité moyenne, notamment riches en phosphore, avec une intégration optimale des convertisseurs BOF existants, réduisant ainsi les investissements nécessaires et limitant les perturbations opérationnelles. De plus, cette filière offre un potentiel significatif de réduction des émissions de CO₂ grâce à l'usage de gaz naturel et à la fusion électrique, tout en maintenant une flexibilité industrielle essentielle. Par contraste, la filière DRI-EAF, bien que mature, est limitée par la faible capacité de l'EAF existant et par ses exigences élevées en qualité de minerai, tandis que les procédés Smelting Reduction, malgré leur souplesse métallurgique, demeurent peu compatibles avec une stratégie bas carbone durable. Ainsi, la filière DRI-Smelter-BOF constitue un compromis technico-économique pertinent pour accompagner la sidérurgie vers un avenir plus vert.

Le choix du DRI contraint la capacité de production à **2,5MT d'acier/an**, qui permettra à l'entreprise cliente de satisfaire ses parts de marché locales ainsi qu'à exporter l'excédent, comme il a été déterminé dans le chapitre 1.

3.1.2 Conception de l'amont : classement des minerais

3.1.2.1 Définition du problème :

Cette section traite d'un problème multicritère de classement visant à établir un ordre parmi les sources minérales potentielles pour l'alimentation du complexe sidérurgique. Nous avons quatre alternatives possibles : Gara Djebilet, Ouenza, Boukhadra, et minerai d'importation. Le choix du minerai devra répondre à de nombreuses exigences d'ordre économique, technique, environnemental, etc.

L'identification et la pondération des critères se fera en utilisant l'AHP. Pour la résolution du problème, et face à sa nature et l'incommensurabilité de ces facteurs, nous avons opté pour la méthode ELECTRE III, adaptée à notre situation. La méthode ELECTRE III permet aussi de gérer les seuils de véto, et les préférences floues, intégrant toutes les nuances à notre analyse.

3.1.2.2 Pondération des critères par l'AHP:

a) Identification des critères :

Nous avons identifié une liste de critères et sous-critères sur la base de l'analyse approfondie de la chaîne de valeur du minerai, qui a par la suite été vérifiée et corrigée à travers des entretiens avec les décideurs. Nous avons retenu 7 critères, décomposés en 16 sous-critères que voici :

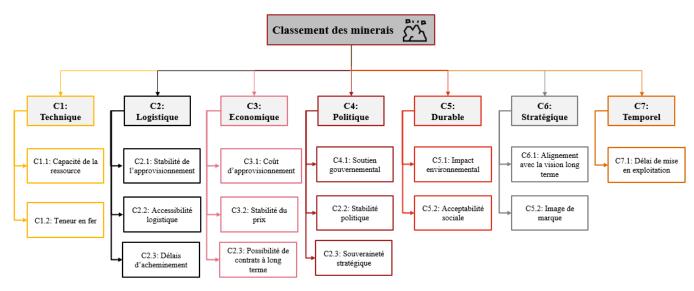


Figure 3-4: Hiérarchie des critères et sous critères

b) Matrice des jugements des critères et calcul des poids :

La matrice de comparaisons par paires a été élaborée à partir des préférences exprimées par les décideurs lors d'entretiens structurés, utilisant l'échelle de Saaty.

AHP: critères	Technique	Logistique	Economique	Politique	Durabilité	Stratégique	Temps
Technique	1,00	0,50	0,50	2,00	5,00	1,00	5,00
Logistique	2,00	1,00	1,00	0,50	4,00	1,00	3,00
Economique	2,00	1,00	1,00	2,00	4,00	1,00	4,00
Politique	0,50	2,00	0,50	1,00	3,00	1,00	4,00
Durabilité	0,20	0,25	0,25	0,33	1,00	0,33	3,00
Stratégique	1,00	1,00	1,00	1,00	3,00	1,00	3,00
Temps	0,20	0,33	0,25	0,25	0,33	0,33	1,00

Tableau 3-1: Matrice de préférences entre critères

Ensuite, en déroulant les calculs expliqués dans le chapitre 2, nous avons obtenu la pondération de chaque critère :

Critère	Poids
Technique	18,00%
Logistique	17,87%
Economique	21,51%
Politique	16,45%
Durabilité	5,87%

Stratégique	16,10%
Temps	4,19%

Tableau 3-2: Poids calculés des critères

c)Analyse de la cohérence :

λmax	7,477
n	7
IA	1,32
IC	0,079
RC	6,02%

Tableau 3-3: Calcul du ratio de cohérence

On remarque que RC<10%, ce qui confirme que les jugements sont cohérents.

d)Pondération des sous-critères :

Nous avons suivi la même méthodologie pour calculer les poids relatifs de l'ensemble des souscritères par rapport à chaque critère. Ces calculs sont présentés en annexe 6 La pondération finale des critères est présentée dans ce tableau :

Critère	Sous-Critère	Poids relatif	Poids final
C1. Tashnique	Capacité de la ressource	66,67%	12,0%
C1: Technique	Teneur en fer	33,33%	6,0%
	Stabilité de l'approvisionnement	53,90%	9,6%
C2: Logistique	Accessibilité logistique	29,73%	5,3%
	Délais d'acheminement	16,38%	2,9%
	Coût global d'approvisionnement	65,51%	14,1%
C3: Économique	Stabilité du prix	13,35%	2,9%
	Possibilité de contrats long terme	21,14%	4,5%
	Soutien gouvernemental	62,32%	10,3%
C4: Politique	Stabilité politique	13,73%	2,3%
	Souveraineté stratégique	23,95%	3,9%
C5: Durable	Impact environnemental	88,89%	5,2%
C3. Durable	Acceptabilité sociale	11,11%	0,7%
C6. Strotógiana	Alignement avec la vision long terme	83,33%	13,4%
C6: Stratégique	Image de marque	11,90%	1,9%
C7: Temps	Délai de mise en exploitation	100,00%	4,2%

Tableau 3-4: Poids total des critères

Après un entretien avec les décideurs, nous avons décidé de supprimer les sous-critères dont le poids est inférieur à **2%.** Nous enlevons donc les deux sous-critères : « Acceptabilité sociale » et « Image de marque ». La liste finale des critères devient donc :

Critère	Sous-Critère	Poids relatif	Poids final
T1	Capacité de la ressource	66,67%	12,0%
Technique	Teneur en fer	33,33%	6,0%
	Stabilité de l'approvisionnement	56,52%	10,1%
Logistique	Score d'accessibilité	19,92%	3,6%
	Délais d'acheminement	23,56%	4,2%
	Coût global d'approvisionnement	65,51%	14,1%
Économique	Stabilité du prix	13,35%	2,9%
	Possibilité de contrats long terme	21,14%	4,5%
	Soutien gouvernemental	62,32%	10,3%
Politique	Stabilité politique	13,73%	2,3%
	Souveraineté stratégique	23,95%	3,9%
Durabilité	Impact environnemental	100,00%	5,9%
Stratégique	Alignement avec la vision long terme	100,00%	16,1%
Temps	Délai de mise en exploitation	100,00%	4,2%

Tableau 3-5: Liste finale des critères et des poids

Classement par la méthode ELECTRE III

Tableau des performances :

Le tableau suivant regroupe les évaluations des alternatives sur les différents critères retenus. Des entretiens avec les décideurs ont permis de noter les critères qualitatifs sur l'échelle de Likert, ainsi que déterminer les différents seuils.

	Unité/Echelle	Sens du critère	GD	Ouenza	Boukhadra	Minerai importé
C1.1	MT	+	3500	80	42	>15000
C1.2	%	+	62	41	52	66
C2.1	Notation	+	3	4	4	2
C2.2	Notation	+	4	5	5	2
C2.3	Notation	+	4	5	5	2
C3.1	\$/t	-	70	60	60	130
C3.2	Notation	+	5	5	5	3
C3.3	Notation	+	4	5	5	2
C4.1	Notation	+	5	2	2	1
C4.2	Notation	+	5	5	5	3
C4.3	Notation	+	5	5	5	2
C5	Notation	+	3	3	3	2
C6	Notation	+	5	3	3	2
C7	Années	-	5	0	0	0

Seuil d'indifférence	Seuil de préférence	Seuil de véto
10	50	100
5	10	10
0	3	4
0	3	4
0	3	3
5	50	100
0	3	4
0	3	4
0	3	4
0	3	4
0	3	4
0	3	4
0	2	3
0	5	10

Tableau 3-6: Tableau de performances

A partir de ce tableau, nous avons déroulé la méthode Electre III sur Python, en utilisant la librairie pyDecision.

Voici le code utilisé:

import numpy as np
import pyDecision

from pyDecision.algorithm import electre_iii

```
dataset=np.array([
    [3500, 62, 3, 4, 4, -70, 5, 4, 5, 5, 5, 3, 5, -5],
    [80, 31, 4, 5, 5, -60, 5, 5, 2, 5, 5, 3, 3, 0], [42, 52, 4, 5, 5, -60, 5, 5, 2, 5, 5, 3, 3, 0],
    [15000, 66, 2, 2, 2, -130, 3, 2, 1, 3, 2, 2, 2, 0]
Q=[10, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0]
P=[50, 10, 3, 3, 3, 50, 3, 3, 3, 3, 3, 3, 3, 5]
V=[100, 10, 4, 4, 3, 100, 4, 4, 4, 4, 4, 4, 3, 10]
W=[0.12, 0.06, 0.101, 0.036, 0.04, 0.141, 0.029, 0.045, 0.103, 0.023, 0.039, 0.059, 0.161, 0.042]
global_concordance, credibility, rank_D, rank_A, rank_P = electre_iii(dataset, P = P, Q = Q, V= V, W = W, graph = True)
                         [a2; a3]
np.ndarray.round(global concordance, decimals = 2)
array([[1. , 0.87, 0.87, 0.84],
        [0.55, 1. , 0.99, 0.82],
        [0.55, 0.92, 1. , 0.82],
        [0.39, 0.46, 0.46, 1. ]])
np.ndarray.round(credibility, decimals = 2)
array([[0. , 0.87, 0.87, 0.
         [0. , 0. , 0.99, 0.
                                      ],
         [0. , 0.92, 0. , 0.
                                      ],
         [0.
              , 0. , 0. , 0.
for i in range(0, len(rank_P)):
  print('a'+str(i+1), rank P[i])
a1 ['-' 'P+' 'P+' 'P+']
a2 ['P-' '-' 'I' 'P-']
a3 ['P-' 'I' '-' 'P-']
a4 ['P-' 'P+' 'P+' '-']
```

Le préordre obtenu est donc :

- **1.Minerai de Gara Djebilet :** Combinaison idéale de bonne qualité et de prix compétitif, soutenue par une ressource nationale pérenne.
- **2.Minerai importé :** minerai d'excellente qualité, mais plus cher et susceptible aux perturbations du marché.
- **3.** Minerai de Tébessa (Ouenza et Boukhadra): les mines de Tébessa sont en fin de vie avec une faible teneur, et ne pourront pas être exploitées après l'épuisement.

Ce classement nous mène donc à **choisir Gara Djebilet** comme source de minerai sur le long terme. Cependant, il faudra attendre son entrée en production et sa montée en capacité. Le mix minerai sera calculé et détaillé plus loin.

3.1.3 Conception de l'aval : rénovation / acquisition des équipements

Dans le cadre du plan de développement du site sidérurgique du client x, nous avons mené une démarche inspirée de l'AMDEC (Analyse des Modes de Défaillance, de leurs Effets et de leur Criticité) afin d'évaluer les équipements déjà en place. Cette approche a pour objectif de déterminer, parmi les installations existantes, celles qui peuvent être conservées telles quelles, celles qui nécessitent des rénovations, et celles qui doivent être remplacées intégralement. Bien que cette analyse ne corresponde pas strictement à une AMDEC classique centrée sur les modes de défaillance, elle en reprend la logique de criticité, en l'adaptant à nos besoins spécifiques d'aide à la décision.

3.1.3.1 Choix des critères d'analyse

Pour cette évaluation, nous avons retenu trois critères principaux, chacun reflétant un aspect essentiel de la performance et de la pertinence des équipements vis-à-vis de notre futur système de production :

- Le premier critère est **l'état de fonctionnement actuel**, qui permet de juger la fiabilité mécanique et opérationnelle des installations.
- Le deuxième critère est la **capacité et la flexibilité de production**, c'est-à-dire la capacité de l'équipement à répondre à la gamme de produits visés par notre nouvelle stratégie industrielle.
- Enfin, le troisième critère est la **maturité technologique**, que nous avons évaluée en comparant chaque équipement aux standards actuels de l'industrie (technologies "state-of-the-art").

Chaque critère a été noté sur une échelle de 1 à 5, où 1 signifie un équipement en très bon état ou très moderne, et 5 traduit une obsolescence ou une criticité nécessitant une intervention urgente.

Détermination des critères :

Catégorie	Critères d'évaluation		
	Défaillances		
Fonctionnement des	Taux de pannes		
équipements	Disponibilité		
	Production actuelle		
Flexibilité	Capacité de l'équipement		
Flexibilite	Gamme de produits / Objectif		
Maturité	Processus obsolètes		
technologique	Améliorations possibles		

Tableau 3-7: Liste des critères d'évaluation des équipements

3.1.3.2 Définition des seuils de criticité

Pour interpréter les scores obtenus et les traduire en actions concrètes, nous avons établi des seuils de criticité à partir d'une méthode empirique basée sur des matrices de risque. Chaque matrice croise deux des trois critères afin de visualiser les zones de danger ou de confort. Cinq matrices ont été construites pour couvrir toutes les combinaisons de critères. Pour intégrer le troisième critère, nous avons utilisé une approche en couches successives, conduisant à une classification tridimensionnelle des risques. À l'issue de cette phase, nous avons défini trois zones de décision :

- Une **zone verte**, qui regroupe les équipements ne nécessitant que des ajustements mineurs,
- Une zone orange, où les équipements doivent être rénovés ou améliorés,
- Une **zone rouge**, correspondant aux cas où un remplacement complet est requis.

Un seuil critique a notamment été identifié autour d'une valeur multiplicative : **40**, qui a servi de référence pour la bascule entre rénovation et remplacement.

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25
2	4	6	8	10
4	8	12	16	20
6	12	18	24	30
8	16	24	32	40
10	20	30	40	50

3	6	9	12	15
6	12	18	24	30
9	18	27	36	45
12	24	36	48	60
15	30	45	60	75
4	8	12	16	20
8	16	24	32	40
12	24	36	48	60
16	32	48	64	80
20	40	60	80	100
5	10	15	20	25
10	20	30	40	50
15	30	45	60	75
20	40	60	80	100
25	50	75	100	125

Tableau 3-8: Matrices de criticité

3.1.3.3 Pondération et d'agrégation des scores

Afin d'obtenir un score global de criticité pour chaque équipement, nous avons opté pour une **pondération multiplicative**. Concrètement, les trois notes attribuées aux critères ont été **multipliées entre elles**, ce qui a permis de faire ressortir de manière plus marquée les équipements présentant des faiblesses sur plusieurs dimensions. Ce choix méthodologique vise à concentrer les efforts sur les cas les plus urgents et les plus complexes.

Notation des critères :

L'évaluation détaillée des équipements est présentée en annexe 7. Sur cette base, nous avons accordé les notes suivantes en concertation avec les décideurs :

		Fonctionnement	Flexibilité	Technologie	Criticité
Aciéries	ACO1	5	3	2	30
Acienes	ACO2	4	4	3	48
LAC		5	4	2	40
	Decapage	4	3	4	48
LAF	Tandem	5	2	2	20
LAF	Recuit	3	2	4	24
	SP	3	2	2	12
RPA		3	3	3	27
TSS	·	3	5	3	45

Tableau 3-9: Notation des équipements

3.1.3.4 Résultats de l'évaluation

L'analyse nous a permis de formuler des recommandations précises pour chaque équipement majeur.

Au niveau des aciéries, **l'aciérie 1**, bien que vieillissante, s'est révélée suffisante après rénovation pour couvrir les besoins futurs, tandis que **l'aciérie 2**, trop obsolète, a été jugée inutile dans le nouveau schéma industriel et donc écartée.

En ce qui concerne le laminage, le **laminage à chaud** présente des dysfonctionnements majeurs et devra être remplacé par une nouvelle acquisition. Pour le **laminage à froid**, seul le décapage nécessité une acquisition, et l'installation globale peut se suffire de rénovations ciblées. De même, **la galvanisation** fera l'objet d'une remise à niveau.

Concernant la filière **tubes sans soudure** (**TSS**), l'équipement actuel ne permet pas de couvrir l'ensemble de la gamme souhaitée, notamment sur les petits diamètres. Une **nouvelle ligne de laminage de tubes** sera donc acquise pour répondre à cette exigence de diversification.

3.1.3.5 Conclusion

En résumé, cette démarche AMDEC adaptée nous a permis de structurer notre prise de décision en nous appuyant sur une analyse multicritère rigoureuse. Le choix d'une agrégation multiplicative et l'élaboration de seuils de criticité à partir de matrices de risque ont apporté une objectivité et une cohérence à l'évaluation des équipements. Cette méthode, bien qu'inspirée de l'AMDEC, a été suffisamment souple pour intégrer nos priorités industrielles, et a abouti à un plan d'action clair sur la rénovation, le remplacement et l'élimination des équipements dans la future configuration industrielle.

3.1.4 Conception du lay-out général

Pour cette étape du projet, l'objectif est de proposer un **plan de masse optimal**, en tenant compte à la fois des **flux réels** de production, des **équipements existants**, et des **contraintes opérationnelles** propres à la sidérurgie. Pour cela, nous avons appliqué la méthode **Systematic Layout Planning (SLP)**, reconnue pour sa capacité à structurer l'implantation industrielle de manière rationnelle et progressive.

3.1.4.1 Evaluation des flux à travers la chaîne de production :

Les capacités des différentes installations sont déterminées à partir de la capacité de l'unité DRI, fixée à **2,5 millions de tonne par an** comme il a été précisé plus haut.

La quantité de minerai approvisionné, dont la teneur est de 62%, doit contenir assez de fer pour produire 2,5 MT de DRI. Par une règle de trois, on déduit que le besoin en minerai est de MT par an.

A l'aval du DRP, le Smelter et l'ACO transforment l'intégralité du DRI en acier, ce qui fixe leurs capacités à **2,5 MT par an**

Parc à minerai	4MT
Pelletisation	4MT
DRP	2,5MT
Smelter	2,5MT
ACO	2,5MT

Tableau 3-10: Capacités de chaque unité

Dans le cadre de la définition des volumes de production par segment de produits, nous avons appliqué le **principe de Pareto**, qui est particulièrement pertinent dans ce cas : en effet, 20 % des produits finis (principalement le LAF et le GALVA) concentrent 80 % de la valeur ajoutée du portefeuille. Cette logique permet de structurer les priorités industrielles et commerciales du projet. L'ensemble des produits GALVA étant issus du LAF, et ces derniers nécessitants eux-mêmes un passage préalable par le LAC (laminés à chaud), la chaîne de transformation est cohérente et linéaire.

Sur un objectif de **2,1 millions de tonnes** de coulée brames en 2035, la répartition entre marché local et export a été établie en cohérence avec l'évolution attendue de la demande : **48 % de part de marché locale**, soit **480 kT/an**. En estimant que **80 % de cette demande locale représente les produits LAC**, nous avons décliné les volumes par niveau de transformation. Ainsi, **20 % du LAC** est destiné à la production de **LAF**, dont **20 % sont transformé en GALVA**. La répartition entre production locale (**PF**) et export (**Train**) a été définie en tenant compte des capacités du marché local à absorber ces volumes, ainsi que de la nécessité d'optimiser les débouchés export pour garantir la pleine rentabilité de l'outil industriel.

		PF	Train
Coulée brames	2,1		
LAC	2,1	0,38	1,3
LAF	0,42	0,076	0,26
GALVA	0.084	0.02	0.064

Coulée blooms	0,3	Coulée lingots	0,1
TSS(small)	0,3	TSS(big)	0,1

Tableau 3-11: Flux des produits finis en MT

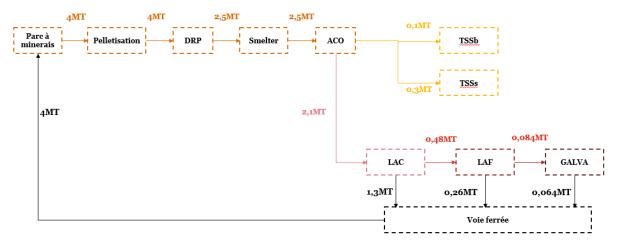


Figure 3-5: Flux physiques entre les installations

Le flux physique entre chaque paire d'installations est ensuite noté sur une échelle de A à U, construite empiriquement de la façon suivante :

Notation	Flux
A	>3000
E	2000-3000
I	1500-2300
O	250-1500
\mathbf{U}	<250

Tableau 3-12: Echelle de notation des flux

Les installations qui n'ont aucun flux entre eux, non-présentées dans ce tableau, recevront la notation U.

Paire				
1	Train	Parc à minerai	4000	Α
2	Parc à minerai	Pelletisation	4000	Α
3	Pelletisation	DRP	4000	Α
4	DRP	Smelter	2500	Е
5	Smelter	ACO	2500	E
6	ACO	LAC	2100	Ε
7	LAC	Train	1300	- 1
8	LAC	LAF	260	0
9	ACO	TSS(small)	300	0
10	LAF	Train	112	U
11	ACO	TSS(big)	100	U
12	LAF	GALVA	84	U
13	GALVA	Train	64	U

Tableau 3-13: Notation des flux physiques

3.1.4.2 Notation finale et diagramme des relations

Après l'évaluation des flux, nous passons à la construction du diagramme des relations. Il reflète l'importance des relations entre chaque paire d'installations, en prenant en compte cette fois-ci les critères logistiques et non-logistiques, explicités dans le tableau suivant :

Code	Reasoning
1	Material flow
2	Process integration
3	Shared utilities
4	Buffer stock

Tableau 3-14: Liste des raisons

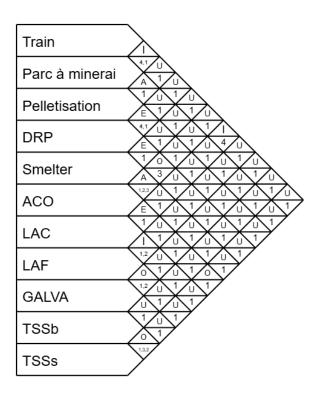


Figure 3-6: Diagramme relationnel

3.1.4.3 Diagramme spatial:

Hypothèses prises pour l'élaboration du plan de masse final via SLP

Pour garantir la cohérence entre les contraintes existantes, les évolutions du projet et les résultats de l'analyse SLP, les hypothèses suivantes ont été retenues lors de l'élaboration du plan de masse final :

- Maintien des équipements existants : les équipements déjà en place et qui ont simplement fait l'objet d'un revamping ont été conservés à leur emplacement d'origine.
- Équipements DRP et HF: ces équipements présentent des superficies équivalentes, leur positionnement a donc été ajusté en cohérence avec le plan existant et validé par les experts.
- Positionnement des nouveaux équipements : l'implantation des nouveaux équipements a été réalisée en tenant compte :
 - Des résultats de priorité issus du modèle SLP (en fonction des relations 1, 2, 3, 4),
 - Des contraintes techniques et opérationnelles exprimées par les experts et managers du site.

Cette approche permet de garantir à la fois une **cohérence avec l'existant**, une **optimisation des flux** via le modèle SLP, et une prise en compte des besoins réels de production et de gestion exprimés par les parties prenantes du projet.

3.1.4.4 Plan de masse finale:

Pour des raisons de confidentialité, le plan de masse réel ne peut être explicité dans notre document.

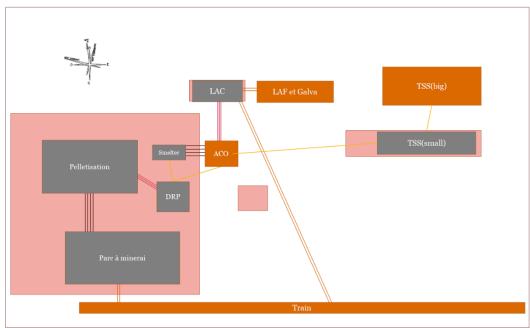


Figure 3-7: Diagramme spatial

3.2 Dimensionnement des flux

3.2.1 Détermination du mix minerai

Cette étape est essentielle, car la quantité de minerai à traiter dépend directement de la **teneur en fer** de la matière première utilisée. Chaque source de minerai possède ses propres caractéristiques, et la proportion de fer qu'elle contient conditionne la quantité de minerai brut nécessaire pour atteindre les objectifs de production annuelle en fer.

Actuellement, le client X s'approvisionne principalement à partir des mines de **Tébessa** (Ouenza et Boukhadra). Toutefois, les résultats de l'**AMD pour le classement des minerais** ont prouvé qu'il serait judicieux de se tourner vers un approvisionnement **100 % local**, en intégrant progressivement le minerai issu du gisement de **Gara Djebilet**.

Dans ce contexte, trois sources de minerai sont considérées dans la modélisation :

- **Tébessa**, avec une teneur moyenne en fer de 48 %;
- Gara Djebilet, avec une teneur estimée à 62 %;
- Importation, présentant une teneur de 67 %.

Tableau 3-15: Consommation prévisionnelle de minerai

Contraintes et hypothèses sur le mix minerai

La stratégie d'approvisionnement adoptée dans le cadre du projet repose sur une transition progressive vers une exploitation locale, avec pour objectif principal d'atteindre une teneur moyenne minimale en fer de **62** % dans le mélange de minerais utilisé à partir de 2030 (Date de lancement de la production). Les contraintes retenues sont les suivantes :

- Utilisation des mines de Tébessa jusqu'à épuisement des réserves, prévu pour 2040.
- Arrêt progressif des importations, qui seront totalement éliminées lorsque la mine de Gara Djebilet atteindra sa pleine capacité.
- Montée progressive de la mine de Gara Djebilet, à partir de 2030, jusqu'à une capacité cible de 4 millions de tonnes de minerai par an en 2040.

Cette montée en puissance est modélisée sous la forme d'un ramp-up en deux phases linéaires:

- De 2030 à 2035 : passage de 0 à 1 million de tonnes (droite reliant les points (2030, 0) et (2035, 1 000 000 t)) ;
- De 2035 à 2040 : passage de 1 à 4 millions de tonnes (droite reliant les points (2035, 1 000 000 t) et (2040, 4 000 000 t)).

À partir de 2040, la mine de Gara Djebilet est considérée comme étant à pleine capacité, ce qui permet d'assurer la totalité de l'approvisionnement sans recours à l'importation ni aux autres mines locales.

Une fois les quantités annuelles issues de Gara Djebilet définies sur la période 2030–2040, les quantités restantes à couvrir par les autres sources (Tébessa et importations) doivent satpeuvent être calculées en résolvant un système de deux équations à deux inconnues, avec les variables suivantes :

- qGD : quantité de minerai provenant de Gara Djebilet
- qTebessa : quantité de minerai provenant de Tébessa
- qImport : quantité de minerai importé
- Qtotale _: consommation totale annuelle de minerai

Le système est défini comme suit :

$$egin{cases} q_{ ext{GD}} + q_{ ext{T\'ebessa}} + q_{ ext{Importation}} = Q_{ ext{totale}} \ q_{ ext{GD}} imes 0.62 + q_{ ext{T\'ebessa}} imes 0.48 + q_{ ext{Importation}} imes 0.67 = Q_{ ext{totale}} imes 0.62 \end{cases}$$

Ce système permet de déterminer, pour chaque année entre 2030 et 2040, la répartition optimale du mix minerai respectant les contraintes de qualité, de disponibilité, et de montée en charge progressive de Gara Djebilet.

Mi	nerai	i	203	0 203	31 20	32 2	033	2034	2035	2036	2037	7 20	38	2039	2040
Tebes	ssa	48%	210,	53 278	,20 345	i,86 4	13,53	481,20	548,87	511,28	473,6	88 315	,79	157,89	0,00
GD		62%	0,00	200	,00 400	,00 60	00,00	800,00	1000,00	1600,00	2200,	00 280	0,00	3400,00	4000,00
Importa	ation	67%	589,4	47 778	,95 968	3,42 11	57,89	1347,37	1536,84	1431,58	3 1326,	32 884	,21	442,11	0,00
			62%	62	% 62	2%	62%	62%	62%	62%	62%	62	%	62%	62%
2041	2042	2	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055
0,00	0,00)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
4000,00	4000,	00 40	000,00	4000,00	4000,00	4000,00	4000,0	0 4000,00	4000,00	4000,00	4000,00	4000,00	4000,0	0 4000,0	4000,00
0,00	0,00)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
62%	62%	0	62%	62%	62%	62%	62%	62%	62%	62%	62%	62%	62%	62%	62%

Tableau 3-16: Mix minerai prévisionnel

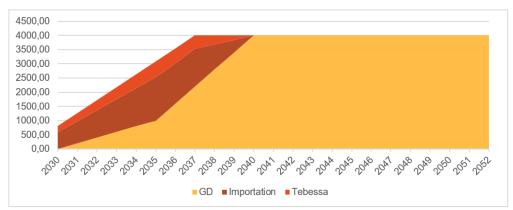


Figure 3-8: Evolution du mix minerai

3.2.2 Détermination du mix produit

Dans le cadre du lancement du projet, la montée en charge de la production de produits plats suivra une trajectoire progressive allant de **420 000 tonnes** en 2030 à **2,1 millions** de tonnes en 2037, ce qui correspond à la pleine capacité installée (hors les 400k de TSS, soit 2,1 Mt sur les 2,5 Mt disponibles). Cette montée en puissance est cohérente avec les perspectives de croissance du marché local, dont la taille passera de 700 000 tonnes en 2030 à 1 million de tonnes en 2037. Pour la première année, la production sera équivalente à **20** % de la capacité totale, soit 420 000 tonnes, ce qui constitue un niveau réaliste pour une phase de démarrage industrielle.

Sur cette quantité, **280 000 tonnes** seront destinées au marché local, soit **40 %** de part de marché, et **140 000 tonnes** seront orientées vers l'export. Cette part de marché initiale est justifiée par la présence déjà bien établie de concurrents sur le marché national des produits plats, avec une infrastructure industrielle fonctionnelle, un réseau logistique maîtrisé, et une reconnaissance de marque importante, comme le démontre l'étude de marché réalisée en amont du projet. La progression projetée de la part de marché locale — **de 40 % à 48 %** entre 2030 et 2037 — **soit 1%** de plus chaque année, tient compte de la présence d'acteurs concurrents déjà installés, tout en reflétant la montée en puissance du client x, capable de répondre à la demande locale croissante avec une production nationale compétitive.

Par ailleurs, à mesure que la capacité de production augmente, une part croissante sera dédiée à l'export, atteignant **1,62 million** de tonnes en 2037. Cette orientation vers l'export se justifie par la volonté stratégique du client de se positionner comme un acteur régional majeur, en s'appuyant sur la compétitivité de la production locale, la proximité géographique avec l'Europe du Sud et l'Afrique, ainsi que les opportunités liées au recul de compétitivité de certains sidérurgistes internationaux sur les produits plats. Ainsi, la stratégie proposée permet de maximiser l'utilisation des capacités tout en assurant un équilibre durable entre le marché local et les exportations.

			****		****			
	2030	2031	2032	2033	2034	2035	2036	2037
Production totale	420	660,00	900,00	1140,00	1380,00	1620,00	1860,00	2100
aille du marché loca	700	742,86	785,71	828,57 871,43		914,29	957,14	1000
Parts de marché	40%	41%	42%	43%	45%	46%	47%	48%
Production locale	280	305,63	332,24	359,84	388,41	417,96	448,49	480
Exports	140	354,37	567,76	780,16	991,59	1202,04	1411,51	1620
LAC	2030	2031	2032	2033	2034	2035	2036	2037
Production locale	224,00	244,51	265,80	287,87	310,73	334,37	358,79	384,00
Exports	112,00	283,49	454,20	624,13	793,27	961,63	1129,21	1296,00
Total	336,00	528,00	720,00	912,00	1104,00	1296,00	1488,00	1680,00
LAF	2030	2031	2032	2033	2034	2035	2036	2037
Production locale	44,80	48,90	53,16	57,57	62,15	66,87	71,76	76,80
Exports	22,40	56,70	90,84	124,83	158,65	192,33	225,84	259,20
Total	67,20	105,60	144,00	182,40	220,80	259,20	297,60	336,00
GALVA	2030	2031	2032	2033	2034	2035	2036	2037
Production locale	11,20	12,23	13,29	14,39	15,54	16,72	17,94	19,20
Exports	5,60	14,17	22,71	31,21	39,66	48,08	56,46	64,80
Total	16,80	26,40	36,00	45,60	55,20	64,80	74,40	84,00
TSS	2030	2031	2032	2033	2034	2035	2036	2037
Gros diamètre	20,00	31,43	42,86	54,29	65,71	77,14	88,57	100,00
Petit diamètre	60,00	94,29	128,57	162,86	197,14	231,43	265,71	300,00
Total	80,00	125,71	171,43	217,14	262.86	308,57	354,29	400,00

Tableau 3-17: Mix produit

Hypothèses de production et de consommation

- Le lancement de la production est prévu pour 2030.
- La capacité totale de production sera atteinte en 2037, soit 2,1 millions de tonnes (Mt).

1. Produits Plats (PPL)

- En 2030, la production représentera **20** % de la capacité totale prévue pour 2037, avec une montée en charge progressive chaque année.
- La demande locale en PPL est estimée à 700 kt/an.
- La part de marché visée est de 40 %, soit environ 280 kt/an pour le marché local.
- Le delta entre la production totale et les volumes destinés au marché local sera orienté vers l'export.

2. Tubes sans soudures (TSS)

- L'offre cible en TSS est de 400 kt/an en 2037, selon l'étude de marché.
- En 2030, on prévoit **20** % de cette capacité, soit environ **80 kt**, avec une montée en charge progressive jusqu'à atteindre 400 kt en 2035.

3. Produits Laminés à Chaud (LAC), Laminés à Froid (LAF), Galvanisés (GALVA)

- Ces produits suivent une logique **Pareto 20/80**, car le GALVA est issu du LAF, qui luimême provient du LAC :
 - o 80 % de la production est du LAC.
 - o 16 % est du LAF.
 - o 4 % est du GALVA.

3.3 Evaluation du projet

3.3.1 Etude de rentabilité

Afin d'étudier la rentabilité du projet, nous allons construire un modèle financier complet de la solution proposée. Ce modèle se base sur un nombre d'hypothèses explicitées comme suit :

3.3.1.1 Hypothèses sur les revenus

Détermination du prix unitaire de chaque produit de la gamme du client x :

Pour fixer les prix des produits plats et longs destinés au client X (laminés à chaud, laminés à froid, galvanisés, TSS), nous avons procédé par benchmark mondial et par analyse comparative. La démarche détaillée est explicitée en annexe 8.

Produit	Туре	Transofmation	Valeur ajoutée	Prix marché (USD/tonne)
LAC	Plat	Faible	+	605
LAF	Plat	Moyenne	++	750
GALVA	Plat	Forte	+++	850
TSS	Long	Forte	++	950

Tableau 3-18: Analyse comparative des produits finis

Calcul du chiffre d'affaires

Le chiffre d'affaires (CA) total, sur la période de montée en charge ($2030 \rightarrow 2037$), est égal à la somme des CA annuels de chaque produit, soit :

$$CA_{\text{total}} = \sum_{\text{ann\'ee produit}} \left(\text{Quantit\'e produit e du produit x, ann\'ee y} \times \text{Prix unitaire du produit x} \right)$$

En d'autres mots, pour chaque année :

- On calcule pour chaque produit : Quantité produite cette année × Prix unitaire du produit
- On additionne ces résultats pour tous les produits de l'année → on obtient le CA annuel.
- Ensuite, on fait la somme des CA annuels sur l'ensemble des années → on obtient le CA total.

			2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
				<u>'</u>		<u>'</u>					·	Produits	Plats		
	Product		336,00	528,00	720,00	912,00	1104,00	1296,00	1488,00	1680,00	1680,00	1680,00	1680,00	1680,00	1680,0
LAC	Prix unitair	e(USD/T)	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00	605,00
	C.A(1M	USD)	203,28	319,44	435,60	551,76	667,92	784,08	900,24	1016,40	1016,40	1016,40	1016,40	1016,40	1016,4
	Product	on(kT)	67,20	105,60	144,00	182,40	220,80	259,20	297,60	336,00	336,00	336,00	336,00	336,00	336,00
LAF	Prix unitair	e(USD/T)	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00	750,00
	C.A(1M		50,40	79,20	108,00	136,80	165,60	194,40	223,20	252,00	252,00	252,00	252,00	252,00	252,00
	Product		16,80	26,40	36,00	45,60	55,20	64,80	74,40	84,00	84,00	84,00	84,00	84,00	84,00
GALVA	Prix unitair	e(USD/T)	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00	850,00
	C.A(1M	USD)	14,28	22,44	30,60	38,76	46,92	55,08	63,24	71,40	71,40	71,40	71,40	71,40	71,40
TC	OTAL PPL		267,96	421,08	574,20	727,32	880,44	1033,56	1186,68	1339,80	1339,80	1339,80	1339,80	1339,80	1339,8
				105.71	171.10					10000	D		100.00		100.00
TSS	Product Prix unitair		80,00 950,00	125,71 950.00	171,43 950.00	217,14 950.00	262,86 950.00	308,57 950,00	354,29 950.00	400,00 950.00	400,00 950,00	400,00 950.00	400,00 950.00	400,00 950.00	400,00 950,00
133	C.A(1M		76,00	119,43	162,86	206,29	249,71	293,14	336,57	380,00	380,00	380,00	380,00	380,00	380,00
TOTAL	C.A(1M	_	343,96	540,51	737,06	933,61	1130,15	1326,70	1523,25	1719,80	1719,80	1719,80	1719,80	1719,80	1719,8
			- 10,00	2 10,01	101,00	555,61	,	1020,10	1020,20						
2043	2044	2045	2	2046	2047	2048	204	9	2050	2051	2052	205	i3	2054	2055
1680,00	1680,00	1680,0	0 16	80,00	1680,00	1680,00	1680	,00 1	680,00	1680,00	1680,00	1680	,00	1680,00	1680,0
605,00	605,00	605,00	60	05,00	605,00	605,00	605,	00 6	05,00	605,00	605,00	605,	00	605,00	605,00
1016,40	1016,40	1016,4	0 10	16,40	1016,40	1016,40	1016	,40 1	016,40	1016,40	1016,40	1016	,40	1016,40	1016,4
336,00	336,00	336,00	33	36,00	336,00	336,00	336,	00 3	36,00	336,00	336,00	336,	00	336,00	336,00
750,00	750,00	750,00	75	50,00	750,00	750,00	750,	00 7	50,00	750,00	750,00	750,	00	750,00	750,00
252,00	252,00	252,00	25	52,00	252,00	252,00	252,	00 2	52,00	252,00	252,00	252,	00	252,00	252,00
84,00	84,00	84,00	8	4,00	84,00	84,00	84,0	00	84,00	84,00	84,00	84,0	00	84,00	84,00
850,00	850,00	850,00	85	50,00	850,00	850,00	850,0	00 8	50,00	850,00	850,00	850,	00	850,00	850,00
71,40	71,40	71,40	7	1,40	71,40	71,40	71,4	10	71,40	71,40	71,40	71,4	40	71,40	71,40
1339,80	1339,80	1339,8	0 13	39,80	1339,80	1339,80	1339	,80 1	339,80	1339,80	1339,80	1339	.80	1339,80	1339,8
		· ·	'			· ·					'				
400,00	400,00	400,00	40	00,00	400,00	400,00	400,	00 4	00,00	400,00	400,00	400,	00	400,00	400,00
950,00	950,00	950,00	95	50,00	950,00	950,00	950,	00 9	50,00	950,00	950,00	950,	00	950,00	950,00
380.00	380.00	380,00	35	30.00	380,00	380.00	380.	00 3	80.08	380,00	380.00	380.	00	380.00	380,00

Tableau 3-19: Chiffre d'affaires prévisionnels

3.3.1.2 Hypothèses sur les coûts opérationnels :

Nous abordons à présent le calcul **des OPEX** (Operational Expenditures), autrement dit les charges opérationnelles liées au fonctionnement de l'ensemble du processus industriel.

À cette étape, nous travaillons à partir d'un ensemble de données incluant :

- Les charges unitaires associées à chaque équipement ou poste de travail,
- Ainsi que les coûts liés au laminage.

On y retrouve, pour chaque machine ou unité de production, les détails concernant les consommables utilisés, leur quantité nécessaire par tonne d'acier produite, ainsi que leur prix unitaire. Ce sont ces éléments, fournis par l'expertise PwC, qui servent de base à notre travail. Par ailleurs, la main-d'œuvre, considérée comme une charge fixe, ne sera pas incluse à ce stade dans les calculs directs d'OPEX. Elle sera intégrée ultérieurement dans le compte de résultat, afin d'avoir une vision plus complète de la rentabilité globale du projet.

Le détail des calculs des Opex est mis en avant dans Annexe 9.

Coût unita	Coût unitaire(\$/t)		2031	:	2032	2033		2034	203	35
Producti	on(kT)	500,00	785,7	1 10	1071,43 1357		14 1642,86		1928	3,57
Coût tot	* * /	191,45	292,5	3 3	393,61 494		69 595,78		696,	,86
Frais de dém	arrage(M\$)	100,00	100,0	0 1	00,00	90,00		80,00	60,0	00
Coût fin	<u> </u>	291,45	392,5		93,61	584,69		75,78	756,	
Coût moy	en(\$/t)	582,89	499,5	8 4	60,70	430,83	4	11,34	392,	,44
2036	2037	2038	3 2	2039	204	0	204	1	2042	2
2214,29	2500,00	2500,0	00 25	00,00	2500	,00	2500,	00	2500,0	00
781,31	865,76	840,8	1 8	15,86	790,	92	790,9	2	790,9	2
30,00	20,00	10,00) (0,00	0,0	0	0,00)	0,00	
811,31	885,76	850,8	1 8	15,86	790,	92	790,92		790,9	2
366,40	354,30	340,3	2 3	326,35 316,37		37	316,37		316,3	7
2043	2044	2045	5 2	2046	204	7	204	В	2049	
2500,00	2500,00	2500,	00 25	500,00	2500	,00	2500,	00	2500,	00
790,92	790,92	790,9	2 7	790,92 790,92		92	790,9	92	790,9	2
0,00	0,00	0,00	,	0,00 0,00 0,00)	0,00)		
790,92	790,92	790,9	2 7	90,92	790,	92	790,9	92	790,9	2
316,37	316,37	316,3	7 3	16,37	316,	37	316,3	37	316,3	37
20	50	2051	2052		2053	205	4	205	5	
250	0,00	2500,00	2500,00	0 25	500,00	2500	,00	2500,	00	
790	790,92		790,92	7	90,92	790,	92	790,9	92	
0,	00	0,00	0,00		0,00	0,0	0	0,00)	
790),92	790,92	790,92	? 7	90,92	790,92		790,9	92	
316,37		316.37	316.37	3	16,37	316.	37	316.0	37	

Tableau 3-20: Coûts opérationnels estimés

Nous pouvons, à ce stade, calculer les marges brutes unitaires dégagées par produit afin de valider nos hypothèses sur les revenus

Produits	Prix	Coût de revient	Marge brute
LAC	605	272	433
LAF	750	324	426
GALVA	850	368	482
TSS(small)	950	488	462
TSS(big)	950	483	467

Tableau 3-21: Marges brutes sur chaque produit

3.3.1.3 Hypothèses sur l'investissement :

Dans cette section, nous abordons le calcul des **CAPEX** (Capital Expenditures), c'est-à-dire les dépenses d'investissement nécessaires au lancement et à la mise en place du projet. Ces investissements couvrent principalement la construction des infrastructures, l'acquisition des équipements, ainsi que toutes les dépenses techniques initiales requises pour rendre l'usine opérationnelle.

Selon les données collectées via l'expertise PwC, le CAPEX total estimé s'élève à 2,9 milliards de dollars, répartis sur une période de 4 ans, correspondant à la phase de démarrage du projet. Durant cette période, 25 % du montant total est débloqué chaque année, soit une répartition linéaire sur les quatre années de construction.

Ce rythme de décaissement reflète une logique classique de gestion de projet à grande échelle : les dépenses se font progressivement à mesure que les travaux avancent, que les machines sont livrées, installées, puis testées.

-> Hypothèses retenues pour le calcul des CAPEX

- 1. Montant total des investissements initiaux : Le CAPEX total est estimé à 2,9 milliards de dollars, couvrant la totalité des dépenses nécessaires à la mise en place du projet industriel.
- 2. **Durée de la phase d'investissement :** Les investissements sont étalés sur **4 années**, correspondant à la période de construction et de démarrage du projet.
- 3. Rythme de décaissement des fonds : Répartition linéaire des décaissements : 25 % du montant total du CAPEX est investi chaque année, soit 0,725 milliard USD/an.
- 4. **Mode de financement :** Le projet est financé intégralement via **un emprunt bancaire contracté au même rythme que les décaissements.**
- 5. **Période de remboursement de l'emprunt :** Le remboursement débute à partir de la 7e année, et s'étale sur 8 ans.
- 6. **Durée d'amortissement des actifs :** Tous les actifs acquis dans le cadre du CAPEX sont amortis sur **20 ans**, à compter de la **première année d'exploitation** (année 5).
- 7. Début de l'enregistrement comptable des amortissements : Les charges d'amortissement commencent à être comptabilisées à partir de l'année 5, en lien avec le démarrage de l'exploitation effective.

Construction du tableau des CAPEX:

Le détail des calculs est fourni en Annexe 10

Installation	Capex min	Capex max	Capex moyen (M\$)
Général	50	100	75
Minerais+Pelletisation+DRI	835	1015	930
Smelter+ACO+CC	730	1010	870
TSS	285	375	330
Produits plats	570	815	695
Total	2470	3315	2900

Tableau 3-22: Estimation des CAPEX

Durée d'investissement	4 ans
Durée jusqu'au réinvestissement	8 ans
Années d'amortissement	20
Taux d'amortissement	0,05

Tableau 3-23: Hypothèses d'investissements

		2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Décaisse	ement(%)	25%	25%	25%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Décaisse	ment(M\$)	725	725	725	725	0	0	0	0	0	0	0	0	0	0	0
Investisse	ment initial	725	1450	2175	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900
Amortisse	ment(M \$)					36,25	72,5	108,75	145	145	145	145	145	145	145	145
	sement édiaire										0	0	0	36,25	72,5	108,75
	ssement édiaire	0	0	0	0	0	0	0	0	0	0	0	0	36,25	108,75	217,5
Amortisse	ment(M \$)										0,00	0,00	0,00	1,81	5,44	10,88
Décaisse	ment total	725	725	725	725	0	0	0	0	0	0	0	0	36,25	72,5	108,75
	ment total(M 6)	0	0	0	0	36,25	72,5	108,75	145	145	145	145	145	146,8125	150,4375	155,875
TO	TAL	725	725	725	725	36,25	72,5	108,75	145	145	145	145	145	183,0625	222,9375	264,625
2041	2042	2043	2	044	204	5 :	2046	2047	2	048	2049) :	2050	2051	2052	2053
0%	0%	0%		0%	0%		0%	0%	-	0%	0%		0%	0%	0%	0%
0	0	0		0	0		0	0		0	0		0	0	0	0
2900	2900	2900	2	900	290	0 2	2900	2900	2	900	2900) :	2900	2900	2900	2900
145	145	145		145	145	5	145	145	1	145	145		145	145	145	145
145	145	145		145	145	5	145	145	1	145	145		145	145	145	145
362,5	507,5	652,5	7	97,5	942,	5 1	087,5	1232,5	5 13	377,5	1522	5 1	667,5	1812,5	1812,5	1812,5
18,13	25,38	32,63	3	9,88	47,1	3 5	54,38	61,63	6	8,88	76,1	3 8	33,38	90,63	90,625	90,625
145	145	145		145	145	5	145	145	1	145	145		145	145	145	145
163,125	170,375	177,62	5 18	4,875	192,1	25 19	99,375	206,62	5 21	3,875	221,1	25 22	28,375	235,625	235,625	235,625
308,125	315,375	322,62	5 32	9,875	337,1	25 34	14,375	351,62	5 35	8,875	366,1	25 37	73,375	380,625	380,625	380,625

Tableau 3-24: Calculs des investissements et amortissements

3.3.1.4 Modélisation financière :

Cette modélisation s'appuie sur l'élaboration du **compte de résultat prévisionnel**, la construction du **tableau de flux de trésorerie**, l'analyse des besoins en financement (court et long terme), ainsi que le calcul des principaux **indicateurs de rentabilité** tels que la **VAN** (valeur actuelle nette) et le **TRI** (taux de rentabilité interne).

Compte de résultat prévisionnel

Le compte de résultat est structuré de la manière suivante :

- Chiffre d'affaires (CA) estimé à partir des volumes de production et des prix de vente.
- Moins les **charges opérationnelles (OPEX)**, correspondant aux coûts de production, de maintenance, d'énergie, etc.
- Ce solde donne la marge brute (MB).
- En retranchant les **frais de personnel**, on obtient l'excédent brut d'exploitation (EBE).
- Enfin, la déduction des **dotations aux amortissements** permet d'obtenir le **résultat** d'exploitation.

Tableau 3-25: Tableau de compte résultat prévisionnel

127,45

543,34

126.07

537,47

124,69

531,59

10%

123,32

525,72

121,94

519,85

121,94

519,85

121,94

519,85

Flux de trésorerie : le calcul des flux de trésorerie est présenté en Annexe 11

Taux d'actualisation

128.83

549,21

Indicateurs de rentabilité :

134,34

572,70

132,96

566,83

131,58

560,96

130,20

555,08

133,61

569,62

Indicateur de rentabilité					
VAN	1031				
TRI	20,70%				
IP	1,36				
DR	2041				

Tableau 3-26: Indicateurs de rentabilité

3.3.1.5 Conclusions :

L'analyse menée tout au long de cette étude permet de confirmer la **cohérence économique**, **industrielle et financière** du projet dans son ensemble. À travers une modélisation détaillée couvrant la chaîne complète de valeur – de l'approvisionnement en minerai jusqu'à la vente des produits finis – le projet se distingue par une **structuration progressive et maîtrisée**, adaptée aux contraintes du marché et aux ressources disponibles.

- Une montée en puissance progressive mais robuste

La production démarre en 2030, avec une montée en charge étalée sur cinq ans pour atteindre 2,1 millions de tonnes de produits plats en 2035, auxquels s'ajoutent les 400 000 tonnes de

TSS. Cette trajectoire est en phase avec les tendances du marché local et les ambitions d'exportation du client, qui entend capter 1,62 Mt/an à l'export à capacité maximale.

-Un point d'équilibre atteint dès 2033 :

Les projections financières révèlent un bénéfice positif à partir de 2033, soit trois ans seulement après le lancement de la production. Ce délai s'explique par :

- Une **croissance rapide du chiffre d'affaires**, liée à l'augmentation des volumes et à la montée en gamme des produits.
- Une **maîtrise progressive des OPEX**, notamment grâce à l'optimisation du mix minerai et des coûts de transformation.
- Une structure de financement et d'amortissement étalée dans le temps, qui permet de **lisser l'impact des charges financières** et techniques sur les premières années.

-Une gestion prudente de la trésorerie :

Le projet est intégralement financé par **emprunt bancaire**, remboursable sur 8 ans à partir de l'année 7. Les éventuelles **tensions de trésorerie** sont absorbées par des **dettes à court terme**, remboursées sur l'exercice suivant, avec un taux d'intérêt réaliste de **8 %**. Ce dispositif permet de garantir une **trésorerie nette toujours positive**, critère essentiel pour la viabilité à court et moyen terme.

-Résultats prévisionnels satisfaisants :

Le projet débute avec un résultat net négatif et décroissant durant la phase d'investissement. Dès l'entrée en production, le résultat remonte jusqu'à devenir positif à la 4e année d'exploitation (2033), à hauteur de **15,16 Millions de \$.** Le résultat continue à grimper jusqu'à atteindre **572 M\$** en 2042, puis recule légèrement à cause des investissements intermédiaires, pour se stabiliser en **520 M\$**. Cela démontre la viabilité économique du projet.

-Analyse des indicateurs de rentabilité :

Le calcul des différents indicateurs met en évidence une rentabilité satisfaisante du projet :

- -La **VAN** générée est positive, traduisant une création de valeur nette à partir des investissements. Elle est à hauteur de **1 031 M\$** en 2053, ce qui nous permet déjà de confirmer la rentabilité du projet.
- -Le **TRI dépasse largement le seuil de 10** % défini comme taux d'actualisation, ce qui valide la pertinence du projet en termes d'investissement.
- -L'indice de profitabilité est supérieur à 1, confirmant les résultats de la VAN et TRI.
- -Le délai de récupération est de 11 ans à partir du début d'exploitation, qui est acceptable pour un projet de grande envergure.

En somme, nous avons pu démontrer que notre projet est cohérent dans son ensemble, démontre une bonne rentabilité, et génère une valeur qui justifie l'investissement.

3.3.2 Analyse des sensibilités

Dans cette section, nous menons une analyse de sensibilité afin d'évaluer la robustesse du projet face aux incertitudes pesant sur les principales hypothèses retenues. L'objectif est de mesurer l'évolution des indicateurs de rentabilité en fonction de plusieurs axes de risque :

- -L'intégration des dettes passées du client au projet (Scénario 1).
- -Les incertitudes liées à l'exploitation de la mine de Gara Djebilet (Scénarios 2 et 3).
- -Les risques économiques associés aux coûts de production et prix de vente (Scénarios 4 à 7).

3.3.2.1 Définition des scénarios :

Scénario 1 : L'entreprise cliente souhaite rembourser ses dettes antérieures grâce à la trésorerie dégagée par le projet. Cela concerne le remboursement de ses créances fournisseurs au total de 212 M\$, ainsi que sa dette envers le FNI, d'un montant de 1 424 M\$, à rembourser progressivement entre 2041 et 2053. De plus, le haut-fourneau, bien que déficitaire, est maintenu en activité jusqu'en 2029.

Scénario 2 : Le mégaprojet de Gara Djebilet est retardé de 10 ans. Dans ce scénario, le minerai de Gara Djebilet n'est introduit dans le mix qu'à partir de 2040, et son utilisation exclusive en 2050. Les mines de Tébessa seront exploitées jusqu'à épuisement, et garderont la même présence dans le mix. Le reste sera complété par le minerai d'importation jusqu'en 2050:

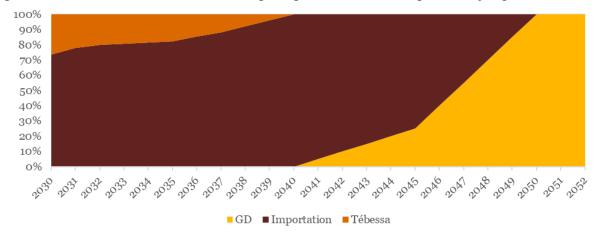


Figure 3-9: mix minerai du scénario 2

Scénario 3 : l'exploitation de Gara Djebilet n'est jamais réalisée. Dans ce cas, le complexe dépendra entièrement du minerai importé après l'épuisement des mines de Tébessa:

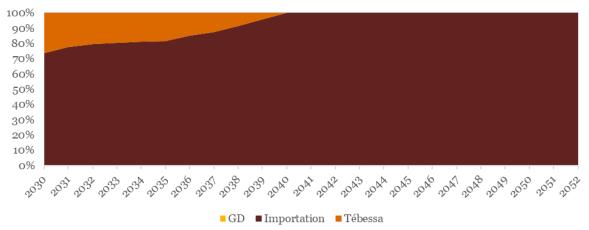


Figure 3-10: mix minerai du scénario 3

Scénario 4 : Ce scénario simule un effet ciseau de la marge opérationnelle. La croissance des prix de vente à 1%, ne suit pas l'inflation des coûts de production à hauteur de 3,5%.

Scénario 5 : Les CAPEX augmentent de 25 %, en raison de surcoûts liés à l'investissement initial. Ils passeront donc de 2900M\$ à **3625M\$**

Scénario 6 : Les prix de vente sont revus à la baisse de 50 \$/tonne, réduisant le chiffre d'affaires.

Scénario 7: le coût de revient du minerai de Gara Djebilet augmente de 30%, soit 91\$/tonne.

3.3.2.2 Simulation et analyse des scénarios :

Indicateur	Scénario 0	Scénario 1	Scénario 2	Scénario 3	Scénario 4	Scénario 5	Scénario 6	Scénario 7
VAN(M\$)	1031	486,4	607	513	379	618	559	814
TRI	20,70%	13,50%	16,50%	16,00%	14,90%	15,50%	15,70%	18,80%
IP	1,36	1,17	1,21	1,18	1,13	1,17	1,19	1,28
DR	2041	2045	2045	2045	2044	2044	2044	2042

Tableau 3-27: Résultats des scénarios

- -Capacité de financement : L'intégration des dettes antérieures du client (Scénario 1) exerce une pression financière substantielle, se traduisant par une contraction de 53% de la VAN et un recul du TRI à 13,5%. L'indice de profitabilité (IP) se dégrade à 1,17, tandis que le délai de récupération (DR) est repoussé à 2045. Toutefois, le projet préserve une rentabilité structurelle et génère des flux suffisants pour absorber ces engagements historiques. Cette résilience confirme son rôle de levier de redressement financier, permettant à l'entreprise cliente d'atteindre l'auto-financement tout en rétablissant sa situation financière.
- **-Variations du mix minerai :** Le retard de Gara Djebilet (Scénario 2) et son abandon définitif (Scénario 3) induisent respectivement une érosion de 41% et 50% de la VAN initiale. Bien que le délai de récupération s'allonge à 2045 dans les deux cas, les indicateurs-clés restent systématiquement au-dessus des seuils critiques (TRI > 15%, IP > 1.18). Ces résultats révèlent que la viabilité du complexe n'est pas conditionnée à la réussite du mégaprojet minier, bien que sa mise en œuvre améliorerait significativement la performance.
- -Variations des coûts : Malgré la dégradation des indicateurs de rentabilité face aux scénarios pessimistes, le projet maintient toujours une rentabilité positive, et le délai de récupération est retardé de 1 à 3 ans seulement selon le scénario.

Le Scénario 4 (déséquilibre coûts-prix) émerge comme le risque le plus pénalisant : la VAN s'effondre à 379 M\$ (-63%), le TRI chute de 5,8 points, et l'IP (1,13) frôle le seuil de non-viabilité (IP=1).

Le Scénario 6 (baisse des prix) démontre une sensibilité aiguë aux marchés : une réduction de 50\$/tonne entraîne une chute de 46% de la VAN.

Le Scénario 5 semble relativement bien absorbé, avec une conservation de 60% de la VAN. Cependant, pour une telle VAN le TRI et l'IP sont significativement dégradés, ce qui représente une augmentation du risque encouru par cet investissement.

Le Scénario 5 n'a pas d'impact fort sur la rentabilité du projet : la VAN conserve 80% de sa valeur initiale, avec un retard d'1 an seulement pour la récupération des investissements

3.3.2.3 Conclusion :

Le projet démontre une robustesse financière remarquable face aux incertitudes analysées. Malgré des scénarios pessimistes, les indicateurs-clés (VAN positive, TRI > 13.5%, IP > 1.13) restent systématiquement dans une zone de viabilité acceptable. Cette résilience valide la solidité du modèle économique proposé et sa capacité à générer les flux nécessaires au redressement financier de l'entreprise cliente. Toutefois, une attention particulière devra être portée à l'évolution des coûts d'exploitation et aux conditions de marché, qui représentent les principales sources de vulnérabilité. La conduite du projet devra aussi prioriser une bonne maîtrise des coûts de sa réalisation.

3.3.3 Evaluation de l'empreinte carbone du projet

Le projet de développement du complexe sidérurgique s'inscrit dans une logique de transition énergétique et de décarbonation progressive de l'industrie sidérurgique, conformément aux enjeux environnementaux globaux. Dans ce contexte, il devient essentiel d'évaluer l'empreinte carbone de la nouvelle configuration technologique et mesurer sa faisabilité environnementale. Nous allons donc quantifier les émissions de gaz à effet de serre, exprimées en tonnes de CO₂ équivalent par tonne d'acier produite (tCO₂eq/t), pour la filière actuelle Haut-fourneau, puis la nouvelle configuration DRI+Smelter.

Les émissions de carbone dans un complexe sidérurgique proviennent des différentes étapes du processus : pelletisation, réduction (par HF ou DRI), élaboration (ACO seule ou avec DRI), et laminage. Le laminage, identique dans les deux configurations, représente une part marginale des émissions totales, et ne constitue donc pas un facteur différenciant pertinent pour cette analyse. Par ailleurs, les émissions associées à l'extraction et au transport du minerai de fer en amont sont également négligeables au regard de celles générées par les procédés de transformation sur site.

La recherche documentaire nous a permis de collecter des données consolidées d'émissions pour chaque étape de la filière traditionnelle intégrée [43], mais celles-ci supposent généralement l'existence d'une cokerie intégrée au complexe. Or, dans la configuration actuelle du client, le coke est importé. Il est donc nécessaire de recalculer l'empreinte carbone du haut fourneau en prenant en compte l'impact carbone de l'importation du coke.

En parallèle, les émissions de la filière **DRI** + **Smelter** doivent également être **calculées spécifiquement**, en intégrant les émissions directes, indirectes liées à l'électricité, et celles liées à la consommation de gaz naturel.

3.3.3.1 Périmètre d'analyse des émissions : [44]

En premier lieu, nous allons identifier, pour chaque filière, les principales sources d'émissions de GES à travers les 3 scopes.

a) Haut-fourneau [45]

• Scope 1 – Émissions directes

Ce périmètre regroupe les émissions générées directement sur le site industriel, issues de :

- -La combustion du coke dans le haut fourneau, servant à la réduction du minerai de fer $(Fe_2O_3 \rightarrow Fe)$.
- **-Les réactions chimiques du procédé** (notamment la réduction carbothermique), qui libèrent du CO₂ en grande quantité.

• Scope 2 – Émissions indirectes liées à l'électricité

Émissions associées à la **consommation d'électricité externe** utilisée pour les systèmes auxiliaires (ventilation, pompes, contrôle-commande). Ces émissions sont cependant négligeables devant les scopes 1 et 3, et ne seront donc pas prises en compte.

• Scope 3 – Autres émissions indirectes

- -Production et transport du coke, qui n'est pas produit localement dans le complexe, mais importé, ce qui augmente considérablement les émissions amont.
- -Transport des matières premières, notamment les pellets. La pelletisation étant intégrée au complexe, la distance parcourue est négligeable et peut être ignorée.

b)Filière alternative : DRI + Smelter [46] [47]

- Scope 1 Émissions directes
- -Réduction du minerai dans le réacteur DRI, alimenté en gaz naturel (méthane ou mélange CH₄/CO), provoquant la libération directe de CO₂.
- -Fusion du fer dans le Smelter, dont les émissions proviennent essentiellement des pertes métallurgiques et des réactions chimiques résiduelles lors de la fusion Ses émissions sont comparables à celle d'un four à arc électrique.[46]
 - Scope 2 Émissions indirectes liées à l'électricité
- -Consommation électrique importante du Smelter, principal poste du Scope 2. -Électricité utilisée pour les auxiliaires (pompes, compresseurs, contrôle), en particulier dans le processus DRI.
 - Scope 3 Autres émissions indirectes
- -Production, traitement et transport du gaz naturel, principal intrant énergétique de la filière DRI.
- -Émissions liées au **transport des pellets**. Comme le haut fourneau, ses émissions sont négligeables.

Calcul de l'empreinte carbone totale de chaque procédé :

	Emissions totales du Haut fourneau						
	Scope 1						
	Facteur d'émission						
HF	1,279[43]						
	Scope 3						
	Consommation Emission unitaire Facteur (kg/t d'acier) (kgCO2/kg) d'émission						
Coke	Coke 600[48] 3[49] 1,8						
Facteur d'émission du HF (tCO2eq/tonne d'acier)							
	3,079						

Tableau 3-28: Calcul de l'empreinte carbone de la filière HF

	Émissions totales du DRI+Smelter				
	Scope 1				
	Facteur d	'émission (tCO2eq/t	d'acier)		
DRI		0,507 [50]			
Smelter	0,24[43]				
Total		0,747			
Scope 2					
	Consommation Émission unitaire Facteur				
	(kWh/t d'acier)	(kgCO2eq/kWh)	d'émission		
Electricité	400	0,486[51]	0,195		
	S	cope 3			
	Consommation	Emission unitaire	Facteur		
	(kg/t d'acier)	(kgCO2/kg)	d'émission		
Gaz	800	0,198[52]	0,159		
Facteur	Facteur d'émission du DRI+Smelter(tCO2eq/tonne d'acier)				
	1,1				

Tableau 3-29: Calcul de l'empreinte carbone de la filière DRI+Smelter

On peut remarquer que l'empreinte carbone du DRI+Smelter est largement inférieure au Haut Fourneau. Les émissions de scope 1 du HF à elles seules reviennent à 1,279, soit plus que l'empreinte des 3 scope du DRI+Smelter

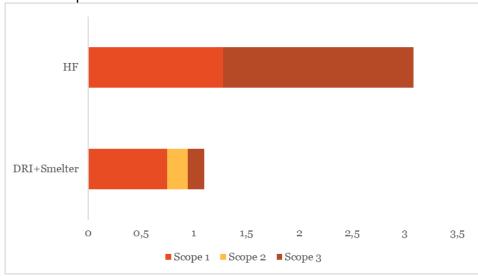


Figure 3-11: Comparaison des émissions carbone des 2 procédés

3.3.3.2 Evaluation finale de chaque filière :

	Filière HF	Filière DRI-Smelter
Pelletisation	0,211	0,211
Réduction	3,079	1,1
Elaboration	0,202	0,202
Total	3,492	1,513

Tableau 3-30: Calcul de l'empreinte totale du complexe

La comparaison entre les deux configurations met en évidence l'avantage clair de la filière **DRI** + **Smelter** sur le plan environnemental. Avec une empreinte carbone totale estimée à **1,51**

tCO₂eq/tonne d'acier, contre 3,49 tCO₂eq/tonne pour la filière Haut Fourneau + ACO, la nouvelle configuration permet une réduction des émissions de gaz à effet de serre de près de 57 %.

Ce résultat s'explique d'abord par l'élimination du **coke**, dont la combustion et la chaîne de production représentent une part majeure des émissions directes et indirectes de la filière traditionnelle. À l'inverse, la réduction directe au **gaz naturel** présente une intensité carbone bien moindre. Le processus DRI est **intrinsèquement moins émissif** que le haut fourneau : les émissions directes (Scope 1) y sont significativement réduites, car la réduction chimique s'opère à température plus basse, sans recours massif au carbone solide.

Par ailleurs, la part du **gaz naturel**, bien que fossile, reste relativement limitée dans l'empreinte totale (environ **14 % des émissions**), et pourrait à terme être **remplacée par de l'hydrogène vert**, rendant la filière quasi décarbonée.

En somme, la configuration DRI + Smelter constitue une solution nettement plus sobre en carbone, tout en étant techniquement évolutive. Elle s'inscrit ainsi dans une trajectoire de décarbonation progressive et réaliste de la sidérurgie.

3.3.4 Tableaux de bord

Pour valoriser notre solution et démontrer l'impact global du projet, nous avons conçu des tableaux de bord interactifs sous Power BI. Ces outils permettent un suivi structuré autour de trois dimensions clés : financière, commerciale et opérationnelle. Le tableau de bord financier met en lumière la rentabilité du projet, à travers des indicateurs comme l'évolution de la trésorerie, les marges par produit et les principaux agrégats économiques. Du côté commercial, nous avons suivi les volumes de vente par canal (local et export), les produits les plus performants et l'évolution globale des ventes. Enfin, le tableau de bord opérationnel rend compte de la performance industrielle via des indicateurs tels que le taux d'utilisation des installations, la disponibilité des équipements, la consommation et la qualité du minerai, ainsi que les émissions de gaz à effet de serre. L'ensemble de ces tableaux permet une visualisation claire, dynamique et actualisée de l'avancement et de l'efficacité du projet.

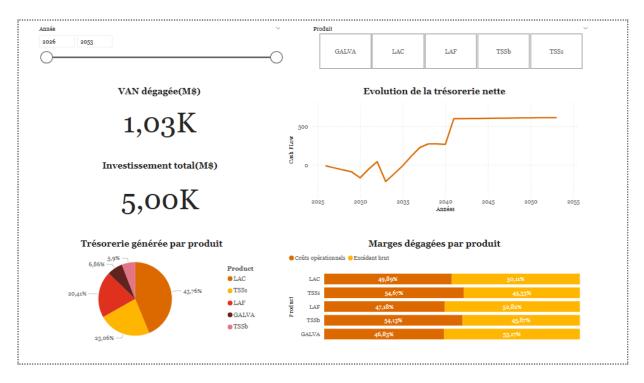


Figure 3-12: Tableau de bord : Finance

Figure 3-13: Tableau de bord : Commercial

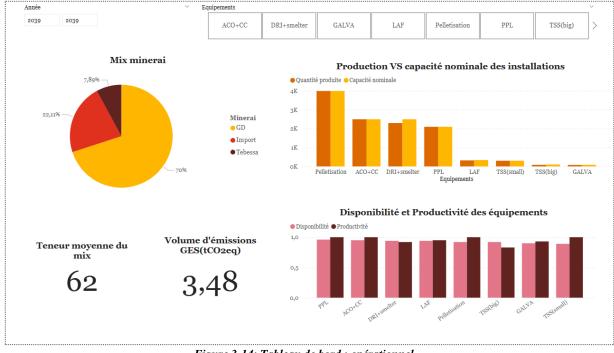


Figure 3-14: Tableau de bord : opérationnel

Conclusion

Ce chapitre a permis de mener un **benchmark technologique approfondi** sur les différentes filières sidérurgiques à l'échelle internationale, en analysant leurs spécificités techniques, les matières premières mobilisées, leurs performances énergétiques et leurs impacts environnementaux. Cette collecte ciblée sur les pratiques industrielles en vigueur a mis en évidence que le choix de la filière détermine non seulement l'organisation industrielle, mais également la compétitivité, la résilience et la durabilité de l'ensemble de la chaîne de valeur. Dans ce contexte, la filière **DRI–Smelter–BOF** se distingue comme **l'option la plus pertinente pour notre client X**, en raison de sa compatibilité avec les ressources locales disponibles, de sa meilleure performance environnementale, de sa flexibilité opérationnelle et de sa capacité à répondre aux exigences futures en matière de décarbonation. Ce choix stratégique offre un cadre technologique robuste et adapté aux ambitions de transformation industrielle durable du pays.

Sur la base de cette orientation technologique, un travail d'évaluation multicritère des sources d'approvisionnement en minerai a permis de hiérarchiser les options disponibles. Le minerai de Gara Djebilet s'est imposé comme la meilleure solution à long terme grâce à sa qualité satisfaisante, son caractère national et son coût compétitif. Durant la phase transitoire, un mix équilibré entre minerai importé et minerai de Tebessa permettra de garantir la continuité de l'approvisionnement, en attendant la pleine exploitation du gisement national. L'approche AMDEC, adaptée à notre contexte, a ensuite structuré la prise de décision autour des équipements existants. En intégrant des seuils de criticité spécifiques et des grilles de risques, elle a permis de construire un plan d'action clair et hiérarchisé sur le maintien, le remplacement ou le revamping des équipements, en cohérence avec les priorités opérationnelles et industrielles du projet.

L'étude de rentabilité menée en parallèle démontre la robustesse financière du projet, avec des indicateurs systématiquement positifs, y compris dans les scénarios pessimistes. Cette solidité économique constitue un levier fondamental pour assurer la viabilité du projet, tout en soulignant la nécessité d'une gestion rigoureuse des coûts d'exploitation et d'un suivi attentif des conditions du marché.

Enfin, l'analyse comparative de l'impact environnemental des configurations étudiées met en évidence l'avantage clair de la filière DRI + Smelter. Avec une empreinte carbone significativement réduite par rapport à la filière BF/BOF traditionnelle, elle s'inscrit dans une trajectoire crédible de décarbonation progressive.

Conclusion Générale

Ce projet de fin d'études s'inscrit dans une démarche de repositionnement stratégique et durable d'un complexe sidérurgique algérien, à travers l'élaboration d'un plan de développement technologique et énergétique orienté vers la production d'acier vert.

Face aux défis de compétitivité industrielle, de transition environnementale et de souveraineté économique, ce travail a permis de structurer une trajectoire de transformation complète, articulée en trois volets fondamentaux : diagnostic stratégique et étude de marché, cadrage technique de la filière sidérurgique, et définition des solutions intégrées.

Le premier chapitre a mis en évidence l'importance stratégique du secteur sidérurgique dans le processus de réindustrialisation nationale, tout en identifiant les déséquilibres de l'offre, les limites technologiques et les distorsions concurrentielles sur les segments produits. L'analyse croisée des données internes et du marché a permis de cibler une gamme de produits à fort potentiel économique, à savoir les tubes sans soudure (TSS) et les produits plats à haute valeur ajoutée, et d'écarter les produits saturés ou à faible rentabilité comme le rond à béton ou les rails.

Le **second chapitre** a approfondi la dimension technique du projet, à travers l'étude des matières premières, des procédés industriels, et des produits sidérurgiques. Il a mis en lumière la complexité de la chaîne de valeur sidérurgique, de la préparation des matières à la finition des produits, et a introduit les enjeux environnementaux liés à la décarbonation du secteur. Ces éléments ont servi de socle pour bâtir une stratégie industrielle techniquement réaliste et compatible avec les contraintes actuelles en matière d'énergie, de flux et d'impact climatique.

Le troisième chapitre a proposé une configuration industrielle innovante et robuste, fondée sur la filière **DRI–Smelter–BOF**, optimisée pour les ressources disponibles et validée par une approche multicritère intégrant performance, durabilité et flexibilité. L'analyse AMDEC a permis de formaliser un plan d'action opérationnel pour la modernisation des équipements critiques. L'étude de rentabilité, complétée par des scénarios alternatifs et des analyses de sensibilité, a confirmé la viabilité financière du projet, même sous contraintes. Enfin, l'évaluation environnementale a validé une réduction significative des émissions de CO₂, rendant le modèle conforme aux trajectoires bas carbone attendues à l'échelle mondiale.

Ce projet propose ainsi un modèle de développement industriel ancré dans le contexte algérien, mais résolument tourné vers l'avenir. Il est opérationnellement réalisable, économiquement solide, technologiquement adapté et écologiquement responsable. Il démontre que la transition vers une sidérurgie verte en Algérie est non seulement possible, mais stratégique, pour renforcer l'autonomie industrielle du pays, réduire sa dépendance aux importations, et saisir les opportunités croissantes du marché régional et international de l'acier durable.

Au-delà de ses dimensions techniques et économiques, ce travail illustre la capacité des ingénieurs à penser **systèmes complexes**, à intégrer les logiques de durabilité, et à contribuer activement à des projets de transformation industrielle à **fort impact national**.

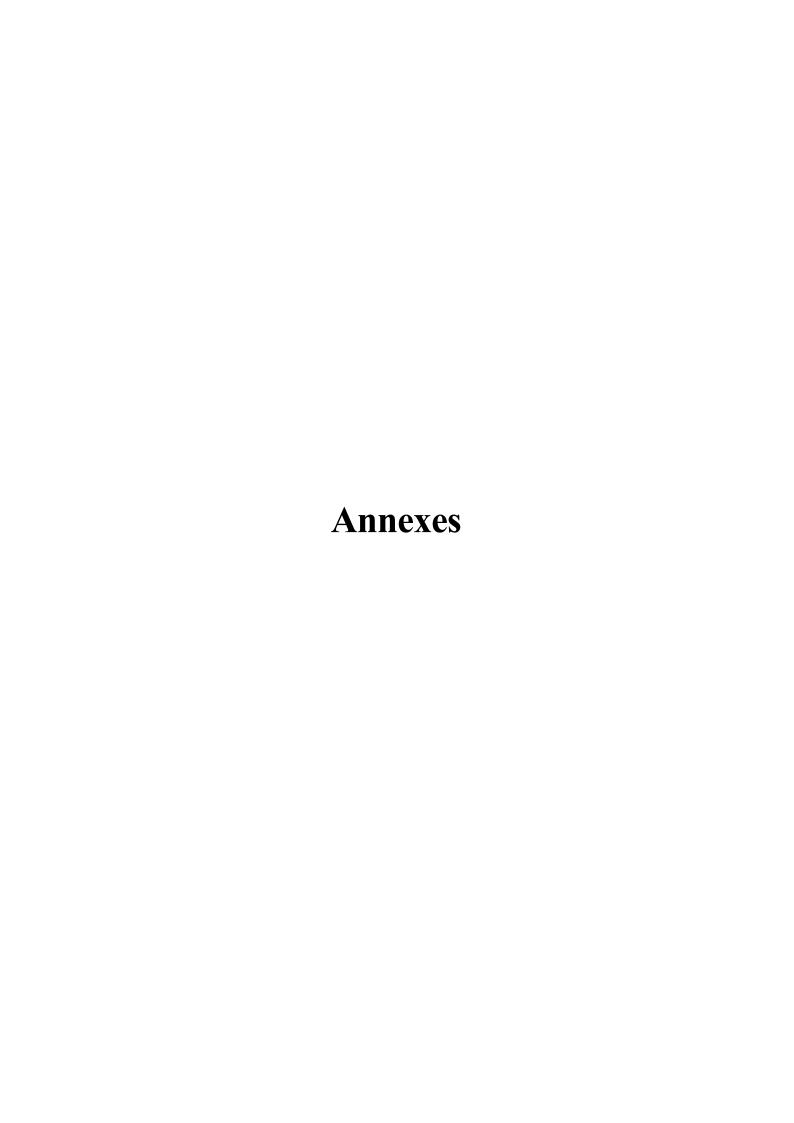
Bibliographie

- [1] World Steel Association, World Steel in Figures 2024. World Steel Association, 2024. [En ligne]. Disponible: https://worldsteel.org/data/world-steel-in-figures/world-steel-in-figures-2024/
- [2] Ressources naturelles Canada, Faits sur le minerai de fer. Gouvernement du Canada, 2024. [En ligne]. Disponible : https://ressources-naturelles.canada.ca/mineraux-exploitation-miniere/faits-mineraux-metaux/faits-minerai-fer
- [3] Arab News, "L'Arabie saoudite et l'Algérie renforcent leur coopération économique". Arab News, 10 juil. 2024. [En ligne]. Disponible : https://www.arabnews.fr/node/466696/%C3%A9conomie
- [4] ObservAlgerie, "Produits exportés par l'Algérie : Les hydrocarbures toujours dominants".

 ObservAlgerie, 1 avr. 2025. [En ligne]. Disponible : https://observalgerie.com/2025/04/01/economie/produits-exportes-lalgerie-hydrocarbures/
- [5] Just-InfoDZ, "Sidérurgie : Le protectionnisme stratégique de l'Algérie". Just-InfoDZ, 15 mai 2024. [En ligne]. Disponible : https://just-infodz.com/siderurgie-le-protectionnisme-strategique-de-lalgerie/
- [6] Algerie-eco, "Tosyali Algérie exporte 25 000 tonnes de tôles d'acier plat". Algerie-eco, 18 août 2024. [En ligne]. Disponible : https://algerie-eco.com/2024/08/18/tosyali-algerie-exporte-25-000-tonnes-de-toles-dacier-plat
- [7] Algerie Invest, "Tosyali Algérie exporte 25 000 tonnes d'acier plat : Une première dans l'histoire de l'Algérie". Algerie Invest, 19 août 2024. [En ligne]. Disponible : https://www.algerieinvest.dz/tosyali-algerie-exporte-25-000-tonnes-dacier-plat-une-premiere-dans-lhistoire-de-lalgerie/
- [8] Algerie-eco, "Sidérurgie : AQS a exporté pour 400 millions de dollars". Algerie-eco, 29 déc. 2023. [En ligne]. Disponible : https://algerie-eco.com/2023/12/29/siderurgie-aqs-a-exporte-pour-400-millions-de-dollars/
- [9] S&P Global, [Titre exact du rapport non spécifié], 2023. [En ligne]. Disponible :<u>Lien</u> [10] GMK Center, Infographic: EU Flat Steel Market in 2010-2023. GMK Center, 25 janv. 2024. [En ligne]. Disponible : https://gmk.center/en/infographic/eu-flat-steel-market-in-2010-2023/

- [11] Team France Export, "Les exportations de l'aciérie AQS ont atteint 400 M USD en 2023", Business France, 29 déc. 2023. [En ligne]. Disponible : https://www.teamfrance-export.fr/infos-sectorielles/28843/28843-les-exportations-de-lacierie-aqs-ont-atteint-400-m-usd-en-2023
- [12] Algeria Invest, "Exportation de produits sidérurgiques vers les pays baltes : AQS passe à l'action", Algeria Invest, 25 mars 2025. [En ligne]. Disponible : https://algeriainvest.com/AlgeriaIC/public/fr/premium-news/exportation-de-produits-siderurgiques-vers-les-pays-baltes-aqs-passe-a-laction
- [13] ObservAlgerie, "Algérie : Énorme quantité d'acier exportée vers l'Italie", ObservAlgerie, 3 mars 2025. [En ligne]. Disponible : https://observalgerie.com/2025/03/03/economie/algerie-enorme-quantite-dacier-exportee-vers-litalie/
- [14] Midrex Technologies, "North Africa Focus on Direct Reduction Ironmaking", Midrex, Jan. 2024. [En ligne]. Disponible: https://www.midrex.com/tech-article/north-africa-focus-on-direct-reduction-ironmaking/
- [15] La Sentinelle, "Rupture des stocks de coke au complexe sidérurgique El Hadjar : La direction d'Al Solb explique et rassure", La Sentinelle, 2 janv. 2025. [En ligne]. Disponible : https://lasentinelle.dz/index.php/2025/01/02/rupture-des-stocks-de-coke-au-complexe-siderurgique-el-hadjar-la-direction-dal-solb-explique-et-rassure/
- [16] Techniques de l'Ingénieur, "Utilisation des aciers", Techniques de l'Ingénieur, 10 mars 2020. [En ligne]. Disponible : https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/siderurgie-des-metaux-ferreux-42368210/principaux-produits-siderurgiques-m7020/utilisation-des-aciers-m7020v4niv10004.html
- [17] CommentFer.fr, "Impact des tarifs douaniers sur le marché des tubes en acier", CommentFer, 15 mai 2024. [En ligne]. Disponible : https://www.blog.commentfer.fr/guide-complet-sur-les-tubes-en-acier/marche-et-economie-des-tubes-en-acier/impact-des-tarifs-douaniers-sur-le-marche-des-tubes-en-acier/
- [18] OFRIR, "Les laitiers sidérurgiques", IFSTTAR, 2014. [En ligne]. Disponible : https://ofrir2.ifsttar.fr/fileadmin/contributeurs/OFRIR2/pdf/categories-materiaux/residus-sous-produits_indust/LAC_Vsite2014-2_01.pdf
- [19] Finance ClimAct, "Mémo PTS Acier", Finance ClimAct, Jan. 2021. [En ligne]. Disponible: https://finance-climact.fr/wp-content/uploads/2021/01/Memo-PTS-Acier.pdf
- [20] Helios, "Empreinte carbone : calcul", Helios, 2024. [En ligne]. Disponible : https://www.helios.do/empreinte-carbone/empreinte-carbone-calcul/

- [21] K. Khoukha, "Étude de faisabilité d'un projet d'investissement et son financement : Cas de l'Entreprise portuaire de Bejaia", Mémoire de Master, Univ. Abderrahmane Mira, Béjaïa, Algérie.
- [22] G. Coriveau, Guide pratique pour étudier la faisabilité des projets. Québec, Canada: Presses de l'Université du Québec, 2018.
- [23] F. O. Meye, "Évaluation de la rentabilité des projets d'investissement : Méthodologie pratique", Revue Française de Gestion, vol. 45, no. 278, 2019.
- [24] S. Ferhi, "Élaboration d'un plan stratégique pour améliorer la rentabilité d'une entreprise du minerai de fer", Mémoire de Fin d'Études, Dépt. Génie Industriel, École Nationale Polytechnique, Alger, Algérie, 2019.
- [25] M. Bridier, Guide pratique d'analyse des projets. Paris, France: Éditions Economica, 2020, pp. 25-39.
- [26] K. Kherzi et I. Lakhdari, "Étude de faisabilité d'un projet d'investissement et son financement", Mémoire de Master, Univ. Abderrahmane Mira, Béjaïa, Algérie, 2021.
- [27] N. Hessas et H. Termoul, "Étude et évaluation des projets d'investissement par le Business plan", Mémoire de Master, Dépt. Sciences de Gestion, Univ. Mouloud Mammeri, Tizi-Ouzou, Algérie, 2020.
- [28] K. Hammachi, Aide multicritère à la décision, 2021.
- [29] J.-C. Vansnick, "Measurement Theory and Decision Aid", in Advances in Decision Analysis, N. Meskens, M. Roubens, Eds. Dordrecht, Netherlands: Springer, 1999, pp. 81-100.
- [30] B. Roy et D. Bouyssou, Aide multicritère à la décision : Méthodes et cas. Paris, France: Economica, 1993.
- [31] A. Nafi et C. Werey, "Aide à la décision multicritère : introduction aux méthodes d'analyse multicritère de type ELECTRE", in Module d'ingénierie financière, Strasbourg, France: ENGEES, 2009-2010.
- [32] T. L. Saaty et L. G. Vargas, "How to Make a Decision", in Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2nd ed., Boston, MA: Springer US, 2012.
- [33] A. Chaabane, "Méthodologie SLP", Cours GOL302 Conception des systèmes de production, École de technologie supérieure, Montréal, Canada, 2009.
- [34] R. Muther, Systematic Layout Planning, 4th ed. Kansas City, MO: Management & Industrial Research Publications, 2013.
- [35] M. M. K., S. R. Singh, et P. Kumar, "Industrial area layout design using SLP approach", International Journal of Industrial Engineering Computations, vol. 8, no. 2, pp. 239-252, 2017. [En ligne]. Disponible: https://hal.science/hal-01487710


- [36] Steelonthenet, "Blast Furnace Coke Consumption", 2023. [En ligne]. Disponible: https://www.steelonthenet.com/files/blast-furnace-coke.html

content/uploads/MIdrexDRI_ProductsBrochure_4-12-18-1.pdf

- [39] BHP, Pathways to decarbonisation episode seven: The Electric Smelting Furnace, rapport technique, juin 2023. [En ligne]. Disponible : https://www.bhp.com/-media/project/bhp1ip/bhp-com-en/documents/news/2023/230616 prospectsepisodeseven.pdf
- [40] A. Rahbari et al., "Production of green steel from low-grade ores: An end-to-end techno-economic assessment", Green Energy and Resources, vol. 2, no. 2, juin 2024, Art. no. 100062. [En ligne]. Disponible:https://www.sciencedirect.com/science/article/pii/S2949790624004622
- [41] Metso, DRI Smelting Furnace, brochure technique, 2023. [En ligne]. Disponible: https://www.metso.com/globalassets/portfolio/brochure-dri_smelting_furnace-proprietary-4813-01-25-en-met.pdf
- [42] Southeast Asia Iron and Steel Institute (SEAISI), Technical Bulletin, vol. 28, no. 4, 2023. [En ligne]. Disponible: https://www.seaisi.org/details/25309?type=news-rooms&utm
- [43] J.-L. Pasquier et J.-F. Coudert, "Decarbonization in Steel: A Review on the Direct Reduction of Iron Ore with Hydrogen", Metals, vol. 12, no. 5, 2022. Disponible: https://www.mdpi.com/2075-4701/12/5/797
- [44] Global Steel Climate Council, Steel Climate Standard, version 2.1, 2023. [En ligne]. Disponible: https://globalsteelclimatecouncil.org/the-standard/web/#section-4
- [45] D. Zhang, H. Liu, et M. Chu, "Discussion on Blast Furnace's Carbon Migration Rules and CO₂ Emission Reduction Measures", in Proc. 7th Int. Symp. Iron Steelmaking, 2022. [En ligne]. Disponible: https://abmproceedings.com.br/en/article/download-pdf/discussion-on-blast-furnaces-carbon-migrationrules-and-co2-emission-reduction-measures-1
- [46] T. Buergler et J. Schenk, "Decarbonization Pathways for Integrated Steel Plants", thèse de doctorat, Montanuniversität Leoben, Autriche, 2023. [En ligne]. Disponible: https://pureadmin.unileoben.ac.at/ws/portalfiles/portal/24802040/AC17032595.pdf
- [47] A. Hasanbeigi et M. Arens, "Techno-economic Evaluation of Innovative Steel Production Technologies", J. Sustain. Metall., vol. 9, 2023. Disponible: https://link.springer.com/article/10.1007/s40831-022-00585-x

- [48] Ram River Coal, Steelmaking Coal Facts, 2023. [En ligne]. Disponible: https://ramcoal.com/coal
- [49] CITEPA, Bilan des émissions ETS en France, Rapport pour le Ministère de la Transition écologique, France, 2022. [En ligne]. Disponible : https://www.ecologie.gouv.fr/sites/default/files/documents/ETS_Valeurs_nationales_Citepa% 20 2022.pdf
- [50] A. R. Shehabi et al., "Comparative Life Cycle Assessment of Conventional and Low-Carbon Steel Production", J. Clean. Prod., vol. 328, Art. no. 129525, 2022. Disponible: https://www.sciencedirect.com/science/article/pii/S0959652622008277
- [51] Low-Carbon Power, Algérie : Profil énergétique, 2024. [En ligne]. Disponible: https://lowcarbonpower.org/fr/region/Alg%C3%A9rie
- [52] Énergie+ Wallonie, Émissions de polluants liées à la consommation énergétique, 2023. [En ligne]. Disponible : https://energieplus-lesite.be/theories/consommation-energetique/
- [53] Financial Afrik, Algérie: Impact et rentabilité de l'exploitation de la mine de Gara Djebilet, 2e réservoir mondial de fer, 15 mai 2024. [En ligne]. Disponible: https://www.financialafrik.com/algerie-impact-et-rentabilite-de-lexploitation-de-la-mine-de-gara-djebilet-2e-reservoir-mondial-de-fer/
- [54] Seybouse Times, Annaba: Contrat stratégique entre Sider El Hadjar et Sonatrach pour une importante livraison de tubes sans soudure, 4 juil. 2024. [En ligne]. Disponible: https://seybousetimes.dz/actualite/region/2024/07/04/annaba-contrat-strategique-entre-sider-el-hadjar-et-sonatrach-importante-livraison-de-tubes-sans-soudure
- [55] Algeria Invest, Complexe Sider El Hadjar : 540 km de tubes sans soudure livrés à la Sonatrach, 5 juil. 2024. [En ligne]. Disponible: https://www.algeriainvest.com/fr/premium-news/complexe-sider-el-hadjar-540-km-de-tubes-sans-soudure-livres-a-la-sonatrach
- [56] Market Research Future, Marché mondial des tubes sans soudure : Perspectives jusqu'en 2032, rapport MRFR29141, 2023. [En ligne]. Disponible: https://www.marketresearchfuture.com/fr/reports/seamless-pipe-market-29141
- [57] Sonatrach, Rapport d'activité 2023, Sonatrach, Algérie.
- [58] ADEME, Base Empreinte®, la base de données environnementales de référence, 2024. [En ligne]. Disponible: https://base-empreinte.ademe.fr/
- [59] APS (Algérie Presse Service), Sidérurgie : l'Algérie se positionne comme l'un des principaux potentiels fournisseurs de l'Europe, 12 févr. 2024. [En ligne]. Disponible:

- https://www.aps.dz/economie/170778-siderurgie-l-algerie-se-positionne-comme-l-un-des-principaux-potentiels-fournisseurs-de-l-europe
- [60] Radio Algérie, Sidérurgie : relance de Sider El Hadjar, 3 mars 2024. [En ligne]. Disponible: https://news.radioalgerie.dz/fr/node/55870
- [61] Algérie 360, Sider El Hadjar : Un plan XXL pour le fleuron de l'industrie algérienne, 15 juin 2024. [En ligne]. Disponible: https://www.algerie360.com/sider-el-hadjar-un-plan-xxl-pour-le-fleuron-de-lindustrie-algerienne/
- [62] F. Cornot-Gandolphe, Décarbonation de la sidérurgie : défis et perspectives, Note de l'Ifri, Janv. 2023. [En ligne].
- Disponible: https://www.ifri.org/sites/default/files/migrated_files/documents/atoms/files/corno
 t_decarbonation-acier_janv2023.pdf
- [63] The Coal Trader, China's Met Coke Production in 2023, rapport trimestriel, 2024. [En ligne]. Disponible: https://thecoaltrader.com/chinas-met-coke-production-in-2023
- [64] Centre for Research on Energy and Clean Air (CREA), China Steel Analysis 2023H2, mars 2024. [En ligne]. Disponible: https://energyandcleanair.org/wp/wp-content/uploads/2024/03/CREA_2023H2-China-steel-analysis.pdf
- [65] S. Nimbalkar et al., Decarbonizing US Steel Industry, Oak Ridge National Laboratory, rapport ORNL/TM-2022/2588, Fév. 2022. [En ligne]. Disponible: https://www.energy.gov/sites/default/files/2022-02/Nimbalkar%20-%20ORNL%20-%20Decarbonizing%20US%20Steel%20Industry.pdf
- [66] IEEFA, MENA's Opportunity to Lead the Green Iron and Steel Transition, rapport spécial, juin 2023. [En ligne]. Disponible: https://ieefa.org/resources/menas-opportunity-lead-green-iron-and-steel-transition
- [67] EY, Digital Roadmap for Mining and Metals, rapport sectoriel, 2022. [En ligne]. Disponible: https://www.ey.com/content/dam/ey-unified-site/ey-com/en-in/insights/mining-metals/ey-roadmap-report-digital.pdf
- [68] Steel Benchmarker, Historical Steel Price Data, archive technique, 2023. [En ligne]. Disponible: http://steelbenchmarker.com/history.pdf

Annexe 1:

Tendances du marché sidérurgique algérien : exportations en hausse, diversification et positionnement stratégique

L'industrie sidérurgique algérienne connaît une mutation profonde qui la positionne aujourd'hui comme un acteur de plus en plus incontournable à l'échelle régionale et internationale. Grâce aux investissements dans les infrastructures, à la montée en capacité de production locale et à une stratégie tournée vers l'international, l'Algérie a su transformer son industrie de l'acier en un levier stratégique pour la diversification de son économie, longtemps centrée sur les hydrocarbures.

L'exemple le plus significatif de cette dynamique est le complexe sidérurgique d'Algerian Qatari Steel (AQS) à Bellara, dans la wilaya de Jijel. En 2023, cette entreprise a exporté près de 700 000 tonnes de produits sidérurgiques, générant 400 millions de dollars, soit une augmentation remarquable de plus de 150 % par rapport à l'année précédente, où les exportations s'élevaient à 240 000 tonnes pour environ 160 millions de dollars. En 2024, AQS a maintenu ce volume d'exportation (700 000 tonnes) avec une valeur légèrement révisée à 367 millions de dollars, illustrant ainsi une consolidation de sa place sur les marchés internationaux [59]

Sur le plan national, cette montée en puissance a permis à l'Algérie de réduire de manière substantielle ses importations de produits sidérurgiques. Depuis sa mise en service en 2017, l'usine de Bellara a produit plus de 5 millions de tonnes d'acier et dérivés, contribuant ainsi à atteindre une quasi-autosuffisance en matière de produits sidérurgiques. Cette réduction des importations s'inscrit dans la stratégie du gouvernement visant à substituer la production locale aux achats à l'étranger, renforçant ainsi la souveraineté industrielle du pays [59].

Au-delà de la substitution aux importations, l'une des tendances marquantes est la diversification des débouchés d'exportation. AQS exporte désormais vers 36 pays répartis sur quatre continents, parmi lesquels figurent la Belgique, les États-Unis, la Turquie, la Roumanie, la Chine, l'Italie, le Qatar, la Mauritanie, la Lituanie, l'Albanie, la Grèce, le Portugal, le Liban, le Royaume-Uni, le Danemark, les Pays-Bas, la Suède, la Lettonie, la Norvège, l'Allemagne, l'Estonie, le Sénégal, le Burkina Faso, l'Irak, le Congo, la Syrie, la Tunisie et la Libye. Cette large palette géographique montre une volonté affirmée de l'Algérie de s'affranchir des circuits traditionnels dominés par l'Europe du Sud ou le Maghreb, et d'atteindre des marchés plus complexes et à forte valeur ajoutée [59].

Dans cette logique, AQS a franchi un nouveau cap en entamant la mise en place d'une plateforme commerciale en Lituanie, visant à approvisionner les marchés baltes et scandinaves, avec une demande annuelle estimée à 200 000 tonnes dans la seule [12]. Ce choix stratégique montre une capacité à s'intégrer dans des marchés exigeants, historiquement dominés par des producteurs européens.

La compétitivité de l'acier algérien sur ces marchés est soutenue par l'obtention de plusieurs certifications internationales de qualité. Parmi celles-ci, les certifications délivrées par Zetom, Kiwa et Aviz Tehnic permettent à AQS de respecter les normes européennes les plus strictes, facilitant ainsi l'accès à des marchés comme le Royaume-Uni, la Pologne, l'Allemagne et les pays nordiques [59].

Enfin, cette expansion de l'industrie sidérurgique s'inscrit dans la stratégie plus large de diversification de l'économie algérienne. Longtemps centrée sur les hydrocarbures, l'Algérie cherche désormais à développer des filières industrielles compétitives à l'export. La sidérurgie en est l'un des exemples les plus parlants. En 2024, AQS a consacré 34 % de sa production à l'export, le reste étant destiné au marché national, ce qui reflète une stratégie équilibrée entre développement local et ouverture internationale [59].

-Activités des acteurs sidérurgiques algériens :

L'industrie sidérurgique algérienne connaît une transformation significative, marquée par une augmentation des exportations, la réduction des importations, une diversification des marchés et une compétitivité accrue sur la scène internationale.

Le complexe sidérurgique Tosyali, situé à Bethioua (Oran), a récemment mis en service une unité de production de tôles d'acier plat avec une capacité annuelle de 2,5 millions de tonnes. Ce développement porte la capacité totale du complexe à 8 millions de tonnes par an d'ici 2026. Depuis août 2024, Tosyali a exporté environ 250 000 tonnes de plaques d'acier vers l'Union européenne, avec des expéditions prévues vers l'Espagne, la Tunisie, l'Afrique du Sud et l'Italie. L'entreprise ambitionne d'atteindre une valeur d'exportation de 2 milliards de dollars dans les années à venir.[60]

Parallèlement, le complexe Sider El Hadjar à Annaba a bénéficié d'un plan d'investissement de 500 millions de dollars pour moderniser ses installations, incluant l'installation d'une unité de réduction directe et de deux nouvelles aciéries électriques. Ce projet vise à augmenter la production à 2,5 millions de tonnes de fonte et d'acier par an d'ici 2028. [61]

Le ministre de l'Industrie, Ali Aoun, a souligné que l'Algérie est passée d'un pays importateur à exportateur de produits sidérurgiques, avec une production annuelle de 4,3 millions de tonnes. L'exploitation future du minerai de fer de Gara Djebilet renforcera cette position, permettant à l'Algérie de devenir un fournisseur majeur pour ses partenaires. [60]

Ces développements s'inscrivent dans une stratégie nationale visant à diversifier l'économie audelà des hydrocarbures, en renforçant les capacités industrielles et en ciblant des marchés internationaux exigeants. Avec des investissements continus et une orientation vers l'exportation, l'Algérie consolide sa place dans l'industrie sidérurgique mondiale.

1. Distinction entre les termes fondamentaux du secteur minier

Dans le domaine de l'industrie extractive, plusieurs termes techniques sont couramment employés, parfois de manière interchangeable dans le langage courant, mais qui renvoient à des **notions distinctes et complémentaires**. Il est donc fondamental, dans le cadre d'un travail scientifique, d'en clarifier les définitions.

Terme	Définition synthétique
Mine	Site industriel et géologique d'où l'on extrait les ressources minérales.
Minerai	Roche contenant une proportion économiquement exploitable d'un minéral valorisable.
Exploitation	Ensemble des opérations permettant d'extraire le minerai du sous-sol.
Traitement	Opérations permettant de séparer les minéraux utiles de la gangue (post-extraction).
Enrichissement	Étapes du traitement visant à augmenter la concentration du minéral utile.

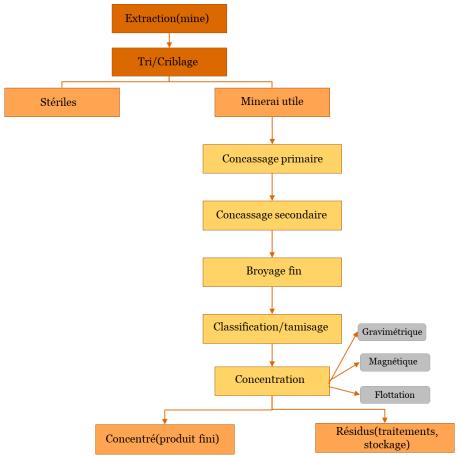
Terminologie du secteur minier

2. Synthèse des trois grandes familles d'exploitation minière :

Famille	Profondeur	Méthode	Transport principal	Déchets principaux	Spécificité logistique
Mines à ciel ouvert	Peu profondes	Mécanique (engins)	Tombereaux, convoyeurs	Stériles en grandes quantités	Engins lourds, planification des gradins
Mines souterraines	Moyenne à grande profondeur	Mécanique + explosifs	Galeries, camions, bande transporteuse	Stériles + risques d'effondrement	Réseaux internes complexes (aérage, exhaure)
Dissolution/Lixiviation	Variables (sel : profond, cuivre : moyen)	Chimique	Puits + pompes	Fluides usés, résidus liquides	Sécurité chimique et environnementale

Familles d'exploitation minière

3. Le traitement du minerai : principes et déroulement technique


Il vise à transformer le minerai brut extrait de la mine en un **concentré enrichi**, directement valorisable par les filières industrielles telles que la métallurgie, la chimie ou la sidérurgie. Contrairement aux opérations métallurgiques, le traitement des minerais n'altère pas la nature chimique des constituants. Il se limite à en modifier la forme, la taille ou la concentration, afin d'en extraire les substances utiles et d'optimiser leur utilisation industrielle.

Ce processus se réalise dans une **usine de traitement**, souvent localisée à proximité du site minier. Il suit un schéma précis, qui varie en fonction de la nature du gisement, des propriétés physiques des minéraux, et des exigences de qualité imposées par les industriels. Il comprend généralement deux grandes phases successives : **la comminution** et **la concentration**.

- La comminution, ou réduction granulométrique, est la première étape du traitement. Elle consiste à fragmenter mécaniquement la roche afin de libérer les minéraux utiles de la gangue stérile. Cette libération est essentielle pour permettre une séparation efficace dans les étapes suivantes. La comminution se réalise selon plusieurs niveaux.
- Le concassage primaire transforme les blocs massifs en morceaux plus petits, souvent à l'aide de concasseurs à mâchoires ou giratoires. Ce concassage est suivi d'un concassage secondaire, réalisé avec des concasseurs à cônes ou à percussion, pour obtenir des fragments centimétriques. Si nécessaire, on procède à un broyage, réalisé dans des broyeurs à boulets, à barres ou autogènes, afin d'atteindre une granulométrie très fine, de l'ordre du micromètre, correspondant à la maille de libération. Cette opération est fortement consommatrice d'énergie et représente souvent plus de la moitié des dépenses énergétiques d'une usine de traitement.
- La concentration vise à séparer les minéraux valorisables des éléments stériles, en exploitant leurs différences de propriétés physiques ou physico-chimiques. Plusieurs techniques peuvent être utilisées. La séparation gravimétrique repose sur les différences de densité et permet, grâce à des équipements comme les spirales, les jigs ou les tables à secousses, d'extraire les particules lourdes (comme l'hématite ou l'or) des particules plus légères. La séparation magnétique permet de trier les minéraux ferromagnétiques (magnétite, ilménite) des minéraux non magnétiques (silice, quartz), par l'intermédiaire de tambours ou de séparateurs à haute intensité. Cette méthode est particulièrement adaptée au traitement du minerai de fer. La flottation, quant à elle, est une méthode physico-chimique qui consiste à utiliser des réactifs chimiques pour rendre les minéraux hydrophobes, afin qu'ils se fixent sur des bulles d'air et soient ainsi séparés par moussage. Enfin, la lixiviation est un procédé de dissolution sélective par des agents chimiques, souvent utilisé pour des minerais à faible teneur ou dans les cas où la séparation physique est inefficace.
- Le traitement des résidus constitue l'étape finale du processus. Après concentration, le procédé génère d'une part un concentré commercialisable, et d'autre part des résidus sous forme de fines particules ou de boues. Ces résidus doivent être gérés de manière contrôlée, dans des bassins de décantation, des terrils secs, ou faire l'objet de procédés de traitement des eaux. Leur gestion est un enjeu environnemental et logistique majeur, tant pour la sécurité des installations que pour la préservation des milieux naturels.

Ainsi, le traitement du minerai représente une étape stratégique de la chaîne de production minière, tant sur le plan **technique qu'économique**. Il détermine la qualité finale du produit

envoyé à l'industrie et influe directement sur les flux logistiques en aval, notamment dans les secteurs énergivores comme la sidérurgie. Son optimisation conditionne la **rentabilité de l'exploitation minière**, tout en répondant aux **contraintes environnementales** croissantes.

Etapes de traitement du minerai

4. Choix de la méthode d'exploitation minière : critères techniques, économiques et environnementaux

Le choix de la méthode d'exploitation d'un gisement minéral constitue une décision stratégique majeure dans le développement d'un projet minier. Il dépend de nombreux **facteurs géologiques, techniques, économiques, environnementaux et sociaux**, qui doivent être évalués avec rigueur dès les phases de faisabilité. Le document *La mine en France* (BRGM) identifie ces critères comme déterminants dans la sélection entre les méthodes à ciel ouvert, souterraines ou par lixiviation in-situ.

L'un des premiers paramètres déterminants est la **profondeur du gisement**. Les gisements situés à faible profondeur, présentant une extension latérale importante et une faible couverture stérile, sont généralement **exploitables à ciel ouvert**. À l'inverse, les gisements plus profonds, discontinus ou logés dans des formations géologiquement instables, requièrent des techniques **souterraines**, malgré leur coût plus élevé. Dans certains cas spécifiques, comme pour le sel ou l'uranium, des méthodes par **dissolution ou lixiviation in-situ** sont privilégiées, notamment lorsque la perméabilité de la roche et l'absence de nappes phréatiques sensibles le permettent. La **morphologie du gisement** joue également un rôle central. Les gisements tabulaires, peu inclinés et de grande épaisseur se prêtent mieux aux exploitations à ciel ouvert, tandis que les veines minéralisées étroites ou fortement inclinées nécessitent des méthodes souterraines spécialisées (comme les tranches montantes remblayées ou les chambres et piliers). De plus, la **teneur du minerai** et sa **distribution dans la roche** influencent fortement le choix. Un

gisement à faible teneur, mais à grand volume, peut être rentable en ciel ouvert, alors qu'un gisement à haute teneur mais peu étendu justifie un recours à des techniques souterraines pour limiter les perturbations.

L'accessibilité du site, les conditions topographiques, ainsi que la disponibilité des infrastructures (routes, eau, énergie, main-d'œuvre) sont d'autres facteurs non négligeables. En terrain accidenté ou montagneux, les coûts de terrassement et de transport peuvent orienter vers des méthodes souterraines même pour des gisements peu profonds.

Sur le plan économique, le **coût global par tonne de minerai extrait** (capex et opex) est un critère décisif. L'exploitation à ciel ouvert est généralement moins coûteuse à court terme, grâce à une mécanisation poussée et des taux d'extraction élevés. Toutefois, elle génère davantage de **déblaiement** (stériles), avec des **impacts paysagers plus importants**. À l'inverse, l'exploitation souterraine, plus coûteuse en capital, peut être **plus sélective** et **mieux acceptée socialement**.

Enfin, les **contraintes environnementales et sociales** sont de plus en plus intégrées dès la conception des projets. Les impacts sur les nappes phréatiques, les émissions de poussières, les risques de glissement de terrain ou de subsidence, la proximité d'habitations ou d'écosystèmes protégés peuvent conduire à écarter certaines méthodes au profit de techniques moins invasives, voire à combiner plusieurs types d'exploitation dans une approche séquencée.

En somme, le choix d'une méthode d'exploitation repose sur une **analyse multicritère** complexe. Il implique des compromis entre **faisabilité technique**, **rentabilité économique**, **acceptabilité environnementale et sociale**, et doit s'appuyer sur des études de terrain, des modélisations géotechniques et des projections économiques robustes.

Criteres de choix	Ciel ouvert lorsque :	Souterrain lorsque :
Recouvrement	Modéré (stérile/minerai < 10 ou	Important (stérile/minerai > 10
Tenue des terrains	Médiocre (terrains altérés)	Bonne (terrains sains) ou si moins bonne avec soutènement
Régularité du gisement	Gisement irrégulier et/ou dispersé	Morphologie simple permettant des chantiers répétitifs et bien
Environnement	Peu contraignant : espace disponible, nappes peu fragiles,	Contraignant, en intégrant suivi et protection des nappes phréatiques
Coût de la main	Chère	Bon marché
Coût de l'énergie	Carburant bon marché	Carburant cher, électricité bon
Capacité de Grande, voire très grande		Modérée : par exemple 1.000 à
Climat Tempéré ou chaud		Très froid (gel)

Choix de la méthode d'exploitation

Les stratégies de décarbonation

Les stratégies de décarbonation des sidérurgistes européens se structurent autour de **deux grandes voies technologiques**, qui ne s'opposent pas, mais au contraire se conjuguent en parallèle afin d'atteindre la neutralité carbone et maximiser la circularité tout au long de la chaîne de valeur.

a- La voie Carbon direct avoidance (CDA), qui regroupe les technologies permettant d'éviter d'émettre du carbone lors de la fabrication de l'acier. Cette voie comprend le développement de la voie innovante de réduction directe du minerai de fer (DRI) par l'hydrogène (H2-DRI), couplée à un four à arc électrique (DRI-EAF) utilisant de l'électricité renouvelable. Elle constitue une transformation fondamentale de la production d'acier et permet de réduire les émissions de plus de 95 % par rapport à la filière fonte. Cette voie comporte des variantes. Le DRI (ou fer spongieux) peut également être utilisé en combinaison avec la voie BF-BOF, où le DRI compacté (connu sous le nom de briquettes de fer ou HBI) est introduit dans le hautfourneau pour réduire l'utilisation de coke et donc les émissions. Le DRI peut également être couplé à un four à oxygène basique (BOF) via une unité de fusion (concept « haut fourneau 2.0 » développé par TKS).

b-La voie Smart Carbon Usage (SCU), qui consiste à capter et utiliser le carbone issu de la production d'acier, via l'intégration des procédés et la valorisation du carbone (Carbon Valorisation, CV), son utilisation (Carbon Capture and Usage, CCU) ou son stockage permanent (Carbon Capture and Storage, CCS). Cette voie est essentielle sur le moyen/long terme pour capter le CO2 résiduel et atteindre la neutralité carbone, voire créer des émissions négatives via le BECCS (CCS couplé à la bioénergie). Elle fait appel à des procédés innovants de captage du CO2 (par exemple DMX, procédé développé par l'IFP Énergies Nouvelles 8. Il convient de noter que d'autres voies technologiques sont étudiées mais leur maturité technologique n'est pas encore assurée : l'extraction électrolytique (electrowinning), qui est testée par ArcelorMittal et l'électrolyse en milieu oxydes fondus (molten oxide electrolysis, MOE), développée par la start-up américaine Boston Metal. 10

La sidérurgie européenne se prépare pour être à la pointe de la décarbonation Sylvie CORNOT (IFPEN), ou Cryocap développé par Air Liquide), permettant d'accroître le taux de capture du CO2 et d'optimiser le coût. Elle concerne également des projets visant l'utilisation du CO2 pour la production de produits chimiques de base, de carburants de synthèse et de matériaux tels que le plastique. Par ailleurs, ces deux voies technologiques s'inscrivent dans un modèle d'économie circulaire, qui repose sur la circularité des ressources, de l'énergie et des matériaux à faible empreinte carbone tout au long de la chaîne de valeur. Ce principe est établi en partenariat avec les grands utilisateurs d'acier (constructeurs automobiles par exemple) et les fournisseurs (en particulier avec les fournisseurs d'électricité et d'hydrogène renouvelables). Les projets d'économie circulaire concernent notamment (mais pas seulement) l'augmentation du recyclage de l'acier, essentielle pour réduire les émissions de CO2 à court terme. Par exemple, elle devrait permettre à ArcelorMittal France de réduire ses émissions de CO2 à Fos-sur-Mer de 20 % d'ici 2030. Les projets d'économie circulaire concernent également la recherche de substituts au charbon (Torero à Gand). En outre, la révolution numérique et la digitalisation des opérations accompagnent la transformation du secteur. [62]

1. La faisabilité de marché

L'étude de faisabilité de marché représente une étape déterminante dans l'évaluation d'un projet, permettant d'apprécier sa viabilité commerciale avant tout engagement significatif de ressources. Cette analyse approfondie examine l'environnement économique et concurrentiel dans lequel le projet devra s'insérer, tout en évaluant son potentiel de succès sur le plan commercial.[21]

L'étude repose sur trois piliers essentiels. Elle examine d'abord la demande potentielle en analysant la taille du marché, sa dynamique de croissance et les caractéristiques des consommateurs cibles. Elle évalue ensuite la concurrence, en identifiant les acteurs clés et leurs stratégies, afin de déterminer les opportunités de différenciation. Enfin, elle établit des projections commerciales réalistes, envisageant différents scénarios pour anticiper les performances potentielles du projet.[22]

Cette démarche permet de réduire les incertitudes et de fonder les décisions sur une compréhension solide du marché. En identifiant clairement les atouts du projet et les défis à relever, elle offre une base objective pour juger de son opportunité commerciale avant son lancement effectif.

2. La faisabilité technique

L'étude de faisabilité technique constitue l'épine dorsale de tout projet industriel, transformant les orientations stratégiques en solutions concrètes et réalisables. Elle dépasse la simple sélection d'équipements pour embrasser l'ensemble des paramètres qui conditionnent la performance future des installations. Cette analyse doit concilier innovation technologique et pragmatisme industriel, en tenant compte des contraintes spécifiques au secteur concerné.

Choix technologiques et ressources humaines :

L'analyse compare les options technologiques disponibles, évaluant leur performance, leur maturité et leur adéquation avec l'existant. Elle intègre une évaluation des compétences requises et des besoins en formation pour garantir la maîtrise opérationnelle.

Capacité de production et optimisation des ressources :

La détermination des capacités requises représente un équilibre délicat entre ambition commerciale et réalité économique. L'étude doit modéliser différents scénarios de production en intégrant les contraintes opérationnelles et les cycles de maintenance. La question de la scalabilité est particulièrement importante : le système technique retenu doit permettre des ajustements de capacité sans remettre en cause l'équilibre économique du projet. Cette analyse inclut également une estimation précise des besoins en main-d'œuvre, tant en quantité qu'en qualifications.

Logistique et gestion des approvisionnements :

La faisabilité technique dépend étroitement de la sécurisation des approvisionnements en matières premières et composants essentiels. L'étude doit cartographier l'écosystème des fournisseurs, évaluer leur solidité financière et anticiper les risques potentiels. La localisation géographique des installations revêt une importance particulière, avec des arbitrages complexes entre proximité des ressources, accès aux infrastructures logistiques et disponibilité de la maind'œuvre qualifiée. Les solutions d'approvisionnement alternatives doivent être envisagées pour limiter les risques de rupture.[21]

Calcul des coûts techniques :

L'évaluation financière inclut les coûts d'investissement (équipements, installations), les coûts opérationnels (maintenance, énergie) et les coûts cachés (formation, transition). Une analyse détaillée distingue les coûts fixes des coûts variables, permettant d'établir des seuils de rentabilité précis. Les différentes options technologiques sont comparées selon leurs impacts sur le modèle économique global.

Planification et intégration opérationnelle :

La dimension temporelle est cruciale dans l'analyse technique. Le planning doit intégrer les délais réels de fabrication, d'installation et de qualification des équipements, ainsi que les éventuelles phases transitoires. L'impact sur les opérations existantes doit être soigneusement évalué, particulièrement dans les cas de modernisation où anciennes et nouvelles installations coexisteront. Les meilleures pratiques recommandent une approche modulaire permettant une transition progressive tout en maintenant la production.[22]

3. La faisabilité socio-environnementale

L'étude de faisabilité socio-environnementale consiste à examiner comment un projet industriel interagit avec son environnement humain et naturel. Il s'agit d'identifier, d'évaluer et de gérer ses impacts potentiels tout en veillant au respect des réglementations en vigueur.

Cette analyse poursuit plusieurs objectifs clés : comprendre les effets du projet sur son écosystème et les communautés locales, anticiper les risques, et proposer des solutions pour les réduire (atténuation), les compenser ou même les transformer en opportunités (bonification). En intégrant ces réflexions dès les premières phases de conception, l'étude socioenvironnementale devient un outil stratégique.

La gestion des impacts peut prendre plusieurs formes : adaptation des procédés industriels pour limiter la pollution, programmes de formation pour les populations locales, ou encore mesures de compensation écologique. Lorsqu'elle est bien menée, cette démarche ne se contente pas de répondre à des obligations réglementaires : elle contribue à la pérennité du projet en renforçant son acceptation sociale et sa résilience face aux enjeux environnementaux. Les entreprises qui s'en emparent tôt y trouvent un avantage compétitif, à la fois en termes d'image et de performance globale.[22]

Benchmark des processus d'acier vert dans le monde :

a. La Chine:

La Chine demeure le premier producteur mondial d'acier, avec une production brute dépassant le milliard de tonnes pour la cinquième année consécutive en 2024. Le procédé dominant reste le couple haut fourneau—convertisseur à oxygène (BF–BOF), alimenté principalement par du charbon. En 2023, la production de coke métallurgique a atteint environ 490 millions de tonnes, en hausse de 3,6 % par rapport à l'année précédente, renforçant ainsi la dépendance de la sidérurgie chinoise à cette ressource fossile.[63][64]

La disponibilité limitée et le coût élevé du gaz naturel en Chine freinent l'adoption de technologies alternatives telles que la réduction directe au gaz naturel. Bien que la production nationale de gaz ait augmenté, atteignant des niveaux records en 2024, le gaz naturel reste plus coûteux que le charbon et moins compétitif que les énergies renouvelables, limitant son utilisation dans l'industrie sidérurgique. Malgré des engagements climatiques visant un pic des émissions en 2030 et la neutralité carbone en 2060, les investissements dans de nouvelles capacités BF–BOF ont dépassé 100 milliards de dollars depuis 2021, freinant la transition vers des procédés plus propres.

b. USA:

Aux États-Unis, la filière électrique (EAF) domine la production d'acier, représentant environ 67 % de la production en 2018, contre 33 % pour la filière intégrée BF–BOF. Cette prédominance s'explique par une disponibilité abondante de ferraille et une infrastructure adaptée aux mini-usines.

Le pays bénéficie également d'une abondance de gaz naturel, avec une production record en 2024. Cette ressource bon marché et accessible favorise l'adoption de technologies telles que la réduction directe au gaz naturel, offrant une alternative plus propre au BF–BOF. [65]

c. MENA:

La région Moyen-Orient et Afrique du Nord (MENA) se distingue par son adoption croissante de la filière DRI–EAF, utilisant principalement du gaz naturel comme agent réducteur. En 2023, la région représentait 45 % de la production mondiale de DRI, avec une croissance de 11 % depuis 2021.

Cette orientation est soutenue par plusieurs atouts : une abondance de gaz naturel, une disponibilité fiable de pellets de minerai de fer de qualité, et un fort potentiel en énergies renouvelables, notamment solaire et éolienne. Ces conditions favorisent la transition vers l'utilisation de l'hydrogène vert comme agent réducteur, réduisant davantage les émissions de CO_2 .[14][66]

d. Inde:

L'Inde est le seul pays à utiliser massivement le procédé DRI basé sur le charbon pour la production d'acier, en raison de l'accès facile à du charbon domestique bon marché et de la disponibilité limitée de charbon cokéfiable. Cette approche est soutenue par la politique nationale de l'acier, qui vise à augmenter la capacité de production pour répondre à la demande croissante.[67]

Cependant, cette dépendance au charbon pose des défis en matière de décarbonation. Des efforts sont en cours pour introduire des technologies plus propres, mais la transition est entravée par des contraintes économiques et infrastructurelles. L'Inde s'est fixée pour objectif d'atteindre la neutralité carbone d'ici 2070, avec une part significative de la production d'acier provenant de l'hydrogène vert.

Technique:

AHP : techniques	Capacité de la ressource	Teneur en fer
Capacité de la ressource	1,00	2,00
Teneur en fer	0,50	1,00

Critère	Poids
Capacité de la ressource	66,67%
Teneur en fer	33,33%

λmax	2
n	2
IC	0
RC	0

RC<10%

Logistique:

AHP : logistique			Délais d'acheminement
Stabilité de l'approvisionnement	1,00	2,00	3,00
Score d'accessibilité	0,50	1,00	2,00
Délais d'acheminement	0,33	0,50	1,00

λmax	3,009
n	3
IA	0,58
IC	0,005
RC	0,79%

Critère	Poids
Stabilité de l'approvisionnement	53,90%
Score d'accessibilité	29,73%
Délais d'acheminement	16,38%

RC<10% Économique

AHP : économique	Coût global d'approvisionnement	Stabilité du prix	Possibilité de contrats long terme
Coût global d'approvisionnement	1,00	4,00	4,00
Stabilité du prix	0,25	1,00	0,50
Possibilité de contrats long terme	0,25	2,00	1,00

λmax	3,054
n	3
IA	0,58
IC	0,027
RC	4,66%

Critère	Poids
Coût global d'approvisionnement	65,51%
Stabilité du prix	13,35%
Possibilité de contrats long terme	21,14%

RC<10%

Politique

LAHP: nolifique	Soutien gouvernemental	Stabilité politique (pour l'import)	Souveraineté stratégique
Soutien gouvernemental	1,00	4,00	3,00
Stabilité politique (pour l'import)	0,25	1,00	0,50
Souveraineté stratégique	0,33	2,00	1,00

λmax	3,018
n	3
IA	0,58
IC	0,009
RC	1,58%

Critère	Poids
Soutien gouvernemental	62,32%
Stabilité politique (pour l'import)	13,73%
Souveraineté stratégique	23,95%

RC<10%

Durabilité

AHP: durabilité	Impact environnemental	Acceptabilité sociale
Impact environnemental	1,00	8,00
Acceptabilité sociale	0,13	1,00

Critère	Poids
Impact environnemental	88,89%
Acceptabilité sociale	11,11%

λmax	2,000
n	2
IC	0
RC	0,000

RC<10%

Stratégique

AHP : Stratégique		Image de marque/ Réputation
Alignement vision long terme	1,00	7,00
Image de marque/ Réputation	0,14	1,00

Critère	Poids
Alignement vision long terme	83,33%
Image de marque/ Réputation	11,90%

λmax	2,000
n	2
IC	0
RC	0,000

RC<10%

Annexe 7 Etude des équipements en fonction des critères :

		Fon	ctionnement des é	équipements	Flex	Maturité technologique		
		Défaillances	Taux de pannes	Disponibilité	Production actuelle	Capacité de l'équipemen	d Gamme de produits/ Objectif	Processus obsolètes
	ACO1	-Structure compromise et état dégradé, arrets répétitifs pour fuites d'eau	16%(objectif de 5%)	Taux disponibilité:61% Taux de marche:52%	196,55	1,3 MT/y (2 convertisseurs en marche, 1 en réserve de 90T chacun)	brames de largeur 750 à 1 300 mm et de 220 mm d'épaisseur	
Aciérie	ACO2	-Convertisseur 3 hors service(déformation carcasse et dégradation des équipements) -Les 2 convertisseurs déformés et dégradés -Addition, traitement de poche et refroidissements dégradés -MCC 1 hors service, les autres en marche dégradée	24%(objectif de 5%)	Taux disponibilité:43% Taux de marche:53%	78,15	0,64 MT/y (2 convertisseurs en marche, 1 en réserve de 90T chacun) Réelle: 0,39 MT/y	Billettes de section carrée 130*130 et de longueur 12m	-Technologies obsolètes des équipements d'élaboration -Coulée manuelle

	Fonctionnement des équipements				Flexibilité			Maturité technologique		
	Défaillances	Taux de pannes	Disponibilité	Production actuelle	Capacité de l'	équipement	l	produits/ ectif	Processus obsolètes	Améliorations
LAC	-Pont déplieur presente un état dégradé -Les autres équipements présentent des risques de pannes extremement élevées, notamment à cause de leur dégradation et manque de pièces de rechange	55% (objectif de 24%)	Taux disponibilité:52% Taux de marche:25%	143,55	nominale: 1,2 MT/y réelle: 0,25MT/y		Epaisseur :2 à 6mm Largeur: 600- 1350mm	Largeur jusqu'à 1500, ou 2000		-Chaine de laminage integrée(endless hot strip rolling) -Coilbox technologies: bobinage en préservant l'homogénéité thermique -Technologies qui produisent des bobines plus larges(Steckel mill pas adapté pour des volumes >1MT) 1500mm, 1600 voir 2200mm -Systèmes d'automatisation -Automatisation et systèmes de contrôle

		Fonctionnement des équipements				Flexibilité			Maturité technologique		
		Défaillances	Taux de pannes	Disponibilité	Production actuelle	Capacité de l'équipement	Gamme de produits/ Objectif		Processus obsolètes	Améliorations	
	Decapage	-Soudeuse a l'arret -Stucture mécanique usée -Manque de PDR et usure des équipements	25%(object if de 22%)	Taux disponibilité:3 7% Taux de marche:42%		0,75 MT/y	Epaisseur: 1,5 à 4,5mm Largeur: 600 à 1350mm		-Utilisation d'acide sulfurique au lieu d'acide chloridrique	-Décalaminage mécanique	
LAF	Tandem	-Equipements obsoletes et non fiables -Manque PDR -Pertes d'huile de laminage à cause du faible volume et de la dégradation	27%(object if de 15%)	Taux disponibilité:3 8% Taux de marche:30%	37,48	0,9MT/y	Epaisseur: 0,18 à 2mm Largeur: 600 à 1350mm	Largeur jusqu'à 1500, ou 2000		Automatisation	
	Recuit	-Vieillissement des équipements		0,13MT/y 0,16 a 2mm dans l'atmospi		•	-Utilisation du HNx dans l'atmosphère du four au lieu du H2	(CMS,PDA) -Lignes intégrées			
	SP	-Vieillissement des équipements et manque de PDR -Obsolescence des équipements électriques	15%(object if de 20%)	0% Taux de marche:56%		0,53MT/y	Epaisseur: 0,18 à 2mm Largeur: 600 à 1350mm		n 0		

	Fonction	nnement des	équipements			Flexibilité		Maturité technologique			
	Défaillances		Taux de pannes Disponibilité		Capacité de l'équipement	Gamme de produits/ Objectif		Processus obsolètes	Améliorations		
RPA	-Dépassement de la durée du vie du bain a zinc et du four -Equipements electriques dégradés	6%(objectif de 8%)	Taux disponibilité:2 2% Taux de marche:58%	14,93	cadence réelle: 23T/h cadence théorique: 30T/h	Epaisseur: 0,32 à 2mm Largeur: 600 à 1350mm		-Remplacer l'ammoniac par le GN -Renover le four -Mise à niveau du bain	continue -Galvanisation à		
TSS	-Vieillissement et dégradation des équipements depuis 1975	30%(objectif de 20%)	Taux disponibilité:7 6% Taux de marche:57%	6,58	0,03MT/y	6"5/8 à 14	Petits diamètres	-Coulée en lingots obsolète, à remplacer par la coulée en blooms	Processus de laminage de tubes à froid, offre une meilleure surface et finition, plus de résistance. Reste plus cher à produire, réservé aux applications de haute précision		

Détermination du prix unitaire de chaque produit de la gamme du client x:

• 1. Méthodologie générale

Nous avons collecté les historiques de prix par région : USA, Chine, Europe, et World Export, couvrant la période de septembre 2023 à 2025.[68]

- 2. Produits laminés à chaud (LAC)
- Données disponibles : Europe et World Export.
- Méthode : somme des prix moyens par région, divisée par deux pour obtenir un prix moyen consolidé.
- Résultat :
 - World Export ≈ 550 USD/tonne
 - Europe ≈ 670 USD/tonne
 - o Prix moyen retenu : 605 USD/tonne.
- 3. Produits laminés à froid (LAF)
- Données manquantes pour Europe et World Export.
- Méthode alternative : calcul de l'écart de prix entre LAC et LAF aux USA et en Chine, puis application de cet écart moyen au prix LAC.
- Résultat : prix estimé sur cette base.
- 4. Produits galvanisés
- Approche identique à celle utilisée pour le laminé à froid : calcul de la marge additionnelle par rapport aux produits en amont (LAC/LAF), validée avec les experts.
- 5. Produits longs (TSS)
- Informations trouvées via des sources externes fiables : prix moyen actuel ≈ 950 USD/tonne.
- Prix validé en interne.
- 6. Étude de la valeur ajoutée

Nous avons également mené une étude de la valeur ajoutée par produit pour évaluer la logique de différenciation tarifaire :

 Plus un produit est complexe à produire, plus sa valeur ajoutée est élevée et plus la marge est importante.

• Observations:

- o Laminé à chaud : faible valeur ajoutée, volume de production majoritaire.
- o Laminé à froid : valeur ajoutée supérieure au LAC.
- o Galvanisé : plus forte valeur ajoutée de la gamme.
- o TSS: valeur ajoutée comparable au LAF.

Tous les résultats et hypothèses ont été validés en concertation avec les managers et les experts de l'entreprise.

Calcul des OPEX : Charges opérationnelles

• 1. Méthodologie de calcul des OPEX

Le calcul des OPEX va s'étendre sur une période prévisionnelle de 15 ans, allant de 2030, date de lancement de la production, jusqu'en 2055. Pour chaque année, nous suivrons les étapes suivantes :

a. Production et mix minerai

Nous partons de la production annuelle totale prévue, et du mix minerai déjà établi en amont. Ce mix nous indique la répartition de la matière première selon sa provenance :

- -La mine de Tébessa,
- -La mine Gara Djebilet,
- -Et une part provenant de l'importation.

• b. Calcul du coût du minerai

Pour chaque origine, nous disposons d'un coût unitaire. En croisant ces coûts avec les quantités issues du mix minerai, nous obtenons le coût total du minerai pour chaque année.

• c. Coût de la pelletisation

Une fois le coût du minerai connu, nous passons à l'étape suivante du processus industriel : la pelletisation. Cette opération nécessite les données précédemment calculées (coût du minerai) ainsi que le coût unitaire des charges liées à la pelletisation. Cela nous permet de déterminer le coût de revient des pellets produits.

• d. Coût de la fonte (smelter)

Les pellets ainsi obtenus sont ensuite utilisés pour la production de fonte, à travers les installations de type DRI (Direct Reduced Iron) et smelter. En nous basant sur le coût des pellets et les charges opérationnelles propres à ces unités, nous pouvons calculer le coût de la fonte.

• e. Production d'acier

La fonte est ensuite envoyée vers les unités de transformation : aciérie à oxygène, puis coulée continue. À partir des coûts précédents, on calcule ici le coût de revient de l'acier produit. C'est à cette étape que l'on obtient notre produit final brut, à savoir l'acier liquide ou solide issu de la coulée.

2. Frais de transformation et segmentation des produits

À ce stade, nous intégrons les frais de transformation post-production, nécessaires pour l'obtention des produits finis.

Les produits plats issus de l'acier brut sont segmentés en différentes catégories, principalement :

- Les brames, utilisées dans la fabrication de produits plats,
- Et les blooms, qui servent à la production de produits longs.
- a. Produits plats (Brames)

Les brames subissent plusieurs étapes de transformation :

- Laminage à chaud,
- Laminage à froid,
- Et galvanisation (Galva)

Pour chaque sous-produit, nous connaissons :

- Sa proportion dans la production totale,
- Sa quantité annuelle prévue,
- Et son coût unitaire de transformation.

Ces données nous permettent de déterminer, avec précision, le coût total de production des produits plats.

• b. Produits longs (Blooms)

Les blooms, quant à eux, sont destinés exclusivement à la fabrication de tubes sans soudure, qui se déclinent en deux grandes catégories :

- Les petits tubes,
- Et les grands tubes.

Le même principe de calcul est appliqué ici, en intégrant les volumes de production et les coûts unitaires spécifiques à chaque type de tube.

	Coût	unitaire(\$	5/t) 2	030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Tebessa(kT)	60		2,63	16,69	20,75	24,81	28,87	32,93	30,68	28,42	18,95	9,47	0,00
GD(kT)		70	0	,00	14,00	28,00	42,00	56,00	70,00	112,00	154,00	196,00	238,00	280,00
mportation(T)	k	130		6,63	101,26	125,89	150,53	175,16	199,79	186,11	172,42	114,95	57,47	0,00
	Coût total(M\$)) 89	9,26	131,95	174,65	217,34	260,03	302,72	328,78	354,84	329,89	304,95	280,00
		sommatio otale(kT)	n 80	0,00 1	257,14	1714,29	2171,43	2628,57	3085,71	3542,86	4000,00	4000,00	4000,00	4000,00
	Coût	t moyen(\$	/t) 11	1,58	104,96	101,88	100,09	98,92	98,10	92,80	88,71	82,47	76,24	70,00
2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00	280,00
4000.00				4000 00	4000 00	4000.00	4000.00	4000 00	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00
4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00	4000,00

Produ	ction(kT)	800,0	0 1257,	14 1714	4,29 2	171,43	2628,57	3085,71	3542,8	6 4000,	00 400	00,00	4000,00	4000,00
Mine	rai(M\$)	89,26	131,9	5 174	,65 2	217,34	260,03	302,72	328,78	354,8	34 32	9,89	304,95	280,00
Char	ges(M\$)	5,38	8,45	5 11,	53	14,60	17,67	20,75	23,82	26,8	9 26	5,89	26,89	26,89
Coût t	total(M\$)	94,64	140,4	1 186	,17 2	231,94	277,70	323,47	352,60	381,7	73 35	6,79	331,84	306,89
Coût m	oyen(\$/t	118,30	0 111,6	9 108	,60 1	106,81	105,65	104,83	99,52	95,4	3 89	9,20	82,96	76,72
4000,00		4000,00	4000,00	4000,00	4000,00	,	'	4000,00	4000,00	4000,00	4000,00			
280,00	280,00	280,00	280,00	280,00	280,00	,	'	280,00	280,00	280,00	280,00	280,00	'	280,00
26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89	26,89		26,89
306,89	306,89	306,89	306,89	306,89	306,89	_	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89
76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72	76,72
Producti		500,00	785,71	1071,4		357,14	1842,86	1928,57	2214,29			500,00	2500,00	2500,00
Pellets	,	94,64	140,41	186,1		31,94	277,70	323,47	352,60			356,79	331,84	306,89
Charge: Cout tot		17,60 112,25	27,66 168,07	37,72		7,78	57,84 335,54	67,90 391,37	77,96 430,56	88,0 469,		88,02 444,81	88,02 419,86	88,02
Coût moy		224,49	213,91	223,8		79,72 06,11	204,24	202,93	194,45			177,92	167,94	394,91 157,96
00000	()	224,40	210,01	200,0			201,21	202,00	10-1,10			,	101,01	101,00
Producti	on/kT\	500.00	785.71	1071,4	12 13	357.14	1642.86	1928,57	2214.29	9 2500	.00 2	500.00	2500.00	2500,00
Fonte(112,25	168,07	223,8		79,72	335,54	391,37	430,56		-	444,81	419,86	394,91
Charge		26,34	41,39	58,48		1,50	86,55	101,60	116,66			131,71	131,71	131,71
Coût tot		138,59	209,46	280,3	4 3	51,22	422,09	492,97	547,22	601,	46 :	576,51	551,57	526,62
Coût moy	/en(\$/t)	277,17	266,59	261,6	5 2	58,79	256,93	255,61	247,13	240,	.58 :	230,61	220,63	210,65
Producti		500,00	785,71	1071,		357,14	1642,86	1928,57	2214,29			500,00	2500,00	2500,00
Acier(138,59	209,46	280,3		51,22	422,09	492,97	547,22			576,51	551,57	526,62
Charge		5,75	9,04	12,32		5,61	18,89	22,18	25,46	28,7		28,75	28,75	28,75
Cout tot		144,34	218,50	292,6	_	66,82	440,99	515,15	572,68			605,26	580,32	555,37
Coût moy	/en(\$/t)	288,67	278,09	273,1	5 2	70,29	268,43	267,11	258,63	252,	08	242,11	232,13	222,15

2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00
306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89	306,89
88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02	88,02
394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91
157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96	157,96
2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,00	2500,0
394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,91	394,9
131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71	131,71
526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62	526,62
210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65	210,65
2500,00 528,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28,75	2500,00 526,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28.75	2500,00 526,62 28,75	2500,00 526,62 28.75	2500,00 526,82 28.75	2500,00 528,62 28.75	2500,00 526,62 28.75	2500,0 526,62 28,75
555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37	555,37
222.15	222.15	222.15	222.15	222.15	222.15	222,15	222.15	222,15	222.15	222.15	222.15	222,15	222.15	222,15
Prod	uction(kT)	420	100	000.00										
	mes(M\$)		,uu	660,00	900,000	1140,00	1380,00	1620,00	1860,00	2100,0	0 210	0,00 2	100,00	2100,00
		121	,24	183,54	245,84	308,13	370,43	432,73	481,05	529,38	506	3,42	487,47	466,51
	irges(M\$) t total(M\$)	121 8,4 129	,24 40	,					,		506 42	3,42 ,00		466,51 42,00
Coût		8,4	,24 40 ,64	183,54 13,20	245,84 18,00	308,13 22,80	370,43 27,60	432,73 32,40	481,05 37,20	529,38 42,00	506 42 550	3,42 ,00 0,42	487,47 42,00	466,51 42,00 508,51
	total(M\$)	8,4 129	,24 40 ,64 ,67	183,54 13,20 196,74	245,84 18,00 263,84	308,13 22,80 330,93	370,43 27,60 398,03	432,73 32,40 465,13	481,05 37,20 518,25	529,38 42,00 571,38	506 42 550 267	3,42 ,00 0,42	487,47 42,00 529,47	466,51 42,00 508,51 242,15
Prod	t total(M\$) moyen(\$/t)	8,4 129 308	,24 40 ,64 ,67	183,54 13,20 196,74 296,09	245,84 18,00 263,84 293,15	308,13 22,80 330,53 280,29	370,43 27,60 398,03 288,43	432,73 32,40 465,13 287,11	481,05 37,20 518,25 278,63	529,38 42,00 571,38 272,08	506 42 550 260 0 168	3,42 ,00 0,42 2,11	487,47 42,00 529,47 252,13	466,51 42,00 508,51 242,15
Prod Pi Cha	total(M\$) moyen(\$/t) uction(KT) PL(M\$) irges(M\$)	8,4 125 308 336 103 9,5	,24 40 ,64 ,67 ,00 ,71	183,54 13,20 196,74 288,09 528,00 157,39 15,55	245,84 18,00 263,84 283,15 720,00 211,07 21,21	308,13 22,80 330,93 290,25 912,00 264,75 26,86	370,43 27,60 353,03 283,43 1104,00 318,42 32,52	432,73 32,40 465,13 287,11 1296,00 372,10 38,17	481,05 37,20 518,25 278,63 1488,00 414,60 43,83	529,38 42,00 571,38 272,08 1680,0 457,10 49,48	506 42 550 262 0 168 0 440 49	3,42 ,00 0,42 2,11 0,00 1	487,47 42,00 529,47 252,13 680,00 423,57 49,48	466,51 42,00 508,51 242,15 1680,00 406,81 49,48
Prod Pi Cha Cou	t total(M\$) moyen(\$/t) uction(kT) PL(M\$)	8,4 129 308 336 103	,24 40 ,64 ,67 ,00 ,71 90	183,54 13,20 196,74 258,09 528,00 157,39	245,84 18,00 263,84 253,15 720,00 211,07	308,13 22,80 330,53 250,29 912,00 264,75	370,43 27,60 398,03 288,43 1104,00 318,42	432,73 32,40 485,13 287,11 1296,00 372,10	481,05 37,20 518,25 278,63 1488,00 414,60	529,38 42,00 571,38 272,08	506 42 550 262 0 168 0 440 49	3,42 ,00 0,42 2,11 0,00 1 0,34 48	487,47 42,00 529,47 252,18 680,00 423,57	466,51 42,00 508,51 242,15 1680,00 406,81 49,48
Prod Pi Cha Cou	total(M\$) moyen(\$/t) uction(KT) PL(M\$) irges(M\$) total(M\$)	336 103 308	,24 40 ,64 ,67 ,00 ,71 90	183,54 13,20 196,74 298,09 528,00 157,39 15,55 172,34	245,84 18,00 263,84 283,15 720,00 211,07 21,21 232,28	308,13 22,80 330,53 290,29 912,00 264,75 26,86 291,61	370,43 27,60 358,03 288,43 1104,00 318,42 32,52 350,94	432,73 32,40 495,13 287,11 1296,00 372,10 38,17 410,27	481,05 37,20 518,25 278,63 1488,00 414,60 43,83 458,43	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,58	506 42 550 262 0 168 0 440 49	3,42 ,00 0,42 2,11 0,00 1 0,34 48	487,47 42,00 529,47 252,13 680,00 423,57 49,48 473,06	466,51 42,00 508,51 242,15 1680,00 406,81 49,48 456,29
Prod Pi Cha Cout	total(M\$) moyen(\$ft) uction(KT) PL(M\$) rrges(M\$) t total(M\$) moyen(\$ft) uction(KT)	8,4 129 308 336 103 9,9 113 336	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13	183,54 13,20 196,74 288,09 528,00 157,39 15,55 172,54 527,54	245,84 18,00 263,84 253,15 720,00 211,07 21,21 252,28 322,61	308,13 22,80 330,93 280,29 912,00 264,75 26,86 291,61 319,75	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,94 317,88	432,73 32,40 465,13 287,11 1296,00 372,10 38,17 410,27 516,57	481,05 37,20 518,25 278,63 1488,00 414,60 43,83 458,43 308,08	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,58 301,54	5 508 42 5 550 262 0 168 0 440 49 0 483 1 231	3,42 ,00),42 2,11 0,00 1,34 4,8 1,56	487,47 42,00 529,47 252,13 680,00 423,57 49,48 473,06 281,53	486,51 42,00 508,51 242,15 1680,00 406,81 49,48 456,23 271,50
Prod Prod Court	total(M\$) moyen(\$/f) uction(KT) PL(M\$) riges(M\$) t total(M\$) moyen(\$/f) uction(KT) PL(M\$)	8,4 129 303 336 103 9,5 113 338	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13	183,54 13,20 196,74 288,09 528,00 157,39 15,55 172,54 105,60 31,48	245,84 18,00 263,84 263,15 720,00 211,07 21,21 252,28 322,51	308,13 22,80 330,93 280,29 912,00 264,75 268,86 291,61 313,75	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,34 317,38 220,80 63,68	432,73 32,40 465,13 287,11 1296,00 372,10 38,17 410,27 516,57	481,05 37,20 518,25 278,65 1488,00 414,60 43,83 458,43 308,08	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,55 301,54	5 508 42 5 550 6 255 0 168 0 440 49 0 485 1 251	3,42 ,00),42 2,11 0,00 1,34 48 3,82 1,56	487,47 42,00 529,47 252,13 680,00 423,57 49,48 473,06 281,58	486,51 42,00 508,51 242,15 1680,00 406,81 49,48 456,28 271,50 336,00 81,36
Prod Pri Cha Court Court Prod Prod Prod Court	total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$)	8,4 129 308 336 103 9,9 113 338 67, 20, 5,6	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13	183,54 13,20 196,74 298,09 528,00 157,39 15,55 172,54 327,54	245,84 18,00 253,84 253,15 720,00 211,07 21,21 232,28 322,61 144,00 42,21 11,81 54,02	308,13 22,80 330,93 290,25 912,00 264,75 26,86 291,61 319,75 182,40 52,95 14,96 67,91	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,94 317,88 220,80 63,68 18,11 81,79	432,73 32,40 465,13 267,11 1296,00 372,10 38,17 410,27 316,57 259,20 74,42 21,25 95,67	481,05 37,20 518,25 278,63 1488,00 414,60 43,83 458,43 308,08 297,60 82,92 24,40 107,32	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,55 301,54 336,00 91,42 27,55	5 506 42 5 550 265 0 168 0 446 49 0 485 231 0 336 88 27	3,42 ,00),42 2,11 0,00 1,34 ,48 3,32 1,56 8,00 5,07 5,55	487,47 42,00 529,47 252,13 680,00 423,57 49,48 478,08 281,58 336,00 84,71 27,55	466,51 42,00 508,51 242,15 1680,00 406,81 49,48 456,26 271,50 336,00 81,36 27,55 108,91
Prod Prod Court Court Prod Prod Prod Court	total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$)	8,4 129 303 336 103 9,5 113 338 67, 20, 5,6	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13	183,54 13,20 196,74 288,09 528,00 157,39 15,65 172,54 327,54	245,84 18,00 253,84 283,15 720,00 211,07 21,21 232,28 322,51 144,00 42,21 11,81	308,13 22,80 330,93 290,29 912,00 264,75 28,86 291,61 318,75	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,94 317,38 220,80 63,68 18,11	432,73 32,40 465,13 267,11 1296,00 372,10 38,17 410,27 516,57	481,05 37,20 518,25 278,63 1488,00 414,60 43,83 453,43 308,06	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,58 301,54	5 506 42 5 550 265 0 168 0 446 49 0 485 231 0 336 88 27	3,42 ,00),42 2,11 0,00 1,34 ,48 3,32 1,56 8,00 5,07 5,55	487,47 42,00 529,47 252,13 6880,00 423,57 49,48 473,06 281,58 336,00 84,71 27,55	466,51 42,00 508,51 242,15 1680,0 406,81 49,48 456,23 271,50 336,00 81,38 27,55 108,91
Prod Prod Court Court Prod Prod Court Court Court	total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$)	8,4 129 308 336 103 9,9 113 338 67, 20, 5,6 26, 350	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13	183,54 13,20 196,74 298,09 528,00 157,39 15,55 172,54 327,54	245,84 18,00 253,84 253,15 720,00 211,07 21,21 232,28 322,61 144,00 42,21 11,81 54,02	308,13 22,80 330,93 290,25 912,00 264,75 26,86 291,61 319,75 182,40 52,95 14,96 67,91	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,94 317,88 220,80 63,68 18,11 81,79	432,73 32,40 465,13 267,11 1296,00 372,10 38,17 410,27 316,57 259,20 74,42 21,25 95,67	481,05 37,20 518,25 278,63 1488,00 414,60 43,83 458,43 308,08 297,60 82,92 24,40 107,32	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,55 301,54 336,00 91,42 27,55	5 506 42 5 550 0 168 0 440 49 0 485 251 0 336 88 27 7 115	3,42 ,00),42 2,11 0,00 1,34 ,48 3,32 1,56 8,00 1,07 1,55 1,55	487,47 42,00 529,47 252,13 680,00 423,57 49,48 478,08 281,58 336,00 84,71 27,55	468,51 42,00 508,51 242,15 1680,0 406,81 49,48 456,25 271,50 336,00 81,38 27,55 108,51 324,15
Prod Prod Prod Prod Prod Prod Prod Prod	total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$)	8,4 129 308 336 103 9,9 113 338 67, 20, 5,6 26, 350	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13 20 ,74 51 ,25 ,67	183,54 13,20 196,74 298,09 528,00 157,39 15,55 172,54 327,54 105,60 31,48 8,68 40,14 380,09	245,84 18,00 253,84 253,15 720,00 211,07 21,21 252,28 322,51 144,00 42,21 11,81 54,02 375,15	308,13 22,80 330,93 290,25 912,00 264,75 28,86 291,61 319,75 182,40 52,95 14,96 67,91 372,25 45,60 13,24	370,43 27,60 335,03 283,43 1104,00 318,42 32,52 350,34 317,38 220,80 63,68 18,11 31,79 370,43	432,73 32,40 485,13 267,11 1296,00 372,10 38,17 410,27 319,57 259,20 74,42 21,25 95,67 369,11	481,05 37,20 518,25 273,63 1488,00 414,60 43,83 458,43 308,08 297,60 82,92 24,40 107,32 360,63	529,38 42,00 571,38 272,08 1680,0 457,10 49,48 506,58 301,54 336,00 91,42 27,55 118,97 354,08	5 506 42 5 550 0 168 0 440 49 0 485 251 0 336 88 27 116 344	3,42 ,00 ,00 ,42 ,11 0,00 1,34 ,48 3,32 1,56 3,00 ,07 ,55 3,92 1,11	487,47 42,00 529,47 252,13 680,00 423,57 49,48 473,06 281,58 336,00 84,71 27,55 112,27 334,13	466,51 42,00 508,51 242,15 1680,0 406,81 49,48 456,25 271,50 336,00 81,36 27,55 108,51 324,15
Prod Prod Prod Prod Prod Prod Prod Prod	total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) PL(M\$) rges(M\$) total(M\$) moyen(\$II) uction(KT) uction(KT) uction(KT)	8,4 129 308 336 103 9,9 113 338 67, 20, 5,6 390	,24 40 ,64 ,67 ,00 ,71 90 ,61 ,13 ,20 ,74 51 ,25 ,67	183,54 13,20 196,74 288,09 528,00 157,39 15,55 172,54 327,54 105,60 31,48 8,66 40,14 380,09	245,84 18,00 253,84 253,15 720,00 211,07 21,21 232,28 322,51 144,00 42,21 11,81 54,02 375,15	308,13 22,80 330,93 290,25 912,00 264,75 26,86 291,61 319,75 182,40 52,95 14,96 67,91 372,25	370,43 27,60 393,03 283,43 1104,00 318,42 32,52 350,94 317,88 220,80 63,68 18,11 81,79 370,43	432,73 32,40 465,13 267,11 1296,00 372,10 38,17 410,27 319,57 259,20 74,42 21,25 95,67 359,11	481,05 37,20 518,25 273,63 1488,00 414,60 43,83 458,43 303,08 297,60 82,92 24,40 107,32 360,63	529,38 42,00 571,38 272,03 1680,0 457,10 49,48 506,55 301,54 336,00 91,42 27,55 118,97 354,08	5 508 42 5 550 0 168 0 440 49 0 488 27 118 344 84 22 10	3,42 ,00),42 ,11 0,00 1,34 ,48 3,82 1,56 3,00 ,07 ,55 5,62 1,11	487,47 42,00 529,47 252,13 6880,00 423,57 49,48 473,06 281,58 336,00 84,71 27,55 112,27 334,13	468,51 42,00 508,51 242,15 1680,00 408,81 49,48 456,25 271,50 338,00 81,38 27,55 108,51 324,15

2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 508,51 242,15	2100,00 468,51 42,00 508,51	2100,00 466,51 42,00 508,51 242,15	2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 508,51 242,15	2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 503,51	2100,00 468,51 42,00 508,51 242,15	2100,00 466,51 42,00 503,51 242,15	2100,00 466,51 42,00 508,51	2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 503,51	2100,00 466,51 42,00 508,51 242,15
242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10	242,10
1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,61 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1680,00 406,81 49,48	1690,00 406,81 49,48
456,29 271,60	456,29 271,60	456,29 271,60	456,29 271.60	456,29 271.60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60	456,29 271,60
336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00	336,00
81,36 27,55	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36	81,36
108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91	27,55 108,91
324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15	324,15
84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00	84,00
20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34	20,34
10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95	10,61 30,95
368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48	368,48

-TSS petit et grand diamètre

	1										
Production(kT)	60,00	94,29	128,57	162,86	197,14	231,43	265,71	300,00	300,00	300,00	300,00
Blooms(M\$)	17,32	26,22	35,12	44,02	52,92	61,82	68,72	75,63	72,63	69,64	66,64
Charges(M\$)	15,96	25,08	34,20	43,32	52,44	61,56	70,68	79,80	79,80	79,80	79,80
Coût total(M\$)	33,28	51,30	69,32	87,34	105,36	123,38	139,40	155,43	152,43	149,44	146,44
Coût moyen(\$/t)	554,67	544,09	539,15	536,29	534,43	533,11	524,63	518,08	508,11	498,13	488,15
	1										
Production(kT)	20,00	31,43	42,86	54,29	65,71	77,14	88,57	100,00	100,00	100,00	100,00
Blooms(M\$)	5,77	8,74	11,71	14,67	17,64	20,61	22,91	25,21	24,21	23,21	22,21
Charges(M\$)	5,22	8,20	11,19	14,17	17,15	20,13	23,12	26,10	26,10	26,10	26,10
Coût total(M\$)	10,99	16,94	22,89	28,84	34,79	40,74	46,02	51,31	50,31	49,31	48,31
Coût moyen(\$/t)	549,67	539,09	534,15	531,29	529,43	528,11	519,63	513,08	503,11	493,13	483,15
300,00 300,00 300	0,00 300,00	300,00	300,00	300,00	300,00	300,00	300,00	300,00	300,00 300,00	300,00	300,00
66,64 66,64 66,	64 66,64	66,64	66,64	66,64	66,64	66,64	66,64	66,64	66,64 66,64	66,64	66,64
79,80 79,80 79	80 79,80	79,80	79,80	79,80	79,80	79,80	79,80	79,80	79,80 79,80	79,80	79,80
	,44 146,44	146,44	146,44	146,44	146,44	146,44	146,44	146,44	146,44 146,44		146,44
488,15 488,15 488	,15 488,15	488,15	488,15	488,15	488,15	488,15	488,15	488,15	488,15 488,15	488,15	488,15
100,00 100,00 100	0.00 100.00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00 100,00	100,00	100,00
,			,	,	,				,		
22,21 22,21 22, 26,10 26,10 26		22,21 26,10	22,21 26,10	22,21 26.10	22,21 26,10	22,21 26,10	22,21 26.10	22,21 26.10	22,21 22,21 26.10 26.10	22,21 26.10	22,21 26,10
48,31 48,31 48		48,31	48,31	48,31	48,31	48,31	48,31	48,31	48,31 48,31	48,31	48,31
483.15 483.15 483		483.15	483.15	483.15	483.15	483,15	483.15	483.15	483.15 483.15	483.15	483,15

Financement et remboursement

Ce financement repose sur un emprunt bancaire, contracté dès le début de la phase de lancement. Le remboursement de cet emprunt est prévu sur une durée de 8 ans, débutant après la période de construction. Ainsi, pendant les quatre premières années, l'entreprise mobilise les fonds pour réaliser les investissements. Le remboursement est différé à 7 ans du début du projet, soit débutera 2033

Emprunt	2900
Différé	7
Paiement sur	8
Taux d'intérêt inv	3,5%
Taux DCT	8%

	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Déblocages	725	725	725	725	0	0	0	0	0	0	0	0	0	0	0
Remboursement								362,5	362,5	362,5	362,5	362,5	362,5	362,5	362,5
Total de la dette	725	1450	2175	2900	2900	2900	2900	2537,5	2175	1812,5	1450	1087,5	725	362,5	0
Intérêts	12,69	38,06	63,44	88,81	101,50	101,50	101,50	95,16	82,47	69,78	57,09	44,41	31,72	19,03	6,34
DCT	12,69	39,08	67,58	98,36	183,05	85,05	0,00	251,99	172,61	81,64	0,00	0,00	0,00	0,00	0,00
Remboursement	0	0	0	0	0	0	4	0	0	0	34	149	208	224	236
Total de la dette	12,69	51,77	119,34	217,70	400,75	485,80	482,19	734,18	906,80	988,44	954,37	805,63	597,94	373,76	138,15
Intérêts		1,02	4,14	9,55	17,42	32,06	38,86	38,58	58,73	72,54	79,08	76,35	64,45	47,83	29,90
							_					-			
2041	2042		2043	20	044	204	5	2046	2	047	204	8	2049	2	050
0	0		0		0	0		0		0	0		0		0
0	0		0		0	0		0		0	0		0		0
0,00	0,00		0,00	0	,00	0,00)	0,00	0	,00	0,0	0	0,00	(0,00
0,00	0,00		0,00	0	,00	0,00)	0,00	0	,00	0,0	0	0,00	(0,00
138	0		0		0	0		0		0	0		0		0
0,00	0,00		0,00	0	,00	0,00)	0,00	0	,00	0,0	0	0,00	(),00
11,05	0,00		0,00	0	,00	0,00)	0,00	0	,00	0,0	0	0,00	(),00

Calcul des financements et remboursements prévisionnels

Amortissement des investissements

L'ensemble des investissements réalisés sera amorti sur 20 ans. Cet horizon d'amortissement est considéré comme réaliste et cohérent avec la nature du projet, puisqu'il s'agit d'un investissement industriel lourd à long terme, dont les actifs (équipements, installations, bâtiments) sont conçus pour être utilisés sur plusieurs décennies.

En comptabilité, l'amortissement représente la répartition du coût d'un actif sur sa durée d'utilisation. Autrement dit, bien que la dépense soit effectivement engagée dès les premières années, la valeur de cet actif est « consommée » progressivement dans le temps. Cette méthode permet de refléter plus fidèlement la réalité économique : un actif n'est pas utilisé pour un seul exercice, mais sur plusieurs années.

Ainsi, les charges d'amortissement ne commencent à apparaître qu'à partir de la première année d'exploitation, soit l'année 5. Chaque année, une fraction de la valeur investie est enregistrée comme charge, traduisant l'usure ou la perte de valeur économique de l'actif.

Flux de trésorerie

Les flux de trésorerie sont calculés sur la base de l'EBE, auquel sont appliquées les composantes suivantes :

- Trésorerie d'exploitation = EBE – Variation du BFR (besoin en fonds de roulement) – Impôts sur les sociétés
- Trésorerie d'investissement = CAPEX engagé pour la mise en place des infrastructures industrielles.
- Trésorerie de financement =

 Emprunts bancaires à long terme + nouvelles dettes à court terme (si nécessaires) remboursement annuel de la dette intérêts d'emprunt.

Dans les années où la trésorerie est négative, le recours à une **dette à court terme** est prévu, avec un **taux d'intérêt de 8 %**. Ces dettes sont ensuite remboursées l'année suivante. Ce mécanisme garantit que la **trésorerie nette reste toujours positive**, afin de respecter les contraintes de viabilité financière du projet.

À noter : les **dettes à court terme** n'entrent pas dans le calcul de la **trésorerie nette actualisée** utilisée pour évaluer la rentabilité du projet.

en m \$	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
EBE	0,00	0,00	0,00	0,00	1,04	96,51	191,98	297,44	402,91	518,38	660,47	782,57	817,52	852,47	877,41
Impôts	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,56	22,17	43,90	72,07	98,19	109,16	120,68	130,21
Variation BFR	0,00	0,00	0,00	0,00	65,17	48,00	48,00	49,65	49,65	51,29	55,67	52,38	5,74	5,74	4,10
- /						40.54	4 40 07				500 74		700.04	700 04	740.44
Trésorerie d'exploitation	0,00	0,00	0,00	0,00	-64,13	48,51	143,97	244,24	331,09	423,19	532,74	632,00	702,61	726,04	/43,11
Investissement initial	-725,00	-725,00	-725,00	-725,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Investissements														70.50	400.75
intermédiaires	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-36,25	-/2,50	-108,75
Trésorerie															
d'investissement	-725,00	-725,00	-725,00	-725,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-36,25	-72,50	-108,75
Emprunts	725,00	725,00	725,00	725,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Remboursements	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-362,50	-362,50	-362,50	-362,50	-362,50	-362,50	-362,50	-362,50
Intérêts	-12,69	-38,06	-63,44	-88,81	-101,50	-101,50	-101,50	-95,16	-82,47	-69,78	-57,09	-44,41	-31,72	-19,03	-6,34
Trésorerie de															
financement	712,31	686,94	661,56	636,19	-101,50	-101,50	-101,50	-457,66	-444,97	-432,28	-419,59	-406,91	-394,22	-381,53	-368,84
Trésorerie nette	-12,69	-38,06	-63,44	-88,81	-165,63	-52,99	42,47	-213,41	-113,88	-9,10	113,14	225,09	272,14	272,01	265,51
Trésorerie cumulée	-12,69	-50,75	-114,19	-203,00	-368,63	-421,62	-379,15	-592,56	-706,44	-715,54	-602,40	-377,31	-105,16	166,85	432,36
CF actualisé	-13	-35	-52	-67	-113	-33	24	-110	-53	-4	44	79	87	79	70
VAN	-13	-47	-100	-166	-280	-312	-289	-398	-451	-455	-411	-332	-246	-167	-97

2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053
877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41	877,41
133,61	134,34	132,96	131,58	130,20	128,83	127,45	126,07	124,69	123,32	121,94	121,94	121,94
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
743,80	743,08	744,45	745,83	747,21	748,59	749,96	751,34	752,72	754,10	755,47	755,47	755,47
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00
-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00	-145,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
598,80	598,08	599,45	600,83	602,21	603,59	604,96	606,34	607,72	609,10	610,47	610,47	610,47
1031,16	1629,23	2228,69	2829,52	3431,73	4035,31	4640,28	5246,62	5854,34	6463,43	7073,91	7684,38	8294,86
143	130	119	108	98	90	82	74	68	62	56	51	47
46	176	295	403	502	591	673	748	815	877	934	985	1031

Calcul des flux de trésorerie