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صخلم

ةينبمادختسابهريوطتمت،نزولافيفخسوينوفاسعوننمحايرنيبروتراوّدمييقتوعينصتوميمصتلمعلااذهضرعي

نيسحتيففدهلالثمت.يويحساسأتاذةبكرمدولجوداعبألايثالثعوبطميديرويجبلقنمةنوكمةيريطش

عمجيجهندامتعامت.ةيوينبلاةمالسلاىلعظافحلاعمةلتكلاليلقتعم،ةضفخنملاحايرلاتاعرسدنعراوّدلاةباجتسا

%6.84ةبسنباًليلقتيئاهنلاميمصتلاققحدقو.راوّدلاكولسنمققحتلاوةداملافيصوتلةيددعلاةجذمنلاوةبرجتلانيب

زواجتتملثيح،ةيليغشتلالامحألاتحتةيوينبلاةمالسلاىلعظافحلاعم،ALPنمعونصملاهريظنبةنراقمةلتكلايف

تاسدنهوةيويحلاةبكرملاداوملانيبعمجللةريبك�لاتايناكمإلاجئاتنلادكؤت.راوّدلاعافترانم%50.0ةبسنتاهوشتلا

SMPTةيلكيهلاةءافك�لاةيلاعونزولاةفيفخلولحريوطتيف.

:ةلادلاتاملكلا

DFC،ISF،داعبألاةيثالثةعابطلا،ديرويجةكبش،ةيويحتابكرم،سوينوفاسحايرنيبروت

Résumé

Ce travail fait l’objet de la conception, la fabrication et l’évaluation d’un rotor de turbine éolienne Savonius

léger, réalisé à partir d’une structure sandwich combinant un noyau gyroïde imprimé en 3D et des peaux

composites biosourcées. L’objectif était d’améliorer la réactivité du rotor à faibles vitesses de vent tout en

réduisant sa masse et en conservant son intégrité structurelle. Une approche expérimentale et numérique

combinée a été adoptée pour caractériser le matériau et valider le comportement du rotor. La structure finale

a permis une réduction de masse de 48.6% par rapport à un rotor équivalent en PLA, tout en maintenant

l’intégrité mécanique sous chargements opérationnels, avec une déformation maximale n’excédant pas 0,05%

de la hauteur du rotor. Les résultats confirment le potentiel de l’association des composites biosourcés avec

les structures architecturées pour le développement de solutions légères et mécaniquement performantes.

Mots clés : éolienne Savonius ; composites biosourcés ; structure gyroidale ; impression 3D ; CFD ; FSI

Abstract

This work presents the design, fabrication, and evaluation of a lightweight Savonius wind turbine rotor using

a sandwich structure made of a 3D­printed gyroid core and bio­sourced composite skins. The objective was to

enhance rotor responsiveness at low wind speeds while reducing mass and maintaining structural integrity.

A combined experimental and numerical approach was adopted to characterize the material and validate

the rotor behavior. The final structure achieved a 48.6% reduction in mass compared to a PLA equivalent,

while maintaining structural integrity under operational loads, with maximum deformation not exceeding

0.05% of the rotor height. The results confirm the potential of combining bio­based composites with TPMS

architectures for the development of lightweight, structurally efficient solutions.

Keywords: Savonius wind turbine; bio­based composites; gyroid lattice; 3D printing; CFD; FSI
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