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Résumé

Ce travail fait I’objet de la conception, la fabrication et 1’évaluation d’un rotor de turbine éolienne Savonius
léger, réalisé a partir d’une structure sandwich combinant un noyau gyroide imprimé en 3D et des peaux
composites biosourcées. L objectif était d’améliorer la réactivité du rotor a faibles vitesses de vent tout en
réduisant sa masse et en conservant son intégrité structurelle. Une approche expérimentale et numérique
combinée a été adoptée pour caractériser le matériau et valider le comportement du rotor. La structure finale
a permis une réduction de masse de 48.6% par rapport a un rotor équivalent en PLA, tout en maintenant
I’intégrité mécanique sous chargements opérationnels, avec une déformation maximale n’excédant pas 0,05%
de la hauteur du rotor. Les résultats confirment le potentiel de 1’association des composites biosourcés avec
les structures architecturées pour le développement de solutions légeres et mécaniquement performantes.

Mots clés : éolienne Savonius ; composites biosourcés ; structure gyroidale ; impression 3D ; CFD ; FSI

Abstract

This work presents the design, fabrication, and evaluation of a lightweight Savonius wind turbine rotor using
a sandwich structure made of a 3D-printed gyroid core and bio-sourced composite skins. The objective was to
enhance rotor responsiveness at low wind speeds while reducing mass and maintaining structural integrity.

A combined experimental and numerical approach was adopted to characterize the material and validate

the rotor behavior. The final structure achieved a 48.6% reduction in mass compared to a PLA equivalent,
while maintaining structural integrity under operational loads, with maximum deformation not exceeding
0.05% of the rotor height. The results confirm the potential of combining bio-based composites with TPMS
architectures for the development of lightweight, structurally efficient solutions.

Keywords: Savonius wind turbine; bio-based composites; gyroid lattice; 3D printing; CFD; FSI
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