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 ملخص
 

، الأشیاء إنترنت لأجهزة البیني التوصیل مع للتعامل جدیداً نهجاً نقترح حیث ، البیني التشغیل قضایا على العمل هذا                     ویركز
الآلي التعلم وتقنیات الطبیعیة اللغات معالجة تقنیات إلى استنادًا البیني. التشغیل قابلیة مشكلة من تخفف أن المفترض من                    التي
تلقائیًا طریقة بكل المتعلق المحدد الإجراء تحدید أجل من التطبیقات برمجة واجهة أسالیب تصنیف إلى المقترح الحل یهدف ،                   
الأشیاء إنترنت لأجهزة البیني التشغیل قابلیة یضمن أكبر حل من هاماً جزءاً المساهمة هذه تكون قد مسبقة. معرفة أي                     دون
عن للكشف أیضًا المقترحة التقنیة استخدام یمكن الأشیاء. إنترنت في المصلحة أصحاب مختلف على شيء أي فرض                   دون

 الإمكانات والواجهات المادیة المتاحة لأي جهاز ، والتي یمكن أن تساعد أیضًا في تحسین تقنیات التوصیة بالخدمات.
 

 الكلمات الدالة  :  انترنت الاشیاء ، التشغیل البیني ، تصنیف ، معالجة اللغات الطبیعیة ، تقنیات التعلم الآلي
 

Résumé 
 
Ce travail se concentre sur les problèmes d'interopérabilité, où nous proposons une            
nouvelle approche pour traiter l'interfaçage des objets connectés, ce qui est censé            
atténuer le problème de l'interopérabilité. Basée sur les techniques de traitement du            
langage naturel et d'apprentissage automatique, la solution proposée vise à classifier           
les méthodes API afin d'identifier automatiquement l'action spécifique liée à chaque           
méthode sans aucune connaissance préalable. Cette contribution peut être un élément           
important d'une solution plus large qui assure l'interopérabilité des des objets connectés            
sans rien imposer aux différentes parties prenantes de l’internet des objets. La            
technique proposée peut également être utilisée pour détecter les capacités et les            
interfaces physiques disponibles de n'importe quel appareil, ce qui peut également           
aider à améliorer de manière les techniques de recommandation de service. 
 
Mots clés : Internet des objets, interopérabilité, classification,  traitement du langage 
naturel, apprentissage automatique 
 

Abstract 
 

This work focuses on interoperability issues, where we propose a novel approach to             
deal with the interfacing of internet of things devices, which is supposed to alleviate the               
interoperability issue. Based on Natural Language Processing and Machine Learning          
techniques, the proposed solution aims to classify API methods in order to automatically             
identify the specific action related to each method without any prior knowledge. This             
contribution may be an important piece of a larger solution that ensures the             
interoperability of IoT devices without imposing anything to the different IoT           
stakeholders. The proposed technique can be also used to detect the capabilities and             
the available physical interfaces of any device, which can also can help in improving the               
service recommendation techniques. 
 
Keywords : Internet of things, interoperability, classification, natural language         
processing, machine learning 
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General Introduction 
 
 
The Internet of Things is seen by all the experts as the next most influencing technological 
revolution since the internet. Internet of Things will impact in every corner of our planet with 
more than 50 billion connected objects by 2025. However, its early stages and the way ahead is 
still long. To realize the vision of truly connected things, there are still major issues to overcome.  
 
The real value of Internet of Things is certainly not about connecting things to the Internet, 
rather is about making things work together in order to create new services and valuable data, 
and being able to make connected things of diverse nature communicate and work together. 
With regards to the exponential growth of Internet of Things devices in gender and number 
made, Interoperability is one of the major issues in Internet of Things.  
 
Things will need to communicate with each other, things will need to discover the capabilities 
of other things, things will need to use the capabilities of other things, things will need to 
exchange data with cloud services, and applications will need to understand the data from 
things. This work focuses on interoperability issues, we began with a thorough state of the art 
about the related works and efforts made in this area, and it has been realized that a great effort 
mainly in standardization is made so far in order to reach the vision of full interoperability 
wherein devices work together regardless of their nature or implementation. However, all the 
standardization efforts fail to propose a universal and scalable solution to ensure the 
interoperability of Internet of Things devices. In this work we propose, a novel approach to deal 
with the Internet of Things devices interfacing which is supposed to alleviate the interoperability 
issue, based on Natural Language Processing (NLP) and Machine Learning (ML) techniques, 
the proposed solution aims to classify API methods in order to automatically identify the 
specific action related to each API method without any prior knowledge. This contribution may 
be an important piece of a larger solution that ensures the interoperability of Internet of Things 
devices without imposing anything to the different IoT stakeholders (users, suppliers, App 
developers). 
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Chapter 1 Nokia Bell Labs  

This chapter gives a brief description about Nokia Bell Labs and the recent projects of the 

IoT department where my internship took part. 

 

1.1 Bell Labs 

Bell labs was originally founded in the late 19th century by the scientist Alexander 

Graham Bell in the USA. Since its creation it has made seminal scientific discoveries and 

revolutionized the ICT world in different sectors (computer science, wire-line and wireless 

networks, optics and so on). Nokia Bell Labs is focused on all the key elements of today’s 

and tomorrow’s communication networks. From the physical components within the 

networks to the mathematical underpinnings describing how networks can operate, the 

expertise of Bell Labs researchers’ expertise in optics, wireless, software, statistics and 

quantum computing sets our work apart. Projects at Bell Labs generally consist of 

groupings of experts from diverse disciplines converging to find solutions for the difficult 

and complex challenges of digital communications. To find out real solutions for many of 

the complex communication challenges of the industry, Bell Labs researchers often 

collaborate with both other research organizations all around the world and the academic 

world. 

 

1.2 Bell-Labs organization 

Nokia Bell-Labs gathers 6 Research Labs spread over multiple locations in the world. 

 ‘Access’ developing new breakthrough technologies for the communications 

systems that directly connect with end user,  

  ‘Application Platforms & Software Systems’ solving problems of service 

complexity in future networks by automating and simplifying delivery of cloud and 

sensor systems with intelligent, self-deploying, and self-healing control, 

 ‘Emerging Materials, Components, and Devices’ solving the great device 

challenges of the future. Research areas include III-V devices, silicon devices, 

hybrid modules, and emerging materials. 

 ‘IP and Optical Networks’ delivering disruptive innovations that significantly 

improve the scale, flexibility, and agility of IP and optical networks. 

 ‘End to End Mobile Network Solutions’ transforming how mobile networks are 

used, through creation of future-proof, adaptive and massively scalable E2E 

solutions. It develops new architectures exploiting 5G and beyond, 

https://nokia.sharepoint.com/BellLabs-CTO/Pages/Access-Lab.aspx
https://nokia.sharepoint.com/BellLabs-CTO/Pages/Application-Platforms-&-Software-Systems-%28APSS%29-Lab.aspx
https://nokia.sharepoint.com/BellLabs-CTO/Pages/Emerging-Materials,-Components-and-Devices-.aspx
https://nokia.sharepoint.com/BellLabs-CTO/Pages/IP-and-Optical-Networks.aspx
https://nokia.sharepoint.com/BellLabs-CTO/Pages/End-to-End-Mobile-Network-Solutions.aspx
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And finally our Lab: NAACS  

 Network Algorithms, Analytics, Control and Security, developing disruptive, 

breakthrough solutions to critically hard industry problems. It accomplishes this in 

network protocols, algorithms addressing networks and other complex systems, 

data and user-security, network control systems, and useful and real-time analytics. 

 Research Labs are then organized in several Research Groups. My internship took 

place in the Control Research Group (CRG) within the NAACS Lab. 

 

1.3 Nokia Bell-Labs France  

Nokia Bell labs France, as one Bell-Labs location, counts about 200 researchers located at 

Villarceaux (Nozay, Essonne), the biggest center of Nokia in Europe with more than 4000 

employees, most of them being engineers. Nokia Bell-Labs France partnerships with many 

of the French and world’s most known research institutes and academic universities. My 

internship took place in the department called IoT-Control belonging to the Control 

Research group belonging to the NAACS Lab itself. The IoT-Control research department, 

which is composed of ten’s researchers, is focused on problems related to networking, 

cloud computing and digital security (from a networking perspective). It is composed of 

different projects addressing several key issues related to the IoT control by considering 

Software Based Networks (SDN).  

 

1.4 Research projects  

Bell Labs research is organized in Projects classified according their degree of maturity 

(also known as Research Life Cycle). Following the Bell Labs research project 

organization, The IoT control department especially contributes to a cross-location project 

called Future Space which is part of FX projects aiming at consolidating advanced 

research trough prototyping (Proof of Concept).  

The Self Adaptive Virtual Object Chaining-SAVOC project I worked on is part of 10X  

projects representing the first step of the Bell Labs Research Life Cycle with the study of 

disruptive research concepts. Basically, while considering a given issue, a 10X 

improvement or gain is expected with respect to the known State-of-the-Art. My internship 

is a contribution to the 10X SAVOC project. 

 

https://nokia.sharepoint.com/BellLabs-CTO/Pages/Network-Algorithms,-Analytics,-Control-and-Security.aspx
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1.4.1 Majord’Home 

SAVOC and Future Space are projects originating from the same ‘root’ idea introduced in 

2014: the Majord’Home concept. 

The Majord’Home is a major innovation in the control of networks to support IoT services. 

Indeed, as stated in [1] and [2] the project aims at removing the burden of home network 

management from the end-users by delegating it (mainly) to Internet Service Providers 

(ISPs)  having view and control of both connected objects and network elements. 

Interestingly, the Majord’Home  solution allows users to keep control of their smart-home 

through a simplified interface, on which they particularly express their expectations. The 

latter are then translated into low level network configuration instructions, by following 

the Software-Defined Network Paradigm. 

 

1.4.2 S.A.V.O.C 10X project  

Today, Future Spaces has a development and implementation focus, centered on the 

dynamic establishment of Software-Defined LANs involving different smart spaces. The 

10X SAVOC project held by our team is more focused on advanced research matters 

targeting the automated recommendation and deployment of IoT services. This particularly 

includes the mathematical modeling of IoT services and the development of theoretical 

tools in order to render the system more intelligent and self-organized.  

The main objective of the 10X SAVOC project is the development of autonomic 

mechanisms for the recommendation and composition of personalized IoT services 

involving several connected objects. The first outcome of this project is the modeling of 

Virtual Objects (VO) abstracting connected objects and then the modelling of their 

composition, by adapting a Graph Theory Framework (Typed Attributed Graph) with 

structured sets of attributes and types. This work includes a key aspect: the modeling of the 

physical  environment, interacting with connected devices and thus with IoT services. 

Among the autonomic mechanisms, an automated characterization of IoT services has 

been demonstrated (Automated building of an IoT service catalog) with respect to physical 

interfaces, representing the way connected devices interact with their physical 

environment.  Such a characterization is then used to perform automated recommendations 

of IoT services to end-users. Capitalizing on this work, we have investigated the automated 

characterization and deployment of missing digital functions to make (recommended) IoT 

service work.  
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After a brief presentation of the ‘Nokia Bell Labs’ entity and its research projects, the 

following chapter positions our contribution by first describing the known State-of-the Art 

in the IoT. 
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Chapter 2 State of the art 

This chapter gives a big picture of the issue that we are dealing with in this project. In 2.1 

we give a general overview about IoT, where we present the importance and the expected 

impact of IoT in different domains. Then, under the same section we present briefly the 

main issues in IoT. Afterwards, in 2.2 we extend on the research topic that our team in 

Nokia Bell labs is focusing on. Finally, in 2.3 and 2.4 we present the issue that we are 

trying to deal with in this project as well as the related works to this topic. In 2.5, we sum-

up what has been discussed in this chapter. 

 

2.1 General view  

The Internet of Things refers to the general idea of connecting things (e.g. watch, light, 

vehicle) of their ability to interact with their physical environment by sensing, 

communicating, producing new events and information, thereby, creating new services. 

 

The internet of things (IoT) is seen by all the experts as the next most influencing 

technological revolution since the creation of the Internet. IoT will completely change the 

way we live by impacting in every corner of our planet. As an illustration, Cisco reports 

[41] that IoT should generate about $14.4 trillion in value across all industries in the next 

decade, with more than 1 trillion connected devices by 2025.  

 

Healthcare will be greatly enhanced by IoT, through wearable devices. For instance, it will 

allow to monitor the personal health of the patients remotely by sending the patient data to 

a health monitoring center.  In some hospitals, it is already used for security purposes. 

Newborn babies are given connected wristbands, allowing a wireless network to locate 

them at any time. If a newborn is taken too close to an exit door without being signed out, 

elevators would stop working and the exit doors would lock. In the neonatal intensive care 

unit, nurses receive critical alerts on cell phones about their patients' medical conditions, 

including heart rate and oxygen changes that sensors have detected.  
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IoT is also revolutionizing manufacturing by improving the efficiency and productivity of 

manufacturing operations, according to TATA Consultancy Survey [42], manufacturers 

utilizing IoT solutions in 2014 saw an average 28.5% increase in revenues between 2013 

and 2014. Typically, manufacturers are currently using IoT solutions to track products in 

their factories, improve their control functionalities, and increase their analytics 

functionality through predictive maintenance. For instance, it makes logistics much easier, 

it can be used to monitor every detail such as commodity details, purchasing of raw 

materials, production and sales of product after sale service, having information about 

stock, customer’s satisfaction etc.  

 

Smart cities is also new concept issued from the IoT, which will solve major problems 

faced by people living in the cities like pollution, traffic congestion and energy saving. 

Smart Belly trash [43] will send alerts to municipal services when a bin needs to be 

emptied. Using web applications, citizens can find free available parking slots across the 

city. It will help in monitoring the water supply and ensuring that there is adequate water 

supply for the resident. It will also help to discover if there is any water loss. Tokyo, for 

example, has calculated a saving of $170 million each year by detecting water leakage 

problems early. As an evidence, a lot of new services have not been discovered or 

imagined yet. 

 

Despite the countless devices and applications that will be generated by IoT, and on which 

we can write several books just to list them, the real stake isn’t the devices neither the 

applications, actually the big corporations don’t expect to make big profits on devices 

themselves. One main value of IoT relates with sensors and especially all the data 

generated by these devices, which contains a rich information on people’s behavior, 

including: the shows people watch, the products they consume, the ads that influence their 

buying behavior and the apps they use. All this information allows for recommending 

personalized services to end-users. 

 

All these examples, are an evidence that IoT will impact greatly our daily lives. 

Nevertheless, before the IoT being widely accepted, there are some fundamental issues and 

challenges that need to be addressed in order to benefit from its offered versatile 

functionalities.  In the following we state the major issues in IoT:  

 

1- Heterogeneity: the IoT is expected to make interwork a huge number of devices of 

diverse nature, coffee machines, smartphones, air conditioner, sensors, actuators, 

etc. which actually have different capabilities, properties, and different 

communication technologies (as different ‘languages’). The current solutions fail in 

correctly solving this problem by presenting a universal solution. For instance, 

many efforts have been spent to develop protocols for ubiquitous and pervasive 
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networking (e.g. ZigBee, Bluetooth), but each solution has its own specific 

characteristics and application domains.  

2- Scalability: regarding the exponential growth of IoT devices in gender and number, 

scalability remains an important requirement. When designing an IoT system, 

current and future needs have to be taken into account and if not, the is likely to be 

left with unusable services and devices that must be replaced, which is an 

expensive prospect.  Scalability issues are present at different levels, including: 

naming, data communication and networking, information and knowledge 

management, service provisioning and management.  

3- Security and privacy: it is considered as the most concerning issue for IoT systems, 

especially in some critical applications like healthcare where experts demonstrated 

that we can easily control the connected devices used for care, which can be a real 

risk to the life of a patient. Security and privacy requirements can be classified as 

follows: resilience to attacks, data authentication, access control and client privacy.  

4- Constrained resources: owing to requirements on energy consumption, most of 

devices which will be used in the IoT are expected to be extremely constrained in 

terms of memory and computing resources. Currently, one of the most used 

solutions is the ‘fog/edge/cloud’ computing which provides a big relief for end-

devices but at the same time it accentuates other issues, like security and privacy.  

As an illustration, the blockchain approach is being investigated to provide a level 

of ‘trustability’ in the use of unknown devices [51] 

 

5- Search and discovery: with the expected number and diversity of the connected 

devices in any environments, it is obvious that end-users won’t be aware of all 

available resources, their capabilities and available services, adding to that, the 

configuration and deployment of these kind of services is becoming more complex 

and difficult for a typical end-user. This is what makes of the automatic discovery 

and recommendation mechanisms and deployment of IoT services a key element 

for the widespread of the IoT. These techniques aim at taking the end-user out of 

the complex tasks (at the expense of a fined-grained control), while providing 

efficient and interoperable solutions. By now, current approaches hardly comply 

with all the specific requirements, capabilities and characteristics of constrained 

devices.  
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Each issue consists an integral research field, and what makes of the IoT one of the most 

challenging technological revolutions is its different related requirements on all aspects, 

including security, interoperability, scalability, search and discovery, etc.  In fact, what 

makes the IoT issues really challenging is that every solution solving a given issue, highly 

affects the efficiency of the solutions addressing other ones. For instance, some semantic 

techniques have been proposed to describe IoT devices as services, which offer a quiet 

good solution to the heterogeneity and interoperability issues. Unfortunately, all these 

solutions are far way from being lightweight solutions and they usually require high 

processing and memory capabilities, which is challenging for constrained devices. To 

overcome this limitation, a solution is to use the ‘fog’ computing in order to lessen the 

burden of the processing and memory storage of these devices, but this solution raises new 

privacy and security issues. Hence, the main idea to be concluded is that to develop an 

efficient and suitable solution for one IoT issue, having a holistic view is highly 

recommended. 

 

2.2 IoT  services  

 

According to many studies [3][4], a home network is expected to have an average of 30 to 

60 connected devices. These devices are of different nature and issued from different 

manufacturers, which greatly affects the ability of the end-users to manage all these 

connected devices and to benefit from all the richness of the IoT services they could 

support. Indeed, a pool of connected devices working individually can only offer a limited 

set of services compared to what they could offer if they were combined. Regarding their 

growing number and diversity, interfacing connected devices remains a cumbersome task 

for end-users. Therefore, assisting techniques in the selection and composition of services 

are seeing as a key element for the full adoption of the IoT.  

 

Through different scenarios, several techniques have been developed to address the service 

assistance issue, by providing different levels of assistance to the end-user. One of the 

most critical elements of these different levels of assistance is the knowledge owned by the 

end-user, and more precisely the knowledge related to both available services (service 

awareness) and the way to compose (and deploy) these services. In the following we 

present these scenarios.   
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The first scenario suggests that the end-user has the full awareness and composition 

knowledge of the service he would like to benefit from. In this scenario, the user request is 

performed through a dedicated user interface (e.g. WEB Graphical User Interface) by 

selecting the right set of connected devices from the available ones. Nevertheless, this 

scenario requires that all end-users have the suitable expertise, which is obviously 

impossible due to the growing number and the different nature of connected devices in a 

single smart-environments, and in any smart-environments.  

 

A second scenario suggests the presentation of personalized IoT services based on the 

knowledge of the available connected devices. In this approach, a limited set of suitable 

IoT services is presented to the end-users, compared to the presentation of all known 

service classes with all their instances. This scenario is more convenient than the first one, 

but its benefit is also influenced by the number of the available personalized services. 

Basically, it loses all its value in a user context involving multiple locations containing an 

important number of available services.  

 

A remarkable and common element between all the different scenarios is that they are 

based on the use of a service catalog, which describes the different classes of IoT services 

and their classified instantiations involving connected devices and digital functions to 

make services work. Thus, the challenge about the service assistance techniques is related 

to the autonomic building of a service catalog, this catalog describing how to compose IoT 

services. The rapid growth in the number of devices and thus in the number and diversity 

of services requires that this catalog should be updated and build automatically. The 

building of a such catalog and its efficiency are mainly related to the modeling and 

characterization of the different services.  The characterization task aims at ‘identifying’ 

IoT services and  ‘understanding’ how known IoT services are composed. 

 

Current solutions represent (and then characterize) an IoT service as a set of connected 

devices, which means that IoT services are identified by the types of the connected devices 

composing them. These solutions fail to efficiently address the characterization of IoT 

services. These solutions suffer from the service polymorphism problem [reference], since 

the same service may be supported by different types of connected devices. For instance, a 

video-conference may be supported by: a connected TV and a webcam, a smartphone, a 

PC etc. The service polymorphism does not allow representing the IoT services in a 

unambiguous way, which means that same types services may be classified in different 

service classes, since they are composed of different connected devices. Conversely, the 
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same type of devices may lead to different IoT services, which adds more ambiguity in the 

representation and characterization of IoT services. 

 

 

As a solution to these issues, a new physical based service characterization is proposed by 

Nokia Bell-Labs in [1], which focuses on the way entities of the real word (People, 

Animals, Plants, etc.) physically interact with connected devices. For instance, a 

smartphone may have the following physical interfaces: a screen, a camera, an 

accelerometer sensor, a microphone, etc, allowing an interaction with the physical 

environment. This new service characterization efficiently helps in resolving the problem 

of service polymorphism and service ambiguity.  For instance, a video-broadcasting 

service is characterized as follows: 1 camera in 1 location and n screens in other different 

locations, while video-surveillance is characterized as follows: n cameras in different 

locations and 1 screen in another location. Based on this approach, a service classification 

algorithm has been proposed in [2], which computes a signature that characterizes and 

defines the classes of services (e.g. video conference, video surveillance, remote health 

control). Using this classification algorithm, a computed signature defines each service 

class. Accordingly, a service catalog is obtained with the classified service instances 

according to their service class (a name may be assigned by an expert to each service 

class), e.g. ‘video surveillance’ class). This signature also encodes the types of physical 

functions of connected devices required to build an instance of a given IoT service class. 

 

Using the obtained signatures (one per service class), a pattern matching algorithm has 

been proposed in [1], in order to recommend IoT services to users by matching signatures 

of service classes listed in the catalog with the available connected devices. If a user wants 

to know what he/she can do with one or several connected objects, this algorithm can 

recommend him/her the services which signatures are supported by the available 

connected devices. 

 

This approach, solving the polymorphism and ambiguity problems, represents a pillar of 

our research work. Nevertheless, there are still crucial elements and issues that must be 

taken into consideration to make it fully functional.  For instance, the discovery of 

connected devices, their resources, metadata, properties and capabilities is an essential 

requirement in any IoT ecosystem [5] (By the way, physical functions required to compose 

IoT services are identified but the way to use the capabilities of connected devices is not 

addressed by this method). the related discovery mechanisms depend on many building 

blocks, such as configuration management, registration/un-registration, service exposition, 

semantic integration [6]. Thus, the issue should be resolved by considering all the involved 

elements and blocks. It is for this reason that a multitude of frameworks appeared to fix 

these issues by providing a set of building principles, protocols and standards [7].  
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Globally, the current IoT based systems don’t provide universal discovery, 

recommendation and deployment mechanisms for IoT services [8]. Many experts consider 

this as an important challenge in IoT, since it aims at interfacing all the objects around us, 

given that most of these objects are not dedicated to directly interact with end-users (as 

people).  

Therefore, in this section related works to compose connected devices to build IoT 

services were presented, with a focus on assisting techniques. The main goal of this section 

was to explain how important and challenging the composition  of connected devices by 

using abstract models is, which is going to lead us in the next section to talk about a main 

constraint which is the work context of this project: how to discover and use services 

offered by connected devices  

 

2.3  Work context and open issues  

Service recommendation in the IoT requires to discover and understand ‘things’ in terms  

of capabilities (and the way to use these capabilities), properties and metadata. Actually, 

this requirement is a fundamental one in any Internet of Things ecosystem. This is not 

restricted to service recommendation; it is generally classified under the ‘interoperability’ 

umbrella. More generally,  Interoperable devices must be able to interwork regardless of 

their models, manufacturers or industries. The main goal is that the communication 

between people, processes and things works no matter what screen type, browser or 

hardware in use [9]. A report made by Digital McKinsey [10] states that Interoperability 

between IoT systems is critical and this report estimates that it represents 40% of potential 

value across IoT applications, with that number as high as nearly 60% in some settings, 

which is making interoperability a hot topic at conferences around the world. However, 

this fundamental requirement is far away from being met, which means that the IoT still in 

its infancy in this area and the way ahead is still long. The reason why things are unable to 

discover and work with each other is mainly related to their heterogeneity, in terms of their 

supported actions, descriptions and communication protocols (ie‘data structure and 

languages’). 

Hence, to realize the vision of truly connected things the real problem to overcome in 

service recommendation and composition, and in the IoT in general is the universality of 

the solution in other words, there must be universal mechanisms for automatic discovery 

of resources, their properties and capabilities, as well as means to access them. Therefore, 

this work will focus on the interoperability issues, and more precisely on the interfacing of 

connected devices. The next chapter will present the related works on this topic. 

 

 



 24 
 

Actually most of the IoT devices nowadays contain an Application Programming Interface 

(API) that allows to access the different features of the device in order to integrate it in 

third party products. These APIs offer a simplified way to connect the different devices, 

and therefore create an IoT ecosystem. Fig.1 shows a set of different devices supported by 

Amazon Alexa thanks to their APIs, which actually plays the role of an interface that 

connects the ends of different devices as depicted in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Devices that work with Amazon 

Alexa   

Figure 2. Equivalent diagram that shows the 

role that plays an API   
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However, these APIs are not governed by rules or protocols, and as result these APIs don’t 

really resolve the interoperability issues, because basically to be able to get two devices 

work with each other it’s necessary to go through the documentation of the API of both 

devices and to understand the architecture of each API and finally write the necessary 

codes, this procedure has to be done each time we need to connect two devices, which 

makes it highly costly and time consuming, and doesn’t scale with the true vision of IoT 

that aims to connect billions of heterogonous devices.  

 

 

2.4 Interoperability and related works   

A great effort, mainly in standardization, has been made so far in order to reach the vision 

of all connected things to allow the connected devices to work together no matter what to 

form a smart environment. The reality, however, is that the IoT is fragmented and lacks 

interoperability. All these standardization efforts can be divided into two categories:  

 

o 1- Syntactic approach: specific formats or protocols are used in order to 

describe the devices, their resources and the mechanisms for accessing 

these resources. Many examples have been given in the last chapter about 

these formats, such as the CoRE Link Format [12], the Constrained 

Application Protocol (CoAP) [13] and XMPP IoT Discovery [14]. 

However, the disadvantage of this approach is the lack of flexibility. 

Forinstance by defining a specific format, descriptions of device 

capabilities and proprieties are automatically restricted to the ones already 

defined in this format, which does not meet at all IoT requirements from the 

point of view of the scalability and adaptivity of a solution.  
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o 2- Semantic approach, presenting some flavors of Graph Theory, aim at 

representing knowledge within a domain as a set of concepts related to each 

other using ontologies which are defined as “a formal, explicit specification 

of a shared conceptualization” [15]. An ontology is composed of:  Classes, 

relations, attributes and ‘individuals'. Classes are the main concepts to 

describe.  Each class can have one or several children, known as subclasses, 

used to define more specific concepts.  Classes and subclasses have 

attributes that represent their properties and characteristics.  Individuals are 

instances of classes or their properties. Finally, relations are the ’Edges’ that 

connect all the presented components [16]. In other words, rather than 

defining a format, the semantic approach defines concepts, which gives a 

real flexibility compared to the syntactic approach. Nevertheless, semantic 

approach is not sufficient to ensure the interoperability between devices 

(and related data). Using the semantic approach will just ensure the full 

interoperability for those using and sharing the same ontology. 

Furthermore, this approach is unlikely to be used widely in the IoT since it 

requires high computational performance (lot of Vertices and Edges to 

describe connected devices and then IoT services), whereas the IoT is often 

based on constrained devices.  

Despite all that, the disadvantages previously mentioned of both approaches are far away 

from being the most critical; indeed, the nonexistence of a universal syntactic or semantic 

approach is the main reason of the inconvenience of both approaches to create an 

environment of interoperable devices. For instance, in [17] we can enumerate more than 

400 different ontologies. Indeed from project to project, instead of re-using   concepts, 

many concepts are redefined. Therefore, the two approaches, rather than alleviating the 

interoperability issues, are making it more difficult to overcome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Translation of standard API requests 

to specific ones   
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Satoshi Asano et al. in [17] [18] dealt differently with the issue to ensure device 

interoperability, by proposing a framework to translate standard API requests to device 

specific API ones, as depicted in fig. 5, the authors propose a general profile (GP) which 

defines a standard set of API for a specific device class, for example a unique GP is 

defined for air-conditioners, and a specific profile (SP) that defines the conversion rules 

needed for the mapping between a vendor API and the GP. Based on this idea, they 

proposed a collaboration framework supposed to interconnect anything connected 

regardless of the device specific API, as depicted in fig.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Interoperability collaboration 

framework [17].   
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The architecture of the presented solution is interesting but Satoshi Asano et al have  

simply moved the problem on:  without resolving it: 

 

 Their approach imposes a generic profile to any manufacturer, which must be 

adopted unanimously and which is unlikely to happen since many protocols have 

failed using this standardization-like approach 

 Each manufacturer should develop its own new SP according to the GP for each 

class of devices.  

  Finally, the GP may not support all the functionalities provided by a device 

manufacturer, and in this case, they suggest that the related manufacturer adds an 

extension to the provided GP class. 

 

 

Hence, the API translation effort is ensured by experts performing thus an combined   

syntaxic/ semantic translation. As such, it does not meet the automated translation 

requirement targeted in this presented research work. However, from an architectural 

perspective, the concept of a Generic Profile, abstracting the control interface of 

connected devices makes sense. We will follow this rationale in our study by targeting 

an automated classification of API methods under a generic description of control 

commands. 

 

 

 

2.5 Conclusion  

The Internet of things is in its early stages and the way ahead is still long, several problems 

to overcome to realize the vision of all connected things. The real value of the IoT is 

certainly not about connecting things to the internet, rather is about making things work 

together in order to create new services. Things will need to communicate with each other, 

things will need to discover the capabilities of other things, things will need to use the 

capabilities of other things, things will need to exchange data with cloud services (as other 

things), and applications will need to understand the data from things. All this allows us to 

understand not only the importance of the interoperability but also the difficulty that it has 

to deal with, since the heterogeneity exists at several levels. The related works are unable 

to solve this issue, either because they fail to take into consideration the scalability of their 

solution or because they try to impose a new standard to all IoT stakeholders. Therefore, a 

first step is to propose a scalable and adaptive solution, without imposing anything to the 

different stakeholders.  

 

 

 

 



 

CHAPTER 3      

Proposed Solution 
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Chapter 3 Proposed solution  

In this chapter, a brief summary about the definition of Application Programming Interface 

(API) and its importance is given initially, and on which the proposed solution relies, then 

the proposed solution and its building blocks are explained in the remainder of the chapter.   

 

 

3.1 Application programming interface  

 

An API is an interface giving a set of methods for discovering and using the different 

software resources. APIs aren’t new.  They have been used by programs in order to 

facilitate their integration and use in other programs. Currently all the big firms such as 

Google, Microsoft, Facebook and Twitter  have their own APIs for their developers to 

integrate  projects into one another with ease. Today they are considered as a vital tool 

because they enable companies to grow their businesses more quickly than ever. A good 

example of a company that has used APIs to grow its business quickly and to move to a 

market that it has never considered before is Uber. Instead of reinventing the wheel by 

building its own mapping, payment or communication services, Uber used the best of 

those programs and connected them all via APIs. 

 

 

The IoT needs to connect a huge set of connected  objects such as cars, medical devices, 

smart grids and thermostats to the Internet, to make them accessible to other objects and 

applications. APIs are the key element to achieve this with a minimum of effort. APIs used 

in the IoT space,  are mostly web service APIs which  can come in different forms such as 

Simple Object Access Protocol (SOAP), Representation State Transfer (REST) or 

XML/JSON, in this work we will focus our study on the REST (Representational State 

Transfer) technology. since it represents the most used architectural style for APIs and it is 

more and more adopted as depicted in figure 7,8.  
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3.2 REST APIs  

Unlike SOAP, REST provides a set of architectural principles rather than an explicit 

protocol. Some of the features required for a REST API include : 

 

o Aclient-server principle which defines the two entities that interact in a 

REST API as a client and a server. A client sends a query, and the 

server returns a response. The latter must have as much information as 

possible about the client, because it is important that they are able to 

work independently of each other 

o The fact of being "stateless" means that the server has no idea of the 

client's status between two queries. From the point of view of the server, 

each request is an entity distinct from the others 

o The resources need to be identified using URLs, they can have several 

representation formats (e.g., HTML, JSON) negotiated at run time using 

HTTP. 

o The client sends an HTTP call to a specific URL with a given verb 

(GET, POST, PUT or DELETE.)  

Figure 7. Repartition of architectural styles for 

API. [52] 

Figure 8. The use of REST and SOAP APIs 

between 2004-2010. [52] 
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Just like any HTTP request, REST requests contain a URL, a method, a header and a body, 

as shown in fig.9 :   

  

 

 

 

 

 

 

 

 

 

 

 

The four methods commonly found in REST APIs are:  

o GET - Requests server to find resource, 

o POST - Requests the server to create a new resource, 

o PUT - Requests the server to modify or update an existing resource, 

o DELETE - Requests the server to delete a resource. 

 

whilst the related headers provide meta-information about a query. For example, the type 

of device used, the time at which the client sent the request and the size of the body, which 

contains the data that the client wishes to send to the server. Most of the APIs are REST-

based APIs, but it doesn’t mean that we can control and access any device in an easy way. 

Indeed, REST is far from being a protocol, rather, it’s more a set of guidelines for an 

architectural style. This means that to be able to manipulate any device or to integrate a set 

of devices in any environment, the user or the developer must learn how to use each API 

via the APIs documentation, which is a difficult and a costly solution. Although it 

concerns the same class of devices, for instance air-conditioner, each manufacturer defines 

its own URLs and resources in a different way. This yields to new efforts trying to 

standardize the API design, in order to reduce the development cost, like in [19], but 

without presenting an universal solution solving the interoperability issues.           

 

 

 

 

 

 

 

Figure 9. REST request format.   
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3.3 The proposed solution  

The proposed solution deals with an important aspect of the interoperability issue which 

concerns accessing and controlling devices regardless of their type or manufacturer by 

using their APIs. This solution was proposed after studying many IoT APIs of different 

manufacturer, like Philips Hue API [20], LIFX API [21], Nuki API [22] Lockitron API 

[23] and Withings API [24], and after making these observations :  

 

o The APIs use human-readable words in URLs and body parameters  

o Different APIs of a specific type of devices use a limited set of 

keywords  

o Different APIs of a specific devices type use similar key words 

 

 

 
 

 

An illustration of this observation is depicted in Figure 10 and 11, where we can clearly 

see the existing similarity between API methods when it concerns the same action (e.g. fig. 

10 set light on, fig. 36 lock). The existence of such a similarity is quite logical, since 

manufacturers always try to make their APIs as easy as possible for developers to 

manipulate and to learn them. One of the most important features of an easy-to- learn and 

esay-to-integrate API is an API that uses human readable words in the URLs or in the 

body parameters that relates to the specific use of this method.  

 

 

 

 

 

 

 

 

 

Figure 10. REST methods to turn on the light 

for LIFX and PHILPS.   

Figure 11. REST methods to lock the door for 

Lockitron and Nuki.   
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Based on these observations, the proposed solution consists of being able to characterize 

per action each API method by processing API methods using natural language techniques 

and machine learning. Fig. 12  :  

 

 

 

 

 

 

 

 

 

 

 

3.4 Building blocks  

In order to define the building blocks required to measure the similarity between API 

methods, it is necessary to identify the different scenarios of similarity measure that the 

solution has to deal with, and their corresponding difficulty level. In the following, 

different scenarios of similarity measure that can occur are enumerated:  

o Semantic similarity measure: it relates to a measure of 

similarity between two words in terms of semantic meaning. 

It concerns mainly all the words that we can find in a 

dictionary, an example of a such similarity measure would 

be between the words “bulb” and “lamp” or between “door” 

and “light” 

o Syntactic similarity measure: it concerns a measure of 

similarity between a word that has a semantic meaning and 

another one that hasn’t. This kind of similarity is useful 

when trying, for instance, to measure the similarity between 

a word and it’s misspelled or abbreviated version. An 

example of a such similarity measure would be between the 

words  “bri” and “bright” or between “smart-light” and 

“light” 

 

 

Figure 12. Recognition of the associated API 

method action.   
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o Other similarity measures: it concerns all similarity measures 

that do not belong neither to the semantic nor to the syntactic 

measures. It concerns mainly words which have no semantic 

or syntactic similarity such us “smart-light” and “lamp”, the 

word “smart-light” has no semantic meaning, since it doesn’t 

belong to any dictionary, but also the two words has no 

syntactic similarity as well.  

 

Therefore, to be able to measure the similarity between different API methods while 

considering the different scenarios that may occur, the solution must be able to measure 

the similarity between words that have or have not a semantic meaning, hence the 

following building blocks were proposed :  

  

 

 

 

 

 

 

 

 

 

 

A better explanation of the essential building blocks (Semantic Similarity, Hybrid 

Similarity and Classification) and their respective functions is given in the next chapters in 

order to understand the details of the proposed solution and the reasons why such building 

blocks have been chosen. While, the pre-processing and the controller ensure the simple 

function of extracting the words from the URLs and sending them to the right block of 

similarity measure based on whether they have a semantic meaning or not.  

 

 

 

 

 

 

 

Figure 13. Building blocks    



 

 

CHAPTER 4      

Semantic Similarity 
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Chapter 4 Semantic similarity  

 

Measuring the semantic similarity between words is a very important research area given 

the necessity of such measures in different tasks, such as document clustering, plagiarism 

detection, automatic essay scoring and text summarization.  In this work we will use a 

semantic similarity measure to determine whether words like “light” , “lamp” and “bulb” 

are similar or not. In the following, a short state-of-the-art about the existing semantic 

similarity measures is presented, then we will evaluate some semantic similarity measure 

techniques  in our use-case, in order to select the most suitable techniques. 

 

4.1 Semantic measures  

In semantic measures, there are mainly two categories: the corpus-based similarity that 

uses large corpora of written texts to extract useful information in order to measure the 

similarity between two words, and knowledge-based similarity that uses information 

derived from semantic networks.  

4.1.1 Corpus based similarity techniques  

The most known and used corpus-based similarity techniques are :  

 

o Hyperspace Analogue to Language (HAL): [25, 26] based on the 

fact that words with similar meaning repeatedly occur closely in 

different texts. As an example, in a large corpus of text one could 

expect to see the words car, automobile and vehicle appear often 

close to each other. The same might be true for mouse, cat and dog. 

A word-by-word matrix (fig.14 [49]) is formed with each matrix 

element is the strength of association between the word represented 

by the row and the word represented by the column. The user of the 

algorithm then has the option to drop out low entropy columns from 

the matrix. As the text is analyzed, a focus word is placed at the 

beginning of a ten-word window that records which neighboring 

words are counted as co-occurring. Matrix values are accumulated 

by weighting the co-occurrence, inversely proportional to the 

number of words between the current word and the focus word; 

closer neighboring words are thought to reflect more of the focus 

word's semantics and so are weighted higher. HAL also records 

word-ordering information by treating the co-occurrence differently 
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based on whether the neighboring word appeared before or after the 

focus word. 

o Latent Semantic Analysis (LSA): [27, 28] this technique assumes 

that words that are close in meaning will occur in similar pieces of 

text (the distributional hypothesis). A matrix containing word 

counts per paragraph (rows represent unique words and columns 

represent each paragraph) or word count per document is 

constructed (fig.15) from a large piece of text and singular value 

decomposition (SVD) is used to reduce the number of rows while 

preserving the similarity structure among columns, words are then 

compared by taking the cosine [54] of the angle between the two 

vectors formed by any two rows. 

o Explicit Semantic Analysis (ESA): [25, 29] used to calculate the 

semantic relatedness between two terms or texts by representing a 

word as a column vector in the term frequency–inverse document 

frequency matrix(tf-idf) [48] of the text and representing the text as 

the centroid of the vectors representing its words, just like fig.15 

[49] but using the tf-idf. In general, the English version of 

Wikipedia is used as text corpus to construct the matrix. The 

semantic relatedness between the two terms (or texts) is expressed 

by the cosine measure [30] between the corresponding vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Word by word matrix.  

Figure 15. Word by document matrix.    
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4.1.2 Knowledge based similarity techniques  

The second category of semantic measures, the knowledge-based one, uses semantic 

networks in order to extract useful information to compute the similarity between words. 

WordNet [31] is the most used semantic networks (graphs) in the area of natural language 

processing, which is a large lexical database of English nouns, verbs, adjectives and 

adverbs, which are grouped into sets of cognitive synonyms (synsets), each expressing a 

distinct concept and interlinked between each other based on many semantic relations, as 

shown in Table.1 [50], such as hypernyms, hyponyms, meronym and holonym for nouns, 

and such as hypernym, troponym and entailment for verbs. That’s to say, WordNet can be 

visualized as a large graph or semantic network, where each node of the network 

represents a real-world concept and each node is essentially a set of synonyms that 

represent the same concept, and interlinked with other concepts based on different 

relations, as depicted in Fig.16 [50].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. WordNet semantic relations.    
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WordNet with its 117,000 synsets interlinked based on rich semantic relations offers a real 

treasure for many knowledge based techniques, which can be divided into two groups: 

measures of semantic similarity and measures of semantic relatedness. Fig. 17 [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. WordNet graph semantic network.    

Figure 17. Knowledge based semantic 

measures.    
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Semantically similar concepts are deemed to be related on the basis of their likeness. 

Semantic relatedness, on the other hand, is a more general notion of relatedness, not 

specifically tied to the shape or form of the concept. In other words, semantic similarity is 

a kind of relatedness between two words, it covers a broader range of relationships 

between concepts that includes extra similarity relations such as is-a-kind-of, is-a-specific 

example-of, is-a-part-of, is-the-opposite-of [25]. The measures of semantic relatedness are 

:  

o St.Onge (hso): This measure, reports the relatedness 

between words and not between word senses or concepts, for 

example, the words ‘red’ and ‘green’ are highly related since 

both of them are colors, but they aren’t similar. it is used 

when a partial understanding of a text is only needed, its 

main advantage consists in that it requires only a light 

representation of context, and it measures the similarity by 

finding lexical chains linking the two word senses based on 

all the relations defined in WordNet [32] 

o Lesk (lesk): It is based on the use of the definition of each 

sense of a word in text( a gloss) , which are compared to all 

the glosses of each word in the sentence, and then the word 

is assigned the sense whose gloss shares the largest number 

of words with the glosses of the other words, while the 

adapted and generalized version of this measure technique 

works by finding overlaps in the glosses of the two synsets 

and the relatedness score is the sum of the squares of the 

overlap lengths.[33]  

o Vector pairs (vector): This technique considered ways of 

augmenting the words in the glosses with data from external 

sources by using an alternate matching scheme of WordNet 

concepts that is not as short and not as exact as a WordNet 

gloss, but describes the concept in a broader sense. It starts 

by generating gloss  vectors by  creating a  word  space,  a  

list of  words  that would  form  the dimensions of the 

vectors. This list of words should contain words that are 

highly topical, having great potential to discriminate topics. 

Then, each concept in WordNet is represented by a gloss 

vector, which is essentially a context vector formed by 

considering a WordNet gloss as the context. Finally the 

semantic relatedness of two concepts is simply the cosine of 

the angle between the corresponding normalized gloss 

vectors [34]. 
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The second category of the knowledge based techniques, and which is used for the 

similarity measures gathers six techniques. The first three techniques ( Resnik, Lin and 

Jiang & Conrath) are mainly based on the concept of information content( IC), which is 

build based on statistical information estimation from large corpora. Information content 

of a concept measures the specificity or the generality of that concept, i.e. how specific to a 

topic the concept is. These three techniques are [34, 35]:  

 

o Resnik measure (res): It defines the semantic similarity of 

two concepts as the amount of information they share in 

common, while the quantity of information common to two 

concepts is equal to the information content (IC) of the Least 

Common Subsumer (most informative subsumer), which is a 

concept in a lexical taxonomy (e.g. WordNet), which has the 

shortest distance from the two concepts compared. For 

example, animal and mammal both are the subsumers of cat 

and dog, but mammal is lower subsumer than animal for 

them. The upper bound on the value is generally quite large 

and varies depending upon the size of the corpus used to 

determine information content values. To be precise, the 

upper bound should be ln (N) where N is the number of 

words in the corpus. 

o Lin Measure (lin): It is based on Resnik's similarity and 

considers the information content of lowest common 

subsumer (lcs)of the two compared concepts. The similarity 

value returned by the lin measure is a number equal to 2 * 

IC(lcs) / (IC(concept1) + IC(concept2)). Where IC(x) is the 

information content of x. Which means that  the similarity 

value will be greater than or equal to zero and less than or 

equal to one. If the information content of any of either 

concept1 or concept2 is zero, then zero is returned as the 

similarity score, due to lack of data. Ideally, the information 

content of a concept would be zero only if that concept were 

the root node, but when the frequency of a concept is zero, 

the value of zero is used as the information content because 

of a lack of better alternatives. 
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o The Jiang-Conrath Measure (jcn): It takes into account the 

information content of both concepts, along with that of their 

lowest common subsumer. The measure is a distance measure 

that specifies the extent of unrelatedness of two concepts. It 

combines features of simple edge counting with those of 

information content introduced in the Resnik measure. The 

similarity value returned by the jcn measure is equal to 1 / 

jcn_distance, where jcn_distance is equal to IC(concept1) + 

IC(concept2) - 2 * IC(lcs). There are two special cases that 

need to be handled carefully when computing similarity; both 

of these involve the case when jcn_distance is zero. In the 

first case, we have ic(concept1) = ic(concept2) = ic(lcs) = 0. 

This would only happen when the concepts are the root node. 

In the second case, we have ic(concept1) + ic(concept2) = 2 * 

ic(ics). This is almost always found when concept1 = 

concept2 = lcs (i.e., the two input concepts are the same) 

 

 

The remaining other techniques of semantic similarity measure are based on path length 

measure [34, 35]: 

o Leacock & Chodorow (lch): It uses an intuitive method to 

measure the semantic similarity of word senses taking advantage 

of the tree-like structure of WordNet, by counting up the number 

of links between the two synsets. In fact, the measure is based on 

the shortest path that connects the synsets and the maximum 

depth of the taxonomy in which the synset connection occurs, and 

it’s equal to -log (length / (2 * D)), where length is the length of 

the shortest path between the two concepts (using node-counting) 

and D is the maximum depth of the taxonomy. 

o Wu & Palmer (wup): it is based on the depth of the two senses 

in the taxonomy and that of their Least Common Subsumer. The 

formula is score = 2*depth(lcs) / (depth(s1) + depth(s2)). This 

means that 0 < score <= 1. The score can never be zero because 

the depth of the LCS is never zero (the depth of the root of a 

taxonomy is one). The score is one if the two input concepts are 

the same. 
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o Path (path): This technique measures the semantic similarity 

between words by a simple node-counting scheme (path). The 

similarity score is inversely proportional to the number of nodes 

along the shortest path between the concepts. It chooses the 

shortest path that connects the senses in the (hypernym/hypnoym) 

taxonomy. The shortest possible path occurs when the two 

concepts are the same, in which case the length is 1. Thus, the 

maximum similarity value is 1. 

 

4.2 Semantic measures evaluation  

In order to choose the best semantic measure that fits the best our application, an 

evaluation of the accuracy of the different measures is needed. However, the brief study 

which was made about the different semantic measures allows us to evaluate only a limited 

set of semantic measures, which is a considerable time saving, given the large number of 

available techniques. For our application, the semantic measures which must be carried out 

in order to characterize API methods deal with semantic similarity rather than 

semantic relatedness. The semantic relatedness is defined as: “the strength of the 

semantic interactions between two elements with no restrictions on the types of semantic 

links considered “ , while the semantic similarity is defined as : “subset of the notion of 

semantic relatedness only considering  given taxonomic  relationships  in  the  evaluation  

of  the  semantic  interaction between two elements” [61]. For instance, the two concepts 

Tea and Cup are therefore highly related despite the fact that they are not similar:  the 

concept Tea refers to a Drink and the concept Cup refers to a Vessel. Therefore, the 

evaluation will only be restricted on the semantic similarity measures of the knowledge 

based category (Fig 17). Moreover, the corpus based measures are excluded from the 

evaluation tests, since they are mainly based on the co-occurrence calculation between 

(frequent) words, for example the word Sugar is more likely to appear with the word 

Coffee in text, which makes the two words highly related even if they are different, which 

isn’t at all appropriate to our application.   

The best tool to perform natural language processing is Natural Language Tool Kit 

(NLTK) [37].  It provides easy-to-use open source interfaces to over 50 corpora and 

lexical resources such as WordNet, which in our case will be used as a semantic 

network.  NLTK contains a suite of text processing libraries for classification, 

tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-

strength NLP (Natural Language Processing) libraries all written in Python.  
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The accuracy of the proposed solution is the unique criterion in this work, other criterion 

like time processing won’t be considered. Therefore, the semantic similarity measures will 

be evaluated only in relation to the level of difficulty to differentiate between similar and 

dissimilar words. To do so, a function for each of the six semantic similarity measures has 

been implemented (index 1) using NLTK (Natural Language Toolkit) and WordNet as 

semantic network. Then a set of measures were carried out using a set of similar and 

dissimilar words, for each semantic measure. It’s worth mentioning that the set of similar 

and dissimilar words were chosen from the different words that we could come across 

while dealing with APIs, and the reason for that, is simply the fact that these words are 

more relevant to our application.  The similarity or the dissimilarity of these words is 

defined based on what we consider as a similar or dissimilar API methods, for instance, 

two API methods which are both used to turn the light on, and where one of these API 

methods employs the word ‘light’ while the other employs the word ‘bulb’, so in this case 

we consider the word ‘light’ similar to the word ‘bulb’. Afterwards, to evaluate how easy it 

is to differentiate between these words, the measures were modeled by a normal 

distribution for similar words, and a normal distribution for dissimilar words, after 

calculating the mean and the standard deviation for each measure set. Finally, using the 

Matlab code (index 2), the overlap area between the two normal distributions normalized 

to the overall area is computed. A large normalized overlap area between the normal 

distribution of the similar words and the normal distribution of the not similar words 

corresponds to a semantic measure that differentiates hardly between similar and not 

similar words, while a small normalized overlap distribution corresponds to a semantic 

measure that differentiates easily between similar and not similar words. The obtained 

results are shown in the following figures:    
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Figure 18. Overlap area : Path length 

Figure 19. Overlap area: Wu and Palmer    
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Figure 20. Overlap area: Leacock & 

Chodorow    

Figure 21. Overlap area : Lin   
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Figure 22. Overlap area : Jiang-Conrath    

Figure 23. Overlap area : Resnik   
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The table shows the high overlap area of the path based similarity measures, namely Path 

Length, Wu Palmer and Leacock & Chodorow which is synonymous to a poor 

differentiation between similar and dissimilar words, in the other hand information content 

based similarity measures, namely Lin, Jiang-Conrath and Resnik outperform clearly the 

other based methods. 

 

 

 

4.3 Conclusion  

The results shown on the previous figures and summarized by table 2, allow us to confirm 

on the one hand the better performance of Information Content measures (Lin, Jiang & 

Conrath and Resnik) compared to path semantic measures (Path, Wu & Palmer and 

Leacock & Chodorow) and on the other hand, it allows us also to confirm that the Resnik 

measure is one of the most accurate semantic measures when figuring out semantic 

similarity. Furthermore, using such a method based on the representations of the computed 

values as two normal distributions of similar and not similar sets and then evaluating the 

semantic measures based on the normalized overlap area between the two normal 

distributions is believed to be a new technique to evaluate the semantic measures (at least 

in all the referenced research papers in this document).  Usually, corpora of words or 

phrases are used for evaluation. For instance, in [38] the Microsoft paraphrase corpus 

consisting of 4076 training and 1725 test pairs is used to evaluate these semantic measures 

based on their accuracy on the testing set., they also conclude that the Resnik measure is 

one of the most accurate semantic measures in detecting paraphrases, which gives more 

credibility to our results and evaluation technique. Hence, the Resnik method will be used 

asthe chosen method for semantics similarity measures in our building block.  

 

 

Table 2. Normalized overlap of areas of the evaluated 

similarity measures 
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Hybrid Similarity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51 
 

 

Chapter 5 Hybrid similarity  

 

In the third chapter, all the similarity measures between different words that may be dealt 

with, in this work have been listed:  namely the semantic measures and the syntactic 

measures, adding a new third similarity measure type. This chapter deals with this third 

type of similarity measures, which is the most difficult similarity measure among the three 

types. Indeed, this third type relates to all similarity measures that do not belong neither to 

the semantic nor to the syntactic measures. It concerns mainly words which have no 

semantic or syntactic similarity such us “smart-light” and “lamp”, the word “smart-light” 

has no semantic meaning, since it doesn’t belong to any dictionary, but also the two words 

has no syntactic similarity such as the one that exists for instance between “smart-light” 

and “light”. To our knowledge, no work have been reported to deal with such an issue 

since the similarity measures in natural language processing generally are used for datasets 

that doesn’t contain such cases, which let us think about building our own solution. It 

should be noted that what’s called as a hybrid similarity measure in this chapter is 

completely different from what is found in literature about hybrid techniques. Existing 

hybrid similarity measures usually combine two different semantic measures.  For instance 

in [39], a knowledge-based is combined with a corpus-based semantic measure in order to 

create a hybrid similarity measure with a better accuracy. 

5.1 Proposed Idea  

The proposed idea to detect the similarity between two words which have no semantic 

neither syntactic similarity, (e.g. “smart-light” and “lamp”), is to use a hybrid similarity 

measure by combining a semantic with a syntactic technique, illustrated here.  

An example of a hybrid measure of similarity between the word “light” and “smart-lamp” 

is illustrated in the following to easily explain how the hybrid similarity measure works. In 

the first step, the semantic similarity measure is used along with WordNet to extract all the 

similar words of the word “light” (among which there is certainly the word “lamp”) then a 

syntactic measure is used between the word “smart-lamp” and all the similar words of the 

word “light”, finally only the best similarity measure is taking into consideration to decide 

on the similarity between “smart-lamp” and “light” (Fig.24) .   

 

The semantic measure will be based on the Resnik technique, since the results of the last 

chapter support this decision. A similarity measure will be performed on the WordNet 

word corpus by choosing a simple threshold value for the Resnik similarity measure, based 

on which we extract all the similar words of the word “light”, this value was figures out 

after several tests, during which we observed the words at the output while tweaking the 

threshold value. 
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5.2 Syntactic similarity measures 

There are several techniques of syntactic similarity measures which are, for instance, 

widely used in text typing prediction or in automatic orthography correction. They are 

based on the calculation of a string metric to measure the distance between two words 

based on their character composition, in the following the most used character based 

techniques[35]: 

o Longest Common SubString[45] : this algorithm considers 

the similarity between two strings is based on the length of 

the longest subsequence common to the two strings. 

o Jaro-Winler[46]: is based on the number and order of the 

common characters between two strings, while using also a 

prefix scale to give better ratings to the words that match 

from the beginning. It takes into account typical spelling 

deviations. 

o N-gram[35] : is a sub-sequence of n items from a given 

sequence of text. It compares the n-grams from each 

character or word in two strings and then the distance is 

computed by dividing the number of similar n-grams by 

maximal number of n-grams. 

o Dice’s coefficient[35]: is defined as twice the number of 

common terms in the compared strings divided by the total 

number of terms in both strings. 

 

Figure 24. Hybrid similarity block 
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o Overlap coefficient[35]: is defined as the size of the 

intersection divided by the smaller of the size of the two sets. 

It is similar to the Dice's coefficient, but considers two 

strings a full match if one is a subset of the other, for 

instance, the words ‘sleep’ and ‘sleepless’ are considered as 

a full match because the first one is a subset of the second 

one. 

o Levenshtein distance[47]: it is the most used string based 

measure, it considers the distance between two words as the 

minimum number of single-character edits (insertions, 

deletions or substitutions) required to change one word into 

the other.  

 

For the choice of the syntactic approach to be used, no performance test will be done to 

compare the previsouly listed syntactic approches, since it is not a very complicated 

problem, an intuitive approach like the Levenshtein distance will be sufficient for this 

application. However, a modification has been made to the Levenshtein distance by 

normalising the distance based on the length of the longest word. It’s to be noted that for 

the Levenshtein similarity measure, the less important the symilarity measure is, the more 

similar the words are.  

 

Mathematically, the Levenshtein distance between two strings A,B of length |A| and |B| 

respectively, is given by lev(|A|,|B|) where :   

Lev(i,j)= max(i,j)   if(min(i,j)=0); 

Otherwise :  

Lev(i,j)= min ( Lev(i-1,j)+1, Lev(i,j-1)+1, Lev(i-1,j-1)+ 1(AiBi)) 

Where 1(AiBi) is equal to 0 when i=j and 1 otherwise.  
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5.3 Evaluation of the hybrid approach : maximum syntactic 

similarity 

The algorithm (index 3) as explained and depicted in fig.24 has given the following results 

while measuring the maximum similarity between complex (strings) and dissimilar words:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The similar and dissimilar words were chosen based on the similarity or the dissimilarity 

of publicly available API methods, we proceeded in this way because these words are 

more relevant to our case. It’s worth reminding also that for the syntactic similarity 

measure (a “distance”) that we use, the more similar the words are, the less the distance 

value of the similarity measure is.  
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Figure 25.a Similarity measures of dissimilar words while using the 

word “light” as reference word 
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Figure 25.b. Similarity measures of similar words while using the 

word “light” as reference word 
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An apparent difference in magnitude between the similarity values of similar words and 

the similarity values of dissimilar words has been obtained. For instance, in figure 25.b, we 

obtain a set of similarity values between similar words and in which the value varies 

between 0.2 and 0.45, while in figure 25.a the similarity values of dissimilar words varies 

between 0.5 and 0.75. However, unsatisfactory results are obtained for further similarity 

measures.  

 

 

 

 

 

 

 

 

 

As illustrated by the figure 26, the similarity values of dissimilar words are close to the 

similarity values of similar words shown in fig 25.b.    

 

Discussion:  

After analysis, these results are due to the fact that WordNet also contains compound 

words, such as “ house_lamp”,”street_light” or “gas_light”. These words belong to the list 

of similar words of the word “lamp”, extracted from the WordNet corpus by the Resnik 

techque (Fig.27). For instance for the synonym word “street_light”, the first part “street” 

distorts the similarity measures, since the focus is on the word “light” and not the word 

“street”, therefore when performing a syntactic similarity measure, for instance between 

the word “lamp” and “streetbin” a value indicating a strong similarity is obtained, since 

there is a strong syntactic similarity between “streetlight” and “streetbin”. 
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Figure 26. Similarity measures of disimilar words using 

the word “light” as reference word 
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5.4 Algorithm optimization: mean syntactic similarity 

To overcome this issue, the idea is to take into account the syntactic similarity values of all 

the extracted words in the first step by calculating the mean of all the syntactic values. For 

instance, to figure out that the word “lamp” is similar to “street_light” and dissimilar to the 

word “streetbin”, the idea is to extract all the similar words to the word “lamp” from 

WordNet using the Resnik similarity measure, these words will include among others the 

words mentioned in the fig. 27, then adding to the best syntactic similarity value we 

calculate the mean of all the syntactic measures between the word “street_light” and the 

extracted similar words of the word “lamp” (the word ‘light’ is likely to appear several 

times in the synonyms  of the word ‘lamp’) , then we do the same with the word 

“streetbin”. The mean of the syntactic measures is really helpful to distinguish similar and 

dissimilar words (other filtering strategies may be possible as well). In other words it helps 

to distinguish between informative and not informative words, and it’s based on the fact 

that the word “light” is more likely to occur among the similar words of the word “lamp” 

than the word “street”, for instance in the example of the fig.27 the informative word 

“light” occurs 6 times more than the no informative word “ street”, which helps therefore 

to figured out easily that the word “lamp” is similar to the word “street_light” and 

dissimilar to the word “streetbin”. Figure 28 shows the syntactic similarity measure values 

between similar words and the corresponding mean of each measure, while figure 29 

shows the same values for dissimilar words.  

Figure 27. Compound words contained in 

WordNet 
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Figure 28. Syntactic measures and their corresponding 

mean (similar words) 
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From figure 28 and figure 29, we confirm that we can’t distinguish between similar and 

dissimilar words by only using the best syntactic value, while by adding the mean value as 

a second indicator the differentiation between similar and dissimilar words is more 

unambiguous, in figure 28 the mean value of the syntactic measures of similar words 

varies between 0.7 and 0.75, while the mean value of the syntactic measures of dissimilar 

words in fig.55 varies between 0.82 and 0.9. Therefore, in this chapter, an Hybrid 

similarity measure was designed to detect the similarity between words that don’t share 

any syntactic or semantic similarity, in the last two chapter we only focused on generating 

similarity values that are quite separated for similar and dissimilar words, in the next 

chapter we are going to use the best evaluated techniques to classify API methods. 
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Chapter 6 Classification  

The main goal of the proposed solution consists of being able to recognize the associated 

action to each API method by processing them  by  using natural language techniques and 

machine learning, as depicted in figure 30.  

 

 

 

 

 

 

 

 

 

 

 

 

In the last chapters, a semantic similarity block has been developed to perform a 

similarity measure between the words that have a semantic meaning, the choice of the 

semantic similarity technique to be used was done after having tested several semantic 

similarity measures. Another block was developed to measure the similarity between 

words which may not have a semantic meaning based on a Hybrid similarity technique 

which was developed based on a semantic and a syntactic similarity measure.  

 

So far, the building blocks depicted on Fig.31 were developed in a such a way to provide 

similarity values which can make the differentiation between similar and dissimilar cases 

as unambiguous as possible. The next step is to work on the classification block which 

based on the similarity values provided by the SEMANTIC and the hybrid similarity 

blocks, should be able to distinguish between similar and dissimilar API methods in a 

classification objective. 

Figure 30. Building blocks 
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6.1 Machine learning  

Machine learning algorithms (MLAs) can be grouped in many ways, such as by following  

the algorithm learning style. This grouping type will be used in our case to give a general 

view of the MLAs. There are three different learning styles in machine learning 

algorithms:  

 

6.1.1 Supervised learning  

In this kind of learning style, a model is computed thanks to a training process that uses an 

input data and its corresponding output. During this process the algorithm is expected to 

make predictions about the output according to a given input data and corrects its 

predictions according to the correct output until it achieves an acceptable level of 

performance.  Usually the supervised learning algorithms are used for two ‘types’ of 

problems:  

A) Classification: the main goal in classification problems is to assign a label or a 

categorical variable to each dataset, as examples of classification problems: 

recognize email spams (“spam” or “not a spam”), predicting diseases ( “disease” or 

“ not a disease” ), predicting the correctness of the responses (“true” or “false”). 

The most used classification algorithms are [40] :  

o Naïve Bayes : it’s based on the Bayes Theorem, which means that this 

classification algorithm assumes that the features or the variables are 

independent, that’s from where the Naïve word comes from. Basically, this 

technique aims to maximize the likelihood using the naïve Bayes rule by 

Figure 31. Already designed building blocks 
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calculating the number of times a certain feature appears within a certain 

class or label, as well as the number of times this label or class appears in 

the data, these numbers are then converted to probabilities and plugged-in 

to the Naïve Bayes formula, to finally calculate the probability to get a 

certain label or class given a certain input. We do the same for each class or 

label, then at the end we choose the class with the highest probability.   It 

can be used in binary classification and multi-class classification problems. 

The logic is the same for continuous inputs, the only difference is that we 

have to use a distribution to represent the data. That being said, for each 

feature we compute it’s distribution for being in both classes, then we use 

these distribution along with the Naïve Bayes formula to predict to which 

class the input belongs. 

o  Decision Tree: in this algorithm, a tree model is created in order to classify 

different datasets, in which the leaves contain the class labels and branches 

contains the values of the features that lead to each class label. Basically, it 

predicts the label of an instance by travelling from the root node to a leaf. 

The general framework for growing a decision tree is to start with a single 

leaf and assign a label to it according to the majority of the labels over the 

training set, then we examine the effect of splitting based on each feature 

based on a gain measure that we define ( e.g. train error, information gain, 

gini index, etc.), and the feature that provides the highest gain is chosen to 

split the data of this node. The previous iteration is then repeatedly done on 

all the nodes, until we use all the available the features to split the data, or 

we reach a max depth defined as hyper-parameter. The decision trees have 

the advantage of being simple to understand and interpret, adding to the fact 

of being able to handle both numerical and categorical data. One of the 

hyper-parameters that we can tweak for decision trees is the min-leaf size, 

which represents the minimum number of samples perf leaf. 

o K-Nearest Neighbors: It works by simply using the k-nearest neighbors, 

which are defined as the k most similar training datasets, the class assigned 

to the dataset is computed by a majority vote of its neighbors. This 

algorithm only assumes that the distance between data instances is useful in 

making predictions. The common values for k are 3, 7 and 11, this value 

may get larger for large size datasets. A simple example to explain the 

approach of this algorithm, let´s suppose that we try  to classify a certain 

point in space is belonging whether to the red or the green color using the 

K-nearest neighbors approach, for k=3 we have to find the 3 nearest 

neighbors to this point, and then we simply assign this point to the class that 

has the biggest number of nearest neighbors, for instance if we found out 

that 2 of the 3 nearest neighbors are red, then the point is classified as 

belonging to the red class. The hyper-parameters that can be tuned to 

improve the performance for this technique are the k, which represents the 

number of neighbors to take into consideration for each classification, and 

the distance metric used to define the nearest k neighbors.  
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o Support Vector Machine (SVM):  It is mainly used for binary classification 

problems which calculates a line that best separates the data into groups, 

which is done using an optimization process on the training dataset. More 

precisely the optimization process aims to find weights such that, if 

multiplied by a certain input it gives either a positive or a negative number, 

getting either ones should correspond to the class of the input. A margin is 

added to make the constrain easier by allowing some data to be 

misclassified, since in real problems a line cannot be drawn to neatly 

separate the data into two groups. A non-linear classification is widely used 

generally by using different kernels to map the data into high dimensional 

spaces. Thus, among the hyper-parameters that we can tweak to optimize 

the SVM is the box-constraint which specifies how hard or soft our margin 

is. Adding to that, we can use also the kernel scale, which is a constant that 

changes the behavior of the kernel function.   

o Discriminant Analysis: This method is based on a relatively simple 

approach based on the statistical features of the data. The math in DA is 

quite complex, so we won’t dive into it but we are going to give the 

intuition behind it: It simply assumes that the data is Gaussian, then it 

calculates the variance and the mean of each class, finally it tries to 

maximize a cost function defined by the difference of the mean of each 

class, divided by their variance, which means in other words that DA tries 

to find the line that ensures the maximum data separability. Regularization 

is the process of finding a small set of predictors that yield an effective 

predictive model and it can be used for DA, where two variables delta and 

gamma can be used to control regularization, these two parameters are the 

the hyper-parameters for DA. 

B) Regression : The main difference between the classification and regression 

problems is that the output variables in regression problems are numbers rather 

than categories. There are some of the classification techniques that could be used 

also in regression problems, like the decision trees and the SVM, however the most 

used regression techniques won’t be mentioned in this work since we are dealing 

with a classification problem rather than a regression one.  
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 6.1.2 Unsupervised learning  

In this kind of learning, a model is computed to deduce structures in the input data without 

going through a training phase, and the main difference with the supervised learning is that 

the input data in the unsupervised kind is unlabeled. It’s mostly used in clustering 

problems where the data is divided in different unlabeled groups based on the computed 

model. 

 

 6.1.3 Semi-supervised learning 

As indicated by its name, this method is a mix of supervised and unsupervised learning in 

the sense that the data is a mixture of  labeled and unlabeled sets. In this kind of learning, 

the model learns the structure of the data and in the same time makes predictions. 

The problem to deal with in this project is much more about a classification task for which  

algorithms work aim at figuring out l the API Methods (APIM) associated with a specific 

action,  by grouping  similar ones. For instance, starting from a big set of APIM, the 

algorithm picks up a random one [an action should be assigned to this method] which will 

be compared to  all the other APIM by classifying them into two groups ‘similar’ and 

‘dissimilar’ ones, at the end the algorithm will have created different groups of APIM in 

each of them there are only similar APIM.  

 

6.2 Classification algorithms evaluation  

In this last part, an evaluation of the mostly used classification algorithms will be 

performed in order to choose the algorithm that gives the most accurate results, so the 

evaluation will be done only on the basis of accuracy, without taking into account the other 

aspects like the prediction speed. In machine learning , there is basically no ideal algorithm 

outperforming the other ones for all applications. It really depends on the data and the 

context, and only an evaluation of these algorithm based on the specific application data t 

would let us know which one performs better.  
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It has to be mentioned that only the URLs will be taking into consideration for the 

evaluation, in other words, the API method will be reduced to the URL part only. The 

reason for such a decision is for the sake of simplicity, because the URL is the most 

difficult part a natural language processing has to deal with, the other parts like the method 

(post, get, put, delete ) or the body parameters are more straightforward  when applying 

classical natural language processing techniques.  

The URLs were generated using a python function ( index 4 ), in which the URLs were 

created using all the possible combinations of words from three different sets of words (we 

chose the words based on the different API methods that we came through):  the first set is 

composed of similar nouns like ‘street_lamp’, ‘house_light’ and ‘bulb’, the second set is 

composed of words that would give a more particular sense to the URL like ‘state’, ‘set-

state’ and ‘all’, and the third set of words is composed of words with no valuable 

information about the associated action to the URL, and which represents in this case a 

noise, words like ‘id’, ‘v1’ and ‘link’ were used in this set of words. The same idea was 

used to generate dissimilar URLS yielding to  in total, 2380 similar and dissimilar URLs. 

An simple example to illustrate how the URLs were generated is explained in the 

following, while taking the used tables (table1, table2 and table3 ) from index 4 to generate 

dissimilar URLs ( or API methods in general ) :  

table1=['lock','desktop-computer','house-lock','smart_lock','watch','phone','connected-

lock','connected_watch','room_lock','room-conditioner','security-lock','emergency-

alarm','television1','screen2','speaker3'] 

 

    table2=['states','all-states','screen2-state','watch-state','status','<id>','user','all'] 

 

    table3=['api','v1','v3','link','REST','1'] 

 

Based on these tables, a first URL may be composed of ( remember a URL is composed of 

only one word from each table ) : the words “lock” from table 1, “states” from table 2 and 

“api”from table 3. Another URL would be composed of: “lock”,” all-states” and “api” or 

“lock”, “all” and “v1”, and so on, until we go through all the possible cases, whose number 

equals the multiplication of the tables dimensions.  

As a reminder the generated URLs are only used for the training and testing steps, in order 

to validate our method. In a real use case the algorithm is going just to take as input a set 

of API methods and outputs different groups of API methods, each of which corresponds 

to a certain action ( turn on the light for instance ), and this is done based on similar and 

dissimilar classification.  

The generated URLs were used in the main program (index 4) to calculate the similarity 

values, namely the semantic similarity, the syntactic similarity and the mean of the 

syntactic similarity measures. Remember that the python program in index 4 only 

generates  the similarity measures, then the classification is done using machine learning 

within Matlab. In the following a detailed explanation of how the similarity values are 

measured using the semantic and hybrid methods explained in the previous chapters ( for a 

better understanding make sure to read the program in index 4 ):  
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The program takes as input a set of URLs and should output a similarity matrix like the 

one in the figure 31, which actually abstracts the similarities existing between the URL of 

reference and all the other URLs fed in as input. The matrix shown in Fig. 31 is just an 

example, in the following we are going to present two different approaches, where the 

similarity matrix in both cases has a different form. 

 

 

 

 

 

 

 

 

 

 

 

It has to be mentioned that for the program in index 4 no URLs are fed in as input, rather 

they are generated inside the program itself as already explained above. As a first step, the 

program chooses the URL of reference by choosing a URL which contains as much as 

possible of semantic words( words that can be found in a dictionary , the reason for that, is 

that it has been observed that the semantic measure seem to be more accurate than the 

syntactic measure, which makes sense, in other words detecting the similarity between the 

words “light” and bulb is easier than detecting it for “smartlight” and “bulb”, adding to 

that, it’s hard to measure the similarity between two words neither of which belongs to a 

dictionary, while not having any syntactic similarity, as example of such example is the 

words “smartbulb” and “roomlight” ( they don’t belong to any dictionary and the don’t 

have any syntactic similarity, while being similar though ). That’s why the URL of 

reference should contain as much as possible words that have a semantic meaning, if for 

example the three words of the reference URL have a semantic meaning, it means that the 

program will never face the case where two words with no semantic neither syntactic 

similarity are compared. As a reminder, it has been mentioned previously that the hybrid 

similarity technique is used when there is no semantic neither a syntactic similarity 

between two words ( for example “light” and “smartbulb”), but keep in mind that it works 

only if one of the two words has a semantic meaning ( in the last example, “ light” has a 

semantic meaning). Therefore, the only assumption that we are making here is that: to be 

able to extract all the similar API methods for a certain action, we assume that there 

is at least one API method of them, that is composed only of words that have a 

Figure 31. Matrix of similarity measures 
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semantic meaning, this assumption is not a deal breaker though, based on the structure of 

the API methods observed in the literature.  

 

After choosing the URL of reference, the program goes through all the other URLs and 

generates the similarity measures. To illustrate this more easily let’s take the example 

below:  

Reference URL : /light/state/api 

URL 2 : /bulb/all-states/v1  

The program measures the similarity between the different URLs by taking and 

considering all the possible tuples of words between the two URLs, for example the word 

“light” from the reference URL should be compared to all the words from URL2, and not 

only to the word “bulb”, this may look senseless at first sight, but if you think of it, it 

totally makes sense, actually all the possible tuples are considered because simply we 

don’t have any prior knowledge about the structure of the URLs, if you take as example 

the word “state” in the reference URL and ask the following question : should it be 

compared to the word “bulb” in URl2 (through a semantic measure) ? or should it be 

compared to the word “ all-states” ( through a hybrid measure )? The answer is : we don’t 

know and we can’t know unless we start making assumptions ( we could have assumed for 

instance that the words should be compared in respect of their position in the URL, for 

instance the second word from the reference URL “state”  with the second word from 

URL2 “all-state”) but we did not want to make assumptions that may turn out unrealistic, 

therefore we ended up choosing two approaches: 

a- Maximum similarity approach: 

 In this approach we measure the similarity between all the possible tuples and at the end, 

we only consider the values that provide the maximum similarity. In other words, after 

comparing all the tuples if we end up, having many values for the semantic measure, we 

only take the best one, it can be considered as “ a similarity measure by maximization”. To 

illustrate this, let’s take the example of the URLs above: it starts by taking the word “light” 

from the URL of reference and the word “bulb”  from URL2. The next step is to figure out 

which similarity measure should be applied, this is done by checking whether the words 

from URL 2 belong to the WORDNET corpus ( have a semantic meaning ), if both of the 

words belong to the corpus ( which is the case in this example) then a semantic similarity 

measure is performed as explained in the last chapters using Resnik technique. The 

obtained semantic measure between the last two words is stored as we move to the next 

word in URL2 by measuring the similarity between the word “light” and “all-states”, 

which in this case is going to be performed through a hybrid similarity measure since the 

word “ all-states” doesn’t have a semantic meaning, afterward the measure values are 

stored as we move to the next comparison between the word “light” and “v1” (which 

represents the noise ), after performing a hybrid similarity between the two words, the 

program compares between the obtained measure values and the previously obtained value 

in the already performed hybrid measures and it keeps only the best measure. The next 
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words to be compared are “state” with “ bulb” then “state” with “all-states” and so on. 

After comparing all the possible tuples, the program in this example should keep for the 

semantic measure the values obtained by comparing “light” and “bulb” ( because it’s 

supposed to be the two tuples with the highest semantic similarity), and it’s supposed to 

keep the values obtained by comparing “state” with “all-states” for the hybrid similarity ( 

because they are supposed to yield the best hybrid similarity values). At end, the result of a 

such comparison is three values, one represent the sematic similarity measure and the two 

others represent the values of the hybrid similarity measure, these values are what we find 

in each row of the similarity matrix. 

 

b- All similarity measures approach: 

 This approach is pretty much similar to the last approach except the fact that, rather than 

taking only the maximum similarity values, we are going to keep all the similarity 

measures. As explained previously, each URL in our example is composed of 3 words (not 

necessarily words with a semantic meaning), thus each word in the first URL should be 

compared to all the words in the second URL. As results, we end-up having 9 similarity 

measures, these 9 measures can be all semantic measures, or all hybrid measures or 

something in between, since the kind of similarity measure to use depends on the word 

nature. As result, to be able to consider all the cases, we have to consider the boundary 

cases: if all the measures are semantic measures, than in this case we have 9 values that 

sums up the similarity between URL1 and URL2, but if all the 9 measures are hybrid, then 

in this case 18 values (recall each hybrid measure outputs two values: 2*9=18) are used to 

abstract the similarity measure between both URLs. Thus overall, we have 27 features ( 18 

for hybrid and 9 for semantic), these values are initially set to default values. Note that for 

certain similarity measures, we may end up having neither a semantic similarity measure 

or hybrid similarity measure, in other words some values among the 27 features have 

always the default values, so as result these values are not informative and prevent makes 

the training of some of the machine learning techniques harder because the variance of 

certain features in regard of the labels is zero, thus we got rid of the features whose 

variance is zero all over the data.  

 

6.2.1 Results 

The generated data from the python program that measures the similarity between different 

URLs  is then divided into training dataset and testing dataset in a Matlab code (index 5) to 

evaluate the different algorithms of machine learning according to their accuracy : 2/3 for 

training and 1/3 for testing.  
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6.2.1.1 Maximum similarity approach:  

 

Fig. 32 depicts the classification accuracy percentage of each machine learning algorithm 

for a testing dataset size of 650, that contains similar and dissimilar URLs:  

 

 

 

 

 

 

 

 

 

 

 

 

The graph bars show that the Discriminant Analysis and the Naïve Bayes algorithm are the 

ones that perform the worst with an accuracy percentage of 65%, while the Support Vector 

Machine performs slightly better with an accuracy percentage of 68%.  

In the other hand, the Decision Trees and Nearest Neighbor gave a decent result and 

significantly better than the other algorithms with an accuracy percentage of 89% and 87% 

respectively. 

Recent published works in machine learning have shown that a good tuning of the hyper-

parameters may lead to a significant increase in performance, in some cases a good tuning 

of the parameters can even make the regular ML techniques outperform the state of the art 

techniques. Thus, in order to optimize the hyper-parameters of aforementioned techniques 

to get as much accuracy as possible, we had to explore the different used techniques for 

such procedure. In the following a brief explanation of the most used techniques for hyper-

parameters optimization:  

Figure 32. Classification accuracy percentage 
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 Grid search: it’s usually the most used approach, which consists in 

exhaustively searching through all the hyper-parameters space. For 

instance, if for a certain ML technique there is two hyper-parameters, 

then the Grid search in this case consists in going through all the 

possible pairs of hyper-parameters. At the end, we pick up the pair that 

provides the minimum loss over the searched hyper-parameters space, 

such space is usually discretized to break it down to a finite space. This 

approach is highly greedy in computation. 

 Random search: This approach is pretty similar to the previous 

approach, except the fact that the parameters chosen at each run are 

randomly selected. This method usually outperforms the Grid search 

optimization.  

 Bayesian optimization: this approach is considered according to the 

literature as the state of the art when it comes to hyper-parameters 

tuning. Its concept is based on Gaussian Processes (GPs), which is kind 

of similar to the regression problems, where given a certain function, we 

estimate the best function parameters that let this function best fit the 

data, however the difference here, is that rather than building a model 

for the parameters, we build a model of a function, where this function 

is then used to give an estimation of the performance ( objective 

function ) given a certain hyper-parameters. In other words, it is a non-

parametric approach, in that it finds a distribution over the possible 

functions  f ( x )  that are consistent with the observed data. This 

approach, outperforms both the Grid and Random search approaches.  

After several readings about these three approaches we ended-up choosing the Bayesian 

optimization approach, since it’s seemed to be the most efficient and less time consuming 

approach. Actually, Matlab includes the necessary function to perform a Bayesian 

Optimization, which is actually called through the following parameter 

'OptimizeHyperparameters' inside the fitting functions used to train the models previously. 

It has also to be mentioned that it uses k-cross validation to optimize the parameters, where 

the original data is randomly partitioned  into k subsamples, where one of these 

subsamples is used for the validation and the remaining k-1 subsamples are used for 

training. Afterwards this process is repeated k times, and the returned loss (or objective 

function) is computed by taking the mean of the loss over the k folds. Each of the next 

figures show the objective function variation in function of the hyper-parameters that we 

optimized over. Actually, each ML technique contains usually lot of hyper-parameters, and 

it’s not convenient to explore all the hyper-parameter space, so in the following results we 

chose to use ‘auto’ parameter while calling the fitting function, which is a feature in 
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Matlab that allows to pick-up for each ML technique the typically used parameters to 

optimize over, it has also to be mentioned that the used parameters for the optimization 

have already been explained in 6.1.1. In the following we show the results of the 

optimization on each one of the previously studied techniques:  

  

 

- Decision Trees:  

 

 

 

 

 

 

 

 

 

 

 

 

 

- Discriminant analysis:  
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Figure 33. Decision trees objective function for different 

values of the MinLeafSize  

Figure 34. Discriminant Analysis objective function for different 

values of Gamma and Delta 
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- Support vector machines:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Naïve Bayes:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Support Vector Machines objective function for different values of 

the KernelScale and BoxConstraint 

Figure 36. Naïve Bayes objective function for different distributions and 

different Width values 
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- K-Nearest Neighbors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. k-Nearest Neighbors objective function for different distance 

metrics and k values 

Figure 38. The accuracy of the different techniques after optimization 



 74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The obtained accuracy after optimization is depicted in Fig. 38, while the comparison 

between both accuracies, before and after optimization is depicted in Fig. 39:  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. The accuracy of the different techniques before vs after 

optimization 

Figure 40. The accuracy of the different techniques based on the all similarity 

measures approach 
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The resulted-in improvement that we got thanks to the optimization process is as low as 

0.4% for the decision trees or as high as 21% for the Naïve Bayes, but which still not 

performing better than the decision trees. Overall, the accuracy of the best performing ML 

technique didn’t increase significantly.  

 

6.2.1.2  All similarity measures approach:  

 

The accuracy of the all similarity measures approach is depicted in Fig. 40, these 

accuracies have already been optimized using the Bayesian Optimization, while the 

comparison between the accuracy of this approach and the previous results is 

depicted in Fig.41 :  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 41. The accuracy of the different techniques based on both approaches 
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The all similarity approach outperforms all the other investigated techniques, especially 

when it comes to the decision trees, which classifies all the test data perfectly. The reason 

for which the all similarity approach outperforms the other investigated technique is 

because that it doesn’t have any loss any the information brought by the features, since we 

are taking all the similarity measures, while for the maximization approach we were taking 

only the best syntactic measure and the best hybrid measure. 

6.2.2 Dimensionality reduction using PCA:  

Principal Component Analysis (PCA) is the main technique used for dimensionality 

reduction. The data in the lower-dimensional space is chosen in such way that the variance 

of the data is maximized. If we assume that we want to reduce the dimensionality of the 

data from m dimensions to d dimensions ( where d < m), the algorithm starts by computing 

the covariance matrix of the data, then it computes the eigenvalues of the covariance 

matrix, finally it picks up the d eigenvectors related to the highest d eigenvalues of the 

covariance matrix.  One of the metrics to explain how good the chosen dimensions 

describe the data is the proportion of variance (PoV), which equals the sum of the 

eigenvalues of the chosen dimensions divided by the sum of all the eigenvalues. 

 

In our use-case, dimensionality reduction is useful to reduce the number of features that 

need to be used for the classification, which can break down a greedy algorithm to an 

efficient one. In the case of all similarity approach we used 16 features knowing that the 

used URLs contain only three elements, which means that in real use case the number of 

features may increase incredibly because the URLs contain sometimes higher number of 

elements, as result the problem may become intractable.  

Thus we chose to reduce the dimensionality and retrain the different MLAs. Figure 42 

shows a set of similar and dissimilar URLs reduced to their two principal components. We 

can see from the figure that only 2 dimensions (knowing that the original data had 16 

dimensions) separate most of the two classes quite well. Figure 43 shows the same things 

but for three dimensions, and it shows a better separability than the two dimensional case. 

We tried this for 2,3,4 and 5 dimensions, which gave a PoV equal to 67%, 80% ,92% and 

98%. After retraining the network based on the new dimensions ( five dimensional case), 

we got the accuracies depicted in the Fig. 44 :   

 



 77 
 

 

 

 

 

 

 

 

 

Figure 42. similar and dissimilair URLs plotted using their 2 principal 

components 

Figure 43. similar and dissimilair URLs plotted using their 3 principal 

components 
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The results show a significant decrease in performance compared to the case where we 

used the 16 dimensions (or features). The decrease in performance is due to the PCA 

which is seems to be not convenient for the used data. We can explain the decrease in 

performance technically by the fact that the PCA considers that the most informative 

dimensions are those with the highest variance, so it tends to look for the useful 

information for the classification within the variance values, while the information may be 

hidden in the mean rather than the variance.  This part may need more investigation using 

another technic of dimensionality reduction, which is based on the mean or other metrics 

beside the variance as in the PCA.  

 

 

 

 

 

 

 

 

 

 

Figure 44. Accuracy of the different MLAs using 5 principal components 
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6.3 Conclusion  

 

In this work, an original solution was proposed to deal with the interfacing of IoT devices 

based on APIs, which is believed to alleviate the interoperability issues.  

 

After a thorough study of related works, it was concluded that internet of things still in its 

early stages and still have important challenges to overcome before reaching the true 

vision of IoT, and interfacing IoT devices regardless of their nature or manufacturer is one 

of the serious issues related to interoperability. So far, this problem has been dealt with by 

proposing different standards, but all of them failed in proposing a universal standard 

capable of interfacing the different IoT devices while considering their tremendous 

diversity and constrained capabilities.  

 

The proposed idea in this work consists in using natural language processing and machine 

learning to classify the different API methods based on the specific action that they are 

supposed to perform, because being able to infer the related action to an API method 

regardless of the architecture of the API or the nature of the device using it, is going to be 

an important step in universally interfacing IoT devices.  

 

After studying the different cases that we may come through while processing the different 

elements of the API methods, the different building blocks of the solution were identified, 

including namely the semantic and the hybrid similarity blocks, among others. Afterwards, 

the different natural language processing techniques were studied, evaluated and adapted 

to our application such that the differentiation between similar and dissimilar API methods 

is as easier as possible. The evaluation of both the syntactic similarity measures and the 

semantic similarity measures show the maturity of these methods and their usefulness in 

our use case. Then, rather than setting simple thresholds on the similarity measures to 

classify the API methods, a more sophisticated solution based on machine learning was 

chosen in order to get the highest possible accuracy. The different machine learning 

algorithms were studied and evaluated using real data from the different similarity 

measures. These algorithms were evaluated using two different approaches in retaining the 

similarity values of the URLs, the first similarity technique called “similarity 

maximization where we only keep the best semantic and hybrid similarity values, the 

second approach keeps all the similarity values between the two URLs. The results show 

the total feasibility of a such method, the all-similarity values approach along with the 

decision trees was able to classify all the test dataset correctly, knowing that the used 

URLs contained 30% of non-informative words. A possible significant amelioration of the 

results may be obtained not by focusing on the different similarity measures nor on the 

machine learning techniques since they are already performing well, rather, to improve the 

results (on real data)  more informative information should be fed in as input, an example 

of this would be to reinforce the API methods by additional information from the API 
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documentation. Finally, we tried Principal Component Analysis for dimensionality 

reduction in order to use less features for the classification of the API methods, but the 

obtained results show a poor performance compared to the other approaches.  

 

Besides the proposed solution for interfacing IoT devices based on APIs, this approach can 

be used also to detect the capabilities and physical interfaces of the connected devices by 

sampling processing their API documentation, which can be highly useful in alleviating 

the interoperability issues and improving the service recommendation techniques. This 

work opens also the way to addressing interoperability issues, and in some cases, 

standardization in general, by using natural language processing and machine learning 

techniques without the need to impose anything to the different stakeholders except using 

meaningful key-words and words. However, important work remains to be done in this 

direction, especially for the GET API methods, because basically the work focused only on 

the PUT, POST and DELETE methods which can be associated to an action, while the 

GET methods are used to retrieve information which usually contains more than one single 

sub-information presented in different formats, therefore making the device interfacing 

hard to achieve. 
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Index 1  

from nltk.corpus import wordnet as wn 

from nltk.corpus.reader import NOUN 

from nltk.corpus import wordnet_ic 

import random 

brown_ic = wordnet_ic.ic('ic-brown.dat') 

 

def Path(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 

    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].path_similarity(Syns2[0]) 

        for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].path_similarity(Syns2[i])): 

                max_sim=Syns1[j].path_similarity(Syns2[i]) 

    return max_sim 

 

def Lch(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 

    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].lch_similarity(Syns2[0]) 

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].lch_similarity(Syns2[i])): 

                max_sim=Syns1[j].lch_similarity(Syns2[i]) 

    return max_sim 

 

def Wup(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 
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    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].wup_similarity(Syns2[0]) 

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].wup_similarity(Syns2[i])): 

                max_sim=Syns1[j].wup_similarity(Syns2[i]) 

    return max_sim 

 

def Resnik(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 

    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].res_similarity(Syns2[0],brown_ic) 

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].res_similarity(Syns2[i],brown_ic)): 

                max_sim=Syns1[j].res_similarity(Syns2[i],brown_ic) 

    return max_sim 

 

def Jcn(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 

    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].jcn_similarity(Syns2[0],brown_ic) 

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].jcn_similarity(Syns2[i],brown_ic)): 

                max_sim=Syns1[j].jcn_similarity(Syns2[i],brown_ic) 

    return max_sim 
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def Lin(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN) 

    Syns2=wn.synsets(wordB,NOUN) 

    if ( len(Syns1)==0 or len(Syns2)==0): 

        return 0.0 

    max_sim=Syns1[0].lin_similarity(Syns2[0],brown_ic) 

     

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].lin_similarity(Syns2[i],brown_ic)): 

                max_sim=Syns1[j].lin_similarity(Syns2[i],brown_ic) 

    return max_sim 
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Index 2 
% numerical integral of the overlapping area of two normal distributions: 

% s1,s2...sigma of the normal distributions 1 and 2 

% mu1,mu2...center of the normal distributions 1 and 2 

% xstart,xend,xinterval...defines start, end and interval width 

% example: [overlap] = calc_overlap_twonormal(2,2,0,1,-10,10,0.01) 

function [overlap2] = calc_overlap_twonormal(s1,s2,mu1,mu2,xstart,xend,xinterval) 

clf 

x_range=xstart:xinterval:xend; 

plot(x_range,[normpdf(x_range,mu1,s1)' normpdf(x_range,mu2,s2)']); 

hold on 

area(x_range,min([normpdf(x_range,mu1,s1)' normpdf(x_range,mu2,s2)']')); 

overlap=cumtrapz(x_range,min([normpdf(x_range,mu1,s1)' normpdf(x_range,mu2,s2)']')); 

overlap2 = overlap(end); 

legend([num2str(overlap2)]); 
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Index 3 

 from nltk.corpus import wordnet as wn 

from nltk.corpus.reader import NOUN 

from nltk.corpus import wordnet_ic 

def levenshtein(s1, s2): 

    if len(s1) < len(s2): 

        return levenshtein(s2, s1) 

    # len(s1) >= len(s2) 

    if len(s2) == 0: 

        return len(s1) 

    previous_row = range(len(s2) + 1) 

    for i, c1 in enumerate(s1): 

        current_row = [i + 1] 

        for j, c2 in enumerate(s2): 

            insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and 

current_row are one character longer 

            deletions = current_row[j] + 1       # than s2 

            substitutions = previous_row[j] + (c1 != c2) 

            current_row.append(min(insertions, deletions, substitutions)) 

        previous_row = current_row 

    return previous_row[-1] 

def leven_norm(w1, w2): 

    return float(levenshtein(w1,w2))/(max(len(w1),len(w2))) 

brown_ic=wordnet_ic.ic('ic-brown.dat') 

word1='lamp' 

word2='lamp_lock' 

sys_word1=wn.synsets(word1,NOUN) 

allnouns = [x for x in wn.all_synsets('n')] 

min_sim=1 

for i in range(0,len(allnouns)): 

    for j in range(0,len(sys_word1)): 

        res_sim=sys_word1[j].res_similarity(allnouns[i],brown_ic) 
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        if(res_sim > 8): 

            lev_sim=leven_norm(word2,allnouns[i].name().split(".")[0]) 

            if(min_sim> lev_sim): 

                min_sim=lev_sim 

                #print(sys_word1[j]) 

                #print(allnouns[i]) 

                print(min_sim) 
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Index 4 

'''this program generates  similarity measures ( semantic + hybrid ) for similar or dissimilar 

words, then the generated values are used by another program within Matlab to train and 

test the different machine learning algorithms''' 

from nltk.tokenize import word_tokenize 

from nltk.corpus import wordnet as wn 

from nltk.corpus.reader import NOUN 

from nltk.corpus import wordnet_ic 

import random 

brown_ic = wordnet_ic.ic('ic-brown.dat')'''importing the information content  

file, which is needed for the Resnik similarity measure. More information may 

be found on the report or in this link : 

https://stackoverflow.com/questions/18705778/what-is-the-use-of-brown-corpus-in-

measuring-semantic-similarity-based-on-wordne 

''' 

'''Filter function needed to perform the preprocessing step, by getting rid of the different 

special characters 

that we may encouter while dealing with URLs''' 

def Filter (Link) : 

    URL=Link 

    F_URL='' 

    for i in range(0,len(URL)): 

        if ( URL[i]!='/' and URL[i]!='<' and URL[i]!='>'): 

            F_URL+=URL[i] 

        else : F_URL+=' ' 

    return(word_tokenize(F_URL)) 

' a function that checks whether the string w1 is a word or not, it does this by only looking 

in the WordNet corpus' 

def IsWord (w1): 

    return wn.synsets(w1) 

'Semantic_sim is a function that outputs the semantic similarity measure between wordA 

and wordB' 

def Semantic_sim(wordA,wordB): 

    Syns1=wn.synsets(wordA,NOUN)'get all the Noun synsets of the WordA' 

    Syns2=wn.synsets(wordB,NOUN) 
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    if ( len(Syns1)==0 or len(Syns2)==0):  

        return 0.0 

'''since each synset associated to a word contains many words, we define the semantic 

similarity as the Resnik similarity between 

the two words in each synset that would give us the maximum Resnik similarity, thus in 

the remaining part of this function 

we will be going through the different words of each synset to look for the maximum 

Resnik value''' 

    max_sim=Syns1[0].res_similarity(Syns2[0],brown_ic)  

     

    for j in range(0,len(Syns1)): 

        for i in range(0,len(Syns2)):         

            if (max_sim< Syns1[j].res_similarity(Syns2[i],brown_ic)): 

                max_sim=Syns1[j].res_similarity(Syns2[i],brown_ic) 

    return max_sim 

'''Levenshtein function is very famous function, it is used in this case as a syntactic 

measure, more information can be found on the internet about this algorithm, it is also 

known as The Edit Distance Algorithm''' 

def levenshtein(s1, s2): 

    if len(s1) < len(s2): 

        return levenshtein(s2, s1) 

    # len(s1) >= len(s2) 

    if len(s2) == 0: 

        return len(s1) 

    previous_row = range(len(s2) + 1) 

    for i, c1 in enumerate(s1): 

        current_row = [i + 1] 

        for j, c2 in enumerate(s2): 

            insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and 

current_row are one character longer 

            deletions = current_row[j] + 1       # than s2 

            substitutions = previous_row[j] + (c1 != c2) 

            current_row.append(min(insertions, deletions, substitutions)) 

        previous_row = current_row    

    return previous_row[-1] 
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'''as explained in the report, we noticed that normalizing the levenshtein measure by the 

length of the longest word may in some cases give better results than the standard 

Levenshtein measure''' 

def leven_norm(w1, w2): 

    return float(levenshtein(w1,w2))/(max(len(w1),len(w2))) 

'a function used to generate URLs, in this example these words are used to generate 

dissimilar URLs' 

def generate_sim(): 

    table1=['lock','desktop-computer','house-lock','smart_lock','watch','phone','connected-

lock','connected_watch','room_lock','room-conditioner','security-lock','emergency-

alarm','television1','screen2','speaker3'] 

    table2=['states','all-states','screen2-state','watch-state','status','<id>','user','all'] 

    table3=['api','v1','v3','link','REST','1'] 

    links=[] 

    for i in range(0,len(table1)): 

        for j in range(0,len(table2)): 

            for k in range(0,len(table3)): 

                links=links+['/'+table1[i]+'/'+table2[j]+'/'+table3[k]] 

    return links 

'''a function that measures the hybrid similarity as explained in the report, for instance it 

can be used to measure the similarity 

between the word 'light' and 'smart-bulb', it firstly gets as input all the similar words to the 

word 'light' i the array allnouns and 'smart-bulb' is passed to the function through the string 

w2''' 

def hybrid_sim(allnouns,w2): 

    min_sim=1.0 

    sum_sim=0.0 

    count=0.0 

    res=[] 

    for i in range(0,len(allnouns)): 

        lev_sim=leven_norm(w2,allnouns[i]) 

        sum_sim+=lev_sim 

        count+=1 

        if(min_sim> lev_sim): 

            min_sim=lev_sim 
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    if(count!=0.0): 

        res=[min_sim,sum_sim/count] ' we return the best syntactic value and the mean of all 

the syntactic measures ' 

    else : 

        res=[1.0 , 1.0 ] 

    return res 

'''This is the main function, which relies actually on all the previously defined functions, it 

returns a three dimensional array containing the three similarity measures that we already 

talked about, the similarity measure is performed between the URL and URL1 given as 

input ... it gets also as input s1,s2 and s3 which are vectors containing all the similar words 

to the three words of URL1 and which are needed to computed the Hybrid 

similarity...s1,s2 and s3 can be computed inside the compute_sim function rather than 

passing them as input parameters, for the this example we prefered to pass them as input 

parameters to reduce the running time, because if these parameters are computed inside the 

compute sim function, it means that they will be computed each time we call the function 

compute_sim..this solution reduced drastically the running time...an alternative solution is 

to compute the values of s1,s2 and s3 inside the function, but while storring their values in 

global variables''' 

def compute_sim(URL,URL_1,s1,s2,s3): 

    URL_1=Filter(URL_1) 

    URL_2=Filter(URL) 

    semantic_simi=0.0 

    hybrid_simi=[1.0 , 1.0] 

    for i in range(0,len(URL_1)): 

        for j in range(0,len(URL_2)): 

            if(IsWord(URL_1[i]) and IsWord(URL_2[j])): ' if the two element of each URL 

are words, then we will perform a semantic similarity' 

                res_int=Semantic_sim(URL_1[i],URL_2[j]) 

                if(semantic_simi<res_int): 

                    semantic_simi=res_int 

            else:                           'otherwise we will perform a hybrid similarity' 

                if (i==0): 

                   res_int2=hybrid_sim(s1,URL_2[j]) 

                if(i==1): 

                    res_int2=hybrid_sim(s2,URL_2[j]) 

                if(i==2): 

                    res_int2=hybrid_sim(s3,URL_2[j])  
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                if(res_int2[0]<hybrid_simi[0] or res_int2[1]<hybrid_simi[1]): 

                    hybrid_simi=res_int2 

    res_final= hybrid_simi + [semantic_simi]   ' we return the hybrid and semantic 

similiarity values' 

    return res_final 

'''this function is used to extract from the WordNet corpus the similar words to the word 

stored in the variable word, the output of this function 

is needed for the hybrid similarity function''' 

def similar_words(word): 

    w1=word 

    simi_words=[] 

    sys_word1=wn.synsets(w1,NOUN) 

    allnouns = [x for x in wn.all_synsets('n')] 

    for i in range(0,len(allnouns)): 

         for j in range(0,len(sys_word1)): 

            res_sim=sys_word1[j].res_similarity(allnouns[i],brown_ic) 

            if(res_sim > 8): 

                simi_words=simi_words+[allnouns[i].name().split(".")[0]] 

    return simi_words 

' we will be looking for all the similar URLs to URL_1' 

URL_1='/light/lamp/state' 

'as explained earlier, in order to reduce the running time, we extract from WordNet all the 

similar words to the words of URL_1' 

s1=similar_words(Filter(URL_1)[0]) 

s2=similar_words(Filter(URL_1)[1]) 

s3=similar_words(Filter(URL_1)[2]) 

links=generate_sim() ' generate URLs' 

train=[] 'it is the vector which gonna hold the similarity values between URL_1 and all the 

generated URLs' 

for i in range(0,len(links)): 

    train=train+[compute_sim(links[i],URL1,s1,s2,s3)] 

    print(i) 

random.shuffle(train) '  just to add randomness ..' 
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Index 5 

Creating the models  

Mdl_tree= fitctree(X_train,Y_train); %decision trees  

Mdl_discr= fitcdiscr(X_train,Y_train); % discriminant analysis  

Mdl_svm= fitcsvm(X_train,Y_train); % support vector machine  

Mdl_nb= fitcnb(X_train,Y_train) ; % naive bayes  

Mdl_nn= fitcknn(X_train,Y_train) ; % nearest neighbor  

  

% computing the accuracy of each model based on a dataset of 202 URLs 

  

ac_tree= (1-loss(Mdl_tree,X_test2,Y_test2))*100; 

ac_discr=(1-loss(Mdl_discr,X_test2,Y_test2))*100; 

ac_svm=(1-loss(Mdl_svm,X_test2,Y_test2))*100; 

ac_nb=(1-loss(Mdl_nb,X_test2,Y_test2))*100; 

ac_nn=(1-loss(Mdl_nn,X_test2,Y_test2))*100; 

  

%plotting the accuracy graph bars  

accuracy_vect=[ac_tree ac_discr ac_svm ac_nb ac_nn]; 

bar(accuracy_vect) 

set(gca,'xticklabel',{'tree','discr','svm','nbayes','neighboor'}); 

ylabel('accuracy percentage') 

xlabel('different algorithms') 

figure; 

%plotting the accuracy variation as function of the size of the testing 

%dataset 

  

X_axe= [ 50 , 100 , 150 , 200 , 250 , 300, 350 , 400 , 450 , 500 , 550 , 600 ]; 

  

Vac_tree=[]; 

Vac_discr=[]; 

Vac_svm=[]; 

Vac_nb=[]; 

Vac_nn=[]; 

% computing the accuraccy of each algorithm while variying the testing 

% dataset size, the values are stored into vectors  

for i=1:12 

   Vac_tree= [Vac_tree, (1-loss(Mdl_tree,X_test(1:i*50,:),Y_test(1:i*50,:)))*100];  

   Vac_discr= [Vac_discr, (1-loss(Mdl_discr,X_test(1:i*50,:),Y_test(1:i*50,:)))*100]; 

   Vac_svm= [Vac_svm, (1-loss(Mdl_svm,X_test(1:i*50,:),Y_test(1:i*50,:)))*100]; 

   Vac_nb= [Vac_nb, (1-loss(Mdl_nb,X_test(1:i*50,:),Y_test(1:i*50,:)))*100]; 

   Vac_nn= [Vac_nn, (1-loss(Mdl_nn,X_test(1:i*50,:),Y_test(1:i*50,:)))*100]; 

    

end 

  

plot(X_axe,Vac_tree,'b','LineWidth',2) 

hold on   

plot(X_axe,Vac_discr,'y','LineWidth',2) 

hold on  

plot(X_axe,Vac_svm,'r','LineWidth',2) 

hold on 

plot(X_axe,Vac_nb,'g','LineWidth',2) 
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hold on 

plot(X_axe,Vac_nn,'k','LineWidth',2) 

grid on 

ylabel('accuracy percentage')  

xlabel('testing dataset size') 
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