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Résumé

L’écriture manuscrite étant une caractéristique biométrique comportementale, a prouvé
sa capacité à suffisamment pouvoir différencier deux individus. Par conséquent, dans
ce travail, nous proposons un système d’identification d’écrivain à partir de documents
manuscrits contenant un seul mot. À cet égard, nous proposons, associé au classifieur
Machine à Vecteurs de Support (SVM), une fusion de caractéristiques hybrides, combi-
nant des caractéristiques extraites d’un nouveau descripteur, à savoir le Gradient Local
Multi-échelle Orienté (MLOG) et des caractéristiques générées à partir du réseau de neu-
rones convolutif VGG-16. Deux approches connues d’identification des auteurs ont été
abordées ; dépendant de l’auteur et indépendant de l’auteur. Les expériences menées
sur deux ensembles de données standards ont montré des résultats satisfaisants et très
prometteurs.
Mots-clés: identification de l’écrivain, écriture manuscrite, MLOG, caractéristiques hy-
brides, CNN.

Abstract

Handwriting as a part of behavioral biometrics has been proved to having the ability
to sufficiently differentiate any two individuals. Therefore, in this work, we propose
a system for writer identification using single handwritten words. In this regard, we
propose, associated to Support Vector Machine (SVM) classifier, a hybrid features fusion
that combined features extracted from a new descriptor namely, Multiscale Local Oriented
Gradient (MLOG) and features generated from Convolutional Neural Network VGG-16.
Two known approaches of writer identification were addressed: writer-dependent and
writer-independent. Experiments conducted on two standard datasets, showed satisfying
and very promising results.
Keywords : writer identification, handwriting, MLOG, hybrid features, CNN.
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Introduction

Since the beginning of human history, people have identified themselves by relying on
specific characteristics such as faces or voices. Due to the industrial revolution, the world
grew rapidly, where it was necessary to identify people and control access. Thus, was
born the concept of a biometric system referring to the use of metrics related to the
human characteristics as a personal identifier. Automated biometric systems have only
become available in recent decades, due to significant advances in the field of computer
processing. Recently, it has become extended to more specific fields such as the analysis
of handwriting.

Researches have proved that handwriting is a biometric characteristic, just like DNA
and fingerprints. It is an extension of the personality and a sign of individuality between
people, which allows it to be used to distinguish and differentiate individuals. Indeed,
although DNA and fingerprints are more reliable for person identification, handwriting
remains a strong behavioral biometric, that does not require specialized hardware devices
to collect handwriting samples, unlike DNA and fingerprints.

Writer identification refers to a document identification technology that determines
the writer’s identity through handwriting text analysis [1]. In the last few decades and
with the technological development, the field of writer identification based on handwritten
documents became a challenging topic for various researchers around the world due to the
increase of its utilization. Among the applications where automatic writer identification
system is found necessary, we note:

Forensics and criminal investigations to determine the identity of alleged authors of
handwritten documents such as wills, ransom notes, suicide letters, legal documents,
etc.

Authentication and classification of historical documents to preserve the cultural
heritage from falsified documents [2].

Monitor and regulate the access to certain confidential sites or data where large
amounts of documents, forms, notes and meeting minutes are constantly being pro-
cessed and managed, knowing the identity of the writer would provide an additional
value [3].

Checking authenticity of bank cheque.

Compared to electronic documents, handwriting holds discriminating information about
the person who produced it. Indeed, the writing contours, corners, junction, and thickness
shape are specific to each individual. Besides, a person will not produce exactly the same
handwriting twice [4]. Therefore, a writer identification system, aims to extract charac-
teristics, referred to as features, which define the handwriting style of the writer. These
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features should be able to express the indirect information of writer identity contained in
a handwritten text. Consequently, due to the difficulty of characterizing the writing, the
reliability of such a system depends strongly on the quality of the extracted features.

The literature reports only studies that addressed writer identification from a whole
text document or lines. In this work, we propose to investigate writer identification from
single handwritten words, which is a much more complicated and challenging task, since
a word contains only very few information. As a solution to this particular problem,
we come up with a hybrid features fusion associated to Support Vector Machine (SVM)
classifier. Precisely, we combine features extracted from a brand new descriptor based on
a Multiscale Local Oriented Gradient (MLOG) and features extracted from a pre-trained
Convolutional Neural Network (CNN), namely, VGG16 (Visual Geometry Group) model,
to form powerful features that characterize at best the handwriting style contained in
a word. Experiments are conducted on two benchmark datasets and findings are very
promising.

The dissertation is divided into four chapters that are structured as follows:

• Chapter 1 details the problematic and gives an overview on writer identification
architecture by presenting writer-dependent and writer-independent approaches. It
also gives a brief summary of the state of the art.

• Chapter 2 elaborates on some of the feature extraction and classification methods
that proved efficiency in pattern recognition tasks. Especially, it introduces the
proposed Multiscale Local Oriented Gradient (MLOG) descriptor.

• Chapter 3 gives a profound overview and description of Convolutional Neural Net-
works (CNN) and the predefined used architecture VGG16.

• Chapter 4 presents and discusses the obtained results for writer identification using
single handwritten words, namely, results of descriptor-based systems and CNN-
based system. Then after, the chapter exposes the findings of hybrid features for
both writer-dependent and writer-independent approaches.

Finally, we achieve this dissertation with a conclusion and some perspectives for a
future work.

13



Chapter 1

Overview on writer identification
from handwriting



1.1 Introduction

For many years, handwriting has been used as a behavioral biometric to identify indi-
viduals for different purposes. In 1989, Plamondon et al., published the first survey on
automatic signature verification and writer identification [5], which proves that automatic
writer identification started several decades ago. Since then, this discipline has received
significant interest by the research community and various methods have been proposed.
A typical writer identification system operates in two modes: offline and online. In the
online mode, the writing behavior is captured from the writer in real-time through a writ-
ing tablet, which converts it into a list of signals and directions. On the other hand, for
offline mode, scanned and digitized handwriting images are used to identify the writer.

In this chapter, we give an overview of the writer identification system by first, ad-
dressing the problematic tackled in this work. Secondly, we expose the handwriting as
a behavioral biometrics. After that, we present the architectures of writer identification
systems and finally, we conclude by presenting a summary of the state of the art to put
the light on and build an idea on previously used techniques.

1.2 Problematic

Writer identity is an implicit (indirect) information of a handwritten document. There
are many types of data used to identify the writer: texts, rows, and words as shown in
Figure 1.1. The commonly used type of data is text blocks. This is due to the considerable
amount of information it contains.

Nowadays, due to the digital revolution, handwriting is an increasingly rare activity,
which requires a new approach to be able to identify the writer based on a very small
amount of available text, which may be as little as a single word [6]. In this work,
we address the writer identification problem based on single-word images, which is a
challenging problem because the information contained in a single word is highly limited
for modelling the writing style of an author. In order to solve this problem, we present
different approaches of feature extraction and fusion, forming a solid ground for writing
style discrimination and therefore writer identification.
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Figure 1.1: Example of handwritten document types from ICDAR2011 dataset. (a):
text,(b): row,(c): words

1.3 Handwriting as a behavioral biometric

In computer security, biometrics refer to identification and authentication tools that
rely on measurable biological characteristics of the human body that can be automat-
ically checked. As shown in Figure 1.2, biometric characteristics are generally divided
into two categories; physiological and behavioral. Physiological characteristics include
physiological properties of the human body such as iris, face, retina, DNA, and finger-
prints. While behavioral characteristics gather the personal features developed by the
behavior of the individual like voice, handwriting, gait and handwritten signature. How-
ever, fingerprint and face biometrics remain the most established and used biometrics for
identification and verification.

Nevertheless, handwriting is universal and a daily used skill. The effectiveness of hand-
writing as a behavioral biometric has been debated by innumerable researchers [7]. Jain
et al., [8] have identified seven factors determining the appropriateness of a biometric
modality. In terms of “distinctiveness”, handwriting appears to be relatively less effec-
tive compared to DNA or fingerprints. Whereas in terms of “measurability”, acquiring
handwriting samples is quite simple as it does not require specialized hardware devices.
Therefore, to a certain extent, and due to its recent development and performance, hand-
writing has become a strong behavioral trait of identification, as powerful as DNA and
fingerprints [9].

Indeed, each individual has his own particular writing style; people might be able to
copy it, but never write it in an identical way. Even identical twins who share appearance
and genetics do not have the same handwriting. In 2002, Srihari et al., [10] confirmed
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Figure 1.2: Biometric characteristics

the hypothesis that everyone writes differently. Each individual has a handwriting style
that is distinct from the handwriting style of another individual as shown in Figure 1.3.
Handwriting individuality lies in the specific shapes of letters like their roundness or
sharpness, the spacing between words, the slope and average size of the letters, the pen
pressure on the paper, etc.

Figure 1.3: Examples of handwriting style for 5 different writers from IAM dataset

17



1.4 Architecture of a writer identification system

As any classification system, writer identification systems consist essentially of three
main steps; namely, pre-processing, feature extraction, and classification, to build the
model and therefore, decide on the authorship of an unknown handwritten word as de-
picted in Figure 1.4.

Writer identification techniques reported in the literature allow this task to be ad-
dressed through two approaches called writer dependent and writer independent ap-
proaches.

Figure 1.4: Architecture of writer identification system

1.4.1 Preprocessing

Preprocessing is an important step in writer identification systems. The aim of this
step is to improve the readability of the text image and remove details that have no
discriminatory power in the identification process. Recall that, documents are often digi-
tized using a scanner device. Thus, the quality of the scanned document is influenced by
several factors, namely, the performance of the scanner and the resolution (which is the
number of pixels per inch). The preprocessing step usually includes several operations
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such as binarization, filtering and contrast enhancement. In this section, we only present
the operations used in our work, which are binarization, segmentation and normalization.

• Binarization
Binarization aims to isolate the writing from the background of the document. Ap-
plying this technique to a grayscale image gives a binary image where each pixel
can have a value of 0 or 1.
The process of binarization works by finding a threshold value in the image his-
togram, which separates between 2 entities, each representing one of two elements
or an element and its background. The binarization algorithms are divided into two
main categories called global binarization and local binarization. The former uses
a unique threshold for the entire image, while the latter calculates local threshold
values, pixel by pixel and region by region [11]. Within global binarization tech-
niques, there exist several algorithms to find the optimum threshold value, but none
of them can be referred to as the best one, as each method is optimal for certain
applications. In our work, the algorithm that proved efficiency was the so called
Otsu’s binarization [12]. Through an iteration over all possible threshold values, it
measures the spread of the pixel levels on both sides (foreground and background)
of the considered threshold value. Then, it searches for the threshold value that
leads to the minimum sum value of the foreground and background spreads [11].
This binarization step allows to have a low memory space, and therefore, increases
the processing speed and simplify feature extraction. Figure 1.5 illustrates a bina-
rization example of an IAM word image using Otsu method.

Figure 1.5: Image binarization using Otsu method

• Segmentation
Segmentation is the operation that aims to extract the targeted entities of the
text such as lines, words or fragments. In this work, word extraction is done by
applying vertical and horizontal projection histograms. Vertical projection consists
of summing the number of text pixels column by column. It delimits the first and
last pixel of the text vertically. On the other hand, horizontal projection consists of
summing the number of text pixels along the lines in order to detect the first and
the last pixel of the text horizontally. Figure 1.6 illustrates this word extraction
technique from a text.
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Figure 1.6: Words extraction. (a) Complement of the original image, (b) Horizontal
projection, (c) Vertical projection

• Normalization of the image size
After the segmentation step, word images systematically have variable sizes. How-
ever, certain methods of feature extraction provide feature vectors with a size that
is proportional to that of the input image. Moreover, classifiers such as neural net-
works and Support Vector Machines (SVM) require data of the same size. Specially,
size normalisation is essential to deep leaning neural networks. Hence, in such situ-
ations, a standardization process to a unique size is necessary before proceeding to
feature generation. Normalization consists in resampling the image by decreasing
or increasing the number of pixels according to the new targeted size, which can be
larger or smaller than the original image size. Figure 1.7 shows an example of size
normalization of a handwritten word.

(a) (b)

Figure 1.7: Example of size normalization of a handwritten word. (a) Original image,
(b) Resized image 64x64 pixels

1.4.2 Feature extraction

Feature extraction or generation involves reducing the number of resources required to
describe a large set of data. When performing analysis of complex data, one of the major
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problems stems from the number of variables involved. Analysis with a large number of
variables generally requires a large amount of memory and computation power, also it
may cause the classification algorithm to overfit to training samples and generalize poorly
to new ones (testing samples). Feature extraction aims to construct combinations of the
variables to get around these problems while keeping an accurate description of the data.
Many image processing practitioners believe that properly optimized feature extraction
is the key to effective model construction [13].
Several feature extraction methods have been designed for writer identification in the last
few decades. They can be divided into two main categories: texture-based and grapheme-
based features [6].

Texture-based methods attempt to characterize repeating patterns of local variations in
an image intensity. Statistical methods are widely used for achieving this purpose. Many
descriptors are employed in this context for writer identification, such as Local Binary
Patterns (LBP) [14, 15], Local Phase Quantization (LPQ) [14] and the run-length of LBP
[16]. Filter-based features, such as Gabor [17] and oriented Basic Image Feature Columns
(oBIF Columns) [18], have also been employed. Some other descriptors extract features
from the contours of the ink trace, such as Hinge-based features [19, 20] which extract
the properties of slant, curvature information and stroke width.

On the other hand, grapheme-based techniques aim to divide the ink on a set of pixels
to multiple parts in order to segment the word into units of characters, or parts of char-
acters [21]. These units are mapped on a common space called a codebook. Graphemes
have been widely used in feature extraction methods dedicated to writer identification
and verification [22, 23].

1.4.3 Classification

Classification consists of assigning a class label to a set of unclassified instances. In
the case of supervised classification, where a set of labeled data is provided, the aim
of classification is to analyze input data in order to develop an accurate description or
model for each class, using a specific learning algorithm. In fact, the learning algorithm
approximates a target function by mapping input variables to output variables according
to some decision rule. It is what defines a classifier. The literature of writer identification
reports the use of several classifiers such as k-Nearest Neighbors (KNN) [24], Gaussian
Mixture Model (GMM) [25], Hidden Markov Model (HMM) [26], Support Vector Machine
[27]. Nowadays, the trend is to use deep leaning for writer identification [6].
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1.5 Writer-dependent approach

Writer-dependent approach considers one model per author. It is basically a classifica-
tion problem of N classes where N is the number of writers. More precisely, it consists
of creating a reference model for each writer, generated through his collected samples,
whereas the queried sample is compared to each sample of each writer during the iden-
tification stage. It usually yields good results, but its drawback lies in the fact that a
considerable amount of data is necessary to train a reliable system [14]. Besides, if a new
writer is added to the dataset, re-training the model is necessary. This kind of approach
has been the most commonly used in writer identification related works. However, it
showed its limitations as the number of writers increases.

1.6 Writer-independent approach

An alternative to writer-dependent approach is the global approach or writer-independent
model. It is based on the forensic questioned document examination approach and clas-
sifies the writing, in terms of authenticity, into genuine (positive) and forgery (negative),
using for that one global model. This approach is based on a dichotomy transformation
that makes it possible to reduce any innumerable classification problem to a 2-class prob-
lem [28].

In the case of writer identification, given a queried handwritten word and a reference
handwritten word, the aim is to determine whether or not the two words were produced
by the same writer. For that, a population of M writers is randomly selected from the
dataset, where a set of references per writer is considered. The dichotomy transformation
takes place through a dissimilarity measure computed between pairwise of references from
the same writer to generate the positive (genuine) class called within class dissimilari-
ties. As to the forgery (negative) class, a dissimilarity measure is calculated between each
two references of different writers, which gives between class dissimilarities. Hence, we
obtain a 2-class problem, which can be solved by building a model using a binary classifier.

More precisely, let Vi and Ui be two vectors in the feature space, labelled Iv and Iu

respectively. Let Di= distance(Vi,Ui) be the dissimilarity measure where distance(s, p)
can be any of the known mathematical distances between two vectors s and p. Table
1.1 presents some of the commonly used distances. In the dissimilarity space, there are
two classes that are independent of the number of writers: the within class (+) and the
between class (-). The dissimilarity vector Di is assigned the label ID as follows [14]:
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Distance function Equation

Euclidean distance Deuclidean(a, b) =
(∑n

i=1 |ai − bi |
2
)1/2

Manhattan distance DManhattan(a, b) = ∑n
i=1 |ai − bi|

Chi-square distance DChi−square(a, b) = ∑n
i=1

(ai−bi)2

|ai+bi|

Canberra distance DCanberra(a, b) = ∑n
i=1

|ai−bi|
|ai+bi|

Table 1.1: Distance functions used in dissimilarity calculation

ID =

 + if Iq = Iv

− Otherwise
(1.1)

(a) (b)

Figure 1.8: Dichotomy transformation: (a): samples in features space and (b): samples
in the dissimilarity space

Figure 1.8 illustrates the dissimilarity-based transformation. Suppose there are five
writers, w1, ..., w5, and each one of them provides four reference samples. The feature
extraction process extracts a feature vector for each reference sample. Then a distance
transformation takes place and computes the dissimilarity measure between the features of
each pair of samples for the same writer and for different writers to form the dissimilarity
space. As we can see, the distance transformation affects the geometry of the distribution.
In the feature space, multiple boundaries are needed to separate all the writers. While,
in the dissimilarity space, only one boundary is necessary, since the problem is reduced to
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a 2-class classification problem [14]. We can also see that, if both samples come from the
same writer (genuine), then the dissimilarity measure should be close to 0. On the con-
trary, if the two samples come from different writers (a forgery), the dissimilarity measure
should be far from 0. This is true under favourable conditions. However, the dissimilar-
ity measure can be affected by intra-writer variability, which could generate values that
are far from zero even if the dissimilarity is measured between samples produced by the
same writer [14]. Note that, for a queried word, dissimilarities are computed with all the
references of all the writers. The queried word belongs to the writer with the smallest
dissimilarity measure. Figure 1.9 depicts the architecture of the writer-independent sys-
tem.

The most important advantage of this approach, is that, even writers whose refer-
ences were not used for training can be identified by the system. This characteristic is
quite attractive, since it avoids having to train a new model every time a new writer is
introduced.

Figure 1.9: Architecture of a writer-independent system

1.7 Summary of the state of the art of writer identi-
fication

Up to now, developing a robust writer identification system still attracts many re-
searchers in the pattern recognition community. Over the years, countless papers have
been published but have all the particularity of dealing with writer identification based on
a large amount of text (whole document), which is never the case in real-life applications.
Unfortunately, writer identification based on a single handwritten word has not received
enough interest mainly due to the high difficulty that it presents. A word is a very small
sample, which makes it a highly challenging task, since the writer style information will
be too limited. Indeed, very few authors ventured to use only one word, where the first
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work was introduced by Tomai et al., in 2004 [29]. The authors consider four different
types of features that are gradient-structural & concavity features, word model recognizer
features, shape curvature features and shape context features. Experiments were con-
ducted through writer-dependent protocol on a private dataset of more than 1000 writers
where the best accuracy reached was of 62%.

In [30], authors address writer verification problem based on the analysis of a unique
sample of a handwritten word, which is slightly different from writer identification. The
Levenshtein edit distance based on Fisher-Wagner algorithm was used to estimate the cost
of transforming one handwritten word into another. In order to apply it to handwritten
words, a segmentation module to generate the graphemes was developed. The approach
was evaluated on part of the IAM database (100 writers), where half of them provided
three samples only of the same word and a performance of 87% was reached.

The most recent and interesting work was published in 2018 by He et al.[6], where
the authors presented a deep adaptive learning method for writer identification based on
single-word images using multi-task learning. An auxiliary task is added to the training
process to enforce the emergence of reusable features. The proposed method transfers
the benefits of the learned features of a convolutional neural network from an auxiliary
task such as explicit content recognition to the main task of writer identification in a
single procedure. Specifically, they proposed a new adaptive convolutional layer to ex-
ploit the learned deep features. A multi-task neural network with one or several adaptive
convolutional layers is trained end-to-end, to exploit robust generic features for a specific
main task, i.e., writer identification. Three auxiliary tasks, corresponding to three ex-
plicit attributes of handwritten word images (lexical content, word length and character
attributes), were evaluated on two benchmark datasets IAM and CVL. For IAM dataset,
35421 word images from 657 writers were used, the performances reached TOP-1 of 69.5%
and TOP-5 of 86.1% using word recognition as an auxiliary task. As to CVL dataset,
99513 word images from 310 writers were used, where the performances reached TOP-1
of 79.1% and TOP-5 of 94.31% using word length recognition as an auxiliary task.

1.8 Conclusion

This chapter presented the individuality of handwriting as a behavioral biometric char-
acteristic, and the challenging problematic of writer identification from a single hand-
written word. It provided an overview on the architecture of a writer identification sys-
tem detailing each of its component from acquisition to identification including writer-
dependent and writer-independent approaches. From the analysis of the available state
of the art, writer identification from single words can be further investigated in order
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to improve performances. Consequently, the aim of this work is to fuse hybrid features
for writer identification from a single handwritten word for both writer-dependent and
writer-independent protocols.
The next chapter will be dedicated to the description of the adopted methods used for
writer identification including our new proposed descriptor.
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Chapter 2

Description of adopted methods for
writer identification



2.1 Introduction

The development of a writer identification system is essentially based on the characteri-
zation of the writing style of the author. The first step to any efficient pattern recognition
system is the feature extraction and then comes the classification step. Even if we choose
the classifier wisely, without some powerful features, the system will perform poorly. Con-
sequently, since writer identification from a single handwritten word is a highly challenging
task, powerful features are necessary to capture the handwriting style from a handwrit-
ten word. Therefore, in this work we propose a new descriptor called Multiscale Local
Oriented Gradient (MLOG) to characterize the writing style. To demonstrate fairly its
performance, we compare it to two feature extraction methods, namely, pixel distribution
and Gradient Local Binary Patterns (GLBP), that have proven their efficiency in many
applications related to handwriting. Furthermore, this chapter gives an overview on Sup-
port Vector Machine classifier, since it was used for writer identification in this work.

2.2 Feature extraction methods

This section presents the feature extraction methods adopted for writer identification
in this work, especially the new proposed descriptor Multiscale Local Oriented Gradi-
ent (MLOG), in addition to pixel distribution and Gradient Local Binary patterns as
benchmark descriptors.

2.2.1 Pixel distribution

Pixel distribution is a topological descriptor that highlights the geometric continuous
deformation properties of the handwriting within a given cell [31]. It has been used
for signature verification [31] and soft-biometric prediction from handwriting [32]. Pixel
distribution is based on four measures where each cell is determined by two projections;
vertical and horizontal (see Figure 2.1). Afterwards, the height and width of the stroke
are conducted in four directions limited by the mentioned projections [31]. These values
are referred to with the letters C1, C2, C3, C4, where :

– C1: represents the height of the left part of the stroke.

– C2: represents width of the upper part of the stroke.

– C3: represents height of the right part of the stroke.

– C4: represents width of the lower part of the stroke.
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Figure 2.1: Pixel distribution within a cell [32]

2.2.2 Gradient Local Binary Patterns

Gradient Local Binary Patterns (GLBP) was first introduced for human detection as
a descriptor that combines gradient information with texture information [33]. It has
also been successfully employed in several applications related to handwriting such as the
prediction of soft-biometrics from handwriting [32], writer retrieval [34] and word spotting
[35].

The principle idea for GLBP calculation consists of exploiting uniform Local Binary
Patterns (LBP) to compute the histogram of oriented gradients. The GLBP of a given
image is elaborated as follows:

• First, Local Binary Patterns is calculated. LBP is used to perform a statistical and
structural analysis of textural patterns on the image. It describes the gray level
distribution by comparing the gray level value of a pixel with neighboring pixels.
LBP takes 1 if the central pixel has a lower gray level, otherwise it takes 0 [32]. For
L neighbors situated on a circle of radius R, the LBP code of a central pixel P is
computed as follows:

LBPL,R(P ) =
L−1∑
l=0

F (gl − gp) 2l (2.1)

where

F (s) =

 1, s ≥ 0
0, s < 0

(2.2)

gp is the gray value of the central pixel P and gl is the gray value of the lth neighbor.

• Secondly, neighbor pixels with the same binary value stick together to get several
“1” area and “0” area, so that only uniform patterns are considered. Note that
uniform patterns correspond to codes that contain two transitions from 1 to 0 (or 0
to 1) [32].
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• Thirdly, the size of the GLBP matrix is defined by all possible angle and width
values. Precisely, there are eight possible Freeman directions or angle values, while
the number of “1” in the uniform patterns can vary from 1 to 7. This yields a 7x8
GLBP matrix in which gradient values are accumulated.

• At last, the GLBP matrix constituting the histogram is exploded into a vector of
56 elements. The flow of calculation is shown in Figure 2.2.

Figure 2.2: GLBP feature extraction for each pixel [36]

2.2.3 Multiscale Local Oriented Gradient (MLOG)

The proposed descriptor is inspired from the LDGP descriptor (Local Directional Gra-
dient Pattern) which was developed for facial recognition. The LDGP descriptor has
significantly reduced the extraction as well as matching time, while maintaining similar
recognition rates as existing state of the art methods related to the application. It iden-
tifies the relationship between the high order derivatives of the referenced pixel in four
different directions to compute the micropattern which corresponds to the local feature
[37].
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MLOG is a local descriptor that takes in consideration multiple neighborhoods with
different radius for each pixel. Its multiscale particularity allows to encode nth order
derivatives for 3 sets of neighborhood in different directions.

• Set A: First order neighborhood with 5 directions of 0◦, 45◦, 90◦, 135◦ and 180◦(R =
1).

• Set B: Second order neighborhood with 5 directions of 0◦, 45◦, 90◦, 135◦ and 180◦(R =
2).

• Set C: Second order neighborhood with the 4 directions of 30◦, 60◦, 120◦ and 165◦(R =
2).

Figure 2.3 illustrates the three sets of neighborhoods.

Figure 2.3: From left to right: Sets A, B and C of neighborhoods

For each one of these sets, we extract features that will be concatenated in order to
form the final feature vector. These features are extracted as follows:

• For the set A:

1. The first step is to compute the 5 shifted versions of the given image I in
the directions 0◦, 45◦, 90◦, 135◦ and 180◦, while preserving the dimensions with
a padding. Thus obtaining the matrices I0◦ , I45◦ , I90◦ , I135◦ and I180◦ . Fig-
ure 2.4 illustrates a shifting example of a given image I in the directions
0◦, 45◦, 90◦, 135◦ and 180◦.

31



Figure 2.4: Example matrix ”a” shifted to form the matrices b, c, d, e and f, following
the directions 0◦, 45◦, 90◦, 135◦and 180◦, respectively

2. The second step is to compute the first order directional derivatives for each
pixel P0 from the given images Iθ, in their respective five directions of 0◦, 45◦, 90◦, 135◦

and 180◦ as follows:

I1
0◦(P0) = I0◦(P0)− I0◦(P1) (2.3)

I1
45◦(P0) = I45◦(P0)− I45◦(P2) (2.4)

I1
90◦(P0) = I90◦(P0)− I90◦(P3) (2.5)

I1
135◦(P0) = I135◦(P0)− I135◦(P4) (2.6)

I1
180◦(P0) = I180◦(P0)− I180◦(P5) (2.7)

After processing all the pixels, we obtain five different matrices of the first
order directional derivatives that are I1

0◦ , I1
45◦ , I1

90◦ , I1
135◦ and I1

180◦ .

3. The second order directional derivatives are computed for each pixel P0 from
first order derivatives as:

I2
0◦(P0) = I1

0◦(P0)− I1
0◦(P1) (2.8)

I2
45◦(P0) = I1

45◦(P0)− I1
45◦(P2) (2.9)

I2
90◦(P0) = I1

90◦(P0)− I1
90◦(P3) (2.10)

I2
135◦(P0) = I1

135◦(P0)− I1
135◦(P4) (2.11)

I2
180◦(P0) = I1

180◦(P0)− I1
180◦(P5) (2.12)
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This computation of the directional derivatives continues until the nth order
directional derivatives, which are calculated from the (n− 1)th order as:

Inθ (P0) = In−1
θ (P0)− In−1

θ (Pi) (2.13)

With i = 1, . . . , 5 and θ = 0◦, 45◦, 90◦, 135◦, 180◦ respectively.

Figure 2.5 depicts different order directional derivatives of a handwritten word.

a b c

d e f

Figure 2.5: MLOG order directional derivatives of set A. (a) orignal image, (b) 1st order
derivative, (c) 2nd order derivative, (d) 3rd order derivative, (e) 4th order derivative, (f)

5th order derivative.

4. Thereafter, the nth order directional derivatives are encoded through an en-
coding function F(.) to obtain MLOGn

A(P0) as :

MLOGn
A(P0) =


F(P0, In

0◦ , I
n
45◦ ),F(P0, In

0◦ , I
n
90◦ ),F(P0, In

0◦I
n
135◦ ),F(P0, In

0◦ , I
n
180◦ ),F(P0, In

45◦ , I
n
90◦ ),

F(P0, In
45◦ , I

n
135◦ ),F(P0, In

45◦ , I
n
180◦ ),F(P0, In

90◦ , I
n
135◦ ),F(P0, In

90◦ , I
n
180◦ ),

F(P0, In
135◦ , I

n
180◦ )


(2.14)

Where F(.) defines the encoding function that compares the pair of the nth

derivative directions of the pixel P0 as:

F(P0, I
m
α , I

m
β ) =

1 if Imα (P0) ≥ Imβ (P0)
0 otherwise

 (2.15)
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It is clear from equation 2.14 thatMLOGn
A computes a 10 bits binary pattern

for each pixel P0 using the corresponding derivatives in 0◦, 45◦, 90◦, 135◦ and
180◦ directions.

5. This 10 bits binary number is then converted into the equivalent decimal value
yielding a maximum number of 210 = 1024 possible values. Spatial histogram
of these decimal values is computed to represent the histogram feature of the
handwritten word for the set A. The obtained vector of size 1024 is normalized
according to the height and width of the image. Figure 2.6 shows an example
of calculation of MLOG of order 3 for the set A.

Figure 2.6: Example of MLOG3
A calculation for set A

Figure 2.7 summarizes the feature extraction process for the set A.
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Figure 2.7: Feature generation from set A

• For the set B:
We basically repeat the same procedure by considering the second neighborhood at
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directions 0◦, 45◦, 90◦, 135◦ and 180◦ with a radius of 2 as depicted in Figure 2.3.
This leads to a feature vector of 1024 elements.

• For the set C:
With a radius of 2, we repeat the same procedure but this time with four directions
that are 30◦, 60◦, 120◦, and 150◦ as presented it Figure 2.3, which leads to a feature
vector of 64 elements.

Note that the resulting feature vectors from sets A, B and C have common 0 values.
This allowed to reduce the size of the feature vectors as follows:

– Feature vector of set A: from 1024 to 72.

– Feature vector of set B: from 1024 to 72.

– Feature vector of set C: from 64 to 24.

Therefore, We obtain the final feature vector by concatenating the feature vectors
from the 3 sets, where experimentally determined weightings, ψ and φ are applied to the
vectors obtained from sets B and C, respectively. This results in a feature vector of 168
elements for a handwritten word image. Figure 2.8 illustrates this process.

Figure 2.8: Features extraction using MLOG descriptor
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2.3 Adopted classifier

Classification consists of assigning a class label to a set of unclassified instances. The
literature of writer identification reports the use of several classifiers from a simple distance
metric to the use of Convolutional Neural Networks. However, in this work, we chose to
use Support Vector Machine for writer identification.

2.3.1 Choice of classifier

Amongst all the classifiers reported in the literature, our choice fell upon Support
Vector Machine (SVM) classifier for writer identification from handwritten words. The
main reasons that make SVM one of the most performant classifiers in pattern recognition,
and thus justify this choice are as follows:

Guaranteed optimality: Owing to the nature of convex optimization, the solution
will always be a global minimum, not a local minimum.

SVM can be used for linearly separable as well as non-linearly separable data.

The kernel trick is the real strength of SVM. With an appropriate kernel function,
we can solve almost any complex problem.

It is effective in high dimensional spaces.

SVM models have good generalization in practice, there is a lower risk of overfitting
if the parameters are wisely chosen.

The next section will be a more in depth explanation about the functioning of this
classifier.

2.3.2 Support Vector Machine (SVM)

SVM was first introduced in 1995 by Vladimir N. Vapnik, but it was not until 1998,
that it began to be extensively used in pattern recognition, following the famous tutorial
of Christopher J. C. Burges [38] which presents a simple and effective formulation for the
use of SVM in pattern classification.

Support Vector Machine is a two-class supervised machine learning algorithm that
arises from the statistical learning theory. The aim is to construct a hyperplane or a set
of hyperplanes in a high or infinite dimensional space that guarantee an optimal separation
between the two classes. Intuitively, a good separation between the two classes is achieved
by the hyperplane that has the largest distance to the nearest training data points of any
class (so-called margin function), since in general the larger the margin the lower the
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generalization error of the classifier.
Indeed, as illustrated in Figure 2.9, there are several hyperplanes that correctly classify
all samples. However, the optimal choice is the one that gives the maximum marging
between the two classes. The Figure clearly shows that the margin of H1 is greater than
that of H2, hence, the optimal hyperplane is the one that gives this maximum distance
(in red).

Figure 2.9: Optimal margin hyperplane separator

For linearly separable data, hard margin is applied, where the entire training set needs
to be correctly classified (all points with the same label must be on the same side of the
hyperplane).

As depicted in Figure 2.10, the equation of the separating hyperplane is ~$ · ~X + b = 0
where ~$ is the normal vector to the hyperplane, b a constant(bias) and ~X the set of points
that belong to the hyperplane. Let ~Xi be a sample of training data with a label yi = +1
or −1. ~Xi satisfies one of the following two inequalities:

~$ · ~Xi + b ≥ +1, yi = +1 (2.16)

~$ · ~Xi + b ≤ −1, yi = −1 (2.17)
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Figure 2.10: Optimal margin hyperplane for linearly separable data

Equations 2.16 and 2.17 can be more conveniently expressed as:

yi
(
~$ · ~Xi + b

)
− 1 ≥ 0 ∀ i (2.18)

The margin being equal to 2
‖~$‖ , maximizing it leads to minimizing 1

2 ‖~$‖
2, the prob-

lem is then transformed to finding ~$ and b such that the expression 1
2 ‖~$‖

2 is minimized
and the constraint of the inequality 2.18 is verified.

After some optimization process, the decision function is obtained and given by:

f(X) = sign(
∑

Xi∈SV
αiyi ~Xi · ~X + b) (2.19)

Where:
~X : The data to be classified
~Xi : The vectors of the training data
yi : The class labels of the training data.
b : The bias.
αi : The lagrangian multiplier

In most real-word problems, data are not linearly separable. Therefore, SVM has been
generalized through two concepts: the soft margin and kernel functions to provide a linear
separation.
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• In the case of soft margin, SVM chooses a hyperplane while tolerating some data to
be misclassified. In this case, the inequality 2.18 becomes:

yi
(
~$ · ~X + b

)
− 1 ≥ ζi , ζi ≥ 0 ∀i (2.20)

Where ζ is a slack variable. An error is counted if ζ ≥ 1.
The term ∑

i ζi constitutes a higher limit on the number of misclassifications on the
training set. In this case, the calculated hyperplane does not necessarily correspond
to the optimal solution. To control the cost over errors, the term 1

2 ‖~$‖
2 is replaced

by 1
2 ‖~$‖

2 + C(∑i ζi). C is a user-defined parameter (C > 0) called the regular-
ization parameter that controls the trade-off between errors on training data and
the width of the margin. The bigger C is, the less misclassifications are tolerated.
Thus, the narrower the margin.
Using soft margin, the model tries to find the hyperplane that balances between the
two opposing constraints of maximizing the margin and minimizing the misclassifi-
cation.

• Admitting the misclassification of some samples can not always give a good gener-
alization for a hyperplane, even if it is optimized. Hence, the need of mapping the
feautres into a potentially much higher dimensional feature space via a non linear
mapping function K as shown in Figure 2.11. The decision function when employing
kernels becomes:

f(X) = sign(
∑

Xi∈SV
αiyiK( ~Xi, ~X) + b) (2.21)

Where K( ~Xi, ~X) is the kernel function.

It is worth mentioning that several kernel functions exist. The most convenient
and efficient kernel in most pattern recognition tasks is the Radial Basis Function
(RBF). Its flexibility and general purpose characteristics make it the optimal choice
in complex classification problems, such as writer identification from a single hand-
written word.

In the case of the RBF kernel, K( ~Xi, ~X) is defined as:

K( ~Xi, ~X) = exp

−
∥∥∥ ~X − ~Xi

∥∥∥2

2σ2

 (2.22)

Where σ is the standard deviation of the gaussian function. It defines how much
influence a single training example has on the boundary decision. The higher the
σ, the more influence each training example has on the boundary decision.
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Figure 2.11: Mapping features into a higher dimensional space

� Extension to multiclass classification

Traditionally, multiclass classification-based SVM is addressed through two different
strategies. The first strategy is the “one-versus-all” also referred to as “one-versus-rest”,
which involves training a single classifier per class, with the samples of that class as pos-
itive samples and samples of all remaining classes as negatives. Hence, N classifiers are
needed to separate N classes. Usually, classification of an unknown pattern is done ac-
cording to the maximum output among all binary classifiers. Although this strategy is
widely used, it suffers from 2 main problems. First, the range of the confidence values
may vary between the binary classifiers. Second, even if the class distribution is balanced
in the training set, the binary classifiers see unbalanced distributions because typically,
the set of negatives is much larger than the set of positives.

The second strategy is the “one-versus-one” also referred to as “pairwise coupling”,
which involves training N(N − 1)/2 binary classifiers to separate N classes. Each binary
classifier receives the samples of a pair of classes from the original training set. Usually,
classification of an unknown pattern is done according to the maximum voting, where
each SVM votes for one class.

It can seem logical that the total training time with the “one-versus-one” strategy
is larger than with the “one-versus-all”, because it is imperative to train more binary
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classifiers; but it is not true when the binary classifiers are SVM. Indeed, the training
time of an SVM increases more with the number of training samples. Thus, since each
sub-problem involves a small number of training samples and is easier to solve, it is
quicker to train the N(N − 1)/2 SVM of the “one-versus-one” strategy than the N SVM
of the “one-versus-all” strategy. Consequently, if the number of training samples is very
large, the training time can become problematic, and then the “one-versus-one” strategy
appears more suitable for practical use. In addition, for problems with a large number
of classes, like writer identification, the unbalanced number of the samples could cause
problems with the “one-versus-all” strategy, especially when it has few training samples
per class [39].

2.4 Conclusion

In this chapter, we introduced the feature extraction methods adopted in this work, es-
pecially the brand new proposed Multiscale Local Oriented Gradient (MLOG) descriptor.
Besides, we gave an overview on the selected Support Vector Machine classifier for writer
identification. However, the complexity of the target task in our work, which is identify-
ing the author from a single handwritten word, makes that a simple pattern recognition
system based on feature extraction and classification steps might not give the expected
results. Hence, when in the last years, a new generation of machine learning algorithms
called deep leaning had emerged, it is only rational to investigate the outcomes of using
such algorithms on such a highly complicated task.
Therefore, the next chapter is dedicated to the most modern deep learning algorithm that
is based on artificial neural networks, namely, Convolutional Neural Networks (CNN).
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Chapter 3

Convolutional Neural Networks



3.1 Introduction

In the last decade, artificial ntelligence has been witnessing a monumental growth in
bridging the gap between the capabilities of humans and machines by introducing deep
learning. As a part of a broader family of machine learning methods, deep learning is
based on artificial neural networks. Indeed, advances in computer vision with deep learn-
ing have revolved mainly over the well-known algorithm, called Convolutional Neural
Networks (CNN or ConvNet). Nowadays, CNN is considered as the best artificial intelli-
gence algorithm for image classification problems. In the literature of writer identification
from handwritten documents, CNN has been widely employed [40, 41]. However, only
one work dealing with writer identification from a single handwritten word is reported.
Indeed, in 2018, He et al,.[6] implemented a complex architecture of deep adaptive CNN in
order to get as much information as possible from handwritten words’ images to identify
the writer. Findings were promising, nevertheless, an important computational power
was needed, and training time was significantly high (7 to 9 hours).

Therefore, in the present work, we propose to investigate the use of CNN as an end-
to-end system and as a feature extractor. This chapter first provides a brief overview
of Artificial Neural Networks, before moving on to a detailed description of Convolu-
tional Neural Networks. For the implementation of this network, we adopt the famous
architecture VGG-16, which is the most used in image processing applications.

3.2 Artificial Neural Networks over time

Artificial Intelligence (AI) has grown considerably in recent years. Being at the cross-
roads of computer science, mathematics and neurobiology. AI aims to allow machines to
imitate or even simulate the behavior of the human brain, in order to solve very complex
problems, such as classification, recognition and detection. The history of artificial neural
networks goes back to 1943, when Warren McCulloch, a neurophysiologist and Walter
Pitts, a mathematician, wrote a paper in which, inspired by biological neurons, modeled
the first artificial neuron using electrical circuits.
In 1949, Donald Hebb wrote his book “The Organization of Behavior”, in which he pro-
vided further insights for the concept of neurons through explaining that neural pathways
are strengthened each time they are used. A discovery that provided essential knowledge
to the ways the human mind learns.
In the 1950s, as computers became more advanced, Nathanial Rochester from the IBM
research laboratories led the first attempt to simulate an artificial neural network.
In 1957, inspired by previous works, Frank Rosenblatt developed the model of the percep-
tron, representing the oldest neural network based on a single layer of neurons, which has
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two main flaws: it can only separate between two classes and the data must be linearly
separable.

Furthermore, at that time, computers did not have enough processing power to effec-
tively manage the time required by large neural networks. This stagnated the research
field of neural networks for many years, before it was recognized in the mid-1980s, when
computers reached higher processing power, that a neural network with two or more lay-
ers is much more powerful in terms of processing, than a single layer perceptron. This
led to the Multi-Layer Perceptron (MLP). However, the use of MLP model was put on
hold due to the lack of conceptual tools necessary to analyze and predict its behavior.
It was not until late 1980s, that neural networks really took off with the appearance of
back propagation learning algorithm [42]. Several other neural network models have been
developed to solve different problems, of prediction, classification, detection, and others.
However, these models require a prior feature extraction operation, mandatory to repre-
sent the data. More recently, the increase in the power of computing infrastructures has
enabled certain computers to process large amounts of data with deep learning, which
refers to artificial neural networks that contain in addition to the classical layers, several
layers dedicated to feature generation. The first model called LeNet was proposed by
LeCun et al., in 1998 [43], for the recognition of handwritten digits. Subsequently, several
models more suitable for other applications were proposed. In the following sections, we
will present some necessary definitions for understanding the CNN used in our work.

3.2.1 Perceptron

The most basic existing neural network is the perceptron, which is composed of a
single formal neuron. It is considered as the earliest learning process to be made, for
the classification of two linearly separable classes. A perceptron is composed of one or
many inputs, a processing unit and one output. As illustrated in Figure 3.1, given an
input vector A = (a1, a2, ..., aK), the neuron proceeds by a summation of the elements of
A, weighted by the elements of the weight vector W , where W = (w1, w2, ..., wK) ∈ RK .
Then, the resulting sum passes through an activation function Z(.), thus producing the
output O.

S =
K∑
i=0

aiwi (3.1)

The perceptron attempts to find a linear separation between two classes, i.e, it tries
to find a separating line defined by its slope wi,i 6=0 and its bias w0 which is considered as
just the weight of another input a0 = 1. Therefore, we can define the summation function
as given in equation 3.1.
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The activation function that follows, uses an activation threshold β to translate the
input signal into an output O. If the resulting input sum is greater than the threshold β,
then the neuron is activated and thus produces a positive output. Otherwise, the output
will be a zero.

Figure 3.1: Perceptron

3.2.2 Multi Layer Perceptron (MLP)

Multi Layer Perceptron is an extended version of the single layer perceptron. It is com-
posed of an input layer, one or more hidden layers and an output layer, where each neuron
of a layer is connected to all neurons of the adjacent layer, constructing a fully connected
network of at least three layers (see Figure 3.2). The number of neurons in the input layer
defines the dimension of the input feature, while the number of neurons in the output
layer defines the number of classes. Whereas the number of neurons in hidden layers is
considered a design issue. The fewer hidden neurons are, the harder it is for the model to
learn complex decision limits. On the other hand, the more hidden layers there are, the
less generalized the model becomes [36].

In order to determine the synaptic weights wi, MLP applies backpropagation when
learning, which consists of adjusting the weights of the network by minimizing the mean
squared error e between the actual output and the predicted output (µ̂, µ) respectively.

eµ̂,µ = 1
2

m∑
i=1

(µ̂i − µi)2 (3.2)
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Figure 3.2: Multi Layer Perceptron with one hidden layer

The synaptic weights are then modified as follows :

w(l + 1) = w(l) + ∆w(l + 1) (3.3)

where ∆w(l + 1) is the weight change over iteration (l + 1), calculated by:

∆w(l + 1) = −τ ∂e
∂w

+ ρ∆w(l) (3.4)

The two parameters τ and ρ, respectively learning rate and momentum, are used to ensure
stability of the convergence process by lowering the variations in weights changes over two
consecutive iterations.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNet) are an extension of MLP that al-
low to effectively overcome the flaws of the latter. They are designed to automatically
extract features of the input data. They were initially inspired by the discovery made by
Hubel and Wiesel, in 1962, where they noted that particular patterns stimulated activity
in specific parts of the cats brain [44]. The first use of these networks was carried out by
Fukushima with the self-organizing map (SOM) for features extraction using unsupervised
learning [45]. In pattern recognition, an important development was attained by LeCun
et al., in [43], who proposed LeNet architecture for the handwriting digit recognition.
CNN eliminates the need for manual feature extraction. It extracts features and assigns
learnable weights and biases to various aspects of the image in order to differentiate one
from the other. Technically, each input image will pass through two blocks of layers. A
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first block containing the convolutional layers which are responsible for generating the
characteristics, and a second classification block which contains the Fully Connected lay-
ers, similarly to the Multi Layer Perceptron (MLP). Figure 3.3 depicts the arrangement
of the layers in a CNN.

Figure 3.3: CNN layers

3.3.1 Feature extraction layers block

This first block makes the particularity of this network, since it functions as a feature
extractor. The first layer of this block filters the image with several convolution kernels,
and returns features which are normalized or resized via an activation function, yielding
a feature map. This process can be repeated several times. Obtained feature maps are
filtered using new kernels each time, which gives new features to normalize, filter again,
and so on. Finally, the values of the last features are concatenated and flattened into a
column vector [46]. This vector defines the output of the first block, and the input of the
second.
More precisely, there are essentially two types of layers in this part of the network. The
convolutional layers and the pooling layers.

� Convolutional layers
A 2D convolutional layer extracts features from an input image and preserves the
relationship between pixels by learning these image features using squared filters.
It takes two inputs: image matrix of dimension h x w x d (where h is the height,
w is the width and d is the number of channels) and a filter or kernel of dimension
fhxfwx d. Typically, the input of the convolutional layer is an RGB color image, so
it is represented by 3 channels. In the case of a binary or grayscale image, the input
image of the convolutional layer is represented by a single channel. The output
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matrix is calculated with sequential dot product between the filter and a part of
the input matrix. The filter is dragged across the image from left to right, top to
bottom, with a number of steps called strides, to perform the same calculation as
depicted in Figure 3.4.

Figure 3.4: 2D convolutional layer

� Pooling layers
The pooling layer performs an image sub-sampling operation according to the spatial
dimensions width and height only. The input image is divided into a series of non
overlapping squares. This type of layer is frequently inserted between two successive
convolutional layers of a CNN architecture to reduce the number of parameters and
required computational power, while preserving their most important characteris-
tics. In practice, the image is divided into adjacent small square cells, spaced from
each other by a stride, in order to not lose too much information. The same number
of output images as input images is obtained but each image has a lower number of
pixels [46]. There are two main types of pooling: max-pooling and average-pooling.
Max-pooling returns the maximum value from the portion of the image covered by
the kernel. On the other hand, average-pooling returns the average of all the values
from the portion of the image covered by the kernel. In practice, max-pooling is the
most used and performs a lot better than average-pooling. Figure 3.5 represents an
example of max-pooling and average-pooling operations.
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Figure 3.5: Example of pooling operation

� Flatten layer
This is the last step in the feature extraction block. Flattening consists of concate-
nating the rows of matrices in a one-dimensional vector that we can connect to the
prediction block (see Figure 3.6).

Figure 3.6: Flatten layer illustration connecting the pooling layers to the fully connected
layers
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3.3.2 Classification layers block

Classification is done through Fully Connected (FC) Layers, similar to the Multi-Layer
Perceptron. The objective of the FC layers is to use the input flatten vector to learn the
best parameters to classify the image into a class. In practice, several layers are placed
one after the other to reinforce features learning and improve decision-making. ”Dropout”
can be partially applied on these layers in order to reduce overfitting and learning time by
reducing the number of parameters to define. The last FC layer returns the CNN output,
which corresponds to a vector of size equal to the number of classes. The neurons in this
layer use the softmax activation function to provide the probabilities with which an input
image belongs to different classes [47].

Figure 3.7: A fully connected neural network

3.3.3 CNN parameters

In addition to the parameters of the MLP (learning rate, momentum, number of epochs,
number of hidden layers and units), which are used in the block of the FC layers, several
parameters are used to manage the convolution block. This section briefly reviews all of
these parameters.

� Filter
The convolution consists of sliding a series of filters or convolution kernels over the
input image. The choice of filter values, their size and their number (also called
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depth) is an experimental task. “Depth of the convolutional layer” refers to the
number of kernels used, which is the origin of the name ”Deep learning”. If we use
a number of q filters, the image will be convoluted q times. This process creates
q filtered matrices called “feature maps”. An example of filtering is illustrated in
Figure 3.8. In most of the predefined CNN architectures, there is always a default
choice specific to the application for which the model was built [48].

Figure 3.8: Deep leaning feature maps

� Activation functions
They are mathematical functions that discern the output of a neural network. They
determine whether a neuron should be activated or not, based on its relevance to
the model’s prediction. There are many types of activation functions, we cite three
of them:

Rectified Linear Unit (ReLU) function : Mostly applied in Convolutional
Neural Networks, after convolutional layers. It sets all negative values to 0 and
keeps the positive values unchanged. It is used in order to increase the non-
linearity of the network. It is described by the following equation:

G(E) = max(0, E) =

 E if E ≥ 0
0 otherwise

(3.5)

Exponential Linear Unit (ELU) function : ELUs result negative and
positive values, allowing to push mean unit activation towards zero, in a pro-
cedure similar to normalization but with lower computational complexity [49],
hence, speeding up the learning of the model. It is described by the following
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equation:

G(E) =

 E if E ≥ 0
α
(
eE − 1

)
otherwise

(3.6)

Where α is a parameter to define.

Softmax function: Commonly used in the last layer of the network, it is
a normalization function that gives an approximation of the probability for a
class being correct. The probability value is calculated as follows:

G (ej) = exp (ej)∑
i exp (ei)

(3.7)

Where ej is the considered element j of the input vector.

� Stride
Stride is the number of pixels shifted over the input matrix. When the stride is 1,
then we move the filters with 1 pixel at a time. When the stride is 2, then we move
the filters with 2 pixels at a time and so on.

� Zero-padding
After each convolutional layer, the size of the resulting image is smaller than that
of the input image, because the filter cannot process the border pixels. If multiple
convolutional layers are used, the output image will be very small compared to the
input image. To keep the same size as the input image, the zero-padding adds zeros
to the edges of the image, taking into account the size of the filter. In this way,
whatever the number of convolutional layers, the output image has the same size as
the input image.

� Dropout
It is a technique used during the training phase, designed to reduce the test error
and avoid the problem of overfitting linked to fully connected layers. The principle
of using the dropout is to randomly switch off neurons so that the network will be
more reactive and therefore be able to learn faster. Figure 3.9 presents an example
of the technique.
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Figure 3.9: Dropout neurons during training phase

3.4 Adopted CNN model: VGG-16

Training CNN to solve a problem is a very complicated task. On one hand, several
parameters require adjustment by the user such as number of convolutional layers, num-
ber of filters, size of filters, number of FC layers, number of neurons, etc. On the other
hand, the optimization of hundreds of thousands of interconnection weights between the
different layers, requires a large amount of training data, which is not always available in
real life applications. In addition, the training of a CNN containing several convolution
blocks, can only be done on powerful machines with a Graphic Processor Unit (GPU). To
overcome these limitations, several researchers have developed specific CNN architectures
and techniques such as “Transfer learning”. As we trained CNN on personal computers
or on Google Colaboratory with limited resources, we opted for the use of the VGG-16
architecture, that has been proposed for processing natural images. VGG-16 is a con-
volutional neural network model proposed by K. Simonyan and A. Zisserman from the
University of Oxford in the paper “Very Deep Convolutional Networks for Large-Scale
Image Recognition” [48]. The model achieved 92.7% TOP-5 test accuracy on ImageNet,
which is a dataset of over 14 million images belonging to 1000 classes. This model im-
proves AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second
convolutional layer, respectively) with multiple 3x3 kernel-sized filters one after another.
The architecture of VGG-16 is depicted in Figure 3.10.
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Figure 3.10: VGG-16 model configuration for ImageNet dasaset

The input of the first convolutional layer is an RGB image of size 224 x 224 x 3. The
image is passed through a stack of convolutional layers, where the filters were of size 3x3
(which is the smallest size to capture the notion of left/right, up/down, center). The
convolution was carried out by 13 convolutional layers. The convolution stride is fixed
to 1 pixel; the spatial padding of the convolutional layer’s input is such that, the spatial
resolution is preserved after convolution, i.e. the padding is 1-pixel for 3x3 convolutional
layers. Spatial pooling is carried out by five max-pooling layers, which follow some of
the convolution layers (not all of them are followed by max-pooling). Max-pooling is
performed over a 2x2 pixel window, with a stride of 2.
After the stack of convolution and max-pooling layers, we obtain (7, 7, 512) feature
maps, which are flattened into a feature vector of (1, 25088). Following this, are 3 Fully-
Connected layers (FC), with the first two, having 4096 channels each and the third,
performing 1000 classes classification, and thus containing 1000 channels (one for each
class). The final layer is the softmax layer. Note that, the name VGG-16 came from the
13 convolutional layers plus the 3 FC layers. Figure 3.11 summarizes VGG-16 configura-
tion.

VGG-16 consists of 138 million parameters, which can be challenging to handle as it
would require huge computational power resources and a lot of training time. Therefore,
a more convenient approach is used which is ”Transfer Learning”. This last is a machine
learning technique, where a model trained for a task is reused as the starting point for
training a model on a second task. In our case, we used the parameters of VGG-16
model trained on ImageNet, as a starting point for training our model to perform writer
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identification from single handwritten words and extract the most meaningful features.

Figure 3.11: VGG-16 configuration

3.5 Conclusion

In this chapter, we started by discussing the history of Artificial Neural Networks,
then we detailed Convolutional Neural Networks and their main parameters. We also
presented VGG-16, which is the adopted CNN model for writer identification from a
single handwritten word. In the next chapter, we will present the results of the VGG-16
model, the descriptor-based methods presented in chapter 2 and eventually the results
of the fusion between the extracted features from VGG-16 and MLOG to improve writer
identification from a single handwritten word.

56



Chapter 4

Experimental results



4.1 Introduction

This chapter is dedicated to analyse the performance of different implemented sys-
tems for writer identification using single handwritten words. Precisely, the first part
of experiments discusses and compares descriptor-based systems, namely pixel distribu-
tion, Gradient Local Binary Patterns (GLBP) and the proposed Multiscale Local Ori-
ented Gradient (MLOG), during which, the best order derivative of MLOG is identified.
Then after, MLOG performances are investigated for both writer-dependent and writer-
independent approaches. In a second part, the performance of the adopted CNN-based
system, namely, VGG-16 is evaluated for writer-dependent approach. Finally, features
generated from MLOG descriptor and the configured VGG-16 are fused to form hybrid
features, which are fed to SVM classifier for more robust writer identification from single
handwritten words.

Experiments are conducted on two benchmark datasets using Python environment to
which, several libraries of neural networks and image processing have been associated,
namely, Keras, TensorFlow and OpenCV. Tests are carried out on an Intel Core I7 CPU
(2 x 2.5GHz) with 8GB RAM and a GPU provided by Google Colaboratory for the CNN
implementation.

4.2 Datasets

In this work, writer identification using single handwritten words is addressed in a
supervised classification manner, hence, labeled data are required. Therefore, we adopted
two benchmark datasets, namely, ICDAR2011 and IAM presented below. These two
datasets are collected in a multi-script and multi-writer environment.

4.2.1 ICDAR2011 dataset

ICDAR20111 handwriting dataset was offered as a part of the writer identification con-
test organized by the International Conference on Document Analysis and Recognition
” ICDAR ” in 2011. This dataset involves 26 writers, each contributed with eight text
documents in four different languages : English, French, German and Greek. Another
version of this dataset exists, which is the cropped ICDAR2011, that contains the same
documents, but only the first two text lines from each document are taken. In this work,
we used the cropped ICDAR2011, which needed to be segmented to words as explained
previously, yielding into 25 words for each writer in each of the four languages. The hand-
written words are saved as TIF binary images. Figure 4.1 shows examples of ICDAR2011

1users.iit.demokritos.gr/˜louloud/Writer˙Identification˙Contest/index.html.
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cropped images.
In our experiments we perform language-independent and language-dependent writer
identification. Language-dependent considers each language as an individual set, namely,
German (DE), English (EN), French (FR) and Greek (GR). As to language-independent
experiments, two corpora were collected, a Latin alphabet-based ”ICDAR-3”, composed
of German, English and French, giving 75 words per writer. The second set ”ICDAR-4”,
considers all four languages mixed, giving 100 words per writer. As for most of classifi-
cation and data-mining tasks as well as writer identification, 2/3 of the samples are used
for the training step, while the remaining 1/3 are used for testing the system.

Figure 4.1: Examples of ICDAR2011 cropped images

4.2.2 IAM dataset

IAM2 is a handwriting dataset that contains forms of handwritten English text (see
Figure 4.2), which can be used for several tasks including writer identification. It was
first published at the ICDAR 1999 contest. The database contains forms of unconstrained
handwritten text, which are scanned at a resolution of 300dpi and saved as PNG images
with 256 gray levels. Therefore, we needed to perform binarization of the given words.

IAM 3.0 is the latest available version. It is structured as follows:

• 657 writers

• 1539 pages of scanned text

• 5685 isolated and labeled sentences

• 13353 isolated and labeled text lines

• 115320 isolated and labeled words
2fki.inf.unibe.ch/databases/iam-handwriting-database.
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In our work, two corpora are collected to perform writer identifiation from single hand-
written words. The first corpus ”IAM-1”, contains 100 writers that contribute each with
310 words. The second corpus ”IAM-2”, contains also 100 writers but by collecting 60
words for each writer. Samples in each corpus are divided in 2/3 for training and 1/3 for
testing.

Figure 4.2: Some examples of IAM handwritten images (text, line, words)

Table 4.1 summarizes the data distribution for all corpora of ICDAR2011 and IAM
datasets for the writer-dependent approach.

IAM-1 IAM-2 ICDAR
(DE, EN, FR, GR) ICDAR-3 ICDAR-4

Number
of training

samples
210 40 17 51 68

Number
of testing
samples

100 20 8 24 32

Table 4.1: Data distribution for writer-dependent approach
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4.3 Software, libraries and hardware

In this section, we provide a brief overview of the programming language and software
tools employed in our work, namely, Python3, Keras4, TensorFlow5, OpenCV6, along with
the hardware used.

4.3.1 Python
Python is an interpreted, object-oriented, high-level open

source programming language created by Guido van Rossum
and released in 1991. It emphasizes readability through
its simple, easy to use syntax, and thus reduces the cost
of program maintenance. Python supports numerous very
stable modules and packages, making it an attractive and
versatile language that can be used in many areas, such as,
web development, data analysis and the increasingly popular
fields of Machine Learning and Artificial Intelligence. Python
is also a very powerful programming language, which opens
the way widely to complex project development. In our work,
we used Python version 3.6.

4.3.2 Keras
Keras is an open source high level python library imple-

mented to support Deep Neural Networks (DNN). It provides
a convenient interface for users to manipulate DNN by lever-
aging other libraries such as Theano, CNTK, and TensorFlow.
This allows it to handle multidimensional data tables. For our
application, we have associated Keras to TensorFlow. In our
work, we used Keras version 2.3.1.

3python.org/.
4https://keras.io/.
5tensorflow.org/.
6opencv.org/.
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4.3.3 TensorFlow
TensorFlow is an open source library originally developed

by researchers from the Google Brain team for conducting
research on Machine Learning and Deep Neural Networks. It
provides workflows and differentiable programming tools, and
allows a manipulation on different levels of abstraction. It
can be built on Python, Javascript and Swift, and is easily
deployed on CPUs (Central Processing Unit), GPUs (Graphics
Processing Unit) and browsers. The version used in this work
is TensorFlow 2.2.0.

4.3.4 OpenCV

OpenCV (Open Source Computer Vision) is an open source
library that proposes more than 2500 optimized algorithms
dedicated to computer vision, machine learning and image
processing applications. It is adapted for use in many lan-
guages including C++ and Python. The version used in this
work is OpenCV 4.2.0.

4.3.5 Hardware

Conducted tests in this work were mostly on an Intel Core I7 CPU (2x2.5GHz) with
a RAM of 8Go. However, an Intel Xeon four processors (2x2.2GHz) 25 Go RAM virtual
machine, backed with 16GB NVIDIA Tesla P100 GPU provided by Google Colaboratory
was used for the CNN part of our work. The virtual machine is exploitable up to 12 hours
continuously and its GPU sped up the processing by more than 35 times compared to the
normal CPU usage.

4.4 Evaluation criteria

In order to evaluate the performance of our writer identification systems, two evaluation
measures have been used, so called classification accuracy and TOP-k. The former was
used in the evaluation of the writer-dependent approach, whereas the latter was employed
to evaluate the writer-independent approach.
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4.4.1 Classification accuracy

When the term ”accuracy” is used, it usually refers to classification accuracy, which is
defined as the ratio of the number of correct predictions made by the model in question
over the the total number of predictions. Let L̂i, Li and Ns be the predicted class of the
test sample i, the correct class of the test sample i and the number of samples respectively.
We can express the accuracy mathematically with the following equation :

Accuracy = 1
Ns

Ns∑
i=1

f
(
L̂i, Li

)
(4.1)

Where f(a, b) is defined as :

f(a, b) =

 1 if a = b

0 if a 6= b
(4.2)

4.4.2 TOP-k

This evaluation metric considers that the model has successfully predicted the writer of
the query word, if at least the correct writer appears among the TOP-k predicted writers.
Let Qi be the query word labeled Li, and let Rj (j = 1, 2, ...NR) be the reference word with
NR the number of references. We define Pi,j as the probability of Qi and Rj belonging to
the same writer. We thus obtain a vector of probabilities Pi = [Pi,1, Pi,2, Pi,3, Pi,NR

]. These
probabilities are then ordered decreasingly from the highest to the lowest probability. We
consider that the writer of Qi is correctly predicted if Li exists among the labels of the
TOP-k ordered probabilities.

4.5 Experimental protocol

Writer identification from a single handwritten word is addressed through different
approaches; writer-dependent and writer-independent, but also through different systems,
which are descriptor-based system and CNN-based system. Hence, experimental protocols
are different and are explained in what follows.

4.5.1 Descriptor-based system

The descriptor-based system extracts features and feeds them to SVM classifier. These
features in question are calculated using pixel distribution, GLBP and MLOG descriptors.
Each of these descriptors needs some tuning. Indeed, pixel distribution and GLBP are
locally computed by applying a uniform grid over word images. The uniform grid divides
the input image into a number of predefined cells, computes the features for each cell, and
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then proceeds to the concatenation of all cell features to form the image feature vector.
In our experiments, the grid size was varied from 1x1 to 40x40 cells for computing pixel
distribution, and from 1x1 to 4x8 cells for GLBP features. Furthermore, experiments
were conducted to rise MLOG performance by choosing the suitable order directional
derivatives, along with the weights given to sets B and C (refer to in chapter 2). The
weights were varied in the range [0.05 : 0.05 : 1]. To evaluate SVM classifier for writer
identification, RBF kernel was used, and tests were executed by varying the regulariza-
tion parameter C in the range [0.01, 10000], while the RBF kernel sigma was varied in the
range [10−9, 100]. In each test, the couple giving the best training accuracy was selected.
As to the writer-independent approach, in the training phase, the extracted features are
used to create the dissimilarity space according to the transformation presented in chapter
2. Indeed, within-class dissimilarities (+) are computed between all possible pairs of ref-
erences for the same writer, while between-class dissimilarities (-) are calculated between
all possible pairs of references for different writers. This yields, obviously, to a negative
class that is much more represented than the positive class. Hence, to overcome this
unbalanced problem, a number of negative dissimilarities are chosen randomly according
to the number of positive dissimilarities, since the representation of the negative class
is less important. In the testing phase, given a query image Qi belonging to writer Wi,
we compute the distance between its feature vector, and each of the reference samples of
each writer, including writers that did not take part in the training phase. The resulting
distances are fed to the previously trained SVM model, giving as output, a probability
vector. The performance is evaluated based on TOP-k metric. Note that, in order to com-
pute the dissimilarities, a comparative study is conducted using Euclidean, Manhattan,
Canberra and Chi-square distances.

4.5.2 CNN-Based system

The adopted CNN-based system is a modified version of the VGG-16 configuration built
for ImageNet dataset. Instead of input images of size 224 ∗ 224 ∗ 3, we use normalized
64∗64∗3 images. As for the Fully Connected layers, we adopt the configuration depicted
in Figure 4.3. The size of the first layer H is set to 512 neurons for IAM-1, IAM-2,
ICDAR-3 and ICDAR-4. As to ICDAR individual language corpora, H is set to 1024
neurons.

Furthermore, the second FC layer is set to 128 neurons. The last FC layer represents
the number of classes M , either 100 for IAM or 26 for ICDAR corpora. The activation
functions employed are ReLU, ELU and Softmax for the first, second and third layer
respectively.
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Figure 4.3: The adopted Fully Connected layers

Using ”Transfer Learning” technique, our model starts the training process using the
weights provided from the pre-trained ImageNet model. The last 4 convolutional layers
remain trainable, while dropout of 20% for IAM and 50 % for ICDAR is employed between
the first two FC layers in order to reduce overfitting. Along with the activation functions
of the FC layers, we also determine other parameters experimentally, which are:

? Learning rate (Lr); set to 5e-6 for both IAM corpora and 1e-6 for all ICDAR corpora.

? Optimizers (opt): RMS (Root Mean Square) optimizer for both IAM corpora and
Adam optimizer for all ICDAR corpora.

? Batch size (bt): set to 10 for all corpora.

? Number of epochs: varied in the range [30,500].

4.6 Results of the descriptor-based system

This section presents descriptor-based system results for writer identification from a
single handwritten word for both approaches; writer-dependent and writer-independent.
Indeed, it investigates several influent parameters such as MLOG order directional deriva-
tive, the distance used for the dissimilarities computation, the number of training writers,
and the number of references per writer.

4.6.1 Writer-dependent results

First, MLOG order directional derivative needs to be tuned along with the weights
given to each set B and C, then MLOG performance is compared to pixel distribution
and GLBP.
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� MLOG order experiment
In order to define the most suitable nth order directional derivative of MLOG for writer
identification from single handwritten words, different orders are tested from 0 to 10, along
with the weights assigned to sets B and C, which are varied in the range [0.05:0.05:1].
Experiments are conducted for all corpora, since similar behavior is observed, only re-
sults obtained using IAM-2 corpus are presented in Figure 4.4. As we can see, accuracy
inceases from 45,25% for the 1st order, reaching a maximum accuracy of 63.70% for the
5th order before decreasing to 54,10% for the 10th order derivative. Hence, the 5th order
directional derivative seems to be the most appropriate to characterize the handwriting
style of the writer. Note that, for this order value, weights of sets B and C are set to 0.7
and 0.3, respectively.

63,70

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Order

Figure 4.4: MLOG order directional derivative variation

� Descriptors comparison results
Once MLOG order is defined, its performance is compared to two descriptors that have
proven their efficiency in many applications related to handwriting. Note that the results
of pixel distribution and GLBP given in Table 4.2, are those obtained for the best grid
size configuration. Recall that writer identification from single handwritten words, is a
very challenging task, and the obtained results testify. Indeed, pixel distribution accura-
cies are very low for all corpora. GLBP outperformes pixel distribution with accuracies
that vary between 37.72% for Greek language and 47.97% for IAM-1 corpus, but remains
insufficient. Nevertheless, MLOG outperformes both pixel distribution and GLBP, where
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its accuracies vary from 61.53% for Greek language to 76.94 % for IAM-1, allowing a gain
that varies between 17.89% to 29.71% compared to GLBP. The reason for which Greek
language performances are always the lowest, seems to be that, Greek alphabets are more
complicated to characterize than Latin alphabets. On the other hand, IAM-1 provides
the best accuracies because it contains much more data than the other corpora. Indeed,
each writer is represented with 210 words during training phase, so with that many in-
formation, the handwriting style of the writer can be captured.

IAM-1 IAM-2 DE EN FR GR ICDAR-3 ICDAR-4

Pixel-D 30.77 20.25 28.25 23.21 16.83 19.23 27.94 22.50

GLBP 47.97 39.90 42.30 44.61 38.46 37.72 42.56 40.96

MLOG 76.94 63.70 70.19 62.50 62.05 61.53 72.27 70.31

Table 4.2: Descriptor-based system results for writer-dependent approach (%)

4.6.2 Writer-independent results

Once the performance of MLOG in writer identification from single handwritten words
in writer-dependent approach is established, it is only fair to investigate writer-independent
approach using this particular descriptor. In addition, in this approach, three important
parameters need to be discussed, which are the influence of the distance in dissimilarities
computation, the influence of the number of writers and the number of references per
writer in the training stage.

� Distance influence in dissimilarities computation
Four distances that are Euclidean, Manhattan, Canberra and Chi-square are investigated
in the dissimilarities calculation for writer-independent approach to determine the most
suitable one. Experiments are carried out for all corpora. The results in terms of TOP-1
are given in Figure 4.5 for IAM-2 and ICDAR individual languages. Results show that
Euclidean and Manhattan distances are far behind Canberra and Chi-square distances.
These last two distances, behave similarly. Indeed, for TOP-1, Canberra distance is
slightly better for IAM-2, with 50.23 %, against 50.15 % provided by Chi-square distance.
As for ICDAR individual languages, Chi-square offers an improvement that varies be-
tween 3.85 % for English language and 8.45 % for German language. Whereas, Canberra
distance offers a gain that varies between 0.76 % and 2.31 % for Greek and French lan-
guages, respectively. Roughly, we can conclude that Canberra distance is more adapted
to IAM dataset, while Chi-square distance is more suitable for ICDAR dataset.
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Figure 4.5: Distance influence on the writer-independent approach

� Influence of the number of training writers
Recall that, the independent approach carries the advantage of identifying writers that
were not involved in the training process of the model. Therefore, we investigate the num-
ber of writers necessary in the training phase to learn at best the boundaries of within-class
dissimilarities (+) and between-class dissimilarities (-). Experiments are conducted on all
corpora, but as for IAM corpora no influence is observed whatsoever, we present only
the impact of the number of writers for ICDAR corpora using Chi-square distance. Re-
sults are reported in Figure 4.6. Tests were carried out using 15 references per writer
for each individual language, 45 (15 x 3) references per writer for ICDAR-3 and 60 (15 x
4) references for ICDAR-4. Obtained results demonstrate that no significant influence is
noticed regardless to the corpus. In light of these outcomes, it is clear that, using MLOG
descriptor, the number of training writer has no impact. These outcomes testify for the
power of MLOG descriptor associated with the right distance to characterize handwriting
style, such that the boundary between positive class (+) and negative class (-) in the
dissimilarity space, does not rely on the number of training writers.
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Figure 4.6: Influence of the number of writers using Chi-square distance

� Influence of the number of references per writer
After the choice of the distance used and the investigation of the impact of the number of
writers, which is ultimately not one, comes the investigation of the influence of the number
of references per writer. For that, experiments are conducted by fixing the number of
training writers to 10 for all corpora and varying the number of references according to
data availability in each corpus. Similar behavior is observed, but once again to lighten
the reading, only results for IAM-2 and ICDAR individual languages are given in terms of
TOP-1 in Figure 4.7. Findings show that, the higher the number of references, the higher
TOP-1 is. For example, for ICDAR DE, TOP-1 is at 34.23% using only 5 references and
reaches 60.76% using 20 references. Another example, for IAM-2, TOP-1 is at 36.96%
using only 10 references and reaches 50.23% using 40 references per writer. In light of
these outcomes, it is clear that the number of references has an important impact on
the prediction performance. This is explained by the fact that increasing the number of
references, minimizes the variability within a writer class. Since more information on the
handwriting style of the writer is collected, it is more likely that the query image will be
correctly attributed to its writer. Note that, for the rest of the experiments, the highest
reference number is retained since it gives the best performance.
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Figure 4.7: Influence of the number of references per writer

After a long investigation on different factors that can impact the performance of writer
identification from single handwritten words, Tables 4.3 and 4.4 summarize the best per-
formances reached from TOP-1 to TOP-10 for each corpus, using Canberra and Chi-square
distances respectively, in the case of writer-independent approach. From the examination
of these tables, three outcomes need to be highlighted: first, Chi-square distance performs
better for corpora IAM-1, ICDAR DE, ICDAR EN, ICDAR-3 and ICDAR-4, while Can-
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berra distance shows a better performance for corpora IAM-2, ICDAR FR and ICDAR
GR. Secondly, the number of writers used in training phase does not have any influence.
Last but not least, TOP-1 performances vary from 44.62% for ICDAR GR to 60.76% for
ICDAR DE, and at best, a performance of 58.10% for IAM-1. Note that, from TOP-5,
performances are rather satisfying. One can say that, these performances are far from
what we are used to see in several handwriting applications, especially writer identifica-
tion from document. However, keep in mind that the tackled task of writer identification
from single handwritten words is very complex and challenging.

TOP-k 1 2 3 4 5 6 7 8 9 10

IAM-1 53.5 65.9 73.5 76.7 79.5 81.4 82.9 83.8 84.7 85.4

IAM-2 50.23 63.6 70.05 74.75 77.85 80.2 82.05 83.4 84.9 86.2

DE 52.31 64.61 74.62 80.77 83.84 84.61 86.15 89.23 90.77 90.77

EN 45.38 59.23 66.92 71.54 77.69 82.31 86.15 87.69 90.00 91.54

FR 49.23 59.23 65.38 67.69 71.53 77.69 79.23 82.3 83.84 85.38

GR 45.38 53.84 62.3 66.92 69.23 73.07 76.92 77.69 80.76 83.07

ICDAR-3 52.82 65.12 73.84 79.48 82.05 83.59 86.15 87.43 88.46 89.74

ICDAR-4 50.38 63.65 71.15 76.92 80.00 81.73 85.00 86.34 87.69 89.04

Table 4.3: Writer-independent results for MLOG using Canberra distance (%)

TOP-k 1 2 3 4 5 6 7 8 9 10

IAM-1 58.10 69.00 73.60 76.50 79.70 81.30 82.80 84.20 84.70 85.50

IAM-2 50.15 62.70 68.90 73.70 76.40 78.05 80.90 82.40 83.75 84.55

DE 60.76 71.53 78.46 81.53 83.84 85.38 87.69 90.76 91.53 92.30

EN 48.46 65.38 72.31 79.23 80.77 83.08 86.15 86.92 89.23 89.23

FR 46.92 60.76 67.76 69.23 72.30 76.92 79.23 80.00 80.00 83.84

GR 44.62 51.54 61.54 66.15 68.46 70.77 74.62 76.15 78.46 81.54

ICDAR-3 56.15 67.95 75.38 79.74 82.82 85.38 86.92 87.69 87.69 89.23

ICDAR-4 53.46 64.42 73.07 79.23 81.92 84.42 85.96 86.92 87.88 89.42

Table 4.4: Writer-independent results for MLOG using Chi-square distance (%)
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4.7 Results of the CNN-based system

Convolutional Neural Network VGG-16 model as presented in section 4.5.2 is used as
a feature extractor. However, this architecture was first tested on writer-dependent ap-
proach to see how it performs on such a task. Results are reported in Table 4.5. The first
major drawback of using CNN, is the need for very large amount of data in the training
stage to perform well. Recall that, for each writer, IAM-1 contains 210 training samples,
IAM-2 contains 40 training samples, each ICDAR individual language contains 17 train-
ing samples, mixed ICDAR-3 contains 51 training samples, and finally mixed ICDAR-4
contains 68 training samples. As can be observed, the amount of data is very small,
especially for ICDAR individual languages. Obtained results show very poor accuracies
compared to those obtained using MLOG descriptor, except for IAM-1 corpus which gave
an accuracy of 72.94% against 76.94% using MLOG. As to other corpora, a loss that varies
between 13.62% and 30.77% is observed, compared to MLOG descriptor. This loss is huge
for writer-dependent protocol, however, it is explained by the lack of data, and probably
due to the last output FC layer. Nevertheless, in real-world applications, it proves to be
difficult to have large datasets. In order to overcome these limitations, the architecture
of a hybrid CNN–SVM model is proposed, by replacing the last output FC layer of the
VGG-16 model with an SVM classifier. Output units of the last FC layer in the CNN are
the estimated probabilities for the input data. These values can be treated as features for
any other classifiers. Moreover, hoping that CNN will perform better, ICDAR individual
languages were tested on the model of mixed ICDAR-3 or ICDAR-4, since they contain
more data. Obtained results given in Table 4.5 show an improvement that varies from
0.97% to 21.15%. The gain for ICDAR individual languages is more than 14%, which is
not negligible at all. However, obtained performances are still far from those obtained
using MLOG descriptor. Consequently, we propose to fuse MLOG features and CNN
features to form hybrid features that will be fed as an input vector to SVM classifier.
This feature fusion will be discussed in the next section.

IAM-1 IAM-2 DE EN FR GR ICDAR-3 ICDAR-4

CNN 72.94 49.00 39.42 40.38 34.62 31.17 58.65 52.40

CNN-SVM 73.60 53.35 60.57 54.32 53.85 49.52 55.76 53.37

Table 4.5: Writer-dependent results for CNN-based system (%)
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4.8 Hybrid features fusion to improve writer identi-
fication

Hybrid features system combines features of different nature. Indeed, it fuses MLOG
features with CNN features from the second FC layer that provides a feature vector of 128
elements. Since these features are of different nature, they do not stand in the same range,
hence a two normalization step of the 128 CNN features is needed. First, a normalization
in the range [0, 1] is applied as follows:

X1 = X −Xmin

(Xmax −Xmin) ∗ (max−min) +min (4.3)

Where min and max correspond to the new range [0,1], and X corresponds to the
input 128 feature vector.
Second, the resulting normalized CNN features are given an experimentally determined
weight, varied in the range [0.0035, 0.0075]. Consequently, a feature vector of 296 values
is obtained, and is referred to as “hybrid feature vector”. Figure 4.8 illustrates the process
of the fusion of hybrid features. Note that this hybrid feature is used in both writer-
dependent and writer-independent approaches.

Figure 4.8: Hybrid features fusion
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4.8.1 Writer-dependent approach

Hybrid features are fed to SVM classifier, where experiments are conducted on all
corpora, Table 4.6 reports the obtained results, while Figure 4.9 highlights MLOG per-
formance (so far the best) against hybrid features performance for writer dependent ap-
proach. As can be seen, IAM accuracies have exceeded 80% while ICDAR accuracies
exceeded 70% except for Greek language. Furthermore, from Figure 4.9, it can be seen
that hybrid features allow an improvement of more than 17.5% for IAM corpora, when
for ICDAR individual languages, an improvement of more than 7.5% is noticed except for
ICDAR Greek language, where a gain of only 1.41% is observed. As to blended datasets,
improvements are respectively 13.46% and 5.06% for ICDAR-3 and ICDAR-4.

IAM-1 IAM-2 DE EN FR GR ICDAR-3 ICDAR-4

94.72 82.70 77.88 75.48 71.15 63.46 85.73 75.36

Table 4.6: Writer-dependent accuracies for hybrid features (%)
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4.8.2 Writer-independent approach

Tables 4.7 and 4.8 report TOP-1 to TOP-10 accuracies for all corpora with both Can-
berra and Chi-square distances. Again, we can observe that the fusion greatly enhanced
the performance on the writer-independent approach. For most corpora, Chi-square dis-
tance outperforms Canberra distance, except for ICDAR English and French. From TOP-
5, almost all corpora reached 90%, which is very promising for such a complicated task.
Figure 4.10 highlights a comparison between MLOG TOP-1 and hybrid features TOP-1
for writer-independent approach. Hybrid features allow a gain that varies between 4% and
8.5% for ICDAR Greek and French, respectively, while an improvement of about 10% is
noticed for ICDAR German and ICDAR-4. However, the most impressive improvement,
which is more than 20% is noted for ICDAR English and IAM-2, reaching a maximum
gain of 29.2% for IAM-1 corpus.

TOP-k 1 2 3 4 5 6 7 8 9 10

IAM-1 86.80 92.60 95.10 95.70 96.30 96.80 97.00 97.30 97.70 98.30

IAM-2 72.90 82.70 86.60 89.15 90.95 92.10 93.05 93.60 94.05 94.85

DE 68.46 81.53 87.69 87.69 89.23 89.23 82.30 93.07 93.09 94.61

EN 71.53 80.76 84.61 86.92 87.69 92.30 92.30 93.84 94.61 95.38

FR 57.69 68.46 78.46 82.30 84.61 86.15 90.00 91.53 92.30 93.07

GR 49.23 62.30 73.84 77.69 80.00 83.84 86.92 90.00 91.53 93.07

ICDAR-3 73.33 81.28 85.38 87.17 89.48 90.51 92.05 93.07 94.10 94.61

ICDAR-4 60.38 72.59 78.12 81.73 84.49 86.89 88.46 89.42 90.63 90.98

Table 4.7: Writer-independent results for hybrid features using Canberra distance(%)
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TOP-k 1 2 3 4 5 6 7 8 9 10

IAM-1 87.30 92.70 94.90 95.90 96.60 97.10 97.60 97.70 97.90 98.00

IAM-2 73.45 82.90 86.80 89.05 90.90 92.10 92.70 93.30 93.93 94.00

DE 70.76 83.07 85.38 88.46 90.00 91.53 92.30 93.07 96.15 96.15

EN 66.92 76.15 81.53 86.15 90.00 90.00 91.53 92.30 95.38 96.92

FR 55.38 69.23 74.61 83.07 85.38 87.69 92.30 93.07 93.84 93.84

GR 50.00 64.61 72.30 77.69 82.30 85.38 86.92 89.23 92.30 92.30

ICDAR-3 75.12 85.12 90.76 92.05 93.07 94.87 95.38 95.64 95.89 96.67

ICDAR-4 63.07 73.07 78.26 83.27 84.80 88.07 89.03 90.00 90.96 91.53

Table 4.8: Writer-independent results for hybrid features using Chi-square distance(%)

Figure 4.10: Hybrid features vs MLOG performances for writer-independent approach

Performances achieved thanks to hybrid features fusion are very satisfying for both
writer-dependent and writer-independent approaches. The best achieved accuracy for
writer-dependent approach is 94.72% for IAM and 85.73% for ICDAR, whereas the
best TOP-1 result for writer-independent approach is 87.3% for IAM and 75.12% for
ICDAR. The proposed framework outperfoms the results obtained by He et al., [6], for
IAM dataset, where authors used 657 writers, reaching a TOP-1 of 69.5% and a TOP-5
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of 86.1% using word recognition as an auxiliary task. Unfortunately, no state of the art
results are available for ICDAR dataset.

4.9 Conclusion

Throughout this chapter, the obtained results demonstrated the strength of the hybrid
features fusion proposed between CNN and MLOG features. The new MLOG descriptor
has proven its efficiency and presented promising results, as it stays open to improvements.
On the other hand, CNN have demonstrated its efficiency when provided with a large
dataset such as IAM-1. It is now clear that the more data is provided, the better CNN
performs. Furthermore, results attest that the fusion of CNN features and MLOG features
expresses better than any other feature extraction method, the implicit information of
authorship contained in a single handwritten word.
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Conclusion

Writer identification represents an important biometric recognition application em-
ployed in the process of identification of individuals. This task remains an active research
area, where researchers have approached the problem by considering a text document
or text line. However, identifying the writer from a single word, has received very little
interest, due to the lack of information contained in single handwritten words. In this
work, we ventured to propose a robust system that identify the writer from single hand-
written words. Two approaches of writer identification are addressed: writer-dependent
and writer-independent. In the writer-dependent approach, the system can only identify
samples of writers involved in the training phase, which leads to a classification problem.
While the writer-independent approach, provided the existence of reference images for
each writer, can identify even writers who were not involved in the training of the sys-
tem. Consequently, in a first step, we addressed the problematic through a conventional
pattern recognition system, composed of two main blocks, which are, feature extraction
and classification. Feature extraction is perform by proposing a new descriptor, namely,
Multiscale Local Oriented Gradient (MLOG), which was able to characterize the hand-
writing style contained in a word comparatively to pixel distribution and Gradient Local
Binary Pattern descriptors. The classification step was carried out using the well-known
Support Vector Machine (SVM). In a second step, the contribution of Convolutional Neu-
ral Network (CNN), especially, pre-trained VGG-16 architecture, was investigated as an
end-to-end system and as a feature extractor, associated with SVM classifier, to identify
the writer from single handwritten words. In the last step, features from MLOG and
VGG-16 were fused, yielding a robust hybrid feature. Experiments were conducted on
IAM and ICDAR2011 datasets. From the obtained results, we can draw the following
conclusions:

MLOG of order 5 seems to be the most suitable to perform writer identification.
In addition, outcomes testify of MLOG efficiency and superiority compared to pixel
distribution and GLBP descriptors, as it achieved very promising results and reached
an accuracy of 76.94% and 72.27% for IAM and ICDAR datasets, respectively, on
writer-dependent approach, while it achieved a TOP-1 of 58.1% and 60.76% for IAM
and ICDAR datasets, respectively, on writer-independent approach.

The distance used in the dissimilarities calculation impact the performance of writer-
independent system. Canberra distance seems more adequate for IAM dataset, while
Chi-square distance is more appropriate for ICDAR2011 dataset, however, roughly,
both distances behave similarly.

The number of writers used in training stage does not influence the performance
accuracy using MLOG descriptor.
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The number of writers used in training stage does not influence the performance
accuracy using MLOG descriptor.

The performance of writer-independent approach depends strongly on the number
of references per writer. Indeed, the more references, the more the performance
accuracy increases.

CNN-based system showed that, VGG-16 model encountered difficulties to identify
the writer, mostly, when very few data are available. The results proved to be
good on relatively large datasets, but rather poor on those with little amount of
data. However, when substituting the last FC layer by SVM classifier, performances
increased allowing a gain that reached 21.15%, yielding a best performance of 73.60%
for IAM and 60.57% for ICDAR2011 on writer-dependent approach.

Findings showed that Greek language presents the lowest performances, this can be
explained by the fact that Greek alphabet is different and unique. In fact, language
independent experiments carried out by ICDAR-3 and ICDAR-4 showed that, the
proposed system operates independently of the language. ICDAR-3 contains En-
glish, French and German, which share the same Latin alphabet with some specific
characters of each, provide a better accuracy than ICDAR-4 that contains Greek
alphabet.

The proposed hybrid features, gave very satisfying results as the system reached
a maximum accuracy of 94.7% for IAM and 85.73% for ICDAR, on the writer-
dependent approach, and a maximum TOP-1 accuracy of 87.3% for IAM and 75.12%
for ICDAR on the writer-independent approach.

It is also important to note that training a CNN is far from a trivial task. Indeed, several
difficulties arose throughout this work, namely:

? Tuning parameters to adapt the used architecture to our datasets requires a large
number of tests, while the training time could take several hours. For this, we were
forced to limit the number of data and work with a limited number of writers and
words per writer. Besides, it also forced us to use Transfer Learning to achieve
better parameters optimization, instead of training a CNN from scratch.

? The unavailability of powerful machines equipped with GPU, to carry out experi-
ments was one of the major difficulties, luckily we had access to Google Colaboratory.

Finally, the results obtained in this work are very promising and encouraging. As possible
research perspectives for this work, we suggest to train CNN on the 5th order derivative,
to capture deeper features that characterize handwriting style and therefore improving
performances. Also, we recommend to investigate the proposed system on other datasets,
especially, an Arabic dataset such as KHATT.
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