REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique Département de génie civil

PROJET DE FIN D'ETUDES

Dans le cadre d'obtention du diplôme d'ingénieur d'état en Génie civil

THEME

CALCUL DES DEPLACEMENTS ET DES CONTRAINTES DES STRUCTURES COMPTE TENU DE L'EFFET DU DEMI-ESPACE ELASTIQUE PAR LA METHODE DES ELEMENTS FINIS

Proposé et dirigé par : M.M. DEMIDEM. Etudié par:

Omar REFFIS. Mohamed ABOUBAKEUR.

Promotion JUIN 2007 ENP:10, Avenue Hacene Badi, EL-Harrach, Alger

REMERCIMENTS

Nous tenons à remercier tout d'abord le Dieu qui nous a donné la force, le courage et la patience durant notre étude pour arriver à ce jour là.

Nous remercions ensuite *M*_r *DEMIDEM* pour son encadrement, ces nombreux conseils, et surtout sa disponibilité le long de notre travail.

Nous remercions les membres de jury qui ont accepté d'examiner ce travail.

Nos remerciements vont également à tous les enseignants de l'ENP, particulièrement les enseignants du département de Génie civil.

Enfin, nous adressons aussi nos remerciements à tous ceux qui ont contribué à notre formation de prés ou de loin, depuis les premières lettres d'alphabet.

إهداء

إلى اللذين تعلمت في مدرستهما معنى الصبر والتخدية، أمي وأبي الكريمين. إلى التي كانت لي سندا وعونا، زوجتي الدبيبة. إلى إخواني وأزواجمو حفظمو الله. إلى أخواتي وأزواجمن رعاهو الله. إلى كل أساتذتي ومعلمي خلال مشواري الدراسي. وإلى كل من لم الحق علي. وإلى كل الأقارب والأحباب من دون استثناء....

أهدي هذا العمل المتواضع.

Dédicace

Je dédie ce travail à mes chers parents A ma femme A mes frères et leurs femmes A mes sœurs et leurs maris A toutes ma famille A tous mes enseignants durant mon étude A tous mes amis,..... Mohamed ABOUBAKEUR

محمد أبوبكر

إهداء

DEDICACE

Je dédie ce modeste travail: - A ma chère mère. - A mon cher père. Que Dieu leurs préserve longue vie et bonne santé. - A ma chère femme. - A mon frère et mes sœurs et leur familles. Et à toute ma famille, mes amis et à ceux qui m'ont aidé durant ma formation.

أهدي هذا العمل المتواضع: - إلى أمي الحبيبة. - إلى أبي الكريم. راجيا من الله لهما دوام الصحة والعافية. - إلى زوجتي العزيزة. - إلى أخي و أخواتي وأسرهم. وإلى كل عائلتي وأصدقائي ومن ساهم في تكويني و أسدى إليّ النصح من قريب أو بعيد.

> أرفيس عمر . .*REFFIS Omar*

Résumé :

L'objectif de ce projet de fin d'étude est de calculer les déplacements et les contraintes d'un ensemble sol-structure (sol-bâtiment et sol-barrage) dans le domaine statique et dynamique, pour différents types de sol, afin d'examiner l'effet du demiespace élastique sur le comportement de la structure globale. Pour cela, on a utilisé la méthode des éléments finis à base d'un élément quadrilatéral à huit nœuds pour modéliser le système physique.

Mots clés: Contraintes plane, Déformations plane, Interaction, Eléments finis, Elément (Q8).

Abstract:

The object of this studied is to calculate the displacements and stress of the soilstructure system (soil- building and soil-dam) in the static and dynamic domain, for different types of soil, in order to examine the effect of the elastic half-space on the behavior of the global structure. For that we have used the finite element method, to modal the physical system using the eight nodes quadrilateral finite element (Q8). *Key words*: Plan stress, Plan strain, Interaction, Finite element, Element (Q8).

TABLE DES MATIERES

Chapitre I : INTRODUCTION GENERALE	
INTRODUCTION GENERALE	2
Chapitre II : RAPPEL SUR LA THEORIE D'ELASTICITE LINEAIRE	
II-1) LES EQUATIONS D'ELASTICITE	6
II-1-1) Notions de base	6
II-1-2) Les équations d'équilibre	7
II-1-3) Relation entre déformations et déplacements	14
II-1-4) Relation entre contraintes et déformations (loi de comportement)	15
II-2) DEFORMATIONS PLANES	18
II-3) CONTRAINTES PLANES	21
Chapitre III : PRESENTATION DE LA METHODE DES ELEMENTS FINIS	
III-1)Généralités	24
III-1-1) Introduction	24
III-1-2) Bref historique de la MEF	24
III-1-3) Principe de la MEF	25
III-1-3-1) Description et interprétation physique	25
III-1-3-2) Attributs d'un élément	27
III-1-3-3) Notion d'élément de référence	28
III-1-3-4) Principe du travail virtuel	29
III-2) ETAPES CARACTERISTIQUES D'ETUDE DES STRUCTURES PAR LA MEF	29
III-2-1) Définition de la géométrie des éléments	29
III-2-2) Représentation de la géométrie de chaque élément "Ve"	30
III-2-3) Approximation sur l'élément de référence	30
III-2-4) Construction de la fonction N (ξ) et \overline{N} (ξ)	31
III-2-4-1) Méthode générale de construction	32
III-2-4-1-1) Choix de la base polynomiale	32
III-2-4-1-2) Expression de N (ξ)	33
III-2-5) Calcul des matrices de rigidité de chaque élément [k ^e]	33
III-2-6) Calcul de vecteur des sollicitations de chaque élément {f ^e }	34
III-2-7) Assemblage des matrices et des vecteurs élémentaires	35
III-2-8) Résolution du système d'équations globale	36
III-3) ETAPES CARACTERISTIQUES D'UN PROGRAMME D'ELEMENTS FINIS	36
III-4) CONVERGENCE DE LA METHODE VERS LA SOLUTION EXACTE	38
III-4-1) Types de convergence	38
III-4-2) Critère de convergence	39
Chapitre IV: METHODES NUMERIQUES	
IV-1) NTRODUCTION	41
IV-2) INTEGRATION NUMERIQUE	41
IV-2-1) Principe de l'intégration numérique	42
IV-2-2) Formules d'intégration numérique	42

IV-2-2-1) Formule des rectangles	42
IV-2-2-2) Formule des trapèzes	43
IV-2-2-3) Formule des paraboles ou de Simpson	43
IV-2-2-4) Formule de Newton Cotes	43
IV-2-2-5) Formule de Gauss	45
IV-2-3) Intégration de [k] et {f} par la méthode de Gauss à deux dimensions	45
IV-3) RESOLUTION DE SYSTEME D'EQUATIONS LINEAIRES	46
IV-3-1) Introduction	46
IV-3-2) Méthode d'élimination de Gauss :	40
	
Chapitre V : APPLICATIONS	
V-1) VOILE DE CONTREVENTEMENT D'UN BATIMENT	49
V-1-1) Caractéristiques du voile	49
V-1-2) Évaluation des charges	50
V-1-3) Evaluation de l'effort tranchant à la base	51
V-1-4) Répartition de l'effort tranchant sur la hauteur du bâtiment	53
V-1-5) Calcul des déplacements et des contraintes dans l'ensemble voile-sol	54
V-1-5-1) Evaluation des charges nodales	54
V-1-5-2) Le choix du maillage	54
a-) Maillage 01	55
b-) Maillage 02	56
c-) Maillage 03	57
V-1-5-3) Etude de la convergence	58
V-1-5-3-1) Convergence des déplacements maximaux	58
a)-déplacement horizontal maximal Umax	58
b)-déplacement vertical maximal Vmax	59
V-1-5-3-2) Convergence de la contrainte maximale	61
V-1-6) Calcul du déplacement horizontal maximal selon le RPA	64
V-1-7) Résultats et Interprétations	67
V-2) BARRAGE	69
V-2-1) Caractéristiques du barrage	69
V-2-2) Evaluation des charges nodales	69
V-2-3) Le choix du maillage	71
a-) Maillage 01	71
b-) Maillage 02	72
c-) Maillage 03	73
V-2-4) Étude de la Convergence des déplacements maximaux	74
V-2-5) Résultats et Interprétation.	79
	1)
Chapitre VI : CONCLUSION GENERALE	
CONCLUSION GENERALE	82
BIBLIOGRAPHIE	84
Annovas	
	85

CHAPITRE I Introduction générale

Chapitre I INTRODUCTION GENERALE

Tous les ouvrages de génie civil sont en contact avec des sols ou des roches, cet effet du demi espace élastique (interaction) peut être localisé, dans les fondations de bâtiment ou d'ouvrage d'art. Cette interaction est plus complexe dans les soutènements, et totale dans le cas des tunnels.

Lorsqu'une structure rigide repose sur un sol, ce dernier tend à se déformer d'une façon non uniforme et la fondation ne s'adapte pas entièrement, une redistribution des réactions d'appuis a eu lieu et cette redistribution donne l'importance de l'effet du demi espace élastique.

L'étude de la structure d'un ouvrage, qui utilise les outils de la résistance des matériaux, nécessite des conditions aux limites au niveau du contact avec le sol, les conditions les plus simples consistent en des conditions d'appui (appui simple, rotule, encastrement) sur la surface du sol, supposé fixe. Ce type d'appuis est suffisant pour l'étude des structures isostatiques, où les déformations (limitées) d'un appui ne perturbent pas la répartition des efforts dans la structure. Pour les structures hyperstatiques, il est indispensable d'évaluer la réponse du sol sous les charges appliquées, en tenant compte de déplacements (et de déformations) de l'interface.

L'hypothèse couramment utilisée dans le calcul des structures et selon laquelle les supports de celle-ci sont considérés comme parfaitement encastrés dans le sol peut poser des problèmes si on tient compte de la continuité ou l'interaction entre le sol et la structure.

Cependant le choix d'un modèle de calcul adéquat qui tient compte des conditions d'appuis et de l'interaction sol-structure devient l'une des étapes essentielles en vue de calculer avec toute sécurité une construction donnée.

Généralement l'étude de l'effet de demi espace élastique s'impose dans l'analyse globale du système sol-structure et constitue une phase intégrante dans les calculs. Cependant, pour certains ouvrages cet effet peut être négligé dans les cas de sites très ferme ou rocheux. Par ailleurs, les structures sont généralement constituées de matériaux (béton, acier, bois, ... etc.) dont la rigidité est beaucoup plus importante que celle du sol environnant. Le comportement de ces matériaux peut être décrit par des modèles simples, élastiques ou elastoplastiques. Aussi, le comportement des sols est très complexe. En effet, il est essentiellement irréversible, non linéaire, dilatant et dépendant de l'histoire et de la direction des sollicitations. Pour de faibles sollicitations, il peut être décrit par l'élasticité linéaire.

Le traitement analytique des problèmes comportant l'effet du demi espace élastique pose beaucoup de difficultés théoriques et mathématiques. Et, si ce traitement est envisageable pour quelques configurations idéales, les solutions correspondent rarement aux exigences pratiques.

Des méthodes numériques ont été développées pour apporter des solutions approchées à ce type des problèmes. La méthode des éléments finis est l'outil le plus utilisé dans ce domaine.

La méthode des éléments finis (M.E.F) permet une formulation plus rigoureuse des problèmes aux dérivées partielles par sa souplesse d'emploi en programmation. Par ailleurs, la complexité des conditions aux limites et de la forme géométrique du domaine ont mis l'accent sur l'importance des méthodes numériques et approximatives dont la méthode des éléments finis est l'une des meilleurs et puissants outils de résolution des problèmes des équations aux dérivées partielles.

- Est-ce qu'il y a une influence du demi espace élastique sur la structure ?

- Peut-on considérer la structure parfaitement encastrée dans le sol ?

En effet, l'objectif principal de ce mémoire est de calculer les différents déplacements et contraintes dans un ensemble de structures avec effet du demi espace élastique (interaction sol-bâtiment et interaction sol-barrage) dans les domaines dynamique et statique respectivement. Dans le cas dynamique, l'outil de base est le règlement parasismique Algérien (RPA), aussi, une étude comparative a été menée entre les déplacements et les contraintes

pour différents types de sols (sol meuble $E_s = 300$ MPa, sol moyennement meuble $E_s = 600$ MPa, et sol ferme $E_s = 1000$ MPa), afin d'examiner, l'effet du demi espace élastique sur les inconnus du problème d'une part, et d'autre part faire une comparaison entre les résultats obtenus et ceux calculer par des formules règlementaires.

Enfin, les problèmes de contraintes planes (interaction sol-voile) et déformations planes (sol-barrage) ont fait l'objet d'une modélisation par éléments finis isoparamétriques quadrilatéraux à huit nœuds (Q8) compte tenu de leur performance dans le calcul des structures par la méthode des éléments finis, réputée par sa souplesse et sa puissance de calcul. Les résultats de l'analyse sont très intéressants

- Ce travail est subdivisé en six parties suivantes:

- Ø Le premier chapitre introduction générale.
- Ø Le deuxième chapitre présente des rappels sur les équations de base de la théorie d'élasticité linéaire.
- Ø Un aperçu sur le fondement de la méthode des éléments finis est présenté en troisième chapitre.
- Ø Dans le quatrième chapitre, on présente les principes de quelques méthodes numériques d'intégration et de résolution des systèmes d'équations algébriques.
- Ø Applications aux cas d'un voile en béton armé et un barrage avec et sans effet du demi espace élastique et interprétations des résultats obtenus en cinquième chapitre.
- Ø En fin on termine par une conclusion générale en sixième chapitre.

Les annexes regroupent les résultats issus du calcul des déplacements nodaux, les contraintes et les déformations de chaque élément de l'ensemble sol-structure.

CHAPITRE II Rappel sur la théorie d'élasticité linéaire

Chapitre II

RAPPEL SUR LA THEORIE D'ELASTICITE LINEAIRE

L'utilisation de la MEF pour l'analyse des problèmes statiques et dynamiques nécessite la connaissance des équations de base de la théorie de l'élasticité linéaire.

Dans ce chapitre une brève analyse de ces équations de base, et présentation des relations entre déplacements, contraintes et déformations dans le cas général tridimensionnel.

De ce cas général dérive le cas particulier de l'élasticité plane (état plan de déformation, état plan de contrainte)

II-1) LES EQUATIONS D'ELASTICITE:

II-1-1) Notions de base :

a) <u>Forces extérieur</u>: les forces extérieures auxquelles peut être soumis un corps peuvent être classées en deux catégories:

Forces volumiques: ceux sont des forces à distance associées à la masse du corps et réparties sur tout le volume.

Forces surfaciques: ceux sont des forces de contact réparties sur tout la surface de contact.

b) <u>Contraintes</u>: un système de forces extérieures applique à un corps engendre un système de charger intérieures résultant d'interaction des particule élémentaires. A chaque force élémentaire correspond une contraint

c) Tenseur des contraintes

Le tenseur des contraintes, noté σ , est une matrice 3x3 symétrique. C'est une approximation assez grossière de ce qui se passe en chaque point du matériau.

Dans le cas général chaque point matériel est soumis à neuf composantes de contrainte comme l'indique la figure 2.1

Fig.2.1 Composantes de contrainte d'un point matériel

Trios composantes de contraintes normales σ_x , σ_y et σ_z et six composantes de contraintes tangentielles τ_{xy} , τ_{yx} , τ_{xz} , τ_{zx} , τ_{yz} et τ_{zy} .

Pour satisfaire l'équilibre de l'élément on doit avoir:

$$\tau$$
 $_{xy}\!=\!\tau$ $_{yx}$, τ $_{xz}\!=\!\tau$ $_{zx}\,et$ τ $_{yz}\!=\!\tau$ $_{zy}$

Ainsi il en résulte six composantes indépendantes de contraintes en un point.

II-1-2) Les équations d'équilibre:

En générale, dans un corps les contraintes varient d'un point à un autre.

Soit σ_x la composante de la contrainte totale. Considérons la variation de cette composante (figure 2.2)

Fig. 2.2 Variation de contrainte entre deux pointe

Si la contrainte au point A est σ_x , en B la contrainte varie de $\left(\frac{\partial \sigma_x}{\partial x} \cdot d_x\right)$ ou $\frac{\partial \sigma_x}{\partial x}$ est le

taux de variation de σ_x .

 σ_x étant fonction de x et y dans le cas bidimensionnel (et de z dans le cas tridimensionnel), la dérivation partielle est nécessaire.

La contrainte au point B est donné par:

$$\sigma_{xB} = \sigma_{xA} + \frac{\partial \sigma_{xA}}{\partial x} \cdot dx \qquad (2.1)$$

Egalement les contraintes en C et D sont:

$$\sigma_{xc} = \sigma_{xB} + \frac{\partial \sigma_{xB}}{\partial y} \cdot dy$$
 (2.2)

$$\sigma_{xD} = \sigma_{xA} + \frac{\partial \sigma_{xA}}{\partial y} \cdot dy$$
 (2.3)

x: étant constant de B à C, en remplaçant σ_{xB} par sa valeur dans l'équation (2.2) on obtiendra:

$$\sigma_{xc} = \sigma_{xA} + \frac{\partial \sigma_{xA}}{\partial x} dy + \frac{\partial}{\partial y} (\sigma_{xA} + \frac{\partial \sigma_{xA}}{\partial x} dx) dy$$
(2.4)

D'où

$$\sigma_{xc} = \sigma_{xA} + \frac{\partial \sigma_{xA}}{\partial x} \cdot dy + \frac{\partial \sigma_{xA}}{\partial y} \cdot dy$$
(2.5)

(Où le terme du second ordre est négligé).

En négligeant les petites quantités du second ordre, les taux de variation sont constants, ainsi les contraintes sur la surface d'un élément infinitésimal varient linéairement.

D'où on aura:

Fig. 2.3 Variation de la contrainte sur une facette

Avec $P_1 P_2$, les forces extérieurs respectivement sur les surfaces latérales de gauche et de droite.

En considérant la surface latérale de gauche (figure.2.4)

Fig. 2.4 Surfaces latérales de gauche d'un point matériel

La force extérieur sur cette surface est :

$$P_1 = \int_{s} \sigma \cdot ds$$

S: étant égale à (1.dy)

$$\Rightarrow P_1 = \int_{s} \sigma \cdot (1 \cdot dy) = \frac{1}{2} (\sigma_x + \sigma_{xD}) \cdot dy = \frac{1}{2} \left(\sigma_x + \sigma_x \frac{\partial \sigma_x}{\partial y} \cdot dy \right) dy$$

D'où:

$$P_1 = \sigma_x \cdot dy + \frac{1}{2} \frac{\partial \sigma_x}{\partial y} \cdot dy^2$$

De même, la force sur la facette droite est :

$$P_{2} = \frac{1}{2} \left(\sigma_{xB} + \sigma_{xC} \right) \cdot dy = \frac{1}{2} \left(\sigma_{x} + \frac{\partial \sigma_{x}}{\partial x} \cdot dx + \sigma_{x} + \frac{\partial \sigma_{x}}{\partial y} \cdot dy \right) \cdot dy$$

D'où:

$$P_2 = \sigma_x \cdot dy + \frac{\partial \sigma_x}{\partial x} \cdot dy \cdot yx + \frac{1}{2} \frac{\partial \sigma_x}{\partial y} \cdot dy^2$$

La force résultante sur le corps dans la direction x sera :

$$P_1 - P_2 = \frac{\partial \sigma_x}{\partial x} \cdot dy \cdot dx$$

Si on considère que la répartition des contraintes sur les facettes considérées est constante, alors les contraintes appliquées aux centres de gravité des facettes seront:

$$\sigma_x$$
 et $\sigma_x + \frac{\partial \sigma_x}{\partial x} \cdot dx$

Ainsi la résultante des forces sera la même. D'où on aura:

$$P_2 - P_1 = \left(\sigma_x + \frac{\partial \sigma_x}{\partial x} \cdot dx\right) \cdot dy - \sigma_x \cdot 1 \cdot dy$$

Donc:

$$P_2 - P_1 = \frac{\partial \sigma_x}{\partial x} \cdot dx dy$$

Cette représentation simplifiée de l'état de contrainte, peut être utilisée pour l'établissement des équations d'équilibre.

Si on suppose que:

$$\sigma_x = 0$$
, $\tau_{xz} = \tau_{yz} = \tau_{zx} = 0$ et z = 0

Avec:

 σ_x , σ_y , τ_{xy} et τ_{yx} étant supposées indépendantes de z, le modèle d'équilibre de l'élément sera (figure 2.5) .

Fig.2-5 Etat de contrainte plane

Avec: X, Y et Z les composantes de la force volumique suivant les directions x, y et z respectivement.

Vu que l'élément est en équilibre, la somme des forces projetées sur l'axe x est nulle.

D'où :

$$\sum F_x = 0$$

$$\Rightarrow X \cdot dx \cdot dy + (\sigma_x + \frac{\partial \sigma_x}{\partial x} \cdot dx) dy - \sigma_x \cdot dy + (\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} \cdot dy) dx - \tau_{yx} \cdot dx = 0$$

(L'épaisseur de l'élément suivant la direction z étant égale à l'unité). Après simplification en obtiendra:

$$\left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X\right) \cdot dx \cdot dy = 0$$

(dx.dy) est différent de zéro ainsi en aura:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X = 0$$

De même l'équilibre des forces dans la direction y donne :

$$\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0$$

Pour le cas général tridimensionnel, nous considérons l'équilibre des forces qui agissent sur un élément infinitésimal dans la direction x seulement. Les autres direction y et z peuvent être traitées de la même façon (figure 2.6).

Fig. 2.6 Equilibre des forces dans la direction x

L'équilibre des forces dans la direction x donne:

 $\Sigma \; F_x = 0$

$$\Rightarrow \left(\sigma_{x} + \frac{\partial \sigma_{x}}{\partial x} \cdot dx\right) \cdot dy dz - \sigma_{x} \cdot dz dy + \left(\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} \cdot dy\right) \cdot dz dx$$
$$-\tau_{xy} \cdot dz dx + \left(\tau_{zx} + \frac{\partial \tau_{zx}}{\partial z} \cdot dz\right) \cdot dx dy - \tau_{zx} \cdot dx dy + X \cdot dx dy dz = 0$$

Après simplification on obtiendra:

$$\left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X\right) \cdot dx dy dz = 0$$

(dxdydz) étant différents de zéro, l'équation précédente se simplifie à:

$$\left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X\right) = 0$$

De même on obtiendra pour les directions y et z :

$$\left(\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{zy}}{\partial z} + Y\right) = 0$$
$$\left(\frac{\partial \sigma_{z}}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + Z\right) = 0$$

Étant donné que:
$$\tau_{xy} = \tau_{yx}$$
, $\tau_{xz} = \tau_{zx}$ et $\tau_{yz} = \tau_{zy}$

Les équations d'équilibre pour le cas général tridimensionnel peuvent s'écrire comme suit:

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

$$\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} + Y = 0$$

$$\frac{\partial \sigma_{z}}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + z = 0$$
(2-1)

II-1-3) Relation entre déformations et déplacements :

Lorsqu'un corps est soumis à un système de forces, en général tous les points appartenant au corps changent de position. Le déplacement d'un point est défini comme étant la distance séparant sa position initiale de sa position finale. Les composantes de ce déplacement sont U, V et W elles sont en générales en fonction de x, y et z. Ainsi un point situé initialement en (x, y, z) sera déplacé en (x + u, y + v, z + w).

On dit qu'un corps est déformé, quand, les positions relatives entre les points appartenant à ce corps changent en fonction du système de forces appliquées. Dans le cas général deux types de déformations se produit, les longueurs parallèles aux directions x, y et z varient ainsi que les angles formée par ces longueurs.

a) déformations directes:

La déformation directe dans une direction donnée est définie comme étant le rapport de la variation de longueur par longueur, d'une fibre originalement orientée dans cette direction. Trois composantes indépendantes de déformation directe (normale) ε_x , ε_y et ε_z .

$$\begin{cases} \varepsilon_{x} = \frac{\partial U}{\partial x} \\ \varepsilon_{y} = \frac{\partial V}{\partial y} \\ \varepsilon_{z} = \frac{\partial W}{\partial z} \end{cases}$$
(2-2)

b) déformation de cisaillement:

La déformation de cisaillement est définie comme étant la variation de l'angle droit formé par deux axes. Elle est associée à deux directions orthogonales. Trois composantes de déformation de cisaillement γ_{xy} , γ_{xz} et γ_{yz} sont définies en chaque point.

$$\begin{cases} \gamma_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \\ \gamma_{yz} = \frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \\ \gamma_{zx} = \frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} \end{cases}$$
(2-3)

Il est à noter que:

$$\gamma_{xy} \;=\; \gamma_{yx} \qquad , \qquad \gamma_{xz} \;=\; \gamma_{zx} \qquad et \qquad \gamma_{yz} \;=\; \gamma_{zy}$$

II-1-4) Relation entre contraintes et déformations (loi de comportement):

Sous l'action d'une contrainte normale uni-axiale, la plupart des matériaux ont un comportement bien défini dans le domaine élastique. Ce comportement se traduit par la relation:

$$\sigma = \mathbf{E} \cdot \boldsymbol{\varepsilon} \tag{2-4}$$

Cette relation est connue sous le nom de "la loi de Hooke". La constante E est appelée module d'élasticité ou module de Young. Il est à noter que cette relation n'est valable que dans le domaine élastique (fig. 2-7).

Fig. 2-7 Courbe de comportement des matériaux

Soit un élément tridimensionnel soumis à une contrainte uni-axiale (fig. 2-8)

Fig .2.8 Etat de traction pure

La composante de déformation ε_x est donnée par:

$$\varepsilon_x = \frac{\sigma_x}{E}$$

En plus de cette déformation, l'élément aura des contraintes suivant les directions y et z. De ces contraintes il résulte des déformations ε_y et ε_z qui sont :

$$\varepsilon_{y} = \varepsilon_{z} = -\upsilon \frac{\sigma_{x}}{E}$$

Ou v est appelé coefficient de Poisson; il est constant pour la plupart des matériaux.

Considérons maintenant un élément soumis à un état de contrainte tridimensionnel, la déformation totale dans les directions x, y et z est alors donnée par:

$$\begin{cases} \varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] \\ \varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{x} + \sigma_{z} \right) \right] \\ \varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right] \end{cases}$$
(2-5)

La relation dans le domaine élastique entre les contraintes et les déplacements, pour un corps soumis à un état de contrainte de cisaillement pur tridimensionnel, à été trouvée expérimentalement et elle a la forme suivante:

$$\begin{cases} \gamma_{xy} = \frac{1}{G} \cdot \tau_{xy} \\ \gamma_{yz} = \frac{1}{G} \cdot \tau_{yz} \\ \gamma_{xz} = \frac{1}{G} \cdot \tau_{xz} \end{cases}$$
(2-6)
$$G = \frac{E}{2(1+\upsilon)}$$
(2-7)

Où: la constante G représente le module d'élasticité de cisaillement appelé aussi le module de rigidité.

Les équations (1-5), (1-6) peuvent être écrites sous la forme matricielle suivante:

$$\begin{cases} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\varepsilon}_{z} \\ \boldsymbol{\gamma}_{xy} \\ \boldsymbol{\gamma}_{xz} \\ \boldsymbol{\gamma}_{yz} \end{cases} = \frac{1}{E} \begin{bmatrix} 1 & -\upsilon & -\upsilon & 0 & 0 & 0 \\ -\upsilon & 1 & -\upsilon & 0 & 0 & 0 \\ -\upsilon & -\upsilon & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\upsilon) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\upsilon) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\upsilon) \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\sigma}_{z} \\ \boldsymbol{\tau}_{xy} \\ \boldsymbol{\tau}_{xz} \\ \boldsymbol{\tau}_{yz} \end{bmatrix}$$
(2-8)

La résolution du système d'équations (2-7) nous donnera:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{cases} = \frac{E}{(1+\upsilon)\cdot(1-2\upsilon)} \begin{bmatrix} 1-\upsilon & \upsilon & \upsilon & 0 & 0 & 0 \\ \upsilon & 1-\upsilon & \upsilon & 0 & 0 & 0 \\ \upsilon & \upsilon & 1-\upsilon & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\upsilon) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\upsilon) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\upsilon) \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$
(2-9)

Les différentes relations entre ces quantités peuvent être schématisées par la figure suivante:

Fig.2.9 Relation entre déplacement, contrainte et déformation

II-2) DEFORMATIONS PLANES:

On peut dire qu'on est en présence d'un problème de déformation plane lorsqu'on a un corps dont l'une des dimensions est très importante par rapport aux deux autres (fig.2-10) Un tel problème est définie par:

$$\begin{cases} U = U(x, y) \\ V = V(x, y) \\ W = 0 \end{cases}$$

Donc la matrice de déformation et la matrice de contrainte s'écrite comme suite:

Fig. 2.10 Problème de déformation plane

Les relations entre les déformations et les déplacements sont:

$$\begin{cases} \varepsilon_{x} = \frac{\partial U}{\partial x} \\ \varepsilon_{y} = \frac{\partial V}{\partial y} \\ \gamma_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \\ \varepsilon_{z} = \gamma_{xz} = \gamma_{yz} = 0 \end{cases}$$
(2-12)

Les relations entre les déformations et les contraintes seront:

$$\begin{cases} \varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{\upsilon \sigma_{y}}{E} - \frac{\upsilon \sigma_{z}}{E} \\ \varepsilon_{y} = \frac{-\upsilon \sigma_{x}}{E} + \frac{\sigma_{y}}{E} - \frac{\upsilon \sigma_{z}}{E} \\ \varepsilon_{z} = \frac{-\upsilon \sigma_{x}}{E} - \frac{\upsilon \sigma_{y}}{E} + \frac{\sigma_{z}}{E} = 0 \\ \gamma_{xy} = \frac{\tau_{xy}}{G} = \frac{2(1+\upsilon)}{E} \tau_{xy} \end{cases}$$
(2-13)

Les relations entre les contraintes et les déformations sont :

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E(1-\upsilon)}{(1+\upsilon)(1-2\upsilon)} \begin{bmatrix} 1 & \frac{\upsilon}{1-\upsilon} & 0 \\ \frac{\upsilon}{1-\upsilon} & 1 & 0 \\ 0 & 0 & \frac{1-2\upsilon}{2(1-\upsilon)} \end{bmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$
(2-14)

Les équations d'équilibre seront :

$$\begin{cases} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X = 0\\ \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0\\ \frac{\partial \sigma_z}{\partial z} + z = 0 \end{cases}$$
(2-15)

II-3) CONTRAINTES PLANES :

Contrairement à la condition de déformations planes, qui dit que: la dimension longitudinale dans la direction z est importante par rapport aux dimension suivant x et y; la condition de contraintes planes et caractérisé par le fait que la dimension suivant la direction z est très petite par apports aux deux autres (fig.2, 11).

Fig.2.11 Problème de contrainte plane

Dans ce cas les contraintes sont de la forme suivante:

$$\begin{cases} \sigma_x = \sigma_x(x, y) \\ \sigma_y = \sigma_y(x, y) \\ \tau_{xy} = \tau_{xy}(x, y) \\ \tau_{xz} = \tau_{yz} = \sigma_z = 0 \end{cases}$$
(2-16)

$$\left[\boldsymbol{\sigma}_{ij} \right] = \begin{bmatrix} \boldsymbol{\sigma}_{xx} & \boldsymbol{\tau}_{xy} & \boldsymbol{0} \\ \boldsymbol{\tau}_{xy} & \boldsymbol{\sigma}_{yy} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$
 (2-17)

Les déformations sont de la forme suivante:

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{ij} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & \boldsymbol{\gamma}_{xy} & \boldsymbol{0} \\ \boldsymbol{\gamma}_{xy} & \boldsymbol{\varepsilon}_{yy} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\varepsilon}_{zz} \end{bmatrix}$$
(2-18)

Les relations entre les déformations et les contraintes seront:

$$\begin{cases} \varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \upsilon \sigma_{y}) \\ \varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \upsilon \sigma_{x}) \\ \varepsilon_{z} = -\frac{\upsilon}{E} (\sigma_{x} + \sigma_{y}) \\ \gamma_{xy} = \frac{1}{G} \tau_{xy} \end{cases}$$
(2-19)

Les relations entre les contraintes et les déformations sont :

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{1 - \upsilon^{2}} \begin{bmatrix} 1 & \upsilon & 0 \\ \upsilon & 1 & 0 \\ 0 & 0 & \frac{(1 - \upsilon)}{2} \end{bmatrix} \cdot \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$
(2-20)

Les équations d'équilibre seront:

$$\begin{cases} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X = 0\\ \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0 \end{cases}$$
(2-21)

CHAPITRE III Présentation de la méthode des éléments finis

Chapitre III PRESENTATION DE LA METHODE DES ELEMENTS FINIS

III-1) GENERALITES :

III-1-1) Introduction:

l'évolution actuel de la technologie amène l'ingénieur a réalisé des projets de plus en plus complexes ,coûteux et soumis a des contraintes de sécurité de plus en plus sévères, nous pensons bien sûr des projets importants dans lesquels la sécurité est vitale. Pour dominer ces projets, l'ingénieur a besoin des modèles qui lui permettent de simuler le comportement de système physique complexe.

Les sciences de l'ingénieur (mécanique des solides et des fluides, thermique ...) permettent de décrire le comportement des systèmes physiques grâce à des équations aux dérivées partielles. La méthode des éléments finis est l'une des méthodes les plus utilisées, pour résoudre effectivement ces équations. Elle nécessite l'utilisation intensive de l'ordinateur .C'est une méthode très générales qui s'applique à la majorité des problèmes rencontré dans la pratique : problème stationnaire ou non stationnaire, linéaires ou non linéaires définis dans un domaine géométrique quelconque à une, deux ou trois dimensions. De plus elle s'adapte très bien aux milieux hétérogènes souvent rencontrés dans la pratique par l'ingénieur.

La méthode des éléments finis consiste à utiliser une approximation simple des variables inconnues pour transformer les équations aux dérivées partielles en équations algébriques.

III-1-2) Bref historique de la MEF :

La MEF (méthode des éléments finis) est mise au point en 1953 chez BOEING (Seattle, USA, calcul des structures d'aile d'avion); on y développe le premier élément fini, sa matrice de rigidité, l'assemblage et la résolution par la méthode des déplacements (publié par Turner, Clough, Martin et Topp en 1956 seulement).

Quant aux bases théoriques générales, mariant l'analyse des structures en barres et poutres avec celle des solides, elles sont données de 1954 à 1960 (Argyris, Kelsey). Certaines idées apparurent auparavant en particulier chez les mathématiciens pour résoudre divers problèmes aux limites, par exemple celui de la torsion de Saint-Venant en divisant la section en triangle (Courant, 1943) ; Mais elles resteront sans suite.

L'expression *élément fini* date de 1960 (Clough). Les années 60 ont vu la MEF s'attaquer tous les domaines du calcul des solides et structures, avant de débordé dans d'autres domaines : écoulements sous terrains, transfère de chaleur, fluide, ...etc. (Zienckiewicz, Cheung, 1965) en fait, les ingénieurs (aéronautique, génie civil et mécanique) développent la MEF pour l'appliqué à leur problème pratique, avant que les bases théorique ne soient bien établies...

Dés 1970, la méthode envahit tous les créneaux de l'ingénierie et des mathématiques appliquées. Il faut ajouté que sont essor et, dés le début et aujourd'hui encore, indissociable de celui des ordinateur.

III-1-3) Principe de la MEF :

III-1-3-1) Description et interprétation physique:

L'analyse des contraintes et des déplacements est l'un des plus important domaine d'application de la MEF.

Pour déterminer des contraintes ou des déplacements dus à un système de charges connus dans une structure, celle-ci sera divisée en un nombre d'éléments finis comme le montre (la figure 3.1)

L'interprétation physique de la MEF consiste à considérer le modèle mathématique comme formé d'un ensemble de composants individuels, les éléments finis. On opère le découpage –artificiel- du modèle en certain nombre d'éléments finis de forme simple; cette opération géométrique produit le maillage. Chaque élément possède des points privilégiés, les nœuds.

Fig. 3.1 Division d'un domaine en éléments finis

La structure à étudier est remplacée par un ensemble d'éléments supposés liés les uns au autres en un nombre fini de points appelés "points nodaux". Ces nœuds se trouvent aux coins des élément ou tout le long de leur frontière; comme le montre (la figure 3.2)

Fig. 3.2 Elément (Q8)

Les types d'éléments utilisés pour la division de la structure dépendent de la géométrie de ces derniers. Ils peuvent être, unidimensionnels, bidimensionnels ou tridimensionnels (la figure3.3) montrent quelque types d'éléments.

Fig. 3.3 Quelque type d'éléments

III-1-3-2) Attributs d'un élément:

La description d'un élément fini comprend les caractéristiques suivantes:

♦ Géométrie:

Un élément fini peut être 1D, 2D ou 3D sa forme est simple (fig.3.3)

♦ Matériau:

Le matériau de l'élément est définie par une loi de comportement (loi de Hooke isotrope et ses propriétés physiques E et v,...etc.).

♦ Nœuds:

Les nœuds définissent la géométrie et assurent la connexion des éléments l'un aux autres. Ils occupent des positions stratégiques comme les extrémités, les sommets, les milieux des arêtes et faces, etc. (fig. 3.2)

• Degrés de libertés:

Pour touts élément fini. On doit faire le choix d'une ou plusieurs fonctions (en générale le champ des déplacements),elles sont exprimées en fonction des valeurs particulières qu'elles prennent aux noeuds, valeurs qui deviennent les inconnues nodales. L'union, par leurs degrés de libertés nodales communes, de deux éléments adjacents, puis d'un troisième, et ainsi de suite, permet de reconstituer, pièce par pièce, la solution (assemblage). Pour aboutir à un résultat valable, ces opérations nécessitent le respect de certaines règles, dites critères de convergence.

Forces nodales:

A travers les noeuds transitent des forces associées aux degrés de liberté. Les unes sont les réactions internes \mathbf{r} , les autres les forces \mathbf{f} dues aux charges appliquées à l'élément (poids propres, température, charge uniforme,...etc.)

La description précédente permet de construire les deux caractéristiques clés d'un élément qui sont:

- a) Sa matrice de rigidité k^e.
- b) Son vecteur force f^e.

III-1-3-3) Notion d'élément de référence:

De manière à simplifier la définition analytique des éléments de forme complexe, introduisons la notion **d'élément de référence** un élément de référence V^r est un élément de forme très simple, repéré dans un **espace de référence**, qui peut être transformé en chaque élément réel V^e par une transformation géométrique τ^e .

Fig. 3.4 Elément de référence à 2D quadratique à huit nœuds

III-1-3-4) Principe du travail virtuel:

Pour déterminer les propriétés de rigidité de dévers éléments en utilise le principe des travaux virtuels. Ce principe exprime les relations existantes entre l'ensemble des charges extérieurs et les forces intérieurs correspondantes satisfaisant ensembles à la condition d'équilibre, et l'ensemble des déplacements des noeuds et déformations correspondant des diffèrent parties satisfaisant à la condition de compatibilité. Se principes peut être posé en terme généraux de la façons suivant: le travail virtuel des charges extérieurs égale au travail virtuel des forces intérieures absorbé par la structure. Il est à noter que chacun des deux systèmes (forces et déplacements) peut être réel ou virtuel la seule limitation étant imposée par les conditions d'équilibre et de compatibilité qui doivent être satisfaites. Ce principe peut être exprimé en terme mathématique par la relation suivante:

$$\sum_{e} F\delta = \int_{\sigma}^{v} \sigma.\varepsilon.d(vol)$$
(3.1)

F: les charges extérieurs.

 δ : le déplacement de ces charges.

ε: les déformations intérieurs

 σ : les charges intérieurs

III-2) ETAPES CARACTERISTIQUES D'ETUDE DES STRUCTURES PAR LA MEF:

III-2-1) Définition de la géométrie des éléments:

Nous choisissons un ensemble de **n** nœuds, sur le domaine "V" qui servira à définir la géométrie des éléments. Ces points peuvent éventuellement coïncides avec les nœuds d'interpolation. Puis nous remplaçons le domaine "V" par un ensemble d'éléments "V^e" de forme relativement simples. Chaque élément "V^e" doit être défini analytiquement de manière unique en fonction des coordonnées des noeuds géométriques qui appartiennent à cet élément.

La partition du domaine "V" en élément "V^e" doit respecter les deux règles suivantes:
- a) deux éléments distincts ne peuvent avoir en commun que des points situés sur leur frontière commune, si elle existe. cette condition exclut le recouvrement de deux éléments. les frontières entre éléments peuvent être des points, des courbes ou des surfaces.
- b) l'ensemble de tous les éléments "V^e" doit constituer un domaine aussi proche que possible du domaine donné "V".Nous excluons en particulier les vides entre éléments.

$$v = \sum_{e} v^{e} \tag{3.2}$$

III-2-2) Représentation de la géométrie de chaque élément "V^e"

Nous utiliserons une transformation τ linéaire par rapport aux coordonnées $\{X_n\}$ des nœuds géométriques de l'élément réel "V^e"

$$\tau : \xi \to x(\xi) = \left[\overline{N}(\xi)\right] \left\{ \overline{X}_n \right\}$$
(3.3)

$$X(\xi,\eta) = \overline{N}_{1}(\xi,\eta)X_{1} + \overline{N}_{2}(\xi,\eta)X_{2} + \dots + \overline{N}_{n}(\xi,\eta)\overline{X}_{n} = <\overline{N} > \begin{cases} X_{1} \\ X_{2} \\ \vdots \\ \vdots \\ X_{n} \end{cases}$$
(3.4)

 $\overline{\mathbf{N}}_{i}$: Fonctions de transformation géométrique

 ${X_n}$:Coordonnés des noeuds géométriques de l'élément réel "v^e"

 $X(\xi)$:Coordonnés des noeuds géométrique de l'élément de référence "v^r"

III-2-3) Approximation sur l'élément de référence :

Nous choisissons sur le domaine "V" un ensemble de **n** nœuds d'interpolation de coordonnées x_i , confondus ou non avec les nœuds géométriques. Sur chaque élément "V^e" nous utilisons une approximation nodale de la fonction exacte $U_{ex}(x)$.

$$U_{ex}(x) \approx U(x) = < N_{1}(x)N_{2}(x)...N_{n^{e}}(x) > \begin{cases} U_{1} \\ U_{2} \\ . \\ . \\ U_{n^{e}} \end{cases} = < N(x) > \{U_{n}\} \qquad (3.5)$$

N_i :Fonctions d'interpolation sur l'élément réel.

 $\{U_n\}$: Variables nodales de l'élément (déplacement nodaux).

Les fonctions d'interpolation doivent vérifier les deux propriétés suivantes:

a-)
$$N_{j}(\xi_{i}) = \begin{cases} 0 & si \quad i \neq j \\ 1 & si \quad i = j \end{cases}$$

b-) $\sum_{i=1}^{n_{d}} N_{i}(\xi) P(\xi_{i}) = P(\xi)$

III-2-4) Construction de la fonction $N(\xi)$ et $\overline{N}(\xi)$:

Les fonctions de transformation géométrique $\overline{N}(\xi)$ et les fonctions d'interpolation sur l'élément de référence $N(\xi)$ ont les mêmes propriétés elles peuvent parfois être construites directement à partir des polynômes classiques de type Lagrange ou Hermite.

Les polynômes de l'interpolation de Lagrange, dont l'expression générale sont :

$$N_{i}^{n}(x) = \prod_{\substack{j=1\\j\neq i}}^{n+1} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(3.6)

Le polynôme d'interpolation s'écrit (composant U par exemple) :

$$U(x,y) = b_1$$

+ $b_2x + b_3y$
+ $b_4x^2 + b_5xy + b_6y^2$
+ $b_7x^3 + b_8x^2y + b_9xy^2 + b_{10}y^3 + b_{11}x^4 + \dots$
...+ $b_{(n+1)(n+2)/2}y^n$
= $P(x, y) u$

Triangle	Degré	n	Nombre de termes
1	constant	0	1
x y	linéaire	1	3
\mathbf{x}^2 $\mathbf{x}\mathbf{y}$ \mathbf{y}^2	quadratique	2	6
x^3 x^2y xy^2 y^3	cubique	3	10
$x^4 x^3y x^2y^2 xy^3 y4$	quartique	4	15
x^5 x^4y x^3y^2 x^2y^3 xy^4 y^5	quintique	5	21

Et ses termes apparaissent naturellement grâce au triangle de pascal (fig.3.5).

Fig. 3.5 Triangle de pascal

 $N_i^n(x)$: est un polynôme de degré n, qui passe par n points $x_j(j\neq i)$ et vaut 1au point restant x_i .

III-2-4-1) méthode générale de construction:

III-2-4-1-1) choix de la base polynomiale:

Exprimons U(x) sur l'élément de référence sous la forme d'une combinaison linéaire des fonctions connues indépendantes $P_1(\xi)$, $P_2(\xi)$, ...qui sont le plus souvent des monômes indépendantes $P_i(\xi)$ est l'une des opérations de base de la MEF

$$U(\xi) = \langle P_{1}(\xi) P_{2}(\xi) ... \rangle \begin{cases} U_{1} \\ U_{2} \\ . \\ . \\ U_{n} \end{cases} = \langle P(\xi) \rangle \{u_{n}\}$$
(3.7)

L'ensemble des fonctions $P(\xi)$ constitues la base polynomiale de l'approximation. Son nombres de termes doit être égal au nombre de degré de liberté n_d de l'élément. Nous utilisons

le plus souvent une base polynomiale complète; ceci n'est possible que pour certaine valeur de $\ensuremath{n_n}$

III-2-4-1-2) Expression de $N(\xi)$:

Exprimons qu'en chaque nœud d'interpolation de coordonnées ξ , la fonction U(ξ) prend la valeur nodale $U_i=U_{ex}(\xi)$:

$$\begin{cases}
U_{1} \\
U_{2} \\
\vdots \\
.U_{n_{d}}
\end{cases} = \{U_{n}\} = \begin{cases}
< P_{1}(\xi_{1})P_{2}(\xi_{1})...P_{n_{d}}(\xi_{1}) > \\
< P_{1}(\xi_{2})P_{2}(\xi_{2})...P_{n_{d}}(\xi_{2}) > \\
...... \\
< P_{1}(\xi_{n_{d}})P_{2}(\xi_{n_{d}})...P_{n_{d}}(\xi_{n_{d}})
\end{cases} \begin{cases}
u\}$$
(3.8)

$$\{U_n\} = [P_n]\{u\}$$
(3.9)

Soit la matrice nodale [P_n] d'ordre n_d

$$\{u\} = [P_n]^{-1} \{U_n\}$$
(3.10)

Reportons la relation (3.10) dans (3.9)

Soit:

$$U(\xi) = \langle P(\xi) \rangle [P_n]^{-1} \{U_n\}$$
$$U(\xi) = \langle N(\xi) \rangle \{U_n\}$$
(3.11)

D'où
$$=[P_n]^{-1}$$

III-2-5) Calcul des matrices de rigidité de chaque élément [k^e] :

$$[K^{e}] = \int_{V} [B]^{T} [D] [B] dV = t \int_{-b-a}^{b} [B]^{T} [D] [B] dx dy$$
(3.12)

Par transformation d'intégrale on peut passer de l'intégration de la formule (3.12) sur l'élément réel " V^{e} " à une intégration plus simple sur l'élément de référence " V^{r} " on obtient la formule suivante:

$$\left[K^{e}\right] = \int_{-1-1}^{1} \left[B\right]^{T} \left[D\right] \left[B\right] \det(J) d\xi d\eta$$
(3.13)

$$\{\partial_x\} = [j] \{\partial_{\xi}\}$$
 Où $[j] = [J]^{-1}$

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \langle \overline{N}_{\xi} \rangle \\ \langle \overline{N}_{\eta} \rangle \end{bmatrix} \begin{bmatrix} X_{\eta} \end{bmatrix} [Y_{\eta}]$$
(3.14)

[B] : matrice relient les gradients (déformations) en x au variable nodale (déplacements).

[D] : matrice des propriétés physiques d'élément (E, υ , α ,...).

[J], det [J] : matrice jacobienne et son déterminant

III-2-6) Calcul des vecteurs de sollicitation de chaque élément {f^e}:

$$\{f^{e}\} = \int_{V^{e}} [N]f_{V} \det(J) + \int_{S^{e}} \{N\}f_{S} dS$$

$$\{f^{e}\} = \int_{V^{r}} \{N(\xi)\}f_{V} \det(J(\xi))dV^{r} + \int_{S^{r}} \{N(\xi_{S})\}f_{S} dS$$
(3.15)

 f_V : Force de volume.

 f_s : Force de surface.

Le vecteur {F} s'écrit en négligeant l'intégral de surface:

$$\left\{f^{e}\right\} = \int_{V'} \left\{N(\xi)\right\} f_{V} \det(J) dV' = \int_{-1-1}^{1} \left\{N(\xi)\right\} f_{V} \det(J) d\xi d\eta$$
(3.16)

III-2-7) Assemblage des matrices et des vecteurs élémentaires:

L'assemblage est l'opération qui consiste à construire la matrice globale [K] et vecteur global des sollicitations $\{F\}$ à partir des matrices élémentaires $[k^e]$ et des vecteurs élémentaires de sollicitations $\{f^e\}$.

Chaque forme intégrale élémentaire W^e s'écrit sous la forme discrétisée:

$$W^{e} = <\delta u_{n} > \left(\!\left|\!k^{e}\right|\!\left|\!\left|\!u_{n}\right|\!\right] - \left\{\!f^{e}\right\}\!\right)$$

$$W = \sum_{e} W_{e} = \sum_{e} <\delta u_{n} > \left|\!\left|\!k^{e}\right|\!\left|\!\left|\!u_{n}\right|\!\right] - \left\{\!f^{e}\right\}\!\right]$$

$$W = <\delta U_{n} > \left[\!\left|\!K\right|\right|\!\left|\!\left|\!U_{n}\right|\!\right] - \left\{\!F\!\right\}\!\right]$$

$$(3.17)$$

$$(3.18)$$

En effet de :

- la continuité des déplacements aux nœuds

- L'équilibre des forces à chaque noeud

En obtient :

$$\sum_{e} \left[K^{e} \right] \left\{ U_{n} \right\} - \sum_{e} \left\{ U_{n} \right\} \left\{ F^{e} \right\} = \sum_{e} P_{i}^{e} = 0$$
(3.20)

c:
$$[K]{U_n} - {F_n} = 0 \Rightarrow [K]{U_n} = {F}$$
 (3.21)

Où

 $\{u_n\}$: Variables (déplacements) nodales d'un élément.

{U_n}: Ensemble de toutes les variables (déplacements) nodales

W : Forme intégrale globale (travail virtuel totale).

W^e: Forme intégrale élémentaire (travail virtuel élémentaire).

 $\{\delta u_n\}$: variation des variables nodales d'un élément.

 $\{\delta U_n\}$: variation de l'ensemble des variables nodales.

III-2-8) Résolution du système d'équation globale:

Après l'assemblage, la forme intégrale globale s'écrit:

$$[K]{U_n} = {F}$$
(3.22)

- Modification de [K] et {F} pour prendre en compte les conditions aux limites.
- Triangularisation de [k].
- Calculer de la solution U.

III-3) ETAPES CARACTERISTIQUES D'UN PROGRAMME D'ELEMENTS FINIS :

Tout programme basé sur la MEF inclut quelques blocs fonctionnels caractéristiques:

- a) Lecture, vérification, organisation des données en décrivant le maillage (nœuds et éléments), les paramètres physiques (E, υ, α, ...etc.) les sollicitations et les conditions aux limites;
- b) Construction des matrices et vecteurs élémentaires, puis assemblage des ceux-ci pour former la matrice globale et le vecteur global des sollicitations;
- c) Résolution du système d'équations après prise en compte des conditions aux limites;
- d) Impression des résultas après calcul éventuel des variables additionnelles (gradients, contraintes, réactions,...etc.). la figure 3.6 montre l'enchaînement de ces différents blocs.

Lecture, vérification, organisation des données

Lire et imprimer :

- les coordonnées des nœuds.
- les connectivités des éléments.
- les paramètres physiques.
- les sollicitations.
- les conditions aux limites.

Construction de la matrice et du vecteur globaux [K] et {F}

Pour chaque élément :

- extraire les informations liées a cet élément.
- construire la matrice et le vecteur élémentaires $[k^e]$ et $\{f^e\}$.
- assembler $[k^e]$ et $\{f^e\}$ dans [K] et $\{F\}$.

Résolution du système d'équations [K] {U}= {F}

- modifier [K] et {F} pour prendre en compte les conditions aux limites.
- triangulariser [K].
- calculer la solution {U}.

Impression des résultas.

- calculer les variables additionnelles.
- imprimer les résultas.

fig.3.6 Organigramme d' Etapes caractéristiques d'un programme d'éléments finis

III-4) CONVERGENCE DE LA METHODE VERS LA SOLUTION EXACTE:

III-4-1) Types de convergence

Il existe deux types de convergence :

• La convergence *h*, par raffinement du maillage sans modification de l'interpolation

Considérons un maillage d'élément fini on appelons h la dimension caractéristique d'un élément (longueur plus grande côté diamètre du cercle circonscrite). On subdivise toujours davantage le domaine en éléments toujours plus petits chaque nouvelle division contient la précédente et on conserve pour les éléments de même type constamment la même approximation du champ.

Alors si les critères de convergence sont remplis la solution approchée tend vers la solution exacte quand la taille des éléments tend vers zéro $\langle h \rightarrow 0 \rangle$ c'est le principe de la convergence h.

• La convergence *p*, par enrichissement de l'interpolation sans changement de maillage

Partons d'un maillage donné d'élément fini et appelons p le degré des polynômes utilisés pour l'interpolation on conserve le maillage choisi et on enrichit le champ approché des éléments en augmentant le degré p.

Alors si les critères de convergence sont satisfaits la solution approchée tend vers la solution exacte lorsque le degré de l'interpolation tend vers l'infini $\langle p \rightarrow \infty \rangle$. C'est la technique de la convergence p.

III-4-2)Critères de convergence:

Pour que la solution approchée tende vers la solution exacte, l'interpolation choisie doit satisfaire à certaines conditions, appelées critères de convergence, ces critères garantissent une convergence monotone de la solution numérique vers la solution exacte:

a) critère 1:

Le premier critère de convergence est le critère de continuité, conformité ou compatibilité cinématique, l'interpolation doit être telle que le champ des déplacements soit:

- Continue et dérivable dans l'élément.

- Continue à travers les frontières.

La première condition prévient l'emploi des fonctions présentant des discontinuité (arrêtes, sauts,....).

Par la seconde condition, les déplacements doivent être continus en tout point des frontières séparant les éléments. Or, à la frontière de deux éléments adjacents, les déplacements ne sont a priori égaux qu'aux seuls nœuds communs.

b) critère 2:

Le second critère de convergence est le critère des déformations constantes ou de complétude, l'interpolation doit permettre de représenter:

- Les états de déplacement constant ou modes rigides.

- Les états de déformation constante.

Ce critère semble physiquement évident : l'élément fini doit pouvoir se déplacer en bloc, comme un corps rigide, sans qu'aucune contrainte (ou déformation) n'y naisse, et il doit être capable de représenter des états de déformations les plus simple, c'est-à-dire constante.

En réalité ce critère doit être compris de manière plus aigu et se justifie à la limite : quand un élément fini devient de plus en plus petit ($h\rightarrow 0$), ses déplacements et déformations tendent vers des valeurs constantes; pour assurer la convergence, il est donc indispensable que l'interpolation puisse les représenter.

CHAPITRE IV Méthodes numérique

Chapitre IV METHODES NUMERIQUES

IV-1) INTRODUCTION:

La mise en œuvre effective de la méthode des éléments finis décrite dans les chapitres précédents nécessite l'utilisation des méthodes numériques, pour construire les matrices élémentaires et résoudre les systèmes d'équations algébriques qui en résultent. Ce chapitre regroupe les descriptions des diverses méthodes numériques couramment employées.

IV-2) INTEGRATION NUMERIQUE:

Dans la solution numérique des problèmes de la mécanique des solides et structures, on est fréquemment amené à devoir évaluer des intégrales tel que:

$$\int_{a}^{b} f(x)dx \quad , \quad \int_{a}^{b} \int_{c}^{d} f(x, y)dxdy \quad \dots \text{etc.}$$

Souvent il est difficile ou impossible de trouver les expressions exactes de ces intégrales. On peut alors les évaluer de manière approchée par une intégration numérique.

L'intégration numérique permettent de construire les matrices et vecteurs élémentaires par intégration sur l'élément de référence. Des formules d'intégration numérique sont proposées pour des domaines variés à une, deux ou trois dimensions.

Dans la méthode des éléments finis, la matrice élémentaire $[k^e]$ et le vecteur des sollicitations élémentaires $\{f^e\}$ s'expriment sous formes d'intégrales, définies sur l'élément réel V^e.

IV-2-1) Principe de l'intégration numérique:

L'intégration numérique consiste à

- Sélectionner dans l'intervalle [-1, +1] un certain nombre de points i=1,2,...n d'abscisse ξ_i, dits points d'intégration.
- Calculer en ces points les valeurs f_i de la fonction a intégré.
- Pondérer ces valeurs par des coefficients ω_i.
- Remplacer l'intégrale par la somme fini.

$$I = \int_{-1}^{1} f d\xi \approx \sum_{i=1}^{n} \omega_i f_i$$
(4.1)

Le choix des abscisses ξ_i et des coefficients ou poids d'intégration ω_i dépend de la méthode appliquée. Les formules d'intégration numérique les plus utilisées sont décrites brièvement ciaprès.

IV-2-2) Formules d'intégration numérique:

IV-2-2-1) Formule des rectangles:

On divise l'intervalle [-1, +1] en n partis de longueur h_i , on calcule la valeur f_i de la fonction au milieu de chaque partie et l'on pose

fig.4.3 Intégration numérique par la formule des rectangles pour n = 4

Les points d'intégration sont les milieux des segments. Si tout les segments sont égaux, $h_i=2/n$. cette formule de quadrature est la plus rudimentaire.

IV-2-2-2) Formule des trapèzes:

On divise l'intervalle [-1, +1] par n points d'intégrations équidistants comprenant les points extrême, on approche la fonction f entre deux points consécutifs par un segment de droite et on obtient:

$$I = \frac{2}{n-1}(f_1 + 2f_2 + 2f_3 + \dots + 2f_{n-1} + f_n) \quad (4.3)$$

IV-2-2-3) Formule des paraboles ou de Simpson :

On divise l'intervalle [-1, +1] par un nombre n impair de points d'intégrations équidistants comprenant les points extrêmes et on suppose la fonction f approchée, tout les trois points, par des segments de parabole; il on résulte la formule:

$$I = \frac{2}{3(n-1)}(f_1 + 4f_2 + 2f_3 + 4f_4 + 2f_5 + \dots + 2f_{n-2} + 4f_{n-1} + f_n) \quad (4.4)$$

IV-2-2-4) Formule de Newton-Cotes:

On considère à nouveau n points d'intégrations équidistants comprenant les points extrêmes et on fait passer un polynôme par les valeurs que prend la fonction f en ces points. Ce polynôme est alors intégré exactement. Le résultat se présente sous la forme (4-1) ou les coefficients d'intégration w_i , sont dans des tableaux.

Il est préférable d'utiliser un nombre impair de points d'intégration pour réduire l'erreur (n ≥ 3 ; pour n = 3, on retrouve la formule de Simpson).

La détermination des poids w_i est relativement aisée puisque les polynômes approchant dans l'intervalle considéré, la fonction f donnée, peut s'écrire sous la forme:

$$f(\xi) \approx \sum_{i=1}^{n} f(\xi_i) N_i(\xi)$$
(4.5)

Alors

$$\int_{-1}^{1} f(\xi) = \sum_{i=1}^{n} \left(\int_{-1}^{1} f(\xi_{i}) \cdot N_{i}(\xi) d\xi \right) = \sum_{i=1}^{n} w_{i} f(\xi_{i})$$
(4.6)

Où

Les poids wi sont donc les intégrales des fonctions d'interpolation de Lagrange Ni:

$$w_{i} = \int_{-1}^{1} N_{i}(\xi) d\xi$$
 (4.7)

 $N_i(\xi)$: Fonction d'interpolation de Lagrange (3.6).

fig.4.3 Intégration numérique par la formule de Newton-Cotes pour n = 4

IV-2-2-5) Formule de Gauss:

C'est la méthode la plus utilisée dans laquelle les n coefficients ω_i et les n abscisses ξ_i sont déterminés de manière à intégrer exactement des polynômes d'ordre m \leq 2n-1.

Remplaçons l'intégrale d'un fonction polynomiale $f(\xi)$ par une combinaison linéaire de ses valeurs aux points d'intégration ξ_i .

$$I = \int_{-1}^{1} f(\xi_i) d\xi = w_1 f(\xi_1) + w_2 f(\xi_2) + \dots + w_i f(\xi_i) + \dots + w_n f(\xi_n)$$
$$I = \sum_{i=1}^{n} w_i f(\xi_i)$$
(4.8)

Pratiquement les abscisses ξ_i des points d'intégration (ou points de Gauss) et les coefficients ω_i sont données dans des tableaux.

fig.4.4 Intégration numérique par la formule de Gauss pour n =2

IV-2-3) Intégration de [k] et {f} par la méthode de Gauss à deux dimensions:

La matrice de rigidité élémentaires s'écrite comme suivant (pour n=2):

$$\left[K^{e}\right] = \int_{-1-1}^{1} \left[B\right]^{T} \left[D\right] \left[B\right] \det(J) d\xi d\eta$$

$$\approx \left[B(\xi_1) \right]^T \left[\left[D \right] \cdot w_1 \det(j(\xi_1)) \right] \left[B(\xi_1) \right] + \left[B(\xi_2) \right]^T \left[\left[D \right] \cdot w_2 \det(j(\xi_2)) \right] \left[B(\xi_2) \right] \right]$$

Le vecteur de sollicitations élémentaires s'écrit comme suivant :

$$\{f^{e}\} = \int_{V'} \{N(\xi)\} f_{V} \det(J) dV^{r} = \int_{-1-1}^{1} \{N(\xi)\} f_{V} \det(J) d\xi d\eta$$

$$\approx \{N(\xi_{1})\} (w_{1} \cdot f_{v} \cdot \det(j(\xi_{1}))) + \{N(\xi_{2})\} (w_{2} \cdot f_{v} \cdot \det(j(\xi_{2}))) \}$$

Où

$$\xi_1 = -\xi_2 = \frac{1}{\sqrt{3}};$$
 $w_1 = w_2 = 1.$

IV-3) RESOLUTION DE SYSTEME D'EQUATIONS LINEAIRES:

IV-3-1) Introduction:

La résolution du système d'équations:

$$[K] \{U_n\} = \{F\}$$
(4.9)

Est une étape importante de la méthode des éléments finis. Ce système est linéaire lorsque [K] ne dépend pas de {U}.

Le nombre n d'inconnues U_n est proportionnel au nombre total de nœuds d'interpolation et au nombre de degrés de liberté par nœud. La précision et le champ d'application de la méthode des éléments finis sont limités par la dimension des systèmes d'équation que nous pouvons résoudre.

Les méthodes de résolution de systèmes linéaires peuvent être classées en deux catégories

 a) les méthodes directes qui conduisent à la solution en un nombre d'opération connu a priori :

Les méthodes itératives qui conduisent à la solution par une succession d'amélioration d'une solution approchée, le nombre d'itération nécessaires étant difficile à prévoir et dépendant de la structure de la matrice [k].

IV-3-2) Méthode d'élimination de Gauss :

Cette méthode très souvent utilisée et constituée de deux étapes essentielles:

a) Triangularisation:

Cette étape consiste à éliminer successivement les inconnus, pour transformer le système d'équations (4.9) à un système triangulaire:

$$\begin{bmatrix} S \\ 0 \end{bmatrix} \{ U \} = \{ F' \}$$

b) Résolution du système triangulaire supérieur précédent :

Cette étape consiste à calculer les inconnues $U_{n'}$ de la dernière à la premiere, par résolution du système triangulaire.

CHAPITRE V Applications

Chapitre V APPLICATIONS

Pour développer l'influence du demi espace élastique sur la structure nous allons traiter les deux problèmes suivants :

- Problème en contraintes planes, et nous prenons un voile d'un bâtiment avec son demi espace élastique.
- problème en déformations planes, et pour cela nous prenons un barrage en béton armé avec son demi espace élastique.

Pour évaluer les déplacements et les contraintes dans l'ensemble sol-structure, nous utilisons un programme de la méthode des éléments finis en langage FORTRAN basée sur un élément quadrilatérale de huit nœuds Q8.

V-1) VOILE DE CONTREVENTEMENT D'UN BATIMENT:

Nous prenons un voile de contreventement d'un bâtiment composé d'un RDC et de huit étages (R+8) à usage d'habitation situant en zone de forte sismicité (zone III) fondé sur un sol meuble au premier cas, et sur un sol ferme au deuxième cas.

V-1-1). Caractéristiques du voile :

H = 20 m $e_{voile} = 20 \text{ cm}$ $e_{dalle} = 16 \text{ cm}$ $h_e = 2,5 \text{ m}$ b = 6 m $E_b^{inst} = 11000 \cdot f_{cj}^{1/3}$ $f_{cj} = 0,685 f_{c28} Log(j+1)$ $f_{c28} = 25 \text{ MPa}$ pour j=1:

Fig. 5.1 Représentation et modélisation de voile

$$\begin{split} E_b^{inst} =& 19002 \text{ MPa} =& 19002. \ 10^3 \text{ KN/ m}^2. \\ E_s (\text{meuble}) =& 300 \text{ MPa} =& 300.10^3 \text{ KN/m}^2. \\ ; & E_s (\text{ferme}) =& 1000 \text{ MPa} =& 10^6 \text{ KN/m}^2 \\ E_s (\text{moyennement meuble}) =& 600 \text{ MPa} =& 600.10^3 \text{ KN/m}^2 \\ \upsilon_{b\acute{e}ton} =& 0,2 \ ; \ \upsilon_{sol} =& 0,3 \\ \text{Les charges:} \\ \text{Plancher terrasse:} \\ \text{Plancher courant} \\ g =& 0,6 \text{ t/m}^2 \\ q =& 0.1 \text{ t/m}^2 \\ \end{split}$$

V-1-2). Évaluation des charges :

a-) Charges permanentes:

• charges revenantes du plancher terrasse:	0,7×4×6=16,8t
• charges revenantes des planchers courantes:	$0,6 \times 4 \times 6 = 14,4t$
• La partie de voile revenant au plancher terrasse	$. 6 \times \frac{2,5}{2} \times 0,2 \times 2,5 = 3,75t$
• La partie de voile revenant au plancher courant	6×2,5×0,2×2,5=7,5t

b-) Charges d'exploitations:

- Charges revenantes de plancher terrasse:..... $0,1 \times 4 \times 6=2,4t$
- Charges revenantes des planchers courantes: $[0,15\times6\times4]=3,6t$

c-) Combinaison des charges:

$$W_i = G + 0.2Q$$

- plancher terrasse $W_8 = (16,8+3,75) + 0,2 \times 2,4=21,03t$
- plancher courant $W_{(1-7)}=(14,4+7,5)+02\times 3,6=22,62t$

V-1-3). Evaluation de l'effort tranchant à la base:

Selon le RPA nous avons:

$$V = \frac{Q \cdot A \cdot D}{R} W$$

A : coefficient d'accélération de la zone.

 $\begin{cases} \text{Zone III} \\ \text{Groupe d'usage 2} \end{cases} \Rightarrow A=0,4$

D:facteur d'amplification dynamique moyenne.

$$D = f(\eta, T, S_i)$$

$$\mathbf{D} = \begin{cases} 2.5\eta & 0 \le \mathbf{T} \le \mathbf{T}_2 \\ 2.5\eta (\mathbf{T}_2/\mathbf{T})^2_3 & \mathbf{T}_2 \le \mathbf{T} \le 3.0s \\ 2.5\eta (\mathbf{T}_2/3.0)^2_3 (3.0/\mathbf{T})^5_3 & \mathbf{T} \ge 3.0s \end{cases}$$

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta=\sqrt{7/\big(2+\xi\big)}\geq 0.7$$

$$\xi = 10\%$$
 $\eta = \sqrt{\frac{7}{2+10}} = 0,763.$

T₂: période caractéristique, associée à la catégorie du site.T: la période fondamentale de la structure.

Calcul de la période T:

$$T = c_T h_N^{\frac{3}{4}}$$

 $C_{\rm T} = 0.05$

$$h_N = 20m$$
 $T = 0.05 \times 20^{3/4} = 0.472 sec$

Détermination de T₂:

Site	Site ferme	Site meuble	
T _{2(sec)}	0,40	0,50	

$$D = \begin{cases} = 2,5\eta \left(\frac{T_2}{T}\right)^{\frac{2}{3}} = 2,5 \times 0,763 \left(\frac{0,4}{0,472}\right) = 1,708 & \text{Site ferme} \\ = 2,5\eta = 2,5 \times 0,763 = 1,907 & \text{Site meuble} \end{cases}$$

R: coefficient de comportement globale de la structure.

Bâtiment contreventé par des voiles porteurs

R=3,5

Q: facteur de qualité

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{5} P_{q}$

Les critères 2 et 3 sont vérifiés donc: Q = 1 + 0, 1 = 1, 1.

W: poids totale de la structure

Calcul de l'effort tranchant à la base:

$$\begin{cases} V_1 = \frac{1,1 \times 0,4 \times 1,708 \times 179,37}{3,5} = 38,514t & \text{Site ferme} \\ V_2 = \frac{1,1 \times 0,4 \times 1,907 \times 179,37}{3,5} = 43.001t & \text{Site meuble} \end{cases}$$

V-1-4). Répartition de l'effort tranchant sur la hauteur du bâtiment:

 $T{=}0{,}472~\text{sec} < 0{,}7~\text{sec} \implies F_t{=}0$

$$F_{k} = \frac{(V - F_{t}) \cdot W_{k} \cdot z_{k}}{\sum_{i=1}^{8} W_{i} z_{i}} = V \frac{W_{k} z_{k}}{\sum_{i=1}^{8} W_{i} z_{i}}$$

 $\sum_{i=1}^{8} W_i z_i = W_8 z_8 + \sum_{i=1}^{7} W_7 z_i = 21.03 \times 20 + 22.62 \times 2.5 \times 28 = 2004t \cdot m$

$$\begin{cases} F_k = \frac{38,514}{2004} W_k \cdot z_k = 0,019 \cdot W_k \cdot z_k \\ F_k = \frac{43,001}{2004} W_k \cdot z_k = 0,021 \cdot W_k \cdot z_k \end{cases}$$

Hauteur	Sol meuble	Sol ferme
Z(m)	F _k (t)	F _k (t)
20	9,001	8,076
17,5	8,471	7,600
15	7,261	6,515
12,5	6,051	5,429
10	4,841	4,343
7,5	3,631	3,257
5	2,420	2,172
2,5	1,210	1,086
0	0,000	0,000

Tableau 5.1 Répartition d'effort tranchant sur la hauteur de voile

V-1-5). Calcul des déplacements et des contraintes dans l'ensemble voile-sol :

V-1-5-1). Evaluation des charges nodales:

Fig. 5.2 Représentation de système des charges nodales

V-1-5-2). Le choix du maillage:

Un bon maillage est celui qui donne une meilleur approche vers la solution exacte, et pour avoir une bonne convergence (bonne précision) on procède à un raffinage du maillage tout on gardent le même type d'élément (éléments Q8), pour cela on utilise plusieurs types de maillages et on augmente à chaque fois le raffinement de maillage. **a-)** Maillage 01:Dans ce premier maillage on divise le voile par (2×4) éléments et le sol par (8×3) éléments:

Fig.5.3 Maillage 01 du voile (32 éléments)

b-) Maillage 02 : Dans ce deuxième maillage on divise le voile par (2×8) éléments et le sol par (8×4) éléments:

Fig.5.4 Maillage 02 du voile (48 éléments)

b-) Maillage 03 : Dans ce troisième maillage on divise le voile par (2×8) éléments, et le sol par (8×5) éléments:

V-1-5-3). Etude de la convergence:

Puisque nous avons utilisé des éléments quadrilatéraux à 8 nœuds donc on peut adopté le type de convergence h (voir § III-4) qui sert à diminué à chaque fois la taille des éléments.

V-1-5-3-1). Convergence des déplacements maximaux:

a)-déplacement horizontal maximal U^{max}:

On trace les courbes du déplacement U^{max} en fonction de nombre d'éléments de chaque maillage et on obtient les courbes suivantes; le déplacement maximal se trouve au sommet du voile (Z=20 m):

Ø Sol meuble $E_s=300$ MPa :

Type de	maillaga01	maillaga02	maillaga03	
maillage	mamageor	mannage02	manageos	
Nombre	37	48	56	
d'éléments	52	40	50	
U ^{max} (mm)	41,052	45,843	45,981	

Fig. 5.6 Courbe de convergence du déplacement horizontal maximal $(E_s=300 \text{ MPa})$

Ø Sol ferme $E_s = 1000 MPa$

Type de	maillage01	maillage02	maillage03	
maillage	mannageor	mannage02		
Nombre	20	19	56	
d'éléments	52	40	50	
U ^{max} (mm)	12,498	13,755	13,797	

b)-déplacement vertical maximal V^{max}:

Ø Sol meuble Es=300 MPa

Type de	maillage01	maillage02	maillage03
maillage	mannageor	mannage02	mannage05
Nombre	37	/18	56
d'éléments	52	40	50
$ V ^{max}(mm)$	14,012	14,868	14,936

Ø Sol ferme $E_s = 1000 MPa$

Type de	maillaga01	maillaga02	maillage03	
maillage	mamageor	mannage02		
Nombre	20	49	56	
d'éléments	32	48		
$ V ^{max}(mm)$	4,306	4,534	4,555	

Fig. 5.9 Courbe de convergence du déplacement horizontal maximal $(E_s=1000 \text{ MPa})$

V-1-5-3-2). Convergence de la contrainte maximale:

On trace les courbes de contrainte σ_{max} en fonction de nombre d'éléments de chaque maillage et on obtient les courbes qui suite; la contrainte maximale ce trouve à la base de voile, nous choisissons un pointe de 1 mètre de profondeur (Z= -1 m):

Ø Sol meuble $E_s = 300 MPa$:

Type de	maillaga01	maillaga02	maillage03	
maillage	mamageor	mannage02		
Nombre	30	18	56	
d'éléments	52	40		
$\sigma_{yy}^{\max}(MPa)$	326,834	384,381	384,466	

Fig. 5.10 Courbe de convergence de la contrainte maximale $(E_s=300 \text{ MPa})$

Type de	maillaga01	maillaga02	maillage03	
maillage	mamageor	mannage02		
Nombre	37	48	56 388,653	
d'éléments	52	40		
$\sigma_{yy}^{\max}(MPa)$	329,547	380,793		

Ø Sol ferme $E_s = 1000 MPa$:

Fig. 5.11 Courbe de convergence de la contrainte maximale $(E_s=1000 \text{ MPa})$

Après l'étude de la convergence, nous avons considéré trois types du sol (meuble $E_s = 300$ MPa, moyennement meuble $E_s = 600$ MPa et ferme $E_s = 1000$ MPa), pour examiner l'effet du demi espace élastique sur le voile et nous avons tracé les courbes suivantes:

hauteur d'étage	Les déplacen	Les déplacements horizontaux des étages U (mm)					
Y (m)	E _s =300MPa	E _s =600MPa	E _s =1000MPa				
20	45,981	24,120	13,798				
17,5	40,441	21,161	12,069				
15	34,914	18,214	10,351				
12,5	29,395	15,276	8,640				
10	23,896	12,358	6,948				
7,5	18,434	9,475	5,288				
5	13,023	6,646	3,675				
2,5	7,683	3,886	2,125				
0	2,450	1,232	0,670				

Tableau 5.2 Déplacements horizontaux des étages selon le type de sol

Fig. 5.13 Etat déformée du voile

V-1-6). Calcul du déplacement horizontal maximal selon le RPA:

Le déplacement horizontal de chaque niveau "k" de la structure est calculé comme suit:

$$\delta_k = R \delta_{ek}$$

 $\delta_{\it ek}$: Déplacement dû aux forces sismique F_i.

R: coefficient de comportement.

Pour une console de longueur L, soumise à une charge concentrée P de distance a de l'encastrement, la flèche maximale f_{max} est calculé par la relation suivante:

$$f_{\max} = \frac{Pa^2(3L-a)}{6EI} + \frac{\lambda Pa}{GA}$$

E : Module de YOUNG.

G: Module de cisaillement.

- λ : Facteur de forme.
- I : Module d'inertie.

A: Aire de la section droite.

a) Sol meuble:

P(KN)	a(m)	E(MPa)	G(MPa)	λ	I(m ⁴)	$\frac{Pa^2(3L-a)}{6EI}$	$\frac{\lambda Pa}{GA}$	f _{imax} (mm)
90,010	20,000	19002	7917,5	1,2	3,600	3,509	0,227	3,736
84,710	17,500	19002	7917,5	1,2	3,600	2,686	0,187	2,873
72,610	15,000	19002	7917,5	1,2	3,600	1,791	0,138	1,929
60,510	12,500	19002	7917,5	1,2	3,600	1,094	0,096	1,190
48,410	10,000	19002	7917,5	1,2	3,600	0,590	0,061	0,651
36,310	7,500	19002	7917,5	1,2	3,600	0,261	0,034	0,296
24,200	5,000	19002	7917,5	1,2	3,600	0,081	0,015	0,096
12,100	2,500	19002	7917,5	1,2	3,600	0,011	0,004	0,014
						Σ=10,023	Σ=0,762	Σ=10,785

 Tableau 5.3 Valeurs des flèches horizontales maximales pour un sol meuble

•
$$f_{\text{max}} = \sum_{i=1}^{8} f_{i \text{ max}} = 10,023 \text{ mm}$$

si on ne tient pas compte l'effet de cisaillement

Le déplacement maximal $U_{RPA}^{max} = Rx f_{max} = 3,5 \times 10,023 = 35,081 \text{ mm}$

• $f_{\text{max}} = \sum_{i=1}^{8} f_{i \text{ max}} = 10,785 \text{ mm}$

si on tient compte l'effet de cisaillement

Le déplacement maximal $U_{RPA}^{max} = Rxf_{max} = 3,5 \times 10,785 = 37,749 \text{ mm}$
P(KN)	a(m)	E(MPa)	G(MPa)	λ	I(m ⁴)	$\frac{Pa^2(3L-a)}{6EI}$	$\frac{\lambda Pa}{GA}$	f _{imax} (mm)
80,76	20	19002	7917,5	1,2	3,6	3,148	0,204	3,352
76,00	17,5	19002	7917,5	1,2	3,6	2,410	0,168	2,578
65,15	15	19002	7917,5	1,2	3,6	1,607	0,123	1,731
54,29	12,5	19002	7917,5	1,2	3,6	0,982	0,086	1,067
43,43	10	19002	7917,5	1,2	3,6	0,529	0,055	0,584
32,57	7,5	19002	7917,5	1,2	3,6	0,234	0,031	0,265
21,72	5	19002	7917,5	1,2	3,6	0,073	0,014	0,086
10,86	2,5	19002	7917,5	1,2	3,6	0,010	0,003	0,013
						$\Sigma = 8,993$	$\Sigma = 0,684$	Σ= 9,677

b) Sol ferme:

Tableau 5.4 Valeurs des flèches horizontales maximales pour un sol ferme

• $f_{\text{max}} = \sum_{i=1}^{8} f_{i \text{ max}} = 8,993 \text{ mm}$ si on ne tient pas compte l'effet de cisaillement

Le déplacement maximal $U_{RPA}^{max} = Rxf_{max} = 3,5 \times 8.993 = 31,476 \text{ mm}$

•
$$f_{\text{max}} = \sum_{i=1}^{8} f_{i \text{ max}} = 9,677 \text{ mm}$$

si on tient compte l'effet de cisaillement

Le déplacement maximal $U_{RPA}^{max} = Rx f_{max} = 3,5 \times 9,677 = 33,869 \text{ mm}.$

V-1-7). Résultats et interprétations:

Nous avons utilisé trois maillages différents (de 32, 48 et 56 éléments quadrilatéraux à huit noeuds respectivement), puis nous avons tracé les courbes suivantes:

- Les courbes de convergence de U^{max} et V^{max} au somment du voile en fonction du nombre d'éléments. Nous avons remarqué que plus le maillage est raffiné plus la solution converge vers la solution exacte.
- Les courbes de convergence V^{max} et U^{max} au somment du voile pour un sol ferme. Nous avons remarqué que ces deux courbes convergent rapidement par rapport aux courbes de convergence d'un sol meuble.
- La courbe de convergence de la contrainte maximale (σ_{yy}^{max}). nous avons constaté que la convergence est moins rapide de celle des déplacements.
- La courbe de convergence de (σ_{yy}^{max}) pour un sol ferme. Nous avons déduis que la solution ne converge pas aussi rapidement que celle d'un sol meuble.

Nous avons considéré trois types du sol (meuble $E_s = 300$ MPa, moyennement meuble $E_s = 600$ MPa et ferme $E_s = 1000$ MPa), pour examiner l'effet du demi espace élastique sur le voile et on a obtenu les résultats suivants:

Plus le module de Young du sol diminue; plus le déplacement maximal au somment du voile augmente de 233 % environ (entre E_s=300 MPa et E_s=600 MPa), c'est-à-dire plus le sol est meuble plus le déplacement est important.

- Plus le module de Young du sol augmente plus la contrainte (σ^{max}_{yy}) augmente, c'est-à-dire plus le sol est ferme plus la contrainte augmente.
- Les rapports entre le déplacement maximal au sommet du voile calculé selon le RPA et celui obtenu par la MEF ont donné :

- Pour un sol meuble:

144V

$$\frac{U_{RPA}^{MAX}}{U_{MEF}^{MAX}} = \frac{45,981 - 35,081}{45,981} = 0,24 = 24\%$$
 (Sans effet de cisaillement)
$$\frac{U_{RPA}^{MAX}}{U_{MEF}^{MAX}} = \frac{45,981 - 37,749}{45,981} = 0,18 = 18\%$$
 (Avec effet de cisaillement)

C'est-à-dire le déplacement maximal calculé par la relation proposée dans le RPA présente 76% du déplacement obtenu par la MEF sans effet de cisaillement, et de 82% avec effet de cisaillement. Par conséquent la relation proposée par le RPA sous estime le déplacement maximal.

- Pour un sol ferme:

$$\frac{U_{RPA}^{MAX}}{U_{MEF}^{MAX}} = \frac{33,869 - 13.798}{13,798} = 1,45 = 145\%$$

 C'est-à-dire le déplacement maximal calculé selon le RPA présente 245% de celui obtenu par la MEF. par conséquent la relation proposée par le RPA sur estime le déplacement maximal.

V-2) BARRAGE:

Cette application consiste à calculer les déplacements nodaux, les contraintes et les déformations d'un barrage soumis à une pression hydrostatique. Le bassin est rempli d'eau jusqu'à la base de la crête ; les calculs sont réalisés avec l'hypothèse d'état plan de déformations. Les propriétés physiques ainsi que les dimensions de la construction sont fournies à la figure 5.14.

 E_s (meuble)=300 MPa =300.10³KN/m². E_s (moyennement meuble) =600 MPa=600.10³KN/m². E_s (ferme) =1000 MPa=10⁶KN/m²

V-2-2). Evaluation des charges nodales:

Les charges statiques agissant sur le barrage sont:

a)- La charge hydraulique P_h:

$$P_{h} = P \cdot S = \rho g z_{g} \cdot h \cdot 1 = \rho g \frac{h^{2}}{2}$$

Donc:

$$P_{\rm h} = 1000 \times 10 \times \frac{24^2}{2} = 2880 {\rm KN}$$

b)-les charges permanentes:

$$P_i = \rho_b \times v_i = 25 \times S_i \times 1$$

$P_1(KN)$	-725
P ₂ (KN)	-1450
$P_3(KN)$	-1303,75
P ₄ (KN)	-1029,75
$P_5(KN)$	-952,23
$P_6(KN)$	-803,5
P ₇ (KN)	-535,71
P ₈ (KN)	-267,85
$P_9(KN)$	-33,48

Tableau 5.5 Charges permanentes nodales

Fig.5.15 chargement du barrage

V-2-3). Le choix du maillage:

a-) Maillage 01 : Dans ce premier maillage nous avons divisé le barrage par éléments (6×2), et le sol par (10×4) éléments:

Fig.5.16 Maillage 01 du barrage (52 éléments)

b-) Maillage 02 : Dans ce premier maillage nous avons divisé le barrage par éléments (4×9) , et le sol par (12×5) éléments:

Fig.5.17 Maillage 02 du barrage (96 éléments)

c-) Maillage 03 : Dans ce troisième maillage nous avons divisé le barrage par (4×11) éléments, et le sol par (14×6) éléments:

						48 108 107 48 103 123 89 106 123 90 107 12 91 108 92 109 93 1 94 95 96 96	0 4 141 125 142 126 10 127 111 1 112 113	143 144 28 145 129	146					
2	12	29	46	63	80	97	113	131	148	165	182	199	215	233
	13	30	47	64	81	98	115	132	149	166	183	200	217	234
0	-						•	•	•			•		
	14	31	48	65	82	99	116	133	150	167	184	201	218	235
	15	32	49	66	83	100	117	134	151	168	185	202	219	236
	16	33	50	67	84	101	118	135	152	169	186	203	220	237
	17	34	51	68	85	102	119	136	153	170	187	204	221	238
J				-										

Fig.5.18 Maillage 03 du barrage (128 éléments)

Type de	maillage 01	maillage 02	maillage 03
maillage	mannage 01	mannage 02	mannage 05
Nombre	50	06	100
d'éléments	52	90	120
U ^{max} (mm)	24,96	31,53	32,04

V-2-4). Etude de convergence des déplacements maximaux:

Fig. 5.19 Courbe de convergence de U^{max} au sommet du barrage

Type de	maillage 01	maillage 02	maillage 03	
maillage	mannage 01	mannage 02	mannage 05	
Nombre	50	06	129	
d'éléments	32	90	128	
$ V ^{max}(mm)$	14,629	16,076	16,235	

Fig. 5.20 Courbe de convergence de V^{max} au sommet du barrage

Type de	maillage 01	maillage 02	maillage 03	
maillage	mannage 01	mannage 02	mannage 05	
Nombre	02	06	129	
d'éléments	92	96	128	
V (mm)	7,74	7,75	7,78	

Fig.5.21. Courbe de convergence du déplacement maximal V à la base du barrage

	les déplacements verticaux à la base V(mm)							
E (MPa) x (m)	300	600	1000					
0	-19,52	-9,37	-5,47					
2	-20,39	-9,97	-5,92					
4	-21,17	-10,51	-6,32					
6	-21,73	-10,84	-6,53					
8	-22,32	-11,21	-6,78					
10,5	-22,96	-11,57	-6,99					
13	-23,62	-11,96	-7,23					
15,5	-24,24	-12,30	-7,43					
18	-25,02	-12,81	-7,78					

Les courbes suivantes présentent les résultats obtenus après l'étude de la convergence.

Tableau 5.6 Des déplacements verticaux à la base

Fig.5.22. Courbe des déplacements verticaux à la base du barrage

	les déplacer	ments horizontaux	x maximaux
y(m)	$E_{s} = 300$	$E_{s} = 600$	$E_{s} = 1000$
29	73,337	46,109	32,043
27,75	65,771	41,213	28,595
26,5	58,199	36,313	25,143
25,25	50,631	31,415	21,693
24	43,120	26,555	18,269
23	38,387	23,492	16,112
22	33,753	20,493	14,000
21	30,734	18,539	12,623
20	27,778	16,627	11,276
18,5	24,875	14,748	9,952
17	22,023	12,902	8,651
15,5	20,150	11,690	7,797
14	18,299	10,494	6,956
12,5	16,995	9,652	6,365
11	15,734	8,852	5,813
9,5	14,849	8,310	5,457
8	14,173	7,977	5,309
7	13,413	7,401	4,834
6	12,745	6,920	4,452
4,5	12,008	6,410	4,065
3	11,290	5,923	3,704
1,5	10,687	5,512	3,399
0	9,990	5,021	3,027

Tableau 5.7 Des déplacements horizontaux suivant la hauteur du barrage

Fig.5.23. Courbe des déplacements horizontaux suivant la hauteur.

Fig.5.24. Etat déformé du barrage

E _s (Mpa)	300	600	1000
σ_{yy} (Mpa)	338,815	347,926	352,070

Fig.5.25. Courbe de variation de la contrainte en fonction de module de Young du sol à la base du barrage.

V-2-5) Résultats et interprétations:

Nous avons considéré trois maillages différents (de 52, 96 et 128 éléments quadrilatéraux à huit noeuds respectivement) et nous avons tracé les courbes suivantes:

- Les courbes de convergence de U^{max} et V^{max} au somment du barrage en fonction du nombre d'éléments. Nous avons constaté que plus le nombre d'éléments augmente, plus la solution se stabilise autour de la solution exacte.
- La courbe de convergence du déplacement vertical maximal V^{max} à la base du barrage. Nous avons remarqué que la convergence de la solution globale a été atteinte avec une très bonne précision.

Pour examiner l'effet du demi espace élastique sur le barrage, nous avons considéré trois types de sol déférents (sol meuble $E_s = 300$ MPa, sol moyennement meuble $E_s = 600$ MPa et sol ferme $E_s = 1000$ MPa), et nous avons obtenu les résultats suivants :

- Les contraintes maximales sont localisées à la base et à la crête du barrage, donc ces deux zones sont des zones dangereuses du barrage.
- Plus le module de Young du sol augmente, plus la contrainte maximale (σ_{yy}^{max}) augmente (de 4% environ entre sol meuble $E_s = 300$ MPa et sol ferme $E_s = 1000$ MPa).
- plus le module de Young de sol est faible, plus le tassement du barrage est important (220% d'augmentation entre sol meuble $E_s=300$ MPa et sol ferme $E_s=1000$ MPa).
- Plus le module de Young du sol diminue; plus le déplacement maximal au somment du barrage augmente (de 128% environ entre sol meuble E_s=300 MPa et sol ferme E_s=1000 MPa), c'est-à-dire plus le sol est meuble plus le déplacement est important.

Conclusion Générale

Chapitre VI CONCLUSION GENERALE

L'objectif de ce travail, consiste à étudier le comportement d'un ensemble sol-structures caractérisé par un état de contraintes et déformations planes (sol-voile et sol-barrage respectivement), et à calculer les différents déplacements et contraintes pour trois types du sol (sol meuble $E_s = 300$ MPa, sol moyennement meuble $E_s = 600$ MPa, et sol ferme $E_s = 1000$ MPa), afin d'examiner l'effet du demi espace élastique sur la super-structure.

L'étude de ces problèmes plans, ont fait l'objet d'une modélisation par éléments finis isoparamétriques à huit nœuds (Q8) compte tenu de leur performance dans le calcul des structures par la méthode des éléments finis, réputée par sa souplesse et sa puissance de calcul.

Pour cela nous avons utilisé trois maillages différents pour étudier la convergence de la solution, et trois types de sol pour examiner l'effet du demi espace élastique sur la superstructure. Les résultats de l'analyse ont permet de relever les points suivants:

- ? plus le maillage est raffiné, plus la solution est précise, (32,48 et 56 éléments Q8 pour le cas du voile), (52, 96 et 128 éléments Q8 pour le cas du barrage).
- ? La convergence des déplacements est plus rapide que celle des contraintes.
- ? Plus le sol est meuble, plus les déplacements maximaux augmentent (233% environ entre un sol meuble E_s =300MPa et un sol ferme E_s =1000MPa pour le cas du voile).
- ? Pour le cas du barrage, le déplacement maximal au somment du barrage augmente de 128% environ entre un sol meuble E_s =300 MPa et un sol ferme E_s =1000 MPa.

- ? Plus le sol est ferme, plus les contraintes maximales sont grandes (4% d'augmentation environ entre E_s =300MPa et E_s =1000MPa pour le cas du barrage).
- ? Les contraintes maximales dans le barrage, sont concentrées au niveau de la base et au niveau de la partie inférieure de la crête du barrage, donc ces zones sont des zones dangereuses du barrage.

Le calcul du déplacement maximal selon le RPA donne des résultats différents que ceux obtenus par la méthode des éléments finis:

- ? si le sol est meuble, le RPA sous-estime le déplacement maximal de 24% sans effet de cisaillement, et de 18% avec l'effet de cisaillement.
- ? si le sol est ferme, le RPA sur-estime le déplacement maximal de 145%.

Cette disparité des résultats peut s'expliquer par les modèles adoptés (RPA et MEF).

La considération des appuis comme parfaitement encastrés dans le sol, dans les calculs des structures, conduit à des résultats qui s'écartent de la réalité, car la présence du sol (demi espace élastique) influe sur le comportement global.

L'épaisseur du joint sismique entre deux blocs de bâtiments dépend des déplacements maximaux des sommets de ces blocs. Une sous estimation du déplacement maximal, implique une sous estimation de l'épaisseur du joint sismique.

Enfin, il ressort à travers les résultats des applications que nous avons traités, que l'effet du demi espace élastique constitue une partie intégrante dans les calculs afin d'analyser judicieusement le comportement global d'un système composé. La non prise en considération de cet effet peut engendrer des sous-estimation importantes occasionnant des résultats en contradiction avec la sécurité des ouvrages (barrage, bâtiments de grande hauteur,...etc.).

BIBLIOGRAPHIE

[1].Dhatt. G, Touzot. G, "Une Présentation de la méthode des éléments finis", MaloineS.A, 2eme édition, 1984.

[2]. RAHMANI. O, KEBDANI. S, "Introduction à la méthode des élément finis pour les ingénieurs", OPU, 2eme édition, 1994

[3]. Zienkiewics. O. C., Taylor. R. L., "The finite element Method: Solid and Fluid Mechanics Dynamics and Non-Linearity", volume 2. McGraw-Hill Book Company, 4th édition, 1989.

[4].FREY. F, JIROUSEK. J, "Analyse des structures et milieux continus", EPFDL, 1999.

[5].SOLOMON. L, "Elasticité linéaire", Masson et Cie Editeurs, 1968.

[6]. Rockey. L, Evans. R, Griffiths. W, Nerthercot. D, "Introduction à la méthode des élément finis", édition Eyrolles 1979 traduit par Gomez, C.

[7].KHIMA. R, "Applications mathématiques par le basic et le fortran", OPU, 1994..

[8].Zacek. Milon, "construire parasismique", édition parenthèse, 1996.

[9].Jean-Pierre.M, "béton armé, BAL91modifie et DTU associés", édition Eyrolles, troisième tirage ,2004.

[10].Règlement Parasismique Algérienne (RPA) 99 version 2003.

[11].Pierre.T, "éléments finis pour l'ingénier", édition TEC& DOC, 2006.

[12].MEZIDI Omar, "utilisation de modèles numériques d'éléments finis linéaire et quadratique pour l'analyse des problèmes de conduction de la chaleur", mémoire de fin d'étude, Juin 2004 E.N.P.

[13]. DEMIDEM.M; "cours de calcul automatique des structures".ENP.

[14]. Mme Ketteb.R, "cours de mécanique des milieux continus ".ENP.

[15]. Mr.Mouloudi.Y, "cours du barrage".ENP.

[16].Pages Web : http://labo.icampus.ucl.ac.be/MECA2120, "Article sur l'introduction aux méthodes d'éléments finis", Université de Louvain.

Annexes

ANNEXE A

Résultats du voile

Annexe A

N°DDL	U(mm)	N°DDL	V(mm)	N°DDL	U(mm)	N°DDL	V(mm)
1	0,403	2	-0,330	89	21,158	90	-1,777
3	0,192	4	-0,218	91	18,434	92	-1,806
5	0,073	6	-0,191	93	15,719	94	-1,842
7	-0,045	8	-0,228	95	13,023	96	-1,882
9	-0,134	10	-0,338	97	10,344	98	-1,927
11	0,737	12	-0,655	99	7,683	100	-1,975
13	0,545	14	-0,606	101	5,049	102	-2,044
15	0,407	16	-0,565	103	2,450	104	-2,110
17	0,260	18	-0,537	105	1,363	106	-2,650
19	0,138	20	-0,521	107	0,563	108	-3,161
21	-0,014	22	-0,536	109	0,074	110	-3,381
23	-0,129	24	-0,579	111	-0,249	112	-3,494
25	-0,232	26	-0,642	113	-0,528	114	-3,481
27	-0,254	28	-0,695	115	-0,633	116	-3,325
29	-0,190	30	-0,642	117	-0,657	118	-2,988
31	1,006	32	-1,085	119	-0,571	120	-2,587
33	0,573	34	-0,971	121	-0,298	122	-1,936
35	0,178	36	-0,957	123	45,970	124	-4,998
37	-0,229	38	-1,027	125	40,437	126	-4,999
39	-0,403	40	-1,126	127	34,909	128	-5,005
41	1,282	42	-1,514	129	29,390	130	-5,016
43	1,061	44	-1,474	131	23,890	132	-5,035
45	0,697	46	-1,509	133	18,426	134	-5,063
47	0,424	48	-1,477	135	13,014	136	-5,101
49	0,165	50	-1,496	137	7,675	138	-5,152
51	-0,160	52	-1,555	139	2,440	140	-5,192
53	-0,369	54	-1,612	141	0,292	142	-5,066
55	-0,513	56	-1,637	143	-0,399	144	-4,817
57	-0,508	58	-1,580	145	-0,612	146	-4,133
59	-0,305	60	-1,308	147	-0,494	148	-2,942
61	1,763	62	-2,098	149	45,961	150	-8,311
63	0,867	64	-2,042	151	43,200	152	-8,311
65	0,007	66	-2,256	153	40,434	154	-8,311
67	-0,536	68	-2,373	155	37,670	156	-8,311
69	-0,578	70	-2,105	157	34,906	158	-8,311
71	45,981	72	-1,674	159	32,145	160	-8,311
73	43,204	74	-1,678	161	29,386	162	-8,311
75	40,441	76	-1,683	163	26,634	164	-8,311
77	37,674	78	-1,687	165	23,887	166	-8,311
79	34,914	80	-1,693	167	21,150	168	-8,311
81	32,150	82	-1,703	169	18,423	170	-8,311
83	29,395	84	-1,715	171	15,709	172	-8,311
85	26,640	86	-1,731	173	13,010	174	-8,311
87	23,896	88	-1,751	175	10,329	176	-8,312

Tableau A.1 Résultats des déplacements horizontaux et verticaux pour sol meuble E= 300MPa

N°DDL	U(mm)	N°DDL	V(mm)	N°DDL	U(mm)	N°DDL	V(mm)
177	7,672	178	-8,316	263	1,151	264	-10,101
179	5,038	180	-8,322	265	0,899	266	-8,739
181	2,432	182	-8,337	267	0,701	268	-7,623
183	1,011	184	-7,809	269	0,435	270	-6,408
185	0,323	186	-7,281	271	0,262	272	-5,479
187	-0,125	188	-6,787	273	0,075	274	-4,261
189	-0,327	190	-6,275	275	-0,011	276	-3,384
191	-0,426	192	-5,524	277	-0,038	278	-2,329
193	-0,449	194	-4,867	279	0,065	280	-7,330
195	-0,433	196	-3,934	281	1,607	282	-7,515
197	-0,376	198	-3,203	283	1,187	284	-6,516
199	-0,196	200	-2,259	285	0,678	286	-4,988
201	45,960	202	-11,623	287	0,216	288	-3,196
203	40,434	204	-11,622	289	-0,815	290	-4,803
205	34,906	206	-11,617	291	0,254	292	-4,790
207	29,387	208	-11,606	293	0,650	294	-4,621
209	23,888	210	-11,588	295	1,037	296	-4,750
211	18,424	212	-11,560	297	1,163	298	-4,674
213	13,013	214	-11,522	299	1,065	300	-4,402
215	7,664	216	-11,471	301	0,876	302	-4,018
217	2,428	218	-11,438	303	0,599	304	-3,361
219	0,446	220	-9,321	305	0,389	306	-2,756
221	0,103	222	-7,381	307	0,141	308	-1,941
223	-0,125	224	-5,346	309	-0,918	310	-2,844
225	-0,200	226	-3,363	311	0,280	312	-2,977
227	45,960	228	-14,937	313	0,816	314	-3,026
229	43,197	230	-14,937	315	0,822	316	-2,870
231	40,435	232	-14,936	317	0,429	318	-2,199
233	37,671	234	-14,933	319	-0,773	320	-1,643
235	34,908	236	-14,927	321	-0,320	322	-1,595
237	32,147	238	-14,919	323	0,073	324	-1,639
239	29,390	240	-14,907	325	0,316	326	-1,659
241	26,637	242	-14,891	327	0,490	328	-1,734
243	23,892	244	-14,871	329	0,589	330	-1,776
245	21,156	246	-14,846	331	0,580	332	-1,775
247	18,431	248	-14,817	333	0,486	334	-1,691
249	15,717	250	-14,782	335	0,373	336	-1,491
251	13,019	252	-14,742	337	0,162	338	-1,108
253	10,339	254	-14,699	339	-0,496	340	-0,690
255	7,674	256	-14,647	341	-0,001	342	-0,626
257	5,026	258	-14,562	343	0,204	344	-0,707
259	2,418	260	-14,464	345	0,289	346	-0,827
261	1,753	262	-12,279	347	0,229	348	-0,794

Tableau A.2 Suite des résultats des déplacements horizontaux et verticaux pour sol meuble E= 300MPa

Νουρι	U(mm)	Νουρι	V(mm)	Νουρι	U(mm)	Νουρι	V(mm)
N DDL	0(1111)		V(IIIII)		10,000		$\mathbf{v}(\mathbf{IIIII})$
2	0,202		-0,103	01	0.475	90	-0,723
5	0,090	4	-0,109	91	9,475	92	-0,732
7	0,037	0 0	-0,090	93	6,031	94	-0,700
/	-0,022	0	-0,114	93	0,040	90	-0,828
9	-0,007	10	-0,109	97	3,237	98	-0,873
11	0,309	12	-0,327	99	3,880	100	-0,921
15	0,273	14	-0,303	101	2,542	102	-0,990
15	0,204	10	-0,282	103	1,232	104	-1,055
1/	0,130	18	-0,268	105	0,685	106	-1,325
19	0,069	20	-0,260	107	0,283	108	-1,580
21	-0,007	22	-0,268	109	0,037	110	-1,691
23	-0,064	24	-0,290	111	-0,125	112	-1,748
25	-0,116	26	-0,321	113	-0,265	114	-1,742
27	-0,127	28	-0,347	115	-0,317	116	-1,664
29	-0,095	30	-0,321	117	-0,329	118	-1,495
31	0,504	32	-0,542	119	-0,286	120	-1,294
33	0,288	34	-0,485	121	-0,149	122	-0,968
35	0,089	36	-0,478	123	24,109	124	-2,396
37	-0,115	38	-0,513	125	21,157	126	-2,396
39	-0,202	40	-0,563	127	18,209	128	-2,402
41	0,643	42	-0,756	129	15,270	130	-2,414
43	0,532	44	-0,737	131	12,352	132	-2,433
45	0,350	46	-0,754	133	9,468	134	-2,461
47	0,213	48	-0,738	135	6,637	136	-2,499
49	0,083	50	-0,748	137	3,878	138	-2,549
51	-0,080	52	-0,777	139	1,223	140	-2,591
53	-0,185	54	-0,806	141	0,144	142	-2,536
55	-0,257	56	-0,819	143	-0,200	144	-2,412
57	-0,254	58	-0,790	145	-0,307	146	-2,069
59	-0,153	60	-0,654	147	-0,247	148	-1,472
61	0,885	62	-1,048	149	24,100	150	-4,160
63	0,435	64	-1,020	151	22,629	152	-4,161
65	0,004	66	-1,128	153	21,154	154	-4,161
67	-0,268	68	-1,187	155	19,680	156	-4,160
69	-0,289	70	-1,053	157	18,206	158	-4,160
71	24,120	72	-0,620	159	16,736	160	-4,160
73	22,633	74	-0,624	161	15,267	162	-4,161
75	21,161	76	-0,629	163	13,805	164	-4,161
77	19,684	78	-0,633	165	12,348	166	-4,161
79	18,214	80	-0,640	167	10,901	168	-4,161
81	16,740	82	-0,649	169	9,465	170	-4,161
83	15.276	84	-0.661	171	8.041	172	-4.161
85	13,811	86	-0,677	173	6,632	174	-4,161
87	12,358	88	-0,698	175	5,242	176	-4,162
l							

Tableau A.3 Résultats des déplacements horizontaux et verticaux pour sol meuble E= 600MPa

N°DDL	U(mm)	N°DDL	V(mm)	N°DDL	U(mm)	N°DDL	V(mm)
177	3,875	178	-4,165	263	0,577	264	-5,050
179	2,530	180	-4,171	265	0,451	266	-4,371
181	1,215	182	-4,186	267	0,352	268	-3,814
183	0,502	184	-3,917	269	0,219	270	-3,206
185	0,159	186	-3,649	271	0,132	272	-2,741
187	-0,064	188	-3,400	273	0,038	274	-2,132
189	-0,164	190	-3,142	275	-0,005	276	-1,693
191	-0,213	192	-2,765	277	-0,019	278	-1,165
193	-0,225	194	-2,436	279	0,028	280	-3,662
195	-0,217	196	-1,969	281	0,801	282	-3,754
197	-0,188	198	-1,602	283	0,594	284	-3,257
199	-0,098	200	-1,130	285	0,340	286	-2,494
201	24,099	202	-5,924	287	0,108	288	-1,598
203	21,154	204	-5,923	289	-0,408	290	-2,399
205	18,206	206	-5,918	291	0,125	292	-2,393
207	15,268	208	-5,907	293	0,324	294	-2,309
209	12,350	210	-5,889	295	0,517	296	-2,374
211	9,466	212	-5,861	297	0,581	298	-2,336
213	6,635	214	-5,823	299	0,532	300	-2,200
215	3,867	216	-5,773	301	0,438	302	-2,009
217	1,211	218	-5,738	303	0,300	304	-1,681
219	0,224	220	-4,669	305	0,195	306	-1,378
221	0,052	222	-3,695	307	0,070	308	-0,971
223	-0,062	224	-2,675	309	-0,459	310	-1,422
225	-0,100	226	-1,683	311	0,139	312	-1,488
227	24,099	228	-7,689	313	0,407	314	-1,512
229	22,627	230	-7,689	315	0,411	316	-1,435
231	21,154	232	-7,688	317	0,215	318	-1,100
233	19,680	234	-7,686	319	-0,387	320	-0,821
235	18,208	236	-7,680	321	-0,160	322	-0,797
237	16,737	238	-7,672	323	0,036	324	-0,819
239	15,270	240	-7,660	325	0,158	326	-0,829
241	13,808	242	-7,644	327	0,244	328	-0,866
243	12,354	244	-7,624	329	0,294	330	-0,887
245	10,907	246	-7,599	331	0,290	332	-0,887
247	9,472	248	-7,569	333	0,243	334	-0,845
249	8,050	250	-7,535	335	0,186	336	-0,746
251	6,642	252	-7,495	337	0,081	338	-0,554
253	5,252	254	-7,451	339	-0,248	340	-0,345
255	3,876	256	-7,400	341	-0,001	342	-0,313
257	2,519	258	-7,316	343	0,102	344	-0,353
259	1,200	260	-7,219	345	0,144	346	-0,413
261	0,876	262	-6,134	347	0,115	348	-0,397

Tableau A.4 Suite des résultats des déplacements horizontaux et verticaux pour sol meuble E= 600MPa

N°DDL	U(mm)	N°DDL.	V(mm)	N°DDL	U(mm)	N°DDL	V(mm)
1	0.123	2	-0 104	89	6 1 1 2	90	-0 527
3	0.055	<u>2</u> <u>1</u>	-0.072	91	5 288	92	-0 553
5	0.018	6	-0.065	93	4 473	94	-0 585
7	-0.017	8	-0.077	95	3 675	96	-0.621
9	-0.042	10	-0.108	97	2 891	98	-0.662
11	0.222	10	-0.212	99	2,071	100	-0 705
13	0.161	12	-0.197	101	1 382	102	-0.765
15	0.115	16	-0.186	101	0.670	102	-0.822
17	0.070	18	-0.178	105	0.366	106	-0.943
19	0.032	20	-0.174	107	0.144	108	-1.054
21	-0.013	22	-0.179	109	0.007	110	-1.097
23	-0.045	24	-0.192	111	-0.082	112	-1.113
25	-0.074	26	-0.209	113	-0.158	114	-1.091
27	-0.078	28	-0.221	115	-0.185	116	-1.033
29	-0.057	30	-0.200	117	-0.189	118	-0.917
31	0.302	32	-0.352	119	-0.163	120	-0.789
33	0.160	34	-0.321	121	-0.084	122	-0.588
35	0.039	36	-0.318	123	13.788	124	-1.472
37	-0.078	38	-0.336	125	12.065	126	-1.473
39	-0.122	40	-0.355	127	10.346	128	-1.478
41	0,380	42	-0,504	129	8,635	130	-1,488
43	0,300	44	-0,492	131	6,942	132	-1,506
45	0,190	46	-0,500	133	5,281	134	-1,531
47	0,106	48	-0,492	135	3,667	136	-1,565
49	0,030	50	-0,497	137	2,118	138	-1,610
51	-0,062	52	-0,510	139	0,661	140	-1,648
53	-0,119	54	-0,521	141	0,074	142	-1,589
55	-0,156	56	-0,518	143	-0,116	144	-1,489
57	-0,151	58	-0,493	145	-0,173	146	-1,261
59	-0,089	60	-0,403	147	-0,138	148	-0,890
61	0,505	62	-0,709	149	13,780	150	-2,500
63	0,224	64	-0,696	151	12,923	152	-2,500
65	-0,016	66	-0,742	153	12,062	154	-2,500
67	-0,164	68	-0,753	155	11,203	156	-2,500
69	-0,168	70	-0,649	157	10,344	158	-2,500
71	13,798	72	-0,434	159	9,487	160	-2,500
73	12,927	74	-0,438	161	8,633	162	-2,500
75	12,069	76	-0,443	163	7,783	164	-2,500
77	11,207	78	-0,446	165	6,940	166	-2,500
79	10,351	80	-0,452	167	6,104	168	-2,500
81	9,491	82	-0,460	169	5,278	170	-2,500
83	8,640	84	-0,471	171	4,464	172	-2,500
85	7,789	86	-0,486	173	3,663	174	-2,500
87	6,948	88	-0,504	175	2,878	176	-2,501

Tableau A.5 Résultats des déplacements horizontaux et verticaux pour sol ferme E = 1000MPa

N°DDL	U(mm)	N°DDL	V(mm)	N°DDL	U(mm)	N°DDL	V(mm)
177	2,114	178	-2,505	263	0,320	264	-2,924
179	1,371	180	-2,510	265	0,257	266	-2,541
181	0,655	182	-2,525	267	0,205	268	-2,226
183	0,268	184	-2,360	269	0,133	270	-1,880
185	0,084	186	-2,197	271	0,085	272	-1,613
187	-0,035	188	-2,045	273	0,032	274	-1,260
189	-0,089	190	-1,889	275	0,006	276	-1,004
191	-0,115	192	-1,662	277	-0,006	278	-0,693
193	-0,121	194	-1,464	279	-0,014	280	-2,114
195	-0,117	196	-1,182	281	0,441	282	-2,166
197	-0,101	198	-0,962	283	0,338	284	-1,888
199	-0,053	200	-0,679	285	0,202	286	-1,457
201	13,779	202	-3,527	287	0,071	288	-0,943
203	12,062	204	-3,526	289	-0,253	290	-1,387
205	10,344	206	-3,521	291	0,053	292	-1,383
207	8,633	208	-3,512	293	0,173	294	-1,337
209	6,941	210	-3,495	295	0,287	296	-1,373
211	5,280	212	-3,470	297	0,328	298	-1,351
213	3,665	214	-3,437	299	0,305	300	-1,276
215	2,107	216	-3,391	301	0,255	302	-1,168
217	0,649	218	-3,360	303	0,179	304	-0,982
219	0,124	220	-2,742	305	0,119	306	-0,809
221	0,036	222	-2,181	307	0,045	308	-0,573
223	-0,026	224	-1,588	309	-0,277	310	-0,825
225	-0,049	226	-1,004	311	0,070	312	-0,861
227	13,779	228	-4,555	313	0,229	314	-0,875
229	12,921	230	-4,555	315	0,237	316	-0,832
231	12,063	232	-4,554	317	0,129	318	-0,643
233	11,203	234	-4,552	319	-0,232	320	-0,477
235	10,345	236	-4,547	321	-0,100	322	-0,463
237	9,489	238	-4,539	323	0,014	324	-0,475
239	8,635	240	-4,529	325	0,085	326	-0,480
241	7,787	242	-4,514	327	0,137	328	-0,501
243	6,944	244	-4,496	329	0,167	330	-0,513
245	6,110	246	-4,474	331	0,167	332	-0,514
247	5,285	248	-4,448	333	0,142	334	-0,491
249	4,471	250	-4,417	335	0,110	336	-0,435
251	3,671	252	-4,381	337	0,049	338	-0,325
253	2,887	254	-4,342	339	-0,148	340	-0,201
255	2,116	256	-4,296	341	-0,003	342	-0,181
257	1,360	258	-4,220	343	0,057	344	-0,204
259	0,638	260	-4,132	345	0,083	346	-0,239
261	0,476	262	-3,528	347	0,067	348	-0,231

Tableau A.6 Suite des résultats des déplacements horizontaux et verticaux pour sol ferme E= 1000MPa

N° d'élément	$\sigma_{xx}(MPa)$ $\sigma_{yy}(MPa)$ $\tau_{xy}(MPa)$
1	0,000000E+00 0,000000E+00 0,000000E+00
2	0,000000E+00 0,000000E+00 0,000000E+00
3	0,000000E+00 0,000000E+00 0,000000E+00
4	0,000000E+00 0,000000E+00 0,000000E+00
5	0,000000E+00 0,000000E+00 0,000000E+00
6	0,000000E+00 0,000000E+00 0,000000E+00
7	0,000000E+00 0,000000E+00 0,000000E+00
8	0,000000E+00 0,000000E+00 0,000000E+00
9	45,353070 1,037307 -5,351976
10	23,924440 5,872449 -8,585037
11	7,320139E-01 4,350978 -10,932830
12	-19,595620 -1,148382 -16,473010
13	-22,815080 -16,743800 -19,497800
14	0,000000E+00 0,000000E+00 0,000000E+00
15	0,000000E+00 0,000000E+00 0,000000E+00
16	0,000000E+00 0,000000E+00 0,000000E+00
17	0,000000E+00 0,000000E+00 0,000000E+00
18	0,000000E+00 0,000000E+00 0,000000E+00
19	0,000000E+00 0,000000E+00 0,000000E+00
20	0,000000E+00 0,000000E+00 0,000000E+00
21	0,000000E+00 0,000000E+00 0,000000E+00
22	42,229830 -7,767776E-01 -5,554019E-02
23	15,402090 4,420488 -4,276520
24	-10,787460 3,014389 -13,759000
25	-24,918140 -4,120007 -24,684850
26	-23,865340 -33,434560 -22,097320
27	0,000000E+00 0,000000E+00 0,000000E+00
28	0,000000E+00 0,000000E+00 0,000000E+00
29	0,000000E+00 0,000000E+00 0,000000E+00
30	0,000000E+00 0,000000E+00 0,000000E+00
31	0,000000E+00 0,000000E+00 0,000000E+00
32	0,000000E+00 0,000000E+00 0,000000E+00
33	0,000000E+00 0,000000E+00 0,000000E+00
34	0,000000E+00 0,000000E+00 0,000000E+00
35	25,668070 1,804305 17,816370

Tableau A.7 Résultats des contraintes pour un sol meuble E= 300MPa

N° d'élément	$\sigma_{vv}(MPa)$	σ _{un} (MPa)	$\tau_{\rm w}$ (MPa)
36	-16.888160	27.900660	-5.333851
37	-30 372260	-1.117037E-01	-34,664110
38	-23.893110	-27.931340	-38,000430
39	-22,057370	-52,819160	-22,282820
40	-26.317380	8.637881E-01	14.241220
41	-14,969230	41,358040	27,201580
42	-13,850670	85,211030	39,943670
43	-11,577320	142,329700	50,267170
44	-8,743810	210,419300	58,434600
45	-7,833850	288,461000	64,005710
46	-17,329840	379,037400	56,599040
47	-8,787317	309,692500	11,618880
48	-58,345570	-45,799960	-74,478110
49	-48,260700	-61,801460	-91,188450
50	-25,679860	-86,156380	-70,338030
51	-11,056070	-83,258830	-39,144820
52	-18,042040	-68,352660	-15,993910
53	-17,358250	-8,699795	13,792900
54	-6,904468	-40,751840	29,745520
55	-6,686924	-84,078350	40,361030
56	-5,748468	-141,379300	49,756920
57	-4,290284	-210,091800	57,648560
58	-3,910134	-287,822400	61,984580
59	-14,529270	-388,576900	84,611530
60	-130,951600	-284,198800	113,158700
61	-83,216280	-384,466200	-57,549600
62	-30,048280	-332,652300	-55,325270
63	-1,498698	-224,364100	-25,246760
64	-1,801853E-01	-130,769800	-10,833190
65	-15,142630	-75,791740	-4,134609
66	0,000000E+00	0,000000E+00	0,000000E+00
67	0,000000E+00	0,000000E+00	0,000000E+00
68	0,000000E+00	0,000000E+00	0,000000E+00
69	0,000000E+00	0,000000E+00	0,000000E+00
70	0,000000E+00	0,000000E+00	0,000000E+00

Tableau A.8 Suite des résultats des contraintes pour un sol meuble E= 300MPa

N° d'élément	σ _{xx} (MPa)	σ _{yy} (MPa)	$\tau_{xy}(MPa)$
71	0,000000E+00	0,000000E+00	0,000000E+00
72	0,000000E+00	0,000000E+00	0,000000E+00
73	0,000000E+00	0,000000E+00	0,000000E+00
74	-135,372000	-27,553500	127,058300
75	-72,619770	-195,812300	139,294800
76	-24,590980	-178,439600	77,423750
77	-9,165064	-122,092700	36,617400
78	-16,518210	-72,927620	12,752150
79	0,000000E+00	0,000000E+00	0,000000E+00
80	0,000000E+00	0,000000E+00	0,000000E+00
81	0,000000E+00	0,000000E+00	0,000000E+00
82	0,000000E+00	0,000000E+00	0,000000E+00
83	0,000000E+00	0,000000E+00	0,000000E+00
84	0,000000E+00	0,000000E+00	0,000000E+00
85	0,000000E+00	0,000000E+00	0,000000E+00
86	0,000000E+00	0,000000E+00	0,000000E+00
87	-46,451700	2,012454	23,059290
88	-68,494030	-21,276830	58,270750
89	-57,028820	-41,535570	75,546260
90	-34,660190	-59,105430	57,252040
91	-21,578040	-54,563460	27,128230
92	0,000000E+00	0,000000E+00	0,000000E+00
93	0,000000E+00	0,000000E+00	0,000000E+00
94	0,000000E+00	0,000000E+00	0,000000E+00
95	0,000000E+00	0,000000E+00	0,000000E+00
96	0,000000E+00	0,000000E+00	0,000000E+00
97	0,000000E+00	0,000000E+00	0,000000E+00
98	0,000000E+00	0,000000E+00	0,000000E+00
99	0,000000E+00	0,000000E+00	0,000000E+00
100	26,848670	1,086454	17,407300
101	-24,897680	2,691237	36,025830
102	-52,559580	-9,367030	47,984930
103	-50,192150	-23,734030	50,149210
104	-24,986870	-27,058320	33,607930

Tableau A.9 Suite des résultats des contraintes pour un sol meuble E= 300MPa

N° d'élément	$\sigma_{xx}(MPa)$ $\sigma_{yy}(MPa)$ $\tau_{xy}(MPa)$
1	0.000000E+00 0.000000E+00 0.000000E+00
2	0.000000E+00 0.000000E+00 0.000000E+00
3	0.000000E+00 0.000000E+00 0.000000E+00
4	0.000000E+00 0.000000E+00 0.000000E+00
5	0.000000E+00 0.000000E+00 0.000000E+00
6	0.000000E+00 0.000000E+00 0.000000E+00
7	0.000000E+00 0.000000E+00 0.000000E+00
8	0.000000E+00 0.000000E+00 0.000000E+00
9	45.442350 1.039470 -5.344468
10	24.003370 5.884352 -8.564495
11	7.728053E-01 4.372359 -10.909750
12	-19.597440 -1.129637 -16.465170
13	-22.825670 -16.748740 -19.505640
14	0.000000E+00 0.000000E+00 0.000000E+00
15	0.000000E+00 0.000000E+00 0.000000E+00
16	0.000000E+00 0.000000E+00 0.000000E+00
17	0.000000E+00 0.000000E+00 0.000000E+00
18	0.000000E+00 0.000000E+00 0.000000E+00
19	0.000000E+00 0.000000E+00 0.000000E+00
20	0.000000E+00 0.000000E+00 0.000000E+00
21	0.000000E+00 0.000000E+00 0.000000E+00
22	42.422490 -7.659374E-01 -2.248607E-02
23	15.486800 4.458061 -4.214710
24	-10.784320 3.066835 -13.728030
25	-24.938820 -4.087456 -24.697670
26	-23.877260 -33.447330 -22.111540
27	0.000000E+00 0.000000E+00 0.000000E+00
28	0.000000E+00 0.000000E+00 0.000000E+00
29	0.000000E+00 0.000000E+00 0.000000E+00
30	0.000000E+00 0.000000E+00 0.000000E+00
31	0.000000E+00 0.000000E+00 0.000000E+00
32	0.000000E+00 0.000000E+00 0.000000E+00
33	0.000000E+00 0.000000E+00 0.000000E+00
34	0.000000E+00 0.000000E+00 0.000000E+00
35	26.029210 1.952167 17.978980

Tableau A.10 Résultats des contraintes pour un sol meuble E= 600MPa

	1		
N° d'élément	$\sigma_{xx}(MPa)$	σ _{yy} (MPa)	$\tau_{xy}(MPa)$
36	-16.983030	28.084900	-5.240259
37	-30.444440	4.001829E-03	-34.711400
38	-23.908350	-27.930980	-38.056760
39	-22.064520	-52.848030	-22.299310
40	-26.296910	8.675874E-01	14.228860
41	-15.011310	41.341580	27.163280
42	-13.835220	85.140600	39.926640
43	-11.532890	142.180600	50.227170
44	-8.680920	210.242000	58.399990
45	-7.802920	288.261600	64.016340
46	-17.057880	378.842400	56.923850
47	-8.746957	312.475600	12.348480
48	-58.670400	-43.136380	-74.975590
49	-48.484610	-61.761710	-91.676080
50	-25.688390	-86.398300	-70.531230
51	-11.030390	-83.394130	-39.188130
52	-18.040950	-68.393100	-16.000070
53	-17.280460	-8.615864	13.767260
54	-6.820393	-40.712670	29.717550
55	-6.648304	-83.973950	40.313030
56	-5.691028	-141.301300	49.690360
57	-4.253288	-209.970900	57.620960
58	-3.832140	-287.690600	62.015840
59	-14.220020	-388.279400	84.235840
60	-129.624700	-287.896400	112.471200
61	-84.544460	-388.653100	-56.582870
62	-30.051470	-334.011700	-54.866430
63	-1.448207	-224.812500	-25.124680
64	-1.521337E-01	-130.922600	-10.790950
65	-15.140590	-75.830260	-4.124058
66	0.000000E+00	0.000000E+00	0.000000E+00
67	0.000000E+00	0.000000E+00	0.000000E+00
68	0.000000E+00	0.000000E+00	0.000000E+00
69	0.000000E+00	0.000000E+00	0.000000E+00
70	0.000000E+00	0.000000E+00	0.000000E+00

Tableau A.11 Suite des résultats des contraintes pour un sol meuble E= 600MPa

N° d'élément	$\sigma_{xx}(MPa)$	σ _{yy} (MPa)	$\tau_{xy}(MPa)$
71	0.000000E+00	0.000000E+00	0.000000E+00
72	0.000000E+00	0.000000E+00	0.000000E+00
73	0.000000E+00	0.000000E+00	0.000000E+00
74	-135.498800	-27.528850	126.616800
75	-72.687860	-195.127300	139.184500
76	-24.646930	-178.197300	77.554890
77	-9.176472	-122.078600	36.688340
78	-16.526480	-72.952130	12.772050
79	0.000000E+00	0.000000E+00	0.000000E+00
80	0.000000E+00	0.000000E+00	0.000000E+00
81	0.000000E+00	0.000000E+00	0.000000E+00
82	0.000000E+00	0.000000E+00	0.000000E+00
83	0.000000E+00	0.000000E+00	0.000000E+00
84	0.000000E+00	0.000000E+00	0.000000E+00
85	0.000000E+00	0.000000E+00	0.000000E+00
86	0.000000E+00	0.000000E+00	0.000000E+00
87	-46.211650	1.976556	23.010250
88	-68.404750	-21.203300	58.192380
89	-57.029010	-41.466720	75.489560
90	-34.683140	-59.044460	57.257730
91	-21.591200	-54.570100	27.141920
92	0.000000E+00	0.000000E+00	0.000000E+00
93	0.000000E+00	0.000000E+00	0.000000E+00
94	0.000000E+00	0.000000E+00	0.000000E+00
95	0.000000E+00	0.000000E+00	0.000000E+00
96	0.000000E+00	0.000000E+00	0.000000E+00
97	0.000000E+00	0.000000E+00	0.000000E+00
98	0.000000E+00	0.000000E+00	0.000000E+00
99	0.000000E+00	0.000000E+00	0.000000E+00
100	26.906980	1.087468	17.395560
101	-24.811630	2.702038	35.995150
102	-52.503560	-9.342890	47.945660
103	-50.187300	-23.707620	50.130030
104	-24.997690	-27.060430	33.611790

Tableau A.12 Suite des résultats des contraintes pour un sol meuble E= 600MPa

N° d'élément	σ _{xx} (MPa)	σ _{vv} (MPa)	τ_{xv} (MPa)
1	0,000000E+00	0,000000E+00	0,000000E+00
2	0,000000E+00	0,000000E+00	0,000000E+00
3	0,000000E+00	0,000000E+00	0,000000E+00
4	0,000000E+00	0,000000E+00	0,000000E+00
5	0,000000E+00	0,000000E+00	0,000000E+00
6	0,000000E+00	0,000000E+00	0,000000E+00
7	0,000000E+00	0,000000E+00	0,000000E+00
8	0,000000E+00	0,000000E+00	0,000000E+00
9	44,603030	1,044547	-5,951782
10	21,601940	5,736269	-9,942804
11	-1,905012	3,696862	-12,776710
12	-21,167780	-2,262199	-18,179300
13	-22,951080	-17,283510	-20,238370
14	0,000000E+00	0,000000E+00	0,000000E+00
15	0,000000E+00	0,000000E+00	0,000000E+00
16	0,000000E+00	0,000000E+00	0,000000E+00
17	0,000000E+00	0,000000E+00	0,000000E+00
18	0,000000E+00	0,000000E+00	0,000000E+00
19	0,000000E+00	0,000000E+00	0,000000E+00
20	0,000000E+00	0,000000E+00	0,000000E+00
21	0,000000E+00	0,000000E+00	0,000000E+00
22	38,126470	-6,146640E-01	-1,157364
23	11,296430	3,193220	-6,900393
24	-13,151320	8,535438E-01	-16,850710
25	-25,466210	-6,859424	-26,382020
26	-23,776020	-34,545910	-22,387720
27	0,000000E+00	0,000000E+00	0,000000E+00
28	0,000000E+00	0,000000E+00	0,000000E+00
29	0,000000E+00	0,000000E+00	0,000000E+00
30	0,000000E+00	0,000000E+00	0,000000E+00
31	0,000000E+00	0,000000E+00	0,000000E+00
32	0,000000E+00	0,000000E+00	0,000000E+00
33	0,000000E+00	0,000000E+00	0,000000E+00
34	0,000000E+00	0,000000E+00	0,000000E+00
35	18,186510	6,192631E-01	10,796800

Tableau A.13 Résultats des contraintes pour sol ferme E= 1000MPa

N° d'élément	$\sigma_{xx}(MPa)$	$\sigma_{yy}(MPa)$	$\tau_{xy}(MPa)$
36	-19,957840	16,918440	-11,978320
37	-30,242500	-8,966599	-36,971690
38	-23,174680	-32,752270	-38,060770
39	-21,790430	-53,915240	-21,832870
40	-23,614920	7,632502E-01	12,750850
41	-13,463940	37,089330	24,391860
42	-12,423370	76,397400	35,806870
43	-10,363450	127,563900	45,072440
44	-7,758294	188,609100	52,409760
45	-7,048742	258,625400	57,528140
46	-16,281720	339,393600	50,045610
47	-14,644700	284,753100	6,842345
48	-60,468390	-57,921820	-68,868680
49	-47,821470	-75,738140	-84,790830
50	-24,459080	-93,808460	-65,878390
51	-10,440950	-86,004170	-36,685600
52	-17,890910	-68,826400	-14,977400
53	-15,576930	-7,713551	12,322440
54	-6,174548	-36,509480	26,678460
55	-6,000004	-75,313270	36,165240
56	-5,107779	-126,691900	44,555170
57	-3,801234	-188,342700	51,672750
58	-3,506789	-257,977600	55,534090
59	-13,648800	-348,622400	76,529250
60	-121,699400	-261,264200	105,209900
61	-84,936750	-375,746200	-48,668790
62	-31,035310	-321,730800	-46,783250
63	-2,631618	-218,292800	-20,067750
64	-6,731353E-01	-128,685500	-8,177607
65	-15,286420	-75,499070	-3,079653
66	0,000000E+00	0,000000E+00	0,000000E+00
67	0,000000E+00	0,000000E+00	0,000000E+00
68	0,000000E+00	0,000000E+00	0,000000E+00
69	0,000000E+00	0,000000E+00	0,000000E+00
70	0,000000E+00	0,000000E+00	0,000000E+00

Tableau A.14 Suite des résultats des contraintes pour sol ferme E= 1000MPa

N° d'élément	σ _x (MPa)	σ _{yy} (MPa)	$\tau_{xy}(MPa)$
71	0,000000E+00	0,000000E+00	0,000000E+00
72	0,000000E+00	0,000000E+00	0,000000E+00
73	0,000000E+00	0,000000E+00	0,000000E+00
74	-127,310200	-25,959290	118,647300
75	-69,919800	-182,839600	132,175200
76	-25,015280	-168,763500	75,521710
77	-9,944944	-117,238100	36,848520
78	-16,820400	-71,953610	13,285790
79	0,000000E+00	0,000000E+00	0,000000E+00
80	0,000000E+00	0,000000E+00	0,000000E+00
81	0,000000E+00	0,000000E+00	0,000000E+00
82	0,000000E+00	0,000000E+00	0,000000E+00
83	0,000000E+00	0,000000E+00	0,000000E+00
84	0,000000E+00	0,000000E+00	0,000000E+00
85	0,000000E+00	0,000000E+00	0,000000E+00
86	0,000000E+00	0,000000E+00	0,000000E+00
87	-41,335300	1,794062	21,767180
88	-63,979360	-19,793120	55,320830
89	-54,654010	-39,093050	72,250420
90	-34,211250	-56,149310	55,596530
91	-21,724760	-53,495970	26,901870
92	0,000000E+00	0,000000E+00	0,000000E+00
93	0,000000E+00	0,000000E+00	0,000000E+00
94	0,000000E+00	0,000000E+00	0,000000E+00
95	0,000000E+00	0,000000E+00	0,000000E+00
96	0,000000E+00	0,000000E+00	0,000000E+00
97	0,000000E+00	0,000000E+00	0,000000E+00
98	0,000000E+00	0,000000E+00	0,000000E+00
99	0,000000E+00	0,000000E+00	0,000000E+00
100	27,948950	1,086933	16,762250
101	-22,186800	2,881175	34,548100
102	-49,694440	-8,606012	45,995610
103	-48,610970	-22,514650	48,379390
104	-24,899730	-26,534280	32,893740

Tableau A.15 Suite des résultats des contraintes pour sol ferme E= 1000MPa