REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Département Génie Civil

Laboratoire Génie Sismique et Dynamique des Structures

Mémoire de Master

En vue de l'obtention du diplôme de Master en Génie Civil

Thème

Application de la méthode de Guyon Massonnet pour la répartition transversale des efforts dans un pont à poutres multiples

Réalisé par : Achour MENASRI **Encadré par :** Mme D.CHERID

Mme H.MOHABEDDINE

Composition du Jury:

Président	Mme. R.KETTAB	Pr ENP
Rapporteur	Mme. D.CHERID	MAA ENP
	Mme. H.MOHABEDDINE	MAA ENP
Examinateur	M. M.DEMIDEM	MAA ENP
	M. S.LEKHAL.	MAA ENP

ENP 2016

Ecole Nationale Polytechnique 10, Rue des frères OUDDEK Hassen Badi BP 182 16200 El-Harrach, Alger, ALGERIE. Tel: 023 82 85 35 / Fax: 023 82 85 29

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Département Génie Civil

Laboratoire Génie Sismique et Dynamique des Structures

Mémoire de Master

En vue de l'obtention du diplôme de Master en Génie Civil

Thème

Application de la méthode de Guyon Massonnet pour la répartition transversale des efforts dans un pont à poutres multiples

Réalisé par : Achour MENASRI Encadré par :

Mme D.CHERID

Mme H.MOHABEDDINE

Composition du Jury:

Président	Mme. R.KETTAB	Pr ENP
Rapporteur	Mme. D.CHERID	MAA ENP
11	Mme. H.MOHABEDDINE	
Examinateur	M. M.DEMIDEM	MAA ENP
	M S LEKHAL	MAA ENP

ENP 2016

Ecole Nationale Polytechnique 10, Rue des frères OUDDEK Hassen Badi BP 182 16200 El-Harrach, Alger, ALGERIE.

Tel: 023 82 85 35 / Fax: 023 82 85 29

Te rends grâce à Dieu,

et dédie particulièrement ce modeste travail:

À mon père. Il a assuré avec loyauté tout mon cursus.

À ma mère, pour son soutien maternel inconditionnel.

À mes frères et sœurs, ils m'ont épaulé en tout temps.

À celle qui a l'exaltante mission de partager mes joies et peines.

À mon frère et binôme Aghiles et à toute la famille BEGRICHE.

À mon frère Tahar et à toute la famille ABBAS.

À mon frère Chafik et à toute la famille BENSEHILA

À mes amis de la promotion 2012 de l'EPSTT, que dieu les accueille en son vaste paradis.

À toute la promotion 2013/2016 de l'ENP.

À tous les enseignants qui ont contribué à ma formation.

Alger, le 15/10/2016 Achour <u>MENASR</u>I

Remerciements

J'exprime mes sincères remerciements à toutes les personnes qui, de près ou de loin, de par leurs actes ou leurs conseils, ont contribué à la réalisation de ce projet.

En particulier, je tiens à exprimer ma profonde gratitude à :

- Mes encadreurs, Mme. D. CHERID et Mme. H. MOHABBEDDINE, enseignantes au département Génie Civil de l'Ecole Nationale Polytechnique, pour leur constante disponibilité et leurs conseils avisés.
- Mon frère et binôme **Aghiles BEGRICHE**, pour son soutien et pour sa participation à la réalisation de ce travail.
- Monsieur Kamel BIREM, ingénieur à l'E.N.G.O.A, pour son confiance
- Monsieur Nadjib ZOURGUI, Chercheur au C.G.S (Centre de Recherche en Génie Parasismique) et spécialisé en ouvrage d'art, qui m'a fait profiter de sa vaste expérience dans les Ouvrages d'Art.
- Monsieur Lounas HAMADACHE, Chercheur au C.D.L (Laboratoire de développement de la construction LAFARGE).
- Monsieur Wissem BENAISSA, Ingénieur à COSIDER Tunnel, pour son soutien.
- Membres du jury.
- Tout le corps professoral de l'Ecole Nationale Polytechnique. Mes aptitudes résident dans la qualité des enseignements que vous nous avez prodigués.
- Ma famille pour m'avoir encouragée et soutenu tout au long de mon parcours.

Je vous réitère ma profonde gratitude.

MENASRI Achour

ملخص

الهدف من هذا العمل هو التوزيع العرضي للقوات المحسوبة في الاتجاه الطولي (لحظات الانحناء وقوى القص) في جسر متعدد الركائز.

الطريقة المستخدمة هي Guyon Massonnet، المرتكزة على حساب معامل التوزيع العرضي. في نهاية هذا العمل سنتحصل على القوات الموزعة في كل انحاء الجسر.

معامل التوزيع، عامل الدعم، عامل اللف، جسر متعدد الركائز.

Summary

The aim of this work is to distribute the transverse forces calculated in the longitudinal direction (bending moments and shear forces) in a multi deck beams.

The method used is that of Guyon Massonnet, based on the calculation of the transverse distribution coefficient.

At the end of this work, we will found the distributed forces in each parts of structure.

Keywords

Distribution coefficient, bracing parameter, torsion parameter, multi deck beams.

Résumé

Le but de ce travail est de répartir transversalement les efforts calculés dans le sens longitudinal (moments fléchissant et efforts tranchants) dans un pont à poutres multiples. La méthode utilisée est celle de Guyon Massonnet, qui se base sur le calcul du coefficient de répartition transversale.

A la fin de ce travail, on arrive à déterminer la répartition des efforts dans les différentes parties de la structure.

Mots clés

Coefficient de répartition, paramètre d'entretoisement, paramètre de torsion, pont à poutres multiples.

Tables des matières

Liste des tableaux	/
Liste des figures	8
Introduction Générale	10
I-Présentation du projet	11
I-1-Données relatives à l'ouvrage à projeter	11
I-1-1-Situation de l'ouvrage	11
I-1-2-Tracé en plan	12
I-1-3-Profil en travers	13
II-Calcul des paramètres adimensionnels	15
II-1-Calcul de paramètre d'entretoisement Θ	15
II-1-1-Calcul de l'inertie moyenne de la poutre	15
II-1-2-Calcul de l'inertie moyenne de l'entretoise	16
II-1-3-Calcul de la largeur active du pont	16
II-2-Calcul de paramètre de torsion α	17
II-2-1-Calcul de l'inertie de torsion de la poutre	17
II-2-1-a-Calcul de la section simplifiée	17
II-2-2-Calcul de α	18
II-3-Abscisses des fibres étudiées	19
III-Répartition transversale des moments fléchissant	19
III-1-Calcul de coefficient de répartition K	19
III-2-Dessin des lignes d'influence de coefficient K _{0.2} pour chaque poutre	21
III-2-1-Ligne d'influence de la poutre I	22
III-2-2-Ligne d'influence de la poutre II	22
III-2-3-Ligne d'influence de la poutre III	23
III-2-4-Ligne d'influence de la poutre IV	24
III-3-Coefficient de répartition transversale pour chaque chargement	24
III-3-1-Cas de charges localisées	24
III-3-1-a-Charge Bc	25
III-3-1-b-Charge Bt	25
III-3-1-c-Charge Br	25
III-3-2-Cas de charge uniformément reparties dans les sens transversal	25
III-3-2-a-Charges AL	26

III-3-2-b-Charge Mc120	26
III-3-2-c-Charge D240	26
III-4-répartition des moments fléchissant	27
IV-Répartition transversale des efforts tranchants	27
IV-1-Détermination de $\epsilon\alpha$ et $\epsilon'\alpha$	27
IV-2-Dessin des lignes d'influence de coefficient $\xi'_{0.2}$ pour chaque poutre	30
IV-2-1-Ligne d'influence de ξ' _{0.2} pour la poutre I	31
IV-2-2-Ligne d'influence de ξ' _{0.2} pour la poutre II	31
IV-2-3-Ligne d'influence de ξ' _{0.2} pour la poutre III	32
IV-2-4-Ligne d'influence de ξ' _{0.2} pour la poutre IV	32
IV-3-Dessin des lignes d'influence de coefficient $\xi_{0.2}$ pour chaque poutre	33
IV-3-1-Ligne d'influence de $\xi_{0.2}$ pour la poutre I	34
IV-3-2-Ligne d'influence de $\xi_{0.2}$ pour la poutre II	34
IV-3-3-Ligne d'influence de $\xi_{0.2}$ pour la poutre III	35
IV-3-4-Ligne d'influence de $\xi_{0.2}$ pour la poutre IV	36
IV-4-Coefficient de répartition transversale pour chaque chargement	36
IV-4-1-Section sur appui	37
IV-4-1-a-Charges AL	37
IV-4-1-b-Charge Bc	37
IV-4-1-d-Charge Br	38
IV-4-1-e-Charge Mc120	38
IV-4-1-f-Charge D240	38
IV-4-2-Section courante	39
IV-4-2-a-Charges AL	39
IV-4-2-b-Charge Bc	39
IV-4-2-c-Charge Bt	39
IV-4-2-d-Charge Br	40
IV-4-2-e-Charge Mc120	40
IV-4-2-f-Charge D240	40
IV-5-Répartition des efforts tranchants	41
V-Combinaison des charges : selon le RPOA	42
Conclusion générale	43
Références bibliographiques	44
Anneyes	15

Liste des tableaux

Tableau II-1: les valeurs de K _{b/h}	17
Tableau II-2 : abscisses des fibres étudiées	19
Tableau III-1 : Les valeurs de coefficient K_0 pour Θ =0.62	20
Tableau III-2 : Les valeurs de coefficient K_1 pour Θ =0.62	20
Tableau III-3 : Les valeurs de coefficient $K_{0.2}$ pour Θ =0.62	21
Tableau III-4 : Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour les poutres	21
Tableau III-5 : Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour la poutre I	22
Tableau III-6 : Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour la poutre II	22
Tableau III-7 : Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour la poutre III	23
Tableau III-8 : Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour la poutre IV	24
Tableau III-9 : K pour la charge Bc	25
Tableau III-10 : K pour la charge Bt	25
Tableau III-11: K pour la charge Br	25
Tableau III-12 : K pour la charge Al	26
Tableau III-13: K pour la charge Mc120	26
Tableau III-14: K pour la charge D240	26
Tableau III-15 : Tableau des moments à L/2	27
Tableau III-16 : Tableau des moments à L/4	27
Tableau IV-1 : Les valeurs de coefficient ξ_0 pour Θ =0.62	28
Tableau IV-2 : Les valeurs de coefficient ξ_1 pour Θ =0.62	29
Tableau IV-3 : Les valeurs de coefficient ξ'_1 pour Θ =0.62	29
Tableau IV-4 : Les valeurs de coefficient $\xi_{0.2}$ pour Θ =0.62 (section courante)	29
Tableau IV-5 : Les valeurs de coefficient $\xi'_{0.2}$ pour Θ =0.62 (section sur appuis)	30
Tableau IV-6: Les valeurs de coefficient $\xi'_{0.2}$ (Θ =0.62; section sur appui) pour les poutres	30
Tableau IV-7: ξ' _{0.2} pour la poutre I	31
Tableau IV-8 : ξ' _{0.2} pour la poutre II	31
Tableau IV-9 : ξ'0.2 pour la poutre III	32
Tableau IV-10: ξ' _{0.2} pour la poutre IV	33
Tableau IV-11 : Les valeurs de coefficient $\xi_{0.2}$ (Θ =0.62 ; section courante) pour les poutres	34
Tableau IV-12: ξ0.2 pour la poutre I	34
Tableau IV-13 : $\xi_{0.2}$ pour la poutre II	35
Tableau IV-14 : $\xi_{0.2}$ pour la poutre III	35
Tableau IV-15 : $\xi_{0.2}$ pour la poutre IV	36
Tableau IV-16: ξ' pour la charge Al	37
Tableau IV-17: ξ' pour la charge Bc	37
Tableau IV-18: ξ' pour la charge Bt	38
Tableau IV-19: ξ' pour la charge Br	38
Tableau IV-20 : ξ' pour la charge Mc120	38
Tableau IV-21 : ξ' pour la charge D240	38
Tableau IV-22 : ξ pour la charge Al	
Tableau IV-23: ξ pour la charge Bc	
Tableau IV-24 : ξ pour la charge Bt	39
Tableau IV-25 · £ nour la charge Br	40

Tableau IV-26: ξ pour la charge Mc120	40
Tableau IV-27 : ξ pour la charge D240	40
Tableau IV-28 : Efforts tranchants à X=0 (efforts max de chaque poutre pour chaque chargement) .	41
Tableau IV-29: Efforts tranchants à L/4 (efforts max de chaque poutre pour chaque chargement)	41
Tableau V-1: Effort tranchant max sous combinaison de charge (KN)	42
Tableau V-2: Moment max sous combinaison de charge (KN.m)	42
Tableau A-1 : Valeurs de coefficient K_0 pour θ =0,60	45
Tableau A-2 : Valeurs de coefficient K_0 pour θ =0,65	45
Tableau A-3 : Valeurs de coefficient K_1 pour θ =0,60	45
Tableau A-4 : Valeurs de coefficient K_1 pour θ =0,65	46
Tableau A-5 : Valeurs de coefficient ξ_0 pour θ =0,60	46
Tableau A-6 : Valeurs de coefficient ξ_0 pour θ =0,70	46
Tableau A-7 : Valeurs de coefficient ξ_1 pour θ =0,60	47
Tableau A-8 : Valeurs de coefficient ξ_1 pour θ =0,70	47
Tableau A-9 : Valeurs de coefficient ξ_1 pour θ =0,60	47
Tableau A-10 : Valeurs de coefficient ξ'_1 pour θ =0,70	48
Liste des figures	
Figure I-1 : Axes principaux du Réseau Autoroutier Algérien.	11
Figure I-2 : Situation du projet (image satellitaire)	12
Figure I-3 : Visualisation de la brèche en 3D (image satellitaire).	
Figure I-4 : Tracé en plan de la voie.	13
Figure I-5 : Profil en travers des chaussées	
Figure I-6 : Image 3D du viaduc	
Figure I-7 : Caractéristiques géométriques transversales du tablier étudié	
Figure II-1: Répartition des sections d'une poutre.	
Figure II-2 : Section simplifiée	18
Figure II-3 : Abscisses des poutres actives et des poutres réelles	
Figure III-1 : Ligne d'influence de K pour la poutre N° I	
Figure III-2 : Ligne d'influence de K pour la poutre N° II	
Figure III-3 : Ligne d'influence de K pour la poutre N° III	
Figure III-4 : Ligne d'influence de K pour la poutre N° IV	
Figure IV-1 : ligne d'influence de $\xi'_{0.2}$ pour la poutre I	
Figure IV-2 : Ligne d'influence de ξ' _{0.2} pour la poutre II	
Figure IV-3 : ligne d'influence de $\xi'_{0.2}$ pour la poutre III	
Figure IV-4 : ligne d'influence de $\xi'_{0.2}$ pour la poutre IV	
Figure IV-5 : ligne d'influence de ξ0.2 pour la poutre I	
Figure IV-6 : ligne d'influence de ξ0.2 pour la poutre II	
Figure IV-7 : ligne d'influence de $\xi_{0.2}$ pour la poutre III	
Figure IV-8 : ligne d'influence de ξ0.2 pour la poutre IV	
Figure B-1 : Schéma de chargement de la ligne d'influence de K_{Al} , 4 voies chargées (poutre $N^{\circ}IV$)	
Figure B-2 : Schéma de chargement de la ligne d'influence de K_{Bc} (poutre $N^{\circ}IV$)	
Figure B-3 : Schéma de chargement de la ligne d'influence de K_{Bt} (poutre $N^{\circ}IV$)	49

Figure B-4 : Schéma de chargement de la ligne d'influence de K_{Br} (poutre $N^{\circ}IV$)	49
Figure B-5 : Schéma de chargement de la ligne d'influence de K_{Mc120} (poutre $N^{\circ}IV$)	49
Figure B-6 : Schéma de chargement de la ligne d'influence de K_{D240} (poutre $N^{\circ}IV$)	50
Figure B-7 : Schéma de chargement de la ligne d'influence de ξ_{Al} (poutre $N^{\circ}IV$)	50
Figure B-8 : Schéma de chargement de la ligne d'influence de ξ_{Bc} (poutre N°IV)	50
Figure B-9 : Schéma de chargement de la ligne d'influence de ξ_{Bt} (poutre $N^{\circ}IV$)	50
Figure B-10 : Schéma de chargement de la ligne d'influence de ξ_{Br} (poutre $N^{\circ}IV$)	51
Figure B-11 : Schéma de chargement de la ligne d'influence de ξ_{Mc120} (poutre $N^{\circ}IV$)	51
Figure B-12 : Schéma de chargement de la ligne d'influence de ξ_{D240} (poutre $N^{\circ}IV$)	51
Figure B-13 : Dimensions des sections de poutre.	51
Figure C-1 : Disposition longitudinale et Transversale des camions $B_{\rm C}$	52
Figure C-2 : Caractéristiques du Chargement Bt (RCPR)	52
Figure C-3 : Système de charge Br (RCPR)	52
Figure C-4 : Caractéristiques du chargement Mc120 (RCPR)	53
Figure C-5 : Caractéristique d'un convoi D240 (RCPR)	53

Introduction Générale

Pour un pont à poutres, tel est notre cas (Viaduc V5 présentée ci-dessous), Les sollicitations longitudinales ont été calculées en considérant notre structure comme un élément poutre ; mais pour raison de bien armé notre construction, il faut savoir comment ces efforts se répartissent dans le sens transversale, et cela pour déterminer les sections dangereuses (les plus sollicitées) transversalement.

La question de la répartition transversale des charges entre les éléments porteurs longitudinaux des ponts a déjà donné lieu à des très nombreuses études, en particulier lorsqu'il s'agit de profils transversaux ouverts raidis par des entretoises. Ces structures sont alors traitées soit comme des grilles, soit comme des dalles orthotropes ; le résultat du calcul est alors d'autant plus proche que le nombre de poutres est grand.

Nombreuses méthodes de calcul

- 1^{er} cas : Poutres sans entretoise -> section déformable (fonctionnement différent des méthodes classiques de RDM pour les poutres) -> Guyon Massonnet
- 2^{ème} cas : Entretoises -> rigidité -> section indéformable → COURBON

Nous nous se situons dans le premier cas (section déformable), Lorsque la rigidité torsionnelle des éléments d'un pont ne peut être négligée, la section transversale du pont est considérée comme étant déformable. C'est alors qu'on utilise la méthode de Guyon-Massonnet (développée originalement en 1946 et mise sous forme de tableaux numériques par Massonnet en 1954).

Hypothèse:

Lorsque le rapport des rigidités de l'entretoise est supérieur ou égale à 0.3, nous devons tenir compte de la valeur exacte de cette rigidité.la méthode de Guyon Massonnet est d'autant plus appréciée lorsqu'il s'agit de pont à poutres multiples ou nous tenons compte de l'effet de la résistance du pont à la torsion.

Principe:

La méthode de calcul consiste à substituer au pont réel un pont à structure continue qui a une même rigidité moyenne à la flexion et à la torsion que l'ouvrage réel.

Objectif:

Ce travail vise à déterminer les efforts transitant dans un grillage de poutres soumis à un chargement quelconque, ponctuel ou répartie.

I-Présentation du projet

S'inscrivant dans le cadre du schéma directeur National du Ministère des travaux Publics, développé par l'Agence Nationale des Autoroutes (A.N.A), la pénétrante reliant Tizi-Ouzou à l'autoroute Est-Ouest au niveau de Djabahia sur 48 km, traverse une zone à relief accidenté; fait qui rend nécessaire la réalisation d'ouvrages d'arts, soit 10 000 mètres de viaducs (23 viaducs), et 1620 mètres de tunnel (2 tunnels bitubes).

Figure I-1: Axes principaux du Réseau Autoroutier Algérien.

C'est au PK 15+500 en partant de Tizi-Ouzou, que se situe l'ouvrage à concevoir, au niveau d'une brèche de 127,5 mètres linéaire, portant une liaison répondant aux caractéristiques autoroutières avec une vitesse de référence de 110 km/h, constitué de deux chaussées à trois voies séparées par un terre-plein central.

I-1-Données relatives à l'ouvrage à projeter

I-1-1-Situation de l'ouvrage

Le site appelé à recevoir l'ouvrage V5 fait partie du lot tronçon 4.2 entre le PK*15+441 et le PK15+569 vers l'Autoroute EST-Ouest.

^{*}PK: Point Kilométrique.

Figure I-2: Situation du projet (image satellitaire).

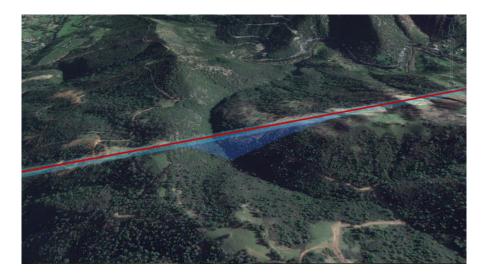


Figure I-3: Visualisation de la brèche en 3D (image satellitaire).

I-1-2-Tracé en plan

Le tracé de la chaussée portée par l'ouvrage, en plan, est droit de longueur totale de 116m et d'une largeur de 2×13,00m comportant un T.P.C* de 0,70m.

*T.P.C: Terre Plein Central

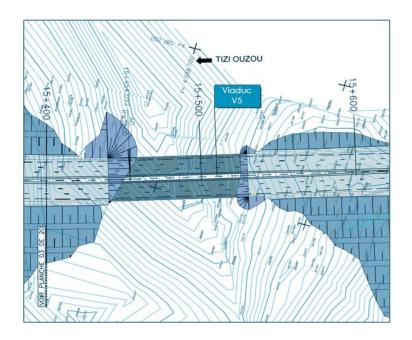


Figure I-4: Tracé en plan de la voie.

I-1-3-Profil en travers

Il représente la coupe transversale de notre voie de passage, qui doit être définie lors de l'A.P.S*. Il permet de définir les largeurs roulables et les trottoirs (si présent). Dans notre cas l'ouvrage est constitué d'une chaussée bidirectionnelle comportant les caractéristiques suivantes :

- 2×trois voies de 3,5 m.
- une sur-largeur de 1 m sur les extrêmes de gauche.
- une sur-largeur de1, 5 m sur les extrêmes de droite.
- Un double dévers de 2,5% vers l'extérieur pour chaque chaussée.

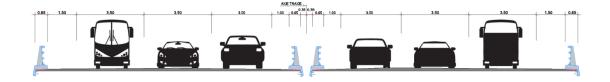


Figure I-5 : Profil en travers des chaussées.

^{*}A.P.S: Avant-Projet Sommaire.

La figure suivante est une illustration en 3D du pont à concevoir réalisée par le logiciel 3D Max

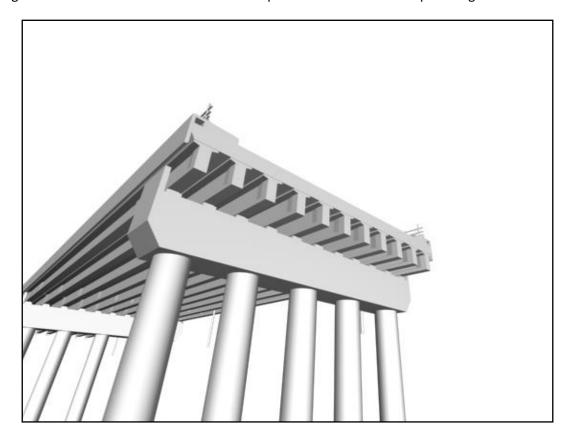


Figure I-6: Image 3D du viaduc

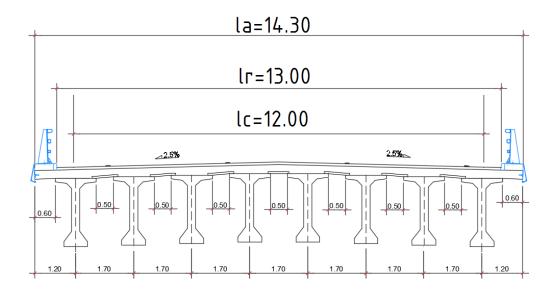


Figure I-7 : Caractéristiques géométriques transversales du tablier étudié.

II-Calcul des paramètres adimensionnels

Le comportement du pont est défini par deux paramètres (paramètre d'entretoisement et le paramètre de torsion) (réf : ALEXANDRE, S)

II-1-Calcul de paramètre d'entretoisement Θ

Le paramètre d'entretoisement est donné par la formule suivante

$$\theta = \frac{b}{L} \sqrt[4]{\frac{\rho_P}{\rho_E}}$$

Avec:

 $\rho_{\rm P} = \frac{\rm E \times I_{\rm P}}{\rm b_0}$ est la rigidité flexionnelle par unité de longueur des poutres ; avec $b_0 = 1.7m$

b₀: l'entraxe des poutres longitudinales

 $\rho_E = \frac{E \times I_E}{I_0}$ est la rigidité flexionnelle par unité de longueur des entretoises; avec

 $l_0 = 1m$: Une bande de 1 m de largeur

- I_p est l'inertie moyenne de la poutre.
- I_E est l'inertie moyenne de l'entretoise.
- 2b est la largeur active pour Guyon Massonnet.
- L est la longueur de la poutre.
- E module de Young

II-1-1-Calcul de l'inertie moyenne de la poutre

La poutre comprend trois sections avec inerties différentes, pour cela le calcul se fera en deux itérations.

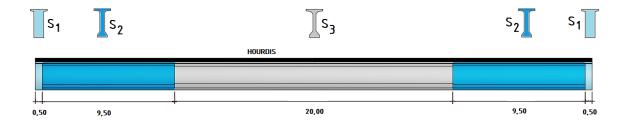


Figure II-1: Répartition des sections d'une poutre.

1^{ère} itération

$$I_{p1} = I_0 + \frac{8}{3\pi} \times (I_i - I_0)$$
; avec $I_i = 40412030.90 \text{ cm}^4 \text{ et } I_0 = 51705402.19 \text{cm}^4$

Donc
$$I_{p1} = 42119291 \text{cm}^4$$

2^{ème} itération

$$I_p = I_{p1} + \frac{8}{3\pi} \times (I_m - I_{p1})$$
; avec $I_m = 38323577.07 \text{ cm}^4$

Donc,
$$I_p = 38897389 \ cm^4$$

II-1-2-Calcul de l'inertie moyenne de l'entretoise

Notre pont ne comporte pas d'entretoise, ce qui amène à calculer l'inertie d'une bande de 1m de l'hourdis, puisque c'est l'hourdis qui va jouer le rôle d'entretoise.

$$I_E = I_D = \frac{100 \times 25^3}{12} = 130208.33 \text{cm}^4$$

la rigidité flexionnelle par unité de longueur des poutres $\ \, \rho_P = \frac{E \times I_P}{b_0}$ = 228808.170E

la rigidité flexionnelle par unité de longueur des entretoises $\rho_E = \frac{E \times I_E}{l_0}$ = 1302.083E

II-1-3-Calcul de la largeur active du pont

Le pont est constitué de 8 poutres espacées de 1.7m,

$$2b = n \times b_0 = 8 \times 1.7 = 13.6 m \ avec \ \begin{cases} n: le \ nombre \ de \ poutres \\ b_0: l'entraxe \ entre \ poutres \end{cases}$$

Le paramètre d'entretoisement est donc :

$$\theta = \frac{b}{L} \sqrt{\frac{\rho_P}{\rho_E}} = \frac{6.8}{40} \sqrt[4]{\frac{228808.17E}{1302.0833E}}$$

$$\theta = 0.62$$

II-2-Calcul de paramètre de torsion α

Le paramètre de torsion est donné par

$$\alpha = \frac{\gamma_p + \gamma_E}{2\sqrt{\rho_p \rho_E}}$$

Avec

 $\gamma_P = \frac{G \times \Gamma_P}{b_0}$ est la rigidité torsionnelle par unité de longueur des poutres;

avec
$$b_0 = 1.7$$
m

 $\gamma_E = \frac{G \times \Gamma_E}{l_0}$ est la rigidité torsionnelle par unité de longueur des entretoises;

avec
$$l_0 = 1m$$

- Γ_P inertie de torsion de la poutre
- Γ_E Inertie de torsion de l'entretoise
- G module de cisaillement avec $G = \frac{E}{2(1+\nu)}$ v: coefficient de poisson

II-2-1-Calcul de l'inertie de torsion de la poutre

L'inertie de torsion d'un rectangle de longueur b et de hauteur h est

$$\Gamma = K_{b/h} \times b \times h^3$$

K : coefficient prenant les valeurs suivantes en fonction du rapport b/h;

Tableau II-1 : les valeurs de $K_{\text{b/h}}$

b/h	1	1.2	1.5	1.75	2	2.25	2.5	3	4	5	10	>10
K	0.141	0.166	0.196	0.213	0.229	0.24	0.248	0.263	0.291	0.292	0.312	0.333

Pour l'âme des poutres, K est calculé avec une hauteur double de la hauteur réelle.

Pour l'hourdis la valeur de Γ à retenir n'est que la moitié de celle donnée par la formule générale

Remarque : pour pouvoir calculer l'inertie de torsion de la poutre, nous devons transformer la section de la poutre médiane à une section simplifiée composée d'ensemble de rectangle.

II-2-1-a-Calcul de la section simplifiée

La section de la table de compression est $S=1740cm^2$

Soit b=120cm donc h=14.5cm

La section du talon est S=1380cm²

Soit b=70cm donc h=19.71cm

La section de l'âme est **S=4560cm²**

Soit b=165.79cm donc h=27.5cm

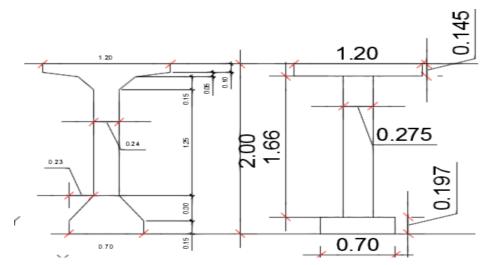


Figure II-2 : Section simplifiée

$$\Gamma_{\rm P} = \frac{1}{3} [(70 \times 19.71^3) + (165.79 \times 27.5^3) + (120 \times 14.5^3) + \frac{1}{2} (170 \times 25^3)]$$

$$\Gamma_{\rm P} = 1892621.806 \text{cm}^4$$

$$\Gamma_{\rm E} = 2 \times I_{\rm E} = 260416.66 {\rm cm}^4$$

II-2-2-Calcul de α

$$G = \frac{E}{2(1+\nu)}$$
 , le coefficient de poisson etant null donc $G = \frac{E}{2}$

la rigidité torsionnelle par unité de longueur des poutres $\gamma_P = \frac{G \times \Gamma_P}{b_0}$ = 5566.5347E

la rigidité torsionnelle par unité de longueur des entretoises $\gamma_E = \frac{G \times \Gamma_E}{l_0}$ = 1302.083E

Le paramètre de torsion est donc :

$$\alpha = \frac{\gamma_p + \gamma_E}{2\sqrt{\rho_p \rho_E}} = \frac{5566,5347E + 1302.083E}{2E\sqrt{1302.083 \times 228808.17}}$$

$$\alpha = 0.2$$

II-3-Abscisses des fibres étudiées

Les abscisses sont comptées à partir de l'axe de la poutraison, cinq fibres théoriques sont définies dans la méthode de Guyon Massonnet avec les excentricités (e=0; e=b/4; e=b/2; e=3b/4; e=b)

Puis on place les différentes sections dans leurs positions actives :

 poutres
 Positions/axe(e=0) [m]
 Positions actives

 I
 0.85
 b/8

 II
 2.55
 3b/8

 III
 4.25
 5b/8

 IV
 5.95
 7b/8

Tableau II-2 : abscisses des fibres étudiées



Figure II-3 : abscisses des poutres actives et des poutres réelles

III-Répartition transversale des moments fléchissant

La répartition des moments fléchissant commence par le calcul de coefficient de répartition transversale K (réf : ALEXANDRE, S)

III-1-Calcul de coefficient de répartition K

Le coefficient de répartition pour α quelconque (dans notre cas α =0.2), l'interpolation n'est pas linéaire. Il est donné par la formule suivante :

$$\theta = 0.62 \to 0.1 \le \theta \le 1 \to K_{\alpha} = K_0 + (K_1 - K_0)\alpha^{\left(1 - e^{\theta_0}\right)} \text{ avec } \theta_0 = \frac{0.065 - \theta}{0.663}$$

K est un coefficient déterminé par les tableaux de Guyon Massonnet, il dépend de :

- La valeur de paramètre de torsion α
- La valeur de paramètre d'entretoisement θ
- L'excentricité de la charge e
- L'ordonnée de la poutre considérée

Et il dépend aussi des coefficients K_1 et K_0 , qui sont donnés par les tables de Guyon Massonnet en fonction de θ , e et y

Pour
$$\alpha = 0 \rightarrow K_0$$

Pour
$$\alpha = 1 \rightarrow K_1$$

Pour trouver les valeurs de K_0 pour $\theta = 0.62$, on procède à une interpolation linéaire par rapport à θ .

Nous avons
$$\theta = 0.62 \rightarrow 0.60 \le \theta \le 0.65$$

La formule d'interpolation est :

$$K_0(\theta=0,62)=0,2\times [K_0(\theta=0,65)-K_0(\theta=0,60)]+K_0(\theta=0,60)$$

Tableau III-1 : Les valeurs de coefficient K_0 pour Θ =0.62

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,27186	0,667	1,04778	1,3638	1,50572	1,3638	1,04778	0,667	0,27186
b/4	-0,21772	0,1942	0,6077	1,0125	1,3638	1,55994	1,49838	1,29322	1,0501
b/2	-0,52274	-0,1645	0,20598	0,6077	1,04778	1,49838	1,88434	2,07332	2,20336
3b/4	-0,73612	-0,46048	-0,1645	0,1942	0,667	1,29322	2,07332	2,93312	3,75564
b	-0,92204	-0,74812	-0,52274	-0,21772	0,27186	1,0501	2,20336	3,75564	5,60232

Même chose pour K_1 , on fait une interpolation linéaire par rapport à θ

La formule d'interpolation est :

$$K_1(\theta = 0, 62) = 0, 2 \times [K_1(\theta = 0, 65) - K_1(\theta = 0, 60)] + K_1(\theta = 0, 60)$$

Tableau III-2 : Les valeurs de coefficient K_1 pour Θ =0.62

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,77208	0,87386	0,99836	1,13162	1,20508	1,13162	0,99836	0,87386	0,7722
b/4	0,55908	0,65886	0,7876	0,95242	1,13162	1,25438	1,23306	1,15304	1,07344
b/2	0,41386	0,50394	0,62324	0,7876	0,99836	1,23306	1,422	1,47784	1,48136
3b/4	0,31612	0,39618	0,50394	0,65886	0,87386	1,15304	1,47784	1,7878	2,00278
b	0,24446	0,31612	0,41386	0,55908	0,77208	1,07344	1,48136	2,00278	2,6124

Après avoir trouvée les valeurs des coefficients K_0 et K_1 pour Θ =0.62, on procède à une interpolation non linéaire suivant α pour calculer les valeurs de coefficient $K_{0,2}$;

$$\begin{split} K_{\alpha} &= K_0 + (K_1 - K_0) \alpha \big(1 - e^{\theta_0}\big) \ avec \ \theta_0 = \frac{0.065 - \theta}{0.663} \\ K_{\alpha} &= K_0 + 0.4 (K_1 - K_0) \end{split}$$

Tableau III-3 : Les valeurs de coefficient $K_{0.2}$ pour Θ =0.62

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,471948	0,749744	1,028012	1,270928	1,385464	1,270928	1,028012	0,749744	0,471996
b/4	0,093	0,380064	0,67966	0,988468	1,270928	1,437716	1,392252	1,237148	1,059436
b/2	-0,1481	0,102876	0,372884	0,67966	1,028012	1,392252	1,699404	1,835128	1,91456
3b/4	-0,315224	-0,117816	0,102876	0,380064	0,749744	1,237148	1,835128	2,474992	3,054496
b	-0,45544	-0,322424	-0,1481	0,093	0,471948	1,059436	1,91456	3,054496	4,406352

III-2-Dessin des lignes d'influence de coefficient $K_{0.2}$ pour chaque poutre

Pour le calcul des valeurs de $K_{0.2}$ pour chaque poutre, on fait une interpolation linéaire suivant y:

Nous obtiendrons ainsi:

poutre I;
$$K\left(\frac{b}{8}\right) = 0.5\left[K(0) + K\left(\frac{b}{4}\right)\right]$$
; poutre II; $K\left(\frac{3b}{8}\right) = 0.5\left[K\left(\frac{b}{4}\right) + K\left(\frac{b}{2}\right)\right]$
poutre III; $K\left(\frac{5b}{8}\right) = 0.5\left[K\left(\frac{b}{2}\right) + K\left(\frac{3b}{4}\right)\right]$; poutre IV; $K\left(\frac{7b}{8}\right) = 0.5\left[K\left(\frac{3b}{4}\right) + K(b)\right]$

Tableau III-4 : Les valeurs de coefficient $K_{0,2}$ (Θ =0.62) pour les poutres

	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE I	0,282474	0,564904	0,853836	1,129698	1,328196	1,354322	1,210132	0,993446	0,765716
POUTRE II	-0,02755	0,24147	0,526272	0,834064	1,14947	1,414984	1,545828	1,536138	1,486998
POUTRE III	-0,231662	-0,00747	0,23788	0,529862	0,888878	1,3147	1,767266	2,15506	2,484528
POUTRE IV	-0,385332	-0,22012	-0,022612	0,236532	0,610846	1,148292	1,874844	2,764744	3,730424

III-2-1-Ligne d'influence de la poutre I

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K.

Tableau III-5 : Les valeurs de coefficient $K_{0.2}\left(\Theta\text{=}0.62\right)$ pour la poutre I

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE I	0,282474	0,564904	0,853836	1,129698	1,328196	1,354322	1,210132	0,993446	0,765716
arrondies	0,28	0,56	0,85	1,13	1,33	1,35	1,21	0,99	0,77

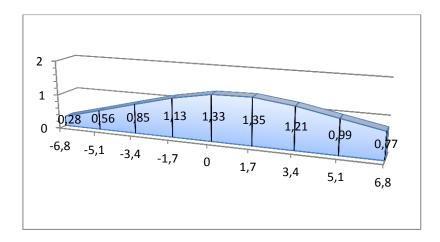


Figure III-1 : Ligne d'influence de K pour la poutre N° I

III-2-2-Ligne d'influence de la poutre II

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de k.

Tableau III-6 : Les valeurs de coefficient $K_{0.2}\left(\Theta\text{=}0.62\right)$ pour la poutre II

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE II	-0,02755	0,24147	0,526272	0,834064	1,14947	1,414984	1,545828	1,536138	1,486998
arrondies	-0,03	0,24	0,53	0,83	1,15	1,41	1,55	1,54	1,49

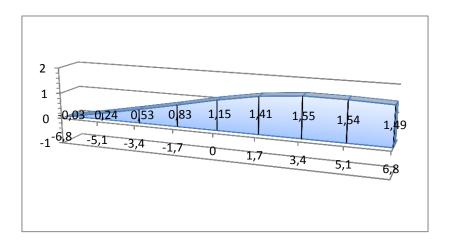


Figure III-2 : Ligne d'influence de K pour la poutre N° II

III-2-3-Ligne d'influence de la poutre III

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K.

Tableau III-7: Les valeurs de coefficient $K_{0.2}$ (Θ =0.62) pour la poutre III

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE III	-0,231662	-0,00747	0,23788	0,529862	0,888878	1,3147	1,767266	2,15506	2,484528
arrondies	-0,23	-0,01	0,24	0,53	0,89	1,31	1,77	2,16	2,48

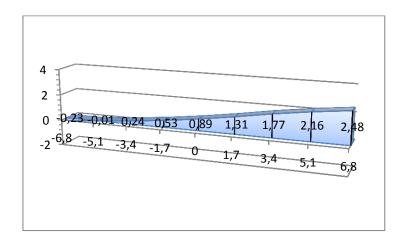


Figure III-3 : Ligne d'influence de K pour la poutre N° III

III-2-4-Ligne d'influence de la poutre IV

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K.

Tableau III-8: Les valeurs de coefficient $K_{0.2} \, (\Theta = 0.62)$ pour la poutre IV

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE IIII	-0,385332	-0,22012	-0,022612	0,236532	0,610846	1,148292	1,874844	2,764744	3,730424
arrondies	-0,39	-0,22	-0,02	0,24	0,61	1,15	1,87	2,76	3,73

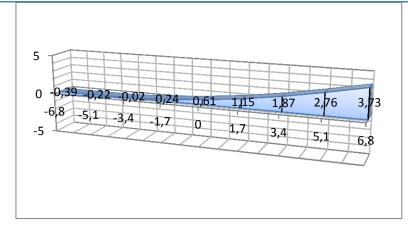


Figure III-4: Ligne d'influence de K pour la poutre N° IV

III-3-Coefficient de répartition transversale pour chaque chargement

Cette étape consiste à positionner les charges dans les positions les plus défavorables par rapport aux lignes d'influences, afin de calculer le coefficient de répartition pour chaque chargement.

III-3-1-Cas de charges localisées

On calcule des ordonnées K_i de la ligne d'influence de $K_{0.2}$ sous chaque charge, le coefficient $K_{0.2}$ sera obtenu par la formule suivante :

$$\mathbf{K}_{\alpha} = \frac{\sum_{i} \mathbf{P}_{i} \mathbf{K}_{i}}{\sum_{i} \mathbf{P}_{i}}$$

Dans le sens transversal, les Pi ont même valeur, la formule devient :

$$K_{\alpha} = \frac{\sum_{i} K_{i}}{m}$$
; avec $\begin{cases} m : \text{nombre de files de roues} \\ K_{i} : \text{la valeur de K dans la } i^{eme} \end{cases}$

Le calcul ordonnées Yi est fait à l'aide de logiciel AUTOCAD 2016.(voir annexes)

III-3-1-a-Charge Bc

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bc

Tableau III-9: K pour la charge Bc

		Poutre I	Poutre II	Poutre III	Poutre IV
	K1	0.83	1.51	2.33	3.27
	K2	1.15	1.54	1.91	2.18
	K3	1.21	1.55	1.79	1.92
4	K4	1.34	1.38	1.26	1.09
4voies chargées	K5	1.35	1.30	1.14	0.93
Chargees	K6	1.2	0.96	0.68	0.39
	K7	1.13	0.87	0.57	0.28
	K8	0.87	0.51	0.23	-0.032
	K(Bc)	1.14	1.2	1.24	1.25

III-3-1-b-Charge Bt

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bt

Tableau III-10: K pour la charge Bt

		Poutre I	Poutre II	Poutre III	Poutre IV
	K1	1.18	1.51	2.33	3.27
2 :	K2	1.338	1.55	1.91	2.18
2 voies chargées	K3	1.35	1.52	1.66	1.67
chargees	K4	1.17	1.3	1.14	0.93
	K(Bt)	1.26	1.47	1.76	2.01

III-3-1-c-Charge Br

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Br

Tableau III-11: K pour la charge Br

	Poutre I	Poutre II	Poutre III	Poutre IV
$K_{(Br)}$	1.35	1.55	2.33	3.27

III-3-2-Cas de charge uniformément reparties dans les sens transversal

On calcul les aires des lignes d'influences de K_{0.2} sur la largeur chargée, on aura :

$$K_{\alpha} = \frac{\Delta}{l}$$

Avec, Δ : aire d'influence et l: largeur chargée

Le calcul des aires d'influences est fait à l'aide de logiciel AUTOCAD 2016.(voir annexes)

III-3-2-a-Charges AL (qui est une charge répartie sur toute la largeur chargeable du pont)

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge A_L

Tableau III-12: K pour la charge Al

	4 vois chargées							
	Surface chargée	Longueur chargée	K(AL)					
Poutre I	12.575	12	1.05					
Poutre II	12.34	12	1.03					
Poutre III	11.91	12	1					
Poutre IV	11.18	12	0.93					

III-3-2-b-Charge Mc120

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge M_{C120}

Tableau III-13 : K pour la charge Mc120

		1 voie chargée	
	Surface chargée	Longueur chargée	K _(Mc120)
Poutre I	2.53	2	1.27
Poutre II	2.98	2	1.49
Poutre III	3.68	2	1.84
Poutre IV	4.35	2	2.175

III-3-2-c-Charge D240

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge D₂₄₀

Tableau III-14: K pour la charge D240

	1 voie chargée						
	Surface Longueur chargée chargée		$\mathbf{K}_{(D240)}$				
Poutre I	4.21	3.2	1.36				
Poutre II	4.92	3.2	1.54				
Poutre III	6.37	3.2	1.99				
Poutre IV	7.7	3.2	2.40				

III-4-répartition des moments fléchissant

Après calcul de coefficient de répartition pour chaque chargement, on multiplie ce coefficient par les moments fléchissant trouvés dans le sens longitudinal.

Tableau III-15: Tableau des moments à L/2

Charges	Charges et surcharges		Moment fléchissant	Po	Poutre I		Poutre II		Poutre III		Poutre IV	
Charges			Max/poutre (KN.m)	K	M (KN.m)	K	M (KN.m)	K	M (KN.m)	K	M (KN.m)	
Charges	Charges permanentes		7368,83	1	7368,83	1	7368,83	1	7368,83	1	7368,83	
Système de Charge AL	4 vo	ies chargées	2421,7275	1.05	2542,81	1.03	2494,38	1	2421,73	0,93	2252,21	
	B_{c}	4 files	1920,3125	1.14	2189,16	1.2	2304,38	1,24	2381,19	1,25	2400,39	
Système de charge B	\mathbf{B}_{t}	2 tandems	976,615	1.26	1230,53	1.47	1435,63	1,76	1718,84	2,01	1963	
		\mathbf{B}_{r}	130.74	1.35	176.49	1.55	202.645	2,33	304.62	3,27	427.51	
Charges militaires		Mc120	1343,9525	1.27	1706,82	1.49	2002,49	1,84	2472,87	2,175	2923,10	
Convois exceptionnels		D240	2302,5	1.36	3131,4	1.54	3545,85	1,99	4581,98	2,4	5526	

Tableau III-16: Tableau des moments à L/4

Charges	Charges et surcharges	Moment à ((L/4)) /poutre	Po	outre I	Poutre II		Poutre III		Poutre IV		
Cital Ses	et sur ent	503	(KN.m)	K	M (KN.m)	K	M (KN.m)	K	M (KN.m)	K	M (KN.m)
Charges	permane	entes	5528.066	1	5528.06 6	1	5528.06 6	1	5528.06 6	1	5528.06 6
Système de Charge AL	4 voies chargees		2421.747	1.05	2542.83	1.03	2494.4	1	2421.74 7	0,93	2252.22
	B_{c}	4 files	1491.786	1.14	1700.64	1.2	1790.14	1,24	1849.81	1,25	1864.73
Système de charge B	\mathbf{B}_{t}	2 tandems	740.7495	1.26	933.34	1.47	1088.9	1,76	1303.72	2,01	1488.9
		\mathbf{B}_{r}	98.0344	1.35	132.35	1.55	151.95	2,33	228.42	3,27	320.57
Charges militaires	Mc120		1006.215	1.27	1277.89	1.49	1499.26	1,84	1851.44	2,175	2188.52
Convois exceptionnels	1)/24()		1726.5155	1.36	2348.06	1.54	2658.83	1,99	3435.76	2,4	4143.64

IV-Répartition transversale des efforts tranchants

La répartition des efforts tranchants se fait de la même manière que pour les moments fléchissant, en calculant le coefficient de répartition transversale, les valeurs de ce dernier se diffèrent entre la section sur appuis et la section courante.

IV-1-Détermination de ϵ_{α} et ϵ'_{α}

Pour α quelconque (dans notre cas α =0.2), l'interpolation n'est pas linéaire. Elle est donnée par les relations suivantes ;

En section sur appui : $\varepsilon'_{\alpha} = \varepsilon_0 + (\varepsilon'_1 - \varepsilon_0) \times \alpha$

En section courante : $\varepsilon_{\alpha} = \varepsilon_0 + (\varepsilon_1 - \varepsilon_0) \times \alpha$ si $|Y| + |e| \leq \frac{3b}{4}$

$$\varepsilon_{\alpha} = \varepsilon_0 + (\varepsilon_1 - \varepsilon_0) \times \sqrt{\alpha}$$
 Si $|Y| + |e| > \frac{3b}{4}$

 ξ est un coefficient déterminée à partir des tableaux de Guyon Massonnet (**voir annexe**), il dépend de

- La valeur de paramètre de torsion α
- La valeur de paramètre d'entretoisement θ
- L'excentricité de la charge e
- L'ordonnée de la poutre considérée

Il dépend aussi de ε_0 et ε_1 qui sont donnés par les tables de Guyon Massonnet en fonction de e et y, pour des valeurs de θ allons de 0.3 à 1.1 (**voir annexe**)

Pour trouver les valeurs de ϵ_0 dans le cas où $\theta=0.62$, On procède à une interpolation linéaire par rapport à θ entre les valeurs de y données dans les tableaux de Guyon-Massonnet.

Nous avons
$$\theta = 0.62 \rightarrow 0.60 \le \theta \le 0.70$$

Tableau IV-1: Les valeurs de coefficient ξ_0 pour Θ =0.62

Y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,043307	0,106106	0,16669	0,217087	0,239782	0,217087	0,16669	0,106106	0,043307
b/4	-0,03444	0,030908	0,096568	0,16099	0,217087	0,248487	0,239409	0,20576	0,166882
b/2	-0,68363	-0,02576	0,032678	0,096568	0,16669	0,238609	0,298229	0,329982	0,352457
3b/4	-0,11716	-0,07326	-0,02616	0,030908	0,106106	0,20576	0,329982	0,466887	0,597687
b	-0,147	-0,11716	-0,08301	-0,03444	0,043307	0,144511	0,350297	0,595707	0,892496

De même, pour trouver les valeurs de ϵ_1 dans le cas où $\theta=0.62$, On procède à une interpolation linéaire par rapport à θ entre les valeurs de y données dans les tableaux de Guyon-Massonnet.

Tableau IV-2 : Les valeurs de coefficient ξ_1 pour Θ =0.62

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,063666	0,095493	0,140463	0,212871	0,332195	0,212867	0,140463	0,095493	0,063656
b/4	0,043673	0,064245	0,093198	0,139475	0,216251	0,338076	0,221761	0,149801	0,098971
b/2	0,034133	0,048427	0,068401	0,099861	0,150249	0,23043	0,35705	0,240406	0,158193
3b/4	0,032731	0,044188	0,060016	0,084318	0,121838	0,178074	0,26413	0,371601	0,255822
b	0,039117	0,0505	0,06601	0,089046	0,122845	0,170701	0,235569	0,318612	0,415845

Tableau IV-3 : Les valeurs de coefficient ξ'_1 pour Θ =0.62

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,004487	0,051964	0,12207	0,245546	0,472466	0,245586	0,12207	0,051964	0,004647
b/4	0,001495	0,023612	0,061059	0,12738	0,249953	0,476406	0,24728	0,116251	0,027239
b/2	0,002257	0,016477	0,037573	0,074385	0,141641	0,26462	0,487749	0,245685	0,080818
3b/4	0,01496	0,025177	0,039742	0,063758	0,104655	0,174425	0,293133	0,494704	0,193031
b	0,039117	0,0505	0,06601	0,089046	0,122845	0,170704	0,235569	0,318612	0,415845

Après avoir trouvée les valeurs des coefficients ξ_0 , $\xi_{1 \text{ et}}$ ξ'_{1} pour Θ =0.62, on procède à une interpolation non linéaire suivant α pour calculer les valeurs des coefficient $\xi'_{0.2}$ et $\xi_{0.2}$;

En section sur appui :
$${\varepsilon'}_{0.2} = {\varepsilon_0} + ({\varepsilon'}_1 - {\varepsilon_0}) imes 0.2$$

En section courante :
$$\varepsilon_{0.2} = \varepsilon_0 + (\varepsilon_1 - \varepsilon_0) \times 0.2$$
 si $|Y| + |e| \le \frac{3b}{4}$

$$\varepsilon_{0.2} = \varepsilon_0 + (\varepsilon_1 - \varepsilon_0) \times \sqrt{0.2}$$
 si $|Y| + |e| > \frac{3b}{4}$

Tableau IV-4 : Les valeurs de coefficient $\xi_{0.2}$ pour Θ =0.62 (section courante)

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,052408	0,103983	0,161445	0,216244	0,258265	0,216243	0,161445	0,103983	0,052403
b/4	0,000475	0,04581	0,095894	0,156687	0,21692	0,266405	0,235879	0,180746	0,136526
b/2	-0,36279	0,007404	0,048646	0,097227	0,163402	0,236973	0,324522	0,289941	0,265621
3b/4	-0,05016	-0,02076	0,012363	0,054782	0,109252	0,193384	0,300546	0,424294	0,444873
b	-0,06381	-0,04222	-0,0164	0,020756	0,078861	0,156218	0,299014	0,471846	0,679433

Tableau IV-5 : Les valeurs de coefficient $\xi'_{0,2}$ pour Θ =0.62 (section sur appuis)

e y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,035543	0,095278	0,157766	0,222779	0,286319	0,222787	0,157766	0,095278	0,035575
b/4	-0,02726	0,029449	0,089466	0,154268	0,22366	0,294071	0,240983	0,187858	0,138953
b/2	-0,54645	-0,01731	0,033657	0,092131	0,16168	0,243811	0,336133	0,313123	0,298129
3b/4	-0,09074	-0,05357	-0,01298	0,037478	0,105816	0,199493	0,322612	0,472451	0,516756
b	-0,10978	-0,08363	-0,05321	-0,00975	0,059215	0,14975	0,327351	0,540288	0,797166

IV-2-Dessin des lignes d'influence de coefficient ξ '_{0,2} pour chaque poutre

Pour le calcul des valeurs de de ξ ' $_{0.2}$ pour chaque poutre, on fait une interpolation suivant y, Nous obtiendrons ainsi :

poutre I;
$$\varepsilon'\left(\frac{b}{8}\right) = 0.5[\varepsilon'(0) + \varepsilon'\left(\frac{b}{4}\right)]$$

poutre II; $\varepsilon'\left(\frac{3b}{8}\right) = 0.5\left[\varepsilon'\left(\frac{b}{4}\right) + \varepsilon'\left(\frac{b}{2}\right)\right]$

poutre III; $\varepsilon'\left(\frac{5b}{8}\right) = 0.5\left[\varepsilon'\left(\frac{b}{2}\right) + \varepsilon'\left(\frac{3b}{4}\right)\right]$

poutre IV; $\varepsilon'\left(\frac{7b}{8}\right) = 0.5[\varepsilon'\left(\frac{3b}{4}\right) + \varepsilon'(b)]$

Tableau IV-6 : Les valeurs de coefficient $\xi^{\prime}_{0.2}$ ($\Theta {=} 0.62$; section sur appui) pour les poutres

	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE I	0,00414386	0,06236324	0,12361628	0,188523	0,25498934	0,25842854	0,199375	0,141568	0,087264
POUTRE II	-0,28685474	0,00607	0,06156172	0,1232	0,1926701	0,26894092	0,288558	0,25049	0,218541
POUTRE III	-0,31859544	-0,0354414	0,01034058	0,064805	0,13374808	0,22165208	0,329373	0,392787	0,407442
POUTRE IV	-0,10025856	-0,0686014	-0,0330929	0,013866	0,08251534	0,17462131	0,324982	0,506369	0,656961

IV-2-1-Ligne d'influence de $\xi'_{0.2}$ pour la poutre I

Les valeurs trouvées de ξ ' sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ .

Tableau IV-7 : ξ '_{0.2} pour la poutre I

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE I	0,00414386	0,06236324	0,12361628	0,188523	0,25498934	0,25842854	0,199375	0,141568	0,087264
arrondies	0	0,06	0,12	0,19	0,25	0,26	0,2	0,14	0,09

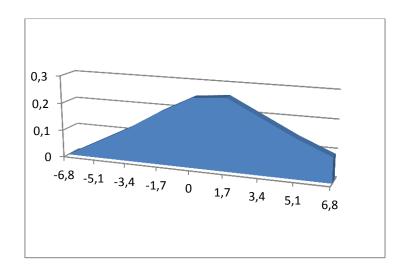


Figure IV-1 : ligne d'influence de $\xi'_{0.2}$ pour la poutre I

IV-2-2-Ligne d'influence de $\xi'_{0.2}$ pour la poutre II

Les valeurs trouvées de ξ ' sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

Tableau IV-8 : ξ'_{0,2} pour la poutre II

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE II	-0,2868547	0,00607	0,06156172	0,1232	0,1926701	0,26894092	0,288558	0,25049	0,218541
arrondies	-0,29	0,01	0,06	0,12	0,19	0,27	0,29	0,25	0,22

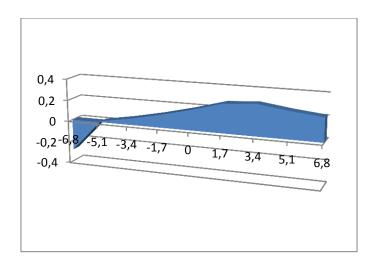


Figure IV-2 : Ligne d'influence de $\xi'_{0.2}$ pour la poutre II

IV-2-3-Ligne d'influence de $\xi'_{0.2}$ pour la poutre III

Les valeurs trouvées de ξ ' sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

Tableau IV-9: ξ'0.2 pour la poutre III

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE III	-0,3185954	-0,0354414	0,01034058	0,064805	0,13374808	0,22165208	0,329373	0,392787	0,407442
arrondies	-0,32	-0,04	0,01	0,06	0,13	0,22	0,33	0,39	0,41

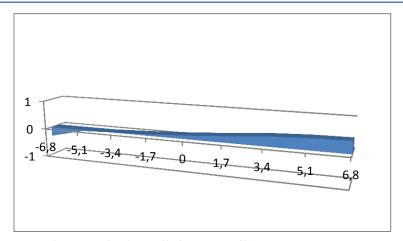


Figure IV-3 : ligne d'influence de $\xi'_{0.2}$ pour la poutre III

IV-2-4-Ligne d'influence de $\xi'_{0.2}$ pour la poutre IV

Les valeurs trouvées de ξ ' sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

Tableau IV-10 : $\xi'_{0.2}$ pour la poutre IV

e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE IV	-0,1002585	-0,0686014	-0,0330929	0,013866	0,08251534	0,17462131	0,324982	0,506369	0,656961
arrondies	-0,1	-0,07	-0,03	0,01	0,08	0,17	0,32	0,51	0,66

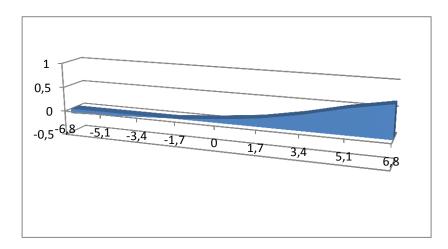


Figure IV-4 : ligne d'influence de $\xi'_{0.2}$ pour la poutre IV

IV-3-Dessin des lignes d'influence de coefficient $\xi_{0,2}$ pour chaque poutre

Pour le calcul des valeurs de de $\xi_{0.2}$ pour chaque poutre, on fait une interpolation suivant y,

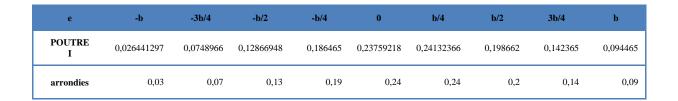
Nous obtiendrons ainsi:

poutre I;
$$\varepsilon\left(\frac{b}{8}\right) = 0.5[\varepsilon(0) + \varepsilon\left(\frac{b}{4}\right)]$$

poutre II; $\varepsilon\left(\frac{3b}{8}\right) = 0.5\left[\varepsilon\left(\frac{b}{4}\right) + \varepsilon\left(\frac{b}{2}\right)\right]$

poutre III; $\varepsilon\left(\frac{5b}{8}\right) = 0.5\left[\varepsilon\left(\frac{b}{2}\right) + \varepsilon\left(\frac{3b}{4}\right)\right]$

poutre IV; $\varepsilon\left(\frac{7b}{8}\right) = 0.5[\varepsilon\left(\frac{3b}{4}\right) + \varepsilon(b)]$


Tableau IV-11 : Les valeurs de coefficient $\xi_{0.2}$ (Θ =0.62 ; section courante) pour les poutres

	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
POUTRE I	0,026441297	0,0748966	0,12866948	0,186465	0,23759218	0,24132366	0,198662	0,142365	0,094465
POUTRE II	-0,181157918	0,026607075	0,07227016	0,126957	0,19016078	0,25168898	0,280201	0,235344	0,201073
POUTRE III	-0,206475161	-0,00667861	0,03050466	0,076005	0,13632722	0,21517887	0,312534	0,357118	0,355247
POUTRE IV	-0,056983939	-0,03148910	-0,0020187	0,037769	0,09405657	0,17480126	0,29978	0,44807	0,562153

IV-3-1-Ligne d'influence de $\xi_{0.2}$ pour la poutre I

Les valeurs trouvées de ξ sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ .

Tableau IV-12 : $\xi 0.2$ pour la poutre I

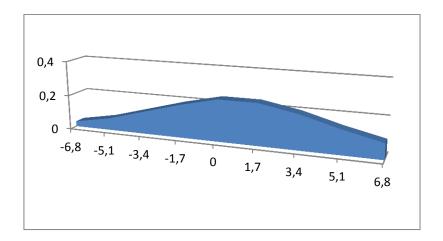


Figure IV-5 : ligne d'influence de ξ0.2 pour la poutre I

IV-3-2-Ligne d'influence de $\xi_{0.2}$ pour la poutre II

Les valeurs trouvées de ξ sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

Tableau IV-13 : $\xi_{0.2}$ pour la poutre II

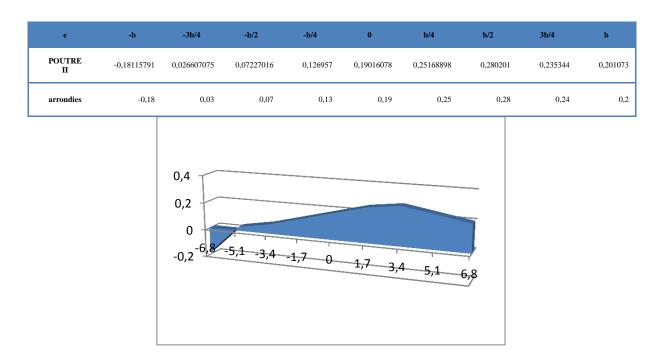


Figure IV-6 : ligne d'influence de $\xi 0.2$ pour la poutre II

IV-3-3-Ligne d'influence de $\xi_{0.2}$ pour la poutre III

Les valeurs trouvées de ξ sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

Tableau IV-14 : $\xi_{0.2}$ pour la poutre III

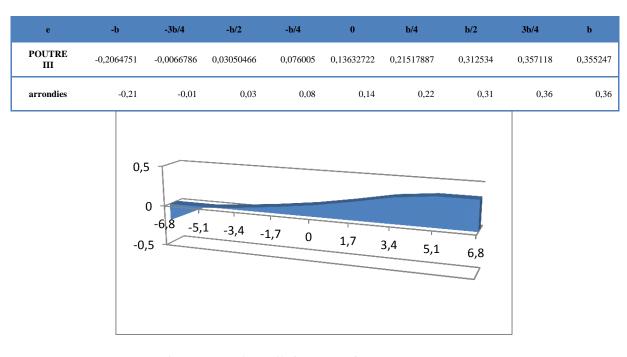


Figure IV-7 : ligne d'influence de $\xi_{0.2}$ pour la poutre III

IV-3-4-Ligne d'influence de $\xi_{0.2}$ pour la poutre IV

Les valeurs trouvées de ξ sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de ξ

-b -3b/4 -b/4 b/4 b/2 3b/4 -b/2 POUTRE -0,0020187 -0,0569839 -0,0314891 0,037769 0,09405657 0,17480126 0,29978 0,44807 0,562153 -0,06 -0,03 0,04 0,09 0,17 0,3 0,45 arrondies 0,56

Tableau IV-15 : $\xi_{0,2}$ pour la poutre IV

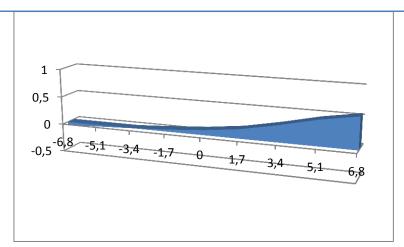


Figure IV-8 : ligne d'influence de ξ0.2 pour la poutre IV

IV-4-Coefficient de répartition transversale pour chaque chargement

Après le dessin des lignes d'influences pour le coefficient de répartition, on positionne les surcharges dans les positions les plus défavorables par rapport aux lignes d'influences.

Cas de charges localisées

On calcule des ordonnées ξ_i de la ligne d'influence de $\xi_{0.2}$ sous chaque charge, le coefficient $\xi_{0.2}$ sera obtenu par la formule suivante,

$$\epsilon_{\alpha} = \frac{\sum_{i} P_{i} \xi_{i}}{\sum_{i} P_{i}} \ avec \ \begin{cases} P_{i} \text{: la charge dans la i}^{\text{ème}} \text{position} \\ \xi_{i} \text{: l'ordonnée de la i}^{\text{ème}} \text{position} \end{cases}$$

Dans le sens transversal, les Pi ont même valeur, la formule devient,

$$\epsilon_{\alpha} = \frac{\sum_{i} \xi_{i}}{m}$$
; avec m: nombre de files de roues.

Cas de charge uniformément reparties dans les sens transversal

On calcule les aires des lignes d'influence de $\xi_{0.2}$ sur la largeur chargée, on aura :

$$\varepsilon_{\alpha} = \frac{\Delta}{1}$$

Avec, Δ : aire d'influence et l: largeur chargée

Le calcul des aires d'influences et les ordonnées Yi est fait à l'aide de logiciel AUTOCAD 2016.

IV-4-1-Section sur appui

IV-4-1-a-Charges AL

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge A_L.

Tableau IV-16: ξ' pour la charge Al

	4	vois chargées	;
	Surface chargée	Longueur chargée	ξ'(AL)
Poutre I	2.058	12	0.17
Poutre II	2.015	12	0.17
Poutre III	1.84	12	0.153
Poutre IV	1.77	12	0.147

IV-4-1-b-Charge Bc

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bc

Tableau IV-17 : ξ' pour la charge Bc

		Poutre I	Poutre II	Poutre III	Poutre IV
	ξ'1	0.15	0.06	0.007	-0.001
	ξ'2	0.19	0.13	0.07	0.04
	ξ'3	0.21	0.15	0.09	0.06
	ξ'4	0.25	0.24	0.18	0.14
4voies	ξ'5	0.26	0.26	0.21	0.16
chargées	ξ'6	0.19	0.29	0.33	0.31
	ξ'7	0.18	0.27	0.35	0.35
	ξ'8	0.11	0.22	0.4	0.51
	ξ' (Bc)	0.193	0.203	0.205	0.196

IV-4-1-c-Charge Bt

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bt.

Tableau IV-18 : ξ' pour la charge Bt

		Poutre I	Poutre II	Poutre III	Poutre IV
	ξ'1	0.2	0.21	0.18	0.14
	ξ'2	0.25	0.28	0.3	0.25
2 voies	ξ'3	0.26	0.29	0.35	0.35
chargées	ξ'4	0.19	0.24	0.4	0.51
	ξ' (Bt)	0.225	0.255	0.308	0.313

IV-4-1-d-Charge Br

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Br.

Tableau IV-19: ξ' pour la charge Br

	Poutre I	Poutre II	Poutre III	Poutre IV
ξ' _(Br)	0.26	0.29	0.4	0.51

IV-4-1-e-Charge Mc120

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge M_{C120}

Tableau IV-20 : ξ' pour la charge Mc120

		1 voie chargée	÷
	Surface chargée	Longueur chargée	ξ' _(Mc120)
Poutre I	0.46	2	0.23
Poutre II	0.51	2	0.255
Poutre III	0.65	2	0.325
Poutre IV	0.80	2	0.4

IV-4-1-f-Charge D240

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge D₂₄₀.

Tableau IV-21 : ξ' pour la charge D240

		voie chargée	
	Surface chargée	Longueur chargée	ξ' (D240)
Poutre I	0.78	3.2	0.244
Poutre II	0.88	3.2	0.275
Poutre III	1.15	3.2	0.36
Poutre IV	1.23	3.2	0.384

IV-4-2-Section courante

Le calcul se fait de la même manière que la section sur appuis.

IV-4-2-a-Charges AL

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge A_L.

Tableau IV-22: ξ pour la charge Al

	4 vois chargées				
	Surface chargée	Longueur chargée	ξ(AL)		
Poutre I	2.05	12	0.171		
Poutre II	2.01	12	0.175		
Poutre III	1.9	12	0.158		
Poutre IV	1.73	12	0.144		

IV-4-2-b-Charge Bc

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bc.

Tableau IV-23 : ξ pour la charge Bc

		Poutre I	Poutre II	Poutre III	Poutre IV
	ξ1	0.12	0.06	0.03	-0.03
	ξ2	0.2	0.14	0.09	0.02
	ξ3	0.21	0.15	0.1	0.04
	ξ4	0.24	0.23	0.19	0.13
4voies	ξ5	0.24	0.24	0.21	0.16
chargées	ξ6	0.19	0.28	0.31	0.33
	ξ7	0.18	0.26	0.33	0.39
	ξ8	0.11	0.22	0.36	0.59
	ξ (Bc)	0.186	0.198	0.203	0.204

IV-4-2-c-Charge Bt

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Bt.

Tableau IV-24: ξ pour la charge Bt

		Poutre I	Poutre II	Poutre III	Poutre IV
ξ	ξ1	0.18	0.2	0.18	0.13
2 .	ξ2	0.24	0.26	0.29	0.28
2 voies chargées	ξ3	0.24	0.28	0.33	0.34
Chargees	ξ4	0.21	0.23	0.36	0.59
	ξ (Bt)	0.218	0.243	0.29	0.335

IV-4-2-d-Charge Br

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge Br

Tableau IV-25: ξ pour la charge Br

	Poutre I	Poutre II	Poutre III	Poutre IV
ξ _(Br)	0.24	0.28	0.36	0.59

IV-4-2-e-Charge Mc120

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge M_{C120}

Tableau IV-26: ξ pour la charge Mc120

		1 voie chargée	;
	Surface chargée	Longueur chargée	ξ _(Mc120)
Poutre I	0.44	2	0.22
Poutre II	0.49	2	0.245
Poutre III	0.61	2	0.305
Poutre IV	0.76	2	0.38

IV-4-2-f-Charge D240

Le tableau suivant représente les valeurs de coefficient de répartition pour la surcharge D₂₄₀.

Tableau IV-27: ξ pour la charge D240

	1 voie chargée		
	Surface chargée	Longueur chargée	ξ (D240)
Poutre I	0.74	3.2	0.231
Poutre II	0.84	3.2	0.263
Poutre III	1.06	3.2	0.33
Poutre IV	1.34	3.2	0.42

IV-5-Répartition des efforts tranchants

Les efforts tranchants répartis s'obtiennent en multipliant le coefficient de répartition par les efforts calculés dans le sens longitudinal.

Tableau IV-28: Efforts tranchants à X=0 (efforts max de chaque poutre pour chaque chargement)

Charges	et surcha	arges	Effort tranchant	Po	utre I	Pot	ıtre II	Pou	tre III	Pou	tre IV
Charges	ct surcin	iii ges	Max	ξ	T (KN)	ξ	T (KN)	ξ	T (KN)	ξ	T (KN)
Charges	perman	entes	736,883	1	736,883	1	736,883	1	736,883	1	736,883
Système de Charge AL	4 vo	ies chargées	1937.382	0.17	329.35	0.17	329.35	0.153	296.52	0.147	284.79
	\mathbf{B}_{c}	4 files	1698.64	0.193	327.83	0.203	344.82	0.205	348.22	0.196	332.93
Système de charge B	\mathbf{B}_{t}	2 tandems	794.68	0.225	178.8	0.255	202.64	0.308	244.76	0.313	248.73
		B_r	104.6	0.26	27.2	0.29	30.33	0.4	41.84	0.51	53.346
Charges militaires		Mc120	1110.415	0.23	255.4	0.255	283.16	0.325	360.88	0.4	444.17
Convois exceptionnels		D240	1842	0.244	449.448	0.275	506.55	0.36	663.12	0.384	707.33

Tableau IV-29 : Efforts tranchants à L/4 (efforts max de chaque poutre pour chaque chargement)

Charges	et surcha	negoe	Effort tranchant	Po	utre I	Pot	ıtre II	Pou	itre III	Pou	tre IV
Charges	et sur cha	ii ges	Max	ξ	T (KN)	ξ	T (KN)	ξ	T (KN)	ξ	T (KN)
Charges	s permane	entes	452,34175	1	452,341 7	1	452,341 7	1	452,341 7	1	452,341 7
Système de Charge AL	4 vo	ies chargées	438.56	0.171	74,96	0,175	76,72	0,158	69,28	0,144	63,15
	Вс	4 files	1007.84	0.186	187,44	0,198	199,52	0,203	204,56	0,204	205,52
Système de charge B	Bt	2 tandems	552.1836	0.218	120,32	0,241	133,04	0,290	160,08	0,335	184,96
_		Br	75.8133	0.240	18,16	0,280	21,2	0,360	27,28	0,590	44,72
Charges militaires		Mc120	755.09	0.220	166,08	0,245	184,96	0,305	230,24	0,380	286,88
Convois exceptionnels		D240	1182.00	0.231	273,04	0,263	310,88	0,330	390	0,420	496,4

V-Combinaison des charges : selon le RPOA

Il reste à trouver la combinaison de charge la plus défavorable, selon laquelle l'étude sera faite.

Tableau V-1: Effort tranchant max sous combinaison de charge (KN)

		Poutre I	Poutre II	Poutre III	Poutre IV
	G+1.2A(L)	786.29	786.29	781.35	779.6
ELS	G+1.2Bc	786.06	788.61	789.12	786.82
ELS	G+Mc120	768.81	772.28	782	792.4
	G+D240	793.06	800.2	819.77	1444.213
	1.35G+1.6A(L)	1060.66	1060.66	1054.08	1051.75
ELU	1.35G+1.6Bc	1060.36	1063.76	1064.44	1061.38
LLC	1.35G+1.35Mc120	1037.9	1042.57	1055.7	1069.75
	1.35G+1.35D240	1070.64	1080.27	1106.7	1949.69

Tableau V-2: Moment max sous combinaison de charge (KN.m)

		Poutre I	Poutre II	Poutre III	Poutre IV
	G+1.2A(L)	10420.202	10362.086	10274.906	10071.482
ELS	G+1.2Bc	9995.822	10134.086	10226.258	10249.298
ELS	G+Mc120	9075.65	9371.32	9841.7	10292
	G+D240	10500.23	10914.68	11950.81	12894.83
	1.35G+1.6A(L)	14016.416	13938.93	13822.689	13551.456
ELU	1.35G+1.6Bc	13450.576	13634.93	13757.824	13788.544
ELU	1.35G+1.35Mc120	12252.127	12651.282	13286.295	13894.106
	1.35G+1.35D240	14175.31	14734.82	16133.594	17408.02

Conclusion

La poutre la plus chargée selon les combinaisons de charge ci- dessus est la poutre N° IV, et les moments max et les efforts tranchants max sont les suivant :

A ELS:

Moment max à $X=L/2 \rightarrow G+D240 \rightarrow 12894.83$ KN.m

Effort tranchant $\grave{a}X=0 \rightarrow G+D240 \rightarrow 1444.213KN$

A ELU:

Moment max à X=L/2 → 1.35(G+D240) → 17408.02 KN.m

Effort tranchant $\lambda = 0 \rightarrow 1.35(G+D240) \rightarrow 1949.69KN$

Conclusion générale

Ce mémoire représente l'une des méthodes analytique de répartition transversale des efforts dans un pont à poutres multiples, basé sur la considération d'un grillage continue de poutres et d'entretoises.

Les pièces (poutres et hourdis qui joue le rôle d'entretoise) de l'ouvrage étudié résistent à la torsion, donc la méthode applicable et celle de Guyon Massonnet, cette dernière se base sur le calcul de coefficient de répartition transversal, puis en multipliant se coefficient par les valeurs des efforts (moments fléchissant et efforts tranchants) calculés dans le sens longitudinal, on aboutit aux valeurs les plus représentatives des efforts dans n'importe section du viaduc.

Ce mémoire représente une longue durée de réflexion et de travail acharné, ce qui m'a permis d'acquérir énormément de connaissances théoriques, et d'approfondir celles acquises auparavant. Il m'a accordé la chance de maitriser la méthode de Guyon Massonnet, régissant les principes de calcul et de répartition des efforts dans un pont à poutres multiples.

Références bibliographiques

A.MENASRI, A.BEGRICHE (2016). Conception et étude de Viaduc V5 sur la pénétrante reliant la ville de TIZI-OUZOU à l'autoroute Est-Ouest au PK 15+500. Projet de fin d'étude. 200 P. ENP, HARRACHE-ALGER.

ALEXANDRE, S. (2013)..Ecriture d'un logiciel de calcul de dalles iso ou orthotropes suivant la méthode de Guyon-Massonnet. projet de fin d'étude. 153 P. INSA STRASBOURG.

COENDOZ, G. R. (1971). Contribution à l'étude du comportement statique des ponts à deux poutres-caissons. projet de fin d'étude . 182 P. Ecole Nationale Fédérale de LAUSSANE .

Ch.MASSONNET.(1962).Complement à la méthode de calcul des ponts à poutres multiples.Annales N°169.Institut technique du batiment et des travaux publics.

D.CHERID.(2016). Méthode de guyon massonnet. Cours pont. Département Génie Civil. Ecole Nationale Polytechnique. ALGER.

Ministere des Travaux Publics . (2009). Règles definissant les charges à appliquer pour le calcul et les épreuves des ponts routes . ALGER.

Ministere des Travaux Publics. (2008). Règles parasismiques applicables au domaine des ouvrages d'art. ALGER

Annexe A

Tableau A-1 : Valeurs de coefficient K_0 pour θ =0,60

y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,3347	0,6968	1,0447	1,3316	1,4594	1,3316	1,0447	0,6968	0,3347
b/4	-0,1808	0,2154	0,6119	0,9977	1,3316	1,5237	1,4853	1,3177	1,1155
b/2	-0,5241	-0,1615	0,2117	0,6119	1,0447	1,4853	1,8775	2,0778	2,2358
3b/4	-0,7808	-0,4806	-0,1615	0,2154	0,6968	1,3177	2,0778	2,9106	3,7122
b	-1,0112	-0,7808	-0,5241	-0,1808	0,3347	1,1155	2,2358	3,7122	5,448

Tableau A-2 : Valeurs de coefficient K_0 pour θ =0,65

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,1776	0,6223	1,0524	1,4121	1,5752	1,4121	1,0524	0,6223	0,1776
b/4	-0,2731	0,1624	0,6014	1,0347	1,4121	1,6143	1,518	1,2565	0,952
b/2	-0,5207	-0,169	0,1974	0,6014	1,0524	1,518	1,8946	2,0666	2,1547
3b/4	-0,6691	-0,4303	-0,169	0,1624	0,6223	1,2565	2,0666	2,9669	3,8208
b	-0,7883	-0,6991	-0,5207	-0,2731	0,1776	0,952	2,1547	3,8208	5,8338

Tableau A-3 : Valeurs de coefficient K_1 pour θ =0,60

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,7878	0,8839	0,9996	1,1215	1,1878	1,1215	0,9996	0,8839	0,7878
b/4	0,5792	0,6761	0,7992	0,9545	1,1215	1,2361	1,2207	1,151	1,0792
b/2	0,4349	0,5243	0,641	0,7992	0,9996	1,2207	1,3994	1,4582	1,4686
3b/4	0,3362	0,4171	0,5243	0,6761	0,8839	1,151	1,4582	1,7518	1,9607
b	0,2627	0,3362	0,4349	0,5792	0,7878	1,0792	1,4686	1,9607	2,5312

Tableau A-4 : Valeurs de coefficient K_1 pour θ =0,65

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,7485	0,8588	0,9965	1,1468	1,231	1,1468	0,9965	0,8588	0,7488
b/4	0,5289	0,633	0,7702	0,9493	1,1468	1,2818	1,2516	1,1561	1,0648
b/2	0,3823	0,4734	0,5966	0,7702	0,9965	1,2516	1,4559	1,5073	1,5005
3b/4	0,286	0,3648	0,4734	0,633	0,8588	1,1561	1,5073	1,8418	2,0659
b	0,2171	0,286	0,3823	0,5289	0,7485	1,0648	1,5005	2,0659	2,7342

Tableau A-5 : Valeurs de coefficient ξ_0 pour θ =0,60

y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,053273	0,110892	0,166266	0,211923	0,232267	0,211923	0,166266	0,110892	0,053273
b/4	-0,028775	0,034280	0,097385	0,158782	0,211923	0,242499	0,237398	0,209717	0,177532
b/2	-0,834190	-0,025706	0,033695	0,097385	0,166266	0,236398	0,295626	0,330694	0,358533
3b/4	-0,124271	-0,076482	-0,025706	0,034280	0,110892	0,209717	0,330694	0,463234	0,590810
b	-0,160945	-0,124271	-0,083419	-0,028775	0,053273	0,177532	0,355833	0,590810	0,867082

Tableau A-6 : Valeurs de coefficient ξ_0 pour $\theta{=}0{,}70$

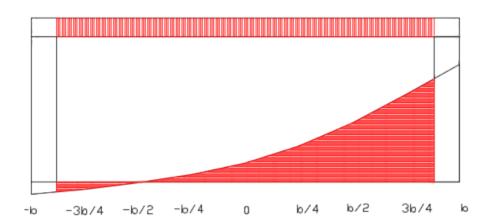
у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,003445	0,086962	0,168387	0,237741	0,269843	0,237741	0,168387	0,086962	0,003445
b/4	-0,057117	0,017421	0,093301	0,169821	0,237741	0,272438	0,247454	0,189931	0,124281
b/2	-0,081398	-0,025953	0,028611	0,093301	0,168387	0,247454	0,308641	0,327134	0,328151
3b/4	-0,088723	-0,060380	-0,027953	0,017421	0,086962	0,189931	0,327134	0,481501	0,625196
b	-0,091241	-0,088723	-0,081398	-0,057117	0,003445	0,012428	0,328151	0,615296	0,994153

Tableau A-7 : Valeurs de coefficient ξ_1 pour θ =0,60

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,065993	0,097788	0,141877	0,21139	0,323698	0,21139	0,141877	0,097788	0,065993
b/4	0,046025	0,066917	0,095808	0,141086	0,213647	0,329512	0,22004	0,150797	0,100889
b/2	0,036468	0,051183	0,071412	0,102696	0,151924	0,228848	0,347976	0,237877	0,158607
3b/4	0,035161	0,047024	0,063164	0,087536	0,124567	0,17895	0,261303	0,378784	0,252203
b	0,041807	0,053509	0,069216	0,092178	0,125387	0,171754	0,233737	0,31205	0,402849

Tableau A-8 : Valeurs de coefficient ξ_1 pour θ =0,70

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,054359	0,086312	0,134809	0,218797	0,366184	0,218777	0,134809	0,086312	0,054309
b/4	0,034267	0,053558	0,082757	0,133033	0,226669	0,37233	0,228643	0,145818	0,0913
b/2	0,024795	0,037405	0,056356	0,088521	0,14355	0,236759	0,393346	0,25052	0,156538
3b/4	0,023009	0,032845	0,047423	0,071447	0,110923	0,174571	0,275437	0,34287	0,270296
b	0,028355	0,038465	0,053188	0,076518	0,112677	0,16649	0,242899	0,344859	0,467831


Tableau A-9 : Valeurs de coefficient ξ'_1 pour θ =0,60

у	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	0,006599	0,0549	0,124666	0,244293	0,458352	0,244293	0,124666	0,0549	0,006799
b/4	-0,000127	0,026232	0,064416	0,130258	0,248805	0,462287	0,245802	0,118515	0,030022
b/2	0,003721	0,018814	0,040809	0,078191	0,144759	0,263418	0,473231	0,243675	0,083478
3b/4	0,016812	0,027666	0,042886	0,06747	0,108458	0,176856	0,290526	0,478756	0,192356
b	0,041807	0,053509	0,069216	0,092178	0,125387	0,171757	0,233737	0,31205	0,402849

Tableau A-10 : Valeurs de coefficient ξ'_1 pour θ =0,70

y	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
0	-0,003959	0,040219	0,111688	0,250559	0,52892	0,250759	0,111688	0,040219	-0,003959
b/4	0,007984	0,013131	0,04763	0,115869	0,254543	0,53288	0,253194	0,107196	0,016109
b/2	-0,003597	0,007129	0,024628	0,059159	0,12917	0,269426	0,545821	0,253727	0,070178
3b/4	0,007553	0,015221	0,027165	0,048909	0,089442	0,164702	0,303561	0,558494	0,195732
b	0,028355	0,038465	0,053188	0,076518	0,112677	0,16649	0,242899	0,344859	0,467831

Annexe B

 $Figure \ B-1: Sch\'ema \ de \ chargement \ de \ la \ ligne \ d'influence \ de \ K_{AL} \ , 4 \ voies \ charg\'ees \ (poutre \ N^\circ IV)$

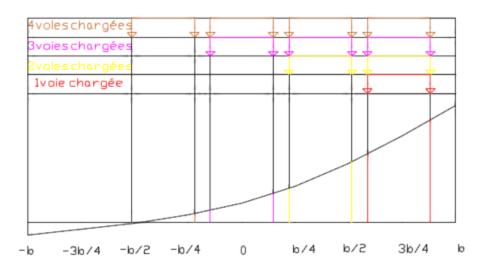


Figure B-2 : Schéma de chargement de la ligne d'influence de K_{Bc} (poutre $N^{\circ}IV$)

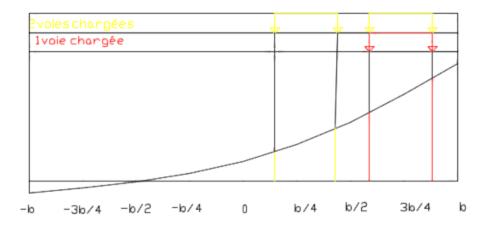


Figure B-3 : Schéma de chargement de la ligne d'influence de $K_{Bt} \, (poutre \, N^\circ IV)$

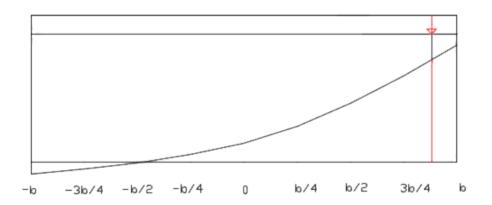


Figure B-4 : Schéma de chargement de la ligne d'influence de K_{Br} (poutre $N^{\circ}IV$)

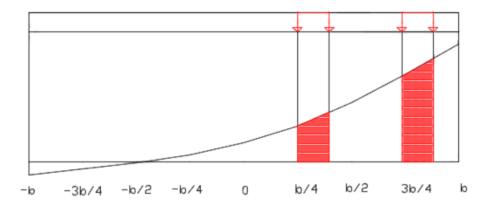


Figure B-5 : Schéma de chargement de la ligne d'influence de K_{Mc120} (poutre $N^{\circ}IV$)

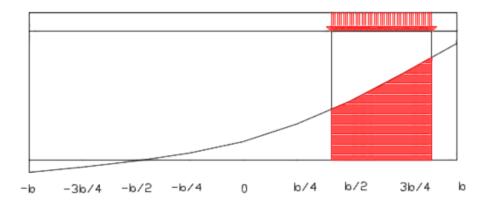


Figure B-6 : Schéma de chargement de la ligne d'influence de K_{D240} (poutre $N^{\circ}IV$)



Figure B-7 : Schéma de chargement de la ligne d'influence de ξ_{Al} (poutre $N^{\circ}IV)$

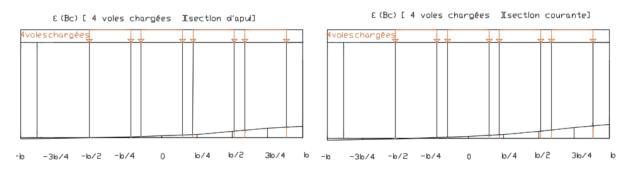


Figure B-8 : Schéma de chargement de la ligne d'influence de ξ_{Bc} (poutre $N^{\circ}IV)$

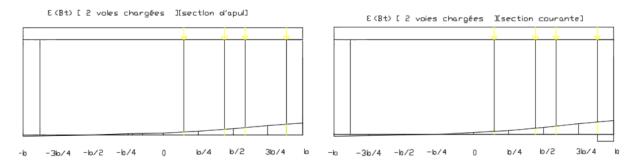


Figure B-9 : Schéma de chargement de la ligne d'influence de ξ_{Bt} (poutre $N^\circ IV)$

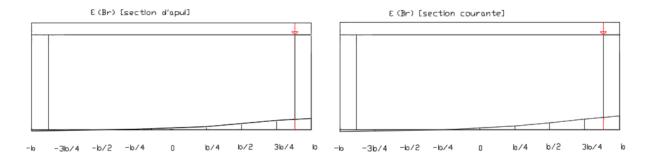


Figure B-10 : Schéma de chargement de la ligne d'influence de ξ_{Br} (poutre $N^{\circ}IV)$

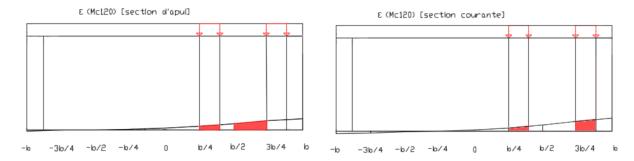


Figure B-11 : Schéma de chargement de la ligne d'influence de ξ_{Mc120} (poutre $N^{\circ}IV$)

Figure B-12 : Schéma de chargement de la ligne d'influence de ξ_{D240} (poutre N°IV)

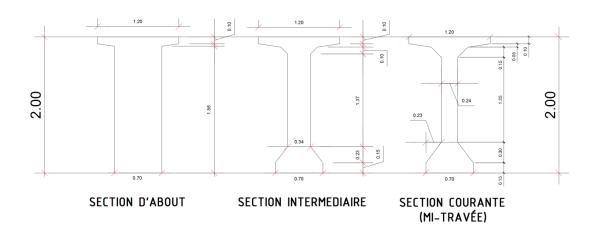


Figure B-13: Dimensions des sections de poutre.

Annexe C

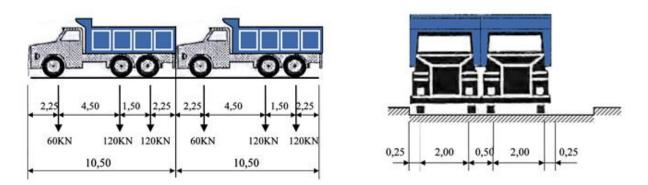


Figure C-1: Disposition longitudinale et Transversale des camions B_C

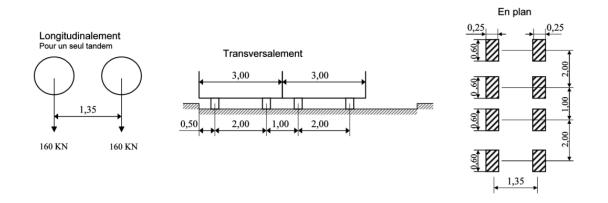


Figure C-2 : Caractéristiques du Chargement Bt (RCPR)

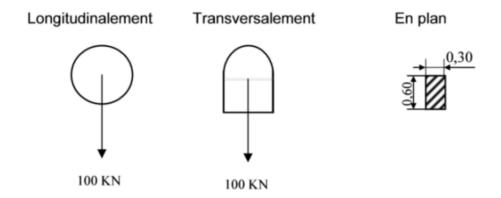


Figure C-3 : Système de charge Br (RCPR)

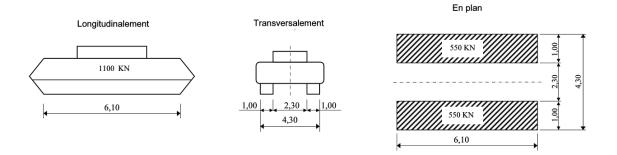


Figure C-4 : Caractéristiques du chargement Mc120 (RCPR)

Figure C-5 : Caractéristiques d'un convoi D240 (RCPR)