République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Département de Métallurgie

Mémoire de Fin d'Etudes pour l'obtention du diplôme d'Ingénieur d'Etat en Métallurgie

Thème

Etude des propriétés électriques des alliages eutectiques Pb-Sn et Sn-Zn élaborés par la méthode classique

<u>Réalisé par</u> :

- NAILI Meriem - SETTOUF Ilyes

Proposé et encadré par :

Mr. M.CHITROUB

Promotion Juin 2011

Ecole Nationale Polytechnique, Hacen Badi, B.P.182, El-Harrach, 16200 Alger Tel: 021.52.53.01-03, Fax: 021.52.29.73 www.enp.edu.dz.

• الملخص:

الهدف من هذا العمل هو تدليل القدرة الكهربائية لسبائك Pb-Sn و Sn-Zn الؤوتكتيكية رخيصة الثمن، جدارة الدراسة التجريبية التي تركزت على فهم التباين في المقاومة الكهربائية بعد الاعداد والتشويه التصفيحي على البارد (laminage) ثم المعالجة الحرارية، لدراسة التأثير على معظم المعايير لتحسين الناقلية للسبائك المستعملة.

كلمات مفتاحيه: المقاومة الكهربائية، الناقلية الكهربائية ... الخ

• Résumé

L'objectif de ce projet de fin d'étude est de mettre en évidence la capacité électrique des deux alliages semi-conducteurs eutectiques, en l'occurrence le Pb-Sn et Sn-Zn peu coûteux. L'étude expérimentale a porté sur la compréhension de la variation de la résistivité électrique après élaboration et différents traitements entre autres : la déformation à froid, ainsi que le traitement thermique, afin d'étudier au mieux les paramètres influençant sur l'amélioration de la conductivité de chacun des deux alliages.

Mots clés : la résistivité électrique, conductivité électrique...etc.

• Abstract

The aim of this final project study is to demonstrate ability of the two thermoelectric semiconductor alloys in this case the eutectic Pb-Sn and Sn-Zn. The experimental study concerned the understanding of the variation of the electric resistivity after elaboration and different treatment among others: the cold deformation, as well as the heat treatment, in order to study at best the parameters influencing on the improvement of the conductivity of each of both alloys.

Keywords: the electric resistivity, the electric conductivity, and so on.

Dédicaces

Le succès, c'est d'avoir réussi à faire ce que l'on aime La patience est un arbre dont les racines sont amères, et dont les fruits sont très douc

Ce travail n'est que le fruit d'un acharnement et d'une volonté d'un but tant espéré, qui n'a pu se réaliser sans la présence de tous ceux qui contribué de près ou de loin par leur aide, soutien, encouragement dans les moments les plus difficiles ; c'est pour tout cela que je dédie ce mémoire :

• À mes chers parents, qui m'ont apportée de l'aide et m'ont toujours poussée vers l'avant. Pour tous leurs sacrifices, leur inquiétude, que je leur suis à jamais reconnaissante ;

• À mes chères tantes : Mazora, Henda, Nadjia, Rachida, Nabila

• À mes oncles, mes cousins et cousines ;

• À ma tata Houria ainsi qu'à ses enfants qui sont pour moi des sœurs et frères : Wassila, Manel, Omar, Fethi ;

• À mes très chers amis, et plus particulièrement à Yacine, Walid, Farhat, Omar, Nassim, Imad, Imene, Maria, Lynda, Djazia, Widad, Nassrine, Feriel.

Dédicaces

Il ne suffit pas d'engranger les récoltes du savoir, du savoir-faire, ni de vendanger les fruits du savoir-être et du savoir devenir, encore faut il accepter de les offrir pour s'agrandir ensemble.

Jacques Salomé

La reconnaissance est la mémoire du cœur, donc soyons reconnaissant aux personnes qui nous donnent du bonheur ; ils sont les charmants jardiniers par qui nos âmes sont fleuries ; c'est pour tout celà que je dédie ce mémoire à :

- ✓ Mon adorable maman, mon très cher papa qui ont toujours crus en moi et qui m'ont toujours encouragé.
- ✓ Ma cher sœur Djazira Kenza
- ✓ Mon adorable frère El Hadi.
- La mémoire de mes grands parents paternels et à mes grands parents maternels.
- ✓ Toutes mes tantes, oncles, cousins et cousines.
- ✓ Aux êtres les plus chers à mon cœur : Hafsa, la JST qui se reconnaitront.
- ✓ Mes amis les plus adorables et généreux que j'ai eu la chance de connaitre :

Ahmed alias Hmiti, Badise, Hanafi,Abd El Hak, mohamed, Chiha, Djamel, à tous mes amis de polytechnique, tous les membre de Mont Riant, à tous nos amis du sud entre autre la wilaya de ilizi, ihrir, djanet et à tous ceux que j'ai oublié de site et qui se reconnaitront...

Ilyes

Une âme délicate est gênée de savoir qu'on lui doit des remerciements, une âme grossière, de savoir qu'elle en doit.

Friedrich Nietzsche

Nos sincères remerciements et profonde gratitude à Mr M. CHITROUB notre encadreur, pour nous avoir dirigés et soutenus tout au long de ce travail. Ses qualités intellectuelles et sa modestie ont grandement contribué à l'aboutissement de ce mémoire.

On remercie par anticipation, Monsieur le président du jury, Pr *F. HELLAL*, ainsi que tous les membres du jury à savoir, Dr *A. Daimellah* et Dr *N. KECHOUD*, d'avoir bien voulu siéger notre jury.

On tient à témoigner notre profonde reconnaissance à Mme *KECHOUD*, Mr F. HELLAL, Mr N. MESRATI, Mr K. ABADLI, Mr SALHI, Mr DJAGHLAL pour leur disponibilité, leur aide, leurs précieux conseils et les orientations qu'ils nous ont prodigués, qu'ils trouvent ici notre gratitude et sympathie.

Sans oublier de remercier *Mr KECHOUAN, C*hef de Laboratoire des Couches Minces au sein de l'USTHB pour nous avoir permis de réaliser des mesures indispensables à notre thème, ainsi que *Abderahman* pour sa disponibilité et orientation.

Un grand merci à Mr OUABDESSERAM Abd Malek Technicien du Département de Génie Mécanique pour sa précieuse aide et disponibilité.

Une reconnaissance aux deux sociétés ALUMET_{spa}-filiale-annabib et SOUTHELEC_{spa} avec leur aide concernant les produits utilisés au sein de ce mémoire.

Sommaire

Introduction générale	01
-----------------------	----

CHAPITRE 1 : Etat de l'art

I.1.Origines.	03
I.2. Effets thermoélectrique	05
<i>I.2.1</i> .Effet Seebeck	06
I.2.2. Effet Peltier	07
<i>I.2.3</i> . Effet Thomson	08
<i>I.2.4.</i> Relation entre les coefficients Seebeck, Peltier et Thomson	08
<i>I.2.5.</i> Le facteur de mérite adimensionnel Z	08
<i>I.2.6.</i> Le rendement	09
I.3. Principe de la conversion de l'énergie par effet thermoélectrique	10
I.4. Matériaux conventionnels et leurs applications	11
<i>I.4.1</i> . Matériaux conventionnels	11
<i>I.4.2.</i> Matériaux avancés et nouvelles orientations	15
I.5. Applications thermoélectriques	20
I.6. Optimisation des matériaux thermoélectriques	23
I.7. Caractérisation des propriétés structural, électrique et thermique du Sn, Pb, Zu	n25

CHAPITRE 2 : Techniques expérimentales

II.1 . Elaboration des alliages eutectiques Pb-Sn et Sn-Zn par la méthode classique.	27
II.2. Etude métallographique	35
II.3. Microdureté	36
II.4. Laminage	37
II.5. Traitement thermique	37

II.6.]	Mesure de la	résistivité électrique	
----------------	--------------	------------------------	--

CHAPITRE 3 : Résultats et interprétations

III.1.Echantillons bruts de coulée	
III.2. Echantillons laminés	45
III.3. Echantillons après laminage et recuit	
III.4. Interprétations des résultats de l'état bruts	51
<i>III.4.1</i> . Pb-Sn	51
<i>III.4.2.</i> Sn-Zn	54
III.5. Interprétations des résultats après laminage	59
<i>III.5.1</i> . Pb-Sn	59
<i>III.5.2</i> . Sn-Zn	60
III.6.Interprétations des résultats après laminage et recuit	63
<i>III.5.1</i> . Pb-Sn	63
<i>III.5.2.</i> Sn-Zn	65
Conclusion générale	68
Bibliographie	

Annexes

De nos jours, tout développement économique induit une forte demande en matière d'énergie ; pour cela, le besoin à vouloir diversifier la nature des ressources énergétiques prend tout son sens ; et surtout avec l'épuisement des réserves fossiles accompagnées de toutes leurs répercutions environnementales ; ont donné lieu à une nouvelle renaissance aux énergies renouvelables telles que : l'éolien, le photovoltaïque et le thermoélectrique.

Bien que la conversion thermoélectrique ait été découverte il y a plus d'un siècle; elle n'a pas fait l'objet d'application à grande échelle ; due aux performances limitées de ses générateurs; cela est reflété par un faible facteur de mérite Z.

Entre autres, un axe très important d'investigation dans cette problématique traite la récupération de quantités gaspillées par effet Joule, lors de nombreux processus industriels.

A cet effet, une effervescence des chercheurs s'est traduite par la découverte de nouveaux alliages, élaborés à partir d'éléments communs ou par dopage, pour une éventuelle augmentation du facteur de mérite adimensionnel.

L'objectif de notre travail porte sur l'étude des propriétés électriques de deux alliages semi-conducteurs binaires eutectiques Pb-Sn (intrinsèque) et Sn-Zn (extrinsèque) élaborés par la méthode classique. Cela nous a induit à la caractérisation de ces derniers, en vue d'indexer la possibilité d'utilisation de ces matériaux peu couteux et facilement disponibles dans le domaine thermoélectrique.

Dans le premier chapitre, nous présentons les origines de la thermoélectricité, ses principes de bases et les paramètres importants qui permettent d'optimiser les matériaux thermoélectriques, ainsi que le choix des matériaux utilisés seront justifiés en faisant le point sur leurs propriétés générales.

Dans le deuxième chapitre et dans un premier temps, nous présenterons la technique d'élaboration de nos échantillons, en passant par la microstructure, les distances interlamellaires ainsi que de la mesure de la résistivité électrique. En second lieu, une déformation à froid par laminage sera effectuée afin d'étudier le comportement de la résistivité électrique et de la microstructure des deux alliages, et en troisième lieu, les échantillons laminés subiront un recuit, afin de définir le meilleur traitement aboutissant aux basses résistivités électriques.

Le troisième chapitre quant à lui, est consacré aux résultats des mesures accompagnés de commentaires qui illustrent les données obtenues, afin d'indexer le potentiel électrique des métaux étudiés. Ce même chapitre résume toutes les données avec les différentes interprétations.

Ce document finalisé par une conclusion générale, donnera lieu à une comparaison entre le comportement des deux alliages durant toute la partie expérimentale, et qui sera mis en évidence, afin d'indexer le potentiel électrique de chacun d'eux, ainsi que d'éventuelles propositions pour la poursuite de cette étude dans le domaine thermoélectrique. La thermoélectricité a déjà derrière elle une longue histoire. Si ses applications restent jusqu'à aujourd'hui cantonnées aux riches technologies, celle-ci ne manque pas de prestige, puisque les matériaux thermoélectriques bénéficient, entre autres, de la confiance de la NASA qui se présente comme étant une référence incontournable.

L'effet thermoélectrique est un phénomène physique caractéristique de certains matériaux contribuant à la conversion de l'énergie thermique en énergie électrique, ou réciproquement, par le déplacement des calories par l'application d'un courant électrique. Cet effet est à la base d'applications de réfrigération et de génération d'électricité [1].

I.1. Origines

L'histoire de la thermoélectricité a débuté à l'aube du XIX^{ème} siècle avec les découvertes des effets de Seebek, Peltier et Thomson.

Cependant, Volta semble être le premier à avoir mis en évidence le phénomène thermoélectrique en 1794. Mario Glozzi, dans son livre '*Storia della Fisica*', paru en 1796, rapporte que Volta avait relevé l'effet d'un courant électrique sur une grenouille à une extrémité d'un conducteur en fer quand l'autre était plongée dans de l'eau bouillante. Il s'agit bel et bien d'un phénomène thermoélectrique [2].

En 1821, le physicien allemand Thomas Johann Seebeck remarqua la déviation d'une aiguille métallique placée près d'une spire faite de deux conducteurs de nature différente, et dont les deux jonctions sont soumises à un gradient de température, et qui est représenté dans la *figure 1*.

Il constata aussi que la magnitude de cette déviation est proportionnelle à la différence de température, et dépend des propriétés de conduction des matériaux. Il assigna d'abord cette déviation à l'action du champ magnétique induit par la température, mais réalisa par la suite qu'elle est le résultat d'un courant électrique produit par le gradient de température présent dans le circuit fermé, qui génère une différence de potentiel proportionnelle au gradient de température ($\Delta T = T_C - T_F$) entre les deux jonctions chaude et froide.

L'application la plus fréquente de l'effet Seebeck est la mesure de température à l'aide d'un thermocouple **[3,4]**.

Figure 1. Schéma descriptif de l'effet Seebek [2].

Quelques années plus tard, en 1834, le physicien français Jean Peltier découvrit le second effet thermoélectrique, et qui fut correctement interprété par Lenz en 1938. Celui-ci stipule qu'une différence de température apparaît aux jonctions de deux matériaux de natures différentes soumis à un courant électrique selon la direction du courant, la chaleur est absorbée ou dégagée au niveau de la jonction entre les deux conducteurs, comme illustré dans la *figure2*.

Ce qu'il démontre en gelant de l'eau autour d'une jonction de Bismuth-Antimoine, et en la décongelant en inversant le sens du courant **[1, 3, 5]**.

Figure 2. Schéma descriptif de l'effet Peltier [6].

En 1851, le physicien anglais William Thomson montra que les effets Seebeck et Peltier sont liés : un matériau soumis à un gradient thermique et parcouru par un courant électrique, échange de la chaleur avec le milieu extérieur. Réciproquement, un courant électrique est généré par un matériau soumis à un gradient thermique et parcouru par un flux de chaleur.

La différence fondamentale entre les effets Seebeck et Peltier considérés séparément et l'effet Thomson est l'existence de ce dernier pour un seul matériau et l'inutilité d'une jonction, son principe est illustré dans la *figure 3* [1].

Figure 3. Schéma descriptif de l'effet Thomson [7].

Les seules applications pratiques de ces découvertes se sont longtemps limitées au thermocouple pour la mesure des températures. L'idée pour la production de l'électricité ne se dessina que bien plus tard **[8]**.

En 1909, et pour la première fois, Altenkirch a calculé correctement le rendement d'un générateur thermoélectrique fondé sur l'effet Seebeck. L'idée d'utiliser cet effet pour produire de l'électricité fut rejeté à cause du faible rendement 0,1%, elle était plutôt destinée à l'utilisation des métaux pour la construction des générateurs. Altenkirch réussit seulement à montrer quelles devraient être les propriétés d'un bon matériau thermoélectrique, à savoir un coefficient Seebeck ' α ' grand, avec une faible conductivité thermique ' λ ' afin de maintenir un gradient de température important, et une faible résistivité électrique ' ρ ' de manière à minimiser les pertes à effet de joule **[8]**. Ceci a conduit à définir le facteur de mérite englobant toutes ces propriétés (α , λ , ρ) **[5]**.

En 1954, Maria Telkes réussit à convertir de l'énergie solaire en énergie thermoélectrique, en utilisant un couple formé d'antimoniure de Zinc et de l'alliage Bismuth-antimoine ayant un rendement de 3,3%. Ce fut le premier générateur thermoélectrique à rendement acceptable **[8]**.

Deux années plus tard, Loffe développe sa théorie de thermo-éléments semiconducteurs, il démontre également que la conductivité thermique des semi-conducteurs peut être réduite d'avantage en faisant des alliages avec des éléments ou composés isomorphes [5].

La réfrigération par effet Peltier trouve un développement dans des applications en liaison avec l'électronique, alors que la génération d'électricité trouve débouché dans les applications spatiales de la NAZA, avec les RTG (Radioisotope Thermoelectric Generator) qui ont démontré leur grande fiabilité par la durée de fonctionnement pendant plus de 17 ans, embarqué dans les sondes voyager en 1977.

A la suite du crash pétrolier en 1974, la question d'industrialiser à grande échelle ces matériaux commence à germer, cependant, l'industrie thermoélectrique reste cantonnée aux riches technologies : Refroidissement de composant pour l'électrooptique, applications spatiales à cause du cout de production des semi-conducteur qui reste encore très élevé.

Dans la foulée des accords de Kyoto en 1994, qui préconise le remplacement des combustibles fossiles par des moyens plus écologiques de conversion d'énergie, plusieurs gouvernements se sont lancés sur la piste d'énergies propres et renouvelables. Il s'insuffle ainsi une dynamique autour de la recherche de nouveaux matériaux thermoélectriques à haute performance, qui débute avec des programmes de recherches ambitieux : Programme du DOE (Departement Of Energy) aux Etats Unis, NEDO (Organisation Gouvernementale en Charge des Energies Nouvelles) au Japon, ainsi de nouveaux matériaux sont explorés et des avancées significatives sont constatées, en laissant espérer de nouveaux champs d'application dans les domaines civil et spatial **[8]**. Au cours des 80 années suivantes, une seule contribution a eu lieu, c'est celle d'Altenkirch, qui en 1911 établit les bases d'efficacité des générateurs et réfrigérateurs thermoélectriques.

I.2. Les effets thermoélectriques

Les applications des effets thermoélectriques nécessitent la présence de deux matériaux différents a et b qui constitueront la jonction [9].

I.2.1. Effet Seebeck

Un circuit formé de deux matériaux conducteurs différents A et B, auxquels un gradient de température ΔT est appliqué aux extrémités d'un barreau conducteur, engendre spontanément une différence de potentiel ΔV proportionnelle à la différence de température [9].

Lorsqu'une face d'un matériau thermoélectrique est chauffée, les électrons, porteurs de charges négatives, acquièrent plus d'énergie cinétique, et se déplacent par conséquent, plus facilement dans le matériau. Ils diffusent de la face chaude vers la face froide et s'accumulent ensuite à celle-ci. Les trous, porteurs de charges positives, s'amoncèlent par conséquent à la face chaude. Cette accumulation de charges sur les deux faces génère une différence de potentiel entre les deux jonctions et un courant électrique, lorsque les deux faces sont connectées. Ce courant est maintenu tant que le gradient de température existe entre les deux faces du matériau [3].

Cette proportionnalité est traduite par le coefficient Seebeck S [V.K⁻¹], souvent appelé pouvoir thermoélectrique, est représenté dans l'équation (1) [9].

$$\mathbf{S_{ab}} = \frac{dV}{dT} \tag{1}$$

Les coefficients Seebeck des deux matériaux sont reliés au coefficient Seebeck du couple selon l'équation (2) [7].

$$\mathbf{S}_{ab} = \mathbf{S}_a - \mathbf{S}_b \tag{2}$$

Le signe du coefficient Seebeck est positif si le courant électrique, provoqué par la différence de potentiel, circule dans le sens opposé à celui du flux de chaleur qui va de la jonction chaude T1 vers la jonction froide T2 [3].

Le schéma ci-dessous illustre l'effet Seebeck ainsi que le mode de génération thermoélectrique.

Figure 4. Schéma descriptif de l'effet Seebeck (a), et du Mode de conversion thermoélectrique (b) [3].

I.2.2. Effet Peltier

Il décrit le phénomène de déplacement de chaleur en présence d'un courant électrique à la jonction de deux métaux différents. En effet, lorsqu'un courant électrique passe à travers la jonction reliant deux conducteurs, on observe un dégagement de chaleur ou une absorption de chaleur selon le sens du courant [10].

Lorsque le courant circule du semi-conducteur N (coefficient Peltier le plus faible) vers le P (coefficient de Peltier le plus grand), la jonction refroidit, et si l'on inverse le sens du courant, la jonction chauffe **[3,5]**.

En effet, lorsque les électrons traversent le matériau de type N, le milieu étant riche en électrons, il y a plus de chocs entre les particules. Les électrons étaient donc porteurs d'une grande énergie cinétique. En passant vers un milieu P, les électrons subissent moins de chocs, et transmettent leur énergie cinétique dans la jonction entre les deux matériaux, cette perte d'énergie cinétique se traduisant par une augmentation de l'agitation thermique des particules au niveau de la jonction, il y a donc un dégagement de chaleur. Inversement, lorsque les électrons passent d'un milieu pauvre en électrons P vers un milieu riche en électrons N, le courant imposant le passage dans le matériau dopé négativement, les électrons absorbent l'énergie cinétique des particules du milieu ambiant, gagnant l'énergie cinétique nécessaire au passage dans le matériau de type N **[10]**.

La quantité de chaleur absorbée Q ou générée est proportionnelle au courant électrique selon l'équation (3) [9].

$$\pi_{ab} = \frac{Q}{I} \tag{3}$$

- I : La constante de proportionnalité,
- π : Coefficient de Peltier.

I.2.3. Effet Thomson

Cet effet thermoélectrique met en évidence le lien entre l'effet Seebeck et l'effet Peltier. Si on fait passer un courant électrique dans un matériau soumis à un gradient de température, de la chaleur Q sera produite ou absorbée, en fonction du sens du courant [3]. Dans chaque segment (dx) du matériau, le gradient de flux thermique est donné l'équation (4).

$$\frac{dQ}{dx} = I \frac{dT}{dx} \tau \tag{4}$$

Ou :

x : la coordonnée spatiale,

 τ : le facteur de Thomson donné par la relation (5) [9].

$$\pi_{a} - \pi_{b} = T \frac{dSab}{dT}$$
(5)

I.2.4. Relation entre les coefficients Seebeck, Peltier et Thomson

Les trois coefficients absolus S, Π et τ sont liés par les relations (6) et (7) [9].

$$\Pi = \tau S T \tag{6}$$

$$\tau = T \, \frac{dS}{dT} \tag{7}$$

I.2.5. Le facteur de mérite adimensionnel Z

Le facteur de mérite est le facteur permettant de classer le matériau thermoélectrique comme étant bon ou non, car sa relation est donnée en fonction des propriétés de transport de matière caractérisant le matériau.

L'optimisation de matériau pour une utilisation en conversion d'énergie par effet thermoélectrique passe par l'optimisation de leurs propriétés de transport, de manière à maximiser le facteur de mérite adimensionnel ZT donné par la relation (8) [6].

$$ZT = \frac{S^2 T\sigma}{\lambda} \tag{8}$$

Avec :

T : la température absolue (en Kelvin),

- S : le pouvoir thermoélectrique (ou coefficient de Seebeck),
- σ : la conductivité électrique,
- λ : la conductivité thermique.

Pour un module thermoélectrique constitué de deux matériaux, types p et n, le facteur de mérite peut être déterminé par la relation (9).

$$ZT = T \times \frac{(S_p - S_n)^2}{((\frac{K_n}{\sigma_n})^{\frac{1}{2}} + (\frac{K_p}{\sigma_p})^{\frac{1}{2}})^2}$$
(9)

ZT est d'autant plus grand que le matériau est un bon matériau thermoélectrique, et comme ZT est dépendant de la température, il est souvent présenté sous la forme de facteur de mérite adimensionnel ZT [5].

Il apparaît clairement alors, qu'une meilleure efficacité thermoélectrique peut être atteinte, si les trois conditions ci-dessous sont remplies :

- Un coefficient Seebeck *S* élevé dans le but de générer une différence de potentielle élevée.
- Une faible résistivité électrique ρ afin de minimiser les pertes de chaleur par effet Joule.
- Une faible conductivité thermique κ en vue de maintenir un gradient de température suffisant entre les deux jonctions chaude et froide et de réduire la perte de chaleur [3].

Depuis plusieurs décennies, l'amélioration du facteur de mérite a été au cœur des efforts dans la recherche scientifique, malgré cela, pour que le rendement des systèmes thermoélectrique rivalise avec celui des systèmes de réfrigération de grande échelle, il faudrait l'augmenter, d'où l'importance de la caractérisation des propriétés concernées.

I.2.6. Le rendement

Le rendement de la thermo-génération η exploitant l'effet Seebeck et le coefficient de performance en mode de réfrigération ϕ utilisant l'effet Peltier, sont directement liés à la valeur de ZT.

- η est défini comme le rapport de la puissance électrique W générée par le module, (qui doit être la plus élevée possible) sur la puissance thermique Q_c absorbée du coté chaud (que l'on souhaite minimiser), illustré dans la relation (10).
- φ est caractérisé par le rapport de la puissance thermique émise du coté froid Q_F, (que l'on essaie de maximiser) divisée par la puissance électrique W fournie au module (que l'on souhaite minimiser), illustré dans la relation (11).

$$\dot{\eta} = \frac{W}{Q_C} = \frac{T_C - T_F}{T_C} \times \frac{(1 + ZT)^{\frac{1}{2}} - 1}{(1 + ZT)^{\frac{1}{2}} + \frac{T_F}{T_C}}$$
(10)

$$\phi = \frac{Q_F}{W} = \frac{T_F}{T_C - T_F} \times \frac{(1 + ZT)^{\frac{1}{2}} - \frac{T_C}{T_F}}{(1 + ZT)^{\frac{1}{2}} + 1}$$
(11)

Avec :

Zt : le facteur de merite,

T_c : temperature chaude,

 T_F : temperature froide.

Et:
$$T = \frac{T_C + T_F}{2}$$

Un générateur, exploitant l'effet Seebeck, aura un rendement ' η ' d'autant meilleur que l'écart de température appliqué est grand. D'autre part, plus ZT sera élevé et plus grand sera' η '.

Un réfrigérateur, utilisant l'effet Peltier, aura un coefficient de performance ϕ ' d'autant meilleur pour un rapport de température donné, si le facteur de ZT est élevé, il produira des écarts de température plus importants [3].

I.3. Principe de conversion de l'énergie par effet thermoélectrique

Pour la réfrigération ou la génération d'électricité par effet thermoélectrique, un module est constitué de couples connectés électriquement, tels que les couples thermoélectriques sont constitués de deux matériaux semi-conducteurs, l'un de type P (S>0) et l'autre de type N (S<0), joints par un matériau conducteur, dont le pouvoir thermoélectrique est supposé nul.

La *Figure* 6 représente un module Thermoélectrique, dont les couples sont connectés en série électriquement et en parallèle thermiquement, afin d'optimiser le flux thermique et la résistance électrique du module, et La *figure* 7 représente le principe de la réfrigération et de la génération thermoélectrique en considérant des convertisseurs élémentaires, c'est-à-dire constitués d'un seul thermocouple **[6]**.

Dans le cas de la réfrigération, le courant électrique est imposé de telle manière que les porteurs de charge (électrons et trous) se déplacent de la source froide à la source chaude, dans les deux branches du couple.

Ce faisant, ils contribuent à un transfert d'entropie de la source froide à la source chaude, et donc à un flux thermique qui va s'opposer à celui de la conduction thermique. Si les matériaux choisis ont de bonnes propriétés thermoélectriques, ce flux thermique créé par le mouvement des porteurs de charge sera plus important que celui

de la conductivité thermique, le système permettra donc, d'évacuer de la chaleur depuis la source froide vers la source chaude, et agira alors comme un réfrigérateur.

Dans le cas de la génération d'électricité, c'est le flux de chaleur qui entraîne un déplacement des porteurs de charge et donc l'apparition d'un courant électrique **[9]**.

Figure 6. Représentation schématique d'un module Thermoélectrique [6, 7, 11].

Figure 7. Thermocouple p et n configuré en mode réfrigération (a) et en mode génération d'électricité (b) [4].

I.4. Matériaux thermoélectriques et leurs applications

I.4.1. Matériaux conventionnels

En vue d'application thermoélectrique, un grand nombre de matériaux ont été étudiés au cours du siècle dernier, ces matériaux dits « conventionnels » peuvent être préparés soit sous forme de monocristaux, à partir d'une technique de croissance cristalline adaptée, soit sous forme de poly-cristaux, obtenus en général par métallurgie de poudres. Le monocristal sera favorisé si le matériau a des propriétés de transport anisotropes, et que l'on recherche des performances thermoélectriques optimales. Si, au contraire, le matériau a des propriétés isotropes, le poly-Crystal sera privilégié, car plus simple à élaborer et possédant en plus une meilleure tenue mécanique que le monocristal [4].

Les alliages bismuth-antimoine, la famille des tellures de bismuth et de plomb ainsi que les alliages de silicium-germanium constituent l'essentiel des matériaux de référence aux applications thermoélectriques **[8]**.

I.4.1.1. Bi₂Te₃ et ses dérivés (Bi, Sb)₂ (Te, Se)₃

C'est l'archétype des bons matériaux thermoélectriques au voisinage de la température ambiante, donc utilisable en refroidissement et en génération sous faible gradient de température, et sont la structure est illustré dans la *figure 8*.

La structure rhomboédrique est fortement anisotropique (paramètres de maille $a \approx$ 0,438 nm, $c \approx$ 3,036 nm), ce qui a une forte incidence sur le type de matériau à utiliser (monocristal ou texturé), sur les propriétés TE (Z dépend de l'orientation).

Les types p et n sont obtenus par écart à la stœchiométrie (un excès de Bi ou Te favorise l'obtention du type p ou n respectivement), le coefficient Seebeck évolue de \approx – 200 à \approx + 200 µV/K en fonction du rapport Bi/Te. Les composés Bi₂Se₃, Sb₂Te₃ ont la même structure et des paramètres de maille voisins. Les effets d'alliage sont aisément réalisables (Sb sur le site Bi et Se sur le site Te1) pour diminuer la conductivité thermique et accroître *ZT* [6].

Figure 8. Structure rhomboédrique anisotropique de Bi2Te3 et liaisons Te-Te [6].

Le facteur de mérite de ce matériau varie entre 0,5 et 1,4 variant selon la composition de chaque élément constituant l'alliage [6].

I.4.1.2. PbTe et ses dérivés

PbTe a été l'un des premiers matériaux à être étudié pour son intérêt en thermoélectricité autour de 400°C. Sa structure NaCl permet au matériau d'être aussi bon à l'état poly-cristallin que monocristallin. PbTe vérifie les critères de masse atomique élevée et a une faible conductivité thermique ($\lambda L \approx 2 \text{ W/(m \cdot K)}$ à 300 K).

Le gap de ce matériau semi-conducteur croît de 0,19 eV à basse température à 0,50 eV à 650 K, et ses propriétés dans le domaine réel ont aussi été étudiées. La valeur de *ZT* approche de 1 en type n mais n'est que de 0,7 en type p.

Les effets d'alliage, par exemple avec SnTe, réduisent la conductivité thermique et améliorent *ZT* sauf si le gap diminue (le gap s'annule dans $Pb_{0,6}Sn_{0,4}Te$) et la meilleure valeur de *ZT* (= 1 à \approx 800 K) est obtenue pour *x* = 0,25.

Les effets de mélange avec Bi_2Te_3 ont fait l'objet de nombreuses études depuis celles menées en Bulgarie.

PbTe a aussi été utilisé comme dopant de Bi_2Te_3 avec un ZT supérieur ou égal à 1 à 350 K dans $(Bi_2Te_3)_{0,2}(Sb_2Te_3)_{0,8} + 0,3 \%$ en masse de PbTe [6].

I.4.1.3. TAGS (Te-Ag-Ge-Sb)

AgSbTe₂ est un bon matériau thermoélectrique TE en raison de sa conductivité thermique faible, son mélange avec GeTe, conduit à la série appelée TAGS (Te-Ag-Ge-Sb) qui présente de bonnes valeurs de *ZT*. Une partie des matériaux a la structure NaCl de GeTe et les plus fortes valeurs de *ZT* sont obtenues au voisinage de la transition rhomboédrique à 80 % de GeTe, ce qui induirait une diminution de la conductivité thermique. Cependant, l'alliage à 85 % de GeTe a une meilleure résistance mécanique associée à un minimum de dilatation thermique. Des mélanges plus sophistiqués ont conduit récemment à des valeurs de *ZT* élevées [**6**].

I.4.1.4. Si-Ge

Les alliages de Si-Ge sont utilisés pour la génération de puissance électrique à haute température, principalement, dans les RTG (Radio Thermonuclear Generator). Un cœur radioactif fournit la source chaude par sa désintégration, et les éléments thermoélectriques, la puissance électrique. Les deux composants n'ayant pas de parties mobiles et dont le temps de décroissance de PuO2 étant très long, la fiabilité est remarquable : Des durées de vie de 30 ans ont été atteintes.

Les meilleures compositions sont voisines de $Si_{0,7}Ge_{0,3}$. Les applications concernent la fourniture de puissance électrique pour les appareils des véhicules spatiaux ou de surveillance en milieu hostile. Les études actuelles autour des compositions classiques, concernent les effets de nanostructure **[6]**.

Dès 1960, la plupart des matériaux thermoélectriques actuellement utilisés étaient connus et leurs performances, liées à un facteur de mérite thermoélectrique stagnant à la valeur 1, illustré dans le *table au I*, ont peu évolué jusqu'en 1990 (sauf dans les TAGS). La seule application d'importance était fondée sur Bi₂Te₃ pour le refroidissement. On remarque également l'absence de matériaux dans le domaine 400-700 K [6].

Caractéristiques Bi Sb Bi ₂ Te ₂ -Sb ₂ Te ₂ (Bi ₂ Sb ₂ (Te ₂ S) ₂ PbTe Te Ag Ge Sb Si							
		23 ~ .23	(
Туре	n	n, p	n, p	n	р	n, p	
T (Tu)	200	< 300	≈ 300-400	700	750	1 000	
Z_T à Tu	1,1(H)	0,8	0,9	0,9	1,1	0,6	

Tableau I. Représentation des matériaux conventionnels en 1960 à leur température
optimale d'utilisation T_u [6].

NB : *H* signifie que cette valeur de *ZT* n'est obtenue que sous champ magnétique.

La *figure* 8 représente les dépendances en température du facteur de mérite ZT des meilleurs matériaux thermoélectriques conventionnels n et p. Ce sont tous des semiconducteurs avec un faible gap (0 < Eg < 1 eV), mis en évidence dans le *tableau I* [4].

Semi-conducteur	EG (eV)	Tmax pour ZT max
Bi2 Te3	0,16	300
Bi2 Te3 + Sb2 Te3	0,25	
РbТе	0,50	650
AgSbTe2	0,30	650
GeTe	0,40	700
Si-Ge	0,70	1 100

Tableau II. Les valeurs du gap dans les semi-conducteurs thermoélectriques conventionnels [6].

Figure 8. Dépendance en température du facteur ZT des matériaux conventionnels de type n et p [4].

• A basses températures, les meilleurs matériaux sont les alliages semiconducteurs à base de bismuth et d'antimoine de type n. L'utilisation des alliages Bi₁₋ _xSb_x dans des modules thermoélectriques a cependant été très restreinte, à cause d'une part des faibles performances des matériaux dopés de type p ($ZT \sim 0,2$) dans le domaine de température envisagé et à cause d'autre part, de la fragilité des monocristaux.

• Pour des températures comprises entre 200 et 450 K, ce sont les composés à base de tellurure de bismuth (Bi₂Te₃) qui sont les plus adaptés. Ces composés sont encore jusqu'à aujourd'hui, quelques soixante années après la découverte de leur potentiel pour la conversion thermoélectrique, les matériaux les plus utilisés dans les modules commerciaux pour des applications tournées essentiellement vers la réfrigération.

Il a été montré que la formation de solutions solides, avec l'ajout à Bi_2Te_3 d'un composé isomorphe comme le tellurure d'antimoine (Sb_2Te_3) ou le séléniure de bismuth (Bi_2Se_3), améliore le facteur *ZT* en réduisant la conductivité thermique sans affecter notablement la résistivité électrique.

Les compositions conduisant aux meilleures performances thermoélectriques sont voisines de $(Sb_{0,8}Bi_{0,2})_2Te_3$ et $Bi_2(Te_{0,8}Se_{0,2})_3$ pour des matériaux de type *p* et *n*, respectivement.

• Au-delà de 450 K, les alliages à base de Bi_2Te_3 ne sont plus stables chimiquement. Il faut alors se tourner vers les composés à base de PbTe qui sont les meilleurs candidats tout indiqués dans la gamme 450-800 K.

Les deux types de conduction p et n peuvent être obtenus avec des propriétés thermoélectriques voisines. Pour cette raison, que ces matériaux ont connu des développements industriels. Ils ont été employés dans des générateurs thermoélectriques dont la source chaude est un radio-isotope pour des applications spatiales aux USA et en ex-URSS durant la période 1961-1975. De nos jours ils continuent d'être utilisés dans des générateurs terrestres.

• À plus haute température, les matériaux les plus couramment utilisés sont les alliages Si_{1-x} Ge_x dopés au bore ou au phosphore. Ils peuvent opérer jusqu'à 1300 K sans dégradation notable. Les compositions les plus intéressantes sont celles qui sont riches en silicium (*x*= 0,1-0,3). Depuis 1976, ces matériaux ont définitivement remplacé la famille des PbTe dans les applications spatiales aux USA.

Nous pouvons constater que les matériaux conventionnels possèdent des valeurs expérimentales de *ZT* limitées au voisinage de l'unité, alors que ni la thermodynamique, ni la physique de l'état solide ne prévoient de limite. Bien qu'acceptable pour certaines applications spécialisées, cette valeur reste trop faible pour concurrencer économiquement les systèmes de refroidissement à compression ou de génération traditionnels [4].

I.4.2. Matériaux avancés et nouvelles orientations

De nos jours, comme cela c'est déjà passé jadis, la thermoélectricité vit une période d'effervescence, malgré ses limitations, elle connait actuellement des applications très diverses, avec l'ambition ultime de développer des matériaux présentant des ZT supérieurs à 1. Mais le passage à des marchés de plus grande ampleur nécessite encore des avancées, notamment en matière de performances des matériaux utilisés.

Les courbes des meilleures valeurs de ZT(T) actuellement obtenues dans des matériaux massifs sont reportées dans les *figures* 9, 10 pour les types p et n respectivement.

Figure9. Les plus grandes valeurs de ZT pour les matériaux thermoélectriques de type P[4,6].

Figure10. Les plus grandes valeurs de ZT pour les matériaux thermoélectriques de type N **[4,6]**.

Remarquons de suite, que le facteur de mérite des anciennes familles a pu être augmenté, mais surtout que la découverte de nouvelles familles a non seulement accru ZT, mais a étendu les domaines de température où la thermoélectricité peut être utilisée. La valeur maximale de ZT dans plusieurs familles dépasse 1,3 (soit 30 % d'amélioration en 10 ans environ).

La meilleure valeur atteinte dans un matériau massif est actuellement de 1,7. Les performances améliorées de ces nouveaux matériaux ont été obtenues :

- dans des structures cristallines complexes (clathrates, Yb₁₄MnSb₁₁, phases de Chevrel, oxydes à désaccord de paramètres (« misfits ») ;
- par la présence de cages vides dans la structure (skutterudites, clathrates, pentatellurures...);
- avec des défauts de stœchiométrie (skutterudites, Zn4Sb3, oxydes);
- par des substitutions atomiques élaborées (semi-Heusler) [6].

I.4.2.1. Phases lacunaires

I.4.2.1.1. Semi-Heusler

Les composés de Heusler ont pour formule X_2YZ , tel que (X : métal de transition ou métal noble ; Y : métal de transition métal noble ou métal de terre rare ; Z : un metalloïde sp ou un métal) [8].

Parmi ces composés, ceux avec 18 électrons de valence ont une structure de bande de type semi-conducteur et de forts coefficients Seebeck. La diminution de la conductivité thermique est alors obtenue par des substitutions complexes favorisant la diffusion des phonons par les fluctuations de masse [6].

Bien que la valeur du facteur de puissance soit prometteuse, la conductivité thermique des composés ternaires tel que ZrNiSn ou HfNiSn est plutôt élevée. La conductivité thermique totale varie de 5,9 à 17W/mK pour ZrNiSn. Cette disparité des valeurs est liée à la différence de qualité cristalline des échantillons produits qui peut par exemple, résulter des recuits **[8]**.

I.4.2.1.2. Zn₄Sb₃

Zn₄Sb₃ existe sous trois variétés :

- $-\alpha$ stable en dessous de $-10^{\circ}C$;
- $-\beta de 10^{\circ}C à + 492^{\circ}C;$
- $-\gamma$ de 492°C au point de fusion à 566°C.

La phase β a permis d'obtenir des matériaux avec de fortes valeurs de *ZT* en type p avec des maxima de 1,2 à 650 K environ dans β -Zn₄Sb₃ augmentant par substitution à *ZT* = 1,4 à plus basse température (\approx 525 K) dans **Zn**_{3,2}Cd_{0,8}Sb₃ . L'observation de lacunes et d'interstitiels sur le site de Zn et de deux types d'atomes Sb, entraînent un désordre important, qui contribue à la diminution de la conductivité thermique [6].

I.4.2.3. Solution solides complexes dérivées des matériaux conventionnels

I.4.2.3.1. Dérivés de Bi₂Te₃

A basse température, les propriétés thermoélectriques de CsBi₄Te₆ dopé par 0,05 % de SbI₃ équivalant à celles des anciennes compositions des alliages Bi_{2-x}Sb_xTe_{3-y}Se_y, avec un $ZT \approx 0,8$ à 225 K, susceptibles d'être utilisées pour la réfrigération. Dans le système (Bi_{0,25}Sb_{0,75})₂Te₃ dérivé de Bi₂Te₃, l'archétype des thermoélectriques utilisés dans des applications « niche » en réfrigération, la croissance de monocristaux fortement dopés a conduit à l'obtention de valeurs très supérieures à la valeur $ZT \approx 0,8$ à 0,9 anciennement obtenue autour de la température ambiante.

Les meilleures valeurs en type n concernent des cristaux de $(Bi_{0,25}Sb_{0,75})_2Te_3$ dopés fortement avec 0,07 % (en masse) I, 0,02 % Te et 0,03 % CuBr et un *ZT* de 1,1 à environ 300 K. Tandis que le dopage par 8 % en masse de Te conduit à un type p avec un *ZT* de 1,4 aux mêmes températures. En revanche, l'addition de quelques pourcent en masse de PbTe dans $Bi_{0,4}Sb_{1,6}Te_3$ ne conduisait pas à une amélioration de *ZT* à 300K[**6**].

I.4.2.3.2. Dérivés de TAGS

Les meilleures valeurs de ZT en type p ont été obtenues pour une composition complexe dérivant des TAGS (GeTe + AgSbTe₂), une valeur de $ZT \approx 2$ avec une erreur expérimentale d'environ 20 % a été trouvée dans GeTe + 20% AgSbTe₂[6].

I.4.2.3.3. Dérivés de PbTe et TAGS (Te-Ag-Ge-Sb)

La série de matériaux de structure cubique $AgPb_mSbTe_{2+m}$ dopée a donné naissance à des semi-conducteurs de type n avec de fortes valeurs de *ZT*, lorsque m = 10 (*ZT* = 1 à 700 K) ou m = 18 (*ZT* = 2,2 à 800 K).

Des valeurs plus faibles ont été observées dans les échantillons déficients en Ag et recuits : $Ag_{1-x}Pb_{18}SbTe_{20}$ (ZT = 1,1 à 670 K pour x = 0.4, ou ZT = 0,3 pour x = 0,3). Cependant, ces matériaux ne sont pas des matériaux massifs conventionnels, mais des composites [6].

I.4.2.4. Autres matériaux intermétalliques

Récemment plusieurs composés à base d'antimoine ont présenté de bonnes caractéristiques thermoélectriques, ces caractéristiques semblent dues à la propriété de Sb de diffuser les phonons, de manière plus efficace qu'un ion plus léger de même configuration électronique. De plus, les matériaux constitués de métalloïdes et d'éléments légèrement plus électropositifs semblent avoir de grands *ZT* [6].

I.4.2.4.1. Yb₁₄MnSb₁₁

La structure Tétragonal d'Yb₁₄MnSb₁₁ est complexe, la flexibilité pour accommoder divers éléments ont conduit à l'obtention d'un *ZT* supérieur à 1 dans ce matériau de type p. La caractéristique essentielle est d'obtenir le maximum de *ZT* à plus hautes températures que les skutterudites et avec un *ZT* fortement accru, par rapport aux matériaux à base de Si-Ge ou aux meilleures valeurs actuelles, dans les phases de Chevrel.

I.4.2.4.2. $Mo_3Sb_{7-X}Te_x$ (x = 1,5 et 1,6)

La structure Ir₃Ge₇ des composés Nb₃Te_{7-x}Sb_x et Mo₃Sb_{7-x}Te_x (x = 1,5 et 1,6), forme des chaînes infinies dans les trois directions. Avec un *ZT* de 0,8 dans Mo₃Sb_{5,4}Te_{1,6} à 1050 K , et dans Mo_{3-y-z} Ru_yFe_zSb₇ à 1000 K pour (y;z) = (0.16;0.5) et (0.1;0.7) ces matériaux sont supérieurs aux meilleurs matériaux de type p à base de Si-Ge.

I.4.2.4.3. Mg₂Si_{1-x}Sn_x

Dans les années 1960, l'Institut Ioffe démontrait que les composés Mg₂X (X = Si, Ge, Sn) sont semi-conducteurs avec des propriétés de la structure de bandes devant favoriser des propriétés thermoélectriques. Divers types de substitution (Si, Ge, Sn, Al, Ca, Sb...) ont été testés, le meilleur résultat étant obtenu, lorsque la différence de masse est la plus forte et contribue à diminuer la conductivité thermique, c'est-à-dire avec Si-Sn. La meilleure valeur de *ZT* (\approx 1,1 à 800 K) était obtenue en 2006 dans le même Institut.

I.4.2.5. Oxydes

L'avantage principal attendu des oxydes réside dans leur stabilité chimique en atmosphère oxydante. Si de nombreux oxydes possèdent de grands coefficients Seebeck ($S > 100 \ \mu V/K$), de faibles conductivités thermiques [$\approx 1 \ W/(K \cdot m)$] leurs performances sont actuellement limitées par des résistivités électriques, beaucoup plus fortes, que dans les matériaux TE précédemment décrits [6].

I.4.2.5.1. Cobaltites

Parmi les oxydes de type p les plus prometteurs, les cobaltites à base de couches conductrices de CoO_2 ont été le point de départ de l'intérêt pour les oxydes en thermoélectricité avec Na_xCoO_2 : Un oxyde métallique avec un fort coefficient Seebeck.

I.4.2.5.2. Oxydes à misfit

Parmi ces cobaltites, le composé en couches $Ca_3Co_4O_9$ appartient en fait à la famille des oxydes lamellaires à structure désaccordée de formule générale : [(AO)n]RS[CoO2]b1/b2 avec des valeurs possibles n = 2, 3 et 4. Mais les valeurs de *ZT* restent relativement faibles, principalement à cause de la trop forte résistivité électrique.

La plus forte valeur de *ZT* dans un oxyde a été obtenue sur un monocristal de Na_xCoO_2 (valeur estimée $\approx 1,2$ à 800 K) de petite taille.

I.4.2.5.3. Autres oxydes

D'autres familles d'oxydes ont également été étudiées pérovskites type $ACoO_3$, manganites $AMnO_3$, delafossite $CuFeO_2$, YBCO (YBa₂Cu₃O_{6+y}), ZnO, ruthénates ARuO₃ et A₂RuO₄, In₂O₃, etc. Les meilleures valeurs de *ZT* atteignent 0,4 en type p et 0,3 en type n dans les oxydes conventionnels et 0,6 dans les misfits.

I.4.2.6. Verres semi-conducteurs

Un certain nombre des caractéristiques favorisant une faible conductivité thermique, et de bonnes propriétés thermoélectriques, telles que structure complexe, inclusions, impuretés, fluctuations de masse, désordre..., se retrouve dans les verres.

Ceux-ci sont généralement des isolants, sauf les verres métalliques, lesquels ont cependant des coefficients Seebeck faibles comme dans les métaux.

De nombreux verres semi-conducteurs avec un petit gap pouvant favoriser des coefficients Seebeck forts, existent notamment dans les pnictures et chalcogénures. Leur étude préliminaire a mis en exergue des résultats encourageants, même si les valeurs de résistivité restent souvent trop fortes [6].

I.4.2.7. Nanomatériaux thermoélectriques

Les propriétés de transport dans les nanostructures et les macrostructures diffèrent notablement. La conductivité thermique des nanostructures, telles que les super-réseaux (matériau alternant périodiquement des couches nanométriques de divers éléments ou substances) reste plus faible au regard des les matériaux massifs.

Ceci constitue un aspect potentiellement positif pour la thermoélectricité. Cependant, ces nanostructures, généralement obtenues par des techniques de dépôts de films minces (épitaxie par jet moléculaire, cellules de Knudsen, laser pulsé, CVD...) demeurent trop coûteuses pour la production de matériaux pour des applications de grande taille ; de plus, leurs faibles épaisseurs sont peu compatibles avec l'établissement de gradients de température importants. Elles sont, en revanche, adaptées au refroidissement en micro-électronique. Les propriétés de transport électronique sont aussi modifiées par les effets de dimensionnalité sur la structure de bandes.

En résumé, alors que dans un matériau tridimensionnel, S, σ et λ étant reliés, il est difficile d'ajuster les trois quantités, dans les cas de plus basse dimensionnalité, de nouvelles possibilités existent de les ajuster indépendamment.

De plus, les nouvelles interfaces créées peuvent augmenter la diffusion des phonons plus que celle des porteurs de charges, contribuant ainsi, à l'accroissement de ZT [6].

La microélectronique a tout de suite profité de cette relance avec la construction de micro réfrigérateur intégré pour des besoins de refroidissement très localisé dans les microcircuits.

I.5. Applications thermoélectriques

Les progrès des matériaux permettent maintenant d'envisager des dispositifs dans divers domaines de températures, d'où de nombreux groupes industriels et laboratoires s'attèlent à travailler sur la réalisation d'appareils défiant le conventionnel et menant vers l'avancée technologique.

I.5.1. La génération thermoélectrique

Depuis la première lampe russe à kérosène 1960 alimentant une radio, les applications bien qu'encore limitées se sont développées.

Dans ce domaine, les marchés existants sont à base de Bi_2Te_3 autour de la température ambiante.

I.5.1.1. La thermoélectricité au profit de l'espace

La génération thermoélectrique a découvert ses premières applications dans l'espace. Les générateurs RTG 'Radio-isotope Thermoelectric Generators' utilisaient comme source de chaleur la désintégration nucléaire des radio-isotopes (PuO₂ généralement) pour alimenter un nombre d'instruments électriques des sondes spatiales **[3]**.

Les avantages de ces systèmes sont multiples : Non soumis aux vents de particules stellaires ou à la disparition de la lumière dans les voyages lointains comme les panneaux PV, leur fiabilité est incomparable (certains fonctionnent depuis plus de 25 ans) [6].

I.5.1.2. L'électricité à partir de la chaleur rejetée

De nombreux secteurs d'activités industrielles ou même domestiques produisent une quantité importante d'énergie perdue sous forme de chaleur. L'effet Seebeck, par le biais des générateurs thermoélectriques, permet d'exploiter la chaleur émise, pour la transformer en énergie électrique, notamment la récupération de l'énergie thermique perdue dans les automobiles [3].

Environ deux tiers de l'énergie produite lors de la combustion du carburant est rejetée sous forme de chaleur au niveau des pots d'échappement du moteur et d'autres points chauds du véhicule, dont seulement un tiers est utilisé pour l'automation.

De nombreux laboratoires industriels et académiques (États-Unis « Workshop : DOE/EPRI 2004 High efficiency Thermoelectrics », Japon) travaillent sur le problème de la récupération d'électricité depuis la chaleur des pots d'échappement des voitures et camions [6].

Les générateurs thermoélectriques, même avec leur efficacité encore insuffisante, pourront récupérer l'énergie thermique rejetée et fournir une puissance électrique pour recharger la batterie par exemple, et cela soulagera l'alternateur, voire entraînera sa suppression.

Le projet du constructeur allemand BMW, inscrit dans le programme 'EfficientDynamics' et lancé en 2005, vise à doter la ligne d'échappement d'un générateur ou d'un ensemble des générateurs thermoélectriques capable de générer suffisamment d'électricité à 125 km/h pour entraîner le véhicule sans recourir à l'alternateur, comme montré dans la *figure 11* [3].

Les profils de température des pots d'échappement montrent que les matériaux fonctionnant entre 200 et 500°C sont les plus utiles, car devant se placer surtout après les pots catalytiques. Les données actuelles indiquent que près de 300 W et 1 kW peuvent être récupéré sur une voiture ou un camion respectivement, limitant d'autant l'usage de l'alternateur, donc contribuant aux économies d'énergie et à une moindre émission de CO2 [6].

L'intégration des réfrigérateurs thermoélectriques pour la climatisation est aussi envisagée et un gain total de 10 % de carburant est attendu **[3]**.

De façon équivalente, la production d'électricité à partir de la chaleur des moteurs de bateaux est aussi étudiée (par exemple Académie Maritime du Maine, États-Unis).

Figure 11. Conception d'un générateur thermoélectrique produisant de l'électricité de la chaleur perdue au niveau du pot d'échappement d'un véhicule (source BMW) **[3]**.

I.5.1.3. L'électricité à partir de la chaleur humaine

L'une des applications innovante utilisant des générateurs thermoélectriques est celle des montres de marque Seiko Thermic15, présenté dans la *figure 12*. Cette montre est constituée de 10 modules thermoélectriques, en tellurure de bismuth Bi_2Te_3 ,qui génère une puissance électrique de 22 μ W à partir du gradient thermique entre l'air ambiant et le corps humain pour entretenir le mouvement mécanique de la montre, tel que le gradient thermique est de 1.5 K dans les modules, la tension du circuit ouvert est de 300 mV et l'efficacité de conversion de 1%.

Le schéma illustrant la montre et son générateur est montré dans la figure 4d [3].

Figure 12. Montre Thermique Seiko : (a) le produit ; (b) coupe transversale; (c) modules thermoélectriques ; (d) schéma d'un module thermoélectrique. (Source Seiko) [3].

Une autre montre thermoélectrique de marque Citizen est aussi commercialisée depuis 2001, tel que le générateur fournit une puissance électrique de 13.8 μ W pour une tension de 515 mV.

↓ Un système de communication sans fil a été développé par Douski *et* al, étant constitué d'un dispositif énergiquement autonome, grâce à une puissance électrique de sortie de 1.6 mW fournie par un module thermoélectrique à travers un gradient thermique entre l'environnement ambiant et le corps humain [3].

↓ Des développements sont à l'étude pour des capteurs autoalimentés, pour des thermopiles sur film polymère également pour montres, implants, pacemakers [6].

I.5.1.4. La thermoélectricité au profit de l'électronique

La génération dans la gamme de Watt trouve ses applications dans le secteur de l'électronique portable (micro-ordinateur, téléphonie...), mais aussi pour l'alimentation de systèmes mécaniques miniaturisés (petits robots, robots d'exploration, avions...) [6].

I.5.1.5. Autres profits

- L'échauffement accidentel lors du stockage de produits chimiques, nucléaires pourrait aussi déclencher un courant dans une alarme.

- La thermoélectricité sert aussi pour actualiser des alliages à mémoire de forme [6].

I.5.2. La réfrigération thermoélectrique

Le matériau thermoélectrique le plus utilisé actuellement en réfrigération à basses températures est à base de bismuth et de tellure Bi_2Te_3 , de meilleures performances sont obtenues lorsqu'il est combiné à Sb_2Te_3 qui possède la même structure cristalline HC **[9]**.

I.5.2.1. Au profit de l'électronique

Le domaine de l'électronique exploite l'effet Peltier pour refroidir par exemple les transistors de puissance ou les détecteurs optoélectroniques, ou dans le domaine de l'instrumentation pour ajuster la température des cellules détectrices infrarouge ou des lasers de télécommunication.

Les modules thermoélectriques ont des performances intéressantes, telle que la capacité de refroidissement allant jusqu'à 30 W/cm² et dont la stabilité en température est meilleure que 0,01°C [6].

I.5.2.2. Au profit de la médecine

Ils sont également utilisés dans les dispositifs portatifs, pour entretenir le refroidissement des enceintes servant au transport du plasma sanguin, ou pour des platines de microscopes, des glacières commerciales...etc. [3].

Une application intéressante concerne le couplage avec le photovoltaïque PV pour des valises médicales (coopération Université de Guangzhou, Chine, et LOCIE en France, sociétés Mecon en Inde, FridgeFreeze aux États-Unis...). Le courant est produit par PV et le froid par TE, ce qui est primordial pour conserver des vaccins dans des pays sans réseau étendu de distribution d'électricité [6].

I.5.2.3. Autres profits

4 Des unités de forte puissance ont été testées pour le refroidissement des gaz radioactifs à la centrale nucléaire en Russie 20 kW.

4 Dans le domaine du contrôle de températures, la société américaine Amerigon a développé un siège de voitures à température contrôlée à partir de TE (moins coûteux que de thermaliser l'ensemble).

↓ Dans le domaine militaire, la climatisation des soldats blessés fait aussi appel à la thermoélectricité ainsi que le refroidissement des viseurs IR.

La plupart de ces applications restent des niches. La thermoélectricité trouvera sa place dans la climatisation des bâtiments en fonction de l'amélioration des performances des matériaux, et des transferts thermiques. Des prototypes de fenêtres thermiques sont aussi étudiés [6].

La liste des applications est appelée à s'allonger avec les performances des matériaux, mais aussi avec l'urgence de la demande en sources d'énergie durant le XXIe siècle. L'amélioration récente des performances des matériaux a déjà permis d'atteindre une efficacité de 15 % dans le domaine spatial (Jet Propulsion Lab., aux États-Unis). Le renouveau des études sur la thermoélectricité et notamment sur les aspects nano-structuraux, devrait permettre de générer de telles efficacités, à des coûts raisonnables **[6]**.

On imagine bien que tout ceci à un coût qui peut se justifier pour des applications spatiales par la fiabilité des systèmes thermoélectriques, mais qui sera peu compatible avec des applications 'grand public'.

I.6. Optimisation des matériaux thermoélectriques

Selon l'expression du facteur de mérite, l'optimisation des propriétés de transport d'un matériau est difficile, car il est difficile de trouver pour un matériau donné, simultanément, une bonne conductivité électrique caractéristique d'un métal et une mauvaise conductivité thermique caractéristique des isolants **[6]**. Comme proposé par Slack, un bon matériau thermoélectrique aura la conductivité thermique d'un verre et la conductivité électrique d'un bon conducteur, mais malheureusement, le pouvoir thermoélectrique et la conductivité électrique varient de manière opposée avec la concentration en porteurs de charge.

Donc l'optimisation des matériaux nécessitera la recherche pour diminuer la conductivité thermique, qui tend à s'opposer à l'établissement d'un gradient thermique, sans dégrader la conductivité électrique [6].

La *figure13* présente l'évolution du pouvoir thermoélectrique, de la conductivité électrique et du facteur de puissance en fonction du logarithme de la concentration de porteurs de charge du système. Les meilleurs pouvoirs thermoélectriques seront obtenus avec des matériaux à faible concentration en porteurs, alors que les meilleures conductivités électriques le seront dans des matériaux de forte concentration de porteurs, et donc on réalise que les meilleurs matériaux thermoélectriques appartiendront donc à la classe des semi-conducteurs [9].

Figure13. Influence de la concentration de porteurs de charges sur le pouvoir thermoélectrique, la conductivité électrique et le facteur de puissance [6].

La plupart des semi-conducteurs sont des éléments de numéro atomique élevé. Pour un semi-conducteur, il est important de choisir un élément de numéro atomique supérieur et donc de masse atomique supérieure, afin d'obtenir une conductivité thermique aussi faible que possible. Cela conduit sans doute à choisir un élément lourd tel que: Plomb, Bismuth, Antimoine, Tellure et Sélénium [9].

Il est nécessaire de mentionner que la bande d'énergie est le facteur le plus important dans la conception de nouveaux matériaux semi-conducteurs utilisés pour la conversion de l'énergie thermoélectrique, car la largeur de la bande interdite d'énergie est cruciale pour les matériaux thermoélectriques **[9]**.

Un matériau avec une bande d'énergie étroite est indésirable, car ceci implique que le matériel deviendra dégénérer ou intrinsèque à une température relativement basse.

Une large bande d'énergie d'environ 0,6 eV est suffisante pour la conversion d'énergie thermoélectrique **[9]**.

I.7. Caractérisation des propriétés structural, électrique et thermique du Pb, Zn, Sn

Le plomb est un élément chimique , malléable, de la famille des cristallogènes, du Groupe 14, Période 6, Bloc p . C'est un métal gris bleuâtre, blanchissant lentement en s'oxydant, et est toxique et mutagène. Ses différentes propriétés son illustrées dans le *tableau III* et la *figure 14* présenté ci-dessous.

Structure cristalline	Masse atomique	Masse volumique [g∙cm ⁻³]	Résistivité électrique [Ω.m]	Conductivité thermique [W·m ⁻¹ ·K ¹]	Configuration électronique	Température de fusion
CFC	207,2 ± 0,1	11,35 (20 °C)	21. 10 ⁻⁸	35,3	$[Xe]4f^{14} 5d^{10} 6s^2 6p^2$	327,462 °C

Tableau III. Propriétés physiques du plomb [7,11].

Figure14. Structure électronique du Plomb.

Le zinc est un élément chimique de la série chimique des métaux de transition, Groupe 12, Période 4, Bloc d. Ses différentes propriétés son illustrées dans le tableau et la figure ci-dessous.

Structure cristalline	Masse atomique	Masse volumique [g∙cm ⁻³]	Résistivité électrique [Ω.m]	Conductivité thermique [W·m ⁻¹ ·K ¹]	Configuration électronique	Température de fusion
НС	65,409 ± 0,004	7,134 (25 °C)	6×10 ⁻⁸	116	$[Ar] 3d^{10} 4s^2$	419,53 °C

Tableau IV. Propriétés physiques du zinc [7,11].

Figure15. Structure électronique du zinc.

L'étain est un élément chimique du Groupe 14, Période 5, Bloc p, de série chimique des métaux pauvres, malléable, moyennement ductile à température ambiante, de la famille des cristallogènes. Ses différentes propriétés son illustrées dans le tableau et la figure ci-dessous.

Structure cristalline	Masse atomique	Masse volumique [g∙cm ⁻³]	Résistivité électrique [Ω.m]	Conductivité thermique [W·m ⁻¹ ·K ¹]	Configuration électronique	Températur e de fusion
Tétragonal	118,710	7,29(blanc)	18×10 ⁻⁸	66,6	[Kr] $4d^{10} 5s^2$ $5p^2$	231,93 °C
Structure diamant	118,710	5,77(gris)	18×10 ⁻⁸	66,6	[Kr] $4d^{10} 5s^2$ $5p^2$	231,93 °C

Tableau V. propriétés physiques de l'étain [7,11].

Figure 16. Structure électronique de l'étain.

Dans le chapitre qui suivra, dont l'objectif est d'arriver à étudier les propriétés thermoélectriques du Pb-Sn et Sn-Zn (eutectique), en s'attachant à obtenir des matériaux de bonne qualité et à comprendre les mécanismes de transport qui régissent la performance thermoélectrique de ces matériaux.

Ce chapitre est consacré à l'énumération détaillée des différentes étapes de l'étude ainsi que la présentation du dispositif expérimental exploité, réalisées au sein du laboratoire de génie métallurgie ainsi qu'aux deux laboratoires : couches minces et solutions solides (faculté de physique) à l'USTHB.

L'étude de chaque alliage a suivi les étapes suivantes tout en commençant par leur élaboration en se référant à la méthode classique ; suivie d'analyse métallographique dans le but d'évaluer la distribution de l'eutectique des différentes plages de la plaquette obtenue (lingot) et la détermination des distances inter-lamellaires, accompagnées de mesures de la résistivité électrique de chaque échantillon.

Apres avoir obtenu les résultats adéquats, nous avons entamé une série de traitements de déformation à froid dans le but de voir l'évolution des résultats obtenus et éventuellement, réduire le maximum de facteurs influençant, engendrés par l'étape d'élaboration ; cela à travers une analyse métallographique suivie des mesures de la résistivité électrique de tous les échantillons.

En sachant que la déformation à froid n'est pas un remède pour tous les inconvénients de l'état brut ; on a décidé de poursuivre nos traitements à travers un recuit d'homogénéisation, cela dans le but d'évacuer tous les facteurs influençant, non corrigés par le traitement de déformation à froid. Tout en gardant un œil sur l'évolution tant sur la microstructure que sur la résistivité électrique.

II.1. Elaboration des alliages eutectiques Pb-Sn et Sn-Zn par la méthode classique

D'après les diagrammes d'équilibre du Pb-Sn et Sn-Zn représentés ci-dessous dans la figure 17, on calcule les masses correspondantes à chaque point d'eutectique dans le volume de la lingotière dont nous disposons.

Figure17. Les diagrammes d'équilibres binaires du Pb-Sn; Sn-Zn respectivement [**12**, **13**].

II.1.1. Calcul du volume de la lingotière

En étant équipé d'un pied à coulisse, menant à la précision et en doublant la prise de mesure, les résultats obtenus pour les mesures de la lingotière illustrée sur la *figure* 18, sont représentés ci après.

Figure18. La lingotière.

- Longueur : 5,835 cm ; 5,880 cm
- Profondeur : 8.550 cm ; 8,525 cm
- Epaisseur : 0.280 cm ; 0,270 cm

Donc le volume est exprimé comme suit : $V_{\text{lingotière}} = 13.968 \text{ cm}^3$; 13,872cm³

Ça nous a induit à un volume moyen : $V_{\text{lingotière moy}} = (V_{\text{lingotière}} + V'_{\text{lingotière}})/2$

Donc: $V_{\text{lingotière moy}} = 13.920 \text{ cm}^3$.

Le calcul des masses s'est fait suivant deux méthodes, présentées ci dessous:

II.1.2. Calcul des masses eutectiques

Se fait pour les deux semi-conducteurs Pb-Sn et Sn-Zn respectivement.

II.1.2.1. Alliage eutectique Pb-Sn

Pour se rapprocher des résultats théoriques, on a opté pour l'utilisation de deux méthodes déférentes énoncées comme suit :

II.1.2.1.1. Méthode 1

En se référant au diagramme d'équilibre établi en fraction molaire, la composition de l'alliage eutectique se définit comme suit:

15 mm \rightarrow 0.1 mole 113 mm \rightarrow n_{Sn} Donc $n_{Sn} = (113, 0, 1)/15 \rightarrow n_{Sn} = 0.753$ mole.

On peut déterminer le nombre de moles du plomb contenu dans la composition eutectique

1 mole d'alliage eutectique = $\mathbf{n}_{Pb} + \mathbf{n}_{Sn}$

Donc $n_{Pb} = 1 - n_{Sn} \rightarrow n_{Pb} = 1 - 0.753 \rightarrow n_{Pb} = 0.247$ mole.

On a

 $\rho_{\rm Sn} = 7.290 \text{ g.cm}^{-3}$ $M_{\rm Sn} = 118.710 \text{ g.mol}^{-1}$

 $\rho_{Pb} = 11.330 \text{ g.cm}^{-3}$ $M_{Pb} = 207.200 \text{ g.mol}^{-1}$

- Calcul de la masse appropriée au nombre de moles déduit du diagramme d'équilibre Pb-Sn
 - Le plomb

$$m_{Pb} = n_{pb} * M_{Pb} \rightarrow m_{Pb} = 0.247 * 207.200 \rightarrow m_{pb} = 51.178 \text{ g.}$$

L'étain Sn

 $m_{Sn} = n_{Sn} * M_{Sn} \rightarrow m_{Sn} = 0.753 * 118.710 \rightarrow m_{Sn} = 89.388 \text{ g.}$

• Calcul du volume occupé par ces masses

• Le plomb

$$\rho_{PB} = m_{Pb} / V_{Pb} \rightarrow V_{Pb} = m_{Pb} / \rho_{Pb} \rightarrow V_{Pb} = 51.178 / 11.330$$
$$\rightarrow V_{Pb} = 4.517 \text{ cm}^3.$$

L'étain

 $\rho_{Sn} = m_{Sn} / V_{Sn} \rightarrow V_{Sn} = m_{Sn} / \rho_{Sn} \rightarrow V_{Sn} = 89.388/7.290$ $\rightarrow V_{Sn} = 12.261 \text{ cm}^3.$

• Calcul du volume total occupé par une mole d'eutectique

 $V_{tot} = V_{Pb} + V_{Sn} \rightarrow V_{tot} = 4.517 + 12.261 \rightarrow V_{tot} = 16.778 \text{ cm}^3.$

• Calcul du volume excédentaire

$$V_{\text{excédentaire}} = V_{\text{tot}} - V_{\text{lingotière}} \rightarrow V_{\text{excédentaire}} = 16.778 - 13.920$$
$$\rightarrow V_{\text{excédentaire}} = 2.858 \text{ cm}^3$$
- Calcul des masses des éléments composant l'eutectique occupant ce volume excédentaire
 - Le plomb

On a $51.178 \text{ g} \rightarrow 16.778 \text{ cm}^{3}$ $M_{Pb excédentaire} \rightarrow 2.858 \text{ cm}^{3}$ Donc $m_{Pb excédentaire} = (2.858 * 51.178)/16.778$ $\rightarrow m_{Pb excédentaire} = 8.717 \text{ g.}$ • L'étain On a $89.388 \text{ g} \rightarrow 16.778 \text{ cm}^{3}$ $m_{Sn excédentaire} \rightarrow 2.858 \text{ cm}^{3}$ Donc $m_{Sn excédentaire} = (2.858 * 89.388)/16.778$

 \rightarrow m_{Sn excédentaire} = 15.226 g.

- Calcul des masses des éléments formant l'eutectique occupant le volume de la lingotière
 - Le plomb

$$M_{Pb utilisée} = m_{Pb} - m_{Pb excédentaire} \rightarrow m_{pb utilisée} = 51.178 - 8.717$$

 $\rightarrow m_{Pn utilisée} = 42.461 \text{ g.}$

L'étain

 $M_{Sn utilisée} = m_{Sn} - m_{Sn excédentaire} \rightarrow m_{Sn utilisée} = 89.388 - 15.226$

 \rightarrow m_{Sn utilisée} = 74.162 g.

II.1.2.1.2. Méthode 2

D'après le diagramme d'équilibre, dans 100%, les masses correspondant à l'eutectique sont :

$$M_{sn}$$
=61, 9%
 M_{pb} =100-61,9=38,1%
 $\rho = \frac{m}{v}$ → $v = \frac{m}{\rho}$

```
Et donc : V_{sn}=8,491cm^{3}
V_{pb}=3,356cm^{3}
V_{tot}=V_{pb}+V_{sn}=11,847cm^{3}
```

En sachant que la concentration de l'eutectique reste inchangée en variant la masse suivant le volume de la lingotière, on a donc :

$$\frac{Meut}{M.Vtot} = \frac{m}{M.Vling} \rightarrow m = 117,092g$$

On pose α : le coefficient de changement du volume ou de la masse :

$$\alpha = \frac{\text{Vling}}{\text{Vtot}} = \frac{\text{m}}{\text{meut}} = 1,175$$
$$M_{\text{pb utilisée}} = \alpha .M_{\text{pb}} = 44,748 \text{ g}$$
$$M_{\text{sn utilisée}} = \alpha .M_{\text{sn}} = 72,701 \text{ g}$$

II.1.2.2. alliage eutectique Sn-Zn

I.1.2.2.1. Méthode 1

En se basant sur le diagramme d'équilibre établi en fraction molaire, la composition de l'alliage eutectique se définit comme suit

14 mm → 0.1 mole 19 mm → n_{Zn} $n_{Zn} = (19 * 0.1)/14$ → $n_{Zn} = 0.135$ mole.

On peut déterminer le nombre de moles de l'étain contenu dans la composition eutectique :

1 mole d'alliage eutectique = $n_{Zn} + n_{Sn}$

Donc $n_{Sn} = 1 - n_{Zn} \rightarrow n_{Sn} = 1 - 0.135 \rightarrow n_{Sn} = 0.865$ mole.

On a

Donc :

 $\rho_{Zn} = 7.157 \text{ g.cm}^{-3}$ $M_{Zn} = 65.389 \text{ g.mol}^{-1}$

 $\rho_{Sn} = 7.290 \ g.cm^{-3} \qquad \qquad M_{Sn} = 118.710 \ g.mol^{-1}$

- Calcul de la masse appropriée au nombre de mole déduit du diagramme d'équilibre
 - Le Zinc

 $m_{Zn} = n_{Zn} * M_{Zn} \rightarrow m_{Zn} = 0.137 * 65.389 \rightarrow m_{Zn} = 8.958 \text{ g.}$

L'étain

 $M_{Sn} = n_{Sn} * M_{Sn} \rightarrow m_{Sn} = 0.865 * 118.710 \rightarrow m_{Sn} = 102.684 \text{ g.}$

- Calcul du volume occupé par ces masses
 - Le Zinc

$$\rho_{Zn} = m_{Zn} / V_{Zn} \rightarrow V_{Zn} = m_{Zn} / \rho_{Zn} \rightarrow V_{Zn} = 8.958 / 7.157$$
$$\rightarrow V_{Zn} = 1.2516 \text{ cm}^3.$$

• L'étain Sn

$$\begin{split} \rho_{Sn} &= m_{Sn} / V_{Sn} \rightarrow V_{Sn} &= m_{Sn} / \rho_{Sn} \rightarrow V_{Sn} &= 102.684 / 7.290 \\ & \rightarrow V_{Sn} = 14.085 \ \text{cm}^3. \end{split}$$

• Calcul du volume total occupé par une mole d'eutectique

$$V_{tot} = V_{Zn} + V_{Sn} \rightarrow V_{tot} = 1.2516 + 14.085 \rightarrow V_{tot} = 15.336 \text{ cm}^3.$$

• Calcul du volume excédentaire

$$V_{\text{excédentaire}} = V_{\text{tot}} - V_{\text{lingotière}} \rightarrow V_{\text{excédentaire}} = 15.336 - 13.920$$
$$\rightarrow V_{\text{excédentaire}} = 1.406 \text{ cm}^3.$$

• Calcul des masses des éléments composant l'eutectique occupant ce volume excédentaire

•	Le Zinc	
On a	8.958 g	\rightarrow 15.336 cm ³
	m _{Zn excédentaire}	\rightarrow 1.406 cm ³
Donc	m _{Zn excédentaire}	= (1.406 * 8.958)/15.336
	\rightarrow m _{Zn excé}	edentaire = 0.821 g.
•	L'étain	
On	102.684 g	\rightarrow 15.336 cm ³
	m _{Sn excédentaire}	\rightarrow 1.406 cm ³
Donc	m _{Sn excédentaire}	= (1.406 * 102.684)/15.336
	\rightarrow m _{Sn excéd}	_{lentaire} = 9.414 g.

- Calcul des masses des éléments formant l'eutectique occupant le volume de la lingotière
 - Le Zinc

II.1.2.2.2. Méthode 2

-

D'après le diagramme d'équilibre massique, dans 100%, les masses correspondant à l'eutectique sont :

$$M_{zn}=8\%$$
 ; $M_{pb}=100-7,92=92,08\%$
 $\rho = \frac{m}{v} \rightarrow v = \frac{m}{\rho}$
 $V_{zn}=1,110 \text{ cm}^3$

Donc

$$V_{sn}=12,631cm^{3}$$

 $V_{tot}=V_{zn}+V_{sn}=13,741cm^{3}$

En sachant que la concentration de l'eutectique reste inchangée en variant la masse suivant le volume de la lingotière, on a donc :

$$\frac{\text{Meut}}{\text{M.Vtot}} = \frac{\text{m}}{\text{M.Vling}} \rightarrow \text{m} = 100,953 \text{ g}$$

On pose α : le coefficient de changement du volume ou de la masse :

 $\alpha = \frac{\text{Vling}}{\text{Vtot}} = \frac{\text{m}}{\text{meut}} = 1,013$ $M_{\text{zn utilisée}} = \alpha .M_{\text{zn}} = 8,022 \text{ g}$ $M_{\text{sn utilisée}} = \alpha .M_{\text{sn}} = 93,277 \text{ g}$

II.1.2.3. Calcul des masses utilisées pour former les deux alliages

Pour plus de précision, on calcule les masses moyennes suivant la somme des résultats des masses de chaque méthode que l'on divise par 2, le résultat est tel que :

•	Pb-Sn : $m_{Pn \text{ utilisée moy}} = 43.605 \text{ g} ; m_{Sn \text{ utilisée moy}} = 73.432 \text{ g}$	
Car	$m_{Pn \ utilis\acute{e}} = 42.461 \ g$; 44,612g	
	$m_{Sn \text{ utilisée}} = 74.162 \text{ g}$; 72,478g	
• Sn-Zn : $m_{\text{Sn utilisée moy}} = 93.274 \text{ g} ; m_{\text{Zn utilisée moy}} = 8.080 \text{ g}$		
Car	$m_{Zn \text{ utilisée}} = 8.137 \text{ g}$; 8,022g	
	$m_{Sn utilisée} = 93.270 \text{ g}$; 93,277g	

II.1.3. Elaboration des deux alliages

Avant de passer à l'élaboration des deux échantillons, on effectue la pesée à l'aide d'une balance électronique de précision de l'ordre du centième, comme montré dans la figure 19.

Figure19. Balance électronique.

L'élaboration s'est faite en disposant de :

Un four à creuset en graphite illustré dans la figure 20, dans lequel les masses précédemment calculées et pesées ont été mises, suivies d'un flux de couverture (matière réfractaire non fusible) servant à isoler l'alliage à l'état liquide de l'air contenu dans le four, et plus précisément pour empêcher l'évaporation du Zn qui a la propriété de s'évaporer dès sa fusion. Puis la température d'élaboration est portée légèrement supérieure à celle de fusion de l'élément caractérisé par la plus faible température de fusion constituant l'alliage binaire, dans notre cas, les températures de travail sont similaires et égales à 250°C.

Figure 20. Four à creuset.

• Un thermocouple pour vérifier la température du four illustré dans la figure 21.

Figure 21. thermocouple.

• Une lingotière préchauffé à une température légèrement inférieure à l'eutectique (Pb-Sn 180°C ; Sn-Zn 203°C) dans notre cas, pour éviter le choc thermique lors de la coulée de chaque alliage.

Le temps de la fonte des éléments n'a pas dépassé les 30 minutes et le refroidissement à l'air libre dans la lingotière, n'excéda pas les 50 minutes.

II.2. Etude métallographique

II.2.1. L'échantillonnage

Après refroidissement des deux alliages, ils sont découpés à l'aide d'une scie à métaux suivant la *figure 22*.

II.2.2. L'enrobage

L'enrobage s'est fait à froid pour éviter tout traitement thermique des alliages élaborés, vu que les températures de l'eutectique sont basses (180°C Pb-Sn ; 203°C Sn-Zn).

II.2.3. Le polissage

Au moyen d'une polisseuse et munie de papier abrasif allant de 400 à 1200, achevé par l'alumine $(0,3 \ \mu m)$ en suspension en vue d'obtenir le meilleur état de surface possible. Le dispositif est illustré dans la *figure 23*.

Figure 23. Polisseuse mono-plateau.

II.2.4. L'attaque chimique

Le but de l'attaque chimique est de créer un contraste révélant la microstructure du matériau.

• Pour l'alliage Pb-Sn

100 ml d'eau distillé + 25 ml d'acide nitrique + 16 ml d'acide acétique, pendant 15s **[14]**.

• Pour l'alliage Sn-Zn

L'attaque chimique s'est faite par le biais du Nital à 5% c.-à-d. :

5ml d'acide nitrique + 95 ml d'éthanol.

II.2.5. L'observation au microscope optique

Après l'attaque, les échantillons sont passés au microscope optique de marque 'OLYMPUS' assisté par ordinateur, muni d'un appareil de capture d'images (*figure 24*) pour la visualisation des différentes phases, puis traités au moyen d'un logiciel de traitement d'images 'Image J' pour avoir le pourcentage des phases de chaque échantillon.

Figure 24. Microscope optique.

II.3. Microdureté

Après avoir préparé les échantillons et pour renforcer les informations et la caractérisation de ces derniers obtenus par la microscopie optique, on a fait intervenir la microdureté, et cela à travers un microduromètre Vickers de marque *'SHUMATZUHMV-M3'* montré dans la *figure 25*.

L'empreinte est réalisée à l'aide du pénétrateur pyramidale en diamant, sous une charge de 50g pour le Pb-Sn et 100g pour le Sn-Zn pendant 15s. Nous mesurons les deux diagonales de l'empreinte, et en déduisant la moyenne, d, qui nous permet de lire directement la valeur HV sur les catalogues de l'appareillage.

Figure 25. Microduromètre.

II.4. Laminage (déformation à froid)

Au moyen d'un laminoir semi-automatique à double cylindres (*Figure 26*), afin de faire subir aux échantillons un taux de déformation égal à 30% pour le Pb-Sn et 70% pour l'Sn-Zn constant à travers une seule passe.

Figure 26. Laminoir à double cylindre semi-automatique.

II.5. Traitement thermique

Au moyen d'une cuve (*Figure 27*) à double zones de chauffage présélectionnées, équipée d'un thermocouple, on a effectué des recuits d'homogénéisation à nos échantillons, à 130°C pour le Pb-Sn, et 150°C pour l'Sn-Zn durant 2h.

Figure 27. Cuve à double zones de chauffage.

II.6. Mesure de la résistivité électrique

Pour ce qui concerne la partie mesure, tous les échantillons que ça soit à l'état brut, laminé et traité thermiquement, ont été objet de mesure de résistivité électrique, et cela à travers l'appareillage de la méthode des 4 points sous chambre noire avec une source de courant comprise entre $(10^{-9}A \ a \ 10^{-3}A)$ connecté aux deux pointes externes (1,4) et voltmètre numérique connecté aux deux pointes internes (2,3) comme illustré dans les *figures 28*.

Figure 28. Montage de la méthode des 4 points pour la mesure de la résistivité électrique.

En finalisant notre caractérisation à travers toutes les manipulations citées ci-dessus, notre étude s'est orientée vers le suivi des comportements de nos échantillons, tout au long des traitements subis. Ce chapitre est consacré à mettre en évidence l'évolution de tous les résultats obtenu suivant le taux de l'eutectique à travers la caractérisation et les mesures faites sur les deux alliages semi-conducteur Pb-Sn et Sn-Zn à 300K tous au long de la plaquette obtenu par la fonderie. Ces résultats sont présentés sous forme de graphes en 3D suivant la position des échantillons dans la plaquette de coulée, classé par ordre de traitement subi (brut, laminé et traité), tout en figurant la fraction de l'eutectique, la micrographie, la dureté, la résistivité et conductivité électrique.

III.1.Echantillons brutes

III.1.1. distribution d'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique obtenu après élaboration et suivant le sens de coulée en ayant utilisée le logiciel « Imagej », sont illustrés dans les *Tableaux (VII à XV)*

Sachant que le refroidissement se fait des parties externes de la plaquette aux parties internes de celle-ci, les micrographies reflètent un eutectique pas trop dense et des lamelles fines et régulières.

Le résumé de tous les résultats des tableaux de la fraction d'eutectique des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons est modélisé suivant un repère en trois dimensions illustrées dans les *figures 29, 30*.

On remarque que la distribution obtenue dans tous les échantillons des deux lingots bruts sont caractérisés par une distribution aléatoire, avec des valeurs d'eutectique très rapprochées entre elles par rapport à l'état brut, cependant marqué par des pics au niveau des paliers J, II, III' et IV' pour le Sn-Zn et au niveau de B, D, 1, 2', β , η' pour le Pb-Sn.

III.1.2. Distance inter-lamellaire

Les résultats de la micrographie et de la distribution de la distance inter-lamellaire obtenu après élaboration et suivant le sens de coulée en ayant utilisée le logiciel « Imagej », sont illustrés dans les *tableaux (XVI-XXV)*. Des alliages Sn-Zn et Pb-Sn respectivement.

A première vue, on remarque déjà que point de vue forme des lamelles c'est plutôt uniforme et réguliers de taille relativement différentes et de volume relativement constant; avec une distance inter lamellaire décroissante suivant le sens de coulée.

Le résumé de tous les résultats des tableaux de la distribution de la distance interlamellaire des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons respectivement est modélisé suivant un repère en trois dimensions illustrées dans la *figure 31,32*.

En tenant compte de la position des l'échantillons, et en se basant sur les distances inter-lamellaires des deux alliages, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier j, 10, 9', I et V' pour le Sn-Zn et au niveau D, 1, 5', β et β' pour le Pb-Sn.

III.3. Micro-dureté

Les résultats de la micro-dureté obtenue après élaboration et suivant le sens de coulée sont illustrés dans les *tableaux (XXVI-XXVII)*. Des alliages Sn-Zn et Pb-Sn respectivement.

Point vue répartition de la micro-dureté au niveau de toute la plaquette, on remarque qu'on parlant de la colonne adjacente X à la source de coulée c'est plutôt une distribution aléatoire. Pour ce qui concerne les colonnes intermédiaires Y et Z et celle à l'opposé de la source de coulée Z', on tend vers une distribution croissante suivant le sens de coulée. Concernant la colonne centrale Y', elle est caractérisée par une décroissance de la micro-durette marqué par un maximum au palier le plus bas 10'.

Et pour ce qui concerne Pb-Sn, la répartition de la micro-dureté au niveau de toute la plaquette, la pratique vient conforter la théorie pour ce qui concerne l'hétérogénéité à l'état brute. On remarque que plus on se rapproche du centre de la plaquette plus la dureté augmente, ainsi que le fond de la plaquette regroupe les plus basses duretés, qui fait référence à la densité du Plomb plus lourd que l'Etain.

Le résumé de tous les résultats des tableaux de la micro-dureté des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons est modélisé suivant un repère en trois dimensions illustrées dans les *figures 33, 34*.

Figure 33. Distribution de la microdureté du Sn-Zn suivant le positionnement des échantillons dans le lingot.

Figure 34. Distribution de la microdureté du Pb-Sn suivant le positionnement des échantillons dans le lingot.

Du point de vue répartition de la micro-dureté au niveau de toute la plaquette, on remarque qu'on parlant de la colonne adjacente X à la source de coulée, c'est plutôt une distribution aléatoire. Pour ce qui concerne les colonnes intermédiaires Y et Z et celles à l'opposé de la source de coulée Z', on tend vers une distribution croissante suivant le sens de coulée. Concernant la colonne centrale Y', elle est caractérisée par une décroissance de la micro-dureté marquée par un maximum au palier le plus bas 10'.

Et pour ce qui concerne le deuxième alliage, la répartition de la micro-dureté au niveau de toute la plaquette, la pratique vient conforter la théorie pour ce qui concerne l'hétérogénéité à l'état brut. On remarque, que plus on se rapproche du centre de la plaquette, plus la dureté augmente, ainsi que le fond de la plaquette regroupe les plus basses duretés qui fait référence à la densité du Plomb plus lourd que l'Etain.

III.4. Résistivité électrique

Les résultats de résistivité électrique obtenue après élaboration et suivant le sens de coulée sont illustrés dans les *tableaux (XXVIII-XXXVII)*, Des alliages Sn-Zn et Pb-Sn respectivement.

Le résumé de tous les résultats des tableaux de la résistivité électrique des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons est modélisé suivant un repère en trois dimensions illustrées dans les *figures 35,36*.

Figure 35. Distribution de la résistivité du Sn-Zn suivant le positionnement des échantillons dans le lingot.

Figure 36. Distribution de la résistivité du Pb-Sn suivant le positionnement des échantillons dans le lingot.

On remarque qu'à l'état brut, la distribution obtenue suivant le sens de coulée est relativement basse sur toute la surface de chaque alliage, avec quelques valeurs de résistivité assez hautes, représentées au niveau du palier A, 4, 4', γ et β' pour l'alliage Pb-Sn et au niveau de j, 9, 10', 8', IV et III' pour l'alliage Sn-Zn.

III.2. Echantillons laminés

III.2.1. Distribution de l'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique obtenus après déformation à froid (laminage) et suivant le sens de coulée en ayant utilisé le logiciel "Imagej", sont illustrés dans les *tableaux (XXXVIII à XLVII)*; des alliages Sn-Zn et Pb-Sn respectivement.

Le résumé de tous les résultats de la distribution d'eutectique après déformation à froid des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons est modélisé suivant un repère en trois dimensions illustrées dans les *figures 37, 38*.

Figure 38. Distribution de la fraction d'eutectique après laminage du Pb-Sn suivant le positionnement des échantillons dans le lingot

On remarque que la distribution obtenue dans tous les échantillons des deux lingots après laminage sont caractérisés par une distribution aléatoire, amoindrie par la déformation avec des valeurs d'eutectique très rapprochées entre elles par rapport à l'état brut, cependant marqué par des pics au niveau des paliers K, 6 ,8', I, II' pour le Sn-Zn et au niveau de E, 5 , 4', η , γ , η' , γ' pour le Pb-Sn.

III.2.2. Résistivité électrique

Les résultats de résistivité électrique obtenus après laminage et suivant le sens de coulée sont illustrés dans les *tableaux (XLVIII à LVII)*; Des alliages Sn-Zn et Pb-Sn respectivement.

Le résumé de tous les résultats de la distribution d'eutectique après déformation à froid des deux alliages Sn-Zn et Pb-Sn respectivement, suivant le positionnement des échantillons, est modélisé suivant un repère en trois dimensions illustrées dans les *figures 39, 40*.

Figure 39. Distribution de la résistivité électrique après laminage du Sn-Zn suivant le positionnement des échantillons dans le lingot

En tenant compte de la position des l'échantillons, et en se basant sur les valeurs de la résistivité électrique après laminage des deux alliages, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier G, 10, 8', IV, II' pour le Sn-Zn et au niveau B, 3, 2', α ', de pour le Pb-Sn.

III.3. échantillons recuits

III.3.1. Distribution de l'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique obtenu après traitement thermique (recuit) et suivant le sens de coulée, en ayant utilisée le logiciel "Imagej" pour traiter les images, sont illustrés dans les *tableaux (LVIII à LXVII)*; des alliages Pb-Sn et Sn-Zn respectivement.

Le résumé de tous les résultats des tableaux de la distribution d'eutectique après traitement d'homogénéisation des alliages Pb-Sn et Sn-Zn respectivement, suivant le positionnement des échantillons est modélisé suivant un repère en trois dimensions illustrées dans les *figures 41, 42*.

Figure 41. Distribution de la fraction d'eutectique après traitement d'homogénéisation du Pb-Sn suivant le positionnement des échantillons dans le lingot.

On remarque qu'après traitement d'homogénéisation que la distribution obtenue suivant le sens de coulée est relativement homogènes sur toute la surface de chaque alliage, avec des valeurs de fraction d'eutectique relativement proches de la théorie, tout en remarquant des pics de fraction au niveau du palier D, 3, 3', β , δ' pour l'alliage Pb-Sn et au niveau de K, 10, 6', 10', V, pour l'Sn-Zn.

III.2. Résistivité électrique

Les résultats de la résistivité électrique obtenue après recuit et suivant le sens de coulée sont illustrés dans les *tableaux (LXVIII à LVII)*; Des alliages Pb-Sn et Sn-Zn respectivement.

Le résumé de tous les résultats des tableaux de la variation de la résistivité électrique après traitement d'homogénéisation de l'alliage binaire Sn-Zn suivant le positionnement des échantillons respectivement est modélisé suivant un repère en trois dimensions illustrées dans les *figures 43, 44*.

Figure 43. Distribution de la résistivité électrique après traitement d'homogénéisation du Pb-Sn suivant le positionnement des échantillons dans le lingot.

On remarque qu'après traitement d'homogénéisation, et en se basant sur les valeurs de la résistivité électrique après traitement thermique, que la répartition est aléatoire suivant le sens de coulée, marqué par des pics au niveau des paliers A, 4, 1', δ , η ' pour le Pb-Sn, et au niveau de G, 9, 7', V, V' pour le Sn-Zn.

III.4. Interprétations des résultats de l'état brut

Nous allons tout d'abord interpréter les résultats à l'état brut, à l'état laminé et à l'état laminé traité, ensuite nous ferons une comparaison entre eux.

III.4.1. Pb-Sn

Nous interprétons les microstructures obtenus, les résultats des mesures de la micro dureté et les résultats des mesures de la résistivité électrique p.

III.4.1.1. Microstructure

Les microstructures des 25 échantillons étudiés sont représentées sur la figure 45.

Figure 45. Les microstructures (X1000) de l'intégralité du lingot de Pb-Sn à l'état brut de coulée.

Les microstructures obtenues montrent que le lingot est globalement hétérogène. En effet, les plages eutectiques (des lamelles de Pb parallèles avec celles de Sn) sont majoritaires au centre et à l'extrémité gauche du lingot en forme de plaquette à l'état brut. Par contre, à l'extrémité droite et la partie basse de ce lingot, des amas de Pb et d'Sn apparaissent et sont nettement observables ; Ceci est dû au fait que les conditions de refroidissement d'équilibre ne sont pas atteintes et que notre liquide n'a pas été secoué et agité convenablement pour lui permettre d'être homogène. L'analyse d'image réalisée par le logiciel "imagej" montre que les atomes de Pb (en noir) occupent une surface de 39% du lingot en moyenne.

III.4.1.2. Microdureté

La *figure 46* représente les résultats des mesures de la microdureté Vickers sur toute la surface du lingot à l'état brut. On observe que la valeur de la microdureté reste constante, de l'ordre de $HV_{50} = 15$. On remarque aussi, que la proportion entre la microdureté et la fraction de l'eutectique confirme la bonne distribution des lamelles de Pb sur la plupart de la plaquette, avec quelques pics marqués au niveau des échantillons (4 et η) confirmant une concentration de défauts.

Figure 46. Représentation simultanée des valeurs de la micro-dureté et de la fraction de l'eutectique aux différents endroits du lingot à l'état brut du Pb-Sn.

III.4.1.3. Résistivité électrique

La *figure* 47 représente les valeurs des mesures de la résistivité électrique ρ sur toute la surface du lingot à l'état brut. La majorité des échantillons ont une valeur moyenne de l'ordre de 2 Ω .cm, ce qui correspond à une conductivité électrique σ de l'ordre de 0,34 Ω^{-1} .cm⁻¹.

On remarque que la fraction obtenue est dans l'intervalle de l'eutectique théorique avec des écarts de 10% en moyenne ; cela est dû en partie aux conditions de refroidissement non contrôlées, temps de solidification relativement court ; et sachant que le Pb est dense, donc diffusion restreinte de ce dernier, accompagné d'une mauvaise évacuation que ça soit des dislocations ou des défauts.

Et en se basant sur le refroidissement non contrôlé (fonderie), on met en évidence une structure basaltique, c'est-à-dire qu'au fur et à mesure qu'on se rapproche du centre du lingot, les grains sont de plus en plus allongés et d'orientation suivant le sens de dégagement de la chaleur, que ceux positionnés au niveau des parois de la lingotière ; en sachant que plus les tailles des grains sont grandes, plus la résistivité électrique est petite, cela donne lieu à des pics de résistivité de position aléatoire reflétant l'état brut $(4, 1, \beta', \eta')$.

Toutefois, il y a lieu de valeurs de résistivité basses comme les échantillons (C, D, 3', 4', γ ',...etc.) de position centrale.

Figure 47. Représentation simultanée des valeurs de la résistivité électrique ρ et de la fraction d'eutectique aux différents endroits du lingot à l'état brut du Pb-Sn.

Nous avons jugé utile de représenter les valeurs de la résistivité électrique ρ obtenues aux différents endroits de notre lingot à l'état brut de coulée en fonction de la distance inter-lamellaire représentée dans la *figure 48* que ça soit pour affirmer nos résultats que de les ou les compléter. On constate que la distribution de cette distance est relativement variable entre les différents échantillons, avec un écart de 25µm engendrant des valeurs de résistivité relativement basses ; marquées par un pic au niveau des l'échantillons 4 et β ' reflétant bien un taux de défauts considérablement haut, donnant lieu à une résistivité électrique élevée, confirmant les interprétations des graphes de la variation de la fraction de l'eutectique, en fonction de la résistivité électrique.

Figure 48. Représentation simultanée des valeurs de la résistivité électrique et de la distance inter-lamellaire aux différents endroits du lingot à l'état brut du Pb-Sn.

La représentation de la variation de la résistivité électrique en fonction de la microdureté vient conforter nos interprétations et cela à travers la *figure 49*.

On constate que la distribution de la micro-dureté est relativement homogène accompagnée généralement de valeurs de résistivité relativement basses ; marquées par un pic au niveau des échantillons $(1, 4, \beta' \text{ et } \eta')$ associé à une micro-dureté relativement élevée reflétant bien un taux de défauts considérablement haut, donnant lieu à une résistivité électrique élevée, confirmant les interprétations des graphes de la variation de la fraction de l'eutectique, en fonction de la résistivité électrique et reflètent la densité considérable des joints de grains donnant lieu à des grains fins confirmant la structure basaltique.

Figure 49. Représentation simultanée des valeurs de la résistivité électrique et de la micro-dureté aux différents endroits du lingot à l'état brut du Pb-Sn.

III.4.2. Zn-Sn

Nous interprétons les microstructures obtenus, les résultats des mesures de la microdureté et les résultats des mesures de la résistivité électrique ρ .

III.4.2.1. Microstructure

Les microstructures des 25 échantillons sont représentées dans la figure 50.

Figure 50. Les microstructures de l'intégralité du lingot à l'état brut de l'alliage eutectique Sn-Zn.

Les microstructures obtenues montrent que le lingot est globalement homogène. En effet, les plages eutectiques (des lamelles de Zn parallèles avec celles de Sn) sont largement majoritaires, à l'exception des extrêmes où la phase mère (Sn) est prédominante. Ici les distances inter-lamellaires sont plus nettes et plus larges que dans le cas des alliages Pb-Sn. L'analyse d'image réalisée par le logiciel "imagej" montre que les atomes de Zn (en noir) occupent une surface de 30% du lingot en moyenne. Ceci est dû au fait que les conditions de refroidissement d'équilibre ne sont pas atteintes et que notre liquide n'a pas été secoué et agité convenablement pour lui permettre d'être homogène.

III.4.2.2. Micro-dureté

La *figure 51* représente les résultats des mesures de la microdureté Vickers sur toute la surface du lingot à l'état brut. On observe que les valeurs de la microdureté oscillent entre 20 et 40 HV₁₀₀, reflétant bien la structure hexagonale compacte du Zn caractérisée par une dureté plus grande que celle de la dureté de l'étain de structure cubique à faces centrées ; moyennant une valeur de 26.5 HV₁₀₀.

On remarque que pour ce qui concerne la proportion de la micro-dureté par rapport à la fraction de l'eutectique est vraiment basse, surtout dans les régions centrales ; confirmant que les lamelles de Zn ont eu tendance à ne pas occuper tous les sites du réseau cristallin, engendrant un volume conséquent des lamelles de Zinc. Toutefois, on constate des pics de la micro-dureté dus entre autres, à l'accumulation des défauts.

Figure 51. Représentation simultanée des valeurs de la micro-dureté et de la fraction de l'eutectique aux différents endroits du lingot à l'état brut du Sn-Zn.

III.4.2.3. Résistivité électrique

La *figure 52* représente les valeurs des mesures de la résistivité électrique ρ sur toute la surface du lingot à l'état brut. Ces valeurs, à l'inverse de celles de Pb-Sn sont dispersées et oscillent entre 1 et 50 Ω .cm, ce qui correspond à une conductivité électrique comprise entre 0,34 et 0,02 Ω^{-1} .cm⁻¹.

On remarque aussi que la fraction de l'eutectique à l'état brut est généralement au dessus de l'intervalle toléré théoriquement, moyennant des écarts de l'ordre de 25%, avec des valeurs accentuées aux colonnes centrales ; cela est causé entre autres, par des conditions de refroidissement non contrôlées, temps de solidification relativement court, engendrant d'une part, un taux de défauts et dislocations relativement conséquent reflété par la formation de lamelle de Zn relativement volumineuse, tout en sachant que pas tous les sites préférentiels dans le réseau cristallin n'ont été occupés, donnant lieu à une augmentation de la résistivité électrique.

Néanmoins, on remarque des résistivités basses dans les échantillons des colonnes externes (i, j, 7, 8,...etc.) et ceux des paliers les plus hauts (I, II, 6',7',...etc.)

Nous avons jugé utile de représenter les valeurs de la résistivité électrique ρ obtenues aux différents endroits de notre lingot à l'état brut de coulée, en fonction de la distance inter-lamellaire représentée dans la *figure 53* que ça soit pour confirmer nos résultats ou les compléter ; on constate que la distribution de la distance inter-lamellaire fluctue entre les différents échantillons, moyennant un écart de 30µm engendrant des valeurs de résistivité relativement basses ; marquées par des pics conséquents au niveau des échantillons (K, 8' et IV) caractérisés par des distance inter-lamellaires relativement grandes justifiant la hausse de la résistivité électrique engendrée.

Toutefois, on remarque des pics de résistivité associés à des distances inter-lamellaires relativement petites, causés par un taux de défauts assez conséquent.

Figure 53. Représentation simultanée des valeurs de la résistivité électrique et de la distance inter-lamellaire aux différents endroits du lingot à l'état brut du Sn-Zn.

On a opté aussi pour une comparaison entre la résistivité électrique en fonction de la micro-dureté, dans le but d'avoir plus d'éclaircissement dans nos interprétations et cela à travers la *figure 54*.

On remarque que la micro-dureté est relativement constante en partant des échantillons des colonnes extérieurs de la plaquette (X et Z'), marquée par des pics au niveau des échantillons (K et 10') reflétant une densité de joint de grain assez conséquente, diminuant la mobilité des porteurs de charge qui fait augmenter la résistivité électrique.

Toutefois, il y a des valeurs de micro-dureté relativement basses reflétant bien un taux de défauts considérablement haut, donnant lieu à une résistivité électrique élevée, confirmant les interprétations des graphes de la variation de la fraction de l'eutectique en fonction de la résistivité électrique.

Figure 54. Représentation simultanée des valeurs de la résistivité électrique et de la micro-dureté aux différents endroits du lingot à l'état brut du Sn-Zn.

III.5. Interprétations des résultats après laminage

Dans le but de donner une direction privilégiée à nos grains et de diminuer les défauts engendrés par l'élaboration (état de coulée), nous avons laminé à froid notre lingot brut de coulée. Nous commencerons à interpréter les microstructures obtenues, puis les valeurs des mesures de la résistivité électrique à l'état laminé.

III.5.1. Pb-Sn

III.5.1.1. Microstructure

Les microstructures des 25 échantillons laminés sont représentées sur la figure 55.

Figure 55. Les microstructures de tout le lingot du Pb-Sn à l'état laminé.

Les microstructures obtenues nous montrent une distribution aléatoire de la distribution de l'eutectique et une structure plus fine par rapport à celle du lingot à l'état brut. L'analyse d'image réalisée par le logiciel "imagej" met en évidence le changement morphologique de la distribution du Pb. En effet, elle montre que les atomes de Pb (en

noir) occupent une surface de 33% du lingot en moyenne. Alors qu'elle était de l'ordre de 39% dans le lingot à l'état brut.

III.5.1.2. Résistivité électrique

La *figure 56* représente les valeurs des mesures de la résistivité électrique ρ sur toute la surface du lingot à l'état laminé. Ces valeurs sont dispersées et varient entre 3 et 50 Ω .cm, ce qui correspond à une conductivité électrique σ entre 0,34 et 0,02 Ω .cm.

Après avoir appliqué un taux de déformation constant sur tous les échantillons afin d'orienter les grains et de diminuer les défauts causés par l'élaboration, ainsi que de minimiser la résistivité électrique initiale ; on remarque d'une part, que la fraction de l'eutectique s'est rapprochée relativement de l'intervalle théorique cela est dû à la diminution des défauts par le glissement des différents grains à travers les dislocations, en les évacuant vers l'extérieure du grain. Et d'autre part, on remarque que les échantillons qui ont eu des valeurs de résistivité bas à l'état brut, présentent une hausse de cette dernière due notamment à un écrasement du réseau cristallin.

La dispersion et l'augmentation des valeurs de la résistivité électrique à l'état laminé par rapport à celle de l'état brut, étaient prévisibles. En effet, la déformation plastique crée et multiple les sources de défauts ponctuels et linéaires.

III.5.2. Etat laminé de l'eutectique de l'alliage Zn-Sn

Comme dans le cas de l'eutectique de l'alliage Pb-Sn, nous avons laminé à froid notre lingot brut. Nous commencerons à interpréter les microstructures obtenues puis les valeurs des mesures de la résistivité électrique à l'état laminé.

III.5.2.1. Microstructure

Les microstructures des 25 échantillons laminés sont représentées sur la figure 57.

Figure 57. Les microstructures de tout le lingot du Sn-Zn à l'état laminé.

Les microstructures obtenues ne montrent pas une orientation privilégiée des grains. Au contraire, on observe une distribution aléatoire de ces derniers dans toutes les directions possibles et une structure plus fine par rapport à celle du lingot à l'état brut de coulée. Donc l'aspect lamellaire de l'eutectique disparait sous l'effet du laminage, néanmoins, le taux de déformation n'est pas suffisant pour imposer une texture. L'analyse d'image réalisée par le logiciel "imagej" met en évidence le changement morphologique des grains de Zn. En effet, elle montre que les atomes de Zn (en noir) occupent une surface de 15% du lingot en moyenne. Alors qu'elle était de l'ordre de 30% dans le lingot à l'état brut.

III.5.2.2. Résistivité électrique

La *figure 58* représente les valeurs des mesures de la résistivité électriquep sur toute la surface du lingot à l'état laminé. Ces valeurs sont légèrement dispersées par rapport à celles de l'état brut et oscillent entre 3 et 30 Ω .cm, ce qui correspond à une conductivité électrique σ entre 0,34 et 0,02 Ω .cm.

Après avoir appliqué un taux de déformation constant sur tous les échantillons afin d'orienter les grains et de diminuer les défauts causés par l'élaboration, ainsi que de minimiser la résistivité électrique initiale ; on remarque d'une part, que la fraction de l'eutectique s'est rapprochée généralement de l'intervalle théorique, cela est dû à la diminution des défauts par glissement des différents grains à travers les dislocations en les évacuant vers l'extérieur ; et aussi à travers le changement de la morphologie des grains de Zn ne crée pas des défauts de distorsion ou d'encombrement.

Au contraire, elle soulage la structure, à cause du replacement des atomes de Zn dans l'espace qui existe au sein de celle-ci, induisant une diminution considérable de la résistivité électrique. Et d'autre part, on remarque que quelques échantillons qui ont eu des valeurs de résistivité basse à l'état brut, présentent une hausse de cette dernière, due notamment à un écrasement du réseau cristallin.

Figure 58. Représentation simultanée des valeurs de la résistivité électrique et de la fraction de l'eutectique aux différents endroits du lingot d'Sn-Zn à l'état brut.

III.6. Interprétations des résultats après laminage et recuit

Dans le but de diminuer la valeur de la résistivité électrique, nous avons fait subir à nos échantillons laminés un traitement de recuit à la température de 450K pendant 2 heures. Nous commencerons à interpréter les microstructures obtenues, puis les valeurs des mesures de la résistivité électrique à l'état traité thermiquement.

III.6.1. Pb-Sn

III.6.1.1. Microstructure

Les microstructures des 25 échantillons laminés et recuit sont représentées sur la *figure 59*.

Figure 59. Les microstructures de tout le lingot de Pb-Sn à l'état laminé et recuit.

Les microstructures obtenues montrent que le processus de coalescence s'est déclenché et on a tendance à avoir une seule microstructure homogène pour tous les échantillons. En effet, les atomes de Pb de l'eutectique commencent à se coalescer pour former des globules qu'on peut les distinguer de la matrice. L'analyse d'image réalisée par le logiciel "imagej" met en évidence la coalescence des grains de Pb, tout en constatant que les atomes de Pb (en noir) occupent une surface de 39% du lingot plat en moyenne, alors qu'elle était de l'ordre de 33% dans le lingot à l'état laminé.

III.6.1.2. Résistivité électrique

La *figure 60* représente les valeurs des mesures de la résistivité électrique ρ sur toute la surface du lingot traité. La majorité des valeurs sont constantes de l'ordre de 1 Ω .cm, ce qui correspond à une conductivité électrique σ de l'ordre de 1 Ω^{-1} .cm⁻¹ en moyenne.

Apres avoir appliqué ce traitement thermique d'homogénisation avec refroidissement long dans le four afin d'atteindre des états proches de l'équilibre thermodynamique en minimisant tous les hétérogénéités de l'état basaltique, on remarque que du point de vue fraction eutectique, on a une augmentation du pourcentage du Pb jusqu'à atteindre les seuils des 40%, due entre autres, à la diffusion des atomes de Pb et à la relaxation (contraintes résiduelles, dislocations) du matériau accompagné d'une résistivité généralement basse engendrée par une élimination des ségrégations apparues au cours du processus de solidification (fonderie) et grossisement des grains par adoucissement (recristallisation statique).

Figure 60. Représentation simultanée des valeurs de la résistivité électrique et de la fraction de l'eutectique aux différents endroits du lingot du Pb-Sn à l'état laminé et recuit.

III.6.2. Etat laminé puis recuit de l'eutectique de l'alliage Zn-Sn

Comme dans le cas de l'eutectique de l'alliage Pb-Sn, nous avons recuit les échantillons laminés à 450K pendant 2 heures. Nous commencerons à interpréter les microstructures obtenues puis les valeurs des mesures de la résistivité électrique à l'état laminé et recuit.

III.6.2.1. Microstructure

Les microstructures des 25 échantillons laminés sont représentées sur la figure 61.

Figure 61. Les microstructures de tout le lingot d'Sn-Zn à l'état laminé puis recuit.

Les microstructures obtenues montrent que le processus de polygonalisation s'est déclenché avec des taux relativement accentués au niveau des colonnes centrales accompagnés d'une homogénéisation au niveau des colonnes périphériques. En effet, les atomes de Zn de l'eutectique proche des joints de grains commencent à diffuser pour se condenser au niveau de ces joints plus stables que les grains eux-mêmes.

L'analyse d'image réalisée par le logiciel "imagej" met en évidence la coalescence timide des grains de Zn. En effet, elle montre que les atomes de Zn (en noir) occupent une surface sensiblement la même que dans l'état laminé, moyennant un taux de 15 %.
III.6.2.2. Résistivité électrique

La *figure 62* représente les valeurs des mesures de la résistivité électrique ρ sur toute la surface du lingot à l'état de recuit. Apres avoir appliqué un traitement thermique d'homogénisation avec refroidissement long dans le four afin d'atteindre des états proches de l'équilibre thermodynamique en minimisant tous les hétérogénéités de l'état de coulée, on remarque que du point de vue fraction eutectique, on a une fluctuation entre les valeurs de $6\%_{Zn}$ et plus ou moins supérieure à $20\%_{Zn}$, due d'une part, à la relaxation du materaiux tout en maintenant les valeurs de la resistivité, relativement basses, et d'autre part, à la polygonalisation du Zn (*Figure 63, 64 et 65*) avec des taux relativement differents engendrant l'appauvrissement des grains en diffusant en profondeur dans les joints de grains dus à leur stabilité, donnant lieu à la mise en évidence, de la resistivité électrique intrinsèque du Sn comme pour l'échantillon G, et aussi une hausse de la resistivité due à la réorganisation des dislocations non évacuées.

Figure 62. Représentation simultanée des valeurs de la résistivité électrique et de la fraction de l'eutectique aux différents endroits du lingot d'Sn-Zn à l'état laminé et recuit.

Figure 63. Micrographie reflétant un début de la polygonalisation du Zn caractérisant les échantillons K et III'.

Figure 64. Micrographie reflétant un état assez avancé de la polygonalisation du Zn caractérisant les échantillons 9 et V'.

Figure 65. Micrographie reflétant un état avancé de la polygonalisation du Zn caractérisant les échantillons 7', V et G.

Toutefois, on constate que les valeurs de la résistivité électrique stagnent en les comparant à ceux de l'état laminé, reflétant un taux de déformation appliqué pas assez conséquent pour induire des défauts ponctuels ou linéaires relativement grands à cause de la structure espacée de l'eutectique de l'alliage Zn-Sn.

La recherche de nouvelles sources d'énergies non polluantes est devenue un enjeu majeur pour l'écologie du système, c'est pourquoi la production d'électricité à partir de chaleur perdue aux moyens de modules thermoélectriques, apparaît à ce jour, comme un élément déclencheur dans une voie très prometteuse. L'inconvénient principal qui réside et qui constitue par ailleurs une barrière à une utilisation potentielle pour l'industrialisation, c'est de le cantonner toujours au stade de la recherche, mais qui néanmoins, n'est pas infranchissable.

Au cours de notre étude, nous avons élaboré les deux alliages, et ensuite par une étude comparative des apports respectifs des trois cas, lors de la mesure de la résistivité électrique, à savoir échantillons brut, laminé, recuit, en vue d'atteindre des performances électriques optimales et fiables, particulièrement dans le domaine de la micro-électronique.

Malheureusement, nos mesures n'ont pas abouti au point culminant, celui des valeurs du facteur de mérite, intrinsèque aux deux, dû soit à l'absence du matériel expérimental performant et adéquat ou à son état défectueux, qui nous a induit à ne pas comparer le rendement de nos deux semi-conducteurs, par rapport à ceux des modules thermoélectriques, utilisés actuellement.

En étant dans ce cas de figure, on a décidé de compenser ce déficit par une approche purement théorique, en se basant sur les références bibliographiques, qui a consisté à prendre en considération les valeurs des coefficients de SEEBECK des trois éléments usuels utilisés dans l'élaboration de nos échantillons, suivie du calcul de la résistivité thermique correspondante, en incluant tous les traitements et en tenant compte des valeurs obtenues en résistivité électrique, cela en passant par la loi empirique de Wiedemann et Franz, qui s'est traduite par des résultats non cohérents ; s'expliquant par l'application de cette dernière, uniquement pour des matériaux métalliques.

Cela nous a malheureusement amené à nous contenter uniquement des résultats obtenus qui se sont restreints à ceux exprimés dans notre présent document.

La mesure préliminaire de la résistivité électrique montre une cohérence avec la littérature, c'est-à-dire que l'hétérogénéité due aux conditions d'élaboration donnant lieu à l'état basaltique induit à des résistivités aléatoires sur toute la surface de nos deux plaquettes.

En conséquence des différents essais, analyses et observations, il y a lieu de retenir :

Pb-Sn :

Comparée à l'état brut, la résistivité ρ augmente remarquablement après laminage. En revanche, cette dernière diminue considérablement après l'adoucissement qui permet une réduction remarquable de la densité des dislocations et des tensions résiduelles, ainsi que de jouer sur la taille des grains.

Sn-Zn :

Contrairement au Pb-Sn, et toujours comparée à l'état basaltique, la résistivité électrique ρ diminue après déformation à froid, et rehaussée légèrement après recuit, donc l'orientation des grains prime sur cet échantillon pour éviter le phénomène de polygonalisation.

Ainsi, les premiers résultats de cette étude, confirment les potentialités thermoélectriques des alliages binaires Pb-Sn ; Sn-Zn, et révèlent que ses performances et sa fiabilité peuvent être améliorées davantage, en combinant étude approfondie et bonnes conditions expérimentales.

Parmi les perspectives envisageables, il faut retenir :

• La réalisation des mesures du coefficient de Seebeck, de la conductivité thermique, qui enduiront le calcul du facteur de mérite adimensionnel indispensable pour la validation de l'applicabilité de ces matériaux dans le domaine de la thermoélectricité.

• Augmenter le temps de recuits et étudier les mécanismes d'adoucissement qui s'y produisent surtout concernant l'alliage Pb-Sn.

• Etude plus poussée pour mieux mettre en évidence le comportement de l'alliage Sn-Zn par rapport à la déformation à froid avec des taux de déformation variables.

• Etudier le comportement électrique du semi-conducteur Pb-Sn en fonction de la température, en sachant que ce dernier est intrinsèque.

• Elaboration des deux alliages par la monocristallisation afin de mieux se rapprocher des conditions d'équilibre thermodynamique et comparer les éventuels facteurs de mérite des deux techniques d'élaboration.

L'évolution de tous les résultats obtenus suivant le taux de l'eutectique à travers la caractérisation et les mesures faites sur les deux alliages semi-conducteur Pb-Sn et Sn-Zn à 300K tout au long du lingot obtenu par la fonderie. Ces résultats sont présentés sous forme de tableau englobant tous les échantillons, classés par ordre de traitements subis (brut, laminé et traité), tout en figurant la fraction de l'eutectique, la micrographie, la dureté, la résistivité et conductivité électrique.

1. Echantillons bruts de coulée

1.1.Distribution de l'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique obtenus après élaboration et suivant le sens de coulée par l'utilisation du logiciel « Imagej », sont illustrés dans les *tableaux (VI-XV)*; des alliages Sn-Zn et Pb-Sn respectivement.

Tableau VI. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne X de l'alliage Sn-Zn.

Colonne X				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
	and the south fills	19.00%		
		23.26%		
G		23.23%	21.57%	
		19.46%		
	Strice Contractions	22.91%		
	THE ALL AND A DECK	16.10%		
		26.37%		
H	Land Land	14.97%	18.00%	
	100µm 100µm	19.18%		
		13.37%		
	• #45.29374755 • #465.29374755	14.20%		
	1478 447 88	15.57%		
i		19.97%	17.68%	
•	100um	18.37%		
	NUMERIC NO. COLUMN	20.30%		
	SCHOOLSEN SCHOOLSEN	22.50%		
	and the set of the states	23.05%		
J	and the second s	28.30%	25.46%	
		26.90%		
	100µm	26.56%		
	The State The State	9.60%		
		13.02%		
K		12.76%	13.05%	
	111 - V (111 - V	17.10%		
	100µm	12.75%		

La distribution obtenue est relativement aléatoire suivant le sens de coulée tout en remarquant un pic de la fraction au niveau de l'avant dernier palier J.

Sachant que cette distribution fait office d'un positionnement à la colonne X adjacente à la source de coulée et en sachant que le refroidissement se fait des parties externes de la plaquette aux parties internes de celle-ci, les micrographies reflètent un eutectique pas trop dense et des lamelles fines et régulières.

Colonne Y				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
		31.60%		
		43.92%		
6		44.23%	40.43%	
Ŭ	100µm	38.74%		
		43.66%		
	WELDARD WELL WELL WAR	36.20%		
		42.53%		
7		40.58%	38.82%	
	100µm	37.82%		
		36.96%		
	TANK AND A DECK	55.60%		
		58.13%		
8		51.80%	45.47%	
Ŭ	100µm	34.61%		
	The states at the second secon	27.22%		
	CORRECTOR CORRECTOR	40.80%		
_		46.95%		
9		49.17%	49.65%	
		56.86%		
		54.45%		
	NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	37.30%		
10		57.87%		
		54.27%	49.62%	
	100µm	39.02%		
	REALFORMER BALLEY	59.65%		

Tableau VII. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne Y de l'alliage Sn-Zn.

La distribution obtenue est relativement aléatoire tout en remarquant une augmentation de la fraction, suivant le sens de coulée avec une légère baisse de celle-ci au niveau du palier 7.

Sachant que cette distribution fait office d'un positionnement à la colonne Y, celle-ci fait figure de colonne intermédiaire proche de la source de coulée.

En tenant compte du sens du refroidissement, les micrographies reflètent un eutectique relativement dense avec des lamelles grossières et irrégulières.

Colonne Y'				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
	A Complete A Complete	34.70%		
	NTX XTX	41.71%		
6'	SELECT BELL	49.78%	43.42%	
Ũ	100µm	47.97%		
	The residence of the re	42.94%		
	STATISTICS STATISTICS	23.00%		
		30.30%		
7'		24.22%	26.50%	
,	100µm	22.67%		
		32.29%		
	A CONTRACTOR OF COMPANY	46.80%		
		49.17%		
8'		32.12%	44.39%	
Ũ	100µm	44.79%		
		49.07%		
	Harrison Harrison Harrison Company	43.30%		
		52.10%		
9'		50.90%	48.50%	
_		46.22%		
	Base water and the second seco	50.00%		
		61.70%		
	A STREET A STREET	37.01%		
10'		48.51%	48.42%	
- V		48.45%		
		46.44%		

Tableau	VIII.	Micrographi	e des la	amelles	de l	l'eutecti	que	et	fraction	des e	échant	illons
		bruts	de la c	olonne Y	Y' (de l'allia	age Si	n-Z	Zn.			

La distribution obtenue est relativement aléatoire tout en remarquant une augmentation de la fraction, suivant le sens de coulée, avec une légère baisse au niveau du palier 7'.

Sachant que cette distribution fait office d'un positionnement à la colonne Y'. Celle-ci fait figure de colonne centrale. En tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense avec des lamelles grossières et irrégulières, accompagnées d'un appauvrissement au niveau des paliers les plus hauts.

Colonne Z				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
	15.要任知道和理念。[K要任知道和理念	22.60%		
	医前外索 医前外索	30.52%		
I		29.75%	30.75%	
-		33.61%		
	1993 . C. 3	37.25%		
	WARRANG WAR CARLASS AND	44.10%		
		49.81%		
II		40.81%	46.05%	
	100µm	53.34%		
		42.18%		
	MARSHING MARSHING	42.90%		
	11 10 21 11 10 10 21 V	38.45%		
III	Chilles Chilles	39.25%	41.02%	
	100mm	48.13%		
		36.35%		
		30.70%		
		41.73%		
IV		40.72%	34.97%	
	100µm	32.32%		
		29.47%		
	A REAL PROPERTY AND INC.	36.10%		
		36.75%		
V		39.23%	39.34%	
	100µm	46.95%		
		37.66%		

Tableau IX. Micrographie des lamelles de l'eutectique et fraction des échantillonsbruts de la colonne Z de l'alliage Sn-Zn.

La distribution obtenue est relativement aléatoire suivant le sens de coulée marqué par un maximum au niveau du palier II.

Sachant que cette distribution fait office d'un positionnement à la colonne Z. Celle-ci fait figure de colonne intermédiaire et loin de la source de coulée. En tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense avec des lamelles grossières et irrégulières avec un appauvrissement du premier palier I.

Colonne Z'				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
	STATES STATES	20.50%		
	Contract of the	38.60%		
I '	Save Save	36.63%	31.19%	
•	Set 5 Set	30.00%		
	100µm	30.20%		
	2030 (407) 57. 2030 (407) 57.	25.60%		
	March 1 + 44 12 1 Mill & State 12 1	43.11%		
II'	Server attack (14) Sound to the 14	31.13%	31.81%	
	Stratter Brite	30.39%		
	100µm	28.82%		
		30.50%		
		39.17%		
III'	Second Second	48.41%	42.69%	
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	44.49%		
	100 100 100 100 100 100 100 100 100 100	50.86%		
		33.30%		
		44.73%		
IV'		45.81%	41.98%	
		43.19%		
		42.87%		
		23.80%		
	12-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	38.22%		
V'	75	34.99%	33.58%	
, , , , , , , , , , , , , , , , , , ,		36.18%		
	100µm	34.69%		

Tableau X. Micrographie des lamelles de l'eutectique et fraction des échantillons bru	ts
de la colonne Z' de l'alliage Sn-Zn.	

La distribution obtenue est relativement aléatoire suivant le sens de coulée marqué par un maximum au niveau du palier III'.

Sachant que cette distribution fait office d'un positionnement à la colonne Z'. Celle-ci fait figure de dernière colonne à l'opposé de la source de coulée. En tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense au niveau des paliers (III' et IV') avec un appauvrissement en se dirigeant vers le haut, marqué par des lamelles relativement fines et régulière.

Colonne X					
Échantillons	Micrographie	Le % du Pb des différentes plages	% moyen en Pb de l'eutectique		
		36.822			
		36.167			
A		33.941	35,253 %		
	<u>600 µm</u>	35.398			
		33.941			
		40.477			
		42.558			
B		44.256	41,968 %		
	<mark>600 µm</mark> ų	41.901			
		40.651			
		38.548			
		36.983			
C		36.424	35,715 %		
_	<mark>ј⁶⁰⁰ µт</mark> ј	35.908			
		35.716			
	STATISTICS IN A	42.898			
		41.999			
D		41.900	41,518 %		
	600 µm	40.425			
	Contraction of the second strategy of the sec	40.372			
		40.348			
	a the state of the	39.212			
		37.670	38,135 %		
	<u>,600 μm</u>	37.049			
		36.396			

Tableau XI. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne X de l'alliage Pb-Sn.

La distribution obtenue est relativement aléatoire suivant le sens de coulée marqué par une alternance, croissance décroissance tout au long de la colonne.

Sachant que cette distribution fait office d'un positionnement à la colonne X.

De la colonne extérieure à la position de la source de coulée qui est centrale, en tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense au niveau des paliers (B, D), ainsi qu'un minimum au niveau des paliers (A, C).

	Colonne	Y	
Échantillons	Micrographie	<i>Le % du Pb des différentes plages</i>	% moyen en Pb de l'eutectique
	TV 423 MARINT TO THE WAY WAY TO THE OT	39.768	
		38.952	
1		37.894	38,033 %
	,600 μm,	37.342	
		36.209	
		35.652	
		34.384	
2		33.529	33,527 %
-	<mark>.600 µт</mark> ,	32.575	
		31.496	
		37.601	
		37.128	
3		36.951	36,365 %
C	<u>,600 μm</u>	35.629	
	102000000000000000000000000000000000000	34.520	
		34.361	
		32.462	
4		31.735	30,934 %
-	.600 um.	28.771	
		27.345	
	A COMPANY AND THE PROPERTY OF	37.063	
	a ser an	35.366	
5	and the second	34.929	34,992 %
	600	33.350	
	1000 hm	34.254	

Tableau XII. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne Y de l'alliage Pb-Sn.

La distribution obtenue est relativement aléatoire suivant le sens de coulée marqué par une alternance, croissance décroissance tout au long de la colonne.

Sachant que cette distribution fait office d'un positionnement à la colonne Y.

De la colonne adjacente à la position de la source de coulée qui est centrale, en tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense, marqué par un maximum au niveau du palier 1 et un minimum au niveau du palier 4.

	Colonne	Y'	
Échantillons	Micrographie	<i>Le % du Pb des différentes plages</i>	% moyen en Pb de l'eutectique
		36.780	
		35.477	
1'	·	30.589	32,257 %
_	.600 um.	29.926	
		28.513	
	6475-017575	37.912	
		36.784	
2'		34.095	35,356 %
_	<u>600 µт</u>	34.484	
	STRUCTURE CONTRACT	33.505	
		42.028	
		41.795	
3'		40.624	34,386 %
	,600 μm,	39.550	
		40.624	
		39.915	
		37.349	
4'		34.865	34,965 %
-	,600 µm,	32.634	
		30.066	
		34.837	
	and the second	32.866	
5'	1	32.666	32,444 %
	<u>600 µm</u>	31.339	
		30.513	

Tableau XIII. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne Y' de l'alliage Pb-Sn.

On remarque que l'hétérogénéité de la distribution est moins marquée, et que celle-ci tend plus à se stabiliser autour de 35%.

Sachant que cette distribution fait office d'un positionnement à la colonne Y'.

De la colonne centrale, en tenant compte du sens de refroidissement les micrographies reflètent un maximum au niveau du palier 2' et un minimum au niveau de (1,5).

Colonne Z						
Échantillons	Micrographie	Le % du Pb des différentes plages	% moyen en Pb de l'eutectique			
		38.431				
		37.928				
α		34.584	34,993 %			
	<mark>600 µт</mark>	32.737				
	Bransing Ray Construction	31.288				
	States and the second second	42.615				
		42.203				
B I		42.615	41,659 %			
J-	<u>600 µт</u>	41.381				
		39.482				
	The Aller of Aller and All	39.996				
		37.222				
γ		36.506	36,894 %			
•	<mark>600 µт</mark>	35.880				
		34.866				
		32.649				
		33.578				
n l		32.769	32,742 %			
L	.600 um.	30.905				
		33.811				
	TANKS STREET AND	37.201				
		36.630				
δ		35.251	35,945 %			
	<u>600 µm</u>	39.293				
		31.353				

Tableau XIV. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne Z de l'alliage Pb-Sn.

La distribution obtenue est relativement aléatoire. Sachant que celle-ci fait office d'un positionnement à la colonne Z. En tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense marqué par un pic au niveau de β et un minimum au niveau de η .

	Colonne Z'						
Échantillons	Micrographie	<i>Le % du Pb des différentes plages</i>	% moyen en Pb de l'eutectique				
		30.476					
		32.918					
α'		29.532	29,144 %				
	<u>еб00 µт</u>	27.661					
		25.134					
		33.663					
		32.810					
β'		31.473	31,856 %				
I ^e	<u>600 µm</u>	31.000					
		30.337					
	Carl State State State	33.859					
		32.439					
γ'	<mark>ر 600 بسر</mark>	30.207	31,601 %				
•		31.579					
		29.922					
		37.920					
	State State State	36.445					
n'		37.894	35,734 %				
L L	μ <u>μη 000</u> μ	34.336					
		32.076					
	States and the second	34.118					
		33.530					
δ'		32.394	32,187 %				
	<mark>600 µт</mark>	31.893					
		29.004					

Tableau XV. Micrographie des lamelles de l'eutectique et fraction des échantillons bruts de la colonne Z' de l'alliage Pb-Sn.

La distribution obtenue est relativement aléatoire, sachant que celle-ci fait office d'un positionnement à la colonne Z' (*figure 21*). En tenant compte du sens de refroidissement, les micrographies reflètent un eutectique relativement dense marqué par une augmentation tout au long de la colonne, reflétée par un pic au niveau η' et d'un minimum au niveau de α' .

1.2. Distance interlamellaire

Les résultats de la micrographie et de la distribution de la distance interlamellaire obtenus après élaboration et suivant le sens de coulée à l'aide du logiciel « Imagej », sont illustrés dans les *tableaux (XVI-XXV)*. Des alliages Sn-Zn et Pb-Sn respectivement.

Tableau XVI. Micrographie et distance interlamellaire des échantillons bruts de la colonne X de la plaquette de l'alliage Sn-Zn.

	Colonne X			
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
	he was a second se	20.0		
		30.0		
G	1. I.	44.0	31.6	
C	It T - IT-	23.0		
	aut oc	33.0		
		52.0		
	1. 1.	34.0		
H		32.0	30.2	
		14.0		
	/ 4 50 µm	19.0		
		20.0		
_	S. 174-17-281	21.0		
I	1 1 1 1	21.0	19.2	
	E 11-1 1 18	16.0		
	50 µm	18.0		
	4 2 3 4	54.0		
-	The state of the	26.0		
J	Hamp Frederich	52.0	40.2	
_	50 um	54.0		
		15.0		
	The state of the s	39.0		
		43.0		
K	-1	44.0	33.8	
	50 µm	24.0		
		19.0		

A première vue, on remarque déjà que du point de vue forme, les lamelles sont plutôt uniformes et régulières, de tailles relativement différentes et de volume constant ; avec une distance interlamellaire décroissante suivant le sens de coulée, avec un maximum atteint au palier j.

Colonne Y				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		37.0		
	Cart Harris	23.0		
6	46	37.0	39.2	
	50 µm	49.0		
		50.0		
	100 M	30.0		
		19.0		
7	A PERSONAL STREET	23.0	30.0	
	50 um	46.0		
	Ball 1 Ball	32.0		
	50 µm	29.0		
		22.0		
8		28.0	27.0	
		22.0		
		34.0		
	1 11 32 BE 20 (mm	25.0		
	3/ 2/	14.0		
9	A A A A A A A A A A A A A A A A A A A	15.0	16.8	
	50 µm	15.0		
		15.0		
		27.0		
	15 1	26.0		
10	4	29.0	25.6	
	50 µm	25.0		
		21.0		

Tableau XVII.	Micrographie et distar	nce interlamellaire	des échantillons	bruts de la
	colonne Y de la pl	aquette de l'alliage	Sn-Zn.	

A première vue, on remarque déjà que du point de vue forme des lamelles, c'est transitoire. Des lamelles rectilignes et uniformes aux lamelles de formes aléatoires et irrégulières avec des tailles différentes et un volume relativement constant accompagné par une distance interlamellaire décroissante suivant le sens de coulée, avec un maximum atteint au palier le plus bas 10.

Colonne Y'				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		25.0		
	A STATE FOR	28.0		
6'	and a set of a	21.0	24.0	
	50 µm	22.0		
		24.0		
	I. h	25.0		
	-3 - 1-17	21.0		
7'	1	20.0	22.6	
	50 µm	23.0		
		24.0		
	50 µm	23.0		
		32.0		
8'		20.0	20.8	
	18	14.0		
	14	15.0		
	50 um	24.0		
		46.0		
9'	and the second second	31.0	37.4	
	1 - Kay	27.0		
		59.0		
		13.0		
	T	10.0		
10'		12.0	10.6	
-	s. 50 µm	09.0		
	E H	09.0		

Tableau XVIII. Micrographie et distance interlamellaire des échantillons bruts de la colonne Y' de la plaquette de l'alliage Sn-Zn.

A première vue, on remarque déjà que du point de vue forme des lamelles, c'est plutôt rectiligne, de taille et volume différents, accompagnée par une distance interlamellaire décroissante suivant le sens de coulée, avec un maximum atteint au palier 9'.

Colonne Z				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
	50	40.0		
		43.0		
Ι	y and show	30.0	33.4	
	A CAR	36.0		
	1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	18.0		
	3 × 14 · 15 / 14 · 14	20.0		
	11 14	19.0		
II	12 15	14.0	16.4	
	2 50	15.0		
		14.0		
		32.0		
	1. 1.	19.0		
III		28.0	30.2	
	50 µm	33.0		
		39.0		
		27.0		
		33.0		
IV		24.0	24.0	
		20.0		
	> <u>-</u>	16.0		
	17	11.0		
		19.0		
V	3	16.0	14.4	
	ат <u>50 µт</u>	13.0		
		13.0		

Tableau XIX. Micrographie et distance interlamellaire des échantillons bruts de la colonne Z de la plaquette de l'alliage Sn-Zn.

A première vue, on remarque déjà que du point de vue forme des lamelles, c'est plutôt uniforme, caractérisée par des lamelles rectilignes avec des tailles et des volumes différents, accompagnées par une distance interlamellaire décroissante suivant le sens de coulée, avec un maximum atteint au palier le plus haut I.

Colonne Z'				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		18.0		
	1	27.0		
Ι'	h h	20.0	19.4	
	50 µm	17.0		
		15.0		
		16.0		
	7	15.0		
II'	/3	26.0	18.4	
	50 µm /4 /5	20.0		
	and the second second	15.0		
		23.0		
	the second secon	26.0		
III'	A PHERE	21.0	22.0	
	50 µm	17.0		
		23.0		
		36.0		
	1. Le	35.0		
IV'	8 /	23.0	32.8	
	50 µm	31.0		
		39.0		
		39.0		
	~ ~ ×	46.0		
V'		13.0	40.6	
	50 µm	21.0		
		84.0		

Tableau XX. Micrographie et distance interlamellaire des échantillons bruts de la colonne Z' de la plaquette de l'alliage Sn-Zn.

A première vue, on remarque déjà que du point de vue forme des lamelles, c'est plutôt uniforme, caractérisée par des lamelles rectilignes avec des taille différentes et un volume relativement constant, accompagnées par une distance interlamellaire croissante suivant le sens de coulée, avec un maximum atteint au palier le plus bas V'.

Colonne X				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		16.209		
		20.968		
Α		22.638	24,642	
	_200 jm	30.567		
		32.828		
	(* 207 327 303 338)	14.426		
		18.574		
В		20.967	20,581	
	- 200 µm - 1	21.639		
		27.301		
		15.301		
		19.276		
С		23.483	26,154	
	1.200 pm -1	30.131		
		42.580	-	
		12.597		
	6.68 2.25	21.214		
D		39.834	34,964	
	1.20 mm.	48.520		
		52.659		
		20.236		
	ST-THENKY	22.225		
Ε		25.796	25,749	
	- 200 mm	25.295		
		35.195		

Tableau XXI. Micrographie et distance interlamellaire des échantillons bruts de la colonne X de la plaquette de l'alliage Pb-Sn.

A première vue, on remarque que du point de vue forme, plus on se rapproche du centre, plus les lamelles sont grossières et les distances entres elles sont grandes, avec un pic au niveau du palier D et un minimum au niveau de B.

Colonne Y				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		17.889		
		20.861		
1		26.046	24,983	
	200 um	28.615		
		31.506		
		8.130		
	17 - 10 B B B B B B B B B B B B B B B B B B	13.988		
2	The state	17.588	17,022	
	200 um	20.374		
		24.172		
		9.330		
	Alle APPENDE	16.473		
3		20.861	20,765	
	200 um	26.388		
		30.777		
	65 20 ANNS 24.0 - 5	8.158		
		11.224		
4		14.634	16,241	
	<u>⊢200 nm</u>	18.578		
		28.615		
		6.650		
		8.224		
5		8.065	9,426	
	<u>_ 200 nm _</u>	11.290		
		12.903		

Tableau XXII. Micrographie et distance interlamellaire des échantillons bruts de la colonne Y de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon, on remarque une distribution aléatoire des distances interlamelaires, ainsi que point de vue forme, plus on se rapproche du milieu, plus les lamelles sont fines, et plus on descend vers le sens de coulée, plus les lamelles sont proches entres elles, avec un pic au niveau du palier 1; et un minimum au niveau de 5.

Colonne Y'				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
	CONTRACTOR NOT	24.619		
	Children Children	29.739	-	
1'	Children Starting	32.658	34,060	
	200 µm	38.472		
		44.813		
		17.884		
	ST. Carton	19.510		
2'		21.198	22,737	
	<u>_ 200 нт</u>	26.013		
		29.083		
		13.763		
		19.530		
3'	and the state	22.285	24,308	
	200 um	30.188		
		35.776		
	NOTICE STREET	17.815		
		26.034		
4'		29.739	32,358	
	<u>⊢ 200 нт </u>	36.566		
		51.636		
	101/02/02/02	35.090		
		36.096		
5'		38.532	39,645	
	200 mm	43.228		
		45.282		

Tableau XXIII. Micrographie et distance interlamellaire des échantillons bruts de la colonne Y' de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon, on remarque une distribution aléatoire des distances interlamelaires, ainsi, plus on se rapproche du centre du lingot, plus les lamelles sont fines et plus les distances entres elles sont moindres, avec un pic au niveau du palier 5'; et un minimum au niveau de 2'.

Colonne Z				
Échantillons	Micrographie	Distances interlamellaires (µm)	Distance moyenne inter lamellaire (µm)	
		18.243		
	<u>200 µm</u>	25.298	1	
α		27.388	29,598	
		36.556]	
		40.509]	
	Contraction of the	32.649		
		35.363	1	
β	A COMPLET	43.025	43,377	
	<u>⊢ 200 µm</u>	47.423	1	
		58.427	1	
	CREATE ALL PROPERTY	22.399		
		24.370	1	
γ		27.988	31,832	
•	200 um	37.351		
		47.056	1	
	N 642 Y 62" 37 (9	15.999		
		26.045	1	
η	100 100	37.317	35,388	
-	200 um	43.228	1	
		54.351	1	
		22.115		
	State State	28.393]	
δ		34.023	33,480	
	_200 nm	39.091]	
		43.780		

Tableau XXIV. Micrographie et distance interlamellaire des échantillons bruts de la colonne Z de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon, on remarque une distribution aléatoire des distances interlamelaires, ainsi plus on s'approche du milieu de la colonne, plus les lamelles sont grossières et éloignées les unes des autres, avec un pic au niveau du palier β ; et un minimum au niveau de α .

Colonne Z'				
Échantillons	Micrographie	Distances interlamelaires (µm)	Distance moyenne inter lamellaire (µm)	
	HARRING MAN	21.693		
	230110	25.495		
α'	100 C 100	31.570	31,878	
	<mark>, 200 µт</mark>	35.802		
		44.830		
	1	35.235		
		41.599		
β'		42.088	43,199	
		44.252		
		52.823		
	10000000000000000000000000000000000000	21.688		
		25.181		
γ'	223	28.352	29,892	
	<u>⊢ 200 µm</u>	31.999		
		42.241	1	
	101 Ton 2748 - 21, - 246	23.811		
		29.073		
η'		37.614	36,094	
	<u> 200 им </u>	40.317		
		52.232	1	
		6.786		
	SAL SALE	9.327		
δ'	2. Carton Land	12.493	11,688	
	_200 им	14.747		
		15.090		

Tableau XXV. Micrographie et distance interlamellaire des échantillons bruts de la colonne Z' de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon, on remarque une distribution aléatoire des distances interlamelaires avec un pic au niveau du palier β ; et un minimum au niveau de δ '.

1.3. Microdureté

Les résultats de la microdureté des alliages Sn-Zn et Pb-Sn respectivement, obtenus après élaboration et suivant le sens de coulée sont reportés dans les *tableaux (XXVI-XXVII)*.

			Colonne X			
Échantillons	Microdureté HV ₁₀₀				La moyenne	
G	18.18	28.26	20.55	7.89	22.05	19.39
Н	17.55	18.54	15.19	18.92	18.54	17.75
i	21.91	20.12	22.59	24.17	22.44	22.25
j	24.39	17.51	23.10	17.96	19.79	20.55
K	24.39	21.77	65.28	71.86	20.85	40.83
		·	Colonne Y		·	
Échantillons		Mi	icrodureté H	V_{100}		La moyenne
6	22.49	22.39	17.82	18.54	17.89	19.83
7	26.79	16.63	23.52	20.72	18.54	21.24
8	28.97	22.74	28.26	25.49	33.32	27.76
9	27.31	27.58	23.20	22.94	26.53	25.51
10	29.12	25.07	25.31	24.17	22.69	25.27
	Colonne Y'					
Échantillons		Mi	icrodureté H	V_{100}		La moyenne
6'	35.38	41.42	38.75	48.55	40.10	40.84
7'	43.22	38.50	33.32	40.82	34.23	38.09
8'	23.62	25.19	24.28	26.79	26.72	25.32
9'	31.85	25.31	28.26	22.79	31.85	28.01
10'	65.03	49.35	51.51	37.95	40.96	48.96
			Colonne Z			
Échantillons		Mi	icrodureté H	V_{100}		La moyenne
Ι	21.63	24.96	18.71	20.55	21.75	21.55
II	17.96	19.31	23.10	26.28	21.81	21.69
III	26.53	22.00	20.72	28.60	18.54	23.28
IV	20.72	28.97	19.47	25.31	19.31	22.76
V	23.15	27.25	37.31	24.61	24.73	27.41
			Colonne Z'			
Échantillons		Mi	icrodureté H	V_{100}		La moyenne
I'	25.49	22.30	24.90	22.74	21.49	23.39
II'	24.90	28.97	18.18	27.99	24.06	24.82
III'	26.98	28.06	31.94	34.33	21.21	25.50
IV'	25.37	27.25	26.60	27.25	27.85	26.86
V'	26.98	28.06	31.94	34.33	21.21	28.50

Tableau XXVI. Microdureté des échantillons	s bruts de toute la plaquette de l'alliage Sn-
Zn	

Du point de vue répartition de la microdureté au niveau de toute la plaquette, on remarque qu'on parlant de la colonne adjacente X à la source de coulée, c'est plutôt une distribution aléatoire. Pour ce qui concerne les colonnes intermédiaires Y et Z et celles à l'opposé de la source de coulée Z', on tend vers une distribution croissante suivant le sens de coulée. Concernant la colonne centrale Y', elle est caractérisée par une décroissance de la microdureté marquée par un maximum au palier le plus bas 10'.

	Colonne X									
Échantillons		М	icrodureté H	V_{50}		La moyenne				
Α	18,29	11,65	14,89	19,47	20,59	16,978				
В	19,53	16,18	17,21	13,69	18,60	17,420				
С	11,15	12,54	14,24	12,74	10,30	12,194				
D	13,66	13,36	12,89	11,52	12,03	12,692				
Ε	15,28	11,32	15,93	11,87	13,76	13,632				
			Colonne Y							
Échantillons		М	icrodureté H	V_{50}		La moyenne				
1	15,64	18,60	12,99	13,62	13,72	14,914				
2	17,84	14,82	15,93	17,94	20,97	17,500				
3	14,20	15,64	13,02	17,74	34,96	19,112				
4	18,50	20,11	22,22	17,64	33,90	22,474				
5	17,12	12,83	20,65	11,40	13,62	15,124				
	Colonne Y'									
Échantillons		Microdureté HV ₅₀								
1'	13,08	28,34	13,46	16,62	12,48	16,796				
2'	12,14	14,56	12,83	14,42	22,08	15,206				
3'	20,41	13,82	12,86	13,59	12,59	14,654				
4'	12,54	12,68	11,03	11,42	10,84	11,702				
5'	13,86	12,86	12,25	13,52	13,59	13,216				
			Colonne Z		•					
Échantillons		М	icrodureté H	V_{50}		La moyenne				
α	13,52	18,81	14,86	14,49	13,99	15,134				
β	12,99	12,77	12,22	13,27	13,17	12,884				
γ	16,09	16,71	17,64	17,45	16,05	16,788				
ή	15,76	15,40	16,27	12,83	11,30	14,312				
σ	13,66	11,87	12,99	1-0,65	11,78	12,190				
			Colonne Z'							
Échantillons		M	icrodureté H	V_{50}		La moyenne				
α'	11,76	13,79	13,82	13,79	12,28	13,088				
β'	11,73	14,45	13,76	12,99	16,89	13,964				
γ'	17,35	18,98	14,63	13,05	18,29	16,460				
η'	27,66	18,29	10,84	22,64	15,40	18,966				
σ'	11,73	18,29	10,19	14,71	12,57	13,498				

Tableau XXVII. Microdureté des échantillons bruts de toute la plaquette de l'alliage Pb-Zn.

D'un point de vue général, la répartition de la microdureté au niveau de toute la plaquette, la pratique vient conforter la théorie pour ce qui concerne l'hétérogénéité à

l'état brut. On remarque, que plus on se rapproche du centre de la plaquette, plus la dureté augmente, ainsi que le fond de la plaquette regroupe les plus basses duretés qui fait référence à la densité du Plomb plus lourd que l'Etain.

1.4. Résistivité électrique

Les résultats de résistivité électrique obtenus après élaboration et suivant le sens de coulée sont illustrés dans les *tableaux (XXVIII-XXXVII)*. Des alliages Sn-Zn et Pb-Sn respectivement.

Colonne X Résistivité Courant Résistivité Conductivit Tension Epaisseur de Résistivité électrique é électrique Nom de électrique électrique l'échantillon électrique (ρ_0) engendré moyenne l'échantillon imposé (б) (p) [V] [cm] $[\Omega.cm]$ (ρ_{mov}) $[\Omega^{-1}.cm^{-1}]$ [A] $[\Omega.cm]$ $[\Omega.cm]$ 10^{-5} 0.0018 112.5000 45.6300 2.10^{-5} 0.0037 115.6250 46.8975 G 3.10-5 47.3199 0.0056 0.1750 116.6666 46.9812 0.0213 4.10^{-5} 0.0074 115.6250 46.8975 5.10^{-5} 48.1650 0.0095 118.7500 10^{-5} 56.5200 14.3504 0.0009 2.10^{-5} 0.0016 50.2400 12.7559 Η 3.10^{-5} 0.1100 50.2400 12.7559 0.0024 13.0748 0.0764 4. 10⁻⁵ 0.0032 50.2400 12.7559 5. 10^{-5} 0.0040 50.2400 12.7559 10^{-4} 0.0010 6.2800 2.1741 2. 10^{-4} 0.0014 4.3960 1.5219 i 3.10^{-4} 0.0020 0.1500 4.1866 1.4494 1.6378 0.6106 4. 10^{-4} 0.0028 4.3960 1.5218 5. 10^{-4} 0.0035 4.3960 1.5218 5.10^{-3} 0.0041 0.5150 0.1426 6. 10^{-3} 0.5129 0.0049 0.1420 7. 10⁻³ 0.5203 j 0.0058 0.1200 0.1440 0.1430 6.9920 8. 10⁻³ 0.0066 0.5181 01435 9. 10⁻³ 0.0074 0.5164 0.1430 10^{-5} 0.0016 100.4800 52.1692 2. 10^{-5} 50.5389 0.0031 97.3400 Κ 3.10^{-5} 0.0045 0.2250 94.2000 48.9086 50.0824 0.0199 4. 10^{-5} 0.0062 97.3400 50.5389 5. 10^{-5} 0.0074 92.9440 48.2565

Tableau XXVIII. Résistivité électrique des échantillons bruts de coulée, pour la colonne X de l'alliage Sn-Zn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une décroissance soutenue et

conséquente suivant le sens de coulée, avec un pic au niveau du dernier palier K ; en ayant un maximum de conductivité électrique au niveau de l'échantillon j.

Colonne Y									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ_0) [Ω .cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]		
	5.10-5	0.0019		23.8640	10.1875				
	6. 10 ⁻⁵	0.0023	0.185	24.0733	10.2769		0.0969		
6	7. 10 ⁻⁵	0.0027		24.2229	10.3408	10.3239			
	8. 10 ⁻⁵	0.0031		24.3350	10.3886				
	9. 10 ⁻⁵	0.0035		24.4222	10.4258				
	10-4	0.0005		3.1400	1.1957		0.8088		
	2. 10 ⁻⁴	0.0010	0.1650	3.1400	1.1957	1.2364			
7	3. 10 ⁻⁴	0.0015		3.1400	1.1957				
	4. 10 ⁻⁴	0.0021		3.2970	1.2555				
	5. 10 ⁻⁴	0.0028		3.5168	1.3392				
	5.10-4	0.0024	0.1850	3.0000	1.2867	1.3978			
	6. 10 ⁻⁴	0.0031		3.2292	1.3850				
8	7. 10 ⁻⁴	0.0037		3.3036	1.4169		0.7154		
	8. 10 ⁻⁴	0.0043		3.3594	1.4408				
	9. 10 ⁻⁴	0.0049		3.4028	1.4595				
	10-5	0.0011		69.0800	2.6941				
	2. 10 ⁻⁵	0.0022		69.0800	2.6941				
9	3. 10 ⁻⁵	0.0032	0.1300	66.9866	2.6125	67.8449	0.0147		
	4. 10 ⁻⁵	0.0043		67.5100	2.6329				
	5. 10 ⁻⁵	0.0053		66.5680	2.5962				
	5. 10 ⁻⁵	0.0018		22.6080	9.6514				
	6. 10 ⁻⁵	0.0039		40.8200	17.4261				
10	7. 10 ⁻⁵	0.0061	0.1850	54.7257	23.3624	21.9511	0.0455		
	8. 10 ⁻⁵	0.0081		63.5850	27.1444				
	9. 10 ⁻⁵	0.0108		75.3600	32.1712				

Tableau XXIX. Résistivité électrique des échantillons bruts de coulée, pour la colonne Y de l'alliage Sn-Zn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une décroissance soutenue suivant le sens de coulée, avec un pic au niveau du palier 9 ; en ayant un maximum de conductivité électrique au niveau de l'échantillon 7.

Colonne Y'									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]		
	5.10-4	0.0088		11.0000	4.3362				
	6. 10 ⁻⁴	0.0113		11.7708	4.6400		0.2170		
6'	7. 10 ⁻⁴	0.0131	0.1700	11.6964	4.6107	4.6069			
	8. 10 ⁻⁴	0.0153		11.9531	4.7119				
	9. 10 ⁻⁴	0.0173		12.0139	4.7359				
	10-3	0.0016		1.0048	0.4522				
7'	2. 10 ⁻³	0.0032	0.1950	1.0048	0.4522		2.2334		
	3. 10 ⁻³	0.0047		0.9838	0.4427	0.4477			
	4. 10 ⁻³	0.0063		0.9891	0.4451				
	5. 10 ⁻³	0.0079		0.9922	0.4465				
	10-5	0.0013	0.2100	81.6400	39.5627	40.7395	0.0245		
	2. 10^{-5}	0.0027		84.7800	41.0844				
8'	3. 10 ⁻⁵	0.0040		83.7333	40.5772				
	4. 10 ⁻⁵	0.0054		84.7800	41.0844				
	5. 10 ⁻⁵	0.0068		85.4080	41.3887				
	5.10^{-3}	0.0046		0.5776	0.2710				
	6. 10 ⁻³	0.0055		0.5756	0.2856				
9'	7. 10 ⁻³	0.0064	0.2150	0.5741	0.2849	0.2755	3.6303		
	8. 10 ⁻³	0.0070		0.5495	0.2727				
	9. 10 ⁻³	0.0076		0.5303	0.2631				
	10-5	0.0014		87.9200	42.6060	40.496			
	2. 10^{-5}	0.0026		81.6400	39.5627				
10'	3. 10 ⁻⁵	0.0040	0.2100	83.7333	40.5772		0.0247		
	4. 10 ⁻⁵	0.0052		81.6400	39.5627				
	5. 10 ⁻⁵	0.0066		82.8960	40.1714				

Tableau XXX. R Résistivité électrique des échantillons bruts de coulée, pour la colonne Y' de l'alliage Sn-Zn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une distribution aléatoire avec deux pics assez soutenus au niveau des deux paliers 8' et 10'; en ayant un maximum de conductivité électrique au niveau de l'échantillon 7'.

Colonne Z									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantill on [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivitéélectriquemoyenne (ρ_{moy}) [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]		
	10-4	0.0016		10.0480	3.9418				
	2. 10 ⁻⁴	0.0032		10.0480	3.9418				
Ι	3. 10 ⁻⁴	0.0048	0.1700	10.0480	3.9418	3.9640	0.2523		
	4. 10 ⁻⁴	0.0065		10.2050	4.0034				
	5.10 ⁻⁴	0.0081		10.1736	3.9911				
	5.10-3	0.0041		0.5150	0.1842				
II	6. 10 ⁻³	0.0050	-	0.5233	0.1871		3.2020		
	7. 10 ⁻³	0.0058	0.1550	0.5203	0.8718	0.3123			
	8. 10 ⁻³	0.0066		0.5181	0.1853				
	9. 10 ⁻³	0.0074		0.5163	0.1331				
	5.10-5	0.0028	0.1500	35.1680	12.1752	12.6990	0.0787		
	6. 10 ⁻⁵	0.0034		35.5866	13.3200				
III	7. 10 ⁻⁵	0.0040		35.8857	12.4236				
	8. 10 ⁻⁵	0.0047		36.8950	12.7730				
	9. 10 ⁻⁵	0.0053		36.9822	12.8032				
	10-5	0.0021		131.8800	57.8293				
	2. 10^{-5}	0.0043		135.0200	59.2063				
IV	3. 10 ⁻⁵	0.0067	0.1900	140.2533	61.5011	60.1609	0.0166		
	4. 10 ⁻⁵	0.0084		131.8800	57.8294				
	5. 10 ⁻⁵	0.0117		146.9520	64.4385				
	10-3	0.0011		0.6908	0.2231				
	2. 10^{-3}	0.0022		0.6908	0.2231				
V	3. 10^{-3}	0.0034	0.1400	0.7117	0.2299	0.2263	4.4185		
	4. 10 ⁻³	0.0045		0.7065	0.2282				
	5. 10 ⁻³	0.0056		0.7036	0.2273				

Tableau XXXI. Résistivité électrique des échantillons bruts de coulée, pour la colonne Z de l'alliage Sn-Zn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une distribution aléatoire avec un pic au niveau du palier IV ; en ayant un maximum de conductivité électrique au niveau de l'échantillon V.

Colonne Z'									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathbf{G}) [$\mathbf{\Omega}^{-1}$.cm ⁻¹]		
	10 ⁻³	0.0008		0.5024	0.2724				
	2. 10^{-3}	0.0016		0.5024	0.2724		3.6711		
I'	3. 10 ⁻³	0.0024	0.2350	0.5024	0.2724	0.2724			
	4. 10 ⁻³	0.0032		0.5024	0.2724				
	5. 10 ⁻³	0.0040		0.5024	0.2724				
	10 ⁻³	0.0012		0.7536	0.4261	-			
	2. 10 ⁻³	0.0025	0.2450	0.7850	0.4438		2.3232		
II'	3. 10 ⁻³	0.0035		0.7326	0.4142	0.4304			
	4. 10 ⁻³	0.0049		0.7693	0.4349				
	5. 10 ⁻³	0.0061		0.7662	0.4332				
	10-5	0.0012	0.2100	75.3600	36.5195	35.8905	0.0279		
	2. 10 ⁻⁵	0.0023		72.2200	34.9978				
III'	3. 10 ⁻⁵	0.0035		73.2666	35.5049				
	4. 10 ⁻⁵	0.0048		75.3600	36.5195				
	5. 10 ⁻⁵	0.0059		74.1040	35.9108				
	5.10^{-3}	0.0020		0.2512	0.1275				
	6. 10 ⁻³	0.0023		0.2407	0.1222				
IV'	7. 10 ⁻³	0.0027	0.2200	0.2422	0.1229	0.1233	8.1089		
	8. 10 ⁻³	0.0031		0.2434	0.1236				
	9. 10 ⁻³	0.0035		0.2372	0.1204				
	5.10-4	0.0070		8.7500	4.8667				
	6. 10 ⁻⁴	0.0081	0.2400	8.4375	4.6929	4.7860			
V'	7. 10 ⁻⁴	0.0096		8.5714	4.7674		0.2089		
	8. 10 ⁻⁴	0.0109		8.5156	4.7364				
	9. 10 ⁻⁴	0.0126		8.7500	4.8667				

Tableau XXXII. Résistivité électrique des échantillons bruts de coulée, pour la colonne Z' de l'alliage Sn-Zn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une distribution aléatoire suivant le sens de coulée avec un pic au niveau du palier III'; en ayant un maximum de conductivité électrique au niveau de l'échantillon IV'.

Colonne X									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]		
	5.10-5	0,0029		36,424	20,082				
	6. 10 ⁻⁵	0,0035		36,633	20,197		0,04878		
А	7. 10 ⁻⁵	0,0041	0,24	36,782	20,280	20,498			
	8. 10 ⁻⁵	0,0048		37,680	20,774				
	9. 10 ⁻⁵	0,0055		38,377	21,159				
	5.10-5	0,0011		13,816	7,141		0,1370		
	6. 10 ⁻⁵	0,0014	0,225	14,653	7,574	7,298			
В	7. 10 ⁻⁵	0,0016		14,354	6,492				
	8. 10 ⁻⁵	0,0019		14,915	7,709				
	9. 10 ⁻⁵	0,0021		14,653	7,574				
	5.10-3	0,0038	0,1961	0,477	0,279	0,276	3,6127		
	6. 10 ⁻³	0,0045		0,481	0,275				
С	7. 10 ⁻³	0,0053		0,475	0,278				
	8. 10 ⁻³	0,0060		0,471	0,275				
	9. 10 ⁻³	0,0058		0,404	0,277				
	5.10-4	0,0022		2,763	1,586				
	6. 10 ⁻⁴	0,0026		2,721	1,562				
D	7. 10 ⁻⁴	0,0030	0,1923	2,691	1,545	1,566	0,6384		
	8. 10 ⁻⁴	0,0035		2,747	1,577				
	9 . 10 ⁻⁴	0,0039		2,721	1,562				
	10 ⁻³	0,0014		0,879	0,381				
	2. 10^{-3}	0,0028		0,879	0,381				
E	3. 10 ⁻³	0,0042	0,245	0,879	0,381	0,381	2,6246		
	4. 10^{-3}	0,0056		0,879	0,381				
	5. 10^{-3}	0,0070		0,879	0,381	1			

Tableau XXXIII. Résistivité électrique des échantillons bruts de coulée, pour la colonne X de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une décroissance soutenue suivant le sens de coulée avec un pic au niveau du premier palier A ; en ayant un maximum de conductivité électrique au niveau de l'échantillon C.

Colonne Y									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]		
	5.10 ⁻⁵	0,0043		54,008	30,397				
	6. 10 ⁻⁵	0,0054		56,520	31,811	33,447	0.02000		
1	7. 10 ⁻⁵	0,0068	0,245	61,005	34,336		0,02989		
	8. 10 ⁻⁵	0,0080		62,800	35,346				
	9. 10 ⁻⁵	0,0090		62,800	35,346				
	5.10-4	0,0023		2,888	1,659				
2	6. 10 ⁻⁴	0,0028	0,250	2,930	1,683	1 170	0,6763		
	7. 10 ⁻⁴	0,0033		2,960	1,700	1,478			
	8. 10 ⁻⁴	0,0037		2,904	1,668				
	9. 10 ⁻⁴	0,0042		2,930	1,683				
	5.10 ⁻³	0,0023	-	0,288	0,169	0,168			
	6. 10 ⁻³	0,0028		0,293	0,171		5,9523		
3	7. 10 ⁻³	0,0032	0,255	0,287	0,168				
	8. 10 ⁻³	0,0036		0,282	0,165				
	9. 10 ⁻³	0,0041		0,286	0,167				
	10-5	0,0025		157	86,561				
	2. 10 ⁻⁵	0,0050		157	86,561	01 662	0.01000		
4	3. 10 ⁻⁵	0,0080	0,240	167,466	92,332	91,002	0,01090		
	4. 10 ⁻⁵	0,0110		172,700	95,217				
	5. 10 ⁻⁵	0,0141		177,096	97,641				
	5.10^{-4}	0,0029		3,642	2,217				
	6. 10 ⁻⁴	0,0033	0,265	3,454	2,103	2,182	0 4592		
5	7. 10 ⁻⁴	0,0040		3,588	2,184		0,4362		
	8. 10 ⁻⁴	0,0046		3,611	2,198				
	9 . 10 ⁻⁴	0,0052		3,628	2,208				

Tableau XXXIV. Résistivité électrique des échantillons bruts de coulée, pour la colonne Y de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une décroissance soutenue suivant le sens de coulée avec un pic au niveau du palier 4 ; en ayant un maximum de conductivité électrique au niveau de l'échantillon 3.

Colonne Y'									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ_0) [Ω .cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) $[\Omega^{-1}.cm^{-1}]$		
	10-3	0,0012		0,753	0,363				
	2. 10 ⁻³	0,0024		0,753	0,363	0,367	0 7100		
1'	3. 10 ⁻³	0,0037	0,210	0,774	0,373		2,7188		
	4. 10 ⁻³	0,0049		0,769	0,371				
	5. 10 ⁻³	0,0061		0,766	0,369				
	5.10 ⁻³	0,0037		0,464	0,229				
2'	6. 10 ⁻³	0,0045	0,215	0,471	0,232	0.222	4,2808		
	7. 10 ⁻³	0,0053		0,475	0,234	0,233			
	8. 10 ⁻³	0,0061		0,478	0,236				
	9. 10 ⁻³	0,0069		0,481	0,237				
	10 ⁻²	0,0014	_	0,087	0,041	0,0403			
	2. 10^{-2}	0,0027		0,084	0,0399		24,826		
3'	3. 10 ⁻²	0,0041	0,205	0,085	0,0404				
	4. 10^{-2}	0,0054		0,084	0,0399				
	5. 10^{-2}	0,0068		0,085	0,0402				
	5.10-4	0,0020		2,512	1,385				
	6. 10 ⁻⁴	0,0024		2,512	1,385	1 295	0 7220		
4'	7. 10 ⁻⁴	0,0028	0,240	2,512	1,385	1,365	0,7220		
	8. 10 ⁻⁴	0,0032		2,512	1,385				
	9. 10 ⁻⁴	0,0036		2,512	1,385				
	10-3	0,0010		0,628	0,389				
	2. 10^{-3}	0,0018	0,270	0,565	0,350	0,356	2 8074		
5'	3. 10^{-3}	0,0027		0,565	0,350		2,0074		
	4. 10 ⁻³	0,0036		0,565	0,350				
	5. 10 ⁻³	0,0044		0,552	0,342				

Tableau XXXV. Résistivité électrique des échantillons bruts de coulée, pour la colonne Y' de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une décroissance suivant le sens de coulée avec un pic au niveau du palier 4'; en ayant un maximum de conductivité électrique au niveau de l'échantillon 3'.

Colonne Z									
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ_0) [Ω .cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]		
α	5.10^{-4}	0,0039		4,898	2,813				
	6. 10 ⁻⁴	0,0047		4,919	2,825				
	7. 10 ⁻⁴	0,0055	0,250	4,934	2,833	2,848	0,3510		
	8. 10 ⁻⁴	0,0064		5,024	2,885				
	9. 10 ⁻⁴	0,0072		5,024	2,885				
	10-4	0,0020	0,250	12,560	7,213				
β	2. 10 ⁻⁴	0,0030		9,420	5,410		0,1723		
	2. 10 ⁻⁴	0,0045		9,420	5,410	5,803			
	4. 10 ⁻⁴	0,0061		9,577	5,500				
	5. 10 ⁻⁴	0,0076		9,545	5,482				
	5.10^{-5}	0,0025	-	31,400	17,673	17,326	0,05771		
	6. 10 ⁻⁵	0,0030		31,400	17,673				
γ	7. 10 ⁻⁵	0,0034	0,245	30,502	17,168				
	8. 10 ⁻⁵	0,0039		30,615	17,231				
	9. 10 ⁻⁵	0,0043		30,004	16,887				
	10-4	0,0020		12,560	7,357				
	2. 10^{-4}	0,0039		12,246	7,173				
η	3. 10 ⁻⁴	0,0058	0,255	12,141	7,112	7,190	0,13907		
-	4. 10 ⁻⁴	0,0078		12,246	7,173				
	5. 10 ⁻⁴	0,0097		12,183	7,137				
	5.10-4	0,0029		3,642	2,342				
	6. 10 ⁻⁴	0,0036		3,768	2,423				
δ	7. 10 ⁻⁴	0,0042	0,280	3,768	2,423	2,406	0,4154		
	8. 10 ⁻⁴	0,0048		3,768	2,423				
	9. 10 ⁻⁴	0,0054		3,768	2,423				

Tableau XXXVI. R Résistivité électrique des échantillons bruts de coulée, pour la colonne Z de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une croissance soutenue suivant le sens de coulée avec un pic au niveau du palier γ suivie d'une décroissance ; en ayant un maximum de conductivité électrique au niveau de l'échantillon δ .

Colonne Z'										
Nom de l'échantil lon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivit é électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]			
	10-4	0,0012		7,536	3,808					
	2. 10^{-4}	0,0022		6,908	3,491					
α'	3. 10 ⁻⁴	0,0033	0,220	6,908	3,491	3,554	0,28134			
	4. 10 ⁻⁴	0,0044		6,908	3,491					
	5. 10 ⁻⁴	0,0055		6,908	3,491					
	10-6	0,0036		2260,800	1064,708					
β' ² 3 4	2. 10 ⁻⁶	0,0041		1287,400	606,292		1,6193.1 0 ⁻³			
	3. 10 ⁻⁶	0,0054	0,205	1130,400	532,354	617,530				
	4. 10 ⁻⁶	0,0062	-	973,400	458,416					
	5. 10 ⁻⁶	0,0072		904,320	425,883					
	5.10-4	0,0024		3,014	1,454	1,469	0,06806			
	6. 10 ⁻⁴	0,0029		3,035	1,464					
γ'	7. 10 ⁻⁴	0,0034	0,210	3,050	1,471					
	8. 10 ⁻⁴	0,0039		3,061	1,476					
	9. 10 ⁻⁴	0,0044		3,070	1,481					
	10-5	0,0020		125,600	50,494					
	2. 10^{-5}	0,0042		131,880	53,019					
η'	3. 10 ⁻⁵	0,0063	0,175	131,880	53,019	52,211	0,0191			
•	4. 10 ⁻⁵	0,0084		131,880	53,019					
	5. 10 ⁻⁵	0,0102		128,112	51,504					
	10-3	0,0013		0,816	0,243					
	2. 10^{-3}	0,0025		0,785	0,234					
δ'	3. 10^{-3}	0,0038	0,130	0,795	0,237	0,236	4,2229			
	4. 10^{-3}	0,0050		0,785	0,234					
	5. 10^{-3}	0,0063		0,791	0,236					

Tableau XXXVII. Résistivité électrique des échantillons bruts de coulée, pour la colonne Z' de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique à l'état brut, on remarque une distribution aléatoire avec un pic accès soutenu au niveau du palier β '; en ayant un maximum de conductivité électrique au niveau de l'échantillon δ '.
2. Echantillons laminés

2.1. Distribution de l'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique obtenus après déformation à froid (laminage) et suivant le sens de coulée en ayant utilisé le logiciel "Imagej", sont illustrés dans les *tableaux (XXXVIII à XLVII)*; des alliages Sn-Zn et Pb-Sn respectivement.

Tableau XXXVIII. Micrographie des lamelles de l'eutectique après laminage	et leurs
fractions pour de la colonne X de l'alliage Sn-Zn.	

Colonne X			
Echantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique
		10%	
		17%	
G		15%	14.4%
U		16%	
	300µm	14%	
		07%	
		10%	
H		15%	12.0%
		13%	
	300µm	15%	
		11%	
		13%	
1		11%	12.0%
-		12%	
	<u>З00µт</u>	09%	
		13%	
_		09%	
J		10%	10.4%
Ū		08%	
	300µm	12%	
		21%	
		19%	
K		17%	19.8%
	300um	21%	
		21%	

On remarque que la distribution obtenue est décroissante suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier K ; avec des valeurs d'eutectique relativement amoindries par rapport à l'état brut.

Colonne Y			
échantillon	Micrographie	le % du Zn des différentes plages	% moyen en Zn de l'eutectique
		12%	
		10%	
6		12%	15.4%
	100 C	15%	
		17%	
		10%	
		9%	
7		9%	9.6%
-		10%	
	300µm	10%	
		9%	
		8%	
8		8%	9.4%
_	300µm	10%	
	12%	12%	
	85 4 7 0 8 6 0 0 0 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	10%	
		9%	
9		9%	10.0%
	300mm	10%	
		12%	
		12%	
		14%	
10		12%	10.6%
	State of the state	6%	
		9%	

Tableau XXXIX.	Micrographie des lamelles de l'eutectique après laminage	et leurs
f	ractions pour de la colonne Y de l'alliage Sn-Zn.	

On remarque que la distribution obtenue est caractérisée par une décroissance suivie d'une croissance suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier 6 ; avec des valeurs d'eutectique relativement amoindries par rapport à l'état brut.

Colonne Y'			
Echantillon	Micrographie	<i>Le % du Zn des différentes plages</i>	% moyen en Zn de l'eutectique
		17%	
		14%	_
6'		16%	16.2%
		18%	_
	· · · · · · · · · · · · · · · · · · ·	16%	_
		8%	
		11%	_
7'		12%	10.0%
	300µm	10%	
		9%	
		24%	
		26%	
8'		20%	24.4%
		24%	
		28%	
		15%	
		20%	
9'		21%	17.8%
	300µm	16%	
		17%	
		12%	
		8%	
10'		8%	9.2%
	200μm 	10%	
		8%	

Tableau XL. Mi	crographie des lamelles	de l'eutectique	e après laminage e	et leurs fractions
	pour de la colon	ne Y' de l'allia	ge Sn-Zn.	

On remarque que la distribution obtenue est aléatoire suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier 8'; avec des valeurs d'eutectique relativement amoindries par rapport à l'état brut.

Colonne Z			
échantillon	micrographie	le % du Zn des différentes plages	% moyen en Zn de l'eutectique
		18%	
Ι		18%	19.4%
_		18%	
	300µm	19%	
		19%	
		24%	
II		19%	18.8%
	300µm	17%	
	a an	15%	
		18%	
	and the second	17%	
III		18%	17.2%
	300µm_	16%	
	0079781202990407995050	17%	
	en der Fellenik der Anderste Statisker ander sternik die ein Statisk	16%	
		15%	
IV		13%	14.2%
	300um	15%	
		12%	
		21%	
		21%	
V		16%	15.4%
	300µm	20%	
		18%	

Tableau XLI. Micrograp	hie des lamelles	de l'eutectique	après laminage	et leurs
fractions p	our de la colon	ne Z de l'alliag	e Sn-Zn.	

On remarque que la distribution obtenue est décroissante suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier le plus haut I ; avec des valeurs d'eutectique relativement amoindries par rapport à l'état brut.

Colonne Z'			
échantillon	micrographie	le % du Zn des différentes plages	% moyen en Zn de l'eutectique
	WERE REPORTED FOR THE REPORT	17%	
		13%	
Ι'		16%	14.4%
	300µm	10%	
		16%	
		19%	
		21%	
Π		19%	18.8%
	300µm	17%	
	A MORE CONTRACTORY	18%	
		15%	
		16%	
III'	e The ment of South	11%	12.8%
		9%	
		13%	
		20%	
		19%	
IV'		16%	18.4%
	300µm	17%	
	enter met sond in enter in enter	20%	
		21%	
		22%	
V'		23%	15.4%
	300µm	20%	
		24%	

Tableau XLII. M	licrographie des lamelle	es de l'eutectique a	près laminage et leurs
fr	actions pour de la color	ne Z' de l'alliage	Sn-Zn.

On remarque que la distribution obtenue dans tous les échantillons de la plaquette après laminage sont caractérisés par une distribution aléatoire avec un pic au niveau de l'échantillon II' suivant le sens de coulée; avec des valeurs d'eutectique relativement rapprochées et amoindries par rapport à l'état brut.

Colonne X			
échantillon	Micrographie	le % du Pb des différentes plages	% moyen en Pb de l'eutectique
	C HOWER DE HOUSERN MINE SAME STAND	31.163	
		33.073	
A		32.291	31,266%
	.600 um.	31.830	
		27.977	
		33.923	
		33.954	
B		32.028	33,448%
	<mark>600 μm</mark>	33.155	
	RELAKTION DIN CHURCH DIN THE	34.181	
		29.031	
		29.645	
C		28.010	28,780 %
_	. <mark>600 μm</mark> ,	29.645	
		27.569	
		24.454	
		23.281	
D		23.232	23,214%
	⁶⁰⁰ μm,	22.572	
		22.533	
		30.211	
		30.438	
E	and the second	28.458	30,960%
	.600 um.	35.007	
		30.687	

Tableau XLIII. Micrographie des lamelles de l'eutectique après laminage et leurs fractions pour de la colonne X de l'alliage Pb-Sn.

On remarque que la distribution obtenue dans tous les échantillons de la plaquette après laminage sont caractérisés par une distribution décroissante accompagnée d'un pic au niveau du palier E suivant le sens de coulée; avec des valeurs d'eutectique relativement rapprochées et amoindries par rapport à l'état brut.

Colonne Y			
échantillon	Micrographie	le % du Pb des différentes plages	% moyen en Pb de l'eutectique
	Supplementation and a second statement of	28.775	
		29.077	
1		29.123	29,135 %
_	600 um	29.947	
	Poor mil	28.775	
		28.216	
		28.250	
2		27.337	27,862%
	.600 um.	27.904	
		27.605	
		29.101	
		27.723	
3		30.327	30,898%
_	,600 µm,	31.459	
		35.882	
	AND REPORTS TO DO TRADE AND ADDRESS OF A 1 APRIL	32.191	
		29.025	
4		29.842	29,543%
	600 um	28.811	
	A COMPANY POOR POOR POINT	27.847	
		31.811	
		33.322	
5	Same and the second second	32.370	31,883%
	<u>600 μm</u>	31.031	
		30.881	

Tableau XLIV. Micrographie des lamelles de l'eutectique après laminage et leurs fractions pour de la colonne Y de l'alliage Pb-Sn.

On remarque que la distribution obtenue dans tous les échantillons de la plaquette après laminage sont caractérisés par une distribution aléatoire accompagnée d'un pic au niveau du palier 5 suivant le sens de coulée; avec des valeurs d'eutectique relativement rapprochées et amoindries par rapport à l'état brut.

Colonne Y'								
échantillon	Micrographie	le % du Pb des différentes plages	% moyen en Pb de l'eutectique					
	Low Average International Contractor in Contractory	34.745						
		33.173						
1'		33.034	32,045%					
	.600 um.	31, 715						
	March Carlos Loo Land	27.558						
	NERRORMERTICAN OF MATCHING CO. CONTINUED	34.284						
		34.123						
2'		35.638	34,7446%					
	.600 um.	35.920						
		33.758						
		36.007						
	р <mark>ійці (1997)</mark>	36.763						
3'		36.705	36,464%					
		35.622						
		37.225						
	THE STREETWORK WORKS AND ADDREET AND ADDREET ADDREET	39.195						
		40.205						
4'		41.273	39,505%					
	.600 um.	39.441						
		37.413						
	Martin Parts	36.625						
		35.818						
5'	and the second second	35.728	35,355%					
C	,600 μm,	34.640						
		33.964						

Tableau XLV.	Micrographie des lamelles de l'eutectique	après laminage et leurs
	fractions pour de la colonne Y' de l'alliage	e Pb-Sn.

On remarque que la distribution obtenue dans tous les échantillons du lingot après laminage sont caractérisés par une distribution croissante suivie d'une chute de la fraction au niveau de l'échantillon 5'caractérisé d'un pic au niveau du palier 4' suivant le sens de coulée; avec des valeurs d'eutectique relativement rapprochées et amoindries par rapport à l'état brut.

Colonne Z								
échantillon	Micrographie	le % du Pb des différentes plages	% moyen en Pb de l'eutectique					
	DA-SERVERT-CONTRACTION/DEVENTION/	32.736						
		35.926						
α		34.990	34,242%					
	600 um.	33.220						
	Provide Activity in the second	34.249						
		36.659						
		32.580						
β		33.318	33,001%					
P	<mark>ј600 µт</mark> ј	31.468						
		30.984						
		38.276						
		39.760						
γ		37.597	38,238%					
•	<u>ран 108</u>	37.648						
		37.911						
	AND INCOMENDARIES.	40.178						
		39.536						
n		38.239	38,564%					
L	.600 um	38.639						
	NET COMPANY IN THE	36.232						
	forest and a second second	38.315						
		37.691						
δ	AND S SR SA	36.383	36,338%					
	<mark>600 µm</mark>	34.802						
	hand Real Statistics	34.500						

Tableau XLVI. Micrographie des lamelles de l'eutectique après laminage et leurs fractions pour de la colonne Z de l'alliage Pb-Sn.

On remarque que la distribution obtenue dans tous les échantillons du lingot après laminage sont caractérisés par une distribution aléatoire caractérisée par un pic au niveau des deux paliers η et γ suivant le sens de coulée ; avec des valeurs d'eutectique relativement rapprochées et amoindries par rapport à l'état brut.

Colonne Z'									
échantillon	Micrographie	le % du Pb des	% moyen en Pb de L'eutectique						
		34.909	r cutetujue						
		32.213							
α'		30.746	32,161%						
~	,600 um,	31.039							
		31.899							
		32.651							
		34.223							
β'		30.447	32,211%						
P	600 um.	32.210							
	and the second second	31.525							
		34.416							
		34.177							
γ'		33.848	33,295%						
•	<u>600 µm</u>	32.431							
	*215-3259-29-32-7-5-96	31.604							
		34.146							
	and the second	33.028							
ח'		33.296	33,058%						
L L	<u>600 µm</u>	32.628							
		32.193							
	A CONTRACT	33.795							
.		33.924							
δ'		32.550	32,675%						
	<u>600 µm</u> ,	31.461							
	INTERIOR ZINERANA	31.646							

Tableau XLVII. Micrographie des lamelles de l'eutectique après laminage et le	eurs
fractions pour de la colonne Z' de l'alliage Pb-Sn.	

On remarque que la distribution obtenue dans tous les échantillons du lingot après laminage sont caractérisés par une distribution aléatoire caractérisés par un pic au niveau des deux paliers η ' et γ ' suivant le sens de coulée ; avec des valeurs d'eutectique très rapprochées et amoindries par rapport à l'état brut.

2.2. Résistivité électrique

Les résultats de résistivité électrique des alliages Sn-Zn et Pb-Sn respectivement, obtenus après laminage et suivant le sens de coulée sont illustrés dans les *tableaux* (*XLVIII à LVII*).

Tableau XLVIII. Résistivité électrique de la colonne X de l'alliage Sn-Zn après laminage.

Colonne X										
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) $[\Omega^{-1}.cm^{-1}]$			
	5.10-6	0.0028		351.6800	68.5073					
	6. 10 ⁻⁶	0.0034		355.8666	69.3228					
G	7. 10 ⁻⁶	0.0040	0.0844	358.8571	69.9054	69.1743	0.0145			
	8. 10 ⁻⁶	0.0045		353.2500	68.8131					
	9. 10 ⁻⁶	0.0051		355.8666	69.3228					
	10 ⁻³	0.0014		0.8792	0.1108					
	2. 10^{-3}	0.0028		0.8792	0.1108		9.1291			
H	3. 10 ⁻³	0.0041	0.0546	0.8582	0.1081	0.1095				
	4. 10 ⁻³	0.0055		0.8635	0.1088					
	5. 10 ⁻³	0.0069		0.8664	0.1092					
	5.10 ⁻⁴	0.0045		5.6520	1.0846	0.9906	1.0095			
	6. 10 ⁻⁴	0.0053		5.5473	0.9536					
i	7. 10 ⁻⁴	0.0063	0.0745	5.6520	0.9716					
	8. 10 ⁻⁴	0.0072		5.6520	0.9716					
	9. 10 ⁻⁴	0.0081		5.6520	0.9716					
	5.10-5	0.0020		25.1200	3.4540					
	6. 10 ⁻⁵	0.0024		25.1200	3.4540					
i	7. 10 ⁻⁵	0.0029	0.0596	26.0171	3.5774	3.6019	0.2776			
5	8. 10 ⁻⁵	0.0033		25.9050	3.5619					
	9. 10 ⁻⁵	0.0037		25.8177	3.9624					
	5.10-5	0.0010		12.5600	3.3912					
	6. 10 ⁻⁵	0.0012		12.5600	3.3912					
K	7. 10 ⁻⁵	0.0014	0.1117	12.5600	3.3912	3.3912	0.2949			
	8. 10 ⁻⁵	0.0016		12.5600	3.3912					
	9. 10 ⁻⁵	0.0018	1	12.5600	3.3912	1				

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier G ; en ayant un maximum de conductivité électrique au niveau de l'échantillon H.

Colonne Y										
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantill on [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivit é électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]			
	5.10-4	0.0018		2.2608	0.4795					
	6. 10 ⁻⁴	0.0020		2.0933	0.4439					
6	7. 10 ⁻⁴	0.0022	0.0919	1.9737	0.4186	0.4223	2.3679			
	8. 10 ⁻⁴	0.0024		1.8840	0.3996					
	9. 10 ⁻⁴	0.0025		1.7444	0.3699					
	10 ⁻⁵	0.0021		131.8800	24.9253					
	2. 10 ⁻⁵	0.0028		87.9200	16.6169		0.0546			
7	3. 10 ⁻⁵	0.0042	0.0819	87.9200	16.6169	18.3261				
	4. 10 ⁻⁵	0.0056		87.9200	16.6169	-				
	5. 10 ⁻⁵	0.0071		89.1760	16.8543					
	5.10 ⁻⁵	0.0014	0.0919	17.5840	3.7296	3.7792	0.2646			
	6. 10 ⁻⁵	0.0016		16.7466	4.1883					
8	7. 10 ⁻⁵	0.0019		17.0457	3.6154					
	8. 10 ⁻⁵	0.0022		17.2700	3.6630					
	9. 10 ⁻⁵	0.0025		17.4444	3.6999					
	5.10 ⁻⁶	0.0031		389.3600	57.9368					
	6. 10 ⁻⁶	0.0038		397.7333	59.1827					
9	7. 10 ⁻⁶	0.0045	0.0645	403.7142	60.0727	24.8412	0.0426			
	8. 10 ⁻⁶	0.0053		416.0500	61.9082					
	9. 10 ⁻⁶	0.0060		418.6666	62.2976					
	10-5	0.0018		113.0400	23.9758					
	2. 10 ⁻⁵	0.0039		122.4600	25.9738					
10	3. 10 ⁻⁵	0.0062	0.0919	129.7866	27.5277	26.8440	0.0373			
	4. 10 ⁻⁵	0.0084		131.8800	27.9717					
	5. 10 ⁻⁵	0.0108		135.6480	28.7709	1				

Tableau XLIX. Résistivité électrique de la colonne Y de l'alliage Sn-Zn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier 10; en ayant un maximum de conductivité électrique au niveau de l'échantillon 6.

Colonne Y'											
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	$\begin{array}{c} R\acute{e}sistivit\acute{e}\\ \acute{e}lectrique\\ moyenne\\ (\rho_{moy})\\ [\Omega.cm] \end{array}$	Conductivit é électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]				
	5.10 ⁻⁵	0.0034		42.7040	9.3134						
	6. 10 ⁻⁵	0.0040		41.8666	9.1311						
6'	7. 10 ⁻⁵	0.0047	0.0943	42.1657	9.1963	9.2035	0.1087				
	8. 10 ⁻⁵	0.0054		42.3900	9.2453						
	9. 10 ⁻⁵	0.0060		41.8666	9.1311						
	10-3	0.0017		1.0676	0.2385						
	2. 10 ⁻³	0.0034		1.0676	0.2385		4.2319				
7'	3. 10 ⁻³	0.0050	0.0968	1.0466	0.2338	0.2363					
	4. 10 ⁻³	0.0067		1.0519	0.2350	-					
	5. 10 ⁻³	0.0084		1.0550	0.2357						
	10 ⁻⁵	0.0023	-	144.4400	34.7667	34.9582	0.0286				
	2. 10 ⁻⁵	0.0047		147.5800	35.5225						
8'	3. 10 ⁻⁵	0.0070	0.1043	146.5333	35.2706						
	4. 10 ⁻⁵	0.0092		144.4400	34.7667						
	5. 10 ⁻⁵	0.0114		143.1840	34.4643						
	10 ⁻⁴	0.0049		30.6250	6.7467						
	2. 10 ⁻⁴	0.0114		35.6250	7.8482						
9'	3. 10 ⁻⁴	0.0183	0.0950	38.1250	8.3989	8.2874	0.1207				
	4. 10 ⁻⁴	0.0263		41.0938	9.0529						
	5. 10 ⁻⁴	0.0341		42.6250	9.3903						
	5. 10 ⁻⁵	0.0022		27.6320	6.6510						
	6. 10 ⁻⁵	0.0027		28.2600	6.7993	7.0275					
10'	7. 10 ⁻⁵	0.0033	0.1043	29.6057	7.1231		0.1423				
	8. 10 ⁻⁵	0.0038		29.8300	7.1771						
	9. 10 ⁻⁵	0.0044		30.7022	7.3869	1					

Tableau L. Résistivité électrique de la colonne Y' de l'alliage Sn-Zn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier 8'; en ayant un maximum de conductivité électrique au niveau de l'échantillon 7'.

Colonne Z										
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathbf{G}) [Ω^{-1} .cm ⁻¹]			
	5.10-5	0.0026		32.6560	6.3614					
	6. 10 ⁻⁵	0.0031		32.4466	6.3206					
Ι	7. 10 ⁻⁵	0.0036	0.0844	32.2971	6.2915	6.2991	0.1588			
	8. 10 ⁻⁵	0.0041		32.1850	6.2696					
	9. 10 ⁻⁵	0.0046		32.0977	6.2526					
	10-4	0.0011		6.9080	1.2276					
	2. 10 ⁻⁴	0.0022		6.9080	1.2276		0.8243			
II	3. 10 ⁻⁴	0.0032	0.0770	6.9080	1.2276	1.2131				
	4. 10 ⁻⁴	0.0043	-	6.7510	1.1997					
	5. 10 ⁻⁴	0.0053		6.6568	1.1829					
	5.10 ⁻⁴	0.0024	0.0745	3.0144	0.5182	0.5355	1.8675			
	6. 10 ⁻⁴	0.0030		3.1400	0.5398					
III	7. 10 ⁻⁴	0.0035		3.1400	0.5398					
	8. 10 ⁻⁴	0.0040		3.1400	0.5398					
	9. 10 ⁻⁴	0.0045		3.1400	0.5398					
	10-4	0.0028		17.5840	3.8263					
	2. 10^{-4}	0.0055		17.2700	3.7579					
IV	3. 10 ⁻⁴	0.0079	0.0943	16.5373	3.5985	3.4646	0.2886			
	4. 10 ⁻⁴	0.0105		16.4850	3.5871					
	5. 10 ⁻⁴	0.0130		16.3280	3.5530					
	5.10 ⁻³	0.0019		0.2386	0.0383					
	6. 10 ⁻³	0.0023		0.2407	0.0386					
V	7. 10^{-3}	0.0037	0.0695	0.3319	0.0532	0.0416	24.0038			
	8. 10 ⁻³	0.0031		0.2434	0.0390					
	9. 10 ⁻³	0.0035		0.2442	0.0392	1				

Tableau LI. Résistivité électrique de la colonne Z de l'alliage Sn-Zn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition décroissante suivant le sens de coulée avec un pic au niveau du dernier palier IV ; en ayant un maximum de conductivité électrique au niveau de l'échantillon V.

Colonne Z'											
Nom de l'échantill on	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivitéélectriquemoyenne $(ρ_{moy})$ [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]				
	5.10-4	0.0028		3.5168	0.9471						
	6. 10 ⁻⁴	0.0031		3.2446	0.8738						
I'	7. 10 ⁻⁴	0.0036	0.1167	3.2297	0.8698	0.8764	1.1411				
	8. 10 ⁻⁴	0.0040		3.1400	0.8456						
	9. 10 ⁻⁴	0.0045		3.1400	0.8456						
	10-5	0.0021		131.8800	37.0055						
	2. 10 ⁻⁵	0.0024		75.3600	21.1460		0.0416				
II'	3. 10 ⁻⁵	0.0035	0.1216	73.2666	20.5586	24.0418					
	4. 10 ⁻⁵	0.0047		73.7900	20.7055						
	5. 10 ⁻⁵	0.0059		74.1040	20.7936						
	5.10-4	0.0030	0.0850	3.7500	0.7391	0.7777	1.2858				
	6.10 ⁻⁴	0.0038		3.9583	0.7802						
III'	7.10 ⁻⁴	0.0045		4.0179	0.7919						
	8.10 ⁻⁴	0.0050		3.9063	0.7699						
	9.10 ⁻⁴	0.0059		4.0972	0.8076						
	10-3	0.0038		2.3864	0.6014						
	2. 10^{-3}	0.0076		2.3864	0.6014						
IV'	3.10^{-3}	0.0113	0.1092	2.3655	0.5961	0.5983	1.6715				
	4. 10 ⁻³	0.0151		2.3707	0.5974						
	5. 10 ⁻³	0.0188		2.3613	0.5950						
	10-5	0.0007		43.9600	13.3507						
	2. 10 ⁻⁵	0.0014		43.9600	13.3507						
V'	3. 10 ⁻⁵	0.0020	0.1316	41.8666	12.7149	13.2235	0.0756				
	4. 10 ⁻⁵	0.0028		43.9600	13.3507						
	5. 10 ⁻⁵	0.0035		43.9600	13.3507						

Tableau LII. Résistivité électrique de la colonne Z' de l'alliage Sn-Zn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du dernier palier II'; en ayant un maximum de conductivité électrique au niveau de l'échantillon IV'. Après laminage la résistivité électrique est descendue soit concrètement comme pour les échantillons (III', 10', K,

9...etc.), soit partiellement comme pour les échantillons (i, 7) soit carrément augmentée radicalement ou partiellement comme les échantillons (V', I, III, 9', 10, 7,...etc.).

Colonne X										
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]			
	10-4	0,0024		15,072	6,392					
	2. 10^{-4}	0,0048		15,072	6,392					
А	3. 10 ⁻⁴	0,0073	0,1846	15,281	6,480	6,468	0,1546			
	4. 10 ⁻⁴	0,0098		15,386	6,525					
	5. 10 ⁻⁴	0,0123		15,448	6,551					
	10-5	0,0026		163,280	64,929					
	2. 10 ⁻⁵	0,0048		150,720	59,935		0,0169			
В	3. 10 ⁻⁵	0,0070	0,1731	146,533	48,270	58,950				
	4. 10 ⁻⁵	0,0094		147,580	58,686					
	5. 10 ⁻⁵	0,0126		158,256	62,932					
	10 ⁻⁴	0,0011		6,908	3,112	3,104	0,3221			
	2. 10^{-4}	0,0022		6,908	3,112					
С	3. 10 ⁻⁴	0,0032	0,1961	6,986	3,017					
	4. 10 ⁻⁴	0,0044		6,908	3,112					
	5. 10 ⁻⁴	0,0056		7,033	3,168					
	10 ⁻³	0,0021		1,318	0,583					
	2. 10 ⁻³	0,0043		1,350	0,596					
D	3. 10 ⁻³	0,0064	0,1923	1,339	0,592	0,590	1,6926			
	4. 10 ⁻³	0,0085		1,334	0,589					
	5. 10 ⁻³	0,0107		1,343	0,594					
	5.10 ⁻⁴	0,0023		2,888	1,251					
	6. 10 ⁻⁴	0,0028		2,930	1,269					
Е	7. 10 ⁻⁴	0,0032	0,1885	2,870	1,243	1,058	0,9452			
	8. 10 ⁻⁴	0,0037		2,904	1,257					
	9 . 10 ⁻⁴	0,0042		2,930	1,269					

Tableau LIII. Résistivité électrique de la colonne X de l'alliage Pb-Sn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du dernier palier B; en ayant un maximum de conductivité électrique au niveau de l'échantillon D.

Colonne Y										
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	$\begin{array}{c} R\acute{e}sistivit\acute{e}\\\acute{e}lectrique\\(\rho_0)\\[\Omega.cm]\end{array}$	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]			
	5.10-4	0,0038		4,772	2,067					
	6. 10 ⁻⁴	0,0047		4,919	2,130					
1	7. 10 ⁻⁴	0,0057	0,1885	5,113	2,214	2,190	0,4566			
	8. 10 ⁻⁴	0,0066		5,181	2,243					
	9. 10 ⁻⁴	0,0076		5,303	2,296					
	5.10 ⁻⁴	0,0022		2,763	1,221					
	6. 10 ⁻⁴	0,0026		2,721	1,202		0,7396			
2	7. 10 ⁻⁴	0,0030	0,1923	2,355	1,189	1,352				
	8 . 10 ⁻⁴	0,0035		2,747	1,214					
	9. 10 ⁻⁴	0,0040		2,791	1,233					
	5.10-5	0,0019		23,863	21,501	22,403	0,0446			
	6. 10 ⁻⁵	0,0022		23,026	21,689					
3	7. 10 ⁻⁵	0,0026	0,1961	23,325	22,228					
	8. 10 ⁻⁵	0,0029		22,765	23,340					
	9. 10 ⁻⁵	0,0033		23,026	23,261					
	10 ⁻⁴	0,0013		8,164	3,462					
	2. 10 ⁻⁴	0,0027		8,478	3,595					
4	3. 10 ⁻⁴	0,0040	0,1846	8,373	3,551	3,564	0,28055			
	4. 10 ⁻⁴	0,0054		8,478	3,593					
	5. 10 ⁻⁴	0,0068		8,540	3,621					
	5.10 ⁻⁴	0,0026		3,265	1,529					
	6. 10 ⁻⁴	0,0030		3,140	1,470					
5	7. 10 ⁻⁴	0,0036	0,2038	3,229	1,512	1,504	0,6648			
	8 . 10 ⁻⁴	0,0041		3,218	1,507					
	9. 10 ⁻⁴	0,0046		3,209	1,503					

Tableau LIV. Résistivité électrique de la colonne Y de l'alliage Pb-Sn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du dernier palier 3; en ayant un maximum de conductivité électrique au niveau de l'échantillon 2.

	Colonne Y'						
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	$\begin{array}{c} R\acute{e}sistivit\acute{e}\\ \acute{e}lectrique\\ moyenne\\ (\rho_{mov})\\ [\Omega.cm] \end{array}$	Conductivité électrique (Ϭ) [Ω ⁻ ¹ .cm ⁻¹]
	10 ⁻⁴	0,0014		8,792	3,262		
	2. 10 ⁻⁴	0,0028		8,792	3,262		
1'	3. 10 ⁻⁴	0,0042	0,1615	8,792	3,262	3,262	0,3065
	4. 10 ⁻⁴	0,0056		8,792	3,262		
	5. 10 ⁻⁴	0,0070		8,792	3,262		
	10-5	0,0017		106,760	40,565		
	2. 10 ⁻⁵	0,0035		109,900	41,758	49,020	0,02039
2'	3. 10 ⁻⁵	0,0059	0,1654	123,506	46,929		
	4. 10 ⁻⁵	0,0083		130,310	49,514		
	5. 10 ⁻⁵	0,0139		174,584	66,337		
	5.10-5	0,0044	0,1577	55,264	20,021	21,200	
	6. 10 ⁻⁵	0,0054		56,520	20,476		0,04716
3'	7. 10 ⁻⁵	0,0063		56,520	20,476		
	8. 10 ⁻⁵	0,0073		57,305	20,760		
	9. 10 ⁻⁵	0,0096		66,986	24,268		
	5.10-5	0,0019		23,864	10,120		
	6. 10 ⁻⁵	0,0022		23,026	9,765		0,10163
4'	7. 10 ⁻⁵	0,0026	0,1846	23,325	9,891	9,839	
	8. 10 ⁻⁵	0,0029		22,765	9,654		
	9. 10 ⁻⁵	0,0033		23,026	9,765		
	10 ⁻⁴	0,0014		8,792	4,195		
	2. 10 ⁻⁴	0,0028		8,792	4,195	1 233	0 2362
5'	3. 10 ⁻⁴	0,0042	0,2077	8,792	4,195	7,233	0,2302
	4. 10 ⁻⁴	0,0057		8,949	4,269		
	5. 10 ⁻⁴	0,0072		9,043	4,315		

Tableau LV. Résistivité électrique de la colonne Y' de l'alliage Pb-Sn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition croissante jusqu'à atteindre le pic au niveau de l'échantillon 2' suivie d'une décroissance suivant le sens de coulée; en ayant un maximum de conductivité électrique au niveau de l'échantillon 1'.

Colonne Z							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathfrak{G}) [Ω^{-1} .cm ⁻¹]
	5.10 ⁻⁴	0,0050		6,280	2,774		
	6. 10 ⁻⁴	0,0060		6,280	2,774	2 814	0 3553
α	7. 10 ⁻⁴	0,0071	0,1923	6,369	2,814	2,014	0,3333
	8. 10 ⁻⁴	0,0082		6,437	2,843		
	9. 10 ⁻⁴	0,0093		6,489	2,866		
	10 ⁻⁴	0,0016		10,048	4,438		
	2. 10 ⁻⁴	0,0031		9,734	4,300	4,313	0,2318
β	3. 10 ⁻⁴	0,0046	0,1923	9,629	4,254		
	4. 10 ⁻⁴	0,0062		9,734	4,300		
	5. 10 ⁻⁴	0,0077		9,671	4,272		
	5.10-5	0,0014		17,584	7,615		
	6. 10 ⁻⁵	0,0017	0,1885	17,793	7,705	7,958	0,1256
γ	7. 10 ⁻⁵	0,0021		18,840	8,158		
	8. 10 ⁻⁵	0,0024		18,840	8,158		
	9. 10 ⁻⁵	0,0027		18,840	8,158		
	5.10 ⁻⁴	0,0016		2,009	0,906		
	6. 10 ⁻⁴	0,0019		1,988	0,896	0 891	1 12208
η	7. 10 ⁻⁴	0,0022	0,1962	1,973	0,889	0,071	1,12200
	8. 10 ⁻⁴	0,0025		1,962	0,884		
	9. 10 ⁻⁴	0,0028		1,953	0,881		
	10 ⁻⁴	0,0030		18,840	9,322		
	2. 10 ⁻⁴	0,0062		19,468	9,633	9 721	0 10286
δ	3. 10 ⁻⁴	0,0095	0,2154	19,886	9,841	7,141	0,10200
	4. 10 ⁻⁴	0,0127		19,939	9,866		
	5. 10 ⁻⁴	0,0160		20,096	9,944		

Tableau LVI. Résistivité électrique de la colonne Z de l'alliage Pb-Sn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition croissante suivant le sens de coulée avec une chute de la résistivité au niveau de l'échantillon η ; en ayant un maximum de conductivité électrique au niveau du même échantillon.

Colonne Z'							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillo n [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ_{mov}) $[\Omega.cm]$	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]
	10 ⁻⁵	0,0019		119,320	46,379		
	2. 10 ⁻⁵	0,0038		119,320	46,379		
α'	3. 10 ⁻⁵	0,0058	0,1692	121,141	47,193	48,031	0,02081
	4. 10 ⁻⁵	0,0081		127,170	49,431		
	5. 10 ⁻⁵	0,0104		130,624	50,773		
	10 ⁻⁴	0,0016		10,048	3,640		
	2. 10 ⁻⁴	0,0031		9,734	3,526	3 ,555	0,2813
β'	3. 10 ⁻⁴	0,0046	0,1577	9,629	3,488		
	4. 10 ⁻⁴	0,0062		9,734	3,526		
	5. 10 ⁻⁴	0,0079		9,922	3,595		
	5.10-5	0,0016	0,1615	20,096	7,456	7,929	
	6. 10 ⁻⁵	0,0020		20,933	7,766		0,1261
γ'	7. 10 ⁻⁵	0,0024		21,531	7,988		
	8. 10 ⁻⁵	0,0028		21,980	8,155		
	9. 10 ⁻⁵	0,0032		22,328	8,284		
	10-5	0,0014		87,920	27,186		
	2. 10 ⁻⁵	0,0028		87,920	27,186		0,0367
η'	3. 10 ⁻⁵	0,0043	0,1346	90,013	27,833	27,237	
	4. 10 ⁻⁵	0,0056		87,920	27,186		
	5. 10 ⁻⁵	0,0069		86,664	26,797		
	5.10 ⁻⁴	0,0024		3,014	0,692		
	6. 10 ⁻⁴	0,0030		3,140	0,721		
δ'	7. 10 ⁻⁴	0,0035	0,1000	2,140	0,721	0,718	1,3919
	8. 10 ⁻⁴	0,0040		3,140	0,721		
	9 . 10 ⁻⁴	0,0046		3,209	0,737		

Tableau LVII. Résistivité électrique de la colonne Z' de l'alliage Pb-Sn après laminage.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après laminage, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau de l'échantillon α '; en ayant un maximum de conductivité électrique au niveau de l'échantillon δ '.Après laminage, la résistivité électrique a baissé soit concrètement comme pour les échantillons (A, 1, 4, β ', γ , γ ',...etc.), soit partiellement, comme pour les échantillons (D, 2, 5, α , β ,...etc.), ou bien elle a radicalement ou partiellement augmenté, comme les échantillons (B, 2', 3', α ', γ ',...etc.).

3. Echantillons laminés et recuits

3.1. Distribution de l'eutectique

Les résultats de la micrographie et de la fraction de l'eutectique des alliages Pb-Sn et Sn-Zn respectivement, obtenus après traitement thermique (recuit) et suivant le sens de coulée, avec l'utilisation du logiciel "Imagej" pour traiter les images, sont illustrés dans les *tableaux (LVIII à LXVII)*.

	Colonne X			
Échantillons	Micrographie	Le % du Pb des différentes plages	% moyen en Pb de l'eutectique	
		36.273		
		36.087		
A		35.76	35,437 %	
	3Mus	33.611		
		33.941		
		37.563		
_		37.133		
B		36.896	34,554 %	
_		30.048		
		31.132		
	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	38.548		
		36.983		
C		36.424	36,674 %	
U		35.908		
		35.504		
		41.900		
		41.999		
D		40.372	40,948 %	
		40.425		
	300µm	40.048		
		39.212		
		37.049		
E	-	37.670	37,323 %	
	2.6	36.396		
	A COLUMN TO A C	36.289		

Tableau LVIII. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit et leurs fractions pour de la colonne X de l'alliage Pb-Sn.

On remarque que la distribution obtenue est aléatoire suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier D ; avec des valeurs de fraction d'eutectique relativement proches et homogènes sur toute la surface de chaque échantillon.

Colonne Y				
Échantillons	Micrographie	<i>Le % du Pb des différentes plages</i>	% moyen en Pb de l'eutectique	
1		27.898		
		26.793		
		26.825	26,775%	
		26.253		
	300µm (26.107		
	ACM COLORADOR ON AN UNITED SHOP	33.529		
		32.575		
2		27.961	30,102 %	
		26.717		
		29.731		
	<u>300µm</u>	37.601	36,756 %	
		37.128		
3		36.951		
		36.277		
		35.827		
	- 200 - 10 - 10 - 10 - 10 - 10 - 10 - 10	32.462		
		31.100		
4		31.735	31,717 %	
		30.771		
	, <u>300µm</u>	32.361		
	610 1	34.254		
5		35.366		
		33.350	34,135 %	
		34.671		
		33.037		

Tableau LIX. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit et leurs fractions pour de la colonne Y de l'alliage Pb-Sn.

On remarque que la distribution obtenue est aléatoire suivant le sens de coulée tout en remarquant un pic de la fraction au niveau du dernier palier 3 ; avec des valeurs de fraction d'eutectique relativement proches et homogènes sur toute la surface de chaque échantillon.

Colonne Y'				
Échantillons	Micrographie	<i>Le % du Pb des différentes plages</i>	% moyen en Pb de l'eutectique	
1'	Sector and Strategy	36.309		
	The states	34.147		
		33.160	32,823 %	
		30.589		
	Contraction of the second	29.911		
	New Revision Contraction Strengthere	36.784		
	The second	36.397		
2'		34.484	34,977 %	
	1300 <u>um</u>	33.505		
		33.716		
	300 <u>um</u>	40.600	39,541 %	
		40.385		
3'		38.958		
		38.214		
		39.550		
	なの時を必要である。	37.349		
	300um	38.405		
4'		35.757	36,151 %	
		34.380		
	Contraction of the second s	34.865		
	STREET STREETS CALL	34.837		
5'		32.866	32,517 %	
		32.666		
		31.339		
	14.00µm	30.878		

Tableau LX. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit et leurs fractions pour de la colonne Y' de l'alliage Pb-Sn.

On remarque que la distribution obtenue est croissante suivant le sens de coulée jusqu'à l'échantillon 3' suivie d'une décroissance ; avec des valeurs de fraction d'eutectique relativement proches et homogènes sur toute la surface de chaque échantillon.

Colonne Z				
Échantillons	Micrographie	Le % du Pb des différentes plages	% moyen en Pb de l'eutectique	
		38.952	r curcenque	
α		37.928		
	Line and the second	36.430	35,938 %	
	The South States	34.584		
	300um	31.798		
		44.164		
		42.615		
β		42.203	41,969 %	
	5	41.381		
		39.482		
	300um.	37.222	36,111 %	
		36.506		
γ		35.156		
•		35.880		
		35.789		
		33.811		
		33.304		
η		33.578	33,222 %	
•		32.769		
		32.649		
		38.040		
	the second second	37.201		
δ		35.362	35,956 %	
	300μm	33.926		
	SCALING STRATEGY AND SHORE AND	35.251		

Tableau LXI. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit et leurs fractions pour de la colonne Z de l'alliage Pb-Sn.

On remarque que la distribution obtenue est aléatoire suivant le sens de coulée tout en ayant un pic au niveau de l'échantillon β ; avec des valeurs de fraction d'eutectique relativement proches et homogènes sur toute la surface de chaque échantillon.

Colonne Z'			
Échantillons	Micrographie	Le % du Pb des différentes plages	% moyen en Pb de l'eutectique
α'		30.610	
	and the second second	29.818	
		29.513	29,227%
	300µm	28.278	
	an a	27.919	
		33.663	
		33.421	
β'	and the second	32.810	32,660 %
P	, <u>300µm</u> ,	31.933	
		31.473	
	<u>300µm</u>	38.260	37,876%
		38.377	
γ'		39.598	
•		36.209	
		36.940	
		37.920	
		36.445	
n'		34.336	36,095 %
L	300um	37.285	
		34.493	
	A State of the second	36.531	
		34.797	
δ'		35.214	35,015%
	_300µm,	34.712	
		33.819	

Tableau LXII. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit, et leurs fractions pour de la colonne Z' de l'alliage Pb-Sn.

On remarque que la distribution obtenue est croissante suivant le sens de coulée jusqu'à l'échantillon γ ', pour décroitre jusqu'à l'échantillon δ '; avec des valeurs de fraction d'eutectique relativement proches et homogènes sur toute la surface de chaque échantillon.

	Coloni	ıe X	
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique
		5%	
		8%	
G		6%	6.8%
		9%	
	300µm	6%	
		7%	
		9%	
H		9%	9.2%
	300µm	11%	-
		10%	
	<u>300µm</u> ,	14%	11.4%
		12%	
i		10%	
		10%	
		11%	
		11%	
		11%	-
J		12%	11.0 %
		10%	
		11%	
		15%	
K		15%	
		16%	15.6%
	300µm	15%	
		17%	

Tableau LXIII. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit, et leurs fractions pour de la colonne Z' de l'alliage Sn-Zn.

On remarque qu'après traitement d'homogénéisation pour ce qui concerne la colonne X, la distribution de l'eutectique s'est étendue sur toute la surface de l'échantillon d'une façon homogène et cela à travers une décroissance uniforme, suivant le sens de coulée ; avec des valeurs qui tournent autour de la valeur théorique de l'eutectique accompagnée d'un maximum constaté au niveau du bas de la plaquette, échantillon K.

Colonne Y				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique	
6		24%		
		20%		
		20%	20.8%	
	ана са се	24%		
		20%		
		20%		
		23%		
7		19%	20.4%	
,	_ <u>30µm</u> ,	21%		
		19%		
		19%		
		20%		
8		19%	19.6%	
		20%		
		20%		
		15%		
		15%		
9		19%	17.0%	
		18%		
	- andread	18%		
		21%		
		21%		
10	Sector Providence	21%	21.6%	
	300µm	22%		
	新作用了新生活的不可能。 1995年———————————————————————————————————	23%		

Tableau LXIV. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit, et leurs fractions pour de la colonne Y de l'alliage Sn-Zn.

On remarque qu'après traitement d'homogénéisation pour ce qui concerne la colonne Y, la distribution de l'eutectique s'est étendue sur toute la surface de l'échantillon d'une façon homogène et cela à travers une décroissance uniforme, suivant le sens de coulée ; avec des valeurs assez soutenues reflétant la distribution de l'eutectique accompagnée d'un maximum constaté au niveau du bas de la plaquette, échantillon 10.

	Colonne Y'				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique		
		21%			
		23%			
6'		21%	21.0%		
	300µm	20%			
		20%			
		16%			
		12%			
7'		14%	13.8%		
,		15%			
		12%			
	300 <u>um</u>	10%			
		10%			
8'		8%	9.2%		
U		8%			
		10%			
		16%			
		17%			
9'		17%	11.4%		
		16%			
		18%			
		14%			
		15%			
10'		16%	15.0%		
	300µm	15%			
		15%			

Tableau LXV. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit, et leurs fractions pour de la colonne Y' de l'alliage Sn-Zn.

On remarque qu'après traitement d'homogénéisation pour ce qui concerne la colonne Y', la distribution de l'eutectique s'est étendue sur toute la surface de l'échantillon d'une façon homogène et cela à travers une décroissance uniforme, suivant le sens de coulée jusqu'au palier 8', suivie d'une croissance pour atteindre une valeur de $15\%_{Zn}$ au niveau du dernier palier 10'; accompagnée d'un maximum constaté au niveau de l'échantillon 6'.

	Colonne Z				
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique		
		16%			
		14%	-		
Ι		15%	15.2%		
_		18%	-		
		13%			
		16%			
		15%			
II		15%	15.4%		
	_ <u>300µm</u> _	17%			
		14%			
	<u>300µm</u> ,	15%	14.2%		
		11%			
III		15%			
		15%			
		15%			
		12%			
		16%	15.0%		
IV		15%			
•		14%			
	J. J	18%			
	的關係物理的影响和自己的	18%			
V		18%			
		20%	17.6%		
•	300pm	16%	1		
		16%	1		

Tableau LXVI. Micrographie des lamelles de l'eutectique après lan	ninage suivie d'un
recuit, et leurs fractions pour de la colonne Z de l'alliage	Sn-Zn.

On remarque qu'après traitement d'homogénéisation pour ce qui concerne la colonne Y, la distribution de l'eutectique s'est étendue sur toute la surface de l'échantillon d'une façon homogène et cela à travers une distribution aléatoire, suivant le sens de coulée ; avec des valeurs assez soutenues reflétant la distribution de l'eutectique accompagnée d'un maximum constaté au niveau du bas de la plaquette, échantillon V.

Colonne Z'								
Échantillons	Micrographie	Le % du Zn des différentes plages	% moyen en Zn de l'eutectique					
		19%						
		18%						
I'		19%	18.2%					
	300um	19%						
		16%						
		12%						
		10%						
II'	<u>300µm</u> ,	13%	11.4%					
		12%						
		15%						
III'		15%						
		17%						
		16%	15.8%					
		14%						
		17%						
		11%						
		10%						
IV'		12%	10.8%					
	300um	11%						
		10%						
		13%						
		12%						
V'		15%	14.2%					
	300um	16%						
	和时间来有意题的问题和读述在	15%						

Tableau LXVII. Micrographie des lamelles de l'eutectique après laminage suivie d'un recuit, et leurs fractions pour de la colonne Z' de l'alliage Sn-Zn.

On remarque qu'après traitement d'homogénéisation pour ce qui concerne les deux colonnes Z', la distribution de l'eutectique s'est étendue sur toute la surface de l'échantillon d'une façon homogène et cela à travers une distribution aléatoire relativement uniforme, suivant le sens de coulée ; avec des valeurs assez soutenues reflétant la distribution de l'eutectique à l'état brut, accompagnée d'un maximum constaté au niveau des paliers I' respectivement.

3.2. Résistivité électrique

Les résultats de la résistivité électrique des alliages Pb-Sn et Sn-Zn respectivement, obtenus après recuit et suivant le sens de coulée sont illustrés dans les *tableaux (LXVIII à LVII)*.

Tableau LXVIII. Résistivité électrique de la colonne X de l'alliage Pb-Sn après laminage suivie d'un recuit.

Colonne X								
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) $[\Omega^{-1}.cm^{-1}]$	
	5.10-5	0,0018		22,608	9,587			
	6. 10 ⁻⁵	0,0021		21,980	9,321			
Α	7. 10 ⁻⁵	0,0024	0,1846	21,531	9,131	9,306	0,1074	
	8. 10 ⁻⁵	0,0028		21,980	9,321			
	9. 10 ⁻⁵	0,0031		21,631	9,173			
	10-5	0,0014		87,920	3,496			
	2. 10 ⁻⁵	0,0028		87,920	3,496	3,496	0,2860	
В	3. 10 ⁻⁵	0,0042	0,1731	87,920	3,496			
	4. 10 ⁻⁵	0,0056		87,920	3,496			
	5. 10 ⁻⁵	0,0070		87,920	3,496			
	5.10 ⁻⁴	0,0020		2,512	1,131	1,293	0,7729	
	6. 10 ⁻⁴	0,0024	0,1961	2,512	1,131			
С	7. 10 ⁻⁴	0,0028		2,512	1,131			
	8. 10 ⁻⁴	0,0032		2,512	1,131			
	9. 10 ⁻⁴	0,0038		2,651	1,945			
	5.10 ⁻⁴	0,0010		1,256	0,554			
	6. 10 ⁻⁴	0,0013		1,360	0,601		1,7105	
D	7. 10^{-4}	0,0015	0,1923	1,345	0,594	0,584		
	8. 10^{-4}	0,0017		1,334	0,589			
	9. 10 ⁻⁴	0,0019		1,325	0,585			
Е	5.10 ⁻⁴	0,0010		1,256	0,543			
	6. 10 ⁻⁴	0,0012		1,256	0,543	1		
	7.10^{-4}	0,0014	0,1885	1,256	0,543	0,543	1,8416	
	8. 10 ⁻⁴	0,0016		1,256	0,543			
	9. 10 ⁻⁴	0,0018		1,256	0,543			

En tenant compte de la position de l'échantillon, et en se basant sur les valeurs de la résistivité électrique après traitement thermique, on remarque une répartition décroissante suivant le sens de coulée avec un pic au niveau du palier A ; en ayant un maximum de conductivité électrique au niveau de l'échantillon E.

Colonne Y									
Nom de l'échantillo n	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillo n [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]		
	5.10-4	0,0048		6,028	2,610				
	6. 10 ⁻⁴	0,0058	-	6,070	2,628				
1	7. 10 ⁻⁴	0,0068	0,1885	6,100	2,641	2,637	0,3791		
	8. 10 ⁻⁴	0,0078		6,123	2,651				
	9. 10 ⁻⁴	0,0088		6,140	2,659				
	10 ⁻³	0,0011		0,690	0,305				
	2. 10^{-3}	0,0023		0,722	0,319				
2	3. 10 ⁻³	0,0034	0,1923	0,711	0,314	0,313	3,1948		
	4. 10 ⁻³	0,0045		0,706	0,312				
	5. 10 ⁻³	0,0057		0,715	0,316				
	10-5	0,0022		138,160	62,240	62,513	0,0159		
	2. 10^{-5}	0,0043		135,020	60,826				
3	3. 10 ⁻⁵	0,0067	0,1961	140,253	63,183				
-	4. 10 ⁻⁵	0,0089		139,730	62,948				
	5. 10 ⁻⁵	0,0112		140,672	63,372				
	5. 10 ⁻⁶	0,0027		339,120	143,813				
	6. 10 ⁻⁶	0,0033		345,400	146,476	147,877	6,7623.10 ⁻		
4	7. 10^{-6}	0,0039	0,1856	349,885	148,379				
	8. 10 ⁻⁶	0,0045		353,250	149,805				
	9. 10 ⁻⁶	0,0051		355,866	150,915				
	5. 10 ⁻⁴	0,0016		2,009	0,937				
	6. 10 ⁻⁴	0,0019		1,988	0,927				
5	7. 10 ⁻⁴	0,0023	0,2038	2,063	0,962	0,944	1,0593		
	8. 10 ⁻⁴	0,0026		2,041	0,951				
	9. 10 ⁻⁴	0,0029		2,023	0,943				

Tableau LXIX. Résistivité électrique de la colonne Y de l'alliage Pb-Sn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon, et en se basant sur les valeurs de la résistivité électrique après traitement thermique, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier 4 ; en ayant un maximum de conductivité électrique au niveau de l'échantillon 2.

Colonne Y'							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (σ) [Ω ⁻ ¹ .cm ⁻¹]
	10-3	0,0013		0,816	6,523		
	2. 10^{-3}	0,0025		0,785	6,601	7,642	0.1200
1'	3. 10 ⁻³	0,0038	0,1615	0,795	7,322		0,1308
	4. 10 ⁻³	0,0051		0,800	8,446		
	5. 10 ⁻³	0,0064		0,803	9,319		
	10-4	0,0012		7,536	2,863		
	2. 10 ⁻⁴	0,0023	0,1654	7,222	2,744	2 770	0,3609
2'	3. 10 ⁻⁴	0,0035		7,326	2,783	2,770	
	4. 10 ⁻⁴	0,0046		7,222	2,744		
	5. 10 ⁻⁴	0,0057		7,159	2,720		
	5.10 ⁻⁴	0,0019		2,386	0,864	0,996	
	6. 10 ⁻⁴	0,0025	0,1577	2,616	0,947		1,0036
3'	7. 10 ⁻⁴	0,0031		2,781	1,007		
	8. 10 ⁻⁴	0,0037		2,904	1,052		
	9 . 10 ⁻⁴	0,0044		3,070	1,112		
	5. 10 ⁻⁴	0,0010		1,256	0,532		
	6. 10 ⁻⁴	0,0012		1,256	0,532	0,532	1,8796
4'	7. 10 ⁻⁴	0,0014	0,1846	1,256	0,532		
	8. 10 ⁻⁴	0,0016		1,256	0,532		
	9 . 10 ⁻⁴	0,0018		1,256	0,532		
	5.10 ⁻⁴	0,0012		1,507	0,716	0.725 1	
	6. 10 ⁻⁴	0,0015		1,570	0,746		1 2790
5'	7. 10 ⁻⁴	0,0017	0,2077	1,525	0,725	0,723	1,3709
	8. 10 ⁻⁴	0,0019		1,491	0,709		
	9 . 10 ⁻⁴	0,0022		1,535	0,730		

Tableau LXX. Résistivité électrique de la colonne Y' de l'alliage Pb-Sn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon, et en se basant sur les valeurs de la résistivité électrique après traitement thermique, on remarque une répartition décroissante suivant le sens de coulée avec un pic au niveau du palier 1'; en ayant un maximum de conductivité électrique au niveau de l'échantillon 4'.

Colonne Z								
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) [Ω ⁻¹ .cm ⁻¹]	
	5. 10 ⁻⁴	0,0040		5,024	2,219			
	6. 10 ⁻⁴	0,0048		5,024	2,219			
α	7. 10 ⁻⁴	0,0056	0,1923	5,024	2,219	2,219	0,4506	
	8. 10 ⁻⁴	0,0064		5,024	2,219			
	9. 10 ⁻⁴	0,0072		5,024	2,219			
	10^{-3}	0,0014		0,879	0,388			
	2. 10 ⁻³	0,0027		0,847	0,374		2,6260	
β	3. 10 ⁻³	0,0041	0,1923	0,858	0,379	0,380		
	4. 10 ⁻³	0,0055		0,863	0,381			
	5. 10 ⁻³	0,0069		0,866	0,382			
	5. 10 ⁻⁴	0,0028		3,516	1,522		0,6279	
	6. 10 ⁻⁴	0,0035	0,1885	3,663	1,586	1,592		
γ	7. 10 ⁻⁴	0,0041		3,678	1,592			
	8. 10 ⁻⁴	0,0048		3,768	1,631			
	9. 10 ⁻⁴	0,0054		3,768	1,631			
	5. 10 ⁻⁴	0,0028		3,516	1,585			
	6. 10 ⁻⁴	0,0034		3,558	1,603	1,599	0,6250	
η	7. 10 ⁻⁴	0,0040	0,1962	3,588	1,616			
-	8. 10 ⁻⁴	0,0045		3,532	1,592			
	9. 10 ⁻⁴	0,0051		3,558	1,603			
	5.10^{-5}	0,0040		50,240	24,860			
δ	6. 10 ⁻⁵	0,0049		51,286	25,378			
	7. 10 ⁻⁵	0,0059	0,2154	61,753	26,192	26,533	0,0376	
	8. 10 ⁻⁵	0,0071		55,735	27,578			
	9 . 10 ⁻⁵	0,0083		57,915	28,658	1		

Tableau LXXI. Résistivité électrique après recuit, colonne Z de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après traitement thermique, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier δ ; en ayant un maximum de conductivité électrique au niveau de l'échantillon β .

Colonne Z'								
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (σ) [Ω ⁻ ¹ .cm ⁻¹]	
	5.10^{-4}	0,0035		4,396	1,708			
	6. 10 ⁻⁴	0,0041	0,1692	4,291	1,668		0.50.55	
α'	7. 10 ⁻⁴	0,0048		4,306	1,673	1,676	0,5965	
	8. 10 ⁻⁴	0,0055		4,317	1,678			
	9. 10 ⁻⁴	0,0061		4,256	1,654			
	5. 10 ⁻⁴	0,0018		2,260	0,819			
	6. 10 ⁻⁴	0,0021		2,198	0,796	0.011	1 0010	
β'	7. 10 ⁻⁴	0,0025	0,1577	2,242	0,812	0,811	1,2318	
	8. 10 ⁻⁴	0,0029		2,276	0,824			
	9. 10 ⁻⁴	0,0032		2,232	0,808			
	5.10-4	0,0038		4,772	1,770	1,695	0,5896	
	6. 10 ⁻⁴	0,0045	0,1615	4,710	1,747			
γ'	7. 10 ⁻⁴	0,0051		4,575	1,697			
	8. 10 ⁻⁴	0,0057		4,474	1,660			
	9. 10 ⁻⁴	0,0062		4,326	1,605			
	5. 10 ⁻⁵	0,0030		37,680	11,651			
	6. 10 ⁻⁵	0,0036		37,670	11,651	11,651	0,0858	
η'	7. 10 ⁻⁵	0,0042	0,1346	37,670	11,651			
	8. 10 ⁻⁵	0,0048		37,670	11,651			
	9. 10 ⁻⁵	0,0054		37,670	11,651			
	10-4	0,0015		9,420	2,164			
	2. 10^{-4}	0,0035		10,990	2,524	0.745	0.2642	
δ'	3. 10 ⁻⁴	0,0056	0,1000	11,722	2,693	2,745	0,3642	
	4. 10 ⁻⁴	0,0080		12,560	2,885			
	5. 10 ⁻⁴	0,0120		15,072	3,462			

Tableau LXXII. Résistivité électrique après recuit, colonne Z' de la plaquette de l'alliage Pb-Sn.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après traitement thermique, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier η '; en ayant un maximum de conductivité électrique au niveau de l'échantillon β '.

On remarque qu'après traitement d'homogénéisation, la résistivité électrique est descendue dans la majorité des cas, soit concrètement ou partiellement, avec quelques cas particulier où on remarque une augmentation considérable, comme pour les échantillons $(3, 4, 1' \text{ et } \delta)$.

Colonne X									
Nom de l'échantill on	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantill on [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) $[\Omega^{-1}.cm^{-1}]$		
	10-4	0.0167		104.8760	20.4298				
2.	2. 10 ⁻⁴	0.0337		105.8180	20.6133		0.0487		
G	3. 10 ⁻⁴	0.0500	0.0844	104.6666	20.3890	20.5501			
	4. 10 ⁻⁴	0.0675		105.9750	20.6439				
	5. 10 ⁻⁴	0.0845		106.1320	20.6745				
	10^{-3}	0.0090		5.6520	0.7122		1.4041		
	2. 10^{-3}	0.0180	0.0546	5.6520	0.7122	0.7122			
Н	3. 10 ⁻³	0.0270		5.6520	0.7122				
	4. 10 ⁻³	0.0360		5.6520	0.7122				
	5. 10 ⁻³	0.0450		5.6520	0.7122				
	10-4	0.0021		13.1250	1.5212	1.4941	0.6693		
	2. 10 ⁻⁴	0.0041		12.8125	1.4849				
i	3. 10 ⁻⁴	0.0061	0.0500	12.7083	1.4729				
	4. 10 ⁻⁴	0.0082		12.8125	1.4849				
	5. 10 ⁻⁴	0.0104		13.0000	1.5067				
	10-4	0.0011		6.8750	0.7171				
	2. 10 ⁻⁴	0.0022		6.8750	0.7171		1.3782		
j	3. 10 ⁻⁴	0.0033	0.0450	6.8750	0.7171	0.7256			
-	4. 10 ⁻⁴	0.0045		7.0313	0.7334				
	5. 10 ⁻⁴	0.0057		7.1250	0.7431				
	10-4	0.0019		11.9320	3.0749				
	2. 10 ⁻⁴	0.0038		11.9320	3.0749				
K	3. 10 ⁻⁴	0.0057	0.1117	11.9320	3.0749	3.0964	0.3230		
	4. 10 ⁻⁴	0.0077		12.0890	3.1165				
	5. 10 ⁻⁴	0.0097		12.1832	3.1408				

Tableau LXXIII. Résistivité électrique de la colonne X de l'alliage Sn-Zn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après recuit, on remarque une répartition aléatoire, suivant le sens de coulée avec un pic au niveau du palier G ; en ayant un maximum de conductivité électrique au niveau de l'échantillon H.
Colonne Y									
Nom de l'échantill on	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) $[\Omega^{-1}.cm^{-1}]$		
6	10 ⁻⁴	0.0015		9.3750	1.0866	1.1073	0.9031		
	2. 10 ⁻⁴	0.0030		9.3750	1.0866				
	3. 10 ⁻⁴	0.0046	0.0500	9.5833	1.1107				
	4. 10 ⁻⁴	0.0062		9.6875	1.1228				
	5. 10 ⁻⁴	0.0078		9.7500	1.1300				
	10 ⁻³	0.0125		7.8500	1.4837	1.4738	0.6785		
	2. 10 ⁻³	0.0247		7.7558	1.4658				
7	3. 10 ⁻³	0.0369	0.0819	7.7244	1.4599				
	4. 10 ⁻³	0.0499		7.8343	1.4807				
	5. 10 ⁻³	0.0623		7.8248	1.4789				
	10 ⁻³	0.0069		4.3125	0.5498	0.5723	1.7475		
	2. 10 ⁻³	0.0142		4.4375	0.5658				
8	3. 10 ⁻³	0.0215	0.0550	4.4791	0.5711				
	4. 10 ⁻³	0.0292		4.5625	0.5817				
	5. 10 ⁻³	0.0372		4.6500	0.5929				
	10-5	0.0021	0.0645	334.3949	49.7580	29.9429	0.0334		
9	2. 10 ⁻⁵	0.0042		131.8800	19.6237				
	3. 10 ⁻⁵	0.0064		133.9733	19.9352				
	4. 10 ⁻⁵	0.0086		135.0200	20.0909				
	5. 10 ⁻⁵	0.0109		136.9040	20.3713				
10	10 ⁻⁴	0.0092	0.0650	57.5000	8.6653	8.6216	0.1159		
	2. 10 ⁻⁴	0.0183		57.1875	8.6182				
	3. 10 ⁻⁴	0.0274		57.0833	8.6025				
	4. 10 ⁻⁴	0.0365		57.0313	8.5946				
	5. 10 ⁻⁴	0.0458		57.2500	8.6276				

Tableau LXXIV. Résistivité électrique de la colonne Y de l'alliage Sn-Zn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après recuit, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier 9 ; en ayant un maximum de conductivité électrique au niveau de l'échantillon 8.

Colonne Y'							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]
	5.10-5	0.0016	0.0943	20.0960	4.3729	4.3679	0.2289
	6. 10 ⁻⁵	0.0019		19.8866	4.3273		
6'	7. 10 ⁻⁵	0.0022		19.7371	4.2948		
	8. 10 ⁻⁵	0.0026		20.4100	4.4412		
	9. 10 ⁻⁵	0.0029		20.2355	4.4032		
	10-4	0.0051		31.8750	10.1713	11.5514	0.0866
	2. 10 ⁻⁴	0.0111		34.6875	11.0688		
7'	3. 10 ⁻⁴	0.0177	0.0600	36.8750	11.7668		
	4. 10 ⁻⁴	0.0242		37.8125	12.0659		
	5. 10 ⁻⁴	0.0318		39.7500	12.6842		
	5.10^{-4}	0.0045	0.0900	5.6250	1.1739	1.2010	0.8327
	6. 10 ⁻⁴	0.0055		5.7292	1.1957		
8'	7. 10 ⁻⁴	0.0065		5.8036	1.2112		
	8. 10 ⁻⁴	0.0074		5.7813	1.2066		
	9. 10 ⁻⁴	0.0084		5.8333	1.2174		
	10-3	0.0031	0.0950	1.9375	0.4268	0.4193	2.3848
	2. 10^{-3}	0.0061		1.9063	0.4199		
9'	3. 10 ⁻³	0.0091		1.8958	0.4176		
	4. 10 ⁻³	0.0121		1.8906	0.4165		
	5. 10 ⁻³	0.0151		1.8875	0.4158		
	5.10^{-5}	0.0011	0.1043	13.8160	3.3241	3.2472	
10'	6. 10 ⁻⁵	0.0013		13.6066	3.2737		0.3080
	7. 10 ⁻⁵	0.0015		13.4571	3.2378		
	8. 10 ⁻⁵	0.0017		13.3450	3.2108		
	9. 10 ⁻⁵	0.0019		13.2577	3.1898		

Tableau LXXV. Résistivité électrique de la colonne Y' de l'alliage Sn-Zn aprèslaminage suivie d'un recuit.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après recuit, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier 7'; en ayant un maximum de conductivité électrique au niveau de l'échantillon 9'.

Colonne Z							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (\mathbf{G}) [Ω^{-1} .cm ⁻¹]
	10-4	0.0089	0.0700	55.6250	9.0279	8.5000	0.1176
	2. 10 ⁻⁴	0.0173		54.0625	8.7743		
Ι	3. 10 ⁻⁴	0.0258		53.7500	8.7236		
	4. 10 ⁻⁴	0.0348		54.3750	7.2101		
	5. 10 ⁻⁴	0.0432		54.0000	8.7642		
	10-4	0.0094		58.7500	6.8091	6.6717	0.1499
	2. 10 ⁻⁴	0.0183		57.1875	6.6280		
II	3. 10 ⁻⁴	0.0275	0.0500	57.2917	6.6401		
	4. 10 ⁻⁴	0.0367		57.3438	6.6462		
	5. 10 ⁻⁴	0.0458		57.2500	6.6353		
	10^{-4}	0.0025	0.0550	15.6250	1.9922	2.1829	0.4581
	2. 10 ⁻⁴	0.0054		16.8750	2.1516		
III	3. 10 ⁻⁴	0.0083		17.2917	2.2047		
	4. 10 ⁻⁴	0.0114		17.8125	2.2711		
	5. 10 ⁻⁴	0.0144		18.0000	2.2950		
	5. 10 ⁻⁵	0.0034	0.0943	42.7040	9.2923	9.3619	0.1068
	6. 10 ⁻⁵	0.0041		42.9133	9.3379		
IV	7. 10 ⁻⁵	0.0048		43.0628	9.3705		
	8. 10 ⁻⁵	0.0055		43.1750	9.3949		
	9. 10 ⁻⁵	0.0062		43.2622	9.4139		
	5.10^{-5}	0.0050	0.1150	62.5000	16.6688	16.6212	
	6. 10 ⁻⁵	0.0060		62.5000	16.6688		0.0602
V	7. 10 ⁻⁵	0.0069		61.6071	16.4306		
	8. 10^{-5}	0.0080		62.5000	16.6688		
	9. 10 ⁻⁵	0.0090		62.5000	16.6688		

Tableau LXXVI. Résistivité électrique de la colonne Z de l'alliage Sn-Zn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après recuit, on remarque une répartition aléatoire suivant le sens de coulée avec un pic au niveau du palier V ; en ayant un maximum de conductivité électrique au niveau de l'échantillon III.

Colonne Z'							
Nom de l'échantillon	Courant électrique imposé [A]	Tension engendré [V]	Epaisseur de l'échantillon [cm]	Résistivité électrique (ρ ₀) [Ω.cm]	Résistivité électrique (ρ) [Ω.cm]	Résistivité électrique moyenne (ρ _{moy}) [Ω.cm]	Conductivité électrique (G) [Ω^{-1} .cm ⁻¹]
	10-3	0.0095		5.9660	1.6066		
	2. 10^{-3}	0.0190		5.9660	1.6066	1.6530	0.6050
Ι'	3. 10 ⁻³	0.0285	0.1167	5.9660	1.6066		
	4. 10 ⁻³	0.0406		6.3742	1.7166		
	5. 10 ⁻³	0.0511		6.4181	1.7284		
	10-4	0.0019		11.9320	3.3481		
	2. 10^{-4}	0.0038		11.9320	3.3481	3.3823	0.2957
II'	3. 10 ⁻⁴	0.0058	0.1216	12.1413	3.4068		
	4. 10 ⁻⁴	0.0077	-	12.0890	3.3898		
	5. 10 ⁻⁴	0.0097		12.1832	3.4186		
	5.10-5	0.0021		26.3760	6.3460	6.6655	0.1500
	6. 10 ⁻⁵	0.0025		26.1666	6.4756		
III'	7. 10 ⁻⁵	0.0030	0.1043	26.9143	7.0085		
	8. 10 ⁻⁵	0.0034		26.6900	6.9500		
	9. 10 ⁻⁵	0.0039		27.2133	6.5475		
	10-3	0.0130		8.1640	2.0573	2.1496	0.4652
	2. 10 ⁻³	0.0270	0.1092	8.4780	2.1364		
IV'	3. 10 ⁻³	0.0410		8.5826	2.1628		
	4. 10 ⁻³	0.0550		8.6350	2.1760		
	5. 10 ⁻³	0.0700		8.7920	2.2156		
	10-4	0.0148	0.1316	92.9440	28.2271	28.6677	
V'	2. 10 ⁻⁴	0.0299		93.8860	28.5132		0.0349
	3. 10 ⁻⁴	0.0450		94.2000	28.6085		
	4. 10 ⁻⁴	0.0605		94.9850	28.8469		
	5. 10 ⁻⁴	0.0764		95.9584	29.1426		

Tableau LXXVII. Résistivité électrique de la colonne Z' de l'alliage Sn-Zn après laminage suivie d'un recuit.

En tenant compte de la position de l'échantillon et en se basant sur les valeurs de la résistivité électrique après recuit, on remarque une répartition croissante suivant le sens de coulée accompagnée d'une chute de cette dernière au niveau de l'échantillon 4' avec un pic au niveau du palier V'; en ayant un maximum de conductivité électrique au niveau de l'échantillon I'.

On remarque qu'après traitement d'homogénéisation, la résistivité électrique est descendue dans la majorité des cas, soit concrètement ou partiellement, avec quelques cas particuliers où l'on remarque une augmentation considérable comme pour les échantillons (7', II, IV, V, III', IV' et V').

Références Bibliographique

[1]. http://www.techno-science.net/?onglet=glossaire&definition=3446#_note-0.

[2]. J.G. Stockholm. "*GÉNÉRATION THERMOÉLECTRIQUE*" Energie portable: autonomie et intégration dans l'environnement humain ISBN 2-909968-10-3, 2002 (p. 1).

[3]. Driss KENFAUI. "*Etude des propriétés mécaniques et thermoélectriques des matériaux Ca3Co4O9 texturés pour la conversion d'énergie*". Thèse de Doctorat. Université de Caen France (2010). (PP. 23,25, 26, 29-34).

[4]. Bertrand LENOIR, Jean-Pierre MICHENAUD, Anne DAUSCHER. *"Thermoélectricité : des principes aux applications"*, Technique de l'ingénieur, K73, (2010), (PP. 3, 5, 9, 14, 15, 17).

[5]. Luis David Patiño López. "*Caractérisation des propriétés thermoélectriques des composants en régime harmonique : Techniques et Modélisation*". Thèse de Doctorat. L'UNIVERSITE BORDEAUX 1 (2004). (PP. 13-15, 19).

[6]. Claude GODART. "*Matériaux à effets thermoélectriques*", Technique de l'ingénieur, N1500, 2009, (PP. 3-7, 9, 11, 12, 15-17).

[7]. http://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Accueil_principal.

[8]. Véronique DA ROS. "*Transport dans les composés thermoélectriques skutterudites de type R_xCo_{4-y} Ni_y Sb₁₂ (R=Nd, Yb et ln) ". Thèse de Doctorat. Institut National Polytechnique de LORAINE (2008). (PP. 16-18, 22, 23).*

[9]. Djalila BOUDEMAGH. "Synthèse et Etude de Matériaux Thermoélectriques du Système Mg2Si1-xSnx". Thèse de Doctorat. Université de Grenoble (2010). (PP. 22, 25-28, 31).

[10]. LEE Sung-Youn, HAN Madeleine. "La Thermoélectricité", Lycée Louis le Grand, (2010). (P. 10).

[11]. http://webetab.ac-bordeaux.fr/Pedagogie/Physique/Physico/Electro/e07fil.htm.

[12]. http://mms2.ensmp.fr/mat_nancy/binaire/transparents/1_binaires_r.pdf.

[13]. http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Sn-Zn.jpg&dir=SGTE.

[14]. GUNTER Petzow 'Metallographic Etching', ASM international, (PP.129), 1999 Unites States of America.