République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

ÉCOLE NATIONALE POLYTECHNIQUE

Département Génie Minier

Mémoire

Du projet de fin d'études Pour l'obtention du diplôme d'ingénieur d'état en Génie Minier

THÈME

Répartition Spatio-temporelle du Magmatisme dans les Bassin de Berkine et d'Illizi

Proposé par : Etudié par : Dirigé par :

Mr. M.C. CHABOU M^{elle} Faiza KERCHOUCHE Mr. M.C. CHABOU

Mme N. DIB

Octobre 2007

REMERCIMENTS

Au terme de ce travail je tiens vivement à exprimer ma gratitude à ceux qui de près ou de loin, ont contribué à la réalisation de ce mémoire.

Qu'ils trouvent ici toute ma reconnaissance.

Tout d'abord je remercie **Mme S. Chabou** d'avoir accepter de présider ce jury.

Mrs A. SEBAI et L. CHANANE, qui ont très aimablement accepté d'examiner mon travail.

Monsieur M.C. CHABOU et Mme N.DIB qui ont accepté de m'encadrer. Ils ont suivi, examiné et dirigé avec patience et rigueur mon travail. Leurs conseils, leur esprit de synthèse, et leur sympathie m'ont été bénéfiques pour la réalisation de ce travail, qu'ils trouvent ici l'expression de ma gratitude.

Mr MAKHLOUF, qui a eu l'amabilité de m'accueillir au sein de son département, qu'il en soit vivement remercié.

Melle S.BENTALAA, qui m'a beaucoup aidé pour la réalisation de ce travail.

Tous les ingénieurs du District 5 et du CRD, pour leur disponibilité et leur serviabilité.

Tout le personnel de la documentation archives et bibliothèque de la Sonatrach, division Exploration, qu'ils reçoivent mes remerciements les plus sincères.

Mon frère Salim et ma sœur Noura, qui m'ont apporté tout le soutien et l'aide escomptés, je leur dis: merci.

Tous LES ENSEIGNANTS DU DEPARTEMENT GENIE MINIER DE L'ENP d'abord, pour leurs gentillesses, leurs générosités, ainsi que leurs disponibilités, en dépit de leurs nombreuses occupations.

Mes ami(e) s.

Dédicace

Je dédie ce modeste travail à :

Ma très chère mère

Mon très cher père

Mon oncle Mohamed

Mes frères, et ma sœur bien aimée

Mes amies et ceux qui me sont chers

Faiza

<u>ملخص:</u>

لقد أظهرت الآبار التي أنجزت في حوض بركين وجود صخور نارية مندسة على عمق كبير. يتمثل هدف هذه الدراسة في دراسة التوزيع الفضائي لهذه الصخور في حوض بركين. من أجل ذلك قمنا برسم خرائط متماثلة السمك و انجاز مضاهاة ليتوستراتيغرافية. كما تطرقت هذه الدراسة أيضا لتعيين طبيعة هذه الصخورو تأثيرها في تكوين و تجمع النفط و الغاز الطبيعي في حوض بركين. و قد أظهرت هذه الدراسة أن هذه الصخورهي أساسا من نوع الدوليريت ذو درجة عالية من الفساد ، و هي متمركزة في شمال و شمال غرب حوض بركين مندسة عبر عدة طبقات :الكمبرى ، الأردوفيسى ، السيلوري و الترياس .

من الممكن أن يكون لهذه الصخور دورمهم في تكوين و تجمع الفحوم الهيدروجينية في حوض بركين

الكلمات الرئيسية: الصخور النارية المندسة- الدوليريت- حوض بركين - خرائط متساوية السمك - مضاهاة ليتوستراتيغرافية - النظام البترولي لحوض بركين .

Abstract:

Many wells drilled in the Berkine basin indicate the occurrence of igneous sills in deeper parts of the basin. This study concerns the areal and temporal distribution of the igneous rocks in the basin. The distribution and thickness of the magmatic intrusions have been mapped in detail for the whole Berkine basin, using logs from wells. In addition, the study attempts to the identification of petrographic nature of the rocks and to determine the consequences of magmatic intrusions for the generation, migration and accumulation of hydrocarbons in the study area.

The results indicated that the magmatic rocks are altered basalts and dolerites, and are located in the northern and the northwestern part of the basin, intruding into Cambrian, Ordovician, Silurian and Trias strata. Intrusive activity and the associated heat transfer could have a cosiderable consequence for the generation and migration of hydrocarbons in the study area.

<u>Key Words</u>: Magmatic intrusions – Dolerites - Berkine Basin - Isopachs maps - Lithostratigraphic Correlations – Petroleum system of Berkine basin.

Résumé:

Plusieurs sondages effectués dans le bassin de Berkine ont révélé l'existence d'intrusions magmatiques à des profondeurs importantes. La présente étude porte sur la répartition spatiale de ces roches dans le bassin de Berkine. A cet effet, des cartes en isopaques de ce magmatisme et des coupes ont été réalisées. Les corrélations entre les sondages ont été effectuées en se basant sur les diagraphies et les logs lithologiques. Cette étude s'intéresse aussi à la nature pétrographique de ces roches et à leur influence éventuelle sur la répartition des hydrocarbures dans le bassin.

Les résultats de notre étude nous ont permis de montrer que ces roches magmatiques, de nature basaltique, se localisent essentiellement au Nord et Nord-Ouest du bassin de Berkine, et s'interstratifient dans quatre niveaux différents : le Cambrien, l'Ordovicien, le Silurien et le Trias (carbonaté et argilo-gréseux inférieur). La répartition de ces roches par rapport aux roches mères et aux réservoirs et leur relation avec les éléments structuraux du bassin peut avoir une influence non négligeable sur le système pétrolier du bassin de Berkine.

<u>Mots Clefs</u>: Intrusions magmatiques – Dolérites - Bassin de Berkine - Cartes en isopaques - Corrélations lithostratigraphiques - Système pétrolier du bassin de Berkine.

SOMMAIRE

			Page
		INTRODUCTION GENERALE	01
Chapitre	I:	Contexte géologique du Bassin De Berkine	04
I-1.	Situation géologique et géographique du bassin de Berkine.		04
I-2.	Stratigraphie du bassin de Berkine.		8
I-3.	Structure d	u Bassin et tectonique.	15
I-4.	Evolution §	géodynamique du Bassin de Berkine.	16
I-5.	Le système	e pétrolier du Bassin de Berkine.	20
Chapitre I	[:	Le magmatisme du Bassin de Berkine	25
II-1.	Distributio	n et nature des roches magmatiques du bassin.	25
II-1.a	Distributio	n des roches magmatiques.	25
II-1.b	Nature pétrographique des roches magmatiques.		33
II-1.c	Géochimie et âge des roches.		39
II-2	Conclusion	l	42
Chapitre	III: E	volution Spatiale et temporelle du magmatisme dans le bassin de Berkine	44
III-1.		lisation des cartes en isopaques par étage stratigraphique carte des épaisseurs totales.	44
III-1.a	Mét	hodologie.	44
III-1.b		sentation des cartes en isopaques.	45
III-1.c	Inte	rprétation des cartes	55

III-2.	Réalisation des corrélations lithostratigraphiques dans le Paléozoïque (Cambrien, le Silurien, l'Ordovicien et le Trias) du Bassin de Berkine.		
III-2.a	Méthodologie du travail.	56	
III-2.c	Interprétation des coupes.	56	
Chapitre IV :	Influences des intrusions doléritiques sur l'environnement pétrolier du Bassin De Berkine	63	
IV.1	Impact des roches magmatiques sur l'environnement pétrolier dans le bassin de Berkine.	64	
IV.2	Position des roches magmatiques par rapport à la roche mère	65	
IV.3	et la roche réservoir. Influences des roches magmatiques sur les roches mères.	65	
IV.4	Influences des roches magmatiques sur les accumulations en Hydrocarbures.	65	
IV.5	Conclusion.	65	
Chapitre V :	Comparaison entre le magmatisme des bassins de Berkine et d'Illizi	66	
V.1	Introduction.	66	
V.2	Comparaison entre le magmatisme des bassins de Berkine et d'Illizi.	68	
	CONCLUSION GENERALE	70	
	- BIBLIOGRAPHIE	71	
	- ANNEXES		

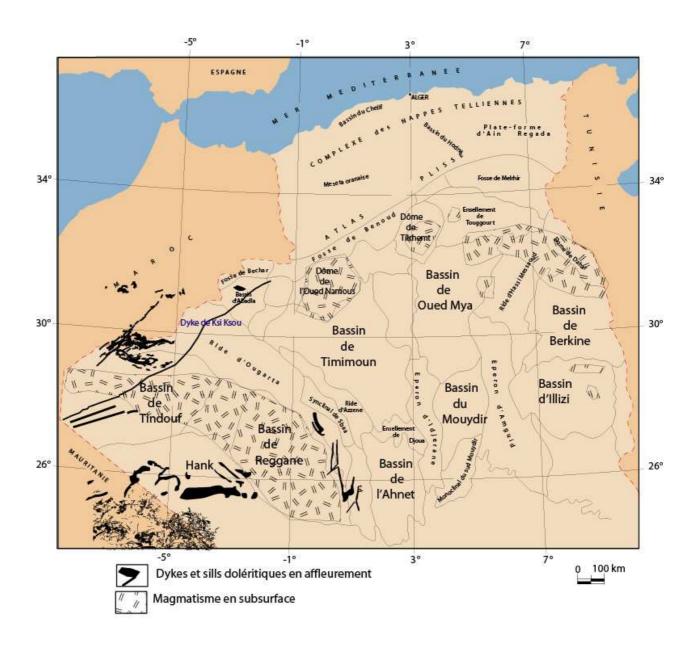
Liste des figures

<u>Figure</u>	<u>Titre</u>	Page
Figure 1	Distribution des roches magmatiques mésozoïques dans la plate-forme saharienne.	02
Figure 2	Carte montrant la localisation géographique du bassin de	
	Berkine et les principaux bassins sédimentaires de la plate-	05
	forme saharienne.	
Figure 3	Carte des principaux éléments morpho-structuraux de la	06
	plate- forme saharienne.	VO
Figure 4	Coupe géologique Nord-Sud à travers le bassin de Berkine et	07
	d'Illizi (D'après Klktt, 2000 ; modifié).	U /
Figure 5	Colonne stratigraphique synthétique du bassin de Berkine.	10
Figure 6	Système pétrolier du bassin de Berkine (d'après Klett, T.R,	24
	2000).	24
Figure 7	Carte de positionnement des sondages dans le bassin de	27
	Berkine Berkine.	21
Figure 8:	Cartes en isopaques des intrusions magmatiques dans le	46
	Cambrien dans le bassin de Berkine.	40
Figure 9:	Cartes en isopaques des intrusions magmatiques dans	47
	l'Ordovicien dans le bassin de Berkine.	4/
Figure 10:	Cartes en isopaques des intrusions magmatiques dans le	48
	Silurien dans le bassin de Berkine.	40
Figure 11:	Cartes en isopaques des épaisseurs totales du Paléozoïque	49
	dans le bassin de Berkine.	47
Figure 12:	Cartes en isopaques des intrusions magmatiques dans le	50
	T.A.G.I dans le bassin de Berkine.	30
Figure 13:	Cartes en isopaques des intrusions magmatiques dans le Trias	51
	Carbonaté.	31
Figure 14:	Cartes en isopaques des intrusions magmatiques dans le	52
	Trias	34

Figure 15:	Carte en isopaques des épaisseurs totales dans le bassin de	53
	Berkine.	33
Figure 16:	Carte structurale et carte en isopaques des épaisseurs totales	54
	des intrusions magmatiques dans le bassin de Berkine.	34
Figure 17:	Profils des corrélations	55
Figure18:	Corrélation lithostratigraphiques dans le T.A.G.I (NNE-SSW)	58
Figure 19:	Corrélation lithostratigraphiques dans le T.A.G.I (NE-SW)	59
Figure 20:	Corrélation lithostratigraphiques dans le Trias Carbonaté(E-W)	

Liste des tableaux

<u>Tableau</u>	<u>Titre</u>	
Tableau. 1 :	Phases tectoniques majeures.	19
Tableau. 2 :	Tableau synoptique de distribution des roches éruptives dans le bassin de Berkine.	28
Tableau. 3 :	Datation des roches magmatiques du bassin de Berkine.	42
Tableau. 4 :	Position des roches magmatiques par rapport à la roche mère et le réservoir.	64
Tableau. 5 :	Tableau comparatif entre le magmatisme du bassin de Berkine et d'Illizi.	67


Introduction Générale

Les roches magmatiques sont rencontrées sur une grande surface de la plateforme saharienne en Algérie, au sein des séries paléozoïques et/ou mésozoïques. Elles
affleurent sous forme de sills et de dykes sur les deux flancs nord et sud du bassin de
Tindouf, sur le flanc oriental du bassin de Reggane et dans la région du Hank (Bassin de
Taoudenni). Des dykes et de rares coulées basaltiques sont également connus en
affleurement dans le bassin de Béchar. En subsurface, on les rencontre dans les séries
paléozoïques des bassins de Reggane et de Tindouf, et dans le Paléozoïque et/ou le
Mésozoïque des bassins triasiques du Sahara Nord Oriental, d'Oued-Namous (Est de
Béchar), de Berkine et d'Illizi (Jacquemont P., 1971; Chabou M.C., 2001; Filali M.,
2001) (Figure 1).

Dans le bassin de Berkine (Sahara Nord Oriental), les roches magmatiques mésozoïques sont rencontrées en subsurface dans les secteurs Nord et Nord-Ouest, et sont surtout localisées au sein du Trias. On les trouve plus rarement en intrusions dans le Paléozoïque (Cambrien, Ordovicien et Silurien). Les études concernant ces roches sont rares, étant donné le peu d'intérêt que suscite le magmatisme en général chez les géologues pétroliers. Or, des études récentes ont montré que ces roches magmatiques peuvent avoir une grande influence sur l'histoire des systèmes pétroliers des bassins sédimentaires de la région (Logan P. et Duddy I., 1998; Makhous M. et Galushkin Y.I., 2003a et b).

On a réalisé dans cette étude des cartes en isopaques du magmatisme dans le bassin de Berkine et des coupes géologiques (corrélations entre sondages) des niveaux concernés par ces intrusions. Une grande partie de mon travail est basée sur les données de sondages pétroliers (logs habillés) de la région.

Cette étude a été réalisée dans la continuité des travaux effectués sur le magmatisme des bassins de Reggane (Khatal M., 2003), d'Oued Mya (Imadache A., 2003), de Hassi Messaoud (Attouchi S., 2003) et d'Illizi (Bentalaa S., 2005).

Figure 1 : Distribution des roches magmatiques mésozoïques dans la plate-forme saharienne (Carte modifiée d'après Wec Algérie 2005)

Les principaux objectifs de ce travail sont les suivants :

- réunir le maximum d'informations concernant les roches magmatiques du bassin de Berkine ;
- réaliser des cartes en isopaques par étages stratigraphiques (Cambrien, Ordovicien, Silurien, Trias carbonaté et Trias Argilo-Gréseux Inférieur), et une carte des épaisseurs totales;

- réaliser des corrélations lithostratigraphiques dans les étages contenant ces roches magmatiques : le Cambrien (Ri et Ra), l'Ordovicien, le Silurien argileux, le Trias carbonaté et le Trias Argilo-Gréseux Inférieur (TAGI).
- Dans cette partie, on s'intéressera à l'impact de ces roches magmatiques sur l'environnement pétrolier.
- Enfin faire une comparaison entre le magmatisme du bassin de Berkine et celui d'Illizi.

Les différentes parties de ce mémoire sont organisées comme suit :

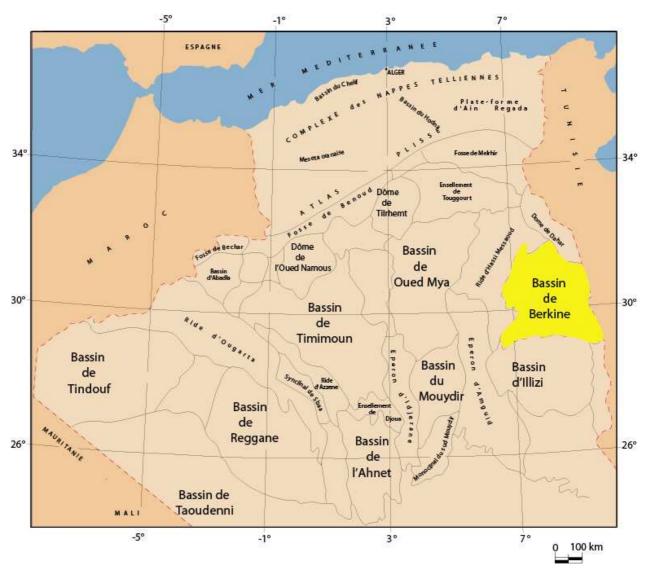
- o Le chapitre I nous permettra d'introduire la géologie du bassin de Berkine.
- O Dans le chapitre II, nous donnerons une synthèse des études réalisées sur le magmatisme du bassin de Berkine.
- Le chapitre III traitera de la répartition spatiale et temporelle de ce magmatisme dans le bassin de Berkine.
- Dans le chapitre IV, nous essayerons de voir l'influence de ces roches magmatiques sur l'environnement pétrolier du bassin de Berkine. Nous conclurons ce travail en dressant un bilan des résultats obtenus puis en proposant des recommandations.
- o Enfin, dans le chapitre V, nous essayerons de faire une comparaison entre le magmatisme dans les bassins de Berkine et d'Illizi.
- O Les annexes regroupées à la fin de ce mémoire incluent les tableaux ayant servi à la réalisation des figures du chapitre III.

Contexte Géologique du Bassin De Berkine

I.1. SITUATION GEOGRAPHIQUE ET GEOLOGIQUE DU BASSIN DE BERKINE

I.1.a. SITUATION GEOGRAPHIQUE

Le Bassin de Berkine est situé dans la partie orientale de la plate-forme Saharienne (**Fig. 2**) entre 29°11' et 33°00' de latitude Nord et entre 05°55' et 09°30' de longitude Est, occupant une surface voisine de **100.000 Km²**.


I.1.b. CADRE GEOLOGIQUE GENERAL

Du point de vue géologique, le Bassin de Berkine se présente sous forme d'une dépression semi-circulaire, presque entièrement occupée par des dépôts paléozoïques et mésozoïques. Le socle est rencontré à environ 7000 m de profondeur.

Le Bassin de Berkine est limité au Sud (**Fig. 2 et 3**) par le môle d'Ahara qui le sépare du bassin d'Illizi, à l'Ouest et au Nord respectivement par les môles d'Amguid El Biod - Hassi-Messaoud et de Dahar, et à l'Est par les frontières tunisienne et libyenne.

Ce bassin constitue la partie algérienne du vaste bassin intracratonique de Ghadamès, qui contient plus de 6 km de sédiments paléozoïque et mésozoïques (**Fig. 4**), et s'étend au sud de la

Tunisie et à l'ouest de la Libye (Echikh, 1998). La superficie totale occupée par le bassin de Ghadamès est de **300 000 Km²** dont 1/3 se trouve en Algérie (**100 000Km²**). En surface, le bassin est recouvert par un vaste système dunaire aligné suivant la direction Nord-Sud et pouvant atteindre 300 m de hauteur (Erg Oriental).

Figure 2 : Carte montrant la localisation géographique du bassin de Berkine et des principaux bassins sédimentaires de la plate-forme saharienne (d'après Wec Algérie 2005, modifiée)

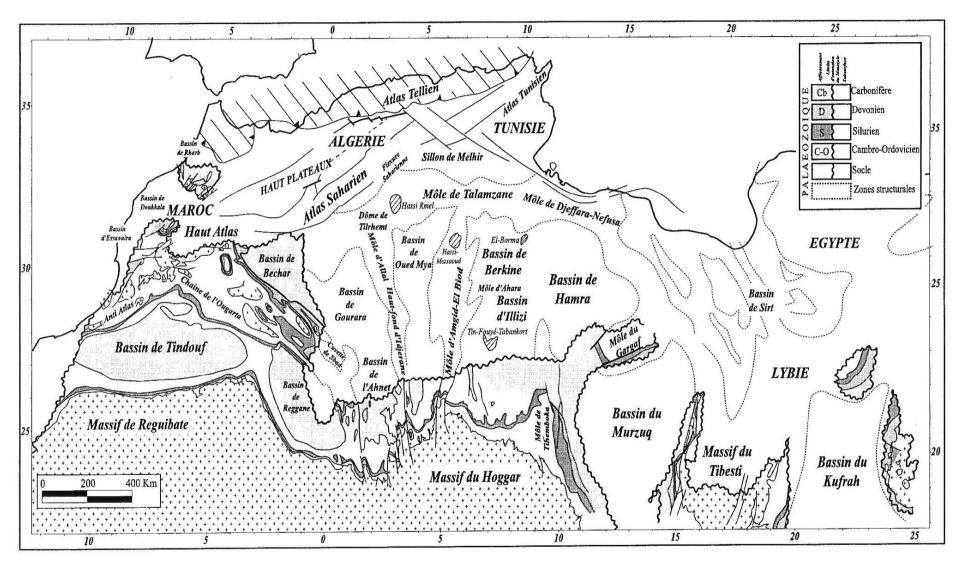


Figure 3 : Carte des principaux éléments morphostructuraux de la plate-forme saharienne (D'après Boote et al., 1998, modifiée)

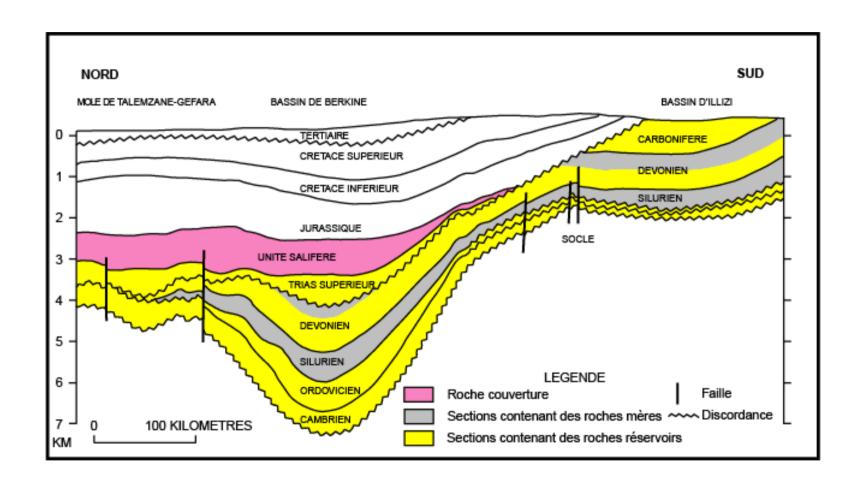


Figure 4 : Coupe géologique Nord-Sud à travers les bassins de Berkine et d'Illizi (D'après Klett, 2000, modifiée)

I.2. STRATIGRAPHIE DU BASSIN DE BERKINE

Le bassin de Berkine a conservé un remplissage sédimentaire de plus de 6000 m d'épaisseur (notamment au centre du bassin) allant du Paléozoïque à l'actuel. Ces roches sédimentaires reposent sur un socle granitique précambrien. Des roches magmatiques, qui font l'objet de ce travail, sont également abondantes en subsurface au sein de la série sédimentaire.

Le Paléozoïque (du Cambrien au Carbonifère inférieur) est essentiellement constitué de formations silicoclastiques de 3,5 km d'épaisseur. Le Mésozoïque contient plus de 4 km de sédiments, tandis que les formations cénozoïques ne sont préservées que dans la partie centrale de la dépression et sont réduits à une couche de moins de 200 m d'épaisseur composée de sédiments du Miocène et du Pliocène (**Fig. 5**).

1.2.1. Le Paléozoïque

Il est subdivise dans le bassin de Berkine en cinq étages (Aliev et al., 1971; Fabre, 1976).

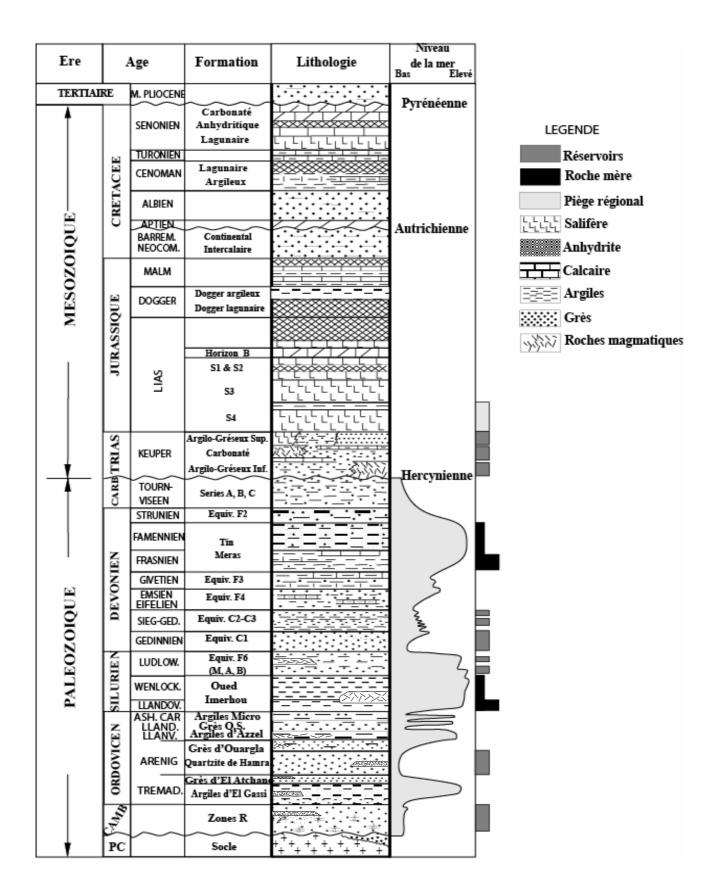
***** Le Cambrien

Les dépôts du Cambrien, qui reposent sur le socle précambrien, sont représentés par des grés et des quartzites à passées conglomératiques, subdivisés en trois lithozones (R3, R2, et Ra), avec une épaisseur moyenne de 300 m.

- La lithozone R3 (50 à 350 m): constituée de grès moyens à grossiers, conglomératiques vers la base, à ciment argileux montrant un remplacement progressif de l'illite par de la kaolinite.
- o La lithozone R2 (60 à 90 m) : constituée par une alternance d'argiles et de grèsquartzites moyens à grossiers.
- o La lithozone Ra (50 à 170 m): est formée de grès quartzitiques grossiers à fins, dont la zone médiane est très riches en Tiggilites.

❖ Le Cambro-Ordovicien

Les deux unités qui suivent n'ont pas été datées avec certitude et peuvent appartenir encore au Cambrien ou à l'Ordovicien.


- La zone Ri: composée de grès isométriques, bien classés, glauconieux avec une présence abondante de Tigillites.
- La zones des alternances : constituée d'une alternance d'argile grise silteuse et de grès quartzitiques blancs, fins à très fins.

❖ L'Ordovicien :

Ce système est constitué de bas en haut:

- Les argiles d'El Gassi : constituées par des argiles noires, parfois verdâtres, carbonatées et riches en glauconite.
- o **Les grès d'El Atchane :** formés de grès feldspathiques, localement conglomératiques, avec de fines intercalations d'argiles dans la partie inférieure.
- o Les quartzites de Hamra : composés de quartzites à rares passées d'argiles, azoïque.
- Les grès de Ouargla: il s'agit de grès fins à moyens parfois quartzitiques, et argileux au sommet de la formation.
- o Les argiles d'Azzel : il s'agit d'argiles noires, micacées et fossilifères.
- o **Les grès de Oued Saret : composés de g**rès argileux ou quartzitiques à banc d'argiles et zones conglomératiques, comprenant un banc de calcaire au sommet.
- o **Les argiles micro-conglomératiques :** ce sont des argiles noires silteuses à nombreux galets de quartz qui sont caractéristiques de dépôts glacio-marins.
- Les grès de Ramade : composés de grès quartzitiques à fines passées d'argile à la base,
 surmontées par des grès quartzitiques de la dalle de M'Kratta.

Toutes ces formations sont constituées par des dépôts marins surmontés par les argiles microconglomératiques et les grès de Ramade qui sont d'origine glaciaire.

Figure 5 : Colonne stratigraphique synthétique du bassin de Berkine (D'après Yahi et al., 2001, modifiée)

Le Silurien :

Le Silurien est essentiellement composé par des argiles noires fossilifères sur lesquelles reposent des grés argileux. Les argiles noires forment un repère stratigraphique connu sur l'ensemble de la plate forme saharienne et sont d'excellentes roches mères. On distingue deux membres :

- O Le Silurien argileux ou argiles à Graptolites (550m): constitué d'argiles gris noir à noires, parfois micacées, riches en graptolites avec parfois de rares trilobites. On note la présence de grains de quartz fins, quelques passées de grès gris-blanc à gris sombre et la présence de pyrite.
- o Le Silurien argilo-gréseux (250m): c'est une alternance d'argiles grises silteuses à silto-sableuse, tendres, rarement carbonatées et de grès gris à gris-clair, fins à moyens, à grains subarrondis, généralement bien classés et moyennement durs.

❖ Le Dévonien

Dans le bassin de Berkine, le Dévonien est très développé, son épaisseur dépasse parfois les 1000 m. Il est subdivisé en huit membres ou sous-étages :

- O Le Gédinnien (275 m): est constitué par des grès gris-vert et gris-clair, fins à moyens, parfois grossiers et moyennement durs. Ces grès sont compacts, parfois quartzitiques, ferrugineux au sommet, avec des intercalations d'argiles gris-verdâtres à noires, indurées, feuilletées, finement micacées et pyriteuses.
- o **Le Siégenien (270 m) :** est composé d'une alternance d'argiles grises à gris sombres, parfois noires, silteuses, feuilletées, micacées et pyriteuses et de grès gris-beige à gris-blanc parfois gris sombre, fins à très fins, rarement moyens, à ciment argileux.
- o L'Emsien (30 à 90 m): est constitué d'argiles gris noir à noires, indurées, silteuses, micacées, avec passées de grès, gris-blanc mouchetés de noir, fins à moyens, silicoargileux avec des traces de pyrite.
- o **L'Eifélien** (30 à 50 m): est constitué d'alternance d'argiles brun-foncés, micacées pyriteuses et à débris de coquilles et de grès fins à moyens, beiges à gris foncé.

- Le Givétien (30 à 80 m): Il est constitué d'intercalations de calcaires gris clair à gris noir, parfois argileux, moyennement durs et d'argiles noires à gris-noir, silteuses, micacées, feuilletées et pyriteuses.
- o Le Frasnien (0 à 260 m): Il est constitué d'argiles noires à brun foncé feuilletées, très riches en matières organiques, pyriteuses, avec des intercalations de calcaires argileux et gréseux, blancs.
- o Le Famennien (0 à 400 m): Il est composé d'argiles gris-noir, finement silteuses et micacées, feuilletées, indurées avec passées de grès gris-clair, beiges, très fins à fins et de calcaires blancs. On note la présence de pyrites et de fossiles.
- o **Le Strunien (0 à 110 m) :** Il est constitué d'argiles gris-noir, silteuses, micacées et de grès fins à ciment siliceux parfois argileux, légèrement glauconieux. Présence de pyrite.

& Le Carbonifère

Représentant le Paléozoïque terminal dans les domaines occidentaux, le Carbonifère est moins développé que dans les domaines orientaux, son épaisseur moyenne est de 900 m environ. Il est constitué du bas en haut :

- Le Tournaisien "A" (0 à 350 m): constitué d'une alternance de grès gris-clair fins à très fins, siliceux à quartzitiques, d'argiles noires, indurées, silteuses, micacées et de silt gris micacé.
- o Le Viséen "B" (0 à 270 m): Il est constitué d'argiles grises, gris-noir parfois brun-rouge, silteuses, micacées, carbonatées par endroits, et de grès gris-clair à gris-blanc, très fins, friables, glauconieux, trace de pyrite et de lignite.
- O Le Namurien "D" (0 à 165 m): Il est constitué de grès gris-blanc à blanc, fins à moyens, localement grossiers, sub-arrondi à subanguleux, mal consolidés avec passées d'argile grise, de calcaire et de gypse.

o Le Westphalien-Namurien "E" (0 à 162 m) :

Il est constitué d'argiles grises à gris-vert, indurées, silteuses, carbonatées, devenant noires à la base, passées de dolomie microcristalline, gréseuse, présence de bancs d'anhydrite blanche et traces de pyrite.

I.2.2. Le Mésozoïque

Il repose en discordance (discordance hercynienne) sur le Paléozoïque, et composé par des dépôts essentiellement évaporitiques et argilo-gréseux. Ces derniers sont très importants du fait qu'ils constituent de bons réservoirs.

Il est subdivisé en:

Le Trias :

En discordance sur le Paléozoïque, il est représenté par des dépôts argilo gréseux et lagunaires (sel et anhydrites) ; il est subdivisé en trois niveaux :

- o Le Trias Argilo-Gréseux Inférieur (TAGI): La base de la série est formée en générale de conglomérats rouge à brun et des grés grossiers à moyens qui plus haut font place à une alternance de grés et d'argiles, dans cette formation à caractère continental on distingue trois principaux domaines :
 - o A l'Ouest, la région de Gassi Touil de Rhourde Nous.
 - o A l'Est, le domaine de Wadi El Teh à El Borma.
 - o Au Nord, le domaine de Messdar à Bir Retmaya.
- o Le Trias Argilo carbonaté (TAC): Il est constitué d'argiles brun-rouge rarement gris-vert, fines à moyennes devenant grossières vers la base avec des intercalations d'argiles grises à gris-vert et brunâtre indurées, siliceuses et feuilletées.
- Le Trias Argilo-gréseux supérieur (TAGS): Les dépôts de la série sont rencontrés sur l'ensemble de la province triasique, il est formé essentiellement d'argiles rouges à gris – vertes, tendre a indurées.

Le Jurassique :

D'une épaisseur de 770 m, il est composé de sédiments marins lagunaires et débute à sa base par un niveau dolomitique caractéristique et omniprésent appelé « horizon B ».

Le Crétacé :

Le Crétacé est composé d'alternances de grés, d'argiles, de dolomies et, de calcaires ainsi que de quelques passées d'anhydrites, de gypses et, de sels ; il devient vers le sommet essentiellement carbonaté. D'une épaisseur de 1250 m, il est subdivisé comme suit :

- O Le Néocomien (226 à 325 m): Il est composé à la base de grès blanc, fins, carbonatés, avec intercalations d'argiles carbonatées et passées de calcaire gris argileux, devenant argiles avec intercalations de grès fin carbonaté au sommet. L'importance des grès augmente rapidement vers le Sud.
- o Le Barrémien (250 m): formé de grès blancs à gris clair, fins à grossiers, sub-arrondi à subanguleux, devenant par endroits non consolidé, et intercalations d'argiles brun-rouge, gris-vert, sableuses, carbonatées avec présence de lignite.
- o **L'Aptien (20 à 30m) :** Il est constitué de calcaires blanc microcristallin, argileux, avec passées de dolomie et d'argile gris-vert carbonatée.
- L'Albien (125 à 237 m): Il est formé de grès gris-blanc, fins à moyens, parfois grossiers argileux, peu consolidé, avec intercalations d'argile brun rouge silto-sableuse et présence de lignite.
- o **Le Cénomanien (187 à 236 m) :** Il est constitué d'alternances d'argiles gris-vert, brunrouge, dolomitiques, d'anhydrite blanche, translucide, de sel blanc, et de calcaire blanc.
- o Le Turonien (60 à 123 m) : Il est constitué de calcaire blanc, gris, argileux, avec intercalations de marne gris-verdâtre, tendre parfois dolomitique.

o Le Sénonien:

- O Le Sénonien Salifère (86 à 224 m): Il est constitué de sel blanc, translucide, massif, avec intercalations d'argile brun-rouge, salifère, de dolomie gris-beige, et d'anhydrite blanche pulvérulente.
- o Le Sénonien lagunaire (85 à 250 m): Il est constitué d'une alternance de calcaire, parfois dolomitique, blanc à beige, de dolomie gris à beige, d'anhydrite blanche, translucide, dure et d'argile gris-vert à gris-noir dolomitique tendre.
- o Le Sénonien carbonaté (200 à 305 m): Il est constitué de calcaire, gris-beige microcristallin, moyennement dur, par endroits argileux, de marne grise pâteuse, de dolomie beige, microcristalline et d'anhydrite blanche.

I.2.3. Le Cénozoïque

Il est essentiellement composé de dépôts détritiques du Mio-Pliocène (30 à 250 m d'épaisseur). Il s'agit de sables translucides, jaunâtres localement rougeâtres, fins à grossiers avec intercalations d'argile brun-rouge sableuse, et présence de bancs calcaires argileux.

I.3. STRUCTURE DU BASSIN DE BERKINE ET TECTONIQUE

Le bassin de Berkine est caractérisé par deux domaines principaux qui sont (Beicip, 1991):

- ❖ Le domaine Ouest: c'est un domaine très structuré, où les accidents présentent des rejets importants et des structures de grande amplitude;
- ❖ Le domaine centre: c'est un domaine où les structures sont relativement moins prononcées avec une remontée monoclinale vers le Nord au niveau du môle de Dahar des formations paléozoïques.

Les failles qui résultent de la tectonique cassante, ayant affectée les deux domaines sont multidirectionnelles, les principales orientations observées sont :

O Direction subméridienne :

Les failles subméridiennes sont caractérisées par un grand rejet de l'ordre de 500 m (région de Rhourd Nous).

Direction Nord Est - Sud Ouest :

Un nombre considérable de failles alignées suivant cette direction est connu sur tout le bassin, particulièrement sur la partie centre. Ces failles ont donné naissance à de grandes structures au centre et à l'Est du bassin de Berkine. Sur la majorité de ces failles à caractère inverse s'appuient des structures anticlinales allongées formant des piéges à hydrocarbures dans le TAGI et le TAGS.

Les autres orientations secondaires sont :

- **Direction Nord 70 :** connue à l'Ouest du bassin dans la région de Rhourd Nouss, Gassi Touil, et Menzel Ledjmet.
- Direction sub-équatoriale : existe au sud dans le môle d'Ahara, qui sépare le bassin de Berkine de celui d'Illizi.
- Direction Nord150 : connue au Nord Est du bassin du coté des champs de Keskessa, Bir Berkine et Bir Rebaa.

I.4. EVOLUTION GEODYNAMIQUE DU BASSIN DE BERKINE

Les phases tectoniques ont été synthétisées d'après les travaux de **A**.BOUDJEMAA (1987) et du BEICIP (Décembre 1991) (**Tableau 1**).

I.4.a. La phase panafricaine : C'est suite à la collision entre le craton Ouest Africain rigide et un bloc Est Africain plus plastique que les grand traits structuraux de la plate forme Saharienne ont été acquise à savoir les grandes failles subméridiennes qui découpent le bouclier Touareg en trois blocs longitudinaux. Ces accidents sont verticaux et leur rejet horizontal peut atteindre la centaine de kilomètre, auxquels sont associés un réseau de failles conjuguées d'orientation NE-SO et NO-SE, la contrainte maximale est orientée E-O. Les accidents ainsi formés joueront un rôle important dans la structuration et le comblement de la plate-forme saharienne.

I.4.b. La phase distensive du Cambro-Ordovicien : Après le nivellement des structures et reliefs antérieurs au Cambrien et la formation de la pédiplaine infra-Tassilienne, celle-ci se trouve légèrement inclinée vers le Nord (S.BEUF et al. 1971 in : BOUDJEMAA, 1987).

Les séries du Cambro- Ordovicien présentent :

- o des variations d'épaisseur et de faciès de part et d'autre des failles subméridiennes;
- o un fossé sur le prolongement Nord des accidents subméridiens;
- o et des intercalations volcaniques à plusieurs endroits dans des sédiments attribués au Cambrien et à l'Ordovicien (Trémadoc).

Cet épisode se termine par une transgression généralisée.

I.4.c. La phase Taconique: Au Caradoc, des mouvements compressifs se manifestent le long des accidents sub-méridiens, et provoquent des soulèvements régionaux et ensuite leurs érosions. Parallèlement, un changement climatique provoque une importante calotte glaciaire et la mise en place de dépôts glaciaires et périglaciaires qui l'accompagne avec des discordances et érosions. Elle est suivie au Silurien par une transgression et le dépôt d'argiles à graptolites diachrone entre les bassins de l'Ahnet, Illizi et Ghadamès, des niveaux de roches éruptives sont traversés dans les puits au contact Ordovicien-Silurien et même à la place des argiles à graptolites où celles-ci ne sont pas retrouvées à (RBT-1bis), ce volcanisme traduirait une distension au Silurien.

I.4.d. Phase de compression calédonienne : Elle a eu lieu entre la fin du Silurien et le début du Dévonien, et elle a été montrée par le dépôt de matériels détritiques en discordance sur des dépôts anciens (formation F6 sur la zone de passage du Silurien) dans les puits TG-2, TG-3 et TG-4 suivi par :

- Au Dévonien inférieur : une phase distensive qui débute au Gédinnien et se termine par la transgression généralisée au début de l'Emsien.
- o Au Dévonien moyen et supérieur : il a été constaté 2 discordances pouvant parfois se confondre et donner lieu à la seule discordance frasnienne, suivies a chaque fois par des transgressions marines, mais sans pouvoir pour autant dire si c'est le résultat des mouvements compressifs ou distensifs.
- o Les mouvements post-famenniens : une discordance à la base du Carbonifère a été établie faisant que les formations du Tournaisien supérieur reposent en

discordance sur les formations du Dévonien, ceci est du a une lacune de dépôts et a été constaté dans le Sud-Ouest du bassin d'Illizi.

I.4.e. Phase de compression hercynienne : L'érosion pendant cette phase a conduit à l'image actuelle de l'écorché anté-mésozoique, elle se traduit par l'inversion tectonique. Avec les zones Nord et Ouest les plus subsidentes au Paléozoïque inférieur qui seront les plus érodées, et la zone Sud-Est du bassin la moins érodée, où le Carbonifère a été conservé partiellement.

Le soulèvement qui a affecté les zones Ouest et Nord du bassin ne peut être précisé dans le temps à cause de la faible extension du Carbonifère non affecté par l'érosion (d'après BEICIP 1991).

Les mouvements hercyniens majeurs sont situés après le Namurien et avant le Permien (d'après A. BOUDJEMAA 1987).

I.4.f. La phase de distension du Trias-Jurassique : Au Trias supérieur – Jurassique inférieur, une importante phase de distension liée au rifting de la Téthys et à l'ouverture de l'Atlantique Central a affecté une importante partie de la plate-forme saharienne se traduisant par de vastes épanchements de roches volcaniques (Nord-Ouest du bassin de Berkine, Bassin de Oued Mya) et la mise en place de sills dans les bassins de Reggane et de Tindouf. Une importante sédimentation évaporitique a accompagnée cette phase dans les bassins du Nord Sahara. Cette phase se caractérise par des jeux en failles normales sur les accidents NE-SW.

I.4.g. La phase Autrichienne : C'est une phase de compression Est - Ouest qui a causé une inversion structurale. Les failles normales synsédimentaires crées pendant le Trias-Lias se sont inversées durant cette phase.

I.4.h. La phase Pyrénéenne (Eocène Supérieur): Cette nouvelle phase compressive affecte les accidents NE-SO donnant naissance a de nombreux anticlinaux à axes parallèles a ces failles. Au Miocène supérieur cette phase compressive à raccourcissement N-S affecte surtout le Nord du bassin, son influence est peu importante au Sud.

PERIODE MAX D'ACTIVITE	DIRECTION DE LA CONTRAINTE	EFFET SUR LE SYSTEM FAILLES	EFFET SUR LA SEDIMENTATION
PANAFRICAINE	E-W	Tectonique cassante créant des failles et des fractures conjuguées NW-SE & NE-SW.	Compartimentage du Craton du Sahara central.
CAMBRO- ORDOVICIENNE	NW-SE	Mouvement normal le long des failles N-S.	Les variations de l'épaisseur sont contrôlées par la faille. Basculement NW de la plate-forme saharienne volcanisme.
TACONIQUE (Caradoc-Ashgilien)	E-W →○←	Mouvement inverse le long des failles N-S résultant. Formation des structures N-S.	Soulèvement des boucliers, Reguibat et Touareg.
CALEDONIENNE (Silur-Devonien)	E-W	Mouvement inverse ou décrochant le long des failles N-S.	Erosion le long des zones hautes d'orientation N-S & E-W (Tihemboka . Ahara).
FRASNIEN	NW-SE	Mouvement normal le long des failles NE-SW.	Non-dépôt et érosion locale (Mole d'Ahara). Volcanisme.
VISEEN (Hercynienne précoce)	N 40°	Mouvement inverse ou décrochant le long des failles N-S. Début de formation de la chaîne varisque.	<u>Erosion sur Tihemboka</u> et soulèvement de l'Ohgarta.
CARBONIFERE SUP A PERMIEN (Hercynienne principale)	N 120°	Mouvement inverse ou décrochant le long des failles NE-SW (résultat de la formation de la Pangée).	Erosion sur les axes NE-SW.
RIFTING TRIAS-LIAS (Dislocation de la pangée)	NW-SE	Réactivation des failles NE-SW se terminant au TAGS et S4.	Contrôle de la sédimentation par les failles entraînant une variation rapide d'épaisseur le long des failles NE-SW.
CRETACE INFERIEUR (Autrichienne)	E-W	Réactivation des décrochements des failles N-S & NE-SW résultant du mouvement différentiel de la plaque européenne et de la plaque africaine.	Erosion des sédiments du Crétacé sous l'Aptien (l'Arche d'El Biod & Illizi). Effet léger sur le bassin de Berkine.
EOCENE (pyrénéenne)	N-S & NW-SE	Début de chevauchement au nord résultant de la convergence de la plaque européenne. Décrochement de la faille S. Atlas.	
MIOCENE	NW-SE & N-S	Episode de compression majeur dans le domaine atlasique.	Sédimentation prédominante de flyshs au Nord.
POST- VILLAFRANCHIEN (Alpine)	N-S	Basculement et inversions de blocs. Période finale de compression dans le domaine atlasique. Evénement majeur de collision.	Soulèvement du Hoggar. Basculement du bloc d'El Borma.

Tableau 1 : Phases tectoniques majeures des bassins triasiques du Sahara nord-oriental (d'après Boudjema, 1987)

I. 5. LE SYSTEME PETROLIER DU BASSIN DE BERKINE: (FIG. 6)

I.5.a. Roches mères

Les données géochimiques ont révèles deux principales roches mères dans le bassin de Berkine; il s'agit de Silurien argileux et du Dévonien supérieur. (Etude Sonatrach 1991).

• La roche mère silurienne

Le Silurien argileux est présent sur la quasi-totalité du bassin sauf en bordure Ouest et au Nord ou il a été érodé durant la phase hercynienne ; son épaisseur varie de 300 à 400 m dans la partie centrale. La zone la plus subsidente se trouve sur l'axe de Hassi Chergui-Bridès ou son épaisseur atteint les 700 m.

Le Silurien argileux est subdivisé en deux parties :

- ➤ Une partie basale constituée d'argiles noires à Graptolites riches en matières organiques et marquée par un pic radioactif. Son épaisseur moyenne varie de 10 à 20 m.
- ➤ Une partie supérieure moins radioactive.

La maturation de la roche mère silurienne est située en phase à gaz sur la majeure partie du bassin, particulièrement vers le Sud-Est.

• La roche mère dévonienne

Localisée dans le Dévonien supérieur ; elle est subdivisée en deux zones :

- ➤ La zone inférieure radioactive du Frasnien présente les meilleurs potentiels avec une épaisseur variant de 150 à 300 m.
- ➤ Une zone supérieure du Frasnien-Famenien avec une épaisseur qui varie de 50 à 500 m.

La maturation à l'actuel est en phase à gaz dans la partie centrale du bassin.

• Les autres roches mères

➤ La roche mère ordovicienne : localisée dans les argiles micro-conglomératiques de l'Ordovicien supérieur ; la matière organique est de type II.

La roche mère carbonifère : les analyses géochimiques montrent que des niveaux argileux présentent de bons potentiels pétroligènes ; la matière organique est de type III favorable à la génération du gaz.

I.5.b. Roches réservoirs

Les roches réservoirs comprennent les formations gréseuses du Paléozoïque et du Trias argilogréseux.

• Les réservoirs du Paléozoïque :

- Le réservoir cambrien: il a été atteint sur les bordures Nord (môle de Dahar) et Sud-Ouest du bassin où sa profondeur est faible; son épaisseur varie de 500 à 600 m. Ce réservoir est formé par les niveaux Ri et Ra où la couverture est assurée par les argiles ordoviciennes d'El Gassi. Sa porosité varie de 4 à 11 %.
- ➤ Le réservoir ordovicien : est représenté par les quartzites de Hamra. C'est dans la partie Sud-Est du bassin que les quartzites de Hamra ont révélées leur importance. Leur épaisseur maximale est de 325m, situé sur l'axe Gassi Touil- Nezla. Dans la région de Nezla la porosité varie de 5 à 10 %. Les principaux résultats de ce réservoir sont : de l'huile et du gaz à Nezla et du gaz à condensât à Nezla Nord.
- Le réservoir silurien argilo-gréseux : est représenté par les unités M, A et B. Cette formation correspond à la partie supérieure du Silurien, elle est subdivisée en unités M1, M2, A, B1 et B2 qui constituent la partie inférieure et moyenne du réservoir "F6". On note que cette formation est particulièrement subsidente dans la partie Nord-Est de la province triasique ou elle atteint prés de 900 m d'épaisseur dans le sillon de Marafag. Les grés sont fins à moyen avec une porosité variant de 8 à 12 % et une perméabilité de 100 mD. Ce réservoir produit de l'huile et du gaz à condensât à Rhourd Nous et à Rhourde Adra ; l'étanchéité de ces réservoirs est formée par les argiles assurant une bonne couverture.
- Les réservoirs du Dévonien inférieur : ils sont constitués par des grés massifs de la base du Gédinnien ainsi que le Siégenien et l'Emsien ; (alternance de grés et d'argile).
 - o **Grés massif GEDINNIEN ou grés de TADRAAT**: sont localisés dans la partie Sud du bassin où elle a été épargnée par l'érosion hercynienne; son épaisseur est de l'ordre de 300 m environ. Ses paramètres pétrophysiques

- sont assez bons, la porosité varie entre 7 à 5 % alors que la perméabilité atteint les 500 mD.
- O Le réservoir Siégenien-Emesien: Il est constitué par des alternances d'argiles et de grés fins à moyens; son épaisseur varie de 30 à 90m; ses paramètres pétrophysiques sont meilleurs avec une porosité variant de 15 à 20 % et une perméabilité de 100 mD. D'importantes accumulations d'huiles ont été rencontrées dans ce réservoir à Bir-Berkine (BBK-1) et Bir-Rebaa Nord (BRN).
- Le réservoir Carbonifère : (grés de Rhourde El Khrouf (RKF)) : il constitue un nouvel objectif pétrolier avec d'excellentes caractéristiques pétrophysiques, où la porosité varie entre 8 et 17 % ; il produit à Rhourd El Khrouf et Berkine.

Les réservoirs du Mésozoïques

Au niveau du Mésozoïque, il n'y a que les réservoirs du Trias qui peuvent être considérés comme potentiels. On distingue trois principaux réservoirs : le **TAGI** (repose sur la surface de la discordance hercynienne), le **TAC** (qui représente la partie médiane) et le **TAGS** (constitue la partie supérieure).

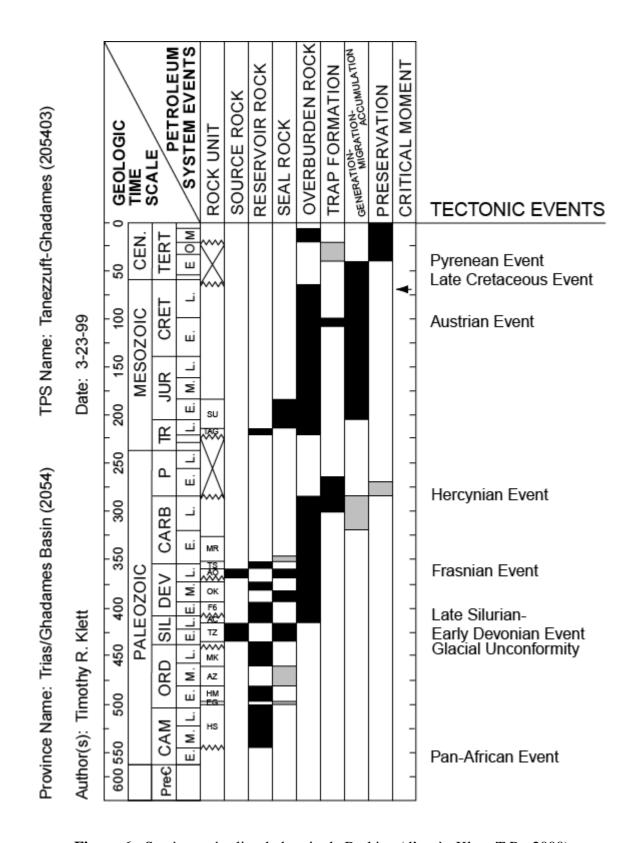
- ➤ Le TAGI: le Trias argilo-gréseux inférieur est présent dans tout le bassin sauf sur la bordure Sud-Ouest où il présente une lacune dépôt, son épaisseur est de 100 m dans la partie centre et ouest. Au nord son épaisseur varie de 10 à 200 m avec un développement des roches éruptives dans la partie nord-ouest perdant toutes ses qualités réservoirs. La porosité varie entre 7 et 26 % et la perméabilité est de 1 mD. De nombreuses découvertes d'huile et de gaz ont été faites dans ce niveau sur des pièges situés sur le trend Nord Est-Sud Ouest (axe El Merk-Rhourde El Khrouf). La couverture est assurée par les argiles du Trias carbonaté ou par le Trias salifère.
- ➤ Le TAC : d'origine lacustre, il est constitué d'argile brun rouge dolomitique et silteuse, passée de dolomie microcristalline et de grés fins siliceux à silico-argileux, il est aussi caractérisé par la présence de roches éruptives dans la région de Nezla. Les réservoirs du Trias Carbonaté correspondent aux grés des unités intermédiaires 1 et 2, séparés par l'argileux moyen, l'étanchéité de ces derniers est assurée par les argiles sus-jacentes.
- Le TAGS: il a une extension limite à la dépression du Sud Est triasique; il est d'origine fluviatile formé de grés blancs, silico-argileux localement anhydritique, fin à moyen, son

épaisseur est de 200 m. Sur le plan pétrolier le TAGS constitue l'un des principaux réservoirs dans la dépression Sud Est triasique, d'autre part d'excellents résultats pétroliers ont été enregistrés à Nezla, Hassi Touareg et à Hassi Chergui qui produisent de l'huile et du gaz à condensât. La couverture est assurée par la puissante série évaporitique du Trias.

I.5.c. Roches couvertures

La série salifère du Trias-Lias représente une excellente couverture régionale pour l'ensemble du thème triasique.

Sur le môle d'Ahara, l'équivalent du Lias salifère se présente sous un faciès argileux et peut encore assurer une couverture efficace comme c'est le cas pour les accumulations de Hamra et El Ouar Sud mais disparaît au delà.


Au sein du Trias existent des couvertures intermédiaires efficaces comme le Trias argileux et le Trias carbonaté, et à l'intérieur du TAGI. entre les différents corps gréseux il y a développement des argiles de plaine d'inondation ce qui a donné les réservoirs multicouches du TAGI comme c'est le cas à Rhourde Er Rouni, Wadi El Teh etc...

I.5.d. Les pièges

La plupart des accumulations des hydrocarbures connus (Wadi Teh, Bir Berkine, Rhourde El Khrouf, Menzel Ledjmet...) dans la région sont liées à l'existence de piéges structuraux de types anticlinaux, souvent associés à des trends structuraux délimités par des failles normales d'orientation NE-SW.

Néanmoins, le potentiel des piéges est lié aux rejets de failles qui définissent leur taux de remplissage et les positions des différents plans H/E (huile/eau).

Ces failles normales assurent les conduits verticaux et les connections entre les différentes formations réservoirs ainsi que le contact direct (superposition des couches) entre la roche mère et la roche réservoir par des chemins de migration latérale.

Figure 6 : Système pétrolier du bassin de Berkine (d'après Klett, T.R., 2000)

Le Magmatisme du Bassin De Berkine

II. 1. DISTRIBUTION ET NATURE DES ROCHES MAGMATIQUES DU BASSIN DE BERKINE

II.1.a. Distribution des roches magmatiques dans le bassin de Berkine

Les roches magmatiques rencontrées par sondage dans le bassin de Berkine sont répandues dans le Mésozoïque et plus rarement dans le Paléozoïque. On note une abondance de ces roches au sein de la série inférieure du Trias (T.A.G.I).

Les régions où se manifestent ces intrusions magmatiques sont :

1- La Région de Hassi Bir Rekaiz

o Rhourde Boutayeb, Rhourde Sefar, Rhourde El Lia, Semhari, El Hamamit et Hassi Bedda.

2- La Région de Messdar-Rhourde El Baguel

Messdar, Rhourde El Baguel, Rhourde Akbar, Rhourde Ouled Zid et Feidjet Es
 Sefar

3- La Région de Ain Romana

o Hmadet El Guelta, Zemlet El Khalef et El Guelta.

4- La Région d'El Arich

o Loudje, El Arich El Tahtani, Guenafide et El Arbi.

5- La Région de Bridès

o Rhourde Sayah

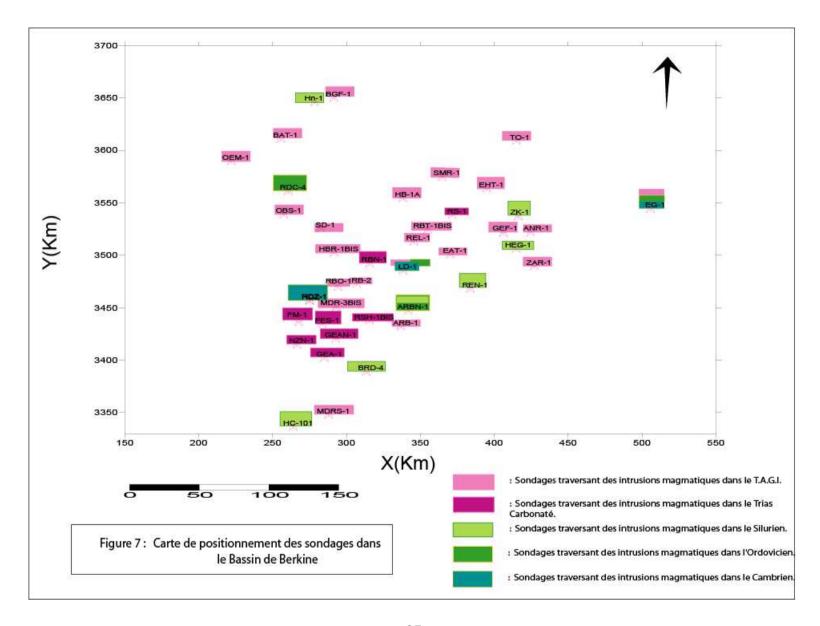
6- La Région d'El Arf

o Feidjet El Mouley, Hassi Chergui, Guassi El Adem et Nezla

7- La Région de Dorbane

o Hassi Brahim, Ouled Bousaid et Ouled El Maraa.

8- La Région de Bir El Atrach


o Rhourde Chegga

9- La Région de Zemlet En Naga

o Rhourde Naga, Zemlet El Arbi.

10- La Région de Hassi Touila

Dans certains sondages, ces roches magmatiques se rencontrent en intrusion dans un seul étage stratigraphique : le Paléozoïque (le Cambrien, l'Ordovicien et le Silurien) ou le Mésozoïque (le T.A.G.I et le Trias Carbonaté). Dans d'autres sondages, on les trouve dans le Paléozoïque et le Mésozoïque (**Fig. 7**). Les épaisseurs des roches magmatiques sont variables, avec un maximum de **149 m** traversées par le sondage **RBT-1bis** et une épaisseur minimale de 1,5 m traversée par le sondage **REN-1** (Tableau 2).

Tableau 2 : TABLEAU SYNOPTIQUE DE DISTRIBUTION DES ROCHES ERUPTIVES DANS LE BASSIN DE BERKINE

Sondage	Nom	Bloc		Coordonnées UTM (Km)		Cotes abs	olues (m)	Ep	(m)	Position de	Roches sous-jacentes /	Source des	Description
Someonge	1 (0222	2100	X	Y	(m)	Тор	Bottom	Totale	nette	l'intrusion	sus-jacentes	données	lithologique
						3350	3404	54	6	Cambrien	Argiles/ Grés	Log habillé	Roches intrusives
EG-1	El Guelta 1	442	505,713	3543,513	266.73	3079	3350	271	27.5	Ordovicien	Siltstones / Siltstones	Log habillé	Roches intrusives andésitiques
						2872	3075	203	42.5	T.A.G.I	Argiles+Grès	Log habillé	Roches andésitiques
	Messdar		287,894	3347,189		3301	3346	45	40	Eruptif inférieur	Argiles/argiles	Log habillé	Andésite peu ou pas altérée
MDRS-1	Sud 1	427	201,034	3347,189	167.03	3165	3211	46	37,5	Eruptif supérieur	Alternance d'argiles et deGrés/Grés	Log habillé	Andésite très altérée
						3415	3444	29	15.5	Roches éruptives inférieurs	Argiles/argiles	Log habillé	Roches éruptives
MDR- 3bis	Messdar 3bis	427	293,095	3450,01	165	3265	3350	83	55	Roches éruptives supérieurs	Argiles/argiles	Log habillé	Diabase mouchetée de minéraux verts
						3250	3267	17	5	T.A.G.I	Argiles/argiles	Log habillé	Diabase gris- vert
SD-1	Dorbane 1	423	282.414	3524,897	138.46	4108	4169	61	50,5	T.A.G.I	Alternance d'argiles et de carbonate/ même chose	Log habillé	Andésite doléritique altérée
AKR-1	Rhourde	427	307,608	3457,067		3145	3177	17	32	T.A.G.I	Argiles/argiles	Log habillé	Diabase gris- foncé à vert
AKK-1	Akbar 1	427	,			2995.5	3125	129.5	20	Trias Carbonaté	Argiles/argiles	Log habillé	Roches éruptives
GEF-1	Guenafide 1	407	400,463	3509,511	159.80	3431	3522	91	54	Complexe clastique inférieur	Argiles/argiles	Log habillé	Andésite spilitique plus ou moins altérée, dolérite spilitique
LD-1	Loudje 1	407	338,208	3484,641		3845,5	3900,5	55	14	Cambrien (Ri +Ra)	Grés / Grés	Log habillé	Andésite spilitique

						3531,5	3700	168,5	55	Ordovicien	Argiles/ Grés	Log habillé	Andésite spilitique	
						3279	3328	49	35	T.A.G.I	Argiles/argiles	Log habillé	Andésite altérée	
RS-1	Rhourde Sefar 1	443	371,533	3537,533	140.10	3336	3389	53	53	T.A.G.I	Argiles/ Alternance d'argiles et de carbonates	Log habillé	Andésite spilitique verte très altérée	
RBT-1bis	Rhourde Bou Tayeb 1bis	443	354,955	3523,881	143.33	3460	3609	149	149	T.A.G.I	Argiles /Argiles	Log habillé	Andésite grise rouge à gris vert	
REL-1	Rhourde El Lia 1	407	345,465	3512,322	147.65	3586	3696	110	110	T.A.G.I	Argiles/argiles	Log habillé	Roche éruptive (andésite)	
	Rhourde					3507	3584.5	77.5	57.5	Trias inférieur	Argiles/argiles	Log habillé	Andésite plus ou moins altérée	
RBN-1	El Baguel Nord 1	427	27 315.598	98 3491.270	157	3412	3427	15	15	Trias supérieur	Alternance d'argiles et de carbonates/ Argiles	Log habillé	Andésite altérée	
RB-2	Rhourde El Baguel	427	, 306,846	3471,713		3338	3410	72	46,5	T.A.G.I	Grès/ Argiles	Log habillé	Andésite translucide à verte parfois altérée	
	H2					3233	3297	64	42	Trias Carbonaté	Argiles/argiles	Log habillé	Roche éruptive massive	
RBO-1	Rhourde El Baguel	427	294.289	294.289	289 3468.995		3515	3552	37	34	T.A.G.I	Argiles/argiles	Log habillé	Diabase grès foncé, beige, très altérée
	Oue 1					3407	3501	94	59,5	Trias Carbonaté	Argiles/argiles	Log habillé	Roches éruptives	
						3668	3672	4	4	Cambrien (Ra)	Argiles / Grés	Log habillé	Roches éruptives vertes	
RDZ-1	Rhourde Ouled Zid 1	427	274,947	3456,174	159	3530	3546	16	6	T.A.G.I	Siltstones/ Argiles	Log habillé	Roches éruptives brunes	
	1					3434	3451	17	15	Trias Argileux Supérieur	Argiles / Argiles	Log habillé	Roches éruptives massives	

	Rhourde				145.23	3909	4018,5	109,5	41	Ordovicien (Argiles d'El Gassi)	Argiles/Argiles	Log habillé	Roche éruptive à gris sombre à nodules d'argiles		
RDC-4	Chegga 4	433	260,582	3560,402		3732	3781	49	49	T.A.G.I	Argiles/Alterna nce d'argiles et de carbonates	Log habillé	Roches éruptives gris- sombre à verdâtres, compactes		
ARB-1	El Arbi 1	407	336,856	3431,379		3555	3561.5	6.5	6.5	T.A.G.I	Argiles/Argiles	Log habillé	Roche spilitique		
EAT-1	El Arich El Tahtani 1	407	370,326	3500,087		3446	3565	119	50	T.A.G.I	Argiles/Argiles	Log habillé	Roches éruptives massives		
ZAR-1	Zemlet El Arbi 1	403	427,06	3488,911		3195	3200	5	5	T.A.G.I	Argiles + Grès	Log habillé	Dolérite		
	Hamadet	nadet					3545	3585	40	5.5	Silurien	Argiles/Argiles	Log habillé	Trachyte	
HEG-1	El Guelta-	432	414,003	3519,018	157,74	3407.5	3446	38.5	34.5	T.A.G.I	Argiles/Argiles	Log habillé	Andésite rouge-brun à brun verdâtre		
	Z l.4 El		414.054	54 3523,245		3714	3719	5	5	Silurien	Argiles/Argiles	Log habillé	Roche volcanique basique		
ZK-1	Zemlet El Khalef-1	432	414,054	3525,245	140	3431	3490	59	55	Trias Andésitique	Siltstones / Siltstones	Log habillé	Andésite brune, à brun noirâtre altérée		
ANR-1	Ain Romana 1	432	419.231	3524.764	172.06	3380	3414	34	34	Roches éruptives	Argiles/Grès	Log habillé	Roches éruptives vert à vert foncé, dures		
	Hassi		415,036	415 026	<i>415</i> 026	2706 536		3554	3584	30	30	Trias Andésitique	Argiles/ Dolérites	Log habillé	Roche volcanique basique (Dolérite ou andésite)
TO-1	Touila 1	414		3608,538	115	3544	3554	10	10	Trias Gréseux Supérieur	Roche volcanique/ pyrite	Log habillé	Dolérite altérée et remaniée (?)à la base		
EHT-1	El Hamamit 1	424	394,796	3562,952	128.85	3550	3600	50	44	T.A.G. Andésitique	Grès/Argiles	Log habillé	Andésite grise brune		
HB-1A	Hassi Bedda 1 A	424	338,112	3553,825		3739	3791	52	38	T.A.G.I	Argiles/Argiles	Log habillé	Dolérite altérée		

HBR-1bis	Hassi Brahim 1	423	291,48	3501,709		3882	3888	6	6	T.A.G.I	Argiles/Argiles	Log habillé	Roches éruptives altérée, vertes
OBS-1	Ouled Bousaid 1	423	257.535	3538.044		3392	3435	43	43	T.A.G.I	Alternance d'argiles et de carbonates/?	Log habillé	Andésite translucide à verte
HC-101	Hassi Chergui 101	237	263.98	3335.86	226	3799,5	3843	43,5	33,5	Silurien Argileux Gréseux	Argiles/Argiles	Log habillé	Dolérite grisâtre, verdâtre et beige
BRD-4	Bridès 4	236	313.336	3388.08	190.5	4418,5	4427,5	9	6,5	Silurien Argileux Gréseux	Argiles/Argiles	Log habillé	Roches éruptives gris sombre à gris vert
REN-1	Rhourde Naga 1	403	383.77	3467.204		4278	4297	6	2	Silurien Argileux	Argiles/argiles	Log habillé	Fines passées de roches volcaniques
RDC-2	Rhourde Chegga 2	433	262.271	3566.002		3724	3860	79	56,5	T.A.G.I	?/Alternance d'argiles et de carbonates	Log habillé	Roche éruptive gris brun, rarement verte, dure et altérée
Hn-2	Hassi Amrane 2		300.253	3640.529	118	4324	4415	91	83	T.A.G.I	Grès/ Siltstone	Log habillé	Andésite massive
BGF-1			291,331	3649,34		3969	4015	46	11,5	T.A.G.I	Argiles/argiles	Log habillé	Andésite verte
Hn-1	Hassi Amrane 1		278.331	3645.093	121.10	3920.4	3943	45	36.5	T.A.G.I	Argiles/argiles	Log habillé	Andésite gris vert compacte
BAT-1	Bir El Atrach 1	433	255.504	3610.187	116.56	3834,5	3868,5	34	27,5	T.A.G.I	Siltstone/ argiles	Log habillé	Roches éruptives gris brun à gris sombre
OEM-1	Ouled El Meraa 1	423	221.936	3588.821		3833	3860	27	27	T.A.G.I	Argiles/argiles	Log habillé	Spilite verte friable
HDZ-1	Hassi Dzabat 1	439	275.123	3455.988		3125	3152	27	13	T.A.G.I	Argiles/argiles	Log habillé	Roches éruptives altérées
RSH-1bis	Rhourde Sayah 1bis	236	315.533	3436.924	176.07	3608	3638	30	14	Trias Carbonaté	Alternance d'argiles et de carbonates/	Log habillé	Roches éruptives gris- verdâtre

											argiles		compactes
FES-1	Feidjet Es Sefar 1	427	283.678	3433.839	171.2	2985	3024	39	27,5	Trias Carbonaté	Alternance d'argiles et de carbonates/ Grès	Log habillé	Roches éruptives
FM-1	Feidjet El Mouley 1	237	278.105	3431.243	175.1	3166	3213	47	32,5	Trias Carbonaté	Alternance d'argiles et de carbonates/ argiles	Log habillé	Roches éruptives très altérées
DRN-1		237	275,64	3430,38		2859,5	2888	28,5	27	Trias Carbonaté	Alternance d'argiles et de carbonates/ argiles	Log habillé	Roches éruptives
FM-2	Feidjet El Mouley 2	237	276.045	3426.726	182.80	2997	3035	38	36	Trias Carbonaté	Alternance d'argiles et de carbonates/ argiles	Log habillé	Roche éruptive altérée, argileuse, brune à pigment vert
GEAN-1	Gassi El Adem Nord 1	237	292,802	3419,5	178.67	3225,5	3267	41,5	39,5	Trias Carbonaté	Argiles/argiles	Log habillé	Roches éruptives altérées
NZN-1	Nezla Nord 1	237	266,446	3413,991		2024	2080	56	53	Trias Carbonaté	Argiles/argiles	Log habillé	Roche éruptive leucocrate, microlitique doléritique
						4037	4071	34	20	Ordovicien	Argiles/argiles	Log habillé	Roches noires, microcristalline
ARBN-1	El Arbi Nord 1	407	341,831	3446,652	180	3827.5	3883	55.5	50	Silurien	Argiles/argiles	Log habillé	Roches éruptives gris sombre à gris vert
SMR-1	Semhari 1	424	364.675	3573.888		3496.5	3541	44.5	40	T.A.G.I	Argiles/argiles	Log habillé	Roches éruptives gris vert à verte localement altérées
GEA-1		236	285,097	3401,462		2915	2934	19	4	Trias Carbonaté	Argiles/argiles	Log habillé	Roche éruptive altérée

II.1.b. Nature Pétrographique des roches magmatiques

Les roches magmatiques du bassin de Berkine ont rarement fait l'objet d'étude détaillée, elles ont été généralement décrites comme étant des andésites ou des dolérites.

Néanmoins, les quelques études pétrographiques ci-dessous montrent une présence exclusive de roches extrusives de type **basaltique ou de spilites** qui sont le produit de transformation de ces basaltes en contact avec l'eau de mer dans tous les étages.

Dans le bassin de Berkine, l'éruptif est rarement carotté. Sur tous les puits qui ont traversés, ces roches, seulement une dizaine présentent des carottes à savoir les puits suivants : EAT-1, REL-1, EG-1, RSH-1bis, NZN-1, RBT-1bis, FM-1 et GEAN-1.

Pour la détermination de la nature pétrographique des roches magmatiques du bassin de Berkine, on s'est basé sur la description macroscopique de ces roches données par les logs habillés, les rapports de fin de sondage et les descriptions de carottes.

Dans ce qui suit, on donnera une description détaillée des roches magmatiques de quelques sondages ayant rencontré les intrusions du bassin de Berkine. On utilisera pour cela toutes les descriptions existantes (d'après L. Lassouani, 1996; A. Ghribi, 1999).

• Les roches magmatiques de la région de Hassi Bir Rekaiz

Dans cette région, cinq sondages ont traversé des roches éruptives dans la série inférieure. Les épaisseurs varient de 38 m à 149 m.

o Région de Rhourde Bou Tayeb (RBT-1bis)

Le sondage le plus important ayant traversé des roches éruptives est RBT-1bis.

Ce sondage a rencontré une série importante de roches magmatiques épaisse de 149 m dans le Trias Argilo-Gréseux Inférieur.

Le rapport de fin de sondage décrit ces roches comme étant : «Roche éruptive gris-clair légèrement verdâtre (leucocrate) constituée de cristaux de feldspath gris-clair et de quelques quartz noyés dans une pâte grise microlitique à microgrenue (Andésine), pyrite

disséminée, parfois en nodules. Roche massive, compacte, non altérée, parcourue par un important réseau de fissures bitumineuses – présence de fractures subverticales recristallisées » (Rapport de fin de Sondage RBT-1bis).

Les échantillons de carottes de ce puits ont été étudiés par la compagnie ARCO (1995) opérant en association avec SONATRACH sur le périmètre de Hassi Bir Rekaiz. La description donnée est la suivante : «Basalte massif à grains fins d'olivine, fortement altérée, composée de clinopyroxènes (0,1–0,3mm) dans une matrice fine altérée avec des phénocristaux d'augite, de plagioclase, olivine et d'oxydes de Fe et Ti (<0,05 mm). Les phases matricielles ont été remplacées par des carbonates, quartz, chlorite et zéolite ».

L'auteur de cette description indique que cette roche est un Basalte massif à olivine.

o Région de Rhourde El Lia (REL-1)

Les échantillons de carottes de ce puits ont été étudiés par la compagnie ARCO (1995) opérant en association avec SONATRACH sur le périmètre de Hassi Bir Rekaiz.

La description (côtes 3595 – 3607) donnée est la suivante : «Basalte à olivine amygdaloïde porphyrique composé d'olivine légèrement altéré, clinopyroxènes (0,1 à 1 mm) et de plagioclases (0,2 à 3mm) dans une fine matrice d'augite, plagioclase, olivine et des phénocristaux de Fe et Ti (<0.05 mm) avec des remplacements variables par des carbonates ».

L'auteur de cette description indique que cette roche est un Basalte à olivine porphyrique.

• Les roches magmatiques de la région d'El Arich

o La Région d'El Arich El Tahtani (EAT-1)

Ce forage a rencontré une série importante de roches magmatiques épaisse de 50 m au niveau de la série inférieure. L'étude pétrographique de ce sondage a été réalisée par TOTAL ALGERIE.

La description donnée est la suivante : « la carotte $n^{\circ}6$ (3487,70m) présente une roche éruptive massive, méso à leucocrate, à structure microlitique, doléritique, constituée de :

- Plagioclase (du labrador) responsable de la structure doléritique présentant 65 % de la roche ;
- Pyroxène augite présentant 10 % de la roche;
- Olivine: 5 % de la roche;

Les carottes n° 4 (3452,90 m) et 5 (3475,50 m) présentent une minéralogie identique mais plus riche en calcite.

L'auteur de cette description indique que cette roche est un Trachy-basalte ou labradorite effusif.

Par ailleurs, l'analyse de carotte (carotte n°6 à 3487,70 m) de ces roches a été réalisée au Centre de Recherche et Développement (CRD à Boumerdes). La description donnée est la suivante : « Il s'agit d'une roche volcanique massive, méso à leucocrate, à structure microlitique doléritique moyenne (cristaux de 0,5 à 3 mm). Elle est formée de :

- Plagioclase labrador (An 60) se présentant en cristaux automorphes allongés, plus rarement en prismes trapus, toujours bien maclé (polysynthétique) et parfois zonés (essentiellement les prismes trapus). Ces cristaux sont enchevêtrés, sans orientation préférentielle et responsable de la structure doléritique. Ils sont toujours très frais et représentent environ 65% de la roche.
- Pyroxène (augite), incolore, en petits cristaux interstitiels, subautomorphes à xénomorphes, disséminés entre les lattes de feldspath. Ce minéral est frais ou partiellement à totalement altéré en un mélange de chlorite et de calcite entouré d'oxyde rouge sombre à opaque. Il représente environ 1 % de la roche.
- L'olivine, se présentant en gros cristaux automorphes entièrement transformés en iddingsite et bordés de ou recouvert d'oxyde opaque; ils représentent environ 5% de la roche. Leur grande taille, leur instabilité chimique ainsi que leur absence de la partie fine de la roche permettent de leur attribuer une origine précoce (xénocristaux) sans lien direct avec la cristallisation du magma lors sa mise en place à la surface.

La composition minéralogique de cette roche ainsi que la nature de son plagioclase permettent de déterminer une labradorite.

• Les roches magmatiques de la région d'El Arf

o La Région de Feidjet El Mouley (FM-1)

Ce forage a rencontré une série de roches magmatiques épaisse de 32,5 m au niveau du Trias Carbonaté. L'étude pétrographique de ce sondage a été réalisée par TOTAL ALGERIE.

La description donnée est la suivante : « la carotte n°2 (3180,70 m) présente une roche éruptive compacte leucocrate, à texture microlitique très fine. Elle est formée de :

- Plagioclase albite présentant 75 % du volume de la roche ;
- Olivine 10 % de la roche;
- Chlorite 7 à 8 % de la roche;
- Magnétite 2 à 3 % de la roche;
- Mesostase 5 %;

L'auteur de cette description indique que cette roche est une spilite albitique mise en place par épanchement en surface.

L'analyse de la carotte (carotte n°2 à 3180,70 m) de ces roches a été réalisée au Centre de Recherche et Développement (CRD à Boumerdes), la description est la suivante :

Il s'agit d'une roche volcanique compacte, leucocrate, à structures microlitique très fine (minéraux de 0,1 à 0,3 mm) à tendance fluidale, riche en vésicules, elle est formée de :

- Plagioclase andésine (An 45-50) se présentant en cristaux auto- à subautomorphes, aciculaire, nettement orientés (responsables de la structure fluidale); ils sont plutôt mal maclés, rarement zonés et présentent une légère altération sériciteuse. Ils forment environ 75% du volume de la roche.
- L'olivine en prismes losangiques automorphes, se présentant à l'état résiduel de fantômes totalement iddingitisé; dans certains cas, le coeur du minéral a été dissous puis rempli soit de silice, soit d'anhydrite, soit de calcite. Elle représente environ 10 % de la roche.
- La magnétite en petits cristaux de forme cubique, dispersés dans la roche; environ 2-3 % de son volume.

- La chlorite d'origine fumerollienne localisée à l'intérieur des nombreuses vésicules de la roche; celles-ci sont généralement très contournées, allongées et même écrasées. Ces vésicules à remplissage argileux représentent, en volume environ 7 à 8 % de la roche.
- La mésostase : parfois, entre les plagioclase, on observe une matrice faite de quartz et de chlorite correspondant à un ancien verre altéré et recristallisé. Environ 5 % de la roche.

La minéralogie de cette roche (à l'exception de l'olivine d'origine xéno) et sa structure permettent de déterminer une andésite.

• Les roches magmatiques de la Région de Ain Romana

o La Région d'El Guelta (EG-1)

L'épaisseur des roches magmatiques est de **76m**. Elles ont été rencontrées dans le Cambrien (6 m), l'Ordovicien (27,5 m) et dans le T.A.G.I (42,5 m).

L'analyse de carotte (carotte n°7 à 3281 m) de ces roches a été réalisée au Centre de Recherche et Développement (CRD à Boumerdes).

La description de la roche est la suivante : « Il s'agit d'une roche volcanique très compacte, mésocrate, à structure microlitique très fine (cristaux de 0,05 à 0,4 mm). Elle est formée de :

- Plagioclase andésine à labrador (An = 50) en prismes automorphe, trapus, de grosse taille (0,4mm), assez mal maclé, parfois zonés toujours frais, et en très fins micro à cryptocristaux disséminés dans la mésostase vitreuse. Ils représentent environ 25% du volume de la roche.
- Feldspath potassique en prismes automorphes de grosses taille (0,4mm), à macle de Carlsbad très nette, frais et non altérés, environ 2-3 % de la roche.
- Pyroxène augite, de couleur brune, se présentant en petits cristaux automorphes (0,1mm) disséminés entre les feldspaths, frais et non altéré. Représentent environ 25% de la roche.
- Olivine incolore, limpide, cristallisée en petits prismes losangiques à cassures curvilignes (0,2 mm), frais, ou parfois totalement altérés en chlorite vert. Environ 15% de la roche.
- Magnétite se présentant en très petits cristaux cubiques (0,1mm) disséminés entre les autres minéraux. Environ 2 à 3 % de la roche.

- La mésostase : tous les minéraux précédents baignent dans une mésostase crypto cristalline partiellement vitreuse, brun sombre, sub-isotrope en lumière polarisée. Elle représente environ 30% du volume de la roche.

Cette composition minéralogique permet de déterminer un basalte à olivine.

- Les roches magmatiques de la région d'El Arf
- o La Région de Nezla (NZN-1)

L'épaisseur des roches magmatiques est de **53m**. Elles ont été rencontrées dans le Trias Carbonaté (Trias 2).

L'analyse de carotte (carotte n°10 à 2050,10 m) de ces roches a été réalisée au Centre de Recherche et Développement (CRD à Boumerdes).

La description donnée est la suivante : « Il s'agit d'une roche volcanique massive, leucocrate à structure microlitique doléritique moyenne (cristaux de 0,3 à 1 mm). Elle est formée de :

- Plagioclase labrador (An 55) se présentant en lattes, automorphes, bien maclées (polysynthétique) rarement zonées; enchevêtrées, son état de conservation est excellent et il ne porte pas de trace d'altération. Environ 60% du volume de la roche.
- Olivine, en prismes losangique automorphes, à l'état résiduel de fantômes formés d'un mélange de chlorite et d'oxyde de fer rouge sombre (iddingsite). L'origine de ce minéral est identique à celle proposée pour les olivines de EAT 1: xénocristaux, de cristallisation précoce, instable chimiquement lors de mise en place de la roche. Environ 10% de la roche.
- Magnétite –titanomagnétite se présentant en amas poly-cristallins dissymétrique entre les autres minéraux.
- Mésostase : entre les lattes de plagioclase, on observe une mésostase finement cristallisée formée de quartz secondaire et de chlorite, ou entièrement cristallisées. Elle représente environ 30% de la roche.

A partir de données minéralogiques, cette roche se place dans la famille des labradorites à andésites. L'absence de pyroxènes s'explique soit par leur non cristallisation lors du refroidissement de la roche (ils sont alors présent virtuellement dans la mésostase), soit par leur altération totale avec recristallisation des produits d'altération ne laissant subsister aucun fantôme de la structure minérale originelle.

II.1.c. Géochimie et âge des roches magmatiques du bassin de Berkine

- Nous n'avons trouvé aucune étude ou analyse géochimique de ces roches magmatiques dans la littérature.
- ➤ Quatre échantillons de roches magmatiques du bassin de Berkine ont été analysée et datés par la méthode K-Ar, par les laboratoires de GEOCHRON et de l'Université d'Orsay (M. H. BELLON). Les résultats sont donnés dans le tableau 3. Par ailleurs le détail des analyses et les interprétations données par les auteurs de ces datations sont également indiquées dans les paragraphes suivants (d'après A. Ghribi, 1999).

• Puits EG-1

Datation par la méthode K-Ar : La datation a été effectuée sur roche totale ; l'absence d'altération et de carbonate ont permis une analyse directe sans traitement acide préalable.

Données analytiques (2 analyses) :

 $K_2O = 1.80 \%$; 40 Ar radiog: $3.32 \times 10^{-5} \text{ cm}^3/\text{g}$

Age moyen: $551 \pm 30 \text{ Ma}$

Interprétation et conclusion :

Le mode de mise en place de cette roche, d'après les observations sur lame mince et par comparaison avec des échantillons de collection, est probablement intrusif, sous forme de sill ou de dyke peu épais (finesse des cristaux, richesse en verre traduisant un refroidissement rapide).

La datation absolue K-Ar indique une mise en place pendant le Cambrien inférieur à moyen (cf. échelle chronologique, HOLMES symposium 1964, pl.2, en contradiction avec l'âge proposé pour les terrains encaissant : Ordovicien).

Compte tenu de la qualité du basalte (roche saine exempt d'altération) et de la reproductibilité des analyses K-Ar, la datation paraît correcte.

Dans ce cas, l'âge de l'encaissant serait erroné : il devrait être le même (cas d'une coulée) ou plus ancien (cas d'une intrusion) que celui du basalte.

• Puits FM-1

Datation par la méthode K-Ar: la datation a été effectuée sur roche totale après décarbonations à l'acide acétique dilué.

Données analytiques (2 analyses):

$$K_2O = 0,\,73~\% \hspace{1.5cm} ; \hspace{0.5cm} ^{40}Ar \; radiog: 5,0x \; 10^{-6} \; cm^3/\; g$$

Age moyen : 197 ± 20 Ma.

Interprétation et conclusion :

La structure de cette roche indique une mis en place effusive sous forme de coulées aérienne, confirmé par la datation absolue (Trias supérieur).

• Puits EAT-1

Datation par la méthode K-Ar: La datation a été effectuée sur la roche totale après décarbonisation à l'acide acétique dilué.

Données analytiques (2 analyses):

$$K_2O = 0.24 \%$$
; 40 Ar radiog : 2,42x 10^{-6} cm³/g

Age moyen : 280 ± 15 Ma.

Interprétation et conclusion :

Il existe une discordance entre l'âge absolu obtenu et l'âge de l'encaissant, daté du Trias. Afin de lever cette incertitude, il serait souhaitable de reconsidérer la datation de l'encaissant, mais aussi de procéder à une nouvelle datation sur les plagioclases séparés du reste de la roche; en effet, l'altération des pyroxènes et de la mésostase a pu provoquer un lessivage partiel du potassium, faussant ainsi la datation absolue.

• Puits NZN-1

Datation par la méthode K-Ar: la datation a été effectuée sur roche totale après décarbonisaion à l'acide acétique dilué.

Données analytiques (2 analyses):

 $K_2O = 0.71 \%$; $^{40}Ar \ radiog : 8.31x \ 10^{-6} \ cm^3/g$

Age moyen : 325 ± 30 Ma

Interprétation et conclusion :

Pour cet échantillon aussi, il existe une nette discordance entre son âge radiométrique qui le place à la limite Carbonifère inférieur –Carbonifère moyen, et l'âge des terrains encaissants datés du Trias.

Sa structure, par comparaison avec d'autres roches de même nature, plaide en faveur d'une mise en place intrusive ; cependant, le cœur d'une coulée aérienne très épaisse peut présenter une structure comparable.

De toute façon, quelque soit le mode de mise en place, l'âge calculé est trop vieux. La datation en elle-même ne doit pas être mise en cause; par contre, l'intense altération de la mésostase a pu provoquer un lessivage partiel du potassium, relativement mobile, sans altérer la teneur en argon 40 radiogénique; ceci expliquerait cet âge trop vieux. La méthode, pour vérifier cette hypothèse, serait de dater la fraction feldspathique préalablement triée, exempt d'altération.

En prenant l'âge de 197 ± 20 Ma pour le puits FM-1, on se placerait dans le Norien, âge déjà obtenu par analyse palynologique. Pour le puits EAT-1, l'âge de $222 \pm 13 = 235$ Ma serait proche du Carnien, déjà obtenu par la palynologie. Par contre les résultats obtenus pour le puits de NZN-1 ne peuvent être prise en considération, vu l'écart qu'il présente avec les terrains encaissants.

On peut noter la bonne corrélation de l'âge obtenu par la méthode K-Ar et la palynologie qui correspondent au Trias supérieur.

Echantillon	Nature pétrographique	Age des terrains encaissant	Datation absolue K – A r (Orsay)	Datation absolue K – A r (Géochron)	Interprétation mode de mise en place
EG 1 C7 3281 m	Basalte à olivine	Ordovicien	551 ± 30 Ma Cambrien. Inf.	/	Intrusion
FM-1 C2 -3 180,70 m EAT 1 C6 3 487,70m	Spilite albitique Trachy-basalte (Labradorite)	Trias Trias	Roche totale décarbon. 197 ± 20 Ma Trias supérieur Roche totale décarbon. 280 ± 15 Ma Lim-permo-	Feldspaths + trait acide. 170±9 Ma Jurassique inf.moy Feldspaths + trait .acide. 222 ± 13	Coulée (rajeunissement lié à la nature spilitique de la roche) Coulée
NZN 1 C10 - 2 50,40 m	Trachy-basalte à andésite	Trias	Roche totale décarbon. 325 ± 30 Ma Lim.Carb.inf.moy.	Ma Lim-permo- Trias Feldspaths + trait .acide. 402 ± 19 Ma Silurien sup	Coulée (?)

Tableau 3 : Datation des roches magmatiques du bassin de Berkine

II.2. CONCLUSIONS

- Les intrusions magmatiques sont rencontrées dans une quarantaine de sondages du bassin de Berkine. Leur épaisseur varie de 2 m à 149 m.
- o Leur localisation se situe dans les secteurs Nord-Ouest du bassin.
- o Leur fréquence est concentrée dans le Trias argilo-gréseux inférieur.
- Les roches éruptives de la région d'étude sont des basaltes ou des spilites, épanché dans un milieu subaquatique.
- Concernant leur extension horizontale, leurs champs d'éruption s'étendent vers la direction NE et leur épaisseur cumulée excède 100 m à RBT – 1bis et REL -1.

- Le maximum d'épaisseur des roches éruptives est rencontré aux limites des grandes failles qui ont servi à l'acheminement de la lave en surface.
- o Le volcanisme le plus actif a eu lieu durant le dépôt du Trias argilo-gréseux inférieur et aurait un caractère intermittent comme en témoigne la présence d'argile à l'intérieur de la lave.
- o Les coulées basaltiques s'épanchent en surface en comblant les zones basses du relief en provoquant un changement de la configuration du bassin et influencent les dépôts post volcaniques. En effet, le maximum d'épaisseur atteint des roches éruptives correspond en général au minimum d'épaisseur des dépôts argilo-gréseux.
- O Les masses volcaniques épanchées ont certainement contribué à l'accentuation de la subsidence de type gravitaire, grâce à leur poids et leur densité élevée surtout au niveaux des zones ou elles atteignent des hauteurs importantes telle qu'au alentours des puits RBT-1bis et REL-1, postérieurement aux événements volcaniques des épaisseurs sédimentaires importantes vont préférentiellement se déposer à l'aplomb des épanchements volcaniques basaltiques.
- o L'âge K-Ar de ces roches indique pour certains échantillons des âges triasicoliasiques en accord avec la stratigraphie, mais aussi des âges plus vieux (pour d'autres échantillons) en contradiction avec l'âge des roches encaissantes. Ceci est probablement dû à l'altération de ces roches. Pour avoir des âges absolus plus précis, on recommande de dater des plagioclases séparés de ces échantillons (en choisissant les roches les plus fraîches) en utilisant la méthode ³⁹Ar/⁴⁰Ar, qui donne des résultats plus précis que la méthode K-Ar.
- O Aucune analyse géochimique n'a été réalisée sur ces roches. On recommande d'effectuer ce type d'analyse sur les roches les plus fraîches. La composition chimique de ces roches peut nous donner des indications sur le contexte géodynamique de leur mise en place (lié à l'ouverture de l'Atlantique Central où à un autre domaine géodynamique). En effet, les coulées de basaltes appartenant à la province magmatique de l'Atlantique central (CAMP) peuvent être bien identifiées par leur signature géochimique.

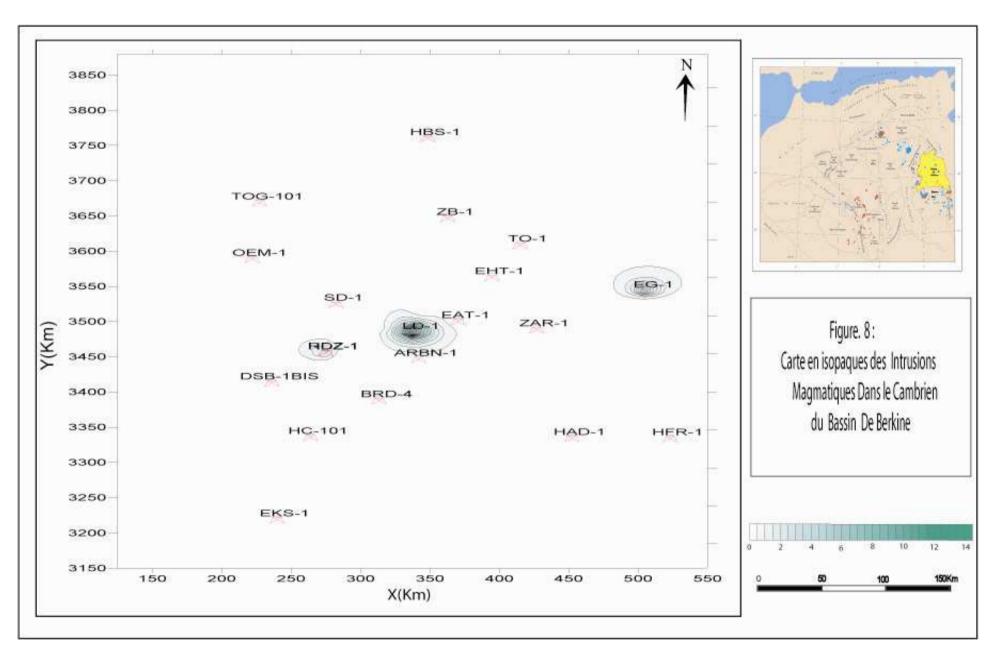
Evolution Spatiale et temporelle du magmatisme dans le Bassin de Berkine

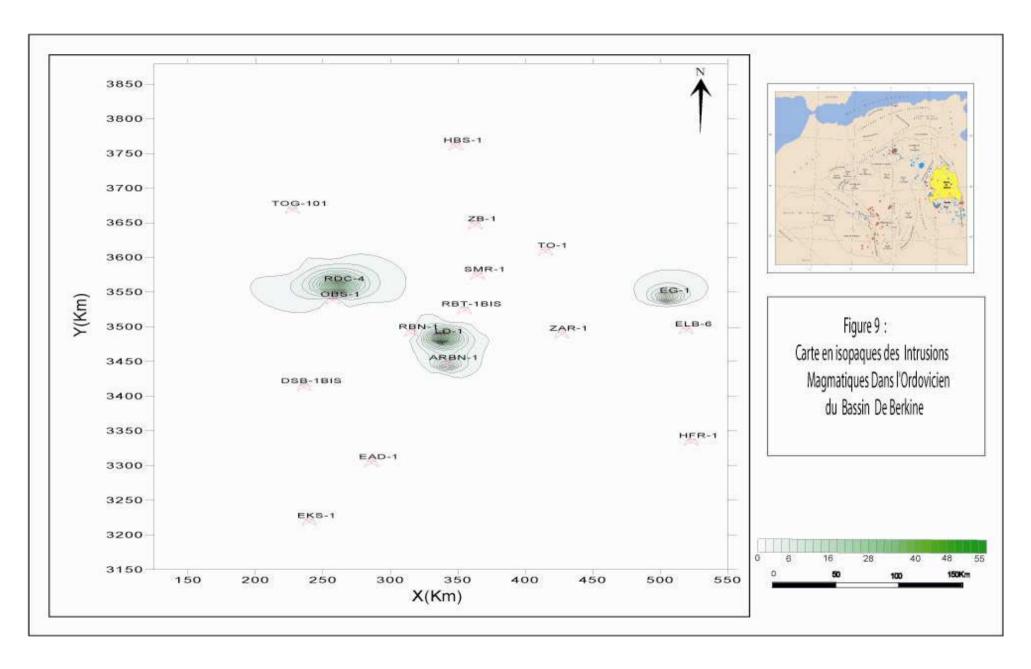
Pour étudier la distribution spatiale et temporelle des intrusions magmatiques dans le bassin de Berkine, nous avons réalisé :

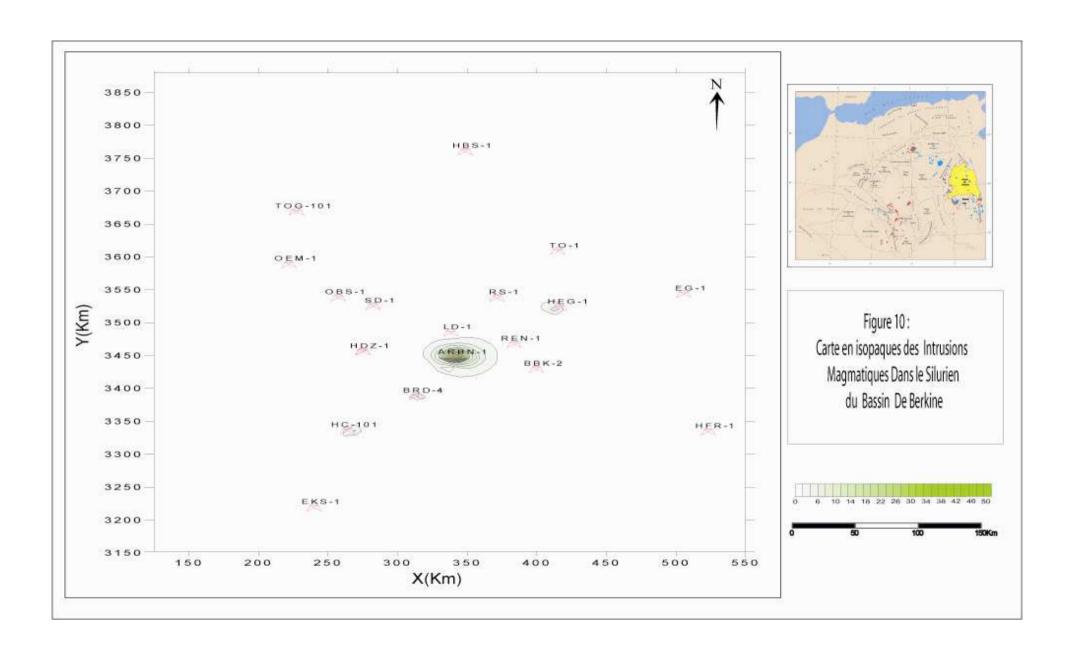
- des cartes en isopaques par niveau stratigraphique ;
- une carte en isopaques des épaisseurs totales ;
- des coupes stratigraphiques (corrélations lithostratigraphiques) ;

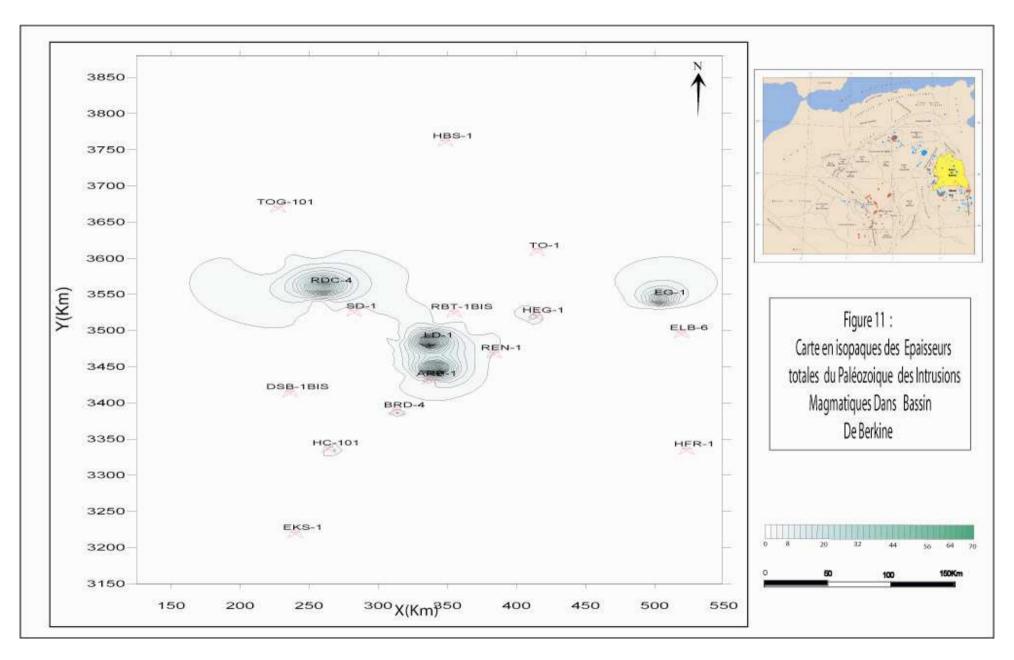
La méthodologie est expliquée dans les paragraphes suivants. Les documents de base pour effectuer cette étude ont été les logs stratigraphiques de tous les sondages du bassin de Berkine (248 sondages).

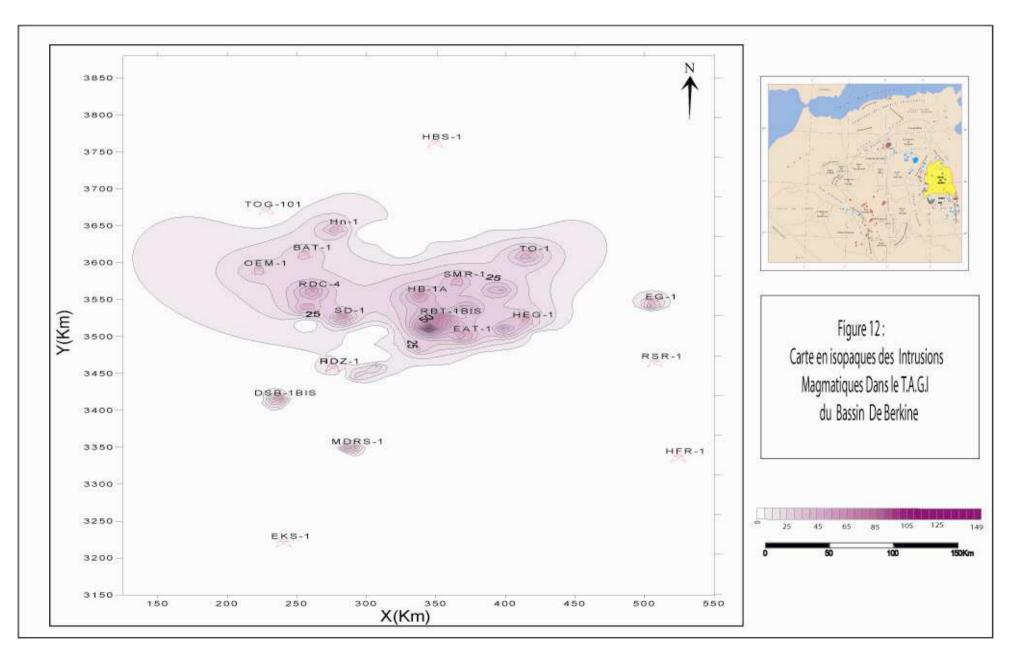
III.1. REALISATION DES CARTES EN ISOPAQUES PAR ETAGE STRATIGRAPHIQUE ET CARTE DES EPAISSEURS TOTALES

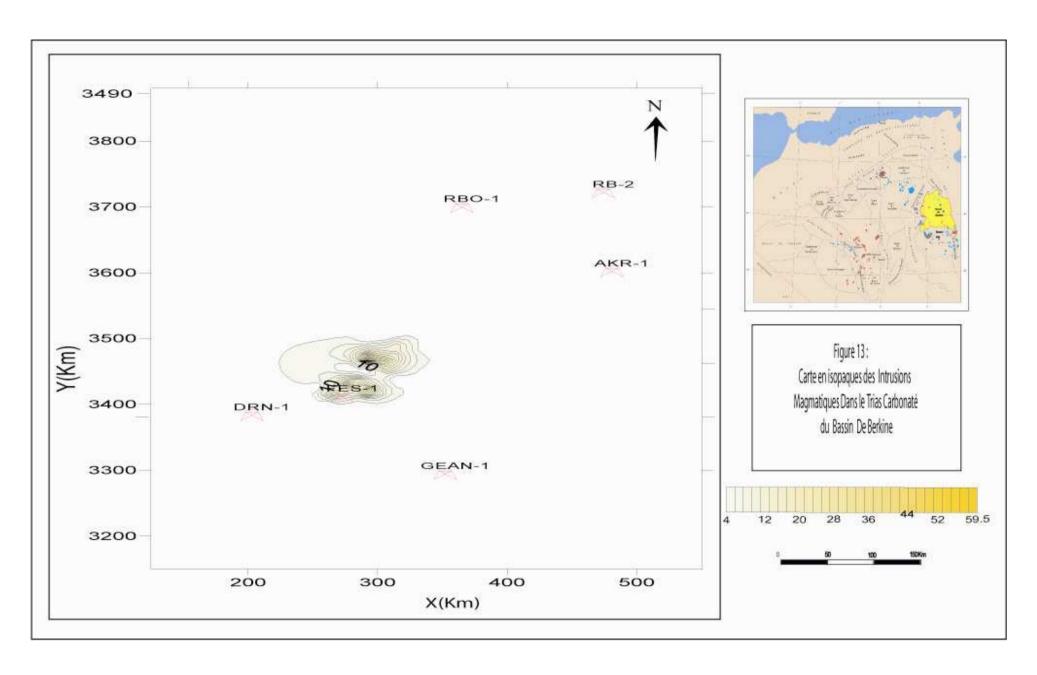

III.1.a. Méthodologie

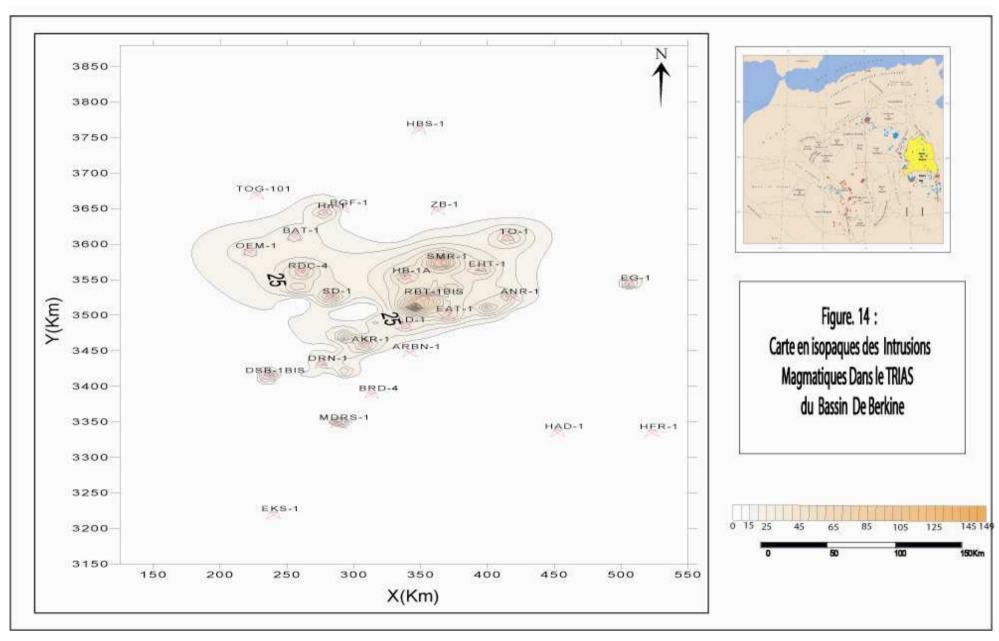

La réalisation des cartes en isopaques des intrusions magmatiques par niveau stratigraphique a nécessité de suivre les étapes suivantes :

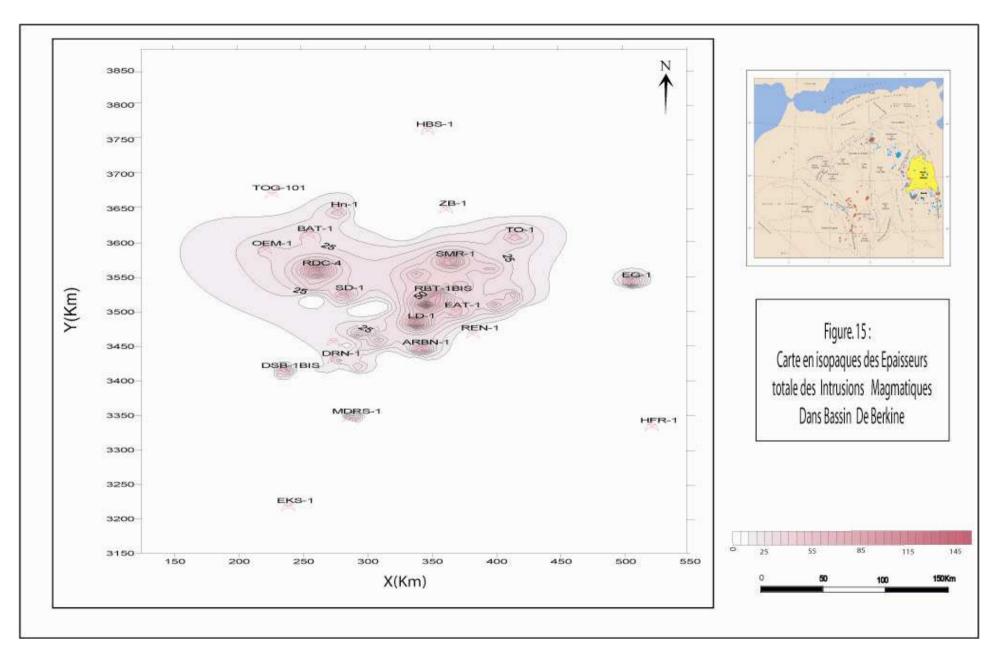

- 1. Effectuer une recherche bibliographique afin de cibler les sondages ayant traversé les intrusions magmatiques ;
- 2. Consulter le plan de positionnement des sondages de tout le Bassin de Berkine ;
- 3. Consulter les rapports de fin de sondages (Fiches stratigraphiques et logs habillés). A partir de ces rapports on a relevé les informations nécessaires pour l'établissement des cartes : nom des sondages, coordonnées UTM, profondeur finale des sondages.
- 4. Pour les sondages qui ont rencontré les intrusions : on a relevé les épaisseurs des intrusions par étage stratigraphique (dans le Cambrien, le Silurien, l'Ordovicien, le T.A.G.I, et le Trias carbonaté).
- 5. Tous les sondages qui ont atteint le socle et n'ont pas rencontré les intrusions ont été utilisés pour la réalisation des cartes en isopaques en leur attribuant une épaisseur nulle.
- 6. Les sondages qui ont été arrêtés à des niveaux stratigraphiques plus élevés que le Cambrien n'ont pas été utilisés pour l'établissement des cartes.
- 7. Nous avons également utilisé les profils sismiques de la région pour repérer les intrusions.
- 8. La réalisation des cartes en isopaques a été effectuée en utilisant le logiciel SURFER8 (voir Khatal M., 2003 pour la description du logiciel).

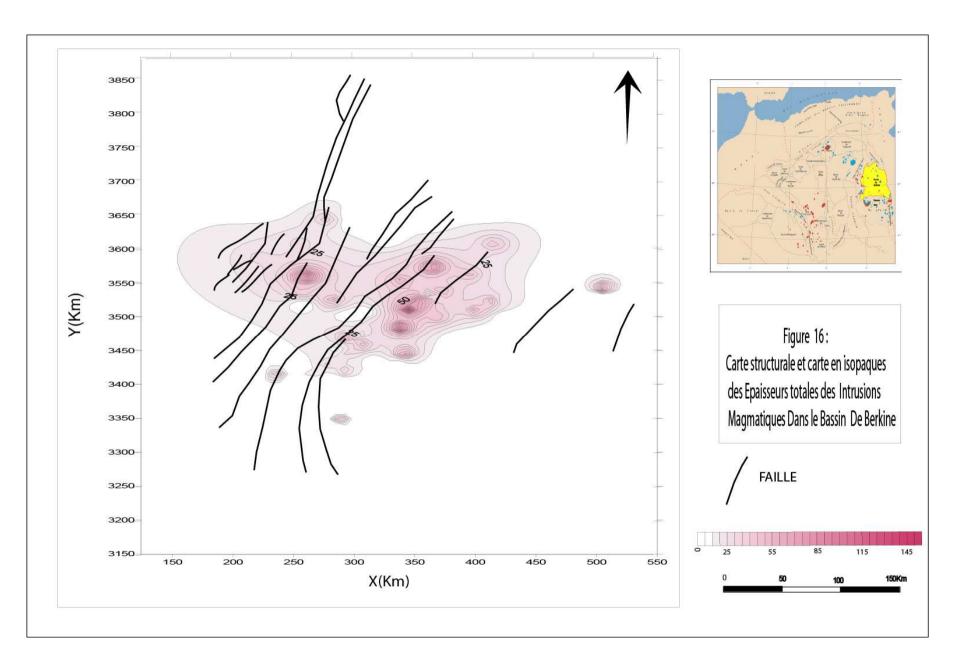

III.1.b. Présentation des cartes en isopaques :

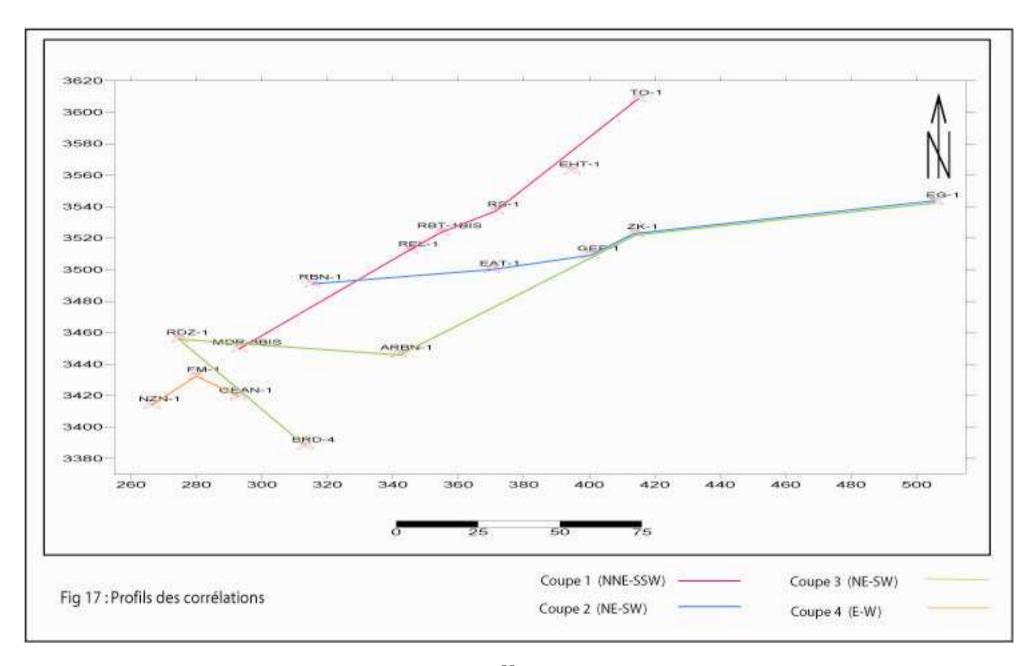

- Carte en isopaques des intrusions magmatiques dans le Cambrien Figure 8;
- Carte en isopaques des intrusions magmatiques dans l'Ordovicien Figure 9;
- Carte en isopaques des intrusions magmatiques dans le Silurien Figure 10;
- Carte en isopaques des épaisseurs totales des intrusions magmatiques du Paléozoïque dans le Bassin de Berkine **Figure 11**;
- Carte en isopaques des intrusions magmatiques dans le Trias argilo-gréseux inférieur Figure 12;
 - Carte en isopaques des intrusions magmatiques dans le Trias carbonaté Figure 13;
- Carte en isopaques des épaisseurs totales des intrusions magmatiques du Trias dans le Bassin de Berkine **Figure 14**;
- Carte en isopaques des épaisseurs totales des intrusions magmatiques dans le Bassin de Berkine **Figure 15**;
- Carte structurale et carte en isopaques des épaisseurs totales des intrusions magmatiques dans le Bassin de Berkine **Figure 16**;











III.1.c. Interprétation des cartes

L'examen des cartes en isopaques nous permet de noter les remarques suivantes :

- o Les roches magmatiques sont très répandues dans le bassin de Berkine ;
- o Leur localisation se situe dans les secteurs Nord et Nord-Ouest du bassin ;
- o Leur fréquence est concentrée dans le Trias Argilo-Gréseux Inférieur (T.AG.I);
- o Ces roches magmatiques se présentent sous forme de masses reliées entre elles ;
- Concernant leur extension horizontale, leur champ d'éruption s'étend vers la direction Nord-Est et leur épaisseur cumulée excède 100 m à RBT-1bis et REL-1;

Afin de déterminer une éventuelle relation entre la mise en place de ces intrusions magmatiques et les failles qui traversent la région, on a superposé une carte structurale du bassin à la carte en isopaques des épaisseurs totales. La carte obtenue est représentée par la figure 16.

A partir de cette dernière on remarque que :

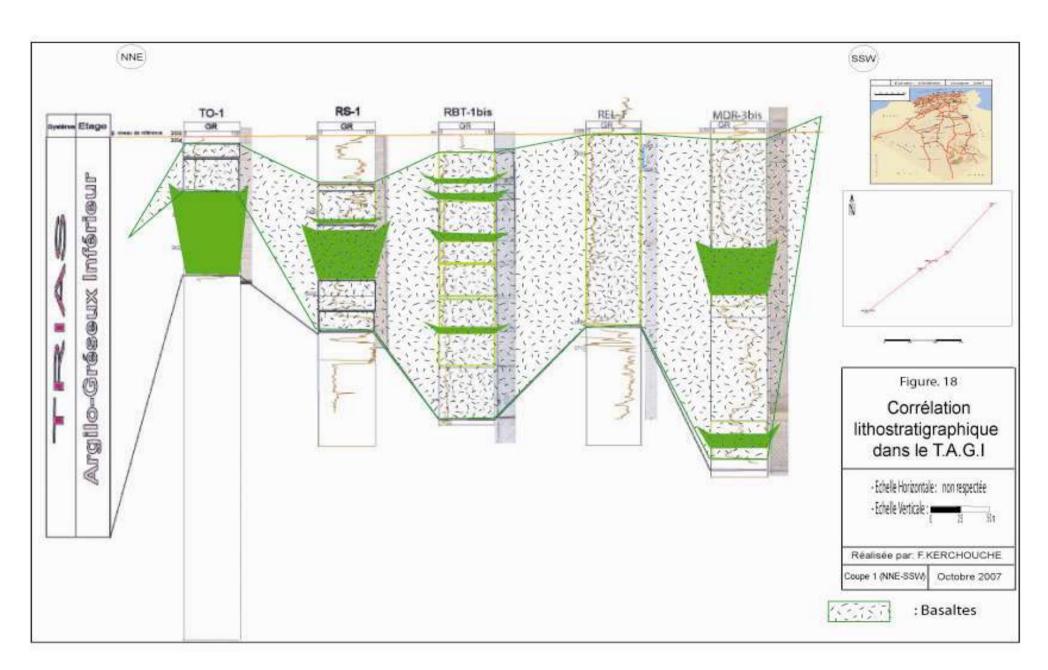
- le maximum d'épaisseur des roches magmatiques est rencontré aux limites des grandes failles qui ont servi à l'acheminement de la lave en surface.
- Le volcanisme le plus actif a eu lieu durant le dépôt du Trias argilo-gréseux inférieur et aurait un caractère intermittent comme en témoigne la présence d'argile à l'intérieur de la lave.
- Les coulées basaltiques s'épanchent en surface en comblant les zones basses du relief en provoquant un changement de la configuration du bassin et influencent les dépôts post volcaniques. En effet, le maximum d'épaisseur atteint des roches éruptives correspond en général au minimum d'épaisseur des dépôts argilo-gréseux.
- Les masses volcaniques épanchées ont certainement contribué à l'accentuation de la subsidence de type gravitaire, grâce à leur poids et leur densité élevée surtout au niveau des zones où elles atteignent des hauteurs importantes telles qu'aux alentours des puits RBT-1bis et REL-1, postérieurement aux événements volcaniques des épaisseurs sédimentaires importantes vont préférentiellement se déposer à l'aplomb des épanchements volcaniques basaltiques.

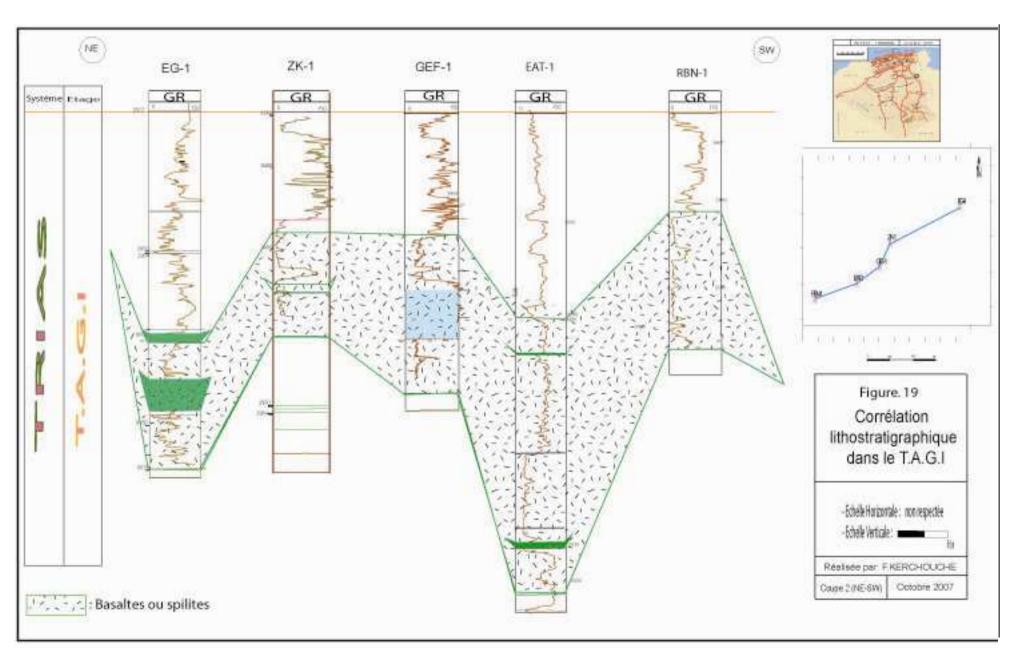
III.2. REALISATION DES CORRELATIONS LITHOSTRATIGRAPHIQUES DANS LE CAMBRIEN, LE SILURIEN, L'ORDOVICIEN, LE TRIAS CARBONATE ET LE T.A.G.I DU BASSIN DE BERKINE

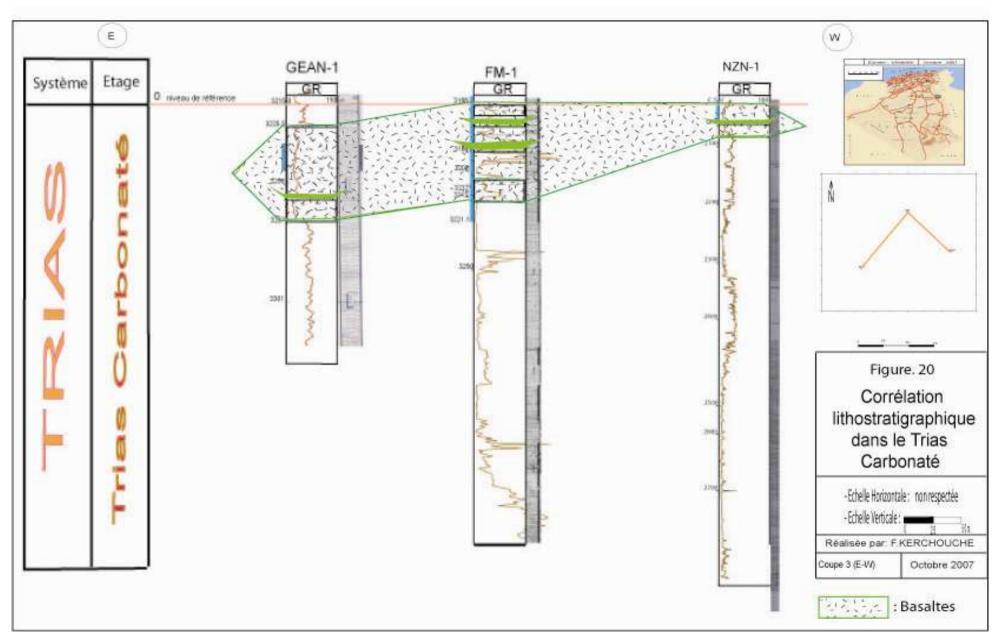
III.2.a. Méthodologie

Le plan de positionnement des sondages utilisés et la direction des coupes stratigraphiques sont donnés par la figure 17.

Les coupes lithostratigraphiques et les corrélations ont été réalisées en utilisant le logiciel **Illustrator 11.0**. Les documents de base pour la réalisation des coupes sont :


- Les log habillés : on a utilisé les courbes de diagraphies (Gamma Ray et PS) pour les corrélations ainsi que la lithologie ;
- Les fiches stratigraphiques pour les corrélations entre les limites des niveaux stratigraphiques ;


Les étapes du travail (voir S. BENTALAA).


III.2.b. Présentation des corrélations

Nous avons réalisé quatre coupes lithostratigraphiques :

- ➤ Une coupe suivant la direction NNE-SSW (Coupe 1, figure 18);
- > Une deuxième coupe suivant la direction NE-SW (Coupe 2, figure 19);
- ➤ Une coupe suivant la direction E-W (Coupe 3, figure 20);

III.2.c. Interprétation des corrélations

Les corrélations lithostratigraphiques nous donnent une vue dans l'espace des corps intrusifs, ce qui nous permet d'identifier le type d'intrusion magmatique.

- ➤ Ces coupes confirment et illustrent bien la remarque faite en interprétant les cartes en isopaques, à savoir que les corps intrusifs sont reliés entre eux dans l'espace. C'est le cas des épanchements volcaniques du Trias des bassins du Sahara Nord Oriental.
- Les coupes montrent une très grande concentration des roches magmatiques dans la région de Hassi Bir Rekaiz.
- ➤ Enfin, ces coupes permettent de voir la distribution de ces corps intrusifs sur le plan vertical, par niveau stratigraphique. Ainsi, dans certains sondages (EG-1 par exemple) ces intrusions sont présentes dans trois niveaux stratigraphiques différents.

III.3. CONCLUSION

- Les cartes en isopaques et les coupes lithostratigraphiques ont permis de visualiser dans l'espace la distribution des roches magmatiques dans le bassin de Bekine. Comme les autres bassins de la plate-forme saharienne, les intrusions du bassin de Berkine sont très répandues dans l'espace.
- ➤ Les intrusions se localisent essentiellement au Nord et au Nord-Ouest du bassin de Berkine.
- Leur fréquence est concentrée dans le Trias argilo-gréseux inférieur.
- La mise en place de ces roches magmatiques est probablement liée aux accidents majeurs du bassin de Berkine, notamment les accidents de direction NE-SW. Cette direction est celle des accidents liés à l'ouverture de l'Atlantique Central.

Le magmatisme du bassin de Berkine pourrait donc être lié à l'ouverture de

Influences des roches magmatiques sur l'environnement pétrolier du Bassin De Berkine

IV.1 IMPACT DES ROCHES MAGMATIQUES SUR L'ENVIRONNEMENT PETROLIER DANS LE BASSIN DE BERKINE

Pour déterminer une éventuelle influence des roches magmatiques sur les éléments du système pétrolier du bassin de Berkine, on a réalisé un tableau (Tableau.4) qui montre la position de ces dernières par rapport aux roches mères et aux roches réservoirs du bassin.

<u>Tableau. 4</u>: Position des roches magmatiques par rapport à la roche mère et la roche réservoir dans le bassin de Berkine

	Cotes ab	solues (m)	Ep	(m)		Position des	Position des	
Sondage	Тор	Bottom	Totale	nette	Position de l'intrusion	Intrusions / Roche mère	intrusions / Réservoir	
GEA-1	2915	2934	19	4	Trias Carbonaté	++	+ -	Productif de gaz
GEAN-1	3225,5	3267	41,5	39,5	Trias Carbonaté	++	+ -	Productif de gaz
GEF-1	3431	3522	91	54	T.A.G.I	++	+	Productif d'huile
SMR-1	3496.5	3541	44.5	40	T.A.G.I	++	+	Productif d'huile
BRD-4	4418,5	4427,5	9	6,5	Silurien Argileux Gréseux	+	+-	Productif de gaz
RDC-4	3909	4018,5	109,5	41	Ordovicien (Argiles d'El Gassi)		+ -	Productif de
	3732	3781	49	49	T.A.G.I	++	+	d'huile + gaz
NZN-1	2024	2080	56	53	Trias Carbonaté	++	+-	Productif de d'huile + gaz
ANR-1	3380	3414	34	34	T.A.G.I	++	+	Productif d'huile
MDDC 1	3301	3346	45	40	Eruptif inférieur			D., J., 426 121, 21
MDRS-1	3165	3211	46	37,5	Eruptif supérieur			Productif d'huile
ZK-1	3714	3719	5	5	Silurien Argileux Gréseux	+	+-	Productif d'huile
	3431	3490	59	55	Trias Andésitique	++	+	110uucm a munc
DDN 1	3507	3584.5	77.5	57.5	Trias inférieur	++	+ -	Productif de
RBN-1	3412	3427	15	15	Trias supérieur			d'huile + gaz

1. + : L'intrusion se trouve dans la Roche mère et/ou le Réservoir.

2. ++: L'intrusion se trouve au dessus de la Roche mère et/ou le Réservoir.

3. +-: L'intrusion se trouve en dessous de la Roche mère et/ou le Réservoir.

Ep: Epaisseur des intrusions.

IV.2.INFLUENCE DES ROCHES MAGMATIQUES SUR LA ROCHE MERE

En examinant le tableau.4, on remarque que les roches magmatiques sont rarement situées à l'intérieur de la roche mère.

Les roches magmatiques peuvent induire sur la roche mère (argiles riches en matières organiques) les deux phénomènes suivants :

- Le premier est la graphitisation de la matière organique au contact direct de l'intrusion ;
- Le second est l'augmentation brusque de la maturation par l'effet de chaleur dégagée par l'intrusion.

IV.3. INFLUENCE DES ROCHES MAGMATIQUES SUR LES ROCHES RESERVOIRS DU BASSIN

On remarque que les roches magmatiques sont presque toutes situées à l'intérieur de la roche réservoir (Trias). Les roches magmatiques (en tant que roches imperméables et limitées dans l'espace) peuvent jouer un rôle très important dans la distribution des réservoirs d'hydrocarbures lors de la mise en place de ces hydrocarbures dans les roches poreuses.

IV.4. INFLUENCES DES ROCHES MAGMATIQUES SUR LE PIEGEAGE DES HYDROCARBURES DANS LE BASSIN

- Les intrusions magmatiques peuvent créer des barrières de perméabilité, comme c'est le cas dans la région de Ain Romana, où il y a eu séparation entre deux grandes accumulations de pétrole par une barrière composée d'intrusions magmatiques.
- Les pièges dans la région de Bridès ont été formés suite à l'intrusion de la dolérite dans les argiles du Silurien ce qui a forcé les roches réservoirs sus jacentes à remonter.

IV.5. CONCLUSION

La répartition de ces roches par rapport aux roches mères et aux réservoirs et leur relation avec les éléments structuraux du bassin peut avoir une influence non négligeable sur le système pétrolier du bassin de Berkine.

Comparaison entre le magmatisme des bassins de Berkine et d'Illizi

V.1. INTRODUCTION

Des roches magmatiques intrusives sont connues dans le bassin d'Illizi et occupent la position la plus orientale de la plate-forme saharienne en Algérie (Bentalaa, 2005). Leur nature pétrographique, et notamment l'altération, et leur position géographique les rattachent aux roches magmatiques rencontrées dans les bassins du Sahara Nord Oriental et du bassin de Berkine.

Dans ce chapitre, nous ferons une comparaison entre le magmatisme des bassins de Berkine et d'Illizi. Cette comparaison sera basée sur les points suivants :

- o la nature pétrographique des roches ;
- o la répartition spatiale et par niveaux stratigraphiques de ces roches magmatiques dans les deux bassins :
- o les données sur l'âge de ces roches ;
- o la position de ces roches par rapport aux éléments du système pétrolier dans les deux bassins.

Ces différents points sont donnés dans le tableau 5.

<u>Tableau. 5</u>: Tableau comparatif entre le magmatisme du bassin de Berkine et d'Illizi

	Bassin de Berkine	Bassin d'Illizi
Nature pétrographique	Basaltes (souvent altérés) et des spilites.	Roche de natures basaltiques très altérées.
Niveaux stratigraphiques	 Cambrien; Ordovicien; Silurien; Trias (Carbonaté et Argileux Gréseux Inférieur) 	- Ordovicien ; - Silurien ;
Répartition des roches magmatiques	 les roches magmatiques sont très répandues dans le bassin; leur localisation se situe dans les secteurs Nord et Nord-Ouest; les roches magmatiques se présentent sous forme de roches massives; Les épaisseurs de ces roches sont plus importantes dans le Trias (T.A.G.I) que dans les autres niveaux; 	 les roches intrusives sont peu répandues; ces roches se localisent essentiellement dans la partie Nord du bassin; ces roches intrusives se présentent sous forme de masses isolées entre elles; Les épaisseurs de ces roches sont plus importantes dans le Silurien que dans l'Ordovicien;
Age (datation)	Quatre échantillons de roches magmatiques ont été datés par la méthode K-Ar au laboratoire d'Orsay ont donné les ages suivants : EG-1 (3281 m): 551 ± 30 Ma sur roches totale; FM-1 (180,70 m): 197 ± 20 Ma sur roche totales; EAT-1 (3 487,70m): 280 ± 15 Ma sur roche totale; NZN-1 (50,40 m): 325 ± 30 Ma sur roche totale;	Trois échantillons de roches magmatiques ont été datés par la méthode K-Ar au laboratoire d'Orsay ont donné les ages suivants : GER-2 (2243,8 – 2243,9 m) : 220 ± 2 Ma sur roche totale ; MRK-1 (3729,2 m) : - 163,5 ± 15 Ma sur roche totale ; - 174,8 Ma sur feldspaths ; STA-1bis (3094,6 – 3095,6) : 98,6 Ma sur roche totale ;
Position des roches magmatiques par rapport au système pétrolier	Les roches magmatiques sont souvent situées au sein des roches réservoirs du Trias, rarement au sein de la roche mère.	Les intrusions magmatiques sont souvent situées au sein de la roche mère silurienne et des roches réservoirs ordoviciennes.

V.2. COMPARAISON ENTRE LE MAGMATISME DES BASSINS DE BERKINE ET D'ILLIZI

L'examen du tableau 5 nous conduit à faire les remarques suivantes :

- O Les roches magmatiques du bassin d'Illizi se rencontrent dans deux niveaux du Paléozoïque (l'Ordovicien et le Silurien), alors que dans le bassin de Berkine on les rencontre dans quatre niveaux stratigraphiques : le Cambrien, l'Ordovicien, le Silurien et le Trias (Trias Carbonaté et le T.A.G.I).
- Les roches magmatiques sont absentes du Trias dans le bassin d'Illizi, notamment dans la série de Zarzaitine, qui comprend des sédiments d'âge triasique et jurassique.
- Les roches magmatiques sont très répandues dans le bassin de Berkine, contrairement à celui d'Illizi, où elles sont très rares.
- Les roches magmatiques dans le bassin d'Illizi se localisent essentiellement dans la partie
 Nord du bassin tandis que dans celui de Berkine, elles se localisent dans les secteurs Nord et Nord-Ouest.
- O Les roches magmatiques du bassin d'Illizi sont très altérées. Les minéraux primaires ont subis de profondes transformations. On peut cependant affirmer qu'il s'agit essentiellement de roches de nature basaltique à texture doléritique (dolérite) en se basant sur les textures de ces roches et sur la nature des minéraux d'altération (essentiellement de la chlorite et de la dolomite). Les roches éruptives du bassin de Berkine sont des basaltes ou des spilites, épanché dans un milieu subaquatique. Leur degré d'altération est moindre que celui des roches du bassin d'Illizi (on trouve parfois des roches fraîches dans le bassin de Berkine, contrairement aux bassins d'Illizi où toutes les roches sont profondément altérées).
- La nature pétrographique identique de ces roches magmatiques plaide en faveur d'une mise en place unique liée à un seul contexte géodynamique.
- O L'altération extrêmement élevée des roches magmatiques dans les deux bassins ne permet pas d'obtenir des âges fiables, surtout en utilisant la méthode K-Ar qui est très sensible à l'altération. Cependant, les datations qui existent semblent indiquer un âge mésozoïque pour ces roches dans les deux bassins.
- o Dans les bassins de Berkine et d'Illizi, l'orientation générale des masses de roches magmatiques épouse approximativement les directions NE-SW, qui est la direction des accidents majeurs affectant le Paléozoïque et notamment les accidents de direction NNE-SSW. Cette direction est celle des accidents liés à l'ouverture de l'Atlantique Central.

- O Dans le bassin de Berkine, quand il y a un changement régional dans l'orientation de ces failles majeures, cela se répercute sur l'orientation des masses des roches magmatiques. Cela nous permet de conclure qu'il y a un certain parallélisme entre la mise en place du volcanisme du Trias et les accidents majeurs du Paléozoïque dans ce bassin.
- o Les roches magmatiques des bassins de Berkine et d'Illizi ont probablement la même origine, qui est liée à l'ouverture de l'Atlantique Central.
- O Dans le bassin d'Illizi les roches magmatiques sont presque toutes situées à l'intérieure de la roche mère, alors que dans le bassin de Berkine les roches magmatiques sont presque toutes situées à l'intérieure de la roche réservoir. La répartition de ces roches magmatiques par rapport aux roches mères et/ou roches réservoirs peut avoir une influence non négligeable sur le système pétrolier des deux bassins.

Conclusion Générale

- Les intrusions magmatiques sont rencontrées dans une quarantaine de sondages du bassin de Berkine. Leur épaisseur varie de 2 m à 149 m. Leur localisation se situe dans les secteurs Nord-Ouest du bassin et leur fréquence est concentrée dans le Trias argilo-gréseux inférieur.
- Les roches éruptives de la région d'étude sont des basaltes ou des spilites, épanché dans un milieu subaquatique et sont d'âge Mésozoïque. Elles sont probablement liées à l'ouverture de l'Atlantique Central.
- Les cartes en isopaques et les coupes lithostratigraphiques ont permis de visualiser dans l'espace la distribution des roches magmatiques dans le bassin de Bekine. Comme les autres bassins de la plate-forme saharienne, les intrusions du bassin de Berkine sont très répandues dans l'espace et se localisent essentiellement au Nord et au Nord-Ouest du bassin de Berkine.
- La mise en place de ces roches magmatiques est probablement liée aux accidents majeurs du bassin de Berkine, notamment les accidents de direction NE-SW. Cette direction est celle des accidents liés à l'ouverture de l'Atlantique Central.
- La répartition de ces roches par rapport aux roches mères et aux réservoirs et leur relation avec les éléments structuraux du bassin peut avoir une influence non négligeable sur le système pétrolier du bassin de Berkine.

Bibliographie

- M. ALIEV et al., (1971). Structures géologiques et perspectives en pétrole et en gaz du Sahara algérien. Altamira-Rotopress, S.A., Madrid, Espagne, 275 p.
- **S. ATTOUCHI (2003).** Le tracé informatique des cartes en isopaques de l'éruptif de la région de Hassi-Messaoud. *Mémoire de PFE, ENP, Alger, 66 p.*
- **BEICIP** (1975). Etude structurale et caractéristique, Bassin d'Illizi- Môle d'El Biod. *Rapport inédit. Sonatrach Exploration*.
- **S. BENTALAA** (2005). Distribution spatiale et temporelle du magmatisme dans le bassin d'Illizi. *Mémoire de PFE, ENP, Alger, 97 p.*
- **BOOTE, D. R. D., et al; (1998).** Palaeozoic petroleum systems of North Africa. *In : D.S. MacGregor, R.T.J. Moody, D.D. Clark-Lowes (Eds.), Petroleum Geology of North Africa. Geol. Soc. Lond., Spec. Publ., 132, 7–68.*
- **A. BOUDJEMAA** (1987). Evolution structurale du bassin pétrolier triasique du Sahara nord oriental (Algérie). *Thèse de Doctorat en Sciences, Université Paris XI-Orsay, 290 p.*
- **G. BUSSON (1970).** Le Mésozoïque saharien. 2^{ème} partie : Essai de synthèse des données des sondages algéro-tunisiens. *Publ. Centre Rech. Zones arides, CNRS*, *Paris, Sér. Géol.*, $n^{\circ}11$, 2 vol., 810 p.
- **G. BOSSIERE, M. MEGARTSI (1971).** Découverte d'un type de lave intermédiaire entre les rushayites et les katungites dans le Sahara nord-oriental (Algérie). *C.R. Acad. Sci. Paris*, 273, 547-550.
- **A. CHAOUCH** (1992). Genèse et mise en place des hydrocarbures dans les bassins de l'erg Oriental (Sahara Algérien) These University of Bordeaux, France.
- M.C. CHABOU (2001). Etude pétrographique et géochimique du magmatisme mésozoïque de l'Ouest de la plate-forme saharienne. *Mémoire de Magister, ENP, Alger, 181 p.*
- M. DJIDJELI (1996). Synthèse géologique sur le modèle de dépôt du Trias Argilo-Gréseux dans le bassin de Ghadamès. Document Sonatrach. 35 p.
- **K. ECHIKH** (1998). Geology and hydrocarbon occurrences in the Ghadames Basin, Algeria, Tunisia, Libya. *In*: D.S. MacGregor, R.T.J. Moody, D.D. Clark-Lowes (Eds.), Petroleum Geology of North Africa. Geol. Soc. Lond., Spec. Publ., 132, 231–263.
- **J. FABRE** (1976). Introduction à la géologie du Sahara algérien. SNED, Alger 1976, 422 p.

- M. FILALI (2003). Le volcanisme de la province triasique : critères pétrographiques et géochimiques. *Mémoire de Magister, ENP, Alger*.
- **A. GHRIBI** (1999). Répartition des roches éruptives dans le bassin de Berkine et commentaires géologiques. *Rapport inédit, Sonatrach. 38 p.*
- **A. IMADACHE (2003).** Le tracé informatique des courbes en isopaques du magmatisme mésozoïque de bassin d'Oued Mya. *Mémoire de PFE, ENP, Alger, 91 p.*
- **P. JACQUEMONT** (1971). Les dolérites du Paléozoïque saharien. *Rapport inédit, Sonatrach Exploration*, 22 p.
- **M. KHATAL** (2003). Etude de la répartition spatio-temporelle du magmatisme mésozoïque du bassin de Reggane. *Mémoire de PFE, ENP, Alger, 95 p.*
- **T.R. KLETT** (**2000**). Total Petroleum Systems of the Trias/Ghadames Province, Algeria, Tunisia, and Libya—The Tanezzuft-Oued Mya, Tanezzuft-Melrhir, and Tanezzuft-Ghadames. *U.S. Geological Survey Bulletin* 2202-*C* (2000), 118 p. http://greenwood.cr.usgs.gov/pub/bulletins/b2202-c/
- **L. LASSOUANI (1996).** Influence des épanchements volcaniques sur la sedimentation triasiques dans le basin de Ghadamès. *Rapport inédit, Sonatrach. 48 p.*
- **P. LOGAN, I. DUDDY (1998).** An investigation of the thermal history of the Ahnet and Reggane Basins, Central Algeria, and the consequences for hydrocarbon generation and accumulation. *In*: D.S. MacGregor, R.T.J. Moody, D.D. Clark-Lowes (Eds.), Petroleum Geology of North Africa. Geol. Soc. Lond., Spec. Publ., 132, 231–263.
- **M. MAKHOUS, Y.I. GALUSHKIN (2003).** Burial history and thermal evolution of the northern and eastern Saharan basins. *AAPG Bulletin*, 87(10) 1623-1651.
- M. MAKHOUS, Y.I. GALUSHKIN (2003). Burial history and thermal evolution of the Southern and western Saharan basins: synthesis and comparison with the eastern and northern Saharan basins. *AAPG Bulletin*, 87(11) 1799-1822.
- **E. SOLDATENKO**. Etude des roches éruptives du Bassin de Ghadamès. *Rapport Sonatrach*. 21 p.
- **J. SINISE eds.** Core Examination Report and Related studies on Triassic Sedimentary and Volcanic Rocks, Sonatrach Districts 4 and 5, Algeria, AIOGC.

Annexe 01

(Le Worksheet utilisé pour la réalisation de la carte en isopaques des épaisseurs totales)

Sondage X (m) Y (m) EpT (m) PF (m) AA-1 218,913 3290,33 0 1732,5 SP AAN-1 223,438 3334,673 0 3472,40 SP AAN-2 221,726 3335,419 0 2774,80 SP ACB-1 260,353 3272,971 0 3643,0 SP ALR-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-1 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARB-1 341,831 3446,652 70 3559 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S <		I			
AAN-1 223,438 3334,673 0 3472,40 SP AAN-2 221,726 3335,419 0 2774,80 SP ACB-1 260,353 3272,971 0 3643,0 SP AKR-1 307,608 3457,067 52 3631,20 SP AL-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARB-1 341,831 3446,652 70 3559 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BKN-1 409,579 3436,892 0 4078 S <					
AAN-2 221,726 3335,419 0 2774,80 SP ACB-1 260,353 3272,971 0 3643,0 SP AKR-1 307,608 3457,067 52 3631,20 SP AL-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3436,892 0 4396 S BBK-1 402,769 3436,892 0 4078 S					
ACB-1 260,353 3272,971 0 3643,0 SP AKR-1 307,608 3457,067 52 3631,20 SP AL-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4078 S BC-1 352,782 3679,397 0 4895 S			3334,673	0	
AKR-I 307,608 3457,067 52 3631,20 SP AL-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 402,769 3430,97 0 3758 S BBK-1 402,769 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S <					
AL-1 241,805 3293,152 0 2810,00 SP ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-1 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-2 381,671 3387,217 0 3725 S <tr< td=""><td>ACB-1</td><td>260,353</td><td>3272,971</td><td></td><td>3643,0 SP</td></tr<>	ACB-1	260,353	3272,971		3643,0 SP
ALN-1 242,004 3325,93 0 1692,08 SP ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6.5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-3 457,489 3455,517 0 3948 S BRSW-1 446,922 3443,891 0 3482 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,221 0 5193 S BRW-3 451,037 3453,558 0 3400 S BRW-3 451,037 3453,558 0 3400 S BRW-3 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3095 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BSFN-1 466,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	AKR-1	307,608	3457,067	52	
ALN-2 240,029 3329,079 0 4108 S ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-2 421,177 3393,694 0 3500 S BKN-1 405,201 3402,92 0 3842 S BKNE-1 405,201 3402,92 0 3842 S BKNE-1 405,201 3402,92 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSS-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,21 0 5193 S BRW-6 444,754 3447,944 0 3244 S BRW-6 444,754 3447,944 0 3244 S BRSF-1 469,617 3441,478 0 4005 S BRSF-1 469,617 3441,478 0 4005 S BRSF-1 469,617 3441,478 0 4005 S BRSF-1 460,601 3444,152 0 3995 S BRSF-1 460,601 3444,152 0 3995 S BRSF-1 460,601 3444,152 0 3995 S BRSF-1 460,602 3427,727 0 BKE-1 384,68 3392,727 0 4350 S	AL-1	241,805	3293,152	0	2810,00 SP
ANR-1 419,229 3524,495 34 3976 S ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BK-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3650 S BKN-1 405,201 3402,92 0 3842 S	ALN-1	242,004	3325,93	0	1692,08 SP
ANR-2 419,592 3523,847 0 3825,7 S ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSW-1 446,922 3443,891 0 3408 S BRSW-3 451,499 0 3905 S BRSW-1 446,922 3443,891 0 3482 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3995 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BSFN-1 466,0092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	ALN-2	240,029	3329,079	0	4108 S
ARB-1 336,856 3431,379 6,5 ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S	ANR-1	419,229	3524,495	34	3976 S
ARBN-1 341,831 3446,652 70 3559 SP ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3806 S	ANR-2	419,592	3523,847	0	3825,7 S
ASL-1 255,092 3253,543 0 3758,0 SP AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBK-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP </td <td>ARB-1</td> <td>336,856</td> <td>3431,379</td> <td>6,5</td> <td></td>	ARB-1	336,856	3431,379	6,5	
AZS-1 234,782 3277,278 0 4192 S BAT-1 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3866 S <td>ARBN-1</td> <td>341,831</td> <td>3446,652</td> <td>70</td> <td>3559 SP</td>	ARBN-1	341,831	3446,652	70	3559 SP
BAT-I 255,504 3610,187 27,5 3762,7 S BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRSE-2 458,44 3442,221 0 5193 S <td>ASL-1</td> <td>255,092</td> <td>3253,543</td> <td>0</td> <td>3758,0 SP</td>	ASL-1	255,092	3253,543	0	3758,0 SP
BBK-1 402,769 3430,97 0 3758 S BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKNE-1 405,201 3402,92 0 3842 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S	AZS-1	234,782	3277,278	0	4192 S
BBK-2 399,732 3428,962 0 4396 S BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,989 0 3905 S	BAT-1	255,504	3610,187	27,5	3762,7 S
BBKN-1 409,579 3436,892 0 4078 S BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3860 S BRN-1 512,982 3451,141 0 3860 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S	BBK-1	402,769	3430,97	0	3758 S
BC-1 352,782 3679,397 0 4895 S BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-3 446,922 3443,891 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S	BBK-2	399,732	3428,962	0	4396 S
BGF-1 291,331 3649,34 11,5 4895 S BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S	BBKN-1	409,579	3436,892	0	4078 S
BK-1 384,586 3392,489 0 3650 S BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3905 S BRW-3 448,9 3442,989 0 3905 S BRW-4 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S <	BC-1	352,782	3679,397	0	4895 S
BK-2 381,671 3387,217 0 3725 S BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S	BGF-1	291,331	3649,34	11,5	4895 S
BKE-2 421,177 3393,694 0 3500 S BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSFN-2 462,964 3447,204 0 4822 S	BK-1	384,586	3392,489	0	3650 S
BKE-4 415,724 3394,384 0 3410 S BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BK	BK-2	381,671	3387,217	0	3725 S
BKNE-1 405,201 3402,92 0 3842 S BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSFN-2 470,929 3448,522 0 3052 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 B	BKE-2	421,177	3393,694	0	3500 S
BKNE-2 405,774 3408,028 0 2850 S BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSFN-2 470,929 3448,522 0 3052 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S B	BKE-4	415,724	3394,384	0	3410 S
BLF-1 363,199 3530,822 0 3800 SP BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 384,68 3392,727 0 4350 S	BKNE-1	405,201	3402,92	0	3842 S
BMA-1 512,982 3451,141 0 3860 S BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BKNE-2	405,774	3408,028	0	2850 S
BRN-1 455,817 3453,844 0 3086 S BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BLF-1	363,199	3530,822	0	3800 SP
BRN-3 457,489 3455,517 0 3948 S BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 4736 S BK-1 384,68 3392,727 0 4350 S	BMA-1	512,982	3451,141	0	3860 S
BRSE-2 458,44 3442,221 0 5193 S BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRN-1	455,817	3453,844	0	3086 S
BRSW-1 446,922 3443,891 0 3482 S BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRN-3	457,489	3455,517	0	3948 S
BRSW-3 448,9 3442,989 0 3905 S BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRSE-2	458,44	3442,221	0	5193 S
BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRSW-1	446,922	3443,891	0	3482 S
BRW-3 451,037 3453,558 0 3400 S BRW-6 444,754 3447,944 0 3244 S BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRSW-3	448,9	3442,989	0	3905 S
BSF-1 469,617 3441,478 0 4005 S BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRW-3	451,037		0	3400 S
BSF-2 470,929 3448,522 0 3052 S BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BRW-6	444,754	3447,944	0	3244 S
BSFN-1 461,601 3444,152 0 3995 S BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BSF-1	469,617	3441,478	0	4005 S
BSFN-2 462,964 3447,204 0 4822 S BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BSF-2	470,929	3448,522	0	3052 S
BBKSE-1 406,092 3427,727 0 BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BSFN-1	461,601	3444,152	0	3995 S
BKE-1 422,797 3396,376 0 4736 S BK-1 384,68 3392,727 0 4350 S	BSFN-2	462,964	3447,204	0	4822 S
BK-1 384,68 3392,727 0 4350 S	BBKSE-1	406,092	3427,727	0	
	BKE-1	422,797	3396,376	0	4736 S
DIF 1 242 505 2700 044 0	BK-1	384,68	3392,727	0	4350 S
BLE-1 245,505 5/00,844 0	BLE-1	243,505	3700,844	0	

BRD-1	310,028	3381,648	0	2561 SD
BRD-2	310,028	3393,943	0	3561 SP 5130 SP
BRD-3	309,183	3380,091	0	3680,8 S
BRD-4	313,336	3388,08	6,5	3914,0 SP
BRT-1	466,893	3543,426	0,5	3477,6 S
BTF-1	300,756	3260,315	0	3841 S
BTR-1	458,215	3484,977	0	30413
CS-1	536,971	3439,703	0	
DAD-1	308,924	3506,983	0	4020,19 SP
DADW-1	304,035	3503,497	0	3737 SP
DRN-1	275,64	3430,38	27	3346,6
DSB-1BIS	236,134	3413,206	55	4069 S
EAD-1	286,064	3303,714	0	4248,5
EAT-1	370,326	3500,087	50	4133 S
EB-1	519,061	3505,539	0	4133 B
EB-133	528,686	3502,363	0	3407,9 S
EBN-1	518,487	3517,309	0	3107,5 5
EG-1	505,713	3543,513	76	4011 S
EGS-1	512,535	3524,556	0	2573 SP
EHT-1	394,796	3562,952	44	3432 SP
EKN-1	232,505	3251,27	0	2711,0 SP
EK-1	239,697	3239,17	0	3705 SP
EK-101	237,21	3236,24	0	3760 S
EKS-1	239,895	3218,868	0	3247 s
EKT-3	408,111	3663,812	0	3217 8
EKT-4	412,967	3361,705	0	2950 S
ELB-1	512,201	3502,423	0	3825 S
EMC-1	414,605	3314,373	0	4529 S
EMEE-1	423,804	3336,968	0	4206 S
EME-1	415,978	3341,204	0	2821 S
EME-2	418,585	3340,832	0	3957 S
EME-3	418,879	3344,218	0	2580 S
EMH-2	250,814	3258,013	0	3925 SP
EMHC-1	248,723	3255,66	0	2546,3 S
ELA-1	273,99	3252,72	0	2547,5 s
ELB-1	518,301	3502,123	0	2504 S
ELB-2	518,312	3499,782	0	2446 S
ELB-3	516,137	3498,23	0	2480,5 S
ELB-4	517,095	3505,093	0	2524,5 S
ELB-5bis	517,398	3503,649	0	2468 S
ELB-6	519,353	3494,948	0	3830 SP
ELB-7	515,402	3495,399	0	3547,85 SP
ETB-1	282,72	3339,361	0	3392,80 SP
FM-1	279,876	3431,257	32,5	
FM-2	278,1	3426,703	36	4223,5 SP
FES-1	283,678	3433,839	27,5	4222 SP
GEA-1	285,097	3401,462	4	3967 SP
GEA-2	283,281	3395,997	0	3800 SP
GEA-3	284,504	3402,566	0	4124,8 S
GEAN-1	292,802	3419,5	39,5	2833 S
GEF-1	400,463	3509,511	54	1480,25 SP
GEN-1	512,248	3504,912	0	1965 SP

GT-2	260,143	3869,565	0	2570 SP
GT-7	261,086	3353,28	0	3566,90 SP
GTE-1	264,565	3362,565	0	3542,5 R3
GTK-1	261,83	3364,108	0	33 12,3 113
GTR-1	349,125	3866,835	0	4802 S
GTW-1	257,574	3365,812	0	4378 S
HAD-1	452,432	3334,432	0	2937 INP
HB-1A	338,112	3553,825	52	4085 S
HBS-1	348,568	3760,194	0	2630 SP
HBR-1BIS	291,48	3501,709	6	2000 21
HC-1	262,299	3338,9	0	2581 SP
HC-2	262,707	3337,724	0	
HC-4	263,8	3334,8	0	2632 SP
HC-5	261,635	3341,382	0	2966,9 SP
HC-6	261,4	3340,5	0	2,00,,,
HC-101	263,98	3335,86	33,5	
HCN-1	261,463	3348,226	0	3709 SP
IAN-1	385,589	3306,099	0	2435 SP
ELJ-1	285,356	3316,757	0	? SP
EMH-1	251,557	3258,327	0	2543 SP
ESO-1	300,112	3300,53	0	2620,5 SP
HC-102	263,529	3333,603	0	3039
HCW-1	262,894	3340,459	0	4307
HCW-2	261,014	3333,675	0	2964,5 SP
HDZ-1	275,123	3455,988	13	4321 S
HEG-1	414,003	3519,018	40	4562 S
HFR-1	523,142	3334,138	0	2492 SP
HLL-2	136,082	3332,92	0	3667,00 SP
Hn-1	278,331	3645,093	36,5	2685 S
Hn-2	300,253	3640,529	0	3120,5 SP
HR-1	249,305	3245,297	0	2538 S
HR-4	253,05	3236,606	0	3542 S
HRT-1	504,073	3488,45	0	2759,4 S
HSN-1	218,671	3341,905	0	2844,5 S
HTB-1	512,712	3496,879	0	2755 S
KA-1BIS	502,859	3522,576	0	4218,6 SP
KA-2	505,717	3520,283	0	3911 S
KA-3	500,544	3524,445	0	3497,3
KA-4	503,65	3521	0	
LA-1	253,526	3426,57	0	
LD-1	338,208	3484,641	104	
MAT-1	260,918	3250,072	0	
MDR-1	289,977	3451,735	0	3558,7 SP
MDRW-1	288,387	3450,751	0	2130 SP
MDRS-1	287,894	3347,189	77,5	3614,25 SP
MDR-3BIS	293,095	3450,01	60	3705 SP
MF-101	267,174	3322,729	0	3899,5 SP
MK-1	217,373	3211,12	0	4500 S
MKS-1	268,602	3261,732	0	2797,4 SP
MKS-2	268,253	3260,798	0	3395 S
MKSW-1	264,065	3257,267	0	2753 SP
MZL-1	366,931	3341,117	0	2964 SP

NIC 1	245 640	3400 201	Δ	2004 10 SB
NS-1 NZ-1	245,649 261,373	3409,381 3399,929	0	3094,10 SP 2706 SP
NZ-3	262,109	3401,885	0	2610 SP
NZE-1	287,16	3396,827	0	4407 S
NZN-1	266,446	3413,991	53	2249,1 SP
NZN-2	266,772	3412,111	0	3678 S
NZN-3	266,842	3413,424	0	30783
OBS-1	257,535	3538,044	43	3657 SP
OEM-1	221,936	3588,821	27	3039 SP
OER-1	327,483	3618,382	0	4074,45 SP
OMH-1	246,275	3165,578	0	3816 S
ON-1	257,842	3517,634	0	3126 SP
ONT-1	518,107	3304,518	0	3992 SP
Oua-1	264,233	3221,213	0	3015 SP
Ous-1	260,419	3204,6	0	2937 SP
RA-1	293,835	3271,533	0	3950 S
RA-1BIS	528,923	31 53 11	0	3264 S
RA-2	291,933	3271,397	0	3520 S
RA-4	286,512	3266,609	0	3354 S
RA-7	287,599	3268,4	0	3334 8
RA-8	295,5	3272,75	0	3550 S
RAC-1	283,245	3263,566	0	3460 S
RAL-1	451,179	3492,468	0	3934,5 SP
RBA-1	425,227	3501,727	0	3734,3 51
BBK-B-1	418,445	3411,004	0	
RDC-4	260,582	3560,402	90	
REC-1	393,72	3448,53	0	3142 S
RFD-1	452,355	3417,184	0	4000 S
RAS-1	281,659	3260,797	0	3172,30 SP
RB-1	304,891	3474,645	0	3097 SP
RB-2	306,846	3471,713	42	5057.52
RBN-1	315,598	3491,27	27,5	3081 ?
RBO-1	294,289	3468,995	59,5	3833 S
RBT-1	354,929	3523,766	0	4126,5 S
RBT-1BIS	354,955	3523,881	149	2774 S
RC-1	309,334	3303,036	0	3884 SP
RC-2	306,526	3298,151	0	3951 SP
RC-3	310,3	3304,25	0	3005,5 SP
RC-4	307,399	3301,4	0	3812 S
RDZ-1	274,947	3456,174	19	4835 S
RE-1	456,559	3450,841	0	
REA-1	507,487	3518,509	0	3369 S
REH-1	309,739	3337,261	0	3187 S
REH-2	309,213	3336,014	0	
REK-1	250,704	3348,274	0	4410,00 SP
REL-1	345,465	3512,322	110	3825 SP
REN-1	383,77	3467,204	2	3468 SP
RERN-2	485,597	3484,965	0	3600 SP
RER-1	480,594	3472,093	0	3637 SP
RER-2	484,323	3475,421	0	3748,00 SP
RGM-1	221,416	3413,776	0	2239 SP
TOW I				

RHA-2	293,419	3312,896	0	4414,00 SP
RHA-3	297,107	3319.74	0	2935 SP
RHNW-1	283,248	3326,876	0	3028 SP
RHNW-2	280,6	3324,382	0	2887,20 SP
RHSE-1	298,699	3307,308	0	2960 SP
RMN-1	232,12	3243,56	0	3781 SP
RN-1	281,558	3285,984	0	? SP
RN-101	281,737	3283,634	0	2775 SP
RNA-1	281,149	3287,179	0	3972 S
RNA-3	283,928	3287,277	0	3956 S
RNNE-1	287,255	3292,663	0	3965 S
RNSE-2	284,217	3273,365	0	3573,5 SP
RNSW-1	276,826	3279,71	0	4106,5 SP
RNSE-53	282,79	3268,539	0	4340,1 S
RNSW-5	269,31	3270,474	0	4253 S
ROM-1	414,983	3449,219	0	2883,2 SP
ROM-2	416,476	3449,983	0	4305,0 S
RS-1	371,533	3537,533	53	1000,00
RSH-1	315,361	3437,183	0	
RSH-1BIS	315,533	3436,924	14	3145 S
RY-1	532,781	3403,78	0	4196,6 S
SD-1	282,4	3524,882	50,5	2922 SP
SEB-1	243,827	3337,459	0	3876 S
SF-1	441,298	3426,77	0	4120,6 S
RSR-1	506,292	3462,821	0	2941,5 SP
SMR-1	364,675	3573,888	80	3381,00 SP
SYDE-1	456,337	3288,179	0	3219,30 SP
TAO-3	315,779	3359,496	0	4814,5 S
TAO-2	317,43	3358,149	0	3180 S
TG-1	247,239	3380,989	0	2705 S
TO-1	415,036	3608,538	40	3790,81 S
TOG-101	227,4	3668,7	0	3770,01 B
Tou-2	278,121	3345,806	0	4096 S
Tou-4	276,54	3338,95	0	3625 S
TT-1	255,066	3329,213	0	3023 5
WT-1	365,31	3368,951	0	4403 S
WT-2	367,284	3371,904	0	2845 S
WT-2BIS	367,535	3372,257	0	2742 S
WT-3	372,711	3376,333	0	3445,5 S
ZAR-1	427,06	3488,911	5	5046 S
ZB-1	362,907	3646,698	0	4097,5 S
ZEK-1	399,003	3452,687	0	3625 S
ZEKW-1	393,062	3457,765	0	3023 5
ZERW-1 ZEN-1	408,982	3461,439	0	4403 S
ZES-1	512,641	3512,504	0	2845 S
		3512,304	0	2742 S
7FS_2	1 513511			
ZES-2 ZESW-1	513,511			
ZES-2 ZESW-1 ZH-1	513,511 508,841 343,773	3513,503 3717,85	0	3445,5 S 5046 S

Annexe 02

(Le Worksheet utilisé pour la réalisation des cartes en isopaques des intrusions magmatiques du TRIAS)

Sondage							
AAN-1 223,438 3334,673 0 0 0 3472,40 SP AAN-2 221,726 3335,419 0 0 0 2774,80 SP ACB-1 260,353 3272,971 0 0 0 3643,0 SP AKR-1 307,608 3457,067 32 20 52 ALN-1 241,805 3293,152 0 0 0 3631,20 SP ALN-1 242,004 3325,93 0 0 0 2810,00 SP ALN-2 240,029 3523,847 0 0 0 1692,08 SP ANR-1 419,229 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 3446,652 0 0 3758,0 SP AZS-1 234,782 327,278 0 0 3758,0 SP BAT-1 255,092 3430,97 0 0 4192 S	Sondage	X (m)	Y (m)	EpT.A.G.I	EpT.C	EpT (m)	PF (m)
AAN-2 221,726 3335,419 0 0 0 2774,80 SP ACB-1 260,353 3272,971 0 0 0 0 3643,0 SP AKR-1 307,608 3457,067 32 20 52 ALN-1 241,805 3293,152 0 0 0 3631,20 SP ALN-1 242,004 3325,93 0 0 0 0 2810,00 SP ALN-2 240,029 3329,079 0 0 0 1692,08 SP ANR-1 419,229 3524,495 34 0 34 4108 S ANR-2 419,592 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 3444,652 0 0 0 3575, S ARBN-1 255,002 3253,543 0 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758, S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-2 381,671 3387,217 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3725 S BKN-1 405,201 3402,92 0 0 3403,08 B BK-2 381,671 3387,217 0 0 0 4895 S BKE-4 415,724 3394,384 0 0 0 3725 S BKN-1 405,201 3402,92 0 0 0 3725 S BKN-1 405,201 3402,92 0 0 0 3800 SP BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3650 S BKE-1 405,201 3402,92 0 0 0 3400 S BKN-1 405,201 3402,92 0 0 0 3400 S BKN-1 405,201 3402,92 0 0 0 3842 S BKN-1 455,817 3453,844 0 0 0 3800 SP BKN-1 455,817 3453,844 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3860 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3860 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3860 S BRN-1 456,817 3443,891 0 0 0 3400 S BSF-2 458,44 3442,221 0 0 0 3400 S BSFN-1 466,617 3441,478 0 0 0 3905 S BRSW-1 446,922 3443,891 0 0 0 3905 S BRSW-1 469,617 3441,478 0 0 0 3995 S BRSW-1 460,002 3447,727 0 0 0 3995 S BKE-1 422,797	AA-1	218,913	· ·	0		0	1732,5 SP
ACB-1 260,353 3272,971 0 0 0 3643,0 SP AKR-1 307,608 3457,067 32 20 52 AL-1 241,805 3293,152 0 0 0 3631,20 SP ALN-1 242,004 3325,93 0 0 0 2810,00 SP ALN-2 240,029 3329,079 0 0 0 1692,08 SP ANR-1 419,229 3524,495 34 0 34 4108 S ANR-1 419,229 3524,495 34 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 344,6652 0 0 0 3559 SP AZS-1 234,782 327,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0	AAN-1	223,438	3334,673	0	0	0	3472,40 SP
AKR-1 307,608 3457,067 32 20 52 AL-1 241,805 3293,152 0 0 0 3631,20 SP ALN-1 242,004 3325,93 0 0 0 1692,08 SP ALN-2 240,029 3329,079 0 0 0 1692,08 SP ANR-1 419,5229 3524,495 34 0 34 4108 S ANR-2 419,592 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 3446,652 0 0 0 3559 SP AZS-1 234,782 327,2728 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0	AAN-2	221,726	3335,419	0	0	0	2774,80 SP
AL-1	ACB-1	260,353	3272,971	0	0	0	3643,0 SP
ALN-1 242,004 3325,93 0 0 0 2810,00 SP ALN-2 240,029 3329,079 0 0 0 1692,08 SP ANR-1 419,229 3524,495 34 0 34 4108 S ANR-1 419,592 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARB-1 331,831 3446,652 0 0 0 0 ASL-1 255,092 3253,543 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 4192 S BBK-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 4396 S	AKR-1	307,608	3457,067	32	20	52	
ALN-2	AL-1	241,805	3293,152	0	0	0	3631,20 SP
ANR-1 419,229 3524,495 34 0 34 4108 S ANR-2 419,592 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 3446,652 0 0 0 0 3559 SP ASL-1 255,092 3253,543 0 0 0 3758,0 SP BAT-1 255,092 3253,543 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 <td>ALN-1</td> <td>242,004</td> <td>3325,93</td> <td>0</td> <td>0</td> <td>0</td> <td>2810,00 SP</td>	ALN-1	242,004	3325,93	0	0	0	2810,00 SP
ANR-2 419,592 3523,847 0 0 0 3976 S ARB-1 336,856 3431,379 6,5 0 6,5 3825,7 S ARBN-1 341,831 3446,652 0 0 0 0 3559 SP ASL-1 255,092 3253,543 0 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758, S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3650 S BKN-1 405,201 3402,92 0 0 0 3500 S BKN-1 363,199 3530,822 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3860 S BRN-1 455,817 3453,844 0 0 0 3880 S BRN-1 455,817 3453,844 0 0 0 3880 S BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3860 S BRSW-3 448,9 3442,989 0 0 0 3400 S BRSW-3 448,9 3442,989 0 0 0 3400 S BRSW-3 448,9 3442,989 0 0 0 3400 S BRSW-3 444,754 3447,944 0 0 0 3995 S BRW-3 BSF-1 469,617 3441,478 0 0 0 3400 S BSF-1 469,617 3441,478 0 0 0 3995 S BRSP-1 466,017 3441,478 0 0 0 3995 S BRSP-1 466,017 3441,478 0 0 0 3995 S BRSP-1 466,017 3441,478 0 0 0 3995 S BRSP-1 460,902 3447,204 0 0 0 3995 S BRSP-1 460,092 3447,204 0 0 0 3995 S BRSP-1 460,092 3427,727 0 0 0 0 3995 S BRSE-1 422,797 3396,376 0 0 0 3995 S BRSE-1 422,797 3396,376 0 0 0 3995 S BRSE-1 422,797 3396,376 0 0 0 0 4822 S BRS-1 384,68 3392,727 0 0 0 0 0 3995 S	ALN-2	240,029	3329,079	0	0	0	1692,08 SP
ARB-1 336,856 3431,379 6.5 0 6.5 3825,7 S ARBN-1 341,831 3446,652 0 0 0 0 ASL-1 255,092 3253,543 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 421,177 3393,694 0 0 0 3650 S BKNE-2 421,17 3393,694 0 0 0	ANR-1	419,229	3524,495	34	0	34	4108 S
ARBN-1 341,831 3446,652 0 0 0 ASL-1 255,092 3253,543 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BC-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 4895 S BKE-2 421,177 3393,694 0 0 3650 S BKE-4 415,724 3394,384 0 0 3500 S BKNE-1 405,20	ANR-2	419,592	3523,847	0	0	0	3976 S
ASL-1 255,092 3253,543 0 0 0 3559 SP AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-2 381,671 3387,217 0 0 0 4895 S BK-2 421,177 3393,694 0 0 0 3650 S BKE-2 421,177 3393,694 0 0 0 3752 S BKNE-1 405,201 3402,92 0 0 0 33500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3860 S BRN-1 455,817 3453,844 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3860 S BRSW-3 446,92 3443,891 0 0 0 3482 S BRSW-3 446,92 3443,891 0 0 0 3860 S BRSW-3 446,97 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BRW-6 444,754 3447,944 0 0 0 3905 S BRSF-1 469,617 3441,478 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 3295 S BKE-1 422,797 3396,376 0 0 0 3995 S BKE-1 384,68 3392,727 0 0 0 0 3995 S BKE-1 384,68 3392,727 0 0 0 0 3995 S BKE-1 384,68 3392,727 0 0 0 0 3995 S	ARB-1	336,856	3431,379	6,5	0	6,5	3825,7 S
AZS-1 234,782 3277,278 0 0 0 3758,0 SP BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0	ARBN-1	341,831	3446,652	0	0	0	
BAT-1 255,504 3610,187 27,5 0 27,5 BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKNE-1 405,201 3402,92 0 0 3500 S BKNE-1 405,774 3408,028 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S <tr< td=""><td>ASL-1</td><td>255,092</td><td>3253,543</td><td>0</td><td>0</td><td>0</td><td>3559 SP</td></tr<>	ASL-1	255,092	3253,543	0	0	0	3559 SP
BBK-1 402,769 3430,97 0 0 0 4192 S BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKP-1 363,199 3530,822 0 0 0 3842 S BRN-1 455,817 3453,844 0 0	AZS-1	234,782	3277,278	0	0	0	3758,0 SP
BBK-2 399,732 3428,962 0 0 0 3762,7 S BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0	BAT-1	255,504	3610,187	27,5	0	27,5	
BBKN-1 409,579 3436,892 0 0 0 3758 S BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BRN-1 455,817 3453,844 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0	BBK-1	402,769	3430,97	0	0	0	4192 S
BC-1 352,782 3679,397 0 0 0 4396 S BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0	BBK-2	399,732	3428,962	0	0	0	3762,7 S
BGF-1 291,331 3649,34 11,5 0 11,5 4078 S BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BRN-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3866 S BRSW-1 446,922 3443,891 0 0	BBKN-1	409,579	3436,892	0	0	0	3758 S
BK-1 384,586 3392,489 0 0 0 4895 S BK-2 381,671 3387,217 0 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 3800 SP BRN-1 455,817 3453,844 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3860 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRW-3 451,037 3453,558 0 0	BC-1	352,782	3679,397	0	0	0	4396 S
BK-2 381,671 3387,217 0 0 4895 S BKE-2 421,177 3393,694 0 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRSE-2 458,44 3442,221 0 0 0 3860 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0	BGF-1	291,331	3649,34	11,5	0	11,5	4078 S
BKE-2 421,177 3393,694 0 0 3650 S BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRS-2 458,44 3445,55,17 0 0 0 3860 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3400 S BSF-1 469,617 3441,478 0 0 0	BK-1	384,586	3392,489	0	0	0	4895 S
BKE-4 415,724 3394,384 0 0 0 3725 S BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3948 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3400 S BSF-1 469,617 3441,478 0 0	BK-2	381,671	3387,217	0	0	0	4895 S
BKNE-1 405,201 3402,92 0 0 0 3500 S BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3244 S BSFN-2 470,929 3448,522 0 0	BKE-2	421,177	3393,694	0	0	0	3650 S
BKNE-2 405,774 3408,028 0 0 0 3410 S BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3400 S BSF-1 469,617 3441,478 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0	BKE-4	415,724	3394,384	0	0	0	3725 S
BLF-1 363,199 3530,822 0 0 0 3842 S BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 3052 S BSFN-2 462,964 3447,204 0 0	BKNE-1	405,201	3402,92	0	0	0	3500 S
BMA-1 512,982 3451,141 0 0 0 2850 S BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3244 S BSFN-2 470,929 3448,522 0 0 0 3052 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 4822 S BK-1 384,68 3392,727 0 0	BKNE-2	405,774	3408,028	0	0	0	3410 S
BRN-1 455,817 3453,844 0 0 0 3800 SP BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 5193 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSFN-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BK-1 384,68 3392,727 0 0	BLF-1	363,199	3530,822	0	0	0	3842 S
BRN-3 457,489 3455,517 0 0 0 3860 S BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 5193 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 3052 S BSFN-2 462,964 3447,204 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 <	BMA-1	512,982	3451,141	0	0	0	2850 S
BRSE-2 458,44 3442,221 0 0 0 3086 S BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 5193 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0 0	BRN-1	455,817	3453,844	0	0	0	3800 SP
BRSW-1 446,922 3443,891 0 0 0 3948 S BRSW-3 448,9 3442,989 0 0 0 5193 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0 0	BRN-3	457,489	3455,517	0	0	0	3860 S
BRSW-3 448,9 3442,989 0 0 0 5193 S BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0 0	BRSE-2	458,44	3442,221	0	0	0	3086 S
BRW-3 451,037 3453,558 0 0 0 3482 S BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0 0	BRSW-1	446,922	3443,891	0	0	0	3948 S
BRW-6 444,754 3447,944 0 0 0 3905 S BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0 0	BRSW-3	448,9	3442,989	0	0	0	5193 S
BSF-1 469,617 3441,478 0 0 0 3400 S BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0	BRW-3	451,037	3453,558	0	0	0	3482 S
BSF-2 470,929 3448,522 0 0 0 3244 S BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0	BRW-6	444,754	3447,944	0	0	0	3905 S
BSFN-1 461,601 3444,152 0 0 0 4005 S BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0	BSF-1	469,617	3441,478	0	0	0	3400 S
BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0	BSF-2	470,929	3448,522	0	0	0	3244 S
BSFN-2 462,964 3447,204 0 0 0 3052 S BBKSE-1 406,092 3427,727 0 0 0 3995 S BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0	BSFN-1	461,601	3444,152	0	0	0	4005 S
BKE-1 422,797 3396,376 0 0 0 4822 S BK-1 384,68 3392,727 0 0 0		462,964	3447,204	0	0	0	3052 S
BK-1 384,68 3392,727 0 0 0	BBKSE-1	406,092	3427,727	0	0	0	3995 S
BK-1 384,68 3392,727 0 0 0	BKE-1	422,797	3396,376	0	0	0	4822 S
	BK-1	384,68		0	0	0	
BLE-1 243,505 3700,844 0 0 0 4736 S	BLE-1	243,505	3700,844	0	0	0	4736 S
BRD-1 310,028 3381,648 0 0 0 4350 S	BRD-1	310,028	3381,648	0	0	0	4350 S

BRD-2	317,764	3393,943	0	0	0	1
BRD-3	309,183	3380,091	0	0	0	3561 SP
BRD-4	313,336	3388,08	0	0	0	5130 SP
BRT-1	466,893	3543,426	0	0	0	3680,8 S
BTF-1	300,756	3260,315	0	0	0	3914,0 SP
BTR-1	458,215	3484,977	0	0	0	3477,6 S
CS-1	536,971	3439,703	0	0	0	3841 S
DAD-1	308,924	3506,983	0	0	0	3011 5
DADW-1	304,035	3503,497	0	0	0	
DRN-1	275,64	3430,38	0	27	27	3450 SP
DSB-1BIS	236,134	3413,206	55	0	55	3238,70 SP
EAD-1	286,064	3303,714	0	0	0	3346,6
EAT-1	370,326	3500,087	50	0	50	4069 S
EB-1	519,061	3505,539	0	0	0	4248,5
EB-133	528,686	3502,363	0	0	0	4133 S
EB-133	518,487	3517,309	0	0	0	4133.5
EG-1	505,713	3543,513	42,5	0	42,5	3407,9 S
EGS-1	512,535	3524,556	0	0	0	3407,3 3
EHT-1	394,796	3562,952	44	0	44	4011 S
EKN-1	232,505	3251,27	0	0	0	2573 SP
EKN-1	232,503	3231,27	0	0	0	3432 SP
	237,21	-	0	0	0	2711,0 SP
EK-101		3236,24				
EKS-1	239,895	3218,868	0	0	0	3705 SP
EKT-3	408,111	3663,812	_	0		3760 S
EKT-4	412,967	3361,705	0	0	0	3247 s
ELB-1	512,201	3502,423	0	0	0	2050 8
EMC-1	414,605	3314,373		<u> </u>		2950 S
EMEE-1	423,804	3336,968	0	0	0	3825 S
EME-1	415,978	3341,204	0	0	0	4529 S
EME-2	418,585	3340,832	0	0	0	4206 S 2821 S
EME-3	418,879	3344,218	0	0	0	
EMH-2	250,814	3258,013	0	0	0	3957 S
EMHC-1	248,723	3255,66	0	0		2580 S
ELA-1	273,99	3252,72	0	0	0	3925 SP
ELB-1	518,301	3502,123	0	0	0	2546,3 S
ELB-2	518,312	3499,782		0		2547,5 s
ELB-3	516,137	3498,23	0	0	0	2504 S
ELB-4	517,095	3505,093	0	0	0	2446 S
ELB-5bis	517,398	3503,649	0	0	0	2480,5 S
ELB-6	519,353	3494,948	0	0	0	2524,5 S
ELB-7	515,402	3495,399	0	0	0	2468 S
ETB-1	282,72	3339,361	0	0	0	3830 SP
FM-1	279,876	3431,257	0	32,5	32,5	3547,85 SP
FM-2	278,1	3426,703	0	36	36	3392,80 SP
FES-1	283,678	3433,839	0	27,5	27,5	4222 5 CD
GEA-1	285,097	3401,462	0	4	4	4223,5 SP
GEA-2	283,281	3395,997	0	0	0	4222 SP
GEA-3	284,504	3402,566	0	0	0	3967 SP
GEAN-1	292,802	3419,5	0	39,5	39,5	3800 SP
GEF-1	400,463	3509,511	54	0	54	4124,8 S
GEN-1	512,248	3504,912	0	0	0	2833 S
GT-2	260,143	3869,565	0	0	0	1480,25 SP

GT-7	261,086	3353,28	0	0	0	1965 SP
GTE-1	264,565	3362,565	0	0	0	2570 SP
GTK-1	261,83	3364,108	0	0	0	3566,90 SP
GTR-1	349,125	3866,835	0	0	0	3542,5 R3
GTW-1	257,574	3365,812	0	0	0	33 12,3 10
HAD-1	452,432	3334,432	0	0	0	4802 S
HB-1A	338,112	3553,825	52	0	52	4378 S
HBS-1	348,568	3760,194	0	0	0	2937 INP
HBR-1BIS	291,48	3501,709	6	0	6	4085 S
HC-1	262,299	3338,9	0	0	0	2630 SP
HC-2	262,707	3337,724	0	0	0	2030 SF
HC-4	263,8	3334,8	0	0	0	2581 SP
HC-5	261,635	3341,382	0	0	0	2361 31
HC-6	261,4		0	0	0	2632 SP
HC-101	•	3340,5	0	0	0	
HC-101	263,98	3335,86	0		0	2966,9 SP
	261,463	3348,226		0		
IAN-1	385,589	3306,099	0	0	0	2700 CD
ELJ-1	285,356	3316,757	0	0	0	3709 SP
EMH-1	251,557	3258,327	0	0	0	2435 SP
ESO-1	300,112	3300,53	0	0	0	? SP
HC-102	263,529	3333,603	0	0	0	2543 SP
HCW-1	262,894	3340,459	0	0	0	2620,5 SP
HCW-2	261,014	3333,675	0	0	0	3039
HDZ-1	275,123	3455,988	13	0	13	
HEG-1	414,003	3519,018	34,5	0	34,5	
HFR-1	523,142	3334,138	0	0	0	4307
HLL-2	136,082	3332,92	0	0	0	2964,5 SP
Hn-1	278,331	3645,093	36,5	0	36,5	4321 S
Hn-2	300,253	3640,529	0	0	0	4562 S
HR-1	249,305	3245,297	0	0	0	2492 SP
HR-4	253,05	3236,606	0	0	0	3667,00 SP
HRT-1	504,073	3488,45	0	0	0	2685 S
HSN-1	218,671	3341,905	0	0	0	3120,5 SP
HTB-1	512,712	3496,879	0	0	0	2538 S
KA-1BIS	502,859	3522,576	0	0	0	3542 S
KA-2	505,717	3520,283	0	0	0	2759,4 S
KA-3	500,544	3524,445	0	0	0	2844,5 S
KA-4	503,65	3521	0	0	0	2755 S
LA-1	253,526	3426,57	0	0	0	4218,6 SP
LD-1	338,208	3484,641	35	0	35	3911 S
MAT-1	260,918	3250,072	0	0	0	3497,3
MDR-1	289,977	3451,735	0	0	0	
MDRW-1	288,387	3450,751	0	0	0	
MDRS-1	287,894	3347,189	77,5	0	77,5	
MDR-3BIS	293,095	3450,01	60	0	60	
MF-101	267,174	3322,729	0	0	0	3558,7 SP
MK-1	217,373	3211,12	0	0	0	2130 SP
MKS-1	268,602	3261,732	0	0	0	3614,25 SP
MKS-2	268,253	3260,798	0	0	0	3705 SP
MKSW-1	264,065	3257,267	0	0	0	3899,5 SP
MZL-1	366,931	3341,117	0	0	0	4500 S
NS-1	245,649	3409,381	0	0	0	2797,4 SP

NZ-1	261,373	3399,929	0	0	0	3395 S
NZ-3	262,109	3401,885	0	0	0	2753 SP
NZE-1	287,16	3396,827	0	0	0	2964 SP
NZN-1	266,446	3413,991	0	53	53	3094,10 SP
NZN-2	266,772	3412,111	0	0	0	2706 SP
NZN-3	266,842	3413,424	0	0	0	2610 SP
OBS-1	257,535	3538,044	43	0	43	2010 51
OEM-1	221,936	3588,821	27	0	27	
OER-1	327,483	3618,382	0	0	0	4407 S
OMH-1	246,275	3165,578	0	0	0	2249,1 SP
ON-1	257,842	3517,634	0	0	0	3678 S
ONT-1	518,107	3304,518	0	0	0	30703
Oua-1	264,233	3221,213	0	0	0	3657 SP
Ous-1	260,419	3204,6	0	0	0	3039 SP
RA-1	293,835	3271,533	0	0	0	4074,45 SP
RA-1BIS	528,923	31 53 11	0	0	0	3816 S
RA-1DIS	291,933	3271,397	0	0	0	3126 SP
RA-2	286,512	·	0	0	0	3992 SP
RA-4	287,599	3266,609 3268,4	0	0	0	3992 SF 3015 SP
RA-7	295,5	3272,75	0	0	0	2937 SP
RAC-1		,	0	0	0	
	283,245	3263,566		-		3950 S
RAL-1	451,179	3492,468	0	0	0	3264 S
RBA-1	425,227	3501,727	0	0	0	3520 S
BBK-B-1	418,445	3411,004	0	0	0	3354 S
RDC-4	260,582	3560,402	49	0	49	2550.5
REC-1	393,72	3448,53	0	0	0	3550 S
RFD-1	452,355	3417,184	0	0	0	3460 S
RAS-1	281,659	3260,797	0	0	0	3934,5 SP
RB-1	304,891	3474,645	0	0	0	
RB-2	306,846	3471,713		42	42	
RBN-1	315,598	3491,27	15	12,5	27,5	
RBO-1	294,289	3468,995	0	59,5	59,5	2142.5
RBT-1	354,929	3523,766	0	0	0	3142 S
RBT-1BIS	354,955	3523,881	149	0	149	4000 S
RC-1	309,334	3303,036	0	0	0	3172,30 SP
RC-2	306,526	3298,151	0	0	0	3097 SP
RC-3	310,3	3304,25	0	0	0	3043 ?
RC-4	307,399	3301,4	0	0	0	3081 ?
RDZ-1	274,947	3456,174	15	0	15	3833 S
RE-1	456,559	3450,841	0	0	0	4126,5 S
REA-1	507,487	3518,509	0	0	0	2774 S
REH-1	309,739	3337,261	0	0	0	3884 SP
REH-2	309,213	3336,014	0	0	0	3951 SP
REK-1	250,704	3348,274	0	0	0	3005,5 SP
REL-1	345,465	3512,322	110	0	110	3812 S
REN-1	383,77	3467,204	0	0	0	4835 S
RERN-2	485,597	3484,965	0	0	0	0.7.10.
RER-1	480,594	3472,093	0	0	0	3369 S
RER-2	484,323	3475,421	0	0	0	3187 S
RGM-1	221,416	3413,776	0	0	0	
RHA-1	294,233	3314,887	0	0	0	4410,00 SP
RHA-2	293,419	3312,896	0	0	0	3825 SP

RHA-3	297,107	3319,74	0	0	0	3468 SP
RHNW-1	283,248	3326,876	0	0	0	3600 SP
RHNW-2	280,6	3324,382	0	0	0	3637 SP
RHSE-1	298,699	3307,308	0	0	0	3748,00 SP
RMN-1	232,12	3243,56	0	0	0	2239 SP
RN-1	281,558	3285,984	0	0	0	2684,60 SP
RN-101	281,737	3283,634	0	0	0	4414,00 SP
RNA-1	281,149	3287,179	0	0	0	2935 SP
RNA-3	283,928	3287,277	0	0	0	3028 SP
RNNE-1	287,255	3292,663	0	0	0	2887,20 SP
RNSE-2	284,217	3273,365	0	0	0	2960 SP
RNSW-1	276,826	3279,71	0	0	0	3781 SP
RNSE-53	282,79	3268,539	0	0	0	? SP
RNSW-5	269,31	3270,474	0	0	0	2775 SP
ROM-1	414,983	3449,219	0	0	0	3972 S
ROM-2	416,476	3449,983	0	0	0	3956 S
RS-1	371,533	3537,533	53	0	53	3965 S
RSH-1	315,361	3437,183	0	0	0	3573,5 SP
RSH-1BIS	315,533	3436,924	14	0	14	4106,5 SP
RY-1	532,781	3403,78	0	0	0	4340,1 S
SD-1	282,4	3524,882	50,5	0	50,5	4253 S
SEB-1	243,827	3337,459	0	0	0	2883,2 SP
SF-1	441,298	3426,77	0	0	0	4305,0 S
RSR-1	506,292	3462,821	0	0	0	
SMR-1	364,675	3573,888	40	0	80	
SYDE-1	456,337	3288,179	0	0	0	
TAO-3	315,779	3359,496	0	0	0	3145 S
TAO-2	317,43	3358,149	0	0	0	4196,6 S
TG-1	247,239	3380,989	0	0	0	2922 SP
TO-1	415,036	3608,538	40	0	40	3876 S
TOG-101	227,4	3668,7	0	0	0	4120,6 S
Tou-2	278,121	3345,806	0	0	0	2941,5 SP
Tou-4	276,54	3338,95	0	0	0	3381,00 SP
TT-1	255,066	3329,213	0	0	0	3219,30 SP
WT-1	365,31	3368,951	0	0	0	4814,5 S
WT-2	367,284	3371,904	0	0	0	3180 S
WT-2BIS	367,535	3372,257	0	0	0	2705 S
WT-3	372,711	3376,333	0	0	0	3790,81 S
ZAR-1	427,06	3488,911	5	0	5	
ZB-1	362,907	3646,698	0	0	0	4096 S
ZEK-1	399,003	3452,687	0	0	0	3625 S
ZEKW-1	393,062	3457,765	0	0	0	
ZEN-1	408,982	3461,439	0	0	0	4403 S
ZES-1	512,641	3512,504	0	0	0	2845 S
ZES-2	513,511	3511,42	0	0	0	2742 S
ZESW-1	508,841	3513,503	0	0	0	3445,5 S
ZH-1	343,773	3717,85	0	0	0	5046 S
ZK-1	414,054	3523,245	55	0	55	4097,5 S

Annexe 03

(Le Worksheet utilisé pour la réalisation des cartes en isopaques des intrusions magmatiques du Paléozoïque)

Sondage	X	Y	EpC (m)	EpO (m)	EpS (m)	EpT (m)	PF (m)
AA-1	218,913	3290,33	0	0	0	0	1732,5 SP
AAN-1	223,438	3334,673	0	0	0	0	3472,40 SP
AAN-2	221,726	3335,419	0	0	0	0	2774,80 SP
ACB-1	260,353	3272,971	0	0	0	0	3643,0 SP
AKR-1	307,608	3457,067	0	0	0	0	3013,0 81
AL-1	241,805	3293,152	0	0	0	0	3631,20 SP
ALN-1	242,004	3325,93	0	0	0	0	2810,00 SP
ALN-2	240,029	3329,079	0	0	0	0	1692,08 SP
ANR-1	419,229	3524,495	0	0	0	0	4108 S
ANR-2	419,592	3523,847	0	0	0	0	3976 S
ARB-1	336,856	3431,379	0	0	0	0	3825,7 S
ARBN-1	341,831	3446,652	0	20	50	70	2020,7 2
ASL-1	255,092	3253,543	0	0	0	0	3559 SP
AZS-1	234,782	3277,278	0	0	0	0	3758,0 SP
BAT-1	255,504	3610,187	0	0	0	0	4192 S
BBK-1	402,769	3430,97	0	0	0	0	.1,2 2
BBK-2	399,732	3428,962	0	0	0	0	3762,7 S
BBKN-1	409,579	3436,892	0	0	0	0	3758 S
BC-1	352,782	3679,397	0	0	0	0	4396 S
BGF-1	291,331	3649,34	0	0	0	0	4078 S
BK-1	384,586	3392,489	0	0	0	0	4895 S
BK-2	381,671	3387,217	0	0	0	0	4895 S
BKE-2	421,177	3393,694	0	0	0	0	3650 S
BKE-4	415,724	3394,384	0	0	0	0	3725 S
BKNE-1	405,201	3402,92	0	0	0	0	3500 S
BKNE-2	405,774	3408,028	0	0	0	0	3410 S
BLF-1	363,199	3530,822	0	0	0	0	3842 S
BMA-1	512,982	3451,141	0	0	0	0	2850 S
BRN-1	455,817	3453,844	0	0	0	0	3800 SP
BRN-3	457,489	3455,517	0	0	0	0	3860 S
BRSE-2	458,44	3442,221	0	0	0	0	3086 S
BRSW-1	446,922	3443,891	0	0	0	0	3948 S
BRSW-3	448,9	3442,989	0	0	0	0	5193 S
BRW-3	451,037	3453,558	0	0	0	0	3482 S
BRW-6	444,754	3447,944	0	0	0	0	3905 S
BSF-1	469,617	3441,478	0	0	0	0	3400 S
BSF-2	470,929	3448,522	0	0	0	0	3244 S
BSFN-1	461,601	3444,152	0	0	0	0	4005 S
BSFN-2	462,964	3447,204	0	0	0	0	3052 S
BBKSE-1	406,092	3427,727	0	0	0	0	3995 S
BKE-1	422,797	3396,376	0	0	0	0	4822 S
BK-1	384,68	3392,727	0	0	0	0	
BLE-1	243,505	3700,844	0	0	0	0	4736 S
BRD-1	310,028	3381,648	0	0	0	0	4350 S

BRD-2	317,764	3393,943	0	0	0	0	
BRD-3	309,183	3380,091	0	0	0	0	3561 SP
BRD-4	313,336	3388,08	0	0	6,5	6,5	5130 SP
BRT-1	466,893	3543,426	0	0	0	0	3680,8 S
BTF-1	300,756	3260,315	0	0	0	0	3914,0 SP
BTR-1	458,215	3484,977	0	0	0	0	3477,6 S
CS-1	536,971	3439,703	0	0	0	0	3841 S
DAD-1	308,924	3506,983	0	0	0	0	
DADW-1	304,035	3503,497	0	0	0	0	
DRN-1	275,64	3430,38	0	0	0	0	3450 SP
DSB-1BIS	236,134	3413,206	0	0	0	0	3238,70 SP
EAD-1	286,064	3303,714	0	0	0	0	3346,6
EAT-1	370,326	3500,087	0	0	0	0	4069 S
EB-1	519,061	3505,539	0	0	0	0	4248,5
EB-133	528,686	3502,363	0	0	0	0	4133 S
EBN-1	518,487	3517,309	0	0	0	0	1133 5
EG-1	505,713	3543,513	6	27,5	0	33,5	3407,9 S
EGS-1	512,535	3524,556	0	0	0	0	3107,35
EHT-1	394,796	3562,952	0	0	0	0	4011 S
EKN-1	232,505	3251,27	0	0	0	0	2573 SP
EK-1	239,697	3239,17	0	0	0	0	3432 SP
EK-101	237,21	3236,24	0	0	0	0	2711,0 SP
EKS-1	239,895	3218,868	0	0	0	0	3705 SP
EKT-3	408,111	3663,812	0	0	0	0	3760 S
EKT-4	412,967	3361,705	0	0	0	0	3247 s
ELB-1	512,201	3502,423	0	0	0	0	32473
EMC-1	414,605	3314,373	0	0	0	0	2950 S
EMEE-1	423,804	3336,968	0	0	0	0	3825 S
EME-1	415,978	3341,204	0	0	0	0	4529 S
EME-2	418,585	3340,832	0	0	0	0	4206 S
EME-3	418,879	3344,218	0	0	0	0	2821 S
EMH-2	250,814	3258,013	0	0	0	0	3957 S
EMHC-1	248,723	3255,66	0	0	0	0	2580 S
ELA-1	273,99	3252,72	0	0	0	0	3925 SP
ELB-1	518,301	3502,123	0	0	0	0	2546,3 S
ELB-2	518,312	3499,782	0	0	0	0	2547,5 s
ELB-3	516,137	3498,23	0	0	0	0	2504 S
ELB-4	517,095	3505,093	0	0	0	0	2446 S
ELB-5bis	517,398	3503,649	0	0	0	0	2480,5 S
ELB-6	519,353	3494,948	0	0	0	0	2524,5 S
ELB-0	515,402	3495,399	0	0	0	0	2468 S
ETB-1	282,72	3339,361	0	0	0	0	3830 SP
FM-1	279,876	3431,257	0	0	0	0	3547,85 SP
FM-2	278,1	3431,237	0	0	0	0	3392,80 SP
FES-1	283,678	3420,703	0	0	0	0	3372,00 31
GEA-1	285,078	3401,462	0	0	0	0	4223,5 SP
GEA-1	283,281	3395,997	0	0	0	0	4223,3 SF 4222 SP
GEA-2 GEA-3	284,504	3402,566	0	0	0	0	3967 SP
GEAN-1	292,802	3402,300	0	0	0	0	3800 SP
GEAN-1	400,463	3509,511	0	0	0	0	4124,8 S
GEN-1			0	0	0	0	2833 S
GEN-1 GT-2	512,248	3504,912 3869,565	0	0	0	0	2833 S 1480,25 SP
U1-2	260,143	3009,303	U	U	U	U	1400,23 SP

GT-7	261,086	3353,28	0	0	0	0	1965 SP
GTE-1	264,565	3362,565	0	0	0	0	2570 SP
GTK-1	261,83	3364,108	0	0	0	0	3566,90 SP
GTR-1	349,125	3866,835	0	0	0	0	3542,5 R3
GTW-1	257,574	3365,812	0	0	0	0	,
HAD-1	452,432	3334,432	0	0	0	0	4802 S
HB-1A	338,112	3553,825	0	0	0	0	4378 S
HBS-1	348,568	3760,194	0	0	0	0	2937 INP
HBR-1BIS	291,48	3501,709	0	0	0	0	4085 S
HC-1	262,299	3338,9	0	0	0	0	2630 SP
HC-2	262,707	3337,724	0	0	0	0	
HC-4	263,8	3334,8	0	0	0	0	2581 SP
HC-5	261,635	3341,382	0	0	0	0	
HC-6	261,4	3340,5	0	0	0	0	2632 SP
HC-101	263,98	3335,86	0	0	33,5	33,5	2966,9 SP
HCN-1	261,463	3348,226	0	0	0	0	,
IAN-1	385,589	3306,099	0	0	0	0	
ELJ-1	285,356	3316,757	0	0	0	0	3709 SP
EMH-1	251,557	3258,327	0	0	0	0	2435 SP
ESO-1	300,112	3300,53	0	0	0	0	? SP
HC-102	263,529	3333,603	0	0	0	0	2543 SP
HCW-1	262,894	3340,459	0	0	0	0	2620,5 SP
HCW-2	261,014	3333,675	0	0	0	0	3039
HDZ-1	275,123	3455,988	0	0	0	0	
HEG-1	414,003	3519,018	0	0	5,5	5,5	4307
HFR-1	523,142	3334,138	0	0	0	0	
HLL-2	136,082	3332,92	0	0	0	0	2964,5 SP
Hn-1	278,331	3645,093	0	0	0	0	4321 S
Hn-2	300,253	3640,529	0	0	0	0	4562 S
HR-1	249,305	3245,297	0	0	0	0	2492 SP
HR-4	253,05	3236,606	0	0	0	0	3667,00 SP
HRT-1	504,073	3488,45	0	0	0	0	2685 S
HSN-1	218,671	3341,905	0	0	0	0	3120,5 SP
HTB-1	512,712	3496,879	0	0	0	0	2538 S
KA-1BIS	502,859	3522,576	0	0	0	0	3542 S
KA-2	505,717	3520,283	0	0	0	0	2759,4 S
KA-3	500,544	3524,445	0	0	0	0	2844,5 S
KA-4	503,65	3521	0	0	0	0	2755 S
LA-1	253,526	3426,57	0	0	0	0	4218,6 SP
LD-1	338,208	3484,641	14	55	0	69	3911 S
MAT-1	260,918	3250,072	0	0	0	0	3497,3
MDR-1	289,977	3451,735	0	0	0	0	
MDRW-1	288,387	3450,751	0	0	0	0	
MDRS-1	287,894	3347,189	0	0	0	0	
MDR-3BIS	293,095	3450,01	0	0	0	0	
MF-101	267,174	3322,729	0	0	0	0	3558,7 SP
MK-1	217,373	3211,12	0	0	0	0	2130 SP
MKS-1	268,602	3261,732	0	0	0	0	3614,25 SP
MKS-2	268,253	3260,798	0	0	0	0	3705 SP
MKSW-1	264,065	3257,267	0	0	0	0	3899,5 SP
MZL-1	366,931	3341,117	0	0	0	0	4500 S
NS-1	245,649	3409,381	0	0	0	0	2797,4 SP

NZ-1	261,373	3399,929	0	0	0	0	3395 S
NZ-3	262,109	3401,885	0	0	0	0	2753 SP
NZE-1	287,16	3396,827	0	0	0	0	2964 SP
NZN-1	266,446	3413,991	0	0	0	0	3094,10 SP
NZN-2	266,772	3412,111	0	0	0	0	2706 SP
NZN-3	266,842	3413,424	0	0	0	0	2610 SP
OBS-1	257,535	3538,044	0	0	0	0	4407 S
OEM-1	221,936	3588,821	0	0	0	0	2249,1 SP
OER-1	327,483	3618,382	0	0	0	0	ŕ
OMH-1	246,275	3165,578	0	0	0	0	
ON-1	257,842	3517,634	0	0	0	0	3678 S
ONT-1	518,107	3304,518	0	0	0	0	
Oua-1	264,233	3221,213	0	0	0	0	3657 SP
Ous-1	260,419	3204,6	0	0	0	0	3039 SP
RA-1	293,835	3271,533	0	0	0	0	4074,45 SP
RA-1BIS	528,923	31 53 11	0	0	0	0	3816 S
RA-2	291,933	3271,397	0	0	0	0	3126 SP
RA-4	286,512	3266,609	0	0	0	0	3992 SP
RA-7	287,599	3268,4	0	0	0	0	3015 SP
RA-8	295,5	3272,75	0	0	0	0	2937 SP
RAC-1	283,245	3263,566	0	0	0	0	3950 S
RAL-1	451,179	3492,468	0	0	0	0	3264 S
RBA-1	425,227	3501,727	0	0	0	0	3520 S
BBK-B-1	418,445	3411,004	0	0	0	0	3354 S
RDC-4	260,582	3560,402	0	41	0	41	
REC-1	393,72	3448,53	0	0	0	0	3550 S
RFD-1	452,355	3417,184	0	0	0	0	3460 S
RAS-1	281,659	3260,797	0	0	0	0	3934,5 SP
RB-1	304,891	3474,645	0	0	0	0	Í
RB-2	306,846	3471,713	0	0	0	0	
RBN-1	315,598	3491,27	0	0	0	0	
RBO-1	294,289	3468,995	0	0	0	0	3142 S
RBT-1	354,929	3523,766	0	0	0	0	4000 S
RBT-1BIS	354,955	3523,881	0	0	0	0	3172,30 SP
RC-1	309,334	3303,036	0	0	0	0	3097 SP
RC-2	306,526	3298,151	0	0	0	0	3043 ?
RC-3	310,3	3304,25	0	0	0	0	3081 ?
RC-4	307,399	3301,4	0	0	0	0	3833 S
RDZ-1	274,947	3456,174	4	0	0	4	4126,5 S
RE-1	456,559	3450,841	0	0	0	0	2774 S
REA-1	507,487	3518,509	0	0	0	0	3884 SP
REH-1	309,739	3337,261	0	0	0	0	3951 SP
REH-2	309,213	3336,014	0	0	0	0	3005,5 SP
REK-1	250,704	3348,274	0	0	0	0	3812 S
REL-1	345,465	3512,322	0	0	0	0	4835 S
REN-1	383,77	3467,204	0	0	2	2	
RERN-2	485,597	3484,965	0	0	0	0	3369 S
RER-1	480,594	3472,093	0	0	0	0	3187 S
RER-2	484,323	3475,421	0	0	0	0	
RGM-1	221,416	3413,776	0	0	0	0	4410,00 SP
RHA-1	294,233	3314,887	0	0	0	0	3825 SP
RHA-2	293,419	3312,896	0	0	0	0	3468 SP

RHA-3	297,107	3319,74	0	0	0	0	3600 SP
RHNW-1	283,248	3326,876	0	0	0	0	3637 SP
RHNW-2	280,6	3324,382	0	0	0	0	3748,00 SP
RHSE-1	298,699	3307,308	0	0	0	0	2239 SP
RMN-1	232,12	3243,56	0	0	0	0	2684,60 SP
RN-1	281,558	3285,984	0	0	0	0	4414,00 SP
RN-101	281,737	3283,634	0	0	0	0	2935 SP
RNA-1	281,149	3287,179	0	0	0	0	3028 SP
RNA-3	283,928	3287,277	0	0	0	0	2887,20 SP
RNNE-1	287,255	3292,663	0	0	0	0	2960 SP
RNSE-2	284,217	3273,365	0	0	0	0	3781 SP
RNSW-1	276,826	3279,71	0	0	0	0	? SP
RNSE-53	282,79	3268,539	0	0	0	0	2775 SP
RNSW-5	269,31	3270,474	0	0	0	0	3972 S
ROM-1	414,983	3449,219	0	0	0	0	3956 S
ROM-2	416,476	3449,983	0	0	0	0	3965 S
RS-1	371,533	3537,533	0	0	0	0	3573,5 SP
RSH-1	315,361	3437,183	0	0	0	0	4106,5 SP
RSH-1BIS	315,533	3436,924	0	0	0	0	4340,1 S
RY-1	532,781	3403,78	0	0	0	0	4253 S
SD-1	282,4	3524,882	0	0	0	0	2883,2 SP
SEB-1	243,827	3337,459	0	0	0	0	4305,0 S
SF-1	441,298	3426,77	0	0	0	0	4303,0 5
RSR-1	506,292	3462,821	0	0	0	0	
SMR-1	364,675	3573,888	0	0	0	0	3145 S
SYDE-1	456,337	3288,179	0	0	0	0	3143.5
TAO-3	315,779	3359,496	0	0	0	0	4196,6 S
TAO-2	317,43	3358,149	0	0	0	0	2922 SP
TG-1	247,239	3380,989	0	0	0	0	3876 S
TO-1	415,036	3608,538	0	0	0	0	4120,6 S
TOG-101	227,4	3668,7	0	0	0	0	2941,5 SP
Tou-2	278,121	3345,806	0	0	0	0	3381,00 SP
Tou-4	276,54	3338,95	0	0	0	0	3219,30 SP
TT-1	255,066	3329,213	0	0	0	0	4814,5 S
WT-1	365,31	3368,951	0	0	0	0	3180 S
WT-2	367,284	3371,904	0	0	0	0	2705 S
WT-2BIS	367,535	3372,257	0	0	0	0	3790,81 S
WT-3	372,711	3376,333	0	0	0	0	3770,01 B
ZAR-1	427,06	3488,911	0	0	0	0	4096 S
ZB-1	362,907	3646,698	0	0	0	0	3625 S
ZEK-1	399,003	3452,687	0	0	0	0	3023 8
ZEKW-1	393,062	3457,765	0	0	0	0	4403 S
ZERW-1 ZEN-1	408,982	3457,703	0	0	0	0	2845 S
ZEN-1 ZES-1	512,641	3512,504	0	0	0	0	2742 S
ZES-1 ZES-2	513,511	3512,304	0	0	0	0	3445,5 S
ZESW-1	508,841	3513,503	0	0	0	0	5046 S
ZE3 W - 1 ZH-1	343,773	3717,85	0	0	0	0	4097,5 S
ZII-1 ZK-1	414,054	3523,245	0	0	5	5	4097,5 S 4097,5 S
ZN-1	+14,034	3343,443	U	U	J	J	+U71,J B