République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale Polytechnique – Alger

Département de Génie Chimique

Mémoire du Projet de Fin d'Etudes d'Ingénieur d'état en Génie Chimique

Contribution à l'évaluation technico-économique d'un topping et d'un steam cracking

Dirigé par : Professeur Chems Eddine CHITOUR **Présenté par :** M^{lle} Linda SILARBI M^{lle} Selma MEDJAHED

Soutenu le 30 Juin 2011 devant le jury composé de :

Promotion 2011

Remerciements

Nous tenons à exprimer toute notre gratitude et tout notre respect à un grand homme, qui nous a fait l'honneur mais surtout le plaisir de nous encadrer dans notre travail. Le Professeur Chems Eddine CHITOUR pour sa patience, ses conseils, sa bienveillance et sa générosité, sans lesquels ce travail n'aurait pas pu aboutir.

Nous tenons à remercier :

Docteur A. MEFTI, pour nous avoir fait l'honneur de présider notre jury.

Docteur S. HADDOUM, et docteur N. SKANDER pour avoir accepter d'examiner notre travail.

L'ensemble des professeurs du département génie chimique pour leur dévouement et leur gentillesse.

Mademoiselle Assia BENTOUATI, pour toute l'aide qu'elle nous a apportée mais surtout pour sa compréhension et sa disponibilité.

Dédicaces

C'est avec un grand plaisir que je dédie ce modeste travail à mes très chers et merveilleux parents, pour leur amour et conseils durant toutes les étapes de ma vie. Je ne trouverai jamais de mot pour leurs exprimer mon profond attachement et ma reconnaissance. Que le tout puissant leurs accorde longévité et santé.

A mes très chères et adorables sœurs, Amira et Sabrina, pour leur soutien, amour et encouragement.

A mon fiancé Rafik, pour le soutien, la bonne entente, la sincérité et générosité dont il a toujours fait preuve.

A mes beaux parents, qui sont de véritables parents. A Nesrine et Nadir, à qui je souhaite beaucoup de bonheur et de réussite.

Mes très chères cousines, FEDOUA et SARAH pour leur grandeur d'âme. A mes tantes, oncles et cousins, pour leur présence.

A tous mes amis, en particulier au meilleur binôme du monde, Linda avec qui j'ai eu le plaisir de partager ce travail et ces agréables moments.

A la mémoire de :

- Mes grands parents avec lesquels je n'aurai pas le plaisir de partager cet événement.
- Mon oncle KHODIR et MOKRANE qui m'ont toujours soutenu et encouragé, j'aurais tant aimé qu'ils soient présents aujourd'hui.

A tous les enseignants qui ont contribué à ma formation depuis mes premières années d'étude.

Selma

Dédicaces

J'ai l'immense honneur de dédier ce mémoire, aussi modeste soit-il aux personnes les plus chers à mes yeux.

A mes chers et adorables parents, pour tout l'amour et le soutien qu'ils m'apportent ; pour leur dévouement et leur patience Aucun mot ne suffirait à leur exprimer tout mon respect et ma gratitude. Puisse dieu les préserver en bonne santé.

A mes sœurs Sonia, Meriem et Maria à qui je souhaite beaucoup de réussite et de bonheur dans la vie.

A mon grand-père.

A ma deuxiè me maman Rabha que j'adore.

A toutes mes tantes et mes oncles qui ont été présents à chaque étape de ma vie.

A Zino, pour son aide et son soutien.

A la mémoire de ma défunte grand-mère que j'aurais tant aimé avoir à mes côtés.

Et une dédicace toute particulière à la meilleure des binômes qui soient : Selma avec qui travailler fut un réel plaisir. Je lui souhaite encore beaucoup d'autres succès dans la vie.

A tous mes amis, en souvenir des bons moments passés ensemble.

Sans oublier tous mes professeurs du génie chimique pour qui j'ai énormément de respect.

Linda

ملخص: "المساهمة في الدراسة التقنية و الإقتصادية لتوبينك و ستيم كراكينك" الهدف من هذه المذكرة يتجسد في الدراسة التقنية والاقتصادية لتوبينك و ستيم كراكينك الدراسة التقنية تتعلق بتحجيم المعدات الأساسية للتوبينك (عمود التقطير، المبادلات الحرارية و الفرن) ، و أيضا دراسة الستيم كراكينك للحصول على أهم المواد البتروكيماوية أما بالنسبة للتقييم الاقتصادي فيتطرق إلى المعدات المدروسة سابقا، و كذا إلى تقييم عام للمصفاة

كلمات مفتاحية: در اسة تقنية وإقتصادية ؛ توبينك؛ كر اكينك ؛ عمود التقطير ؛ مبادلات حر ارية ؛ بتر وكيمياء؛ تصفية البتر ول

Résumé : « contribution à l'évaluation technico-économique d'un topping et d'un steamcracking »

L'objet de cette étude est d'établir un calcul technique et économique d'une installation de topping et de steam-cracking.

L'étude technique consiste à dimensionner les principaux équipements de topping (colonne de distillation, échangeurs de chaleur, four de chauffe... etc), et étudier le steam cracking en vue d'obtenir les produits pétrochimiques de grande consommation.

L'évaluation économique concernera les équipements dimensionnés précédemment ; et aussi faire une évaluation sommaire du complexe de raffinage pétrochimique au complet.

Mots clés : topping; steam cracking; raffinage; pétrochimie; économique; mise en œuvre du pétrole; colonne de distillation; échangeur de chaleur; rebouilleur; four; reforming ;cracking.

Abstract:" Contribution to the technico-economic evaluation of a topping and a steam cracking"

The object of this study is to establish a technical and economical study of an installation of topping and steam cracking .

The technical study consists in obtaining the dimensions of the main equipments of topping (distillation column, heat exchangers, furnace...etc), and in studying the steam cracking to obtain the petrochemical products of big consumption.

The economical evaluation concerns the equipments established previously; and also making a summary evaluation of the whole petrochemical refining complex.

Key words : Topping; steam cracking; refining, petrochemistry; economical evaluation; distillation column; heat exchanger; furnace; catalytic reforming, catalytic cracking.

Liste des figures	1
Liste des tableaux	3
Liste des abréviations	5
Introduction générale	7
CHAPITRE I : Etat des lieux	8
I.1 Raffinage dans le monde	9
I.2 Le raffinage en Algérie	10
1.3 Evolution de la consommation des produits raffinés [1]	11
1.4 Production pétrochimique en Algérie	
I.5 Projets et investissements en Pétrochimie et Raffinage en Algérie	
1.6 Exportation des hydrocarbures (1971-2007)	
I.7 Le secteur de l'électricité en Algérie	15
a. Production nationale d'électricité	15
b. Consommation nationale d'électricité	17
CHAPITRE II : L'étude de la mise en œuvre du pétrole	
II.1. Introduction	19
II.2. Données de départ	19
II.2.1 Classification du pétrole brut de Hassi Messaoud	19
II.2.2 Caractéristiques du pétrole brut	19
II.2.3 Distillation T.B.P (true boiling point) du pétrole brut	
II.2.4. Propriétés des fractions pétrolières lourdes	
II.3. Découpage du pétrole but	23
II.4. Caractéristiques des fractions pétrolières	25
II.4.1. Caractéristiques des essences intermédiaires	
II.4.2. Caractéristiques de la coupe Kérosène	
II.4.3. Caractéristiques du gasoil	
II.4.4. Caractéristiques des résidus	
II.5. Bilan massique de la distillation	
II.6. Calcul du reforming catalytique de l'essence lourde	
II.7. Calcul du cracking catalytique [6]	
II.8. Bilan des produits	
CHAPITRE III : Dimensionnement des équipements	
III.1 DIMENSIONNEMENT DE LA COLONNE DE DISTILLATION	
III.1.1. préparation des données	
III.1.2 Zone d'expansion	
III.1.3. Fond de Tour	45

Table des matières

III.1.4 Soutirage du gasoil	46
III.1.5 soutirage kérosène	
III.1.6 soutirage des essences lourdes	50
III.1.7 Sommet de la colonne	52
III.1.8. Dimensions des différentes parties de la colonne	54
III.2.1 Description de l'appareil [11]	59
III.2.2 Calcul du rebouilleur noyé à circulation naturelle	
III.3 DIMENSIONNEMENT DES ECHANGEURS DE CHALEUR	67
III.3.1 Description des échangeurs de chaleur	67
III.3.2 Méthode de calcul des échangeurs à faisceau et à calandre selon Kern	69
III.3.3. Calcul de l'échangeur Pétrole brut-essence légère	75
III.3.4 Calcul de l'échangeur Pétrole brut-Essence lourde	
III.3.5 Echangeur Pétrole brut-Kérosène	
III.3.6 Echangeur Pétrole brut-Gasoil	
III.3.7 Echangeur Pétrole brut-Résidu atmosphérique	
III.4 DIMENSIONNEMENT DU FOUR DE L'UNITE TOPPING	90
III.4.1. Description de l'appareil	90
III.4.2 Calcul du four tubulaire	93
III.4.3 Calcul de la zone de radiation	97
III.4.4 Calcul de la zone de convection	99
III.5 BACS DE STOCKAGE [11]	103
III.5.1 Classification des réservoirs selon la pression	103
III.5.2 Dimensionnement des bacs de stockage	106
CHAPITRE IV : Etude du steam-cracking	107
IV.1. Introduction	108
IV.2. Définition du steam-cracking	108
IV.2.1. Condition de la transformation	108
IV.3. Mise en œuvre industrielle du steam-cracking	109
IV.3.1. Les fours	110
IV.3.2. Chaudière de trempe	111
IV.3.3. Section pyrolyse	112
IV.4. Séparation des produits de steam-cracking de Naphta	112
IV.5. Bilan de steam-cracking	112
IV.6. Les essences de pyrolyse	113
IV.6.1. Hydrotraitement des essences de pyrolyse	113
IV.7. Valorisation des produits de steam cracking	114
CHAPITRE V : Evaluation économique	121

V.1 Estimation du coût de la raffinerie	122
V.1.1 Méthodes de détermination des investissements [16]	122
V.1.2. Actualisation ou mise à jour des coûts d'investissement	122
Figure V.1 Indice de raffinerie (inflation) de Nelson	126
V.2 Evaluation économique des équipements	126
V.2.1 Evaluation du four	126
V.2.2 Détermination du prix de la colonne de distillation	128
V.2.3 Détermination du prix des échangeurs de chaleur	131
V.2.4 Détermination du prix des stockages	
V.3 Calcul des investissements	133
V.4 Evaluation de steam-cracking de Naphta	
Conclusion générale	137
ANNEXES	139
Références bibliographiques	153

Liste des figures

- Figure I.1 Excédent/déficit en capacité de raffinage, par grandes zones.
- Figure I.2 Évolution de la production des produits raffinés 1964-2007.
- Figure I.3 Evolution de la consommation des produits raffinés 1964-2007.
- Figure I.4 Evolution de la production pétrochimique par produits 1976-2007.
- Figure I.5 Evolutions des exportations des hydrocarbures en volume 1971-2007.
- Figure I.6 Evolution des exportations des hydrocarbures en valeur 1971-2007.
- Figure I.7 Evolution de la production de l'électricité 1962-2007.
- Figure I.8 Evolution de la consommation nationale d'électricité 1963-2007.
- Figure II.1 Courbe TBP du pétrole brut de Hassi Messaoud.
- Figure II.2 Courbe des propriétés rendement.
- Figure II.3 Courbe TBP des essences intermédiaires.
- Figure II.4 Courbe TBP de la coupe kérosène.
- Figure II.5 Courbe TBP de la coupe Gasoil.
- Figure II.6 Courbe TBP des résidus.
- Figure II.7 Schéma de principe d'une unité de distillation initiale de pétrole brut.
- Figure II.8 Schéma du procédé de reforming catalytique.
- Figure II.9 Procédé de craquage catalytique de résidus.
- Figure II.10 Schéma global du complexe de raffinage pétrochimique.
- Figure III.1 Courbe TBP et courbe de flash sous différentes pressions.
- Figure III.2 Courbe d'équilibre.
- Figure III.3 Courbe TBP liquide-vapeur par la méthode d'OBRYADCHIKIV.
- Figure III.4 Courbe TBP du BRI et de VI.
- Figure III.5 Bilan de la zone d'expansion.
- Figure III.6 Circulation des produits au niveau du soutirage gasoil.
- Figure III.7 Circulation des produits entre les soutirages gasoil et kérosène.
- Figure III.8 Circulation des produits entre le soutirage Kérosène et Essence lourde.
- Figure III.9 Circulation de produits au sommet de colonne.
- Figure III.10 Disposition schématique d'un plateau à calotte.
- Figure III.11 Rebouilleur à une passe à circulation naturelle, à deux entrées.
- Figure III.12 Rebouilleur à recirculation par pompe, à une entrée.
- Figure III.13 Rebouilleur à niveau liquide.
- Figure III.14 Thermosiphon horizontal.

Figure III.15 Schéma d'un échangeur à faisceau tubulaire.

Figure III.16 Disposions des tubes du faisceau.

Figure III.17 Fixation des chicanes transversales au moyen de tirants et entretoises.

Figure III.18 Schéma de l'échangeur Pétrole brut - Essence légère.

Figure III.19 Schéma de l'échangeur Pétrole brut – Essence lourde.

Figure III.20 Schéma de l'échangeur Pétrole brut - Kérosène.

- Figure III.21 Schéma de l'échangeur Pétrole brut Gasoil.
- Figure III.22 Schéma de l'échangeur Pétrole brut Résidu atmosphérique.
- Figure III.23 Four « cabine » à tubes horizontaux.
- Figure III.24 Dimensions courantes des bacs de stockage.
- Figure III.25 Réservoirs haute pression.
- Figure III.26 Réservoir sphérique à gaz liquéfiés.
- Figure III.27 Réservoirs cylindrique à butane.
- Figure III.28 Réservoirs cylindrique à propane.
- Figure III.29 Schéma du four de l'unité de distillation atmosphérique.
- Figure IV.1 Mise en œuvre industrielle d'un steam-cracking de Naphta.
- Figure IV.2 Four à tube de pyrolyse horizontal.
- Figure IV.3 Steam-cracking de Naphta. Section pyrolyse.
- Figure IV.4 Principaux débouchés du butadiène.
- Figure IV.5 Principaux débouchés de l'éthylène.
- Figure IV.6 Principaux débouchés du benzène.
- Figure IV.7 Principaux débouchés du propylène.
- Figure IV.8 Principaux débouchés du toluène.
- Figure IV.9 Principaux débouchés du xylène.
- Figure IV.10 Usages noble et alternatif de Naphta.
- Figure V.1 Indice de raffinerie (inflation) de Nelson.
- Figure V.2 Parts des investissements dans la raffinerie.
- Figure V.3 Part des équipements dans le prix global de la raffinerie.

Liste des tableaux

Tableau I.1 Evolution de la consommation des produits raffinés.

- Tableau I.2 Projets et investissements en Pétrochimie et Raffinage en Algérie.
- Tableau II.1 Caractéristiques générales du pétrole brut de Hassi Messaoud.

Tableau II.2 Distillation TBP du pétrole brut de Hassi Messaoud.

- Tableau II.3 Propriétés des fractions pétrolières lourdes.
- Tableau II.4 Principales caractéristiques des fractions pétrolières.

Tableau II.5 Caractéristiques du découpage du pétrole brut.

Tableau II.6 Caractéristiques de la coupe essence.

Tableau II.7 Caractéristiques de la coupe kérosène.

Tableau II.8 Caractéristiques de la coupe Gasoil.

- Tableau II.9 Caractéristiques des résidus.
- Tableau II.10 Bilan massique de la distillation.

Tableau II.11 Reforming catalytique selon le premier scénario.

Tableau II.12 Reforming catalytique selon le premier scénario.

Tableau II.13 Calcul du craquage catalytique du résidu.

- Tableau II.14 Bilan des produits.
- Tableau II.15 Bilan des gaz.
- Tableau III.1 Méthode d' OBRYADCHIKOV pour le tracé de la TBP du BRI et du VI.
- Tableau III.2 Bilan massique de la zone d'expansion.
- Tableau III.3 Bilan de matière du fond de tour.

Tableau III.4 Bilan thermique du stripping du gasoil.

Tableau III.5 Bilan thermique de la section zone d'expansion – gasoil.

Tableau III.6 Bilan thermique du stripping de kérosène.

Tableau III.7 Bilan thermique de la section Gasoil - kérosène.

Tableau III.8 Bilan thermique du stripping d'Essence lourde.

Tableau III.9 Bilan thermique de la section kérosène - Essence lourde.

Tableau III.10 Bilan thermique du sommet de la colonne au dessous du premier plateau.

Tableau III.11 Débit de vapeur et de liquide dans les différentes sections de la colonne.

Tableau III.12 Proportions entre les dimensions des tubes et de la calandre.

Tableau III.13 Dimensions et tolérances dimensionnelles des tubes de four.

Tableau III.14 Compositions des gaz de raffinerie.

Tableau III.15 Total de l'air de combustion.

Tableau III.16 Composition des fumées pour 100 m³ de combustible.

Tableau III.17 Analyse des fumées sèches.

Tableau III.18 Capacité de stockage pour 10 jours.

Tableau III.19 Caractéristiques des bacs pour chaque produit.

Tableau IV.1 Performances des chaudières de trempe (vapocraquage de Naphta).

Tableau IV.2 Rendements en produits de pyrolyse du steam-cracking de Naphta.

Tableau IV.3 Evolution de la composition des essences du steam-cracking de Naphta.

Tableau V.1 Indices des coûts de NELSON-Farrar.

Tableau V.2 Facteurs correctifs pour l'évaluation économique du four.

Tableau V.3 Evaluation du prix des échangeurs de chaleur.

Tableau V.4 Evaluation économique des bacs.

Tableau V.5 Investissements procédés.

Liste des abréviations

- K_{uop}: Facteur de caractérisation de Watson.
- RVP : Tension de vapeur Reid.
- SpGr : Densité à 15°C.
- NO : Dombre d'octane.
- Noc : Nombre d'octane clair.
- NO+3cc : Nombre d'octane après ajout de 3cc de Plomb tétraéthyl.
- P_{I} : Point initial.
- P_f : Point final.
- BRI : Brut réduit initial.
- VI : Vapeur initiale.
- R_{ZE} : Taux de reflux interne qui alimente la section d'épuisement.
- $V_{f_{\perp}}$: Revaporisation de l'eau de fond de colonne.
- R : Reflux interne.
- S : Somme de soutirrages.
- R_{ef} : Reflux interne froid.
- R_c : Reflux interne chaud.
- δ : Tension superficielle.
- K_V: Coefficient d'entraînement des gouttelettes liquides par la vapeur.
- α_D : Volatilité relative moyenne.
- E : Efficacité globale des plateaux.
- N_R: Nombre de plateaux réel.
- Φ_M : Flux de chaleur maximal admissible.
- h_m: Coefficient de film maximal.
- h_v: Coefficient de film à l'ébullition.
- h_s: Coefficient de film du à la chaleur sensible.
- DTLM : Différence de température logarithmique moyenne.
- h_l : Coefficient de film liquide.
- U_t : Coefficient de transfert de chaleur sensible.
- A : Surface d'échange.
- μ_1 : Viscosité dynamique liquide.
- μ_v Viscosité dynamique liquide.

- Λ : Chaleur latente de vaporisation.
- Q : Quantité de chaleur échangée.
- U_p: Coefficient de transfert propre.
- Us: Coefficient de transfert sale.
- N_t : Nombre de tubes.
- H: Enthalpie.
- E : Rendement de l'échangeur.
- F : Facteur d'efficacité de l'échangeur de chaleur.
- R_{s0}: Résistance due au film d'encrassement déposé sur l'extérieur du tube.
- Rt : Résistance due à la paroi métallique du tube.
- R_{i0} : Résistance due au film d'encrassement déposé sur l'intérieur du tube.
- G_{cT} : Vitesse massique côté calandre.
- G_T : Vitesse massique côté tube.
- Re : Nombre de Reynolds.
- v: Viscosité cinématique.
- ΔP : Perte de charge.
- ξA : Coefficient d'absorption du faisceau tubulaire.
- I : Epaisseur utile de rayonnement.
- P: Pression partielle des fumées.
- R : Taux de radiation.
- f_d : Facteur correctif de type.
- f_m : Facteur correctif de matériau.
- f_p : Facteur correctif de pression.

LCO : Light Cycle Oil HCO : Heavy Cycle Oil

Introduction générale

Le but de cette étude est de contribuer à l'évaluation sommaire d'un complexe de raffinage et de pétrochimie.

Dans une première partie, nous allons situer l'Algérie en termes d'opportunités et de défis dans le domaine de l'énergie. Pour cela, nous commencerons par un état des lieux, ensuite nous donnerons quelques pistes de réflexion pour l'avenir du pays dans le domaine de l'énergie et de la pétrochimie.

La deuxième partie portera sur l'étude de la mise en œuvre du pétrole brut de Hassi Mesaoud, (Sahara Blend) avec un tonnage de 6 millions de tonnes/an, qui représente la capacité standard des raffineries de par le monde, bien qu'il y ait, cependant des raffinages avec des tonnages traités plus importants. Nous choisirons un découpage qui répond au mieux à la demande du marché algérien tout en nous assurant que les produits répondent aux normes de commercialisation. Nous calculerons dans cette partie le reforming catalytique d'une partie du naphta pour en améliorer la qualité ; et aussi le cracking catalytique du résidu atmosphérique pour obtenir le maximum d'essence. L'autre partie du naphta servira de base pour le steam-cracking.

La troisième partie de notre étude traitera du dimensionnement des principaux équipements utilisés dans le topping ; à savoir la colonne de distillation atmosphérique, le rebouilleur de fond de colonne, les échangeurs de chaleurs et le four de l'unité de distillation. Nous traiterons aussi la partie bacs de stockage.

Dans la quatrième partie, nous proposerons une étude sommaire du steam-cracking du naphta. Nous traiterons dans de la fabrication de divers produits de réactivité chimique élevées, ce sont les intermédiaires de première génération. Ensuite, il s'agira d'introduire des opérations chimiques et physiques pour obtenir certains produits pétrochimiques à forte consommation tels les plastiques et les élastomères.

Et enfin, dans une cinquième et dernière partie nous tenterons de faire une évaluation économique de ce complexe de raffinage et de pétrochimie, en nous basant sur des méthodes d'estimation analogiques des coûts. Et nous ferons aussi une évaluation économique des équipements dimensionnés précédemment.

CHAPITRE I : Etat des lieux

Introduction

Le pétrole est non seulement la première source d'énergie dans le monde depuis les années1950, mais aussi la matière première de l'industrie pétrochimique. Il est à l'origine d'un nombre incalculable de produits dérivés, des matières plastiques aux peintures en passant par les cosmétiques. Cependant, cette ressource n'est jamais utilisée à l'état brut. Elle doit subir un ensemble d'opérations réunies sous le terme de "raffinage du pétrole".

Le raffinage désigne l'ensemble des traitements et transformations visant à tirer du pétrole le maximum de produits à haute valeur commerciale.

I.1 Raffinage dans le monde

Les capacités de raffinage dans le monde ont atteint 6,8 millions de barils par jour (Mb/j) en 2009. [1]

Les Etats-Unis ont connu le plus gros déficit ces dix dernières années, suivis de l'Asie pacifique

Figure I.1 Excédent/déficit en capacité de raffinage, par grandes zones [1]

I.2 Le raffinage en Algérie

La capacité de raffinage en Algérie a atteint, en 2007, plus de 22 millions de tonnes, réparties sur cinq raffineries dans le pays

Raffinerie	Skikda	Alger	Arzew	Hessi Massoud	Adrar
Capacité (Millions tonnes/ an)	15	2,7	2,5	1,22	0,6

La moitié de la production est destinée aux besoins du marché intérieur, le reste est exporté.

La production des produits pétroliers est restée stable durant les 25 dernières années et se situe autour des capacités nominales qui sont d'environ 20 millions de tonnes/an.

Elle est appelée à doubler dans les prochaines années avec la réalisation de nouvelles raffineries à Skikda et Tiaret pour des capacités respectives de 5 et 15 millions de tonnes.

Mais vu la difficulté, voir l'impossibilité d'implanter un méga-raffinerie au milieu des champs, le projet de la raffinerie de Tiaret pourrait être abandonné.

L'outil de raffinage en Algérie a connu progressivement des travaux de réhabilitation et de rénovation pour faire face à l'accroissement de la demande nationale et aux spécifications des normes et standards internationaux. La figure suivante montre l'évolution de produits raffinés entre 1964 et 2007. Elle est pratiquement stable depuis les années 80 à 22 millions t/an alors que la demande ne cesse d'augmenter. [1]

Figure I.2 Évolution de la production des produits raffinés 1964-2007 [1]

1.3 Evolution de la consommation des produits raffinés [1]

L'évolution de la consommation des principaux produits pétroliers durant la période 1964-2007 se présente comme suit :

Produits	Croissance moyenne (1964-1999)	Croissance moyenne (2000-2007)
Essence	5,4%	1,4%
Gasoil	6,5%	92%
GPL/C	32%	8%

Tableau I.1 Evolution de la consommation des produits raffinés

La consommation nationale de produits pétroliers est en croissance constante ces dernières années (en moyenne de 5% par an). Mais la demande a connu une augmentation particulière pour le gasoil suite au développement très rapide du parc automobile diesel.

La figure suivant montre l'augmentation perpétuelle de la demande en produits raffinés, cette dernière a été marquée par une stagnation entre 1986 et 1999 suite aux difficultés qu'a connues notre pays durant cette période.

Figure I.3 Evolution de la consommation des produits raffinés 1964-2007 [1]

1.4 Production pétrochimique en Algérie

Durant la période 2000-2007, le volume de la production pétrochimique a atteint en moyenne 202 mille tonnes/an.

La figure suivante montre l'évolution de la production pétrochimique par produit durant la période 1976-2007 ; et il est aisé d'y constater la baisse de la production dans ce secteur, d'où la nécessité de revoir et d'envisager de nouvelles installations pétrochimiques pour éponger la demande sans cesse croissante du marché.

Figure I.4 Évolution de la production pétrochimique par produits 1976-2007 [1]

I.5 Projets et investissements en Pétrochimie et Raffinage en Algérie

La pétrochimie de base offre à l'Algérie une grande opportunité d'intégration du secteur industriel national pour la création d'un tissu industriel diversifié permettant l'optimisation de la valeur ajoutée et la création d'emplois.

A ce titre, plusieurs projets dans l'activité de transformation des hydrocarbures sont prévus avec des partenaires étrangers.

La répartition de ces projets est illustrée par le tableau ci-après.

Intitulé du	Localisation	Capacité	Partenaire	Montant des	Date de
Projet				in ves tiss ements	mise en
					exploitation
Topping condensat	Skikda	5 millions detonnes	Sonatrach	380 millions US \$	2010
Projet d'Ammoniac	Arzew	1 320 000 tonnes d'ammoniac 1 000 000 tonnes d'urée	Orascom 51%	2,1 milliards US \$	2011
Projet d'Ammoniac	Arzew	1,1 millions tonnes	Fertiberia 51%	1 milliard US \$	2011
Projet d'Ammoniac & dérivés	Béni- Saf	f660.000 tonnes	51%	1 milliards US \$.	2012
Projet de Méthanol	Arzew	1 million detonnes	Almet 51%	786 millions de US \$	2015
Projet Vapocraquage 1 de l'Ethane	Arzew	1 400 000 tonnes d'Ethane 1 00 000 tonnes d'Ethylène	TOTAL Petrochemical 51%	4,6 milliards US \$	2015
Déshy drogén at ion de propane et product ion de polypropy lène	Arzew	500.000 tonnes	49%	1,3 milliards US \$	2015
Projet de craquage du Fuel	Skikda	4 500 000 tonnes	100 % Sonatrach	2,5 milliard US \$	2015
Projet de Vapocraquage de Naphta	Skikda	1 800 000 tonnes	49 % Sonatrach	1,9 milliards US \$	2015
Raffinerie de Tiaret	Tiaret	15 millions	100 % Sonatrach	8,8 milliards US \$	2015

Tableau I.2 Projets et investissements en Pétrochimie et Raffinage en Algérie [1]

1.6 Exportation des hydrocarbures (1971-2007)

Les exportations en volume ont enregistré une forte hausse; en effet, la moyenne annuelle des exportations est passée de 72 millions de tep durant la période 1971-1999 à plus de 132 millions de tep entre 2000 et 2007 soit prés d'un doublement.

Le pétrole brut exporté représentait 95% des Hydrocarbures liquides en 1971. Il se situe à 35% en 2007.

Quant aux produits raffinés et GNL, leur part a augmenté substantiellement et passant de 3% en 1971 à 24% en 2007.[1]

Figure I.5 Evolutions des exportations des hydrocarbures en volume 1971-2007 [1]

Les exportations en valeurs ont atteint 34 milliards de dollars US par an durant la période 2000-2007 contre 9 milliards de dollars US annuellement durant la période 1971-1999 soit prés d'un quadruplement

Figure I.6 Évolution des exportations des hydrocarbures en valeur 1971-2007 [1]

I.7 Le secteur de l'électricité en Algérie

a. Production nationale d'électricité

Durant la période 2000-2007, la production d'électricité en Algérie a connu une forte croissance, elle est passée de 25 Téra Watt heure en 2000 à 37 Téra Watt heure en 2007, ce qui correspond à une hausse annuelle moyenne de 6%.

Cette production était seulement de 2 Téra Watt heure dans les années 60 [1]

Figure I.7 Evolution de la production de l'électricité 1962-2007 [1]

La répartition de la production par moyen d'équipement est donnée comme suit :

• Thermique vapeur : représente environs 50% de la production totale. Elle prédominait dans le parc de production au milieu des années 1990.

Elle a été renforcée par la mise en service de deux centrales :

- la centrale de Marsat El Hadjadj : composée de 2 groupes de 168 Mw chacun ; elle a été mise en service en 1990 ;
- la centrale de Jijel : elle comprend 3 groupes de 196 Mw chacun ; elle est entrée en production en 1992.
- Hydraulique : elle représente aujourd'hui 1% seulement.de la production totale contre 6% en 1985.

- Parc de turbines à gaz : il s'est développé à partir de 2002 avec la mise en service des centrales de :
 - Hamma (willaya d'Alger) pour une capacité de 420 MW ;
 - Fkirina (willaya d'Oum El Bouaghi) d'une capacité de 292 MW ;
 - Arzew (willaya d'Oran) d'une capacité de 321 MW ;
 - Skikda (SKS), avec une capacité de 827 MW ;
 - Berrouaghia (SKB), avec une capacité de production de 480 MW.
- Diesel : la capacité des centrales diesel est relativement constante sur la période 1962-2007.

Figure I.8 Évolution de la production de l'électricité par origine 1962-2007 [6]

La production d'électricité en Algérie dépend à 99% des ressources en hydrocarbure, ce qui rend le pays encore plus dépendant énergétiquement vis-à-vis du pétrole et du gaz naturel.

b. Consommation nationale d'électricité

La consommation nationale d'électricité a fortement augmenté entre les périodes 1963-1999 et 2000-2007, avec une croissance moyenne de 7%. Elle est passée de 939 GWh en 1963 à 20.761 GWh en 1999 et à plus de 30.000 GWh en 2007.

Cette augmentation reflète l'amélioration du niveau de vie des citoyens ainsi que l'amélioration des équipements des ménages.

Par type de clientèle, il est relevé en 2007 une croissance des ventes en comparaison à 2000 :

- 58% pour la basse tension ;
- 37% pour la moyenne tension ;
- 35% pour la haute tension.

Figure I.9 Évolution de la consommation nationale d'électricité 1963-2007 [1]

CHAPITRE II : L'étude de la mise en œuvre du pétrole

II.1. Introduction

L'étude de la mise en œuvre du pétrole brut consiste à évaluer, à partir du pétrole brut, les rendements possibles des produits commerciaux répondant à des spécifications, ou en produits non finis, destinés à subir des transformations comme le reforming catalytique et le cracking catalytique ; ou qui serviront de base pour la pétrochimie.

Dans le cadre de notre projet de fin d'étude, il s'agit de faire la mise en œuvre du pétrole brut de Hassi Messaoud avec un tonnage de six millions de tonnes.[2]

II.2. Données de départ

II.2.1 Classification du pétrole brut de Hassi Messaoud

Le pétrole brut de Hassi Messaoud peut être classé dans la catégorie des hydrocarbures mixtes à tendance naphténique sur la base du facteur de caractérisation $K_{uop} = 12,19$.

Selon la valeur du K_{uop} , nous pouvons déterminer la tendance du pétrole et préparer les traitements physico-chimiques en conséquence.

Киор	Nature du pétrole
$Kuop \leq 11$	Aromatique
$11 \le \text{Kuop} \le 13$	Naphténique
$Kuop \ge 13$	Paraffinique

II.2.2 Caractéristiques du pétrole brut

Les propriétés du pétrole brut que nous avons traité sont résumées sur le tableau suivant :

Densité à 15°C	0.7960
viscosité à 20°C	2.61
Point d'écoulement (°C)	-62
Tension de vapeur Reid (Kg/Cm2)	0.756
Teneur en soufre (% vol)	0.0603
Masse moléculaire (g/mol)	184
Degré API	46.16

Tableau II.1 Caractéristiques générales du pétrole brut de Hassi Messaoud [3]

II.2.3 Distillation T.B.P (true boiling point) du pétrole brut

La distillation T.B.P du pétrole brut de Hassi Messaoud donne les résultats suivants :

N° de	Fractions à	%	%poids	Densité	%vol	%vol	Indice de	Kuop
coupe	700 mm Hg	poids	cumulés	à 15°C		cumulés	réfraction	
Légers	<12,6	2,97	2,97	0,5591	4,2	4,20		
1	12,6-65	6,83	9,8	0,6454	8,35	12,55	1,3742	12,77
2	65-70	1,41	11,21	0,6854	1,63	14,18	1,3943	12,36
3	70-75	0,6	11,81	0,695	0,69	14,87	1,399	12,27
4	75-80	0,64	12,45	0,7008	0,72	15,59	1,4012	12,23
5	80-85	0,78	13,23	0,7042	0,88	16,47	1,4029	12,23
6	85-90	1,19	14,42	0,7068	1,33	17,80	1,4036	12,24
7	90-95	1,86	16,28	0,7128	2,06	19,86	1,407	12,19
8	95-100	1,81	18,09	0,7227	1,98	21,84	1,4119	12,08
9	100-105	0,93	19,02	0,7313	1,01	22,85	1,4163	11,99
10	105-110	0,83	19,85	0,7314	0,9	23,75	1,4164	12,04
11	110-115	1,23	21,08	0,7317	1,32	25,07	1,4168	12,09
12	115-120	1,54	22,62	0,732	1,66	26,73	1,4172	12,14
13	120-125	1,46	24,08	0,7376	1,57	28,30	1,4204	12,1
14	125-130	1,15	25,23	0,7464	1,21	29,51	1,4256	12
15	130-135	1,13	26,36	0,7518	1,18	30,69	1,4288	11,97
16	135-140	1,22	27,58	0,753	1,28	31,97	1,4291	12
17	140-145	1,32	28,9	0,7533	1,38	33,35	1,4292	12,04
18	145-150	1,32	30,22	0,7569	1,38	34,73	1,4312	12,03
19	150-155	1,19	31,41	0,7628	1,24	35,97	1,4343	11,98
20	155-160	1,08	32,49	0,768	1,11	37,08	1,4373	11,95
21	160-165	1,33	33,82	0,7708	1,36	38,44	1,439	11,95
22	165-170	1,38	35,2	0,7726	1,42	39,86	1,4398	11,97
23	170-175	1,23	36,43	0,7749	1,26	41,12	1,4409	11,98
24	175-180	1,06	37,49	0,7777	1,07	42,19	1,4423	11,98
25	180-185	1,01	38,5	0,7802	1,03	43,22	1,4436	12,01
26	185-190	1,07	39,57	0,7817	1,08	44,30	1,4443	12,01
27	190-195	1,15	40,72	0,7834	1,1	45,47	1,4452	12,01
28	195-200	1,04	41,76	0,7882	1,05	46,52	1,4472	11,99
29	200-205	0,97	42,73	0,7895	0,97	47,49	1,4481	12,02
30	205-210	1,03	43,76	0,791	1,03	48,52	1,449	12,03
31	210-215	1,09	44,85	0,7928	1,09	49,61	1,4496	12,05
32	215-220	1,21	46,06	0,7955	1,21	50,82	1,451	12,05
33	220-230	2,62	48,68	0,8061	2,56	53,38	1,4563	11,95
34	230-240	2,17	50,85	0,8072	2,14	55,52	1,4571	12,01
35	240-250	2	52,85	0,817	1,94	57,46	1,4632	11,95
36	250-260	1,98	54,83	0,8206	1,91	59,37	1,4655	11,97

37	260-270	2,02	56,85	0,8247	1,95	61,32	1,4679	11,99
38	270-280	1,81	58,66	0,832	1,72	63,04	1,4718	11,95
39	280-290	1,81	60,47	0,8329	1,73	64,77	1,4721	12,01
40	290-300	1,87	62,34	0,8342	1,78	66,55	1,4727	12,07
41	300-310	5,98	68,32	0,8483	5,60	72,15	1,4797	11,93
42	310-320	1,88	70,2	0,856	1,74	73,89	1,4839	11,9
43	320-330	1,77	71,97	0,8598	1,64	75,53	1,4853	11,91
44	330-340	1,58	73,55	0,8643	1,45	76,98	1,4886	11,91
45	340-350	1,54	75,09	0,8677	1,41	78,39	1,4905	11,93
46	350-360	1,44	76,53	0,8713	1,32	79,71	1,4922	11,95
47	360-370	1,36	77,89	0,8738	1,24	80,95	1,4931	11,97
48	370-375	0,68	78,57	0,8807	0,61	81,56	1,4935	11,93
49	375-380	1	79,57	0,8829	0,89	82,45	1,4951	11,93
50	380-530	11,1	90,67	0,8941	9,88	92,33	1,5057	12,21
Résidu	530+	9,33	100	0,9508	7,67	100,00	-	11,96

CHAPITRE II : L'étude de la mise en œuvre du pétrole brut

Tableau II.2 Distillation TBP du pétrole brut de Hassi Messaoud. [3]

Figure II.1 Courbe TBP du pétrole brut de Hassi Messaoud

		Point de	Point	Soufre				
	T(°C)	congélation	d'écoulement	% pds	Viscosité cinématique à			Kuop
N°		°C	°C					
					20°C	50°C	70°C	
36	250-260	-22	-19	0,0024	3,5	-	-	11,97
37	260-270	-20	-17	0,0079	4	-	-	11,99
38	270-280	-19	-16	0,0132	4,71	-	-	11,95
39	280-290	-10	-7	0,017	5,65	-	-	12,01
40	290-300	-9	-6	0,0222	6,47	-	-	12,07
41	300-310	-2	1	0,0834	1098	-	-	11,93
42	310-320	4	7	0,1252	16,94	-	-	11,9
43	320-330	8	11	0,1388	-	7,18	4,43	11,91
44	330-340	12	15	0,1417	-	8,46	5,08	11,91
45	340-350	14	17	0,144	-	10,03	5,9	11,93
46	350-360	17	20	0,147	-	11,67	6,68	11,95
47	360-370	19	22	0,1441	-	13,86	7,69	11,97
48	370-375			0,1479	-	16,03	8,64	11,93
49	375-380			0,1513	-	18,44	9,74	11,93
50	380-530	35	38	0,1883	-	52,42	24,29	12,21
Résidus	530+	40	43	0,2794	-	3078,6	709,89	11,96

II.2.4. Propriétés des fractions pétrolières lourdes

Tableau II.3 Propriétés des fractions pétrolières lourdes. [3]

Figure II.2 Courbe des propriétés rendement.

II.3. Découpage du pétrole but

Avant de procéder au découpage du brut, nous établissons la courbe T.B.P du pétrole brut en nous basant sur les données du tableau II.2.

Ces fractions devront répondre aux normes de commercialisation AFNOR et ASTM illustrées dans le tableau II.4.

Essence	[PI-PF]	35°С - 200°С
	Densité	0.650 < d < 0.765
	Soufre	0.0025 < % S < 0.02
	Tension de vapeur	O.19 < TVR < 0.7
	Nombre de cétane	40 < NC < 96
Kérosène	[PI-PF]	200°C - 300°C
	Densité	0.739 < d < 0.825
	Soufre	%S < 0.2
	Température de congèle	<-40°C
Gasoil	[PI-PF]	250°C - 350°
	Densité	0.810 < d < 0.890
	Soufre	%S < 0.9
	Nombre de cétane	50 < NC <60
	Viscosité	1< μ<3.5
	Point d'écoulement	< - 10°C
	Distillation ASTM :	
	A 250°C	%V < 65%
	A 350°C	%V > 85%
Résidu	[PI-PF]	350°- 500 ⁺ °C
	Densité	d > 0.900
	Soufre	%S > 2
	Viscosité à 50°C	μ>15

 Tableau II.4 Principales caractéristiques des fractions pétrolières [2]

Le découpage que nous avons choisi est équilibré, il permet d'avoir une coupe essence, une coupe kérosène et une coupe gasoil qui répondent aux spécifications les plus importantes. La coupe essence lourde permettra un apport supplémentaire d'essence après avoir subi un reforming catalytique.

						Tonnage	Volume
		%	Position sur		Position sur	totaux	total
Coupe	densité	Poids	le brut	%Vol	le brut	(t/an)	(m3)
ESS légère							
C5-80°C	0,7118	16,6	3-19,6	21,65	0,8-22,45	996000	1631910
ESS lourde							
80-165°C	0,7932	23,7	19,6-43,3	24,55	22,45-47	1422000	1850503
ESS totale							
C5-165°C	0,7391	40,3	3-43,3	46,2	0,8-47	2418000	3482412
Kérosène							
165-250°C	0,8381	12,6	43,3-55,9	11,45	47-58,45	756000	863065
Gasoil							
250-375°C	0,8436	29,3	55,9-85,2	23,65	58,45-82,1	1758000	1782663
Résidus							
375+	0,9213	14,8	85,2-100	17,9	82,1-100	888000	1349246
Charge	0,796	100	0 - 100	100	0 - 100	6000000	7537688

Nous donnons ci-dessous les caractéristiques de notre fractionnement

Tableau II.5 Caractéristiques du découpage du pétrole brut

II.4. Caractéristiques des fractions pétrolières

Les propriétés des coupes pétrolières sont calculées à partir des corrélations.

II.4.1. Caractéristiques	des	essences	intermédiaires
--------------------------	-----	----------	----------------

Coupe	Essence légère	Essence lourde	Essence totale
	35°C – 100°C	100 – 200 °C	35°C – 200 °C
Rendement sur brut			
%Poids	16,6	23,7	40,3
%Vol	21,65	24,55	46,2
Position sur le brut			
%Poids	3-19,6	19,6-43,3	3-43,3
%Vol	0,8-22,45	22,45-47	0,8-47
Densité à 15 °C	0,6583	0,7391	0,7118
° API	83,3	59,8	67,1
Point d'aniline °C	-	57,8	59,4
Tension de vapeur Reids Kg/cm ²	1,397	0,296	0,52
Poids moléculaire g/mole	81	112	103
Facteur de caractérisation K _{uop}	12,69	12,03	12,26

Tableau II.6 Caractéristiques de la coupe essence

Figure II.3 Courbe TBP des essences intermédiaires

II.4.2.	Caractéristiques	de la	coupe	Kérosène
---------	------------------	-------	-------	----------

Coupes Kérosène	200°C – 250°C
Rendement sur le brut	
%poids	12,6
%volume	11,45
Position sur le brut	
% poids	43,3-55,9
% volumes	47-58,45
Densités à 15°C	0,7932
°API	46,7
Teneur en Soufre, % poids	< 0,0020
Point d'aniline, °C	65
Poids moléculaire, g/mol	155
Point d'écoulement	< -41
Facteur de caractérisation, KUOP	11,86

 Tableau II.7
 Caractéristiques de la coupe kérosène

Figure II.4 Courbe TBP de la coupe kérosène

II.4.3. Caracté	ristiques	du	gasoil
-----------------	-----------	----	--------

Coupe Gas-oil	250 - 375
Rendement sur le brut	
%poids	29,3
%volume	23,65
Position sur le brut	
% poids	55,9-85,2
% volumes	58,45-82,1
Densités à 15°C	0,8436
°API	36,1
Point de congélation, °C	-6
Point d'aniline, °C	81,9
Poids moléculaire, g/mol	268
Facteur de caractérisation KUOP	12,12
Teneur en soufre, % poids	0,0818
Indice de cétane	59,2

Tableau II.8 Caractéristiques de la coupe Gasoil.

Ce Gasoil présente des caractéristiques d'un Gasoil paraffinique, son point d'aniline est supérieur à 80°C.

Figure II.5 Courbe TBP de la coupe Gasoil

II.4.4 .	Caractéristiques	des	résidus
-----------------	------------------	-----	---------

coupe Résidu	375+
Rendement sur le brut	
%poids	14,8
%volume	17,9
Position sur le brut	
% poids	85,2-100
% volumes	82,1-100
Densités à 15°C	0,9213
°API	21,9
points d'écoulement, °C	31
Poids moléculaire, g/mol	453
Facteur de caractérisation KUOP	12,02
Teneur en soufre, % poids	0,2205

Tableau II.9 Caractéristiques des résidus.

Figure 11.0 Course TBP desiles

II.5. Bilan massique de la distillation

- La capacité prévue de l'unité est de 6 millions de tonnes /an.
- La raffinerie fonctionne au rythme de 8000 heures/an.
- Le débit massique $Q_m = 7500 \text{ t/h}$.

Le bilan massique de l'installation est résumé sur le tableau suivant :

Produits	% volume	Débit vol	Densité	Débit mass	Masse molaire	Débit mol
		(m^{3}/h)		(Tonnes/h)	(g/mol)	(Kmol/h)
gaz et pertes	0,80	7,54	0,5591	4,21	55	76,61
Essence légère	21,65	203,94	0,6583	134,26	81	1657,48
Essence lourde	24,55	231,26	0,7391	170,93	112	1526,12
Kérosène	11,45	107,86	0,7932	85,55	155	551,96
Gasoil	23,65	222,78	0,8436	187,94	268	701,27
Résidus	17,90	168,62	0,9213	155,35	453	342,93
Brut	100	942,00	0,796	750	184	4076,09

Tableau II.10 Bilan massique de la distillation.

Figure II.7 Schéma de principe d'une unité de distillation initiale de pétrole brut [4]

II.6. Calcul du reforming catalytique de l'essence lourde

Le reformage catalytique est une méthode de raffinage pour convertir les molécules naphténiques en molécules aromatiques ayant un indice d'octane élevé servant de base dans la fabrication des carburants automobiles. Dans ce procédé, un catalyseur permet de déclencher les réactions chimiques. À partir d'un naphta lourd débarrassé de soufre, le produit passe à travers une série de 3 réacteurs qui transforment les produits naphténiques en produits aromatiques en les débarrassant partiellement de l'hydrogène.

Les réactions se font sous pression et à haute température (de l'ordre de 500 à 550 °C).

- L'hydrogène sera utilisé dans l'hydrotraitement et l'hydrodésulfuration.
- Le fuel gaz est dirigé vers le réseau de gaz combustible.
- Le propane et le butane sont dirigés vers un récipient de stockage.
- Le reformat sera mélangé avec du naphta léger et du butane dans des proportions déterminées pour donner du carburant ordinaire et du super carburant.

Dans le cas de notre étude, nous avons choisi d'envoyer une partie de l'essence lourde au reforming catalytique pour en améliorer le nombre d'octane ; et l'autre partie servira comme base pétrochimique.

Pour cela nous avons imaginé deux scénarios possibles :

 1^{ème} scénario: 2/3 du naphta est envoyé au reforming et 1/3 servira de base pétrochimique.

Produits	% volumique	SpGr	%poids	Poids (t/an)	caractéristiques
Reformat 10RVP	88.3				Noc=90
C ₄ exterieur	0.3	0.584			NO+3cc=98
C ₄ du reformat	7.4	0.584			
C ₄ dans le raformat	7.7	0.584	6,084		
Reformat C ₅ +	80.6	0.7496	81,73	774 800,40	
C ₄	7.4	0.806	8,069	76 494,12	
C ₃			4,6	43 608,00	
C ₂			2,95	27 966,00	
C ₁			1,65	15 642,00	
H2			1	9 480,00	
Charge		0.7391	100	948 000	

Tableau II.11 Reforming catalytique selon le premier scénario

Ce qui fait : 774 800,40 tonnes /an d'essence de reforming

et : 0,47 millions de tonne/ an de charge pétrochimique.

• 2^{ème} scénario : 1/3 de l'essence est envoyé au reforming et 2/3 à la pétrochimie.

Produits	% volumique	SpGr	%poids	Poids (t/an)	Caractéristiques
Reformat 10RVP	88.3				N0c=90
C4 exterieur	0.3	0.584			NO+3cc=98
C4 du reformat	7.4	0.584			
C4 dans le raformat	7.7	0.584	6,084	28838,16	
Reformat C5+	80.6	0.7496	81,73	387400,2	
C4	7.4	0.806	8,069	38247,06	
C3			4,6	21804	
C2			2,95	13983	
C1			1,65	7821	
H2			1	4740	
Charge	-	0.7391	100	474 000	

Tableau II.12 Reforming catalytique selon le premier scénario

Ce qui fait : 387400,2 tonnes /an d'essence de reforming

et : 0,95 millions de tonne/ an de base pétrochimique.

Nous adopterons le 2^{ème} scénario afin de maximiser la charge de pétrochimie et optimiser le steam cracking.

Figure II.8 Schéma du procédé de reforming catalytique [5]

II.7. Calcul du cracking catalytique [6]

Le craquage catalytique est une opération qui consiste à fragmenter, sur un catalyseur acide à une température voisine de 500°C et à basse pression, des hydrocarbures de masses moléculaires élevées dans le but d'obtenir des molécules plus légères et maximiser ainsi le rendement en essence.

Nous avons choisi de faire le cracking de la coupe résidu.

Vue le déficit du marché Algérien en Gasoil, ce dernier ne subira pas de transformations moléculaires et sera destiné directement à la consommation.

Production	%volumique	SpGr	%poids	Poids (t/an)	caractéristiques
C2 -			1,75	15540	
C3=			2,8	24864	
C3			2,6	23088	
C4=	4,2	0,68	3,10	27527,71	
C4 net	6	0,584	3,80	33773,49	NO clair 90
Ess 10RVP	47,5	0,74	38,15	338795,18	N0+3cc=98
LCO	21,6	0,852	19,97	177306,06	
НСО	19,4	1	21,06	186987,95	
Coke			6,77	60117,60	
charge		0,9213	100%	888 000	conversion 59 %

CHAPITRE II : L'étude de la mise en œuvre du pétrole brut

Tableau II.13 Calcul du craquage catalytique du résidu

- Le LCO dont la qualité correspond à celle d'un fuel A.S.T.M n°2 (40 S.S.U à 100°F). Il est équivalent à un fuel oil domestique français. Il peut donc etre utilisé comme fuel ou fluxant,
- Le HCO, Sa qualité correspond à un fuel A.S.T.M n°6, il est plus visqueux que le fuel n°2 français. [7]

Figure II.9 Procédé de craquage catalytique de résidus [5]

II.8. Bilan des produits

Produits	% sur le brut	t/an
gaz et pertes	5,9 %	355 815
Essences :		
première distillation		1 074 080
reformage catalytique		387 400
craquage catalytique		338 795
Poolessence	30 %	1 800 275
Kérosène	11,4%	684 400
Gasoil	25%	1 503 520
Fuel :	6%	364 294
LCO		177 306
НСО		186 988
Coke	1%	60 118

Tableau II.14 Bilan des produits

Produits	Tonnes/an
Distillation	
C ₂ H ₆	2400
C ₃ H ₈	39000
nC_4H_{10}	104400
i C ₄ H ₁₀	28200
$n C_5 H_{12}$	600
iC ₅ H ₁₂	3600
Reforming catalytique	
C ₄	38247
C ₃	21804
C ₂	13983
C ₁	7821
H ₂	4740
Craquage catalytique	
C ₂ -	15540
C ₃ =	24864
C ₃	23088
C ₄ =	27528

Tableau II.15 Bilan des gaz

Le Schéma global de notre complexe est le suivant :

Figure II.10 Schéma global du complexe de raffinage pétrochimique

CHAPITRE III : Dimensionnement des équipements

III.1 DIMENSIONNEMENT DE LA COLONNE DE DISTILLATION

III.1.1. préparation des données

1. Tracés des courbes de flash du pétrole brut à pression = 1 atm [8]

Nous utilisons la méthode de W.L.NELSON et R.J.HARVY, cette méthode se résume comme suit :

• Nous déterminons la pente de la courbe TBP :

$$S = tg_{\alpha}^{TBP} = \frac{t_{70\%}^{TBP} - t_{10\%}^{TBP}}{60}$$

- Nous déterminons par la suite de la température 50% distillé : $t_{50\%}^{TBP}$;
- En exploitant le diagramme de NELSON-HARVY, nous déterminons la pente de la courbe de flash (tg^{CF}_x) à partir de la pente tg^{TBP}_x et la courbe des tangentes ;
- Nous déterminons la température 50% en volume distillé de la courbe de flash (tg^{CF}_{50%}) à partir du point tg^{TBP}_{50%} et la courbe des températures d'ébullition;
- Et enfin nous déterminons le point initial et le point final de la courbe de flash d'après les formules suivantes :

$$\begin{split} P_{I} &= t_{50\%}^{CF} - 50 \ tg_{\infty}^{CF} \\ P_{F} &= t_{50\%}^{CF} + 50 \ tg_{\infty}^{CF} \end{split}$$

A partir de ces deux points P_I et P_F , nous traçons la courbe de flash à 1 atm du pétrole brut. Les résultats sont présentés ci-dessous :

Produit	$t_{10\%}^{\mathrm{TBP}}$	t ^{TBP} _{70%}	$t_{50\%}^{\mathrm{TBP}}$	tg_{α}^{TBP}	$tg_{50\%}^{CF}$	tg∝ ^{CF}	P _I	P _F
Pétrole brut	56,04	301,8	212,66	4,1	215,7	2,9	70,7	360,7

Tracé de la courbe de flash à 1000 mmHg

La courbe de flash est obtenue à une pression atmosphérique. Or, nous voulons l'obtenir à une pression supérieure, PIROOMON et BEISWENGER ont fait les constations suivantes :

- L'abscisse du point d'intersection de la courbe TBP et la courbe de flash reste sensiblement le même quelque soit la pression.
- Si nous opérons assez loin du point critique les courbes de flash sous diverses pressions sont à peu près parallèles à la courbe de flash à pression atmosphérique.

Les courbes de flash à différentes pressions sont parallèles.

Pour obtenir la courbe de flash à une pression donnée, il suffit de connaitre la translation de température à effectuer à partir de courbe flash à une atmosphère. Pour ce faire, bous utiliserons le diagramme de COX. [9]

Les résultats sont les suivants :

- Le point d'intersection de la courbe de flash et la courbe TBP est :(52,08% ; 220°C)
- D'après l'abaque des tensions de vapeur (COX-CHART) T = 230°C à 1,3atm, ce qui correspond à un décalage de 10°C.
- Nous admettons 7 plateaux par section, soit un nombre de plateaux théorique de 28.

Pratiquement ces méthodes rapides ne sont exploitées que pour des pressions inférieures à 3 atmosphères.

Tracés des courbes TBP du BRI et du VI

Nous estimons les courbes TBP des deux phases en équilibre à partir de la TBP du mélange en utilisant la méthode d'OBRYADCHIKOV qui est basée sur la propriété d'additivité des courbes TBP et qui s'énonce comme suit :

Si un mélange A est séparé par vaporisation en une vapeur V et un liquide L en équilibre et que l'on effectue sur le mélange, sur le liquide et sur la vapeur une distillation TBP, à toute température, la quantité à distiller sur le mélange est égale à la somme des quantités v et l distillées sur la vapeur et le liquide. [4]

OBRYDCHIKOV propose d'établir une proportionnalité entre v et V, ainsi qu'entre l et L,

so it :
$$v = V.y$$
 et $l = L.x$

Où les facteurs de proportionnalité y et x sont reliés par l'équation :

$$y = \frac{\alpha x}{1 + (\alpha - 1)x}$$

Le paramètre ∝ est défini par l'abaque de l'annexe III.2, en fonction de la pente de la TBP du mélange.

Nous trouvons $\propto = 42$, et les valeurs de L et V sont alors : L= 14,44% et V= 85,56% Les résultats trouvés sont résumés dans le tableau suivant :

Х	Y	LX	VY	LX + VY	T (°C)
0,00	0,00	0,00	0,00	0,00	88,60
0,01	0,21	0,14	18,33	18,47	144,04
0,02	0,36	0,29	30,40	30,69	180,67
0,08	0,70	1,16	60,00	61,16	272,08
0,20	0,87	2,89	74,52	77,41	320,83
0,30	0,92	4,33	78,75	83,08	337,87
0,40	0,95	5,78	81,06	86,84	349,09
0,50	0,96	7,22	82,50	89,72	357,76
0,60	0,98	8,66	83,50	92,16	365,08
0,70	0,98	10,11	84,22	94,33	371,59
0,80	0,99	11,55	84,78	96,33	377,59
0,90	1,00	13,00	85,21	98,21	383,23
1,00	1,00	14,44	85,56	100,00	388,60

Tableau III.1 Méthode d' OBRYADCHIKOV pour le tracé de la TBP du BRI et du VI.

Courbe TBP et courbe de flash sous différentes pressions

III.1.2 Zone d'expansion

Le pétrole brut arrive du four par la ligne de transfert et pénètre dans la colonne où il subit un flash à la zone d'expansion. Il se sépare alors en deux phases théoriquement en équilibre, la vapeur initiale (VI) et le brut réduit initial (BRI).

Cependant, la séparation n'est pas sélective de sorte que la vapeur entraine des produits lourds qui risqueraient de colorer le soutirage de gasoil si on ne prévoyait pas quelques plateaux de rectification entre la zone d'expansion et le soutirage inférieur.

La circulation d'un reflux interne R_{ZE} alimente la section d'épuisement en même temps que le BRI.

Le bilan de matière de la zone d'expansion s'écrira :

 $\sum \text{ Soutirages} = \sum S = VI + V_f - R_{ZE}$ Brut réduit BR= BRI + R_{ZE} - V_f

Pour établir ces bilans, il est nécessaire de se faire une idée des produits en circulation dans la zone d'expansion.

Ainsi la méthode d'OBRYADCHIKOV permet d'estimer les courbes TBP de VI et de BRI, ces courbes montrent l'interférence notable de constituant entre les éléments lourds de VI et les éléments légers du BRI.

Ce manque de sélectivité sera améliorée dans la vapeur par le reflux R_{ze} et dans le liquide par la revaporisation de $V_{f.}$ [4]

En général, nous cherchons à obtenir une vaporisation initiale la plus élevée possible, compatible avec la tenue du brut.

Dans notre cas nous avons :

- V.I =85,56% sur brut à la température de 330°C sous une pression de 1000 mmHg.
- La revaporisation en fond de la colonne est limite à 4% sur brut de sorte que le reflux R_{ZE} sera égale à :

$$\sum$$
 Soutirage = \sum S = VI + V_f - R_{ZE}

D'où le $R_{ZE} = 8 \%$

BR= BRI + Rz_E - V_f = 13,9 + 8 - 4 = 17,9\%

pour écrire le bilant en poids on détermine les densités de V.I et B.R.I par l'abaque de corrélations des densités des produits en équilibre ; celle de R_{ZE} est estimer légèrement supérieur à celle du gasoil, alors que celle de V_f est prise un peu au dessous.

Le bilant massique de la zone d'expansion peut alors être établie selon le tableau suivant :

	%vol	m ³ /h	Densité	t/h
VI	86,1	811,06	0,763	618,84
V_{f}	4	37,68	0,81	30,52
Rze	-8	-75,36	0,888	-66,92
somme soutirage	82,1	773,38	0,7689	594,65
BRI	13,9	130,94	0,845	118,95
R ze	8	75,36	0,888	66,92
$V_{\rm f}$	-4	-37,68	0,81	-30,52
Brut réduit	17,9	168,62	0,9213	155,35
Charge		942		750

Tableau III.2 Bilan massique de la zone d'expansion

Figure III.5 Bilan de la zone d'expansion

III.1.3. Fond de Tour

La capacité d'eau injectée en fond de tour doit revaporiser la fraction $V_f = 4\%$. On admet que cette revaporisation est due uniquement à un équilibre sous pression partielle à la température du fond de tour que nous supposerons égale à une certaine valeur et que nous vérifierons par la suite avec un bilan thermique.

Nous supposons la température du fond de tour T=320°C.

La quantité de vapeur d'eau nécessaire pour revaporiser $V_{\rm f}$ est déterminée par la formule suivante :

$$P_{vf} = \frac{n_{vf}}{n_{vf} + n_{eau}} \cdot P_T$$

Et donc :

$$n_{eau} = \left[\frac{PT}{Pvf} - 1\right]$$
. nvf

Nous estimons à 210 le poids moléculaire de V_f, le nombre de molécules revaporisées est donc : $V_f = \frac{30521}{210} = 145,34$ kmoles $n_{eau} = 529,45$ kmol/h d'où $m_{eau} = 9530,15$ kg/h Le bilan thermique s'équilibre donc pour une enthalpie du brut réduit, liquide à la sortie, est égale à 185 kcal/kg, ce qui correspond à une température de fond de colonne de 317 °C parfaitement en accord avec le chiffre de 320 °C pris en hypothèse.

Entrée				Sortie				
	D	t/h	kcal/kg	th/h		t/h	kcal/kg	th/h
BRI	0,845	118,95	200	23790,2	V f	30,52	247	7538,7
Rze	0,888	66,92	195	13049,4	(H2O) f	9,53	758	7223,7
$(H_2O)f$		9,53	700	6671	Brut réduit	155,35	185	28739,8
Total		195,40		43510,6	Total	195,40		43502,2

Tableau III.3 Bilan de matière du fond de tour

III.1.4 Soutirage du gasoil

Il y a lieu de commencer le calcul par la colonne de stripping pour déterminer la quantité soutirée : $S_3 = gasoil + V_3$

V3 étant la quantité revaporisée par stripping constituée essentiellement de kérosène.

W.L.NELSON propose une relation simple entre la quantité revaporisée par stripping et la quantité de vapeur injectée dans les unités de première distillation.

Dans notre cas nous adopterons une revaporisation de 8 %, ce qui nécessitera l'injection de 35 kg de vapeur d'eau par m³ de gasoil soutiré.

L'établissement des bilans thermiques pour cette section nécessite une hypothèse sur la température du plateau de soutirage de gasoil que nous choisirons égale à 260 °C, et que nous contrôlerons à la fin du calcul.

Entrée						Sortie			
	m ³ /h	D	t/h	cal/kg	th/h		t/h	cal/kg	th/h
Gasoil	222,78	0,8436	187,94	150	28191	Gasoil	187,9	147	27627
V3	13,37	0,8	10,69	207	2214	V3	10,7	210	2245
S3	236,15	0,83	198,63	150	29795	(H20)3	7,8	750	5850
(H2O)3	35 kg/m3		7,80	768	5990,4				
Total			206,43		35785		206,4		35722

Tableau III.4 Bilan thermique du stripping du gasoil

Entrée				Sortie			
	t/h	cal/kg	th/h		t/h	cal/kg	th/h
VI	618,84	210	129956	somme S3	582,89	170	99091
Vf	30,52	247	7539	R3	R3	210	205*R3
R3	R3	150	150*R3	Rze	66,92	220	14722
(H2O)f	9,53	768	7319	(H2O)f	9,53	750	7148
Total	658,89+R3		144814+150R3		658,89+R3		120961+210R3

Tableau III.5 Bilan thermique de la section zone d'expansion – gasoil

Par conservation du bilan thermique nous avons :

 $144814+150.R_3 = 120961+210.R_3$

D'où:

- Reflux interne **R**₃=397,55 t/h.
- Le liquide sur le plateau $S_3 + R_3 = 596,18 \text{ t/h.}$
- La vapeur traversant le plateau $(\sum S_3 + R_3) = 980,44$ t/h.

Afin de contrôler la température du plateau de soutirage, J.W.PACKIE propose de considérer le soutirage à sa température de bulle sous une pression partielle correspondant à la présence d'incondensables qui sont constitués par la somme des soutirages supérieurs, à l'exception du soutirage immédiatement supérieur que l'on néglige.

Ainsi au plateau de soutirage du gasoil, nous trouverons en phase vapeur :

Incondensables = gaz + essence légères + essence lourdes + vapeur d'eau = 3789,71 kmol/h

- 1. Gasoil (S₃ + R₃) =2224,5 kmol/h
- 2. Pression totale =1000-(6*8)=952mmHg = 1.25atm
- 3. Pression partielle du gasoil=1,25*3066,16/(3066,5+3789,71) = **0.50atm**

En supposant en première approximation que la coupe gasoil est bien fractionnée et que sa courbe de distillation TBP est voisine de la portion TBP du brut correspondant à la largeur de la fraction gasoil, on calcul par les corrélations la courbe de vaporisation du gasoil à partir de cette TBP, sous la pression de 0.50 atm.

La courbe, à un point initial de 255 °C compte tenu du fait que le soutirage S_3 avant stripping est constitué par du gasoil contenant des constituants volatils, nous pouvons considérer que le choix d'une température de 260 °C comme température de soutirage est correcte.

Figure III.6 Circulation des produits au niveau du soutirage gasoil.

III.1.5 soutirage kérosène

Le calcul des sections supérieures est conduit selon le même processus que celui de la section inférieure.

Choix de la fraction vaporisée par stripping : 6%.

- 1. quantité d'eau de stripping : 35 kg/ m^3 .
- 2. fraction revaporisée : essence lourde.
- 3. hypothèse sur la température de soutirage : 230 $^{\circ}$ C

Entrée Sortie m3/h cal/kg th/h cal/kg D t/h t/h th/h Kérosène 107,859 0,7932 85,55 133 Kérosène 85,55 11378 130 11122 V_2 6,47 0,77 4,98 195 971 V_2 4,98 193 961 114,33 0,8 S_2 90,53 134 12131 $(H20)_2$ 3,77 695 2620 3,77 695 2620 $(H2O)_{2}$ 35 kg/m3 94.30 94.30 14751 14703 Total

Faisons le bilan thermique du stripping du kérosène :

Tableau III.6 Bilan thermique du stripping de kérosène

L'enthalpie du kérosène égale à 130 kcal/kg ce qui correspond à une température de 227°C au fond de la colonne de revaporisation.

Entrée				Sortie			
		cal/				cal/	
	t/h	kg	th/h		t/h	kg	th/h
Somme				somme			
S ₃	582,89	200	116578	S_2	487,02	188	91560
R ₃	397,55	150	59633	R ₂	R ₂	175	175*R ₂
R ₂	R2	133	133*R ₂	S_3+R_3	596,18	110	65580
V ₃	10,69	220	2352	(H2O) _f	9,53	695	6623
(H2O) _f	9,53	695	6623	(H2O) ₃	7,80	695	5421
(H2O) ₃	7,8	695	5421				
Total	$1326,08+R_2$		190607+133R ₂		1100,53		169184+175R ₂

Faisons maintenant un bilan thermique de la section gasoil - kérosène :

Tableau III.7 Bilan thermique de la section Gasoil - kérosène

 $190607 {+} 133R_2 = 169184 {+} 175R_2$

D'où :

- Reflux interne $R_2 = 510,07 \text{ t/h}$.
- Le liquide sur le plateau $S_2 + R_2 = 600,6 t/h$.
- La vapeur traversant le plateau $(\sum S_2 + R_2) = 997,09 \text{ t/h.}$

Contrôle de la température de soutirage :

Incondensables = $gaz + essence \ légères + vapeur d'eau = 2167,42 \ kmol/h$

- 1. Kérosène $(S_2 + R_2) = 3874,84 \text{ kmol/h}$
- 2. pression totale = 1.19atm
- 3. pression partielle du kérosène =1,19*3874,84/(3874,84+2167,42)= **0.80atm**

La température de bulle du kérosène à 0,80 atm est de 232°C contre 230°C pris en hypothèse ce qui est parfaitement en accord avec le résultat trouvé.

Figure III.7 Circulation des produits entre les soutirages gasoil et kérosène

III.1.6 soutirage des essences lourdes

- Fraction revaporisée : 6 %
- Quantité d'eau de stripping : 42 kg / m³
- Fraction revaporisée : essence légère
- Hypothèse sur la température de soutirage = 170° C

Faisons le bilan thermique du stripping d'essence lourde :

Entrée					Sortie				
	m3/h	d	t/h	cal/kg	th/h		t/h	cal/kg	th/h
Ess lourde	231,26	0,7391	170,93	100	17093	Ess lourde	170,93	96	16409
V_1	13,87	0,71	9,85	166	1635	V_1	9,85	163	1606
S ₁	245,13	0,762	186,79	96	17932	(H20) ₁	9,71	699	6787
(H2O) ₁	42 kg/m3		9,71	710	6894				
Total			196,50		24826		190,5		24802

Tableau III.8 Bilan thermique du stripping d'Essence lourde

L'enthalpie de l'essence lourde à la sortie du stripping est égale à 96 kcal/kg ce qui correspond à une température de 168°C

Faisons maintenant un bilan thermique de la section kérosène - essence lourde :

CHAPITRE III : Dimensionne ment des équipements

Entrée			Sortie				
		cal/				cal/	
	t/h	kg	th/h		t/h	kg	th/h
Somme							
S_2	487,02	190	92534	somme S ₁	309,40	170	52598
R ₂	510,07	188	95893	R ₁	R ₁	140	157*R ₁
R ₁	R1	88	88*R ₁	S_2+R_2	600,60	160	96096
V_2	4,98	189	941	(H2O) _{f+3+2}	21,1	698	14728
(H2O) _{f+3}	17,33	710	12304				
(H2O) ₂	3,77	710	2677				
Total	1238+R ₁		244733+88R1		$1238 + R_1$		171782+157R ₁

Tableau III.9 Bilan thermique de la section kérosène - Essence lourde

 $244733 + 88R_1 = 171782 + 157R_1$

D'où :

- Reflux interne $R_1 = 1057,26 \text{ t/h.}$
- Le liquide sur le plateau $S_1 + R_1 = 1238,04 \text{ t/h.}$
- La vapeur traversant le plateau $(\sum S_1 + R_1) = 1366,66 \text{ t/h.}$

Contrôle de la température de soutirage :

Incondensables = gaz + vapeur d'eau = 1248,83 kmol/h

- 4. Essence lourde $(S_1 + R_1) = 11107 \text{ kmol/h}$
- 5. pression totale = **1.13atm**
- 6. pression partielle de l'essence lourde = 1atm

La température de bulle de l'essence lourde à 1 atm est de 165°C ce qui correspond bien à la température prise en hypothèse et qui est de 170°C.

Figure III.8 Circulation des produits entre le soutirage Kérosène et Essence lourde

III.1.7 Sommet de la colonne

- Hypothèse sur la température de tête : 100°C
- Température du reflux externe froid $R_{ef} = 30^{\circ}C$

Ce reflux froid se transforme par échange thermique sur le premier plateau en reflux interne chaud R_c qui alimente le second plateau.

Faisons le bilan thermique du sommet de colonne au-dessous du premier plateau :

Entrée			Sortie				
		cal/k				cal/k	
	t/h	g	th/h		t/h	g	th/h
Somme				somme			
\mathbf{S}_1	309,40	170	52598	S_0	138,47	145	20078
R ₁	1057,26	140	148016	Rc	Rc	140	140*Rc
(H2O)	30,81	698	21505	(H2O)	30,81	645	19872
Rc	Rc	58	58*Rc	$(S_1 + R_1)$	1238,04	95	117614
V_1	9,85	163	1606				
	1407,32+R		223725+58R		1407,32+R		157564+140R
Total	с		c		с		c

Tableau III.10 Bilan thermique du sommet de la colonne au dessous du premier plateau

 $223725 + 58R_{C} = 157564 + 140R_{C}$

D'où :

- Reflux interne chaud sur le second plateau : $R_C = 806,84 \text{ t/h.}$
- La vapeur traversant le second plateau (Σ S₀ + R_C) = 945,31 t/h.
- Le reflux externe froid : $R_{ef} = 757,31 \text{ t/h} = 874 \text{ m}^3/\text{h}.$
- Vapeur dans la ligne de tête : $(\sum S_0 + R_{ef}) = 713.8 \text{ t/h.}$
- $H_2O = 30,81 \text{ t/h}.$

Bilan du condenseur de tête :

Le bilan de matière du condenseur de tête s'écrit comme suit

 $Qc = [(\sum S_0 + R_{ef}) + (essence \ légère)](H_v - H_l) + gaz (Cp_v - Cp_l) + eau(Cp_v - Cp_l)$

Donc : $Q_C = 116612 \text{ th/h}$

En faisant travailler l'eau de réfrigération entre 15°C et 40°C

Nous avons : Débit d'eau sur le condenseur = $4664.5 \text{ m}^3/\text{h}$

Contrôle de la température de soutirage :

- Incondensable = 1712 kmol/h
- hydrocarbures = 8812 kmol/h
- pression partielle des hydrocarbures est de 0.88 atm

la température de rosée de l'essence légère sous cette pression est de 103°C, ce qui confirme l'hypothèsede 100°C.

Figure III.9 Circulation de produits au sommet de colonne

III.1.8. Dimensions des différentes parties de la colonne

> Diamètre

Soutirage	Débit de vapeur(t/h) Mv	Débit de liquide(t/h) Ml
Tête de colonne	713,80	806,84
Essence lourde	1366,66	1238,04
Kérosène	997,09	600,60
Gasoil	980,44	595,18

Tableau III.11 Débit de vapeur et de liquide dans les différentes sections de la colonne

D'après les résultats trouvés précédemment, nous avons montré que le plateau de soutirage d'essence lourde était le plus chargé. A une température de 170°C les caractéristiques de la vapeur et du liquide sont les suivants :

Liquide	Vapeur
Débit $M_L = 1238,04 \text{ t/h}$	Débit $M_V = 1366,66 \text{ t/h}$

Le calcul du diamètre de la colonne de distillation atmosphérique comporte les étapes suivantes :

1. Détermination de la densité vapeur

$$d_V = \frac{M \cdot P}{R \cdot T} (kg/m^3)$$

Où :

M : Masse moléculaire moyenne de la vapeur.

T : température de calcul (K).

P : pression de calcul (atm).

Ainsi,

 $d_v = 11,03 \text{ kg/m}^3$

2. détermination de la densité liquide

La densité liquide d_1 (kg/m³) s'obtient directement en prenant la densité moyenne du liquide, d'où :

 $d_l = 890 \text{ kg/m}^3$

3. choix de l'espacement entre plateaux

Les plateaux doivent être suffisamment espacés pour permettre la décantation des gouttelettes liquide entrainées. Pour avoir une hauteur liquide correcte dans les segments de descente et éviter l'engorgement.

D'autre part, il faut que l'inspection et l'entretien soient possibles au moment des arrêts et que l'on puisse mettre en place un trou d'homme de 45 à 50 cm entre deux plateaux. Ces diverses considérations nous conduisent à adopter un espacement de 1m entre deux plateaux.

4. obtention du diamètre de la colonne

	Liquide	Vapeur
Débit M (t/h)	1238,04	1366,66
d (kg/m3)	890	11,03
Tension superficielle ð (dyne/cm)	20	-

Connaissant l'espacement entre deux plateaux et la tension superficielle δ , on déduit grâce à l'abaque de Wuithier de l'annexe III.3 la valeur du coefficient d'entraînement des gouttelettes liquides par la vapeur : K_V

Nous trouvons une valeur de $K_V = 250$.

L'expression du diamètre D de la colonne de distillation atmosphérique et donné par :

$$\mathbf{D} = \sqrt{\frac{4 \mathbf{M}_{\mathrm{V}}}{\pi \mathbf{K}_{\mathrm{V}} \sqrt{\mathbf{d}_{\mathrm{V}} (\mathbf{d}_{\mathrm{I}} - \mathbf{M}_{\mathrm{V}})}}}$$

Ainsi

Diamètre de la colonne D = 8,40 m

1. détermination du nombre de plateaux théoriques

Le nombre de plateaux théoriques s'obtient par application des étapes suivantes :

- choix des constituants clés en tête et en fond de colonne et des puretés que l'on désire obtenir au distillat et au soutirage.
- Obtention de la volatilité relative moyenne :

 $\alpha_{\rm D} = (\alpha_{\rm D} + \alpha_{\rm R})^{1/2}$

Avec :

 α_D : Volatilité relative en tête de colonne ;

 α_{R} : Volatilité relative en fond de colonne.

La volatilité relative est égale au rapport des coefficients d'équilibre ou à la rigueur des tensions de vapeur des constituants clés léger et lourd. Se fixer les températures ou les pressions en tête et en fond de colonne revient à s'imposer ces tensions de vapeur.

A.K. BADHWAR a proposé une méthode graphique de détermination des volatilités relatives reposant sur la loi de TROUTON, son utilisation est intéressante lorsque nous ne disposons pas de tables ou de courbes de tensions de vapeur directement accessible, mais nécessite quelques précautions dans le domaine des faibles valeurs de volatilités relatives.

A cette restriction près elle pourrait compléter utilement la méthode de J.L.CALLAGHER.

• Calcul du nombre de plateaux minimum à reflux total :

$$S_{m} = \frac{\log \frac{(X1)(X2)}{(X3)(X4)}}{\log \alpha}$$

Avec:

- X1 : fraction molaire du constituent clé léger dans le distillat ;
- X2 : fraction molaire du constituant clé lourd dans le soutirage ;
- X3 : fraction molaire du constituant clé dans le soutirage ;
- X4 : fraction molaire du constituant clé lourd dans le distillat.

Nous trouvons : $S_m = 29$

• Calcul du nombre de plateaux minimum dans la colonne à taux de reflux infini :

 $N_m = S_m - 1$

Cette expression correspond au cas le plus général où la colonne comporte un rebouilleur et un condenseur total.

Donc le nombre de plateaux théorique $N_m = 28$ ce qui correspond parfaitement avec notre hypothèse (7 plateaux par sections).

2. Détermination du nombre de plateaux réels

Le nombre de plateaux réels s'obtient après détermination de l'efficacité globale des plateaux à l'aide des abaques, qui donne une solution graphique de l'équation suivante

$E = 63 (\alpha \mu)^{-0,212}$

Avec :

E : efficacité globale ;

 α : Volatilité relative moyenne ;

 μ : Viscosité de la charge à la température moyenne de la colonne.

Dans ces conditions nous aurons :

$$N_R = \frac{Nt}{E}$$

Pour une efficacité de 1, le nombre de plateaux théoriques est égal au nombre de plateaux réels,

Pour une efficacité de 0,8 nous obtenons un nombre de plateaux réels de 35.

3. la hauteur de la colonne

Pour calculer le diamètre de la colonne, nous adoptons en première approximation le découpage suivant :

- distance entre la tête de la colonne et le premier plateau : $d_1 = 3m$;
- distance entre la fond de la colonne et le dernier plateau : $d_2=3m$;
- Espacement occupé par les plateaux :

 D_3 = nombre de plateaux * espacement entre deux plateaux = 28 *1= 28 m ; pour un nombre plateaux de 28, la hauteur totale de la colonne de distillation atmosphérique = 34 m.

4. Type de plateaux

Nous choisissons des plateaux à calottes, c'est le modèle le plus répandu encore aujourd'hui dans les industries pétrolières. Construit autrefois entièrement en fonte moulée, il s'est maintenant notablement allégé par la construction de calottes en acier embouti. [10]

Figure III.10 Disposition schématique d'un plateau à calotte [1]

III.2 DIMENSIONNEMENT DU REBOUILLEUR DE FOND DE COLONNE

III.2.1 Description de l'appareil [11]

Les rebouilleurs sont des appareils tubulaires dont le but est d'effectuer une vaporisation partielle des fonds de colonnes de distillation afin d'engendrer la phase vapeur qui assurera le fractionnement dans la zone d'épuisement.

Le rebouilleur représente un contact liquide vapeur supplémentaire et que le rapport de la quantité revaporisée à la quantité soutirée s'appelle le taux de rebouillage.

Ces appareils sont construits selon le même principe que les échangeurs à faisceau et à calandre, mais avec des variantes imposées par le système de séparation liquide vapeur adopté. On distingue ainsi deux grandes classes d'appareils :

a. Rebouilleurs noyés

L'appareil n'a d'autre but que de provoquer une certaine vaporisation ; le mélange (liquide + vapeur) formé dans la calandre est réintroduit dans le fond de la colonne sous le dernier plateau où la vapeur se sépare du liquide.

Dans la (Figure III.11), le rebouilleur est alimenté directement par le liquide qui descend du dernier plateau et ne peut ainsi traverser qu'une seule fois le rebouilleur. La circulation est naturelle, c'est-à-dire qu'elle s'effectue uniquement sous l'effet de la différence des pressions hydrostatiques entre le point de soutirage et le point de réintroduction.

Dans le cas de la (Figure III.12), rebouiller est alimenté par le liquide accumulé dans le fond de tour et recirculé plusieurs fois dans l'appareil, surtout si l'on utilise le principe de circulation forcée à l'aide d'une pompe ; il est alors possible d'obtenir un taux de vaporisation variable en réglant le débit de la pompe.

Le rebouilleur noyé à circulation naturelle est appelé « thermosiphon ». Afin d'obtenir des pertes de charge très faible en circulation naturelle on supprime les chicanes et il est d'usage de respecter certaines proportions entre le diamètre de la calandre D_c et la longueur des tubes.

Diamètre de la calandre (cm)	$30.48 < D_C < 43.82$	$48.89 < D_C < 73.66$	$D_{\rm C} > 78.74$
Longueur des tubes (cm)	20.32	30.48	40.64

Tableau III.12 proportions entre les dimensions des tubes et de la calandre

Figure III.11 Rebouilleur à une passe à circulation naturelle, à deux entrées [11]

Figure III.12. Rebouilleur à recirculation par pompe, à une entrée [11]

b. Rebouilleurs à niveau liquide

En plus de sa fonction de vaporisation, l'appareil assure la séparation des deux phases. Il est conçu avec un déversoir dont la hauteur correspond environs au diamètre du faisceau afin que celui-ci soit constamment submergé. La calandre est d'un diamètre nettement supérieur à celui du faisceau afin de ménager au-dessus du niveau liquide une zone de désengagement de la vapeur et éviter les entraînements de liquide. Le faisceau est construit d'une manière classique avec deux plaques tubulaires lorsque le fluide chauffant est un produit pétrolier ; si l'on utilise la vapeur d'eau, on fait souvent l'économie de la plaque tubulaire mobile, en employant des tubes en U. Dans ces appareils, la circulation est le plus souvent naturelle. Ces rebouilleurs sont appelés « kettle reboiler ».

Figure III.13 rebouilleur à niveau liquide [11]

Limitation au transfert de chaleur

L'étude fondamentale de l'ébullition a montré que la différence de température Δt entre le fluide chauffant et le liquide à vaporiser devait être inférieure à un seuil spécifique au-delà duquel le flux de chaleur $\Phi = Q/A$ décroît très rapidement et la caléfaction apparaît. Le coefficient de film à l'ébullition suit la même loi. On admet les limitations suivantes :

• Flux maximal admissible Φ_M

Liquides organiques : $\Phi_M < 54\ 000\ \text{kcal/h.m}^2$ (circulation forcée)

 $\Phi_{\rm M}$ < 32 000 kcal/h.m² (circulation naturelle)

Eau

: $\Phi_M < 81 \ 000 \ \text{kcal/h.m}^2$ (circulation forcée ou naturelle)

• Coefficient de film maximal h_M

Liquides organiques : hm < 1 500 kcal/h.m².°C Eau : hm < 5 000 kcal/h.m².°C

Le rebouilleur noyé à circulation naturelle est le plus intéressant puisqu'il présente l'avantage d'être un peu plus simple au point de vue construction, d'offrir plus de surface d'échange pour le même coût et de réaliser un excellent contact liquidevapeur. Par contre, la circulation dans l'appareil exige une hauteur hydrostatique de sorte que, bien souvent, il faut prévoir une surélévation de la colonne de distillation pour obtenir le taux de circulation désiré.

Rebouillage d'un mélange dans la calandre

Le liquide rentre dans le rebouilleur à sa température de bulle et il en sort à une température d'autant plus élevée que la fraction revaporisée est importante. Si le fluide chauffant est de la vapeur, on prendra comme différence moyenne de température la DTLM, sinon on calcule la Δt_m pondérée en décomposant en tranche élémentaire.

Coefficient de film :

Le gradient de température dans la calandre signifie que la chaleur sensible du liquide non vaporisé et la chaleur latente sont fournies par la même surface. Mais on considère que le coefficient de film liquide h_l est prédominant pour l'ébullition, le coefficient de film à l'ébullition sera le même que celui relatif au transfert de chaleur sensible et on écrira :

Q=Ut A (DTLM)

Dans ce cas, il faut que le flux moyen $\Phi=Q/A = U_t$ (DTLM) soit en général inférieur à 54 000 kcal/h.m².°C, car à l'extrémité de l'appareil où le Δt est le plus grand, on risque d'obtenir U. $\Delta t > \Phi_M$, c'est-à-dire d'avoir caléfaction et vaporisation irrégulière. Il faudra donc s'assurer de ce point avant de conclure que l'appareil est correct. Toutefois, on pourra admettre une tolérance jusqu'à 65 000 à l'une des extrémités sans courir trop de risques.

Rebouilleurs noyés à circulation naturelle

Ce type d'appareil est aussi intéressant que le « kettle reboiler ». Il présente en plus l'avantage d'être un peu plus simple au point de vue construction, d'offrir plus de surface d'échange pour le même coût et de réaliser un excellent contact liquide-vapeur. Pr contre, la circulation dans l'appareil exige une hauteur hydrostatique importante de sorte que, bien souvent, il faut prévoir une surélévation de la colonne de distillation pour obtenir le taux de circulation désiré. Nous choisirons donc ce type d'appareil pour le cas de notre installation.

a. Coefficient de film

La vitesse de circulation du liquide le long des tubes est toujours suffisamment faible pour que le coefficient de film à l'ébullition h_v ne dépende que de la température entre la paroi du tube et le liquide.

Quand le liquide à rebouillir est un mélange, il y a un gradient de température dans la calandre et il fut fournir la chaleur sensible au liquide non vaporisé. Cette chaleur est fournie avec un coefficient de film h_s correspondant à la convection naturelle. De même que h_v , le coefficient h_s ne dépend pratiquement que de Δt_t ; aussi est-il porté sur la Figure III.2.3. On sera donc amenés à décomposer la surface en deux parties : A_V pour l'ébullition et A_S pour le transfert de chaleur sensible. En appelant Q_S et Q_V les quantités respectives de chaleur sensible et chaleur latente, on pourra définir un coefficient de transfert moyen pondéré h_m tel que :

$A = A_V + A_S$

 $Q/h_m = Q_V/h_v + Q_S/hs$ $H_m = Q / [Q_V/h_v + Q_S/h_s]$

b. Pertes de charge

Elle se calcule par l'équation suivante :

$$\Delta P_{c} = \frac{G_{c}^{2}}{1,271.10^{15}.\,d_{m}} \left[\frac{f_{c} (N_{c} + 1) D_{c}}{D_{e}} + 1 \right] \ \text{kg/cm}^{2}$$

Comme la perte de charge est un facteur déterminant pour le bon fonctionnement d'un thermosiphon, on autorise généralement une perte de charge inférieure à 20 g/cm² pour

l'ensemble du système : rebouilleur + tuyauterie pour éviter une surélévation excessive de la colonne

Selon que le passage du liquide dans le rebouilleur s'effectue en une seule passe ou avec recirculation, le problème est différent.

En effet, dans le cas d'une seule passe, c'est le liquide du dernier plateau qui rentre dans le rebouilleur et la fraction revaporisée est importante. On dispose donc d'une différence de niveau appréciable, associée au fait que la densité liquide-vapeur est faible.

Par contre dans le cas de la recirculation, le rebouilleur est alimenté par le liquide du fond de tour, de sorte que le niveau est plus bas que précédemment et d'autre part, la fraction vaporisée reste faible et le débit liquide doit être important.

Figure III.14 Thermosiphon horizontal [11]

III.2.2 Calcul du rebouilleur noyé à circulation naturelle

- Le brut réduit passe du côté calandre et la vapeur d'eau passe côté tube.
- La colonne produit en fond de tour 155 350 kg/h de brut réduit
- La pression de fonctionnement est de 1,3 atm
- Le taux de rebouillage est de 1,3
- La vapeur d'eau est sous la pression de **0,28 atm** absolue

• Les caractéristiques recommandées des tubes (1"¹/₂, 18 BWG et 18 foot de long)

Longueur = 548,64 cm
Diamètre intérieur = 3,556 cm

- Diamètre extérieur = 3,81 cm
- Pas carré P = 3,175 cm
- Le coefficient d'encrassement global doit être inférieur à 7.10⁻⁴ h.m².°C/kcal (coefficient de film maximal pour les liquides organiques : h_m <1500 kcal/h.m².°C)
- La perte de charge dans les tubes doit être inférieure à 0,007 kg/cm² (recommandation de Wuithier)

• Caractéristiques des fluides

Vapeur d'eau

T (H2O) =400 °C (supposition) μ (H2O) = 0,035 kg/h.m ρ (H2O) = 91,3 kg/m³ Λ (H2O) =758 kcal/kg m (H2O) =9 530 kg/h Brut réduit

 $T_{m} = 320 \text{ °C}$ $\mu_{l} = 1,13 \text{ Kg/h.m} (corrélation Beg-Amin-Hussein)$ $\mu_{v} = 0,013 \text{ kg/h.m}$ $\rho_{l} = 845 \text{ Kg/m}^{3}$ $m_{L} = m_{V} = \rho_{v} \cdot V_{v} = \rho_{v} \frac{nRT}{P} (V/L)$ $\rho_{v} = \frac{MM.P}{R.T.(V/L)}$ $\rho_{v} = 453*1,3/0,56*0,082*593 = 21,62 \text{ Kg/m}^{3}$ $\Lambda_{(Brut réduit)} = 185 \text{ Kcal/kg}$ V = 155 350 * 1.3 = 201 955 kg/h L = 155 350 * 2.3 = 357 305 Kg/h% vaporisé : V/L = 0,56 < 0,8 (correct)
m : débit massique (kg/h)

 Λ : chaleur latente (kcal/kg)

 μ_1 , μ_v : viscosité dynamique respectivement de la phase liquide et vapeur (kg/h.m)

 ρ_l , ρ_v : masse volumique respectivement de la phase liquide et vapeur (kg/m³)

• Bilan thermique : en considérant que toute la chaleur cédée par la vapeur d'eau est récupérée par le brut réduit, on peut écrire que

 $Q = V^* \Lambda_{(Brut réduit)} = m^* \Lambda(H_2 0) = 37 361 675 \text{ kcal/h}$

- Coefficient de condensation de la vapeur d'eau : $h_{i0} = 7500 \text{ kcal/h.m}^2.^{\circ}C$ (valeur usuelle à adopter)
- Surface d'un tube : $a_t = 0.67 \text{ m}^2$
- Nous faisons le choix d'un rebouilleur à circulation naturelle
 - Le flux total : $\phi_t < 32\ 000$
 - Coefficient de film vapeur : $h_v \le 1500$

Le gradient de température $\Delta t = (400-320) * h_{i0} / (h_{i0} + h_v) = 66,7 °C$ ($h_{i0} = 7500 \text{ et } h_v = 1500$) Donc d'après la (Figure III.2.3) $h_v = 1500$ est correct.

$$\begin{split} &U_p = h_{i0} * h_v / (h_v + h_{i0}) = 1\,250 \\ &D'où: (Q/A)_p = U_p * \Delta t = 83\,375 > 32\,000 \quad (l'appareil neuf mis en service ne peut pas fonctionner, il faut diminuer \Delta t) \\ &\Delta t = 32000 / 1250 = 25,6 °C \\ &T_{(H20)} = 345,6 °C \quad (au lieur de 400 °C) \\ &(Q/A)_s = U_s * \Delta t = 1000 * 25,6 = 25\,600 \\ &A_m = 37\,361\,675 / 25\,600 = 1460 m^2 \\ &N_t = 1460 / 0,67 = 2\,179 \text{ tubes} \\ &\textbf{Caractéristiques de l'appareil :} \\ &4 \ \acute{e} changeurs 2-2 \ en parallèlle \\ &Diamètre de la calandre : D_c = 99 \ cm \\ &Nombre de tubes par calandre : N_t = 545 \ tubes \\ &Pas \ des \ chicanes \ transversales \ et 2 \ chicanes \ longitudinales \\ \end{aligned}$$

2 entrées séparées par une chicane entière transversale

2 passes côté tubes

Pertes de charges

Il suffit de contrôler la valeur de la perte de charge $\Delta P_C dans la calandre :$ Section de passage : $a_{cL} = \pi/8 (0.99^2 - 545 .0.0381^2) = 0.0742 \text{ m}^2 (1/2 \text{ calandre})$ Périmètre mouillé : $p = \pi/2 (0.99 + 545 .0.0381) + 0.99 = 35,14 \text{ m}$ Diamètre équivalent : $D_e = a_{cL}/p = 0.008 \text{ m}$ Vitesse massique longitudinale : $G_{cL} = 357 \ 305 /(8* \ 0.0742) = 601929 \text{ kg/h.m}^2$ Nombre de Reynolds : Re= $D_e . G_{cL} / \mu_l = 0.008 . 601929 / 1.13 = 4261$ Coefficient de friction $F_e = 0.18$ (Figure III.3.7) $\rho_m = \frac{\rho_l}{1 + \text{ m c } [t_{l-}(\text{DTLM}) - \text{T}] \frac{\text{m c } (\rho_l - \rho_v)}{M \Lambda \rho_v}}{p_v}}$ $\rho_m = 300 \text{ kg/m}^3$ La perte de charge : $\Delta P_e = G_{Cl}^2 [1 + f_e 1/2 D_e] / 1.271.101^5. d_m [g/cm^2]$ $d_m : \text{densité moyenne} = \rho_m / 1000$ $\Delta P_e = 0.6 \text{ kg/m}^2$ Cette faible perte de charge indique que la circulation dans l'appareil se fera très facilement ; en effet, pour une hauteur $H_2 = 0$, on aurait : $H_1 \rho_l = H_2 \rho_v + \Delta P_e + D_c \rho_m$

$$H_1 *845 = 0.6 + 0.99 * 300$$

H₁=0,35 m

Donc le rebouilleur devra être placé à une hauteur de 35 cm

III.3 DIMENSIONNEMENT DES ECHANGEURS DE CHALEURIII.3.1 Description des échangeurs de chaleur

En raffinerie les échangeurs utilisés sont de type à faisceau et à calandre.

Le faisceau de tubes est monté sur deux plaques tubulaires et porte un certain nombre de chicanes. A chaque extrémité sont fixées les boîtes de distribution qui assurent la circulation du fluide à l'intérieur du faisceau en plusieurs passes. Le faisceau est logé dans une calandre, munie de tubulures d'entrée et de sortie pour le second fluide qui circule à l'extérieur des tubes suivant le chemin imposé par les chicanes.

Figure III.15 Schéma d'un échangeur à faisceau tubulaire [2]

Tous les éléments entrant dans la construction des échangeurs ont fait l'objet d'une normalisation publiée par la T.E.M.A. (Standards of Tubular Exchanger Manufacturers Association) qui spécifie les caractéristiques mécaniques et thermiques correspondant aux diverses conditions de fonctionnement. Cette normalisation est complétée par d'autres codes tels que ceux de l'A.P.I. et de l'A.S.M.E.

Les tubes constituant le faisceau forment une classe spéciale répondant aux spécifications du tableau III.3.1. Le diamètre nominal correspond au diamètre extérieur pour lequel les tolérances sont sévères. Les épaisseurs de tube sont normalisées selon le calibre BWG (Birmingham Wire Gage).

Compte tenu de l'orientation du faisceau par rapport à la direction générale du fluide circulant dans la calandre, nous obtenons les quatre dispositions de la Figure V.III.2

a. pas triangulaire normal

c. pas carré normal

b. pas triangulaire renversé

d. pas carré renversé

Figure III.16 Disposions des tubes du faisceau [11]

Le pas triangulaire permet de placer environ 10% de tubes de plus que le pas carré sur une plaque tubulaire de diamètre donné, mais, rend impossible leur nettoyage extérieur.

En raffinerie, nous utilisons surtout des faisceaux au pas carré

Le faisceau de tubes porte également des chicanes transversales qui ont pour but d'allonger le chemin du fluide circulant dans la calandre, d'augmenter la surface d'échange, et d'améliorer ainsi le transfert à l'extérieur du tube par accroissement de la vitesse.

L'espacement B entre chicanes qui conditionne directement la vitesse du fluide est compris entre $D_c/5$ et D_c . Ces chicanes assurent en outre la rigidité du faisceau et sont solidaires de la plaque tubulaire fixe au moyen de tirants et entretoises qui occupent la place de tubes (Figure III.3.3)

Figure III.17 Fixation des chicanes transversales au moyen de tirants et entretoises [11]

Kern propose dans un décompte de tubes, établi en fonction du diamètre intérieur de la calandre, du nombre de passes dans le faisceau, du diamètre des tubes et de leur disposition.

III.3.2 Méthode de calcul des échangeurs à faisceau et à calandre selon Kern.

Notons : en majuscule les propriétés du fluide chaud ; et en minuscule les propriétés du fluide froid ; '1' pour l'entrée et '2' pour la sortir.

• Bilan the rmique

L'équation classique du bilan thermique est la suivante :

 $Q=m(h_2-h_1) = M(H_1-H_2)$

 $H_2 = H_1 + Q / M$

• Calcul de la DTLM

Pour une circulation à contre-courant

 $\Delta t_1 = T_1 - t_2 \qquad \Delta t_1 = T_2 - t_1$

DTLM= (Δt_1 - Δt_2) / ln($\Delta t_1/\Delta t_2$)

• Nombre de passes coté calandre n_c

On définit les grandeurs :

 $E = \frac{\text{chaleur échangée}}{\text{chaleur max échangée}} = \frac{\text{m.c (t2-t1)}}{\text{m.c (T1-t1)}} = \frac{\text{t2-t1}}{\text{T1-t1}} \text{ définie le rendement de l'échange}$

thermique

$$R = \frac{m.c}{M.C} = \frac{T1 - T2}{t2 - t1}$$

F : mesure l'efficacité de l'appareil par rapport au contre courant pur.

Le nombre de passes côté calandre n_c , c'est-à-dire le nombre d'appareils à une passe côté calandre à mettre en série est fixé pour une efficacité F, qui doit être supérieure à 0,75

Le choix ce fait sur la base de l'une des Figures III.16

• Choix de l'appareil

L'estimation du coefficient de transfert sale U_s ' se fait à partir du Tableau III.3.3

- Estimation de la surface d'échange : $A' = Q/U_S F$ (DTLM)
- Choix des dimensions de l'échangeur : la longueur l, du diamètre d₀, des pas P et B et de la disposition des tubes.
- Surface d'échange d'un tube : $a=\Pi d_0 l$
- Estimation du nombre de tubes par calandre : N'_t =A'/a. n_c
- Choix de l'appareil ou des appareils en série : à partir du Tableau III.3.2 donnant N_t le plus voisin possible de N'_t avec un nombre de passes, côté tubes : n_t= 2, 4, 6 ou 8 par calandre.
- Choix des fluides à l'intérieur du faisceau et dans la calandre : le fluide le mois sale passe dans la calandre, alors que le fluide le plus sale ou le plus visqueux passe dans les tubes car il est plus facile de nettoyer les tubes que la calandre.
- Détermination du coefficient de transfert sale U_s de l'appareil : U_s =U'_s N'_t / N_t

Pour un élément de tube de longueur dL, le flux de chaleur dQ s'écoulera en rencontrant cinq résistances :

 $\frac{1}{h_0}$:résistance dans le fluide à l'extérieur du tube, égale à l'inverse du

coefficient de film externe ;

 R_{S0} : résistance dur au film d'encrassement déposé sur l'extérieur du tube ;

 R_t : résistance due à la paroi métallique du tube (elle peut être négligée dans les calculs);

 R_{i0} : résistance due au film d'encrassement déposé sur l'intérieur du tube ;

 $\frac{1}{h_{i0}}$:résistance dans le fluide à l'intérieur du tube, égale à l'inverse du

coefficient de film interne ;

La résistance globale au transfert est égale à la somme des résistances

$$R_{S} = \frac{1}{h_{0}} + R_{S0} + R_{i0} + \frac{1}{h_{i0}} = \frac{1}{Us}$$

 U_S est le coefficient de transfert sale relatif à l'élément de tube dL. Lorsque cet élément est neuf, les résistances R_{S0} et R_{i0} sont nulles et il est définit alors un coefficient de transfert propre U_p , tel que :

$$\frac{1}{\mathrm{Up}} = \frac{1}{\mathrm{ho}} + \frac{1}{\mathrm{hio}}$$

• Températures caloriques : si l'un des fluides est visqueux, K_c et F_c est lu à partir de la Figure III.3.5

Avec : F_c=0,5 si les écarts de températures sont faibles

$$T_c = T_2 + F_c (T_1 - T_2)$$

 $t_c = t_1 + F_c(t_2 - t_1)$

• Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
- Section par passe $a_t = N_t/n_t = \pi d_i^2/4$	- Section par calandre a_{cT} (Tableau III.3.5)
- Vitesse massique : $G_t = M/a_t$	- Vitesse massique : $G_{cT}=M'/a_{cT}$
- Caractéristiques du fluide à T_c ou t_c : c, d,	- Diamètre équivalent pour un pas carré:
λ et μ	$D_e=4. P^2/\pi d_0 - d_0$
- Nombre de Reynolds : $Re_t = d_i G_t / \mu$	- Caractéristiques du fluide à T_c ou t_c : c',
- $J_h = (h_i d_i / \lambda) (c \mu / \lambda)^{(-1/3)} \Phi_t^{-1}$ (Figure	d', λ' et μ'
III.3.6)	- Nombre de Reynolds : $Re_{cT}=D_e G_{cT} / \mu'$
- $h_i/\Phi_t = j_h (\lambda/d_i) (c \mu / \lambda)^{(1/3)}$	- J'_{h} = (h_0 D_e / λ ') (c' μ ' / λ ') (-1/3) Φ_e -1
- $h_{i0}/ \Phi_t = (h_i/ \Phi_t) (d_i/d_0)$	(Figure III.3.7)
	- $h_0/\Phi_c = j'_h (\lambda'/D_e) (c' \mu' /\lambda')^{(1/3)}$

• La capacité thermique C_p est calculée à partir de l'équation de Fallon et Watson

 $Cp = (0.045 \ kuop - 0.233) + (0.44 + 0.1777. \ 10^{-3} \ kuop) \ T - 0.153. \ 10^{-6} \ T^2$

Avec Tc [°C]; Cp [kcal/kg.°C];

 La viscosité dynamique μ est calculée à partir de la corrélation de Beg-Amin-Hussein

 $\mu = v.\rho$ v = A * exp(B/T) $A = -0,0339 * (API)^{0.188} + 0,241 * (T_{eb}/B)$ $B = exp (5,471+0,00342 * T_{eb})$ $\mu : viscosité dynamique [cPs]$ v : viscosité cinématique [cSt] $\rho : masse volumique [kg/m³]$ T : empérature absolue en °K $T_{eb} : température d'ébullition à 50% du volume, en °K$

API : densité de la substance

L'erreur moyenne donnée par cette corrélation est de 7,2%

• Température des tubes : $t_t = T_c - \frac{hi0/\Phi t}{h0/\Phi c + hi0/\Phi c}$ (T_c - t_c) Détermination de μ_t à t_t (Faisce au) $\Phi_t = (\mu/\mu_t)^{0.14}$ $h_{i0} = (h_{i0}/\Phi_t) \Phi_t$ Détermination de μ'_t à t_t (Calandre) $\Phi_c = (\mu'/\mu'_t)^{0.14}$ $h_0 = (h_0/\Phi_c) \Phi_c$

À comparer avec la résistance admissible R_S dans le Tableau III.3.4

• Pertes de charge

F	<u>'aisceau</u>	<u>C</u>	alandre
-	Coefficient de friction f_t : (Figure III.3.6) tube	-	Coefficient de friction f_{cT} : (Figure III.3.7) tube
-	L=n _t l	_	$L = (N_c + 1) D_c$
-	$\Delta P_{t} = (n_{c} n_{t} G_{t}^{2} / 1,271. \ 10^{15}. \ d) (2 + f_{t} l/d_{i} \Phi_{t})$	-	$\Delta P_{c} = (n_{c} f_{cT} G_{cT}^{2} (N_{c} + 1) D_{c} / 1,271. \ 10^{15}. \ d'. D_{e}$
	kg/cm ²		$\Phi_{\rm c}$) kg/cm ²

III.3.3. Calcul de l'échangeur Pétrole brut-essence légère

• Bilan the rmique

	Fluide chaud	Fluide froid
	Tête de colonne (calandre)	Pétrole-brut (tubes)
Température d'entrée (°C)	100	20
Température de sortie (°C)	92	40
Température moyenne (°C)	96	30
Débit massique (kg/h)	145 629	750 000
Densité	0,7118	0,7936
Quantité de chaleur (kcal/h)	10 747 500	10 747 500

- DTLM= 95,8 °C
- Nombre de passes côté calandre: n_c=1, pour F=0,99
- Choix de l'appareil : Nous somme dans le cas où le fluide chaud est un hydrocarbure moyen, et le fluide froid un hydrocarbure moyen.
 Nous estimons U'_s= 200 kcal/h.m².°C, et A'= 566 m²
- Choix des dimensions de l'appareil

Caractéristiques	Tubes			Chicanes	Calandre
(cm)	D _{int} D _{ext} 1		P (pas normal carré)	D _c	
	3,556	3,81	609,6	4,445	88,9

- Surface d'échange d'un tube : $a = 0,7138 \text{ m}^2$
- Nombre de tubes par calandre : N'_t = 792
- Nombre de passes, côté tubes : $n_t=2$

 $N_t = 824$ $D_c = 88,9 \text{ cm}$

- $U_s = 192,2 \text{ kcal/h.m}^2.^{\circ}C$
- Températures caloriques : $F_c=0.5$; $T_c=96$ °C ; $t_c=30$ °C

• Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
- Section par passe $a_t = 9,9315 .10^{-4} m^2$	- Section par calandre $a_{cT} = 0.04 \text{ m}^2$
- Vitesse massique : $G_t=75 517*10^4 \text{ kg/h.m}^2$	-Distance minimale de passage :P-d ₀
- Caractéristiques du fluide à T _c ou t _c : c, d,	=0,635 cm
λ et μ	- Aire de passage : $a_{cT} = 0.024$ m ²
• C _p = 0,88 kcal/kg.°C	- Vitesse massique : G_{cT} = 3 640 725 kg/h.m ²
• $d=35,56.10^{-3}$ m	-Diamètre équivalent : $D_e = 35$ cm
• $\lambda = 86124,4$ kcal/h.°C	Caractéristiques du fluide à T_c ou t_c : c',
• $\mu = 1,94 \text{ kg/h.m}$	d', λ ' et μ ' :
	• C'p= 0,525 kcal/kg.°C
- Nombre de Reynolds : Re _t =1 384 218	• $\lambda' = 86124,4 \text{ kcal/h.}^{\circ}\text{C}$:
$-J_{\rm h} = 1\ 200$	• $\mu' = 0.63 \text{ kg/h.m}$
$-h_i/\Phi_t = 337458$	
$-h_{i0}/\Phi_{t}=314960$	- Nombre de Reynolds : $Re_{cT} = 2022625$
	$-J'_{h} = 1500$
Φ t : facteur de correction de la perte de charge	$-h_0/\Phi_c = 1$ 687
Coefficient de transfert propre : Up= 162 910	kcal/h.m ² .°C
• La résistance d'encrassement : $R_S = 0,005$	$h.m^2.°C/kcal$
Pertes de charge	

<u>Faisceau</u>

<u>Calandre</u>

- Coefficient de friction $f_t = 0,004$ -
- L = 6242 m _
- $\Delta P_t = 7,07 \text{ kg/cm}^2$ -

- Coefficient de friction $f_{cT} = 0.04$ $\Delta P_c = 0.7$ kg/cm²

Figure III.18 Schéma de l'échangeur Pétrole brut – Essence légère

III.3.4 Calcul de l'échangeur Pétrole brut-Essence lourde

- Fluide chaud Fluide froid Essence lourde (calandre) Pétrole-brut (tubes) Température d'entrée (°C) 165 40 Température de sortie (°C) 130 70 Température moyenne (°C) 147,5 55 Débit massique (kg/h) 177 750 750 000 Densité 0,7932 0,7936 Quantité de chaleur (kcal/h) 19 582 500 19 582 500
- a. Bilan thermique

- DTLM= 92,5°C
- Nombre de passes $n_c = 1$, pour F=0,98
- Choix de l'appareil : Nous somme dans le cas où le fluide chaud est un hydrocarbure moyen, et le fluide froid un hydrocarbure moyen.
- Nous estimons U's= 200 kcal/h.m².°C, et A'= $1080 m^2$
- Choix des dimensions de l'appareil

Caractéristiques	Tubes			Chicane	Calandre
(cm)	D _{int} D _{ext} 1		P(pas normal carré)	D _c	
	3,556	3,81	609,6	4,445	94

- Surface d'échange d'un tube : a =0,7138 m^2
- Estimation du nombre de tubes par calandre : $N'_t = 1513$
- Nombre de passes, côté tubes : $n_t=2$ N_t= 1024 D_C=94 cm
- $U_s = 295 \text{ kcal/h.m}^2.^{\circ}\text{C}$
- Températures caloriques : $F_c=0.5$; $T_c = 150$ °C ; $t_c=55$ °C
- Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
 Section par passe a_t= 9,9315 .10⁻⁴ m² Vitesse massique : G_t=75 517*10⁴ kg/h.m² Caractéristiques du fluide à T_c ou t_c : c, d, λ et μ C_p= 0,36 kcal/kg.°C d= 35,56.10⁻³ m λ= 86124,4 kcal/h.°C μ=0,86 kg/h.m 	 Section par calandre a_{cT} =0,04 m² Distance minimale de passage :P-d₀ =0,635 cm Vitesse massique : G_{cT}= 4 443 750 kg/h.m² Aire de passage : a_{cT} = 0,024 m² Diamètre équivalent : D_e =38 cm Caractéristiques du fluide à T_c ou t_c : c', d', λ' et μ' :
- Nombre de Reynolds : $Re_t=3 113 223$ - $J_h = 3 000$ - $h_i / \Phi_t = 1 130 848 259$ - $h_{i0} / \Phi_t = 1 053 677 512$	 C'p= 0,6 kcal/kg.°C λ'= 86124,4 kcal/h.°C: μ'=0,85 kg/h.m Nombre de Reynolds : Re_{cT}= 19 936 J'_h = 80 h₀/Φ_c= 3 280 302

- Coefficient de transfert propre : Up= 1.679.352 k cal/h.m².°C
- La résistance d'encrassement : $R_S = 0,005$ h.m².°C/ kcal ٠
- Pertes de charge •

Faisceau

- Coefficient de friction $f_t = 0,005$
- L = 6242 m
- $\Delta P_t = 1,04 \text{ kg/cm}^2$ _

Calandre

- Coefficient de friction $f_{cT} = 0,055$ $\Delta P_c = 2,8 \text{ kg/cm}^2$

Figure III.19 Schéma de l'échangeur Pétrole brut – Essence lourde

III.3.5 Echangeur Pétrole brut-Kérosène

• Bilan thermique

	Fluide chaud	Fluide froid
	Kérosène (calandre)	Pétrole-brut (tubes)
Température d'entrée (°C)	227	70
Température de sortie (°C)	191	100
Température moyenne (°C)	209	85
Débit massique (kg/h)	91 397	750 000
Densité	0,8381	0,7936
Quantité de chaleur (kcal/h)	16 350 000	16 350 000

- DTLM= $124^{\circ}C$; $n_c=1$
- Nombre de passes $n_c = 1$, pour F=0,97
- Choix de l'appareil : Nous somme dans le cas où le fluide chaud est un hydrocarbure moyen, et le fluide froid un hydrocarbure moyen.
- Nous estimons U's= 200 kcal/h.m².°C, et A'= 679,7 m^2
- Choix des dimensions de l'appareil

Caractéristiques	Tubes			Chicanes	Calandre
(cm)	D _{int} D _{ext} 1		P(pas normal carré)	D _c	
	3,556	3,81	609,6	4,445	94

- Surface d'échange d'un tube : $a = 0,7138 \text{ m}^2$
- Estimation du nombre de tubes par calandre : N'_t =952
- Nombre de passes, côté tubes : $n_t=2$

 $N_t = 914$ $D_c = 94 \text{ cm}$

• $U_s = 208 \text{ kcal/h.m}^2.^{\circ}C$; $F_c=0.5$; $T_c = 209 \text{ }^{\circ}C$; $t_c=85 \text{ }^{\circ}C$

- Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
- Section par passe $a_t = 9,9315 .10^{-4} m^2$ - Vitesse massique : $G_t = 75 517*10^4 kg/h.m^2$ - Caractéristiques du fluide à T_c ou t_c : c, d, λ et μ	 Section par calandre a_{cT} =0,04 m² Distance minimale de passage :P-d₀ =0,635 cm Vitesse massique : G_{cT}= 3 808 208 kg/h.m²
 C_p= 0,5 kcal/kg.°C d= 35,56.10⁻³ m λ= 86124,4 kcal/h.°C μ=0,43 kg/h.m 	 Aire de passage : a_{cT} = 0,024 m² Diamètre équivalent : D_e= 38 cm Caractéristiques du fluide à T_c ou t_c : c', d', λ' et μ' : C'p= 0,59 kcal/kg.°C
- Nombre de Reynolds : $\text{Re}_t = 62\ 450\ 802$ - $J_h = 20\ 000$ - $h_i/\ \Phi_t = \ 657100609$ - $h_{i0}/\ \Phi_t = \ 613\ 293\ 902$	 λ'= 86124,4 kcal/h.°C: μ'=1,05 kg/h.m Nombre de Reynolds : Re_{cT}= 1 378 209 J'_h = 700 h₀/Φ_c= 3 062 521

- Coefficient de transfert propre : Up= $1 239 652 \text{ kcal/h.m}^2.^{\circ}C$
- La résistance d'encrassement : $R_s = 0,005$ h. m². °C/ kcal •
- Pertes de charge

Faisceau

- Coefficient de friction $f_t = 0,003$
- L = 6242 m
- $\Delta P_t = 3 \text{ kg/cm}^2$

- $\frac{\text{Calandre}}{\text{Coefficient de friction } f_{cT} = 0,05}$ $\Delta P_c = 7,5 \text{ kg/cm}^2$

Figure III.20 Schéma de l'échangeur Pétrole brut – Kérosène

III.3.6 Echangeur Pétrole brut-Gasoil

	Fluide chaud	Fluide froid
	Gasoil (calandre)	Pétrole-brut (tubes)
Température d'entrée (°C)	255	100
Températude de sortie (°C)	115	140
Température moyenne (°C)	183	120
Débit massique (kg/h)	219 750	750 000
Densité	0,8436	0,7936
Quantité de chaleur (kcal/h)	25 463 822	25 463 822

a. Bilan thermique

- DTLM= $49^{\circ}C$
- Nombre de passes $n_c = 2$, pour F=0,95
- Choix de l'appareil : Nous somme dans le cas où le fluide chaud est un hydrocarbure moyen, et le fluide froid un hydrocarbure moyen.
- Nous estimons U's= 200 kcal/h.m².°C, et A'= 2598 m²
- Choix des dimensions de l'appareil

Caractéristiques	Tubes			chicanes	calandre
(cm)	D _{int}	D _{ext} 1		P (pas normal carré)	D _c
	3,556	3,81	609,6	4,445	94

- Surface du nombre de tubes par calandre : $N'_t = 1907$
- On réparti les tubes en deux échangeurs en parallèle
 N'_t = 954
- $N_t = 914$ tubes par échangeur
- Nombre de passes, côté tubes : $n_t=2$
- $U_s = 208.8 \text{ kcal/h.m}^2.^{\circ}C$
- Températures caloriques : $F_c=0.5$; $T_c = 185 \text{ °C}$; $t_c= 108 \text{ °C}$

• Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
 Section par passe a_t= 9,9315 .10⁻⁴ m² Vitesse massique G_t=377587 737 kg/h.m² Caractéristiques du fluide à T_c ou t_c : c, d, λ et μ C_p= 0,45 kcal/kg.°C d= 35,56.10⁻³ m λ= 86124,4 kcal/h.°C μ=1,08 kg/h.m 	 Section par calandre a_{cT} =0,04 m² Distance minimale de passage :P-d₀ =0,635 cm Vitesse massique : G_{cT}= 2746875 kg/h.m² Aire de passage : a_{cT} = 0,024 m² Diamètre équivalent : D_e =56,4cm Caractéristiques du fluide à T_c ou t_c : c', d', λ' et μ' : C'n= 0.76 kcal/kg °C
- Nombre de Reynolds : $\text{Re}_t = 12\ 432\ 426$ - $J_h = 10\ 000$ - $h_i/\ \Phi_t = 4\ 311\ 891\ 363$ - $h_{i0}/\ \Phi_t = 4\ 024\ 431\ 939$	 λ'= 86124,4 kcal/h.°C: μ'=0,85 kg/h.m Nombre de Reynolds : Re_{cT}= 1 822 632 J'_h = 1 500 h₀/Φ_c= 582 315 342

- Coefficient de transfert propre : Up= 738 496 649 k cal/h.m².°C
- La résistance d'encrassement : $R_S = 0,005$ h. m². °C/ kcal ٠
- Pertes de charge ٠

Faisceau

- Coefficient de friction $f_t = 0,0025$
- L = 6242 m
- $\Delta P_t = 0.6 \text{ kg/cm}^2$

- $\frac{\text{Calandre}}{-}$ Coefficient de friction $f_{cT} = 0.05$ $\Delta P_c = 6.7$ kg/cm²

Figure III.21 Schéma de l'échangeur Pétrole brut – Gasoil

III.3.7 Echangeur Pétrole brut-Résidu atmosphérique

	Fluide chaud	Fluide froid		
	Gasoil (calandre)	Pétrole-brut (tubes)		
Température d'entrée (°C)	320	140		
Température de sortie (°C)	230	220		
Température moyenne (°C)	275	180		
Débit massique (kg/h)	111 000	750 000		
Densité	0,9213	0,7936		
Quantité de chaleur (kcal/h)	39 675 000	39 675 000		

• Bilan thermique

- DTLM= $95^{\circ}C$
- Nombre de passes $n_c = 2$, pour F=0,97
- Choix de l'appareil : Nous somme dans le cas où le fluide chaud est un hydrocarbure lourd, et le fluide froid un hydrocarbure moyen.
- Nous estimons U's= 150 kcal/h.m².°C, et A'= 2870 m²
- Choix des dimensions de l'appareil

Caractéristiques	tubes			chicanes	calandre
(cm)	D _{int}	D _{ext}	1	P (pas normal carré)	$D_{calandre}$
	3,556	3,81	609,6	4,445	99

- Surface d'échange d'un tube : $a = 0,7138 \text{ m}^2$
- Estimation du nombre de tubes par calandre : N'_t = 2010 On réparti les tubes en deux échangeurs en parallèle N'_t = 1005

 $N_t = 1024$ tubes par échangeur

- Nombre de passes, côté tubes : $n_t=1$
- $U_{S} = 147 \text{ kcal/h.m}^{2.\circ}\text{C}$
- Températures caloriques : $F_c=0.5$; $T_c=275$ °C ; $t_c=180$ °C

- Calcul du coefficient de transfert propre U_p

<u>Côté faisceau</u>	<u>Côté calandre</u>
 Section par passe a_t= 9,9315 .10⁻⁴ m² Vitesse massique : G_t=104 885 kg/h.m² Caractéristiques du fluide à T_c ou t_c : c, d, λ et μ C_p= 1,27 kcal/kg.°C d= 35,56.10⁻³ m λ= 86124,4 kcal/h.°C μ=0,77 kg/h.m 	 Section par calandre a_{cT} =0,04 m² Distance minimale depassage P-d₀ =0,635 cm Vitesse massique : G_{cT}= 4994,38 kg/h.m² Aire de passage : a_{cT} = 0,025 m² Diamètre équivalent : D_e =32 cm Caractéristiques du fluide à T_c ou t_c : c', d', λ' et μ' : C'p= 0,51 kcal/kg.°C
- Nombre de Reynolds : $\text{Re}_t = 7104, 21. \ 10^6$ - $J_h = 5\ 000$ - $h_i/\ \Phi_t = 17\ 634\ 665$ - $h_{i0}/\ \Phi_t = 16\ 459\ 021$	 λ'= 86124,4 kcal/h.°C: μ'=0,89 kg/h.m Nombre de Reynolds : Re_{cT}= 6 424 931 J'_h = 900 h₀/Φ_c= 111921

- Coefficient de transfert propre : Up= $86884.8 \text{ k cal/h.m}^2.^{\circ}C$ ٠
- La résistance d'encrassement : $R_S = 0,0007$ h.m².°C/ kcal ٠
- Pertes de charge

Faisceau

- Coefficient de friction $f_t = 0,003$
- L = 6242 m
- $\Delta P_t = 0.6 \text{ kg/cm}^2$

- <u>Calandre</u> Coefficient de friction $f_{cT} = 0,05$ $\Delta P_c = 3,4 \text{ kg/cm}^2$

Figure III.22 Schéma de l'échangeur Pétrole brut – Résidu atmosphérique

III.4 DIMENSIONNEMENT DU FOUR DE L'UNITE TOPPING

III.4.1. Description de l'appareil

Dans les installations de raffinage, les calories nécessaires à la vaporisation partielle du pétrole brut allant dans la colonne de distillation sont apportées par l'intermédiaire d'un four à chauffage direct, dans lequel les calories apportées par la combustion sont transmises pas les mécanismes de radiation, de conduction et de convection au fluide à réchauffer qui circule dans un faisceau de tubes, d'où le nom de « four tubulaire » que l'on donne à ce type d'appareils.

Description générale :

Le four comporte une zone dite « zone de radiation » qui est celle où les tubes sont directement exposés à la flamme et reçoivent la chaleur principalement par radiation des produits de combustion. Cette zone est la chambre de combustion où se développe la flamme. C'est devant les parois de cette zone que sont placés les tubes, généralement en une seule rangée

La zone de convection est installée à la sortie des fumées de la chambre de combustion. Elle est constituée d'un faisceau de tubes placés perpendiculairement ou parallèlement à la direction des fumées.

Les parois intérieures du four sont recouvertes par un garnissage réfractaire et isolant, généralement de la brique réfractaire, pour réduire les pertes calorifiques à l'extérieur.

Les fumées qui passent par la zone de radiation, puis par la zone de convection sont évacuées par la cheminée.

La cheminée permet à la fois d'évacuer les fumées de combustion dans l'atmosphère (à une hauteur telle qu'elle ne risque pas de gêner le voisinage) ; mais aussi par son tirage de mettre la chambre de combustion en dépression et de provoquer ainsi l'entrée d'air nécessaire à la combustion par les volets d'air des brûleurs.

Tubes et accessoires du faisceau tubulaire :

Le faisceau tubulaire est en général constitué de tubes d'acier droits placés parallèlement les uns aux autres, le passage d'un tube à l'autre se faisant par un coude à 180° soudé ou par une boite de retour.

Les dimensions les plus utilisées et les tolérances dimensionnelles des tubes du four sont données dans le tableau III.4.1 extrait de la norme AFNOR.

CHAPITRE III : Dimensionne ment des équipements

Diamètres extérieurs									
En mm	76.2	88.9	101.6	144.3	127	139.7	168.3	177.8	201.2
Epaisseurs	paisseurs								
En mm	7	10	14	18	23				
Tolérances									
sur	± 12.5	%							
épaisseur	a) Tolé	erance su	r la norme	$: D \le 101.$	6 + 0.8	- 1mm			
Sur	D > 101.6 + 0.75% - 1% de D								
diamètre	tre b) Tolérances réduites : $D \le 101.6 + 0.4 - 1$ mm								
	D > 101.6 + 0.4 mm - 1% de D								
	c) Calibrage :								
	Une bague de 30 mm de longueur ayant un diamètre supérieur de 0.5 mm au								
	diamètre extérieur nominal du tube doit pouvoir être passée :								
	Pour les tubes à tolérances normales, sur une longueur de 200 mm à chaque								
	extrémité ;								
	Pour les tubes à tolérance s réduites, sur toute la longueur								

Tableau III.13. Dimensions et tolérances dimensionnelles des tubes de four

Rendement des fours :

Le rendement d'un four est défini comme le rapport entre la quantité de chaleur absorbée par le fluide et celle dégagée par la réaction de combustion.

Une partie, en général très faible de la chaleur non absorbée est perdue par conduction à travers les parois du four. Les pertes les plus importantes sont les pertes à la cheminée, dissipées dans l'atmosphère par les fumées qui sortent à des températures assez élevées.

Ces pertes à la cheminée dépendent de l'excès d'air et de la température des fumées. Nous pouvons jouer sur le premier facteur, mais en ardant un excès d'air correct qui assurera la combustion complète des gaz.

Le four doit donc être agencé en vue de la combustion d'une quantité suffisante de combustible. Il doit comporter des brûleurs qui sont alimentés en combustible et en air. L'admission de l'air de combustion est obtenue par la dépression qui règne à l'intérieur du four. Cette dépression est elle-même due au tirage de la cheminée

Figure III.23 Four « cabine » à tubes horizontaux [2]

III.4.2 Calcul du four tubulaire

Le fluide à chauffer est le pétrole brut.

La température de sortie du four doit être fixée de telle manière à assurer la vaporisation à l'entrée de la colonne de : l'essence légère, de essence lourde, du kérosène et du gasoil ; tout en veillant à ne pas atteindre la température de cracking.

Cela qui correspond à un taux de vaporisation de 86,1% en volume de la charge totale alimentant la colonne de distillation sous la pression de 1,3 atm

En supposant que les pertes de chaleur soient négligeables :

La température d'entrée du four = $220 \, ^{\circ}C$ (c'est la température de sortie de la série d'échangeurs de chaleur)

La température de sortie du four = 330 °*C* (c'est la température d'entrée de la colonne de distillation)

Hypothèses :

- Rendement du four tubulaire: 80%
- Excès d'air de combustion: 20%
- Température de l'air de combustion = 20°C
- Humidité = 60%

Entrée du four :	Sortie du four :
Température d'entrée= 220°C	Température de sortie= 330°C
%liquide= 56,2% poids	%liquide=22,9% poids
%vapeur= 43,8% poids	%vapeur= 77,1% poids
$H_{liquide} = 136,1 \text{ kcal/kg}$	H_{liq} = 216,6 kcal/kg
H _{vapeur} =194,4 kcal/kg	H _{vap} =261,1 kcal/kg
$H_{entrée} = 0,438 \times 194,4 + 0,56 \times 136,1$	H _{sortie} = 0,771*261,1+ 0,229*216,6
H _{entrée} =161,6 kcal/kg	H _{sortie} = 251 kcal/kg

Remarque : Les % vaporisés sont obtenus par lecture sur la courbe flash 1 atm.

- Débit de la charge = 750 tonnes/heure
- Quantité de chaleur absorbée = débit $(H_{sortie} H_{entrée}) = 67\ 050\ 000\ kcal/h$
- Quantité de chaleur dégagée= Chaleur absorbée/rendement = 83 812 500 kcal/h

Le combustible utilisé dans le four est un gaz de raffinerie ayant la composition suivante :

Constituants	% volume
H ₂	10
CH ₄	50
C ₂ H ₆	35
C ₃ H ₈	5

Tableau III.14 Co	mpositions des	gaz de raffinerie

Les réactions de combustions :

- H_2 + $\frac{1}{2}$ O₂ => H_2O
- $CH_4 + 2$ $O_2 \implies CO_2 + 2 H_2O$
- $C_2H_6 + 7/2 O_2 \implies 2 CO_2 + 3 H_2O$
- $C_3H_8 + 5$ $O_2 \implies 3 CO_2 + 4 H_2O$

Constituants	% volume	O_2 pour combustion neutre de 100 m ³ de		
		combustible		
H ₂	10	5		
CH ₄	50	100		
C ₂ H ₆	35	122,5		
C ₃ H ₈	5	25		
O ₂ excès d'air (20%)	I	50,5		
Total O ₂ dans l'air		303		
N ₂ dans l'air		1 212		
		$(80\% N_2 \text{ et } 20\% O_2 \text{ dans l'air})$		
Air de combustion		1 515		

Tableau III.15 Total de l'air de combustion

	Volume des fumées	s (m ³)		
	CO ₂	H ₂ O	O ₂	N ₂
H ₂	-	10	-	-
CH_4	50	100	-	-
C_2H_6	70	105	-	-
C_3H_8	15	20	-	-
Air		21,3	50,5	1 212
Total	135	256,3	50,5	1 212
% vol ou pression partielle	8,2	15,5	3,1	73,3
Vol fumées	1 653,8		<u> </u>	

Tableau III.16 Composition des fumées pour 100 m³ de combustible

- La vapeur d'eau dans l'air de combustion a une tension de vapeur à 20° C = 17,4 mmHg
- Humidité relative= 60%
- Quantité d'eau dans l'air de combustion = 0,6*17,4*1515 / (760-17,4) = 21,3

Constituants	Volume (m ³)	% volumique
CO ₂	135	9,7 %
O_2	50,5	3,6 %
N ₂	1 212	86,7 %
Total	1 397,5	100 %

Tableau III.17 Analyse des fumées sèches

Masse volumique des fumées = 1,24 kg/m³ (données dans le Wuithier tome II page 1187)

Pour 100 m³ de gaz de combustion, on obtient 1653,8 m³ de fumées

Donc 1 m³ de gaz de combustion, on obtient 16,538 m³ de fumées

1 kg de Gaz donne =====> 21 kg de fumée

1 kg de gaz ==== > 20 kg d'air.

• Enthalpie des fumées et température théorique de combustion

a. chaleur dégagée pas la combustion d'1 kg de combustion :

Rappels :

- Le pouvoir calorifique inferieur représente la quantité de chaleur (Kcal), dégagée par la combustion, à pression constante normale, d'un Kg de combustible ; les éléments de la combustion étant pris et les produits de la combustion étant ramenés à 0°C ; l'eau provenant de la combustion est supposée restée à l'étant vapeur à 0°C
- La chaleur sensible est la quantité de chaleur qui est échangée, sans transition de phase physique, entre deux corps formant un système isolé.

Pouvoir calorifique inférieur = 11050/0,933 = 11850 kcal Chaleur sensible de l'air à 20° C = 20*20*0,24 = 96 kcal Chaleur sensible des gaz = 1*20*0,5 = 10 kcal

Total

= 11 956 kcal

b. chaleur spécifique moyenne des fluides entre 0°C et T°C (tableau III.4.6)

Le calcul d'après la composition des fumées donne

Cp=7,16+12,4*10⁻⁴ t kcal/Kmol.°C Cp=0,258+5,5 * 10^{-5} t kcal/kg.°C

c. Enthalpie des fumées pour 1kg de combustible = 21*Cp*T kcal

On déduit à partir de la courbe de la figure III.4.2 donnant les quantités de chaleur restant en fonction de la température.

La température théorique de combustion correspond au point où l'enthalpie des fumée = chaleur libérée par combustion + chaleur sensible des combustibles+chaleurs sensible de l'air de combustion.

 $0,258+5,5 * 10^{-5} t = 11 956 ===> température de flamme = 1 705 °C$

• Débit de combustible et de fumée

Débit combustible = chaleur dégagée / chaleur dégagée par Kg de combustible = 7 010 Kg/h Débit des fumée = 7 010 *21 = 147 211 Kg/h

• Répartition des pertes de températures des fumées à la sortie de la zone de convection Nous admettons 20% des pertes réparties comme suit :

> Pertes par la zone de radiation 1% Pertes par la zone de convection 0,5% Pertes par les fumées 18,5%

• Températures des fumées à la base de la cheminée :

18,5% de la chaleur dégagée par combustion s'échappe de la cheminée, soit :

11956*0,185 = 2 212 kcal/h

 $2\ 212 = 21*(0,258+4,5*10^{-5} t)*t$

T=466°C

• Caractéristique des tubes :

D_{ext}= 203,2 mm

Dint=193,2 mm

Epaisseur = 10 mm

Entrax= 340 mm

Les tunes sont répartis en 4 passes parallèles, chaque passe ayant un nombre de tube pair pour

avoir les entrées et les sorties du mêmes côté

Débit par passe = 750 000 /4 = 187 500 kg/h

Vitesse massique = $187 500 / [3600*3,14*(0,193)^2] = 1781,2 \text{ Kg/m}^2.\text{s}$

• Dimensions du four :

Longueur de la chambre de combustion : 20 mètres

Nombre de tubes en radiation : 70

Nombre de tubes supérieurs : 10

Nombre de tubes sur mûrs inclinés : 2* 10

Nombre de tubes sur mûrs verticaux : 2*20

Largeur de la zone de convection : 4 mètres

III.4.3 Calcul de la zone de radiation

• Surface équivalente des tubes

Entraxe =1,67 diamètre extérieur

Pour le cas de la radiation totale sur une seule rangée le coefficient d'absorption du faisceau tubulaire le long des mûrs lu sur la figure III.4.3 : courbe (B), $\xi_A=0.93$

Pour les tubes supérieurs, le coefficient d'absorption du faisceau tubulaire le long des mûrs lu sur la figure III.4.3 : courbe (D) $\xi_A=0,73$

La surface des plans d'absorption A_{RT} :

Surface des tubes latéraux : $20*0,34*60 = 408 \text{ m}^2$

Surface des tubes supérieurs : $0,34*20*10 = 68 \text{ m}^2$

 A_{RT} =408+68= 476 m²

Surface équivalente des tubes

 $\begin{aligned} \xi_A * A_{RT} &= 408*0,93 + 68*0,73 \\ surface des tubes : A= 429 m^2 \\ \xi_{A \text{ (moyen)}} = A / A_{RT} &= 0,9 \end{aligned}$

• Epaisseur utile du rayonnement :

Dimensions du four : 4 x 7,2 x 20 Ce qui correspond sur le Tableau III.4.7 1.2.5 === > épaisseur = 1,3 fois la plus petite dimension 1.1.5 === > épaisseur = la plus petite dimension

On prend alors l'épaisseur I=1,17 fois la plus petite dimension =1,17*4

L'épaisseur I=4,68m

• Calcul du produit P.I :

P : pression partielle CO₂, H₂O

 $P = 0,082 \pm 0,155 = 0,237$

P.I = 0,237*4,68 = 1,11 atm.m

• Température de peau des tubes :

Nous l'estimons 25°C supérieur à la température de sortie = 330+25=355°C Nous estimons la température des gaz T_g =1000°C Le facteur d'émission de flamme est lu sur la courbe Figure III.4.4 $\xi_{f=}0,53$

• Facteur global d'échange :

Surface totale de la zone de radiation :

Pignons : $2*(4*7,2)+ 2* 3,65*(4+3,4)/2 = 84,61 \text{ m}^2$ Murs : $2*(3,7+7,2)*20=436 \text{ m}^2$ Sole : $4*20=80 \text{ m}^2$ Totale = 600,6 m²

Surface équivalente des tubes situés devant les réfractaires

$$A_{\rm R}/A=0,6$$

Le facteur d'échange F est lu sur la Figure III.4.5

F=0,6

Par la formule : F= 1/ $\left[\frac{1}{\xi A} + \frac{A}{AR + A} \left(\frac{1}{\xi F} - 1 \right) \right] = 0,58$

Cette valeur correspond à celle trouvée précédemment.

 $F.A=0,58 * 429 = 249 m^2$

 $Q_{dégagé}$ / F.A= 83 812 500 / 249 = 336 596 kcal/h.m²

• Température de pseudo-flamme

La chaleur spécifique des gaz entre 0°C et 1000°C : Cp=0,303

 $T_{p-f} = 11\ 956\ /\ 0,303*21 = 1900^{\circ}C$

• Température résiduelle des gaz

Elle est obtenue par lecture sur la Figure III.4.6

Tg=900°C

• Quantité de chaleur absorbée par radiation et taux de transfert :

Enthalpie des fumées à 900°C :

21*0,303*990= 6299,4 kcal

Taux de transfert par radiation : R = (11956 - 6299,4) / 11956 = 0,473

= > 47,3% de la chaleur est absorbée par radiation

R*Q = 83 812 500 * 0,473

R*Q =39 643 312 kcal/h

Surface extérieure des tubes

Surface d'un tube = $3,14 * 0,203 * 20 = 12,75 \text{ m}^2$

Surface de 70 tubes = $892,5 \text{ m}^2$

Taux de transfert par radiation Q=39 643 312 / 892,5 =44 418,3 kcal/h.m²

Remarque : le calcul par la formule de Wilson (Lobo et Hottel) de la fraction de chaleur absorbée en radiation donne le même résultat que précédemment.

 $R=1/\left[1+21\sqrt{108281250/788}/6940\right]=0,471$

III.4.4 Calcul de la zone de convection

• Température des fumées à l'entrée de la zone de convection :

Nous avons 1% pour les pertes en zone de radiation. Les fumées à l'entrée de la zone de convection contiennent : 100-47,3-1=51,7% de la chaleur disponible Cp*T*débit des fumée = 0,517*chaleur disponible $(0,258+4,5.10^{-5} \text{ T}).\text{T}. 190 197=0,51 *67 050 000 = 34 195 500$

D'où la température à l'entrée de la zone de convection T=792 °C

• Chaleur transmise par convection :

 $Q_{\text{convection}} = \text{chaleur absorbée} - R.Q$

= 67 050 000 - 39 643 312

= 27 406 688 kcal/h

• Calcul du coefficient de transmission :

Coefficient de convection pure :

Section zone de convection : $3,4*20 = 68 \text{ m}^2$

Surface occupée par les tubes : $10*0,2032*20 = 40,64 \text{ m}^2$

Surface de passage = $68-40, 64=27, 36 \text{ m}^2$

Débit massique des fumées 109 107/27,36 = 6 951,64 kg/m².h

Température moyenne des fumées = $(T_{moy}$ fumé base cheminée+ $T_{fumée}$ entré de la zone convection)/2

= (466 + 792)/2

 $T_{moy} = 629^{\circ}C = 902 ^{\circ}K$

• Chaleur spécifique réelle à 629°C :

Coefficient de convection pur :

Monard a établie les équations :

Hc= 0,018. Cp. $G_{max}^{(2/3)}$. T^{0,3} /D_{int}^(1/3)

Hc= 0,018. 0,28 . 6951,64 $^{(2/3)}$.902^{0,3} /0,1932 $^{(1/3)}$

Hc=24,5 kcal/ $h.m^2.K$ coefficient de convection pure

• Coefficient de radiation par les gaz :

Hrg= $(2,2*10^{-2}*T)-2 = (2,2*10^{-2}*633)-2 = 11,8$ kcal/h. m².K Hc+Hrg=36,3 kcal/h.m².K

• Effet dses mûrs :

Nous admettons un faisceau de tubes de convection composé de 180 tubes disposés en 18 rangées de 10 tubes

Effet de radiation des mûrs $E\% = 100.h_m.A_m/A_t.(h_c+h_{rg}+h_m)$

A_m : surface des mûrs de zone de convection

At : surface extérieure des tubes

 h_m : coefficient de radiation des mûrs $hm=0,195*\xi*(T'/100)^3 kal/h.m^2.K$

T' température moyenne des tubes

 $\xi = 0.95$ fraction d'mission des mûrs

Surface des tubes = $180*(20*0,203*3,14) = 2294 \text{ m}^2$

Surface des mûrs = $2*(20+3,4)*4,8 = 225 \text{ m}^2$
Les tubes sont disposés avec un entre-axe entre rangée s= 300 mm Hauteur de la zone de convection = 5,4m Température des parois 620°C $h_m=0,195*0,95*(620/100)^3 = 44,2 \text{ kal/h.m}^2.\text{K}$ E= 5,4 % Coefficient globale de transmission $h_0=(100+\text{E})/100 \text{ (hc+hrg)}$ $H_0=38,3 \text{ kcal/h.m}^2.^{\circ}\text{K}$

• Température du fluide à la sortie de la zone de convection :

 ΔH = chaleur transmise par convection / débit

= 27 406 688 / 750 000 = 36,5 kcal/kg 792°C ====> fumées ===> 466°C 330°C <==== Brut <=== 220°C Δt_1 =462°C Δt_2 =246°C DTLM=340 °C Q = h.S.DTLM S = 27 406 688 / 340*38,3 = 2 122 m² Soit : 2086 / 12,75*10 = 17 rangées de 10 tubes Donc la supposition de 18 rangées est correcte.

Figure III.24 Schéma du four de l'unité de distillation atmosphérique

III.5 BACS DE STOCKAGE [11]

III.5.1 Classification des réservoirs selon la pression

Il est convenu de ranger les produits pétroliers en quatre classes suivant leur volatilité. A chaque classe correspondent des types particuliers de réservoirs qui se différencient essentiellement par leur pression de service.

Tout réservoir supporte d'une part, la pression hydrostatique créée par le liquide contenu et d'autre part, la pression de la phase gazeuse surmontant le liquide. Il est donc caractérisé par les limites de l'intervalle dans lequel peut varier cette pression de la phase gazeuse sans qu'il y ait risque de détérioration.

Le tableau V.10.1 (Wuithier tome 2 page 1421) donne le type de réservoir correspondant à chaque produit stocké.

• Stabilité des réservoirs

-A la pression

Un réservoir est dit stable à la pression lorsque, vide et soumis à la pression maximale admissible, l'étendue de son fond reste entièrement en contact avec la fondation (pas de soulèvement à la périphérie). La relation suivante doit être vérifiée : $P_R + P_T > A_f \ x P$

Où P_R représente le poids de la robe, P_T celui du toit, A_f la surface du fond et P la pression interne.

-A la dépression

Le fond d'un réservoir est dit stable à la dépression si, à vide et sous l'effet de la dépression maximale, il ne se soulève pas de la fondation (pas de décollement au centre). Il faut pour cela que le poids de la tôle de fond par centimètre carré soit supérieur ou égal à la valeur de la dépression.

-Réservoirs à toit flottant

Ces réservoirs sont adoptés dans les raffineries pour le stockage des produits volatils : pétrole brut et essences, car ils apportent une solution commode et efficace au problème de la réduction des pertes par évaporation. Le toit mobile, coulissant verticalement dans la robe, repose directement sur le produit stocké dont il suit les variations de niveau. Dans ces conditions, la phase vapeur surmontant le liquide est pratiquement négligeable. Un joint spécial assure la liaison entre le toit flottant et la robe.

Les dimensions courantes de ces réservoirs sont données sur la figure suivante :

								the second se
	DIAMÈTRE (m)	HAUTEUR (m)	CAPACITÉ UTILISABLE (m²)	POIDS DE LA CUVE (kg)	DIAMÈTRE (m)	HAUTEUR (m)	CAPACITE UTILISABLE (m ³)	POIDS DE LA CUVE (kg)
•	4,572	5,486	80	4 250	24,384	12,802	5 950	93 600
	6,096	5,486	160	6 000	24,384	14,630	6 800	109 500
	7,620	5,486	240	8 250	27,432	12,802	7 520	116 000
	7.620	7,315	320	10 000	27,432	14,630	8 600	136 500
	7,620	9,144	400	11 750	30,480	12,802	9 320	143 500
	7,620	10,972	480	13 500	30,480	14,630	10 650	169 000
	9,144	9,144	600	14 800	33,528	14,630	12 750	200 000
	10,668	9,144	800	17 900	36,576	12,802	13 350	197 000
	10,668	12.802	840	18 900	36,576	14,630	15 200	233 000
	11,170	12,802	1 250	24 600	40,843	12,802	16 700	244 500
	12,192	10,972	1 290	24 700	42,672	12,802	18 300	262 500
	13,716	10,972	1 600	29 000	40,843	14,630	19 100	290 000
	12,954	12,802	1 700	29 800	45,720	12,802	20 800	302 500
	14,630	12,802	2 100	41 600	42,672	14,630	20 800	311 500
	14,630	14,630	2 400	47 500	49,768	12,802	23 900	348 000
	15,849	12,802	2 520	47 500	45,720	14,630	23 900	359 500
	18,288	12,802	3 320	58 700	49,768	14,630	27 300	413 000
	18,288	14,630	3 600	68 000	54,804	12,002	30 200	429 000
	20,421	12,802	4 180	69 500	54,864	14,630	34 500	506 500
	20,421	14,630	4 800	80 700	60,960	12,802	35 600	532 000
	22,250	12,802	4 970	81 500	60,960	14,630	42 700	630 000
		1		1.11		1		

CHAPITRE III : Dimensionne ment des équipements

Figure III.25 Dimensions courantes des bacs de stockage.

Réservoirs à toit fixe

Ils sont utilisés dans les raffineries pour le stockage des produits à faible volatilité, ou les produits lourds. Tel le kérosène, le gasoil et les fuels.

Ces réservoirs ne sont pas normalisés, il existe différentes versions dont les principales sont consignées sur la figure III.27, le tableau V.10.5.

Les deux figures III.26 et III.27 donnent quelques indications au sujet du choix du réservoir, en fonction de la capacité et de la pression de service.

Figure III.26 Réservoirs haute pression

• Réservoirs à gaz liquéfiés

Ces réservoirs sont prévus pour le stockage du propane et du butane. Alors que le propane est toujours stocké dans des réservoirs cylindriques à fonds sphériques, disposés le plus souvent horizontalement et appelés « cocons », le butane est généralement emmagasiné dans des sphères.

La construction de ces réservoirs est normalisée. La figure III.28, III.29 et III.30 donnent les caractéristiques principales qui permettent de prévoir l'encombrement au sol ainsi que les socles de béton pour supporter le poids du réservoir plein.

Figure III.27 Réservoir sphérique à gaz liquéfiés

	CAPACITÉ	DIAMÈTRE	LONGUEUR AVEC FONDS (m)			POID	S (kg) POUR	PRESSION	DE :	
i	(m³)	(m)	Sphériques	Elliptiques	6 kg	/cm ²	7 kg	/cm ²	8 kç	g/cm²
			oprioridaeo	ampriquos	S	E	S	E	S	E
	20 20 50 100 125 150 200	2 000 2 500 2 500 3 000 3 000 3 000 3 500	15,800 19,250 22,850 22,725	7,000 5,875 11,050 17,400 15,200 18,900 22,550 22,200	12 000 15 000 18 000 24 300	2 900 3 100 7 200 11 190 12 900 15 900 18 900 25 900	14 100 17 700 21 200 27 200	3 300 3 100 7 900 12 200 15 300 18 800 22 400 28 900	15 000 18 900 22 700 30 600	3 700 3 800 8 600 13 400 16 500 20 300 24 200 32 900

Figure 1	III.28	Réservoirs	cylindriqu	e à butane
----------	---------------	------------	------------	------------

CAPACITÉ	DIAMÊTRE	LONGUE FOND	UR AVEC S (m)		POID	S (kg) POUF	R PRESSION	DE :			
(m³)	(m)	Sphériques	Elliptiques	Elliptiques 18 kg		18 kg/cm ²		20 kg/cm ²		21 kg/cm ²	
			Empliques	S	E	S	E	S `	E		
20 20 50 80 100 125 150	2 000 2 200 2 500 3 000 3 000 3 000		7,100 5,795 11,200 17,650 15,475 19,200 22,925	 25 300 31 800 38 200	6 100 6 800 14 500 22 500 27 800 34 400 41 000	27 900 33 000 42 200	6 700 6 800 15 900 21 800 30 900 38 200 45 400	29 100 36 500 43 900	7 000 7 100 16 700 28 000 32 300 39 800 47 400		

Figure III.29 Réservoirs cylindrique à propane

III.5.2 Dimensionnement des bacs de stockage

Nous prévoyons une capacité de stockage de 10 jours pour tous les produits. Sur cette base nous avons pu décider du nombre de bacs à prévoir pour chaque produit ainsi que leurs spécifications.

produits	Stockage pout 10 jours (m ³)
pool essence	96 960
kérosène	26 160
gasoil	53 520
LCO	6 240
НСО	5 520
Coke	480
Pétrole Brut	180 000

 Tableaux III.18
 Capacité de stockage pour 10 jours

Caractéristiques	Pétrole brut	Pool	Kérosène	Gasoil	Fue1
des bacs		essence			
Nombre de bacs	5	4	2	4	1
diamètre	60,96 m	54,864 m	42 m	42 m	42 m
hauteur	14,63 m	12,802 m	14,4 m	14,4 m	14,4 m
Capacité utilisable	42 700 m ³	30 200 m ³	16 620 m ³	16 620 m ³	16 620 m ³

Tableaux III.19 Caractéristiques des bacs pour chaque produit

CHAPITRE IV : Etude du steam-cracking

IV.1. Introduction

L'évolution de la pétrochimie peut s'établir à partir des prévisions d'utilisation des produits de consommation parmi lesquels les matières plastiques, les élastomères, les fibres synthétiques, les engrais, occupent une place particulièrement importante.

La fabrication de ces produits finis se fait à partir de l'éthylène, propylène, butadiène, benzène et paraxylène qui représente la quasi-totalité des produits de base.

De nombreuses études, ont conduit à prévoir que la consommation de ces produits atteindrait au voisinage de l'an 2020 des niveaux particulier. Ainsi, pour faire place à l'accroissement rapide de la consommation des produits finis, l'industrie pétrochimique a dû passer de la récupération des hydrocarbures, sous produits du raffinage pétrolier à des opérations de production spécifiques, qui seules, permettent de satisfaire les exigences des marchés actuels et de suivre l'évolution de la demande.

Plusieurs techniques de pyrolyse ont été expérimentées, cependant, la pyrolyse des hydrocarbures mélangés à la vapeur d'eau dans des tubes chauffés par des bruleurs s'est universellement répondue et consiste actuellement le procédé quasi-unique de fabrication des oléfines. Cette technique, appelée : Steam-cracking. [12]

IV.2. Définition du steam-cracking

La technique appelée steam-cracking consiste à faire passer dans un serpentin placé dans un four un mélange d'hydrocarbures et de vapeur d'eau.

Portés à haute température, les hydrocarbures sont craqués. Les produits de pyrolyse après une trempe brutale sont séparés.

IV.2.1. Condition de la transformation

• Température :

Dans un tube de four, il n'est pas possible de porter instantanément la charge à la température de réaction. Au contraire celle-ci évolue le long du tube. Au début elle s'élève rapidement, puis, lorsque les réactions endothermique commencent, elle monte plus lentement jusqu'à la sortie du tube.

• Temps de séjour

Pour les mêmes raisons la notion de temps de séjour n'a guère de sens dans les conditions de steam-cracking.

On définit pour une température de sortie donnée un temps équivalent, qui est le temps de séjour qui conduirait, si l'on pouvait porter la charge instantanément à cette température, à la

même transformation que le tube de four à température variable.

• Pression et influence de la vapeur d'eau

La pression défavorise les réactions de cracking. On opère en présence de vapeur d'eau, qui, en fait, à plusieurs rôles :

- > Elle abaisse la pression partielle des hydrocarbures.
- Elle abaisse dans la section de réaction la quantité de chaleur à fournir à chaque mètre linéaire de tube. [12]

IV.3. Mise en œuvre industrielle du steam-cracking

Dans le cadre de ce projet, nous proposons d'effectuer le steam-cracking d'une coupe naphta issue de la distillation atmosphérique du pétrole brut. Soit un débit de 950000 t/an du mélange de naphta de densité moyenne de 0,7391.

La pyrolyse du naphta fournit une très grande variétés de produits, depuis l'hydrogène jusqu'à des fractions hydrocarbonées liquides lourdes très aromatiques.

La production d'oléfine se fait dans des fours tubulaires. En pratique, les tubes sont disposés dans des fours chauffés par de multiples bruleurs. On cherche à réaliser :

- La montée en température la plus rapide possible.
- La température de sortie la plus élevée possible.
- Un temps de séjour très court.

L'effluent doit ensuite être refroidi brusquement. Les appareils qui réalisent cette opération, four et chaudières de trempe, constituent la section de pyrolyse du steamcracking.

Figure IV.1 Mise en œuvre industrielle d'un steam-cracking de Naphta [12]

IV.3.1. Les fours

La quantité de chaleur à apporter est fixée, le flux de chaleur est le plus élevé que permette la technique. Le seul facteur sur lequel on puisse jouer pour diminuer le temps de séjour est le diamètre. Cependant, on se trouve limité du coté des petits diamètres par :

- La perte de charge qui ne doit pas être très grande.
- L'investissement, qui croit avec le nombre de tubes utilisés.
- L'érosion produite par la vitesse des gaz à l'intérieur des tubes.

Dans notre cas on utilise des tubes de 65 mm à 120 mm de diamètre inférieur et de 7 à 8,5 mm d'épaisseur. Les serpentins sont suspendus dans leur partie supérieure à une tige articulée pourvue d'un contre poids ou à un système à ressorts.

La chauffe est assurée par des bruleurs dits « radians » qui évitent la flamme directe sur le tube et permettent la radiation par chauffage du réfractaire, qui peut supporter des températures de l'ordre de 1700 à 1800 °c.

Figure IV.2 Four à tube de pyrolyse horizontal [4]

La charge est préchauffée jusqu'à 500°C dans la zone de convection, grâce à la chaleur des gaz chauds sortant du four, elle est en suite mélangé à la vapeur d'eau de dilution, puis entre dans la zone de radiation où elle est portée à plus de 800°C en 3 à 4 dixième de seconde.

IV.3.2. Chaudière de trempe

A la sortie des tubes, il faut refroidir le gaz le plus rapidement possible, pour éviter les réactions parasites. Nous réalisons cette trompe par échange entre le gaz et l'eau, ceci permet de produire de la vapeur à haute pression qui est utilisée ensuite pour entrainer les compresseurs de l'installation de traitement de l'effluent gazeux. La température du gaz est abaissée jusqu'à 430°C.

Cette température élevée évite que les fractions lourdes du produit ne se condensent pas. Elle conduit à la formation de vapeur à haute pression (de l'ordre de 100 bars) qui est surchauffée à 500-550°C dans la zone de convection des fours, ou dans une chaudière auxiliaire.

Les chaudières sont située le plus prés possible de la sortie des fours pour réduire le temps de transfert à quelques millisecondes.

Le tableau suivant résume les performances des chaudières de trempe :

Charge	Température des gaz craqués à	pression de la vapeur produite (106 Pa)	Température de la vapeur produite (°C)
Naphta	425 - 450 °C	08 - 10	297- 313

Tableau IV.1 Performances des chaudières de trempe (vapocraquage de Naphta) [12]

IV.3.3. Section pyrolyse

La figure IV.3 représente un schéma de la section de pyrolyse d'un steam-cracking de Naphta. Après les chaudières de trempe, les effluents sont rassemblés et vont à une colonne de séparation primaire dont le produit de fond sert à refroidir le gaz déjà refroidi par la chaudière de trempe. Cette colonne sépare les gaz, une partie de l'essence et les fractions lourdes.

Figure IV.3 Steam-cracking de Naphta. Section pyrolyse [12]

IV.4. Séparation des produits de steam-cracking de Naphta

Le mélange gazeux comporte un grand nombre de produits qui doivent être séparés et purifiés. Cette séparation est réalisée par distillation à basse température, après une compression, désulfuration et séchage des effluents gazeux légers.

La section comprend aussi des traitements intermédiaires de purification chimiques de l'éthylène et du propylène en éliminant l'acétylène par hydrogénation sélective sur catalyseurs métalliques, nous obtenons par la suite différents produits répondant aux spécifications, il s'agit par exemple de : l'éthylène, propylène, coupe C_4 et la coupe C_5 .

IV.5. Bilan de steam-cracking

Nous avons prévu de faire le steam-cracking de 0,95 millions de tonne/an de notre coupe Naphta, Le tableau ci-dessous fournit les rendements en produits de pyrolyse dans le cas du steam-cracking de la coupe Naphta, à sévérité avec recyclage de l'éthane non transformé dans la pyrolyse :

Produits	rendement (%Poids)
Hydrogène H ₂ Méthane CH ₄	16,8
Ethylène C ₂ H ₄	26,7
Propylène C ₃ H ₆	15,6
Propane C ₃ H ₈	1,2
Butadiène C ₄ H ₆	3,6
Autres C ₄	6,7
Essence	25,1
Fuel	4,3

 Tableau IV.2
 Rendements en produits de pyrolyse du steam-cracking de Naphta [13]

IV.6. Les essences de pyrolyse

Les techniques de purification des coupes essences de pyrolyse obtenues par steam-cracking de Naphta les plus adaptées sont les hydrotraitements.

IV.6.1. Hydrotraitement des essences de pyrolyse

Les essences de pyrolyse sont très instable thermiquement, les composés diéniques ne peuvent pas être éliminés en même temps que les oléfines et les constituants soufrés.

Donc deux opérations successives sont nécessaires :

*l'hydrodédiénisation ou hydrogénation première étape.

*l'hydrodésulfuration ou hydrogénation deuxième étape. [14]

Le tableau suivant représente l'évolution de la composition des essences du steam-cracking de la coupe Naphta :

Constituants	Rendement (% poids)
C ₅	5,9
Benzène	43,7
Autres C ₆	1,9
Toluène	15,0
Autres C ₇	0,7
Xylène	10,7
Styrène	4,2
Autre _{C8}	0,9
C9 aromatiques	14,1
Autres C ₉ +	2,9

Tableau IV.3 Evolution de la composition des essences du steam-cracking de Naphta [14]

IV.7. Valorisation des produits de steam cracking

Le steam cracking donne des produits de première génération, dont :

Des saturés (hydrogène, méthane et le propane) qui seront utilisés comme combustibles pour le four de chauffe. [15]

Des insaturés qui sont d'excellentes bases pour la pétrochimie. Chaque produit de première génération peut donner une multitude de produits finis dont nous citerons quelques exemples ci-après.

Figure IV.4 Principaux débouchés du butadiène

Figure IV.5 Principaux débouchés de l'éthylène

Figure IV.6 Principaux débouchés du benzène

Figure IV.7 Principaux débouchés du propylène

Figure IV.8 Principaux débouchés du Toluène

Figure IV.9 Principaux débouchés du xylène

Figure IV.10 Usages noble et alternatif de Naphta [13]

CHAPITRE V : Evaluation économique

V.1 Estimation du coût de la raffinerie

V.1.1 Méthodes de détermination des investissements [16]

Parmi les diverses techniques de calcul des investissements de base d'une installation, c'est-àdire essentiellement les investissements en limites des unités et accessoirement, les services généraux et stockages, on peut faire la distinction entre :

- Les méthodes globales qui permettent, à partir d'investissement connus d'installations complètes ou de parties d'installations de déterminer par extrapolation les investissements d'unités nouvelles ;
- Les méthodes employant des facteurs multiplicatifs constants pour passer de la valeur des équipements principaux à l'investissement total de l'installation ;
- Les méthodes qui utilisent dans le même but des facteurs multiplicatifs variant suivant la nature des matériels employés (taille, quantité, conditions opératoires...)

La complexité du calcul va croissant des méthodes globales à celles employant des facteurs multiplicatifs, tandis que la précision s'améliore.

Etant donné la complexité d'une installation de raffinage, et le manque de données, nous adopterons la méthode globale pour le calcul du montant total des investissements.

• Méthode du « facteur » d'extrapolation :

Cette manière d'opérer repose sur le fait que les coûts de deux unités utilisant des procédés identiques, mais ayant des capacités de production différentes, sont reliés par une expression de la forme :

$$I_1 / I_2 = (C_1 / C_2)^{\alpha}$$

Où :

 I_1 et I_2 sont les investissements des deux unités montés ;

 C_1 et C_2 sont les capacités ;

 α est le facteur d'extrapolation, il va de 0,5 à 0,7 pour les procédés de raffinage et de pétrochimie.

V.1.2. Actualisation ou mise à jour des coûts d'investissement

Il s'agit ici de prendre en compte l'évolution au cours du temps des prix des matériaux, des coûts des équipements et de la main d'œuvre, qui interviennent dans la détermination du montant des investissements.

En effet, l'érosion monétaire, l'accroissement en valeur vraie de la masse salariale ont pour effet aune augmentation continue des dépenses d'investissement. Ainsi, le coût actuel d'une installation est plus élevé que l'aurait été celui d'une unité identique quelques années auparavant.

Il est donc important de mentionner la date de référence (année en général) lorsqu'on donne une indication relative à un investissement. Et de disposer d'un moyen permettant de transposer les valeurs d'investissement d'une année à une autre, lorsqu'on compare deux projets réalisés à des dates différentes.

Pour remplir ces deux conditions, on utilise un coefficient, improprement appelé « indice d'actualisation » ou mieux « indice de coût » (Cost index), qui tient compte de l'évolution des prix des divers éléments constitutifs du montant des équipements : matériaux, main d'œuvre, améliorations technologiques...etc.

Si A_n est la valeur de l'indice relatif à l'année n, le rapport du montant des investissements d'une même unité entre deux années 1 et 2 sera égale au rapport des indices A correspondant :

$I_1 / I_2 = A_1 / A_2$

Il existe un très grand nombre d'indices de coûts, que l'on rencontre parfois dans les publications techniques. Chaque catégorie professionnelle dispose des siens ; souvent même, chaque société d'engineering a développé ses propres coefficients, mais leur diffusion dans le public est restreinte. Ils se distinguent par l'année qui leur sert de base (base 100), par les éléments de référence retenus et par la pondération qui en est faite pour la détermination de l'indice.

Des coefficients différents peuvent être également utilisés pour chaque type d'appareil (colonnes, compresseurs, fours...) pour des mises à jour partielles de certains équipements.[16]

• Les divers indices de coûts

Aux Etats-Unis, de nombreux efforts ont été faits dans ce domaine et plusieurs indices sont régulièrement publiés. Les plus connus sont les suivants :

L'Indice de l'Engineering News-Record ((ENR) construction cost index)

Il figure hebdomadairement dans la revue « Engineering New Record » ou bimensuellement dans le « Chemical Engineering ». Cet indice tient compte des coûts de quantités fictives de profilés en acier, de bois de charpente, de ciment ainsi que deux cents heures de main d'œuvre.

On lui reproche, à cause de sa structure, de ne pas prendre en considération les améliorations

technologiques ; appliqué à l'industrie chimique, il indique des variations trop importantes par rapport à la réalité. Base 100 en 1913.

Indice de MARSHALL et SWIFT précédemment de MARSHALL et STEVENS ((M § S) equipment cost-index)

Il repose sur la détermination périodique, par les services d'estimation en matière d'engineering de la Société Marshall § Stevens, des coûts détaillés d'équipements ainsi que des dépenses d'installations correspondantes.

Il existe deux indices de Marshall et Stevens :

- L'un «all industry » est la moyenne arithmétique établie pour quarante-sept types d'appareillages industriels, commerciaux ou de construction ;
- L'autre, spécifiquement industriel, « process industries and related », est la moyenne pondérée d'indices de coûts d'unités dans douze domaines industriels particuliers. L'un est relatif à l'industrie du pétrole, les autres concernent l'industrie chimique en généra l. Ces indices sont publiés bimensuellement dans la revue *Chemical Engineering*. Base 100 en 1926.

> Les indices de Nelson (Nelson refinery construction cost index)

W.L.Nelson a introduit divers indices composites qui sont des moyennes pondérées de coûts d'équipement ou d'installation, de prix de matériaux et de tarifs de main d'œuvre.

On peut mentionner plus particulièrement un indice dit « d'inflation » (Nelson refinery inflation construction cost index), plus couramment et plus brièvement appelé « indice de Nelson », un autre dit de « cout vrai » (Nelson refinery true construction cost index) qui se rapporte à la « productivité » obtenue dans la construction d'unités complètes de raffinage (topping cracking, reforming... raffinerie), d'autres encore dits « de coûts opératoires », tels le Nelson refinery operating cost index, moyenne pondérée de coûts de combustible, de main d'œuvre, d'investissement et de produits chimiques.

Le plus employé est l'indice d'inflation ; il se compare directement aux divers autres moyens de mise à jour globale développée par les différents auteurs. Il est construit sur trois composantes principales : équipement divers (12%), matériaux (métaux ferreux : 20%, matériaux de construction non métalliques 8%), main d'œuvre spécialisée (39%) ou non (21%).

L'indice de Chemical Engineering ((CE) Plant cost index)

De création plus récente, il est publié dans chaque exemplaire de la revue *Chemical Engineering*, c'est-à-dire bimensuellement. Base 100 en 1957-1959. Le (CE) plant cost index est la moyenne pondérée de quatre composantes principales : équipements, machines

tournantes et structures (61%), montage (22%), bâtiments (7%), engineering (10%). La première est elle-même constituée des éléments suivant : équipement assemblés (37%), pompes et compresseur (7%), autres machines (14%), tuyauteries, vannes et raccord (20%), instrumentations et contrôle (7%), équipement électrique (5%), structures, isolation et peinture (10%).

Le Nelson refinery (inflation) construction cost index est celui qui reflète le mieux les changements enregistrés dans l'industrie du pétrole et plus particulièrement celle du raffinage. Par conséquent, nous utiliserons cet indice là pour la mise à jour des coûts.

Le tableau suivant donne les indices des coûts de NELSON-Farrar (base de 1946) jusqu'en 2010

	1962	1980	2007	2008	2009	2010
pompes, compresseurs	222,5	777,3	1844,4	1949,8	2011,4	2037,4
machines électriques	189,5	394,7	517,3	515,6	515,5	514,6
Equipements de combustion	183,4	512,6	974,6	990,9	1023	1021,2
instruments	214,8	587,3	1267,9	1342,1	1394,8	1437,3
échangeurs de chaleur	183,6	618,7	1342,2	1354,6	1253,8	1103,5
divers équipements (moyenne)	198,8	578,1	1189,3	1230,6	1239,7	1241,7
Matériaux	205,9	629,2	1364,8	1572	1324,8	1489,4
Main d'œuvre	258,8	951,9	2601,4	2704,3	2813	2923,3
Indice de Raffinerie (inflation)	237,6	822,8	2106,7	2251,4	2217,7	2349,8

 Tableau V.1 Indices des coûts de NELSON-Farrar [17]

Nous remarquerons aisément la vitesse à laquelle augmentent les coûts d'investissement dans le domaine du raffinage. Une installation qui aurait couté 1 millions \$ en 1962 couterait aujourd'hui 10 millions de \$!

Figure V.1 Indice de raffinerie (inflation) de Nelson

V.2 Evaluation économique des équipements

A titre d'exemple nous donnons quelques estimations pour les équipements .

L'estimation des prix des équipements est une opération très complexe laissée au soin de spécialistes. Cependant, des méthodes existent pour faire une évaluation sommaire à partir des dimensions et types d'appareils. Ces méthodes sont développées dans [16]

V.2.1 Evaluation du four

Une estimation peut être faite à partir de la puissance calorifique à fournir est une dimension caractéristique que l'on peut aisément calculer et qui permet à elle seule d'établir un prix.

Détermination du prix de base

Il exixte des courbes qui donnent une valeur approchée des prix des fours de chauffe, en fonction de la puissance nécessaire.

Elle est établie sur les bases suivantes :

- Matériau employé pour les tubes : acier ordinaire ;
- Pression d'utilisation : < 30 bar.

Pour une puissance de 83,8125.10⁶ kcal /h nous obtenons un prix de base de 7.10⁶ \in à l'an

2000.

Facteurs correctifs

Des facteurs correctifs doivent etre utilisés dans les autres cas, selon l'expression suivante :

Prix corrigé = Prix de base . $(1 + f_d + f_m + f_p)$

Avec :

- f_d : facteur correctif de type,
- **f**_m : facteur correctif de matériau,
- f_p : facteur correctif de pression.

Dans notre cas nous avons :

Туре	Four de chauffe
f _d	0,00
Matériau	Acier au carbone
f_{m}	0,75
Pression	< 30 bar
f _p	0,00

Tableau V.2 Facteurs correctifs pour l'évaluation économique du four

Donc le prix corrigé du four est de 12,25.10⁶ € à l'an 2000 ; en utilisant l'indice de Nelson sur

les fours, nous obtenons le prix corrigé pour l'année 2010 ; et sachant que : 1€ = 1,143 \$.

L'année 2000	L'année 2010
855	1021,2

Donc le prix corrigé du four est de : 14,7 Millions US \$.

V.2.2 Détermination du prix de la colonne de distillation

L'évaluation du prix de la colonne de distillation consiste à déterminer, en fonction du poids et du matériau utilisé, les prix :

- Des externes :
 - -Virole et fonds,
 - -Jupe
 - -accessoires
- Des internes
 - -Plateaux

Suivant l'épaisseur de la virole et des fonds, il peut être plus économique d'utiliser :

• Un acier ordinaire plaqué: épaisseur comprise entre 8 et 20 mm ;

Détermination des poids

- Poids de la virole

Nous utilisons l'expression suivante :

Poids virole $(kg) = 24,7 \cdot D \cdot H \cdot e$

Avec :

- D : le diamètre de la virole (m) ;
- H : la hauteur de la virole (m) ;
- e : l'épaisseur d la virole (mm).

Dans notre cas nous avons :

D (m)	H (m)	e (mm)
8,4	34,0	14,0

Donc : le poids de la virole = 98761 kg

- poids de la jupe

une jupe est nécessaire pour une colonne à distillation, ces caractéristiques sont les suivantes :

- diamètre (m) : qui correspond au diamètre de la virole ;
- hauteur (m) : 5 m;
- épaisseur (mm) : 12 mm ;

nous utilisons la même expression que pour le calcul du poids de la virole ;

```
Donc : Poids de la jupe = 12449 kg.
```

- Poids des fonds

Ces fonds sont au nombre de 2 : ils comprennent la tète et le fond de la colonne .

En les supposant elliptiques et d'un diamètre égale à celui de la virole, leur poids global (c'est-à-dire pour les deux), pour une épaisseur unitaire (1mm) est de 3000 kg, par la suite le poids global est le suivant :

Poids fonds (kg) = poids unitaire (kg). épaisseur (mm)

Donc le poids total des fonds est de 36000 kg

Détermination des prix des externes

a. Prix de la virole et des fonds

L'épaisseur du récipient est comprise entre 8 et 20 mm, donc un plaquage intérieur en acier inox assure la résistance à la corrosion. Le prix comprend donc :

- Le prix de la partie en acier ordinaire ;
- Le cout du plaquage.

-Le prix de base de la partie en acier ordinaire est de :2,75 €/kg

-Le prix corrigé du fond et de la virole= prix de base(ϵ/kg).(poids virole+poids fonds. f_f). f_e . f_m Avec :

$\mathbf{f_f}$ = facteur correctif du	$\mathbf{f}_{\mathbf{e}}$ = facteur correctif	$\mathbf{f}_{\mathbf{m}}$ = facteur correctif de
diamètre	d'épaisseur	matériau
1,5	6	1

Donc le prix de la virole et fonds = 2 520 557 \in .

b. Etablissement du prix du placage

Ce prix est obtenu par l'expression suivante :

Prix du placage (\in)= (3,14.D.H + S_{fond}).1180

Avec S_{fond} : la surface du fond = 300 m²

Le prix du placage = $1 412 206 \in$.

c. Prix de la jupe

De manière générale la jupe est en acier ordinaire, en conséquence :

Prix de la jupe = poids de la jupe . prix unitaire (€/kg).f_e = 30469 €

d. Prix des accessoires

• Etablissement du prix de base

Ce prix est obtenu directement à partir des abaques, pour un poids total (virole+jupe+fond) = 147210 kg nous obtenons un prix de 80 000 €.

• Facteurs correctifs :

```
Prix corrigé = prix de base . f_{am}
```

Avec :

fam : le facteur correctif de matériau qui correspond dans notre cas à 1,

Donc Prix corrigé des accessoires = 80 000 €.

> Détermination du prix des internes Prix des plateaux

Prix global des plateaux = prix de base $.f_{pl} . f_{e} . f_{pa} . f_{am} . f_{nm}$

Prix de base	f _{pl} :correction	$\mathbf{f}_{\mathbf{e}}$: correction	$\mathbf{f}_{\mathbf{pa}}$:correction	\mathbf{f}_{am} :correction	\mathbf{f}_{nm} :correction
(€)	sur le type de	sur	sur le nombre	sur le type de	sur le nombre
	plateau	l'épaisseur	de passe	matériau	de plateau
10000	1,45	1,25	1	1	0,95

Le prix de base est calculé à partir des abaques.

Donc le prix global des plateaux = 17219 €

1. Détermination du prix final

Le prix total = (prix viroles et fonds + prix placage + prix jupe + prix accessoires + prix plateaux).1,15

Nous résumons sur le tableau suivant les prix de chaque partie :

prix	viroles	et	prix placage	prix jupe	prix accessoires	prix plateaux
fonds						
2 520	557€		1 412 206 €	30 469 €	80 000 €	17 219 €

Le prix final de la colonne de distillation = 4 669 519 €

➢ Remarque :

Lorsque le diamètre de la virole devient supérieur à 6m, l'assemblage se fait sur place ; le cout de ce montage de la virole elle-même doit être ajouté à celui pris en compte normalement pour une mise en place. En première approximation, il faut doubler le prix du matériel seul. Donc finalement le prix global de la colonne de distillation = 9 339 038 \in à l'an 2000 En utilisant le facteur de Nelson nous obtenons le prix global pour l'année 2010

Donc le prix global corrigé de la colonne de distillation est de : 12,2 Millions US \$

V.2.3 Détermination du prix des échangeurs de chaleur

Nous utilisons l'expression suivante :

Prix corrigé = prix de base $.f_d . f_l . f_{np} . f_p . f_t . f_m$

Avec :

- f_d facteur caractéristique du type d'échangeur,
- f_l : facteur correctif de longueur de tube,
- f_{np} : facteur tenant compte du nombre de passe coté tubes,
- f_p : facteur correctif de pression dans la calandre et les tubes,
- **f**_t : facteur correctif de température,
- f_m : facteur caractéristique de la nature des matériaux employés.

A partir des abaques nous obtenons le prix de base des échangeurs.

Les résultats sont résumés dans le tableau suivant :

	Surface	Prix de							Prix
Echangeurs	d'échange(m2)	base	Facteurs correctifs				global		
			f _d	fı	f _{np}	fp	ft	fm	
Pétrole brut/Essence légère	566	120000	1	0,92	1	1	1	1	110400
Essence lourde/pétrole brut	1080	220000	1	0,92	1	1	1	1	202400
kérosène/pétrole brut	680	160000	1	0,92	1	1	1	1	147200
Gasoil/pétrole brut 1	1300	620000	1	0,92	1	1	1	1	570400
Gasoil/pétrole brut 2	1300	620000	1	0,92	1	1	1	1	570400
Résidu/pétrole brut 1	1435	1100000	1	0,92	1	1	1	1	1012000
Résidu/pétrole brut 2	1435	1100000	1	0,92	1	1	1	1	1012000
Surface des échangeurs	7796	3940000							3624 800

Tableau V.3 Evaluation du prix des échangeurs de chaleur

Donc le prix global des échangeurs est **3624800** € à l'an 2000, ce qui correspond à 8700000 € pour l'année 2010, donc le prix global des échangeurs est de **10 005 000 \$**

➢ Remarque :

Nous rajoutons 5% pour tenir compte des extras possibles, donc :

Le prix corrigé des échangeurs de chaleur est de : 10,6 Millions US \$

V.2.4 Détermination du prix des stockages

A partir des abaques, nous déterminons, en fonction de la capacité, le prix de ces appareillages pour un type bien déterminé de stockages et dans des conditions d'utilisation définies. Pour les autres cas, des facteurs de corrections doivent être appliqués.

Le tableau suivant résume les caractéristiques et le prix de chaque bac :

aavaatávistia		nomhro	la capacité	prix de	facteur	Prix
variacteristiq	tuna da baa	do boo	par bac en	base par	f	giobal des
ues ues pacs	type de bac	ue Dac		Dac	1	Dacs
	récipient sous		42 700			
Pétrole brut	pression	5		1000000	1,1	55000000
	récipient sous		30 200			
pool essence	pression	4		4000000	1,1	17600000
	récipient à		16 620			
	pression					
Kérosène	atmosphérique	2		250000	1	500000
	récipient à		16 620			
	pression					
Gasoil	atmosphérique	4		250000	1	1000000
	récipient à		16 620			
	pression					
Fuel	atmosphérique	1		250000	1	250000

Tableau V.4 Evaluation économique des bacs

Le prix global des bacs de stockage est donc de 74 350 000 à l'an 2000, ce qui correspond à une somme de 98 490 699 € pour l'année 2010.

Le prix global corrigé des bacs est de 113 Millions US \$

V.3 Calcul des investissements

Nous adopterons la méthode du facteur d'extrapolation pour l'estimation des coûts :

Il nous a été donné à la Sonatrach des ordres de grandeur pour les coûts pour de différentes unités d'une raffinerie de capacité de 2,5 Millions de tonnes/an et pour l'année 2008.

```
La formule s'extrapolation utilisée donnée dans le domaine du gaz et du pétrole est la suivant (coefficient d'extrapolation \alpha=0,67) :
```

$$\frac{\mathrm{I}}{\mathrm{Io}} = \left(\frac{\mathrm{C}}{\mathrm{Co}}\right)^{0,67}$$

 I_0, I : investissements respectivement initial recherché

C₀, C : capacité respectivement initial recherché

Dans notre cas, pour une capacité de 6 Millions de tonnes/an

L'investissement pour le reforming, le cracking et le gaz-plant : I= 650 (6/2,5) 0,67 =1045 M \$

		Investissements Millions \$			
Procédé	% de l'investissement	2,5 millions t/a	6 millions t/a		
Topping	23	150	240		
Reforming	31	200	324		
Gaz-plant	8	50	84		
Cracking catalytique	38	250	397		
Total procédés	1	650	1045		

Tableau V.5 investissements des procédés

Dans la raffinerie il y a aussi :

- Les off-sites qui comportent :
 - Tout un parc de stockage le brut, les produits intermédiaires et les produits finis ;
 - Une pomperie ;
 - Des mélangeurs ;
 - Les rails, route, barges, bateaux, pipelines pour l'expédition et la réception ;
- Les utilités qui comportent :
 - production d'électricité ;
 - La production de vapeur d'eau ;
 - Eau de réfrigération ;
 - Air comprimé ;

Les off sites et les utilités peuvent couter plus cher encore que les unités les procédés ; mais il nous a été recommandé à la Sonatrach de prendre leurs investissements égaux.

Les utilités coûtent dans les environs de 500 Millions \$

	coût en Millions \$
Procédés	1 045
Offsites et utilités	1045
Annexes	500
Total raffinerie	2 590

En 2008 : Estimation du coût total : 2,59 Milliards de Dollars

L'indice de Nelson pour l'année 2008 = 2251,4

L'indice de Nelson pour l'année 2010 = 2349,8

$$I_2 / I_1 = A_2 / A_1 = I_2 = 2,59 (2349,8/2251,4) = 2,74$$

En 2010 : Estimation du coût total : 2,74 Milliards de Dollars

L'investissement de la raffinerie s'élève à 2,74 Milliards de Dollars sans le coût du terrain et des utilités

NB : ces estimations sont donnée avec une erreur de +/- 30%

Le coût réel se situe entre 1,92 et 3,56 Milliards de \$ sans le terrain et les utilités : (eau, électricité, ménagements)

Figure V.2 Parts des investissements dans la raffinerie

Figure V.3 Part des équipements dans le prix global de la raffinerie

V.4 Evaluation de steam-cracking de Naphta

Un projet de steam-cracking de Naphta d'une capacité de 1,8 millions de tonnes est prévu pour 2014 à Skikda en Algérie [6] sont investissement est estimé à 3 milliards de \$

pour avoir le cout de notre steam-cracking d'une capacité de 0,95 millions de tonnes nous utilisons la méthode du facteur d'extrapolation

La formule d'extrapolation utilisée donnée dans le domaine de la pétrochimie est la suivante Le coefficient d'extrapolation est compris entre 0,7 et 0,75 (source : Sonatrach)

Nous prenons la moyenne, soit : α =0,725) :

$$\frac{\mathbf{I}}{\mathbf{Io}} = \left(\frac{\mathbf{C}}{\mathbf{Co}}\right)^{0,725}$$

I₀, I : investissements respectivement initial recherché

C₀, C : capacité respectivement initial recherché

Donc

L'investissement pour le steam-cracking est de 1,9.Milliards US \$
Conclusion générale

Le projet de fin d'étude qui nous a été confié nous a permis de contribuer à l'évaluation technico-économique d'un complexe de raffinage qui traite d'un Sahara blend.

Dans une première partie, nous avons procédé à la mise en œuvre du pétrole brut en privilégiant les essences. Cela a permis ensuite au dimensionnement de la colonne avec les sept échangeurs de chaleur, les quartes rebouilleurs et le four de chauffe. Pour le condenseur, nous avons évalué la quantité de chaleur.

La colonne aura un diamètre de 8,4 m et une hauteur de 36 m avec un espacement entre plateaux de 1 m.

Nous avons prévus sans les dimensionner les strippers.

Les échangeurs à contre courant auront une longueur de 6 m avec un diamètre allant de 0,5 m à 1 m. La surface totale d'échange est d'environs 8000 m^2 .

Dans une seconde étape, nous avons envoyé la charge de naphta vers le steam cracking et ceci dans le but d'obtenir la majorité des produits intermédiaires de première génération. Si la quantité de BTX nécessaire pour la pétrochimie s'avère insuffisante, il y a possibilité de retirer la coupe 80-145°C de l'essence. Ceci nous permettra d'obtenir des produits pétrochimiques finis (PEBD, PEHD, PVC, fibres, SBR ... etc.)

Du point de vue économique, le coût global est estimé à 2,74 milliards \$ pour la raffinerie, et à 1,89 milliards \$ pour le steam cracking

L'ensemble de l'investissement serait donc de 4,63 Milliards \$.

Les équipements que nous avons présentés ne couvrent qu'une infime partie de ce que comporterait réellement un tel complexe de raffinage et de pétrochimie. En effet, toute personne franchissant l'enceinte d'une raffinerie est frappée par l'importance et la complexité de ces unités.

L'Algérie dispose d'énormes potentialités dans le domaine du raffinage et de la pétrochimie et son économie en dépend à 98%. Mais cela ne lui suffit pas puisqu'elle importe encore du gasoil et beaucoup de produits pétrochimiques.

Notre pays doit de ce fait développer son industrie de raffinage et de pétrochimie, tout en pensant son avenir après-pétrole, car nous somme en ce moment sur ce qu'on appelle un « plateau ondulé », c'est l'étape qui précède le déclin.

L'évaluation économique a montré l'ampleur de l'investissement à réaliser pour l'installation d'un nouveau complexe de raffinage et de pétrochimie. Plus l'Algérie tardera à investir dans un tel projet et plus ce dernier lui coutera cher. Mais dans un même temps, l'étude technicoéconomique doit se faire au mieux pour assurer la rentabilité de l'investissement. ANNEXES

Annexe III.1.1 Diagramme de COX

Annexe III.1.2 Coefficient d'entrainement Kv

Annexe III.2.3 Coefficient de film à l'ébullition h_v et au chauffage h_s dans un rebouilleur à circulation naturelle

DIAMÈTRE	DWG	ÉPAISSEUR	DIAMÈTRE	SECTION	SURFACE	POIDS		
(in et mm)	BWG	(mm)	(cm)	(cm²)	extérieure	intérieure	(kg/m)	
1/2 in (12,7 mm)	14 16 18	2,10 1,65 1,24	0,848 0,940 1,021	0,565 0,694 0,819	0,0399	0,0266 0,0295 0,0321	0,600 0,490 0,384	
3/4 in (19,05 mm)	10 12 14 16 18	3,40 2,77 2,10 1,65 1,24	1,224 1,351 1,483 1,575 1,656	1,177 1,434 1,727 1,948 2,154	0,0598	0,0384 0,0424 0,0466 0,0495 0,0520	1,436 1,216 0,963 0,774 0,597	
1 in (25,4 mm)	10 12 14 16 18	3,40 2,77 2,10 1,65 1,24	1,859 1,986 2,118 2,210 2,291	2,714 3,098 3,523 3,836 4,122	0,0798	0,0584 0,0624 0,0665 0,0694 0,0720	2,024 1,696 1,324 1,057 0,811	
1 1/4 in (31,75 mm)	10 12 14 16 18	3,40 2,77 2,10 1,65 1,24	2,494 2,616 2,743 2,845 2,921	4,885 5,375 5,909 6,357 6,701	0,0997	0.0783 0.0822 0.0862 0.0894 0.0918	2,604 2,158 1,682 1,340 1,024	
1 1/2 in (38,1 mm)	10 12 14 16 18	3,40 2,77 2,10 1,65 1,24	3,124 3,251 3,378 3,480 3,556	7,665 8,300 8,962 9,512 9,931	0,1197	0,0981 0,1021 0,1061 0,1093 0,1171	3,185 2,634 2,039 1,622 1,237	

Annexe III.3.1 caractéristiques des tubes d'échangeurs

D _c cal	andre	Tubes : $3/4'' P = 1''$			Tubes : 1'' P = 1 1/4''			Tubes : 1 1/4" P = 1 9/16"					
		nombre de passes : n:			n	nombre de passes : n:				nombre de passes : n;			
(in)	(cm)	2	4	6	8	2	4	6	8	2	4	6	8
8 10 12 13 1/4 15 1/4 17 1/4 19 1/4 21 1/4 23 1/4 25 27 29 31 33 35 37 39	20,3 25,4 30,5 33,7 43,9 48,9 54,0 59,1 63,5 68,6 73,7 78,8 83,8 88,9 94,0 99,0	26 52 76 90 124 166 220 324 394 460 526 640 718 824 914 914	20 40 68 82 116 158 204 246 308 370 432 480 600 688 780 886 982	20 36 68 76 108 150 192 240 302 356 420 468 580 676 766 866 868	60 70 108 142 188 234 292 346 408 456 560 648 748 838 948	16 32 45 56 76 112 132 166 208 252 288 326 398 460 518 574 644	14 26 40 52 68 96 128 192 238 278 300 380 432 488 562 624	24 38 48 68 90 122 152 184 226 268 294 368 420 484 544 542	36 44 64 82 116 148 184 222 260 286 358 414 472 532 600	12 24 30 40 53 73 90 112 135 160 188 220 252 287 322 287	10 22 30 37 51 71 86 106 127 151 178 209 244 275 311 249	16 22 35 48 64 82 102 123 146 174 202 238 268 304	16 22 31 44 56 78 96 115 140 166 193 226 258 293 236

Annexe III.3.2 disposition des tubes en carré

.

b. deux passes ofté colandre, quatro passes (ou plus) ofté tubes.

Annexe III.3.3 Efficacité de l'appareil en fonction de R et E

ÉCHANG	υ,				
FLUIDE CHAUD	FLUIDE CHAUD FLUIDE FROID				
Eau	Eau Solutions aqueuses Hydrocarbures légers Hydrocarbures moyens Hydrocarbures lourds Hydrocarbures légers Hydrocarbures lourds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
RÉFRIGÉ	RANTS				
Eau, méthanol, ammoniaque et solu- tions aqueuses Hydrocarbures légers Hydrocarbures moyens Hydrocarbures lourds Gaz Eau Hydrocarbures légers	Eau Eau Eau Eau Eau Saumure Saumure	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
RÉCHAU					
Vapeur d'eau Vapeur d'eau Vapeur d'eau Vapeur d'eau Vapeur d'eau Dowtherm Dowtherm	Eau, méthanol, ammoniaque Solutions aqueuses : $\mu < 2$ cPo $\mu > 2$ cPo Hydrocarbures légers Hydrocarbures lourds Gaz Gaz Hydrocarbures lourds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

Annexe III.3.4 coefficient de transfert sale U_s

Annexe III.3.5 détermination des températures caloriques

PAS NORMAL CARRÉ OU TRIANGULAIRE (fig. V.1.4a et c)	PAS TRIANGULAIRE RENVERSÉ (fig. V.1.4b)	PAS CARRÉ RENVERSÉ (fig. V.1.4d)
Ρ	$P\sqrt{3}$	$P\sqrt{2}$
P — d _o	2 (P — d _o)	2 (P — d _o)
$\frac{D_c}{P} (P - d_o) B$	$\frac{2}{\sqrt{3}} \frac{D_c}{P} (P - d_o) B$	$\sqrt{2} \frac{D_c}{P} (P - d_o) B$
	PAS NORMAL CARRÉ OU TRIANGULAIRE (fig. V.1.4a et c) P P — d _o <u>D_c</u> (P — d _o) B	$\frac{PAS}{NORMAL CARRÉ} PAS TRIANGULAIRE (fig. V.1.4a et c) PAS TRIANGULAIRE (fig. V.1.4b) P \sqrt{3}\frac{P}{P-d_o} P \sqrt{3}\frac{D_c}{P} (P-d_o) B \frac{2}{\sqrt{3}} \frac{D_c}{P} (P-d_o) B$

Annexe III.3.5 Aire de j	passage par	calandre
--------------------------	-------------	----------

PÉTROLE	BRUT

Température (°C)		0 — 100		1	00 — 150)	1	50 — 20	0	200		
Vitesse (m/s)	< 0,6	0,6 à 1,2	> 1,2	< 0,6	0,6 à 1,2	> 1,2	< 0,6	0,6 à 1,2	> 1,2	< 0,6	0,6 à 1,2	> 1,2
Sec Humide	6 6	4	4 4	6 10	4 8	4 8	8 12	6 10	4 8	10 14	8 12	6 10

Annexe III.3.6 Résistance à l'encrassement : $10^4 R_S (R_S en h.m^2.°C/Kcal)$

Annexe III.3.6 Coefficient de transfert et coefficient de friction du nombre de Reynolds, à l'intérieur des tubes

Annexe III.3.7 Coefficient de transfert et coefficient de friction du nombre de Reynolds, à l'extérieur des tubes

t°C	H ₂	N ₂	02	со	H_2O_V	CO2
100	6,92	6,97	7,05	6,97	8,03	9,17
200	6,95	7,00	7,15	7,00	8,12	9,65
300	6,97	7,04	7,26	7,06	8,22	10,06
400	6,98	7,09	7,38	7,12	8,34	10,40
500	6,99	7,15	7,49	7,19	8,47	10,75
600	7,01	7,21	7,59	7,27	8,60	11,03
700	7,03	7,27	7,68	7,34	8,74	11,28
800	7,06	7,35	7,77	7,43	8,89	11,50
900	7,09	7,42	7,85	7,50	9,04	11,70
1 000	7,12	7,49	7,92	7,57	9,18	11,88
1 100	7,15	7,56	7,98	7,64	9,32	12,05
1 200	7,20	7,62	8,04	7,70	9,45	12,19
1 300	7,24	7,67	8,11	7,76	9,58	12,32
1 400	7,28	7,73	8,16	7,81	9,72	12,45
1 500	7,32	7,78	8,20	7,85	9,84	12,56
1 600	7,36	7,82	8,24	7,90	9,96	12,66
1 700	7,40	7,86	8,28	7,94	10,09	12,75
1 800	7,45	7,91	8,33	7,98	10,20	12,84
1 900	7,49	7,94	8,38	8,02	10,30	12,92
2 000	7,53	7,98	8,42	8,05	10,41	12,99
2 100	7,57	8,01	8,45	8,09	10,52	13,06
2 200	7,62	8,05	8,48	8,12	10,61	13,13
2 300	7,66	8,08	8,52	8,15	10,71	13,19
2 400	7,70	8,10	8,56	8,18	10,79	13,24
2 500	7,74	8,14	8,59	8,21	10,87	13,30

D'après E. Justi et H. Lüder. Forsch. Gebiete Ingenieur, 6, 211, 1935.

Annexe III.4.2 Chaleur restant dans les fumées en fonction de la température

Annexe III4.3 coefficient d'absorption du faisceau tubulaire

FORME ET DIMENSIONS DU FOUR	ÉPAISSEUR I
FOURS CLASSIQUES $1 \times 1 \times 1 \Rightarrow 1 \times 1 \times 3$ $1 \times 2 \times 1 \Rightarrow 1 \times 2 \times 4$ $1 \times 1 \times 4 \Rightarrow 1 \times 1 \times \infty$	2/3 ³√volume Plus petite dimension
FOURS CABINES 1 × 2 × 4 1 × 2 × 5 à 1 × 2 × 8	2/3 $\sqrt[3]{volume}$ 1,3 fois la plus petite dimension
FOURS CYLINDRIQUES d × d d × 2 d à d × ∞	2/3 imes diamètre 1 fois le diamètre

Annexe III.4.7 Epaisseur utile de la couche de gaz

Annexe III.4.4 Facteur d'émission de la flamme

Annexe III.4.5 Facteur global d'échange

Annexe III.4.6 Détermination graphique de la chaleur absorbée par radiation

Références bibliographiques

[1] Ministère de l'énergie et des mines, Evolution du secteur de l'énergie et des mines 1962-2007. 2008

[2] Chems Eddine CHITOUR, Les propriétés physiques des hydrocarbures et des fractions pétrolières, tome 1, OPU 1999.

[3] FOSTER WHEELER, Documentation de la raffinerie d'Alger.

[4] P. WUITHIER, Le pétrole raffinage et pétrochimie Tome I, édition TECHNIP, Paris 1972.

[5] P. LEPRINCE, Le raffinage du pétrole tome 3, Procédés de transformation, IFP, paris 1998.

[6] D. DECROOCQ, R.BULLE, S.CHATILA, J.P.FRANCK, Y.JACQUIN, Le craquage catalytique des coupes lourdes, Edition TECHNIP 1978.

[7] Chems Eddine CHITOUR, Raffinage du pétrole tome 1, OPU Alger 1983.

[8] W.L.NELSON, Petroleum refinery engineering, New York, Mc Graw-Hill 1958.

[9] X.NORMAND-A, TREIL, L'industrie du raffinage du pétrole, leçons sommaires tome 1, Edition TECHNIP 1985.

[10] P.TRAMBOUZ, Le raffinage du pétrole tome 4, Matériels et équipements, Edition TECHNIP Paris 1999.

[11] P.WUITHIER, Le pétrole raffinage et pétrochimie Tome 2, Edition TECHNIP, Paris 1972.

[12] P.LEPRINCE, A.CHAUVEL, J.P.CATRY, Procédés de pétrochimie, caractéristiques techniques et économique, Edition TECHNIP 1971.

[13] Chems Eddine CHITOUR, PETROCHIMIE, Les produits de première génération, Université des sciences et technologie, Ecole Nationale Polytechnique, Département Génie Chimique, 1976.

[14] N.SKANDER, L.GOUAL, C.E.CHITOUR, Etude technique d'un complexe de raffinage et d'un complexe pétrochimique, Ecole Nationale Polytechnique 1992.

[15] A.CHAUVEL, G.LEFEBURE, Petrochemical process 1, synthesis Gas derivation and major hydrocarbons, Edition TECHNIP 1989.

[16] A.CHAUVEL, G.FOURNIER, C.RAIMBAULT, Manuel d'évaluation économique des procédés, Edition TECHNIP, Paris 2001.

[17] Oil, Petrochemical Outlook, and Gaz Journal, 03 janvier 2011.