REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE POLYTECHNIQUE

Département Génie Chimique

MEMOIRE DE FIN D'ETUDE

Pour l'obtention du Diplôme d'Ingénieur d'Etat en Génie Chimique

Etablissement de nouvelles corrélations de contribution de groupes avec interactions pour la prédiction des propriétés physiques des corps purs, des mélanges et des fractions pétrolières

Proposé et dirigé par : **Pr.C.E.CHITOUR** Etudié par : M^{lle} Nabila MADANI

DEDICACE

Je dédie ce modeste travail Aux deux êtres qui me sont les plus chèr au monde, ma mère et mon père. Que Dieu les garde toujours auprès de moi.

> A ma grand mère et mon grand père. A mes très chers sœurs et frères. A mon beau frère Kamel. A l'adorable petit ange Mahdi. A mes cousines et cousins. A ma meilleure amie Assia A tous mes amis.

Remerciements

Avant toute chose je remercie Dieu tout puissant de m'avoir donné le courage et la patience pour accomplir ce travail.

Je tiens à exprimer toute ma gratitude à Monsieur le Professeur C.E.CHITOUR, pour m'avoir permis d'entreprendre cette recherche au sein de son équipe. Sa compétence scientifique et ses précieux conseils m'ont, sans aucun doute, permis de menée cette étude à terme. Qu'il soit ici remercié pour tout ce qu'il ma apporté.

J'adresse mes remerciements particulières et sincères à M^{lle} Ouardia. REBAS de m'avoir prodigué ses connaissances, m'avoir consacré de son temps, son aide et ses précieux conseils et encouragements.

J'exprime de plus ma reconnaissance, toute particulière à M^{lle} Nachida .SKANDER, pour sa gentillesse, son aide, son soutien et ses encouragements.

Je suis très honorée que Madame F .SOUAHI, Professeur à l'Ecole Nationale Polytechnique, ait accepté de présider le Jury de cette thèse.

Je tiens à exprimer mes vifs remerciements à Madame Ratiba .DERRICHE, Professeur à l'Ecole Nationale Polytechnique et Mademoiselle Nachida SKANDER, pour avoir accepté de faire partie de ce Jury.

Que tous les enseignants du département du génie chimique trouvent ici l'expression de mes sincères gratitudes pour les efforts qu'ils n'ont cessé de prodiguer pour ma bonne formation.

Enfin, ma profonde sympathie envers toutes les personnes qui ont contribué, de prés ou de loin, à la réalisation de ce travail.

<u>ملخص:</u>

<u>Résumé :</u>

L'objectif de cette présente étude est l'établissement de nouvelles corrélations basées sur le principe de contribution de groupes avec interactions intramoléculaires pour la prédiction de la masse volumique à 20°c, le volume molaire liquide à 20° c,le facteur de caractérisation de WATSON Kuop et enfin le paramètre I/d.

A cette fin, nous avons procédé à une collecte de données pour les différentes familles d'hydrocarbures, puis à une sélection d'une équation parmi vingt équations.

Dans une seconde approche, nous avons tenté d'appliquer ces nouvelles corrélations, d'une part, aux mélanges de corps purs de compositions connues, et d'autre part, aux fractions pétrolières légères, moyennes et lourdes .De telles corrélations permettent d'éviter des expériences longues et coûteuses.

Les mots clefs:

Corrélations, contribution de groupes, corps purs, mélanges, fractions pétrolières, la densité, le volume molaire, le facteur de caractérisation de WATSON « Kuop », le paramètre I/d.

<u>Abstract</u>

The aim of this study is to establish new relationships based on the principle of contribution groups with intramolecular interactions for predicting the density at 20 ° c, molar volume liquid at 20 ° C, the factor characterization WATSON of Kuop and the parameter I/d.

To this end, we conducted a data collection for different families of hydrocarbons, then a selection of equation among twenty equations.

In a second approach, we tried to apply these new relationships, on the one hand, the mixtures of pure known compositions, and on the other hand, the oil fractions light, medium and heavy. Such relationships enable d'avoid lengthy and costly experiences.

The key words:

Correlations contributing groups, pure, mixed, oil fractions, density, the volume molar, the factor characterization WATSON "Kuop", the parameter I / d.

Sommaire

Chapitre 1 : Généralités sur le pétrole brut

1.1-Définition du pétrole brut	.1
1.2-La formation du pétrole	.1.
1.3-le long voyage du pétrole	1
I.4-Composition du pétrole brut et des fractions pétrolières	3
I.5- Méthodes d'analyse du pétrole	6
1.6.Coupes pétrolières	12
I.7-Qualité du pétrole brut	14

Chapitre 2 : Les propriétés physiques et thermodynamiques des hydrocarbures, leurs mélanges et les fractions pétrolières.

2.1-Introduction162.2 Les propriétés de transport162.3-Les propriétés optiques222.4-Les propriétés spécifiques242.5-Les propriétés thermiques :272.6-Les propriétés critiques :29

Chapitre 3 : Méthodes de prédictions des propriétés thermodynamiques et physiques des hydrocarbures

3.1. Introduction	
3.2 Méthodes de calcul des propriétés thermodynamiques et physiques d	es hydrocarbures
32	-

Chapitre 4 : Etablissement de nouvelles corrélations de contribution de groupes pour les corps purs.

4.1. Introduction	39
4.2. Les propriétés de transport	39
4.3. Propriétés spécifiques au pétrole brut	49
4.4. Conclusion	59

Chapitre5 : Application des corrélations établies aux mélanges binaires et ternaires.

5.1.Introduction	60
5.2. Mélanges binaires.	60
5.3. Mélanges ternaires	65
5.4. Conclusion	71

sommaire

Chapitre 6 : Applications des corrélations établies aux fractions pétrolières

6.1.Introduction	72
6.2. Fractions légères.	73
6.2. Fractions moyennes et lourdes	74
6.3. Caractéristiques des fractions pétrolières utilisées	75
6.4. Résultas obtenus.	76
6.5. Conclusion	96

Abréviations

AAD	Average Absulute Deviation (%).
AFNOR	Association Française de Normalisation.
API	American Institute of Petroleum.
А	Aromatiques.
ASTM	American Standard for Testing Materials.
c	cycle.
CPG	Chromatographie en Phase Gazeuse.
CPL	Chromatographie en Phase liquide.
CI ou BMCI	Indice de Corrélation ou Bureau of Mines Correlation Index.
DIPPR	Design Institute for Physical Property.
Eq	Equation.
IR	InfraRouge.
i-par	iso pa raffines.
MCGAI	Méthode de contribution de Groupes Avec Interactions.
MCGSI	Méthode de contribution de Groupes sans Interactions.
MS	Mass Spectrometry;
Nbre	Nombre.
Ν	Naphtènes.
Nc	Nombres de c arbones.
n-par ou P	normales paraffines.
r	ramification.
TBP	True Boilling Point.
Tmav	Température moyenne d'ébullition.
TRC	Thermodynamic Reseach Center.
UV	Ultra Violet.
FP	fraction pétrolière.

Notations

d

I

paramètres de l'équation de contribution de groupes avec a, b, c, d, m, n et p interactions. densité définie par l'American Petroleum Institute. API Bz Benzène. C/H rapport massique carbone / hydrogène. CycC6 Cyclohexane. densité. ${d_4}^{15} \\$ densité ou masse volumique liquide à 15°C. ${d_4}^{20}$ densité ou masse volumique liquide à 20°C. indice de Huang. Kuop facteur de caractérisation de Watson.

MM ou M	Masse Molaire.
Ν	nombre de composés dans un mélange
n _D ²⁰	indice de réfraction.
n _i	nombre de groupement structural de type "i".
ni	nombre de groupement principal d'interactions de type "j".
nC6	hexane.
nC7	heptane.
nC10	decane.
nC13	tridecane.
nC14	tétradecane.
Р	pression.
Pc	pression critique.
P _m	propriété du mélange.
Pr	pression réduite.
Ri	refractivity intercept;
SpGr 60°F/60°F	specific gravity à 60°F/60°F.
T T	température.
Teb	température d'ébullition (K).
Tc	température critique (K);
Ts	tension superficielle à 20° C [(N/m) pour les hydrocarbures purs
	et (dyne/cm) pour les mélanges].
V	volume
Vc	volume critique
V _M	volume molaire:
X	fraction molaire.
Xi, X_j et X_k	compositions molaires des corps purs i, j et k;
nC13 ·	tridecane
nC14 :	tetradecane
nC16 :	hexadecane
nC17 :	heptadecane
nC18 :	octadecane
nC20 :	eicosane
nC21 :	heineicosane
nC22 :	dicosane
nC7cy6 :	heptylcyclohexane
nC8cy6 :	
nC_{100}	decyloyclohexane
nC100y0.	undecylcyclohexane
nC13cv6	tridecylcyclohexane
nC14cv6 :	tetradecylcyclohexane
nC15cv6 :	pentadecylcyclohexane
nC16cy6 :	hexylcyclohexane
nC6Bz:	hexylbenzene

nC7Bz :	heptylbenzene
nC9Bz :	nonylbenzene
nC10Bz :	decylbenzene
nC11Bz :	undecylbenzene
nC12Bz :	dodecylbenzene
nC13Bz :	tridecylbenzene
nC14Bz :	tetradecylbenzene
nC15Bz :	pentadecylbenzene
nC16Bz :	hexadecylbenzene
nC17Bz :	heptadecylbenzene

Ð

Lettres grecques	
Θ	Propriété physique étudiée.
$\Delta \theta_i$	Contribution du groupement structural de type "i".
$\Delta \theta_{ m j}$	Contribution du groupement principal d'interactions de type "j";
F (θ)	La forme généralisée de contribution de groupes reliant la propriété θ et les contributions $\Delta \theta_i$ et $\Delta \theta_j$ des groupements de type i et j.

INTRODUCTION GENERALE

Depuis deux ans, l'énergie est revenue au cœur des préoccupations des opinions publiques et des gouvernements. La flambée des prix du pétrole et de l'ensemble des matières premières a suscité des craintes comparatives à celles des chocs pétroliers des années 70. Les opinions publiques occidentales sont inquiètes sur les perspectives énergétiques qui pourraient remettre en cause le modèle de développement qui prévaut depuis des décennies. Cette inquiétude se double aujourd'hui d'un défi environnemental lié au changement climatique.

Les énergies fossiles apparaissent comme un élément de premier plan qui cristallise les divergences d'intérêts et façonnent les relations géopolitiques. Les conflits géopolitiques ont ainsi un impact à long terme sur le secteur énergétique. Ils peuvent aussi avoir des conséquences majeures à court terme sur l'économie mondiale, comme nous le constatons actuellement.

Parmi ces énergies fossiles nous trouvons le pétrole qui constitue l'une des sources d'énergie les plus utilisées aujourd'hui, issu d'une transformation qui a débuté il y a plusieurs dizaines, voire centaines de millions d'années. Ce fluide 100 % naturel a été piégé dans les roches, où il est longtemps resté dissimulé. Il n'a pu être extrait qu'au début du XIXe siècle, grâce aux progrès technologiques. Depuis, cet or noir est devenu indispensable, tout comme le gaz qui tient aussi une place importante dans le domaine des hydrocarbures.

La maîtrise de toutes les étapes de séparation et de transformation des produits pétroliers, depuis l'acheminement du pétrole des puits jusqu'au stockage des produits finis, passe par une parfaite connaissance des caractéristiques et des propriétés physico-chimiques du pétrole et des fractions pétrolières.

L'expérience fournit une partie des propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important. Dans le but de contourner ces contraintes, des corrélations ont été proposées par différents auteurs depuis plus d'un demi-siècle. Elles se basent notamment sur la loi des états correspondants et les méthodes de contribution de groupes. Dans la présente étude, nous proposons quatre corrélations pour la prédiction des quatre propriétés physiques suivantes : la densité, le volume molaire, le facteur de caractérisation et le paramètre I/d. Cette prédiction est basée sur la relation *structure-propriété* en utilisant le principe de contribution des groupes.

Le premier chapitre de cette étude est réservé aux généralités sur le pétrole brut, (son origine, sa composition, son raffinage) ainsi que sur les différentes méthodes d'analyse du pétrole brut qui seront présentées dans ce chapitre.

Dans le second chapitre, nous présentons les différentes corrélations utilisées pour déterminer ou prédire les propriétés physiques pour les corps purs, les mélanges de corps purs et les fractions pétrolières, ces corrélations se basent pour la plupart sur la méthode de contribution des groupes.

Dans le troisième chapitre, nous présentons les différentes méthodes utilisées pour l'estimation des propriétés physiques et thermodynamiques, une attention particulière est donnée à la méthode de contribution des groupes.

Le quatrième chapitre sera consacré aux résultats obtenus pour les propriétés physiques des hydrocarbures ainsi que les résultats des comparaisons effectuées avec d'autres corrélations. Nous montrerons, en définitive, la pertinence du modèle proposé.

Une extension de notre étude aux mélanges des corps purs et aux fractions pétrolières a fait l'objet du cinquième et sixième chapitre.

CHAPITRE I

Généralité sur le pétrole brute

1.1-Définition du pétrole brut :

Le pétrole, du latin *petra* pierre et *oleum* huile (soit « huile de pierre »), est une roche liquide carbonée, ou huile minérale., son exploitation est l'un des piliers de l'économie industrielle, car il fournit la quasi-totalité des carburants liquides. Le pétrole est aussi souvent appelé « or noir » en référence à sa couleur noire et à son prix élevé. Le pétrole brut contient de surcroît, de faibles quantités de soufre, ainsi que des traces d'azote, d'oxygène et de métaux. **[1]**

1.2-La formation du pétrole :

De nombreux savants se sont penchés sur le problème de l'origine du pétrole .Deux théories sont nées : celle de l'origine minérale défendue autrefois par de notables savants tels que Moissan et Sabatier et celle de l'origine organique défendue par Engluer et Hofer. C'est cette dernière théorie qui est considérée aujourd'hui comme la plus vraisemblable. [2]

Il y a environ 500 millions d'années, les mers renfermaient peu de vie, puis ces mers peu profondes se sont enrichies en organismes aquatiques végétaux et animaux qui se sont accumulés en couches sédimentaires. Sous l'effet de la température, de la pression et des bactéries anaérobies, ce mélange se serait transformé en hydrocarbures liquides qui, sous l'effet du compactage provoqué par la sédimentation, ont migré pour imprégner des sables ou des roches poreuses et perméables tels que grès ou calcaires. Les gisements se localisent toujours en un point singulier ou dans une anomalie naturelle de ces roches, que l'on appelle roche réservoir. Une couche perméable, marne ou argile, par exemple, formant piège, permet l'accumulation des hydrocarbures et les empêche ainsi de s'échapper.

Les pièges sont le plus souvent constitués par des anticlinaux, des dômes de sel ou des failles, qui permettent d'amener un terrain imperméable en face de la roche magasin. Le pétrole se présente le plus souvent surmonté d'une couche d'hydrocarbures gazeux et se situe généralement au dessus d'une couche d'eau salée plus dense que lui. [3]

1.3-Le long voyage du pétrole :

I.3.1-Recherche : [4]

Pour savoir où se nichent les réservoirs de pétrole, il faut explorer le sous-sol.

- En mer : on utilise des bateaux sismiques.
- Sur terre : des camions vibrateurs permettent de réaliser une échographie du sous-sol.

I.3.2-Forage :

Une fois que les structures, c'est-à-dire les pièges possibles ayant pu provoquer l'accumulation d'hydrocarbures, ont été reconnues, soit par prospection géologique, soit par prospection géophysique, on peut décider de l'implantation sur des structures ainsi mises en évidence d'un premier forage d'exploration ou « Wildcat ». [2]

Le forage est constitué par l'ensemble des techniques mises en œuvre pour creuser un puit, jusqu'aux profondeurs ou le pétrole est supposé exister

L'ancien procédé de forage à battage, qui consiste à faire retomber à intervalles réguliers, sur le front du puit, un outil lourd et aiguisé, a été abandonné depuis plusieurs décennies pour la recherche du pétrole il a été remplacé par le procède rotary, qui est le plus utilisé de nos jours sur les différents chantiers du monde entier, il fut exploité pour la première fois en 1901 par l'américain Lukas. [5]

I.3.3-Transport :

Le pétrole et le gaz peuvent être transportés dans les pipelines terrestres ou sousmarins (gazoducs ou oléoducs) mais aussi dans des navires-citernes. [4]

I.3.4-Stockage :

Le pétrole brut, avant d'être raffiné, est d'abord stocké dans des réservoirs de grande capacité. [4]

I.3.5-Raffinage :

Il existe plus de trente procédés unitaires de raffinage du pétrole ou des sous-produits du pétrole. Le but du raffinage du pétrole est de séparer les différents éléments ou composants du pétrole afin d'obtenir des produits utilisables et qui correspondent aux attentes des consommateurs et aux spécifications des principaux standards internationaux (Union européenne et Etats-Unis). Actuellement, la demande la plus importante concerne les éléments légers (pour les carburants).

La première étape est une distillation à pression atmosphérique, le brut est chauffé à 350°C dans une colonne de 60 m de haut. Les composés dont la température d'ébullition est inférieure à 350°C se vaporisent et montent dans la tour. Les vapeurs se condensent lorsqu'elles ont atteint l'altitude qui correspond à leur température de rosée. Les produits se séparent ainsi, se condensant tout au long de la tour, les plus légers (basse température de rosée, environ 30°C) sont récupérés en haut de la tour, les plus lourds restent en bas. La colonne est divisée en différents étages qui correspondent à différentes températures et permettent ainsi de récupérer des produits de moins en moins lourds en allant du bas vers le haut de la colonne .Les résidus de cette distillation sont soumis à une distillation sous vide, ce qui permet d'abaisser les températures d'ébullition. On obtient alors du gazole, des distillats lourds et un résidu qui entre dans la composition des bitumes ou des fiouls lourds.

En fonction des produits souhaités, des procédés de craquage, viscoréduction, filtration, lavage, extraction au solvant, isomérisation, reformage, alkylation et désulfuration peuvent être utilisés et combinés.

Le craquage correspond à une réduction de la taille des molécules. Il peut être thermique ou catalytique.

La viscoréduction est un exemple de craquage thermique qui permet de réduire la viscosité des résidus lourds issus de la distillation sous vide en "coupant" ces produits, on obtient par exemple des produits lourds comme le fuel.

Un craquage catalytique transforme du distillat lourd (issu de la première distillation) en petites molécules : gaz, essences et gazole.

Le reformage catalytique est un processus d'amélioration des naphtas lourd pour obtenir des essences dont l'indice d'octane est élevé. [6]

Le schéma suivant résume les différents traitements chimiques utilisés en raffinage :

Figure 1.1 : Traitements chimiques en raffinage.

I.3.6-Transformation : [4]

Issu du raffinage, le naphta, permet, grâce à la pétrochimie, de fabriquer des produits aussi différents que, des plastiques, textiles synthétiques

I.4-Composition du pétrole brut et des fractions pétrolières : [7]

Le pétrole brut et les fractions pétrolières qui en sont issues sont essentiellement composés de molécules résultant de la combinaison de carbone et d'hydrogène, c'est-à-dire d'hydrocarbure En outre l'analyse révèle des teneurs plus au mois grandes d'autres composés appelés impuretés tel que :soufre,oxygène,azote,métaux,etc.

composés	pourcentage massique	
carbone	84 à 87 %	
hydrogène	11 à 14 %	
soufre	0.04 à 6 %	
azote	0.1 à 1.5 %	
oxygène	0.1 à 0.5 %	
métaux	0.005 à 0.015 % soit 5 à 15 g/t	
	source l'ENSPM	

Tableau 1.1: Compositions massiques des composes pétroliers

I.4.1 Hydrocarbures : [7]

Les hydrocarbures constituent des composés organiques à base de carbone et d'hydrogène. Ils sont utilisés comme carburants, combustibles, huiles lubrifiantes ou encore comme produits de base en matière de synthèse pétrochimique.

On distingue trois catégories d'hydrocarbures présents dans les fractions du brut: les alcanes ou paraffines (18 à 65 %), les cycloalcanes ou naphtènes (25 à 90 %) et des composés aromatiques (jusqu'à 15%).

I.4.1.a- Hydrocarbures paraffiniques : [3]

Appelés aussi alcanes, ces hydrocarbures sont des composés saturés dans lesquels les atomes de carbone peuvent être structurés en chaînes droites ou branchées. Leur formule générale est C_nH_{2n+2} . Les chaînes droites sont dites normales, quant aux chaînes branchées, elles contiennent des groupements méthyl (CH₃) et sont appelées isomères.

Les composés du méthane au butane (C_1 à C_4) sont gazeux à température ambiante. A partir de 5 atomes de carbone les composés sont liquides et au delà de 18 atomes de carbone, ils sont solides. Les alcanes sont des composés qui présentent généralement une très faible réactivité.

Les propriétés physiques telles que : point d'ébullition, densité, point de fusion, etc...des normales paraffines augmentent avec le nombre d'atomes de carbone. Les isomères ont des propriétés inférieures à celles des normales paraffines à même nombre d'atomes de carbone.

• Exemple :

C : 🔿

н О

I.4.1.b-Hydrocarbures naphténiques : [8]

Les hydrocarbures naphténiques ou les cyclo-alcanes sont des hydrocarbures cycliques saturés de formule générale CnH2n, simples ou substitués par des chaînes d'alcanes dont plusieurs portent des groupements méthyle.

Le nombre de cycle dans la molécule permet de classer ces hydrocarbures en trois classes : les monocycles, les bicycles et les tricycles. Ils sont plus réactifs que les paraffines. Ils donnent lieu à des réactions de substitutions et d'addition sur le cycle.

• Exemple :

I.4.1.c-Les hydrocarbures aromatiques : [9]

Ce sont des composés contenant au mois un noyau benzénique dans la molécule .On classe généralement les hydrocarbures aromatiques en deux types :

- Les hydrocarbures purs, qui ne comportent que des cycles aromatiques avec ou sans chaînes latérales
- Les hydrocarbures naphténo-aromatique, qui comportent en plus; des cycles naphténiques.
- Exemple :

I.4.1.d-Hydrocarbures oléfiniques : [9]

La présence des hydrocarbures oléfiniques dans les produits naturels a été longuement discutée et des travaux ont montré la présence d'oléfine du type « trans » dans le brut de Pennsylvanie, mais la présence d'oléfines n'a pas été signalée dans les autre pétroles naturels ayant fait l'objet d'analyse très approfondies .Les oléfines se rencontrent surtout dans les produits ayant subit un traitement de transformation. • Exemple :

I.4.2-Composés autres que les hydrocarbures : [10], [11]

Certains pétroles bruts, en particulier ceux du Proche-Orient, contiennent des composés Hétéro atomiques (soufre, oxygène et azote). La teneur en ces éléments est fonction de l'age et de l'origine du pétrole.

I.4.2.a-Composés oxygénés : [10]

Les bruts contiennent généralement moins d'oxygène que de soufre. Bien que peu abondant, l'oxygène peut jouer un rôle non négligeable ; en particulier il est responsable de l'acidité des pétroles. L'oxygène se trouve dans les pétroles bruts sous forme d'acides carboxyliques (R-COOH), de phénols (R-OH), de cétones (R-CO-R).

I.4.2.b-Composés sulfurés : [10]

En plus de la possibilité d'existence du soufre à l'état libre, il intervient sous forme de molécules plus ou moins complexes dans la composition des pétroles bruts.

- Composés acide et malodorants R-SH (appelés : mercaptans ou thiols) et H2S.
- o Les sulfures, disulfures et polysulfures, respectivement :
- (R-S-R), (R-S-S-R) et (R-S-S-R) n. Ils sont neutres, sans odeurs et instables.

I.4.2.c Composés azotés : [11]

Les composés azotés sont contenus dans les pétroles en qualités bien faibles, comparés aux composés oxygénés ou sulfurés.

Dans le pétrole brut, l'azote se retrouve préférentiellement dans les fractions de points s'ébullition supérieures à 250 °C et est particulièrement concentré dans les résines et les asphalténes.

Nous considérons deux groupes de produits azoté : basiques et non basiques. Les composées basiques isolés sont la pyridine, la quinoléine et l'isoquinolines et certains de leurs homologues supérieurs. Les produits non basiques sont encore assez mal connus ; cependant, on a pu établir la présence de produits de type pyrole, indole ou carbazole.

I.4.2.d- Traces de métaux:[12]

Des traces ou des quantités extrêmement faibles de métaux tels que cuivre, nickel, fer, arsenic et vanadium sont souvent présentes dans le brut.

I.4.3-Composés chimiquement mal définis : [9]

I.4.3.a-Asphaltènes :

Le pétrole renferme enfin des composés non volatils solides et de masse moléculaire élevée qui lors de la distillation se concentre dans les résidus. Les asphaltènes sont concentrés en hétéro éléments : soufre, azote, nickel et vanadium. Leur teneur est très variable dans les pétroles.

I.4.3.b-Résines :

Ces produits sont obtenus par chromatographie en phase liquide en éluant avec des solvants très polaires la partie du brut soluble dans le n- heptane. Les résines sont généralement des molécules à caractère aromatique très marqué, leur masse moléculaire peut varier de 500 à 1000.

I.5- Méthodes d'analyse du pétrole :

La diversité des pétroles bruts et les produits qui en dérivent ainsi que la complexité de leurs compositions, entraînent des conditions de production, de transport, de stockage et de raffinage adaptées, d'où la nécessité d'une caractérisation de ces produits par la détermination de leurs propriétés d'usage et de leur compositions.

L'analyse des pétroles bruts et des fractions qui en sont issues fait intervenir différentes techniques de fractionnement et d'analyses physiques et chimiques.

Les différentes méthodes utilisées pour l'analyse du pétrole brut sont résumées dans le schéma suivant :

Figure 2.1 : Les méthodes d'analyse du pétrole brut

1.5.1-fractionnement du pétrole brut et des produits pétroliers :

Les pétroles bruts et les produits pétroliers formant un continuum d'espèces chimiques depuis les gaz jusqu'aux produits les plus lourds, il est évidemment impossible, vu leur complexité, d'identifier leurs composants. Différentes techniques de fractionnement sont alors mises en œuvre pour la caractérisation de ces produits, elles font l'objet de protocoles normalisés. Certaines sont préparatives et destinées à séparer des fractions pour des analyses ultérieures, d'autres sont analytiques non préparatives destinées à caractériser la charge ellemême en évaluant le rendement en différentes coupes.

I.5.1.1-Distillation TBP (True Boiling Point): [13]

La distillation **TBP** correspond à une technique de laboratoire permettant de donner une image presque exacte de la composition d'un pétrole brut, par la mesure de la température d'ébullition des constituants qui le composent d'où son nom.

Elle présente une haute sélectivité de séparation, puisqu'elle décompose le pétrole en une multitude de coupes ayant un intervalle de distillation très étroit. Ceci, va nous permettre de les considérer comme des hydrocarbures purs fictifs dont le point d'ébullition sera égal à la moyenne arithmétique des températures initiale et finale de distillation :

$$T_{mav} = \frac{Ti + Tf}{2}$$

La **TBP** est d'abord effectuée sous une pression atmosphérique jusqu'à ce que la température dans le bouilleur atteigne une limite correspondant au début de cracking du résidu. Nous avons alors recours à une distillation sous vide. Si le résidu obtenu est relativement important, on procède à une autre distillation sous un vide plus poussé.

• *Intérêt* :

La distillation **TBP** permet :

- De tracer la courbe de distillation, c'est à dire le profil de répartition des hydrocarbures contenus dans le brut (pourcentages massiques ou volumiques en fonction de leurs différentes températures d'ébullition).
- La courbe de distillation elle même est d'une grande importance. Elle donne les rendements en différentes coupes en poids et en volume.

La distillation TBP des pétroles bruts comporte deux étapes:

- La première étape sous pression atmosphérique.
- La seconde sous un vide de 40 mmHg puis de 10 mmHg.

La courbe **TBP**, permet d'effectuer le découpage du pétrole brut, dans le but de déterminer les rendements des différents produits connus dans l'industrie pétrolière et les comparer avec les spécifications exigées par les normes.

On donnera un exemple de découpage de pétrole brut, où les différentes coupes sont classées par ordre croissant de poids moléculaires et par intervalle de distillation.

	Gaz combustible	C_1 - C_2
	Propane	C ₃
0°C	Butane	C ₄
140 – 180°C	Essence légère 2 à 4 coupes lourde	C ₅ -C ₁₀
180 – 250°C	Kérosène	C ₁₀ -C ₁₄
250 – 440°C	Gas-oil léger 2 à 3coupes moyen lourd	C ₁₄ -C ₂₀
440 – 570°C	Distillats 2 à 4 coupes	C_{20}^{+}
Į.	Résidu sous vide	

Température d'ébullition normale

Figure 3.1: Fractionnement du pétrole brut : Exemple de découpage de pétrole brut Algérien.

I.5.1.2-Distillation ASTM D 86: [14]

Cette distillation s'applique à tous les types de produits pétroliers à l'exception des gaz de pétrole liquéfiés et des bitumes. Elle fait l'objet d'une méthode normalisée ASTM D86 (NF M 07-002).

Ce test standard consiste en la distillation de 100 ml de produit dans des conditions standards. Les vapeurs formées sont refroidies et condensées dans un tube baignant dans de la glace puis récupérées dans une éprouvette graduée. Les températures et les volumes de condensat correspondants sont notés et reportés sous forme graphique : température d'ébullition en fonction du volume distillé. Les températures initiale et finale ainsi que celles correspondants à tous les 10% distillés sont reportées : le point initiale (IBP) correspondant à l'apparition de la première goutte de condensat et le point final (FBP) correspond à la température maximale notée durant le test.

I.5.1.3-Distillation ASTM D 1160:

L'ASTM D 1160 est une méthode standard qui s'applique aux produits pétroliers lourds susceptibles de se décomposer par craquage thermique, sous l'effet de la température élevée, lorsqu'ils sont distillés à la pression atmosphérique.

L'échantillon est distillé à des températures prédéterminées et très précisément contrôlées sous des pressions de 50 à 1 mm de mercure. Cette distillation permet de tracer une courbe de distillation reliant le volume distillé au point d'ébullition corrigé pour être ramené à la pression atmosphérique.

La distillation ASTM d'un produit pétrolier est moins sélective que les autres types de distillation. Néanmoins, elle présente l'avantage d'être rapide et nous renseigne sur la volatilité des constituants présents dans le mélange distillé.

1.5.1.4. La distillation simulée (DS) par CPG : [15]

La distillation simulée (DS) par CPG a fait l'objet de nombreux travaux depuis 20 ans car c'est une technique qui remplace avantageusement les méthodes de distillation traditionnelle pour le contrôle rapide du rendement en produits.

Le principe en est simple : l'échantillon est introduit sur une colonne qui sépare les hydrocarbures suivant leur point d'ébullition ; à l'aide d'un mélange de normales paraffines de point d'ébullition connu, on établit la correspondance entre temps de rétention et point d'ébullition et on peut alors construire la courbe % poids - point d'ébullition. La mise en oeuvre par contre est moins évidente.

Le premier problème, qui est le sujet principal de la plupart des travaux, concerne le choix de la phase stationnaire pour obtenir un bon accord avec les courbes de distillation réelle. Le second est la stabilité de la phase stationnaire aux températures maximales utilisées.

I.5.2-Méthodes physico-chimiques de séparation :

I.5.2.1-Méthodes chimiques : [7]

Parmi les méthodes chimiques d'identification des produits pétroliers ,il y'a lieu de citer l'analyse élémentaire ou des produits tels que le carbone ,l'hydrogène,le soufre, l'azote et l'oxygène sont déterminés à l'échelle micro où semi-micro dans les laboratoires spécialement équipés. Notons que les méthodes chimiques sont en nette régression.

I.5.2.2 - Méthodes physiques : [13]

Méthodes spectrographiques : infrarouges, ultraviolet, spectrométrie de masse
 Méthodes chromatographiques : chromatographique en phase gazeuses, en phase liquide ainsi que le couplage de la chromatographie en phase gazeuse avec la spectrométrie de masse GC/MS.

I.5.2.2.1-Méthodes spectrographiques :

Les spectrographiques reposent sur les propriétés optiques. Ces méthodes occupent depuis quelques années une place prépondérante dans le domaine d'analyse. Elles peuvent être classées selon le type de spectre utilisé.

> Spectrographique infrarouge "IR":

Dans le cas des essences, la spectrographie infrarouge permet de déterminer en principe les hydrocarbures individuels saturés jusqu'à 120°C, et tous les hydrocarbures aromatiques depuis le benzène jusqu'aux composés en C10. Cependant, cette méthode devient de moins en moins applicable dans le domaine 200-300°C, par suite du très grand nombre de constituants présents dans une fraction et du manque de spectre de référence de produits purs. De plus, lorsque le poids moléculaire des hydrocarbures augmente, les spectres d'adsorption infrarouge des corps d'une même famille deviennent identiques et tendent vers un spectre limite.

Certains auteurs ont proposé de doser, à la place des hydrocarbures individuels, les différents groupes fonctionnels, c'est-à-dire les groupements: CH3, CH et C. Les différentes méthodes qui ont été proposées utilisent soit l'adsorption dans le proche infrarouge (800-900 cm-1), soit des longueurs d'ondes caractéristiques des groupements fonctionnels.

> Spectrométrie ultraviolette "UV" :

Le spectre UV se situe dans le domaine 200-400 nm. Ce rayonnement est susceptible d'exciter les niveaux électroniques correspondants aux liaisons de type π et des liaisons conjuguées.

Dans le domaine pétrolier cette méthode permet seulement d'identifier et de doser les hydrocarbures aromatiques, les oléfines et dioléfines qui sont les seules molécules à donner des spectres d'adsorption caractéristiques.

Spectrométrie de masse "SM":

La spectrométrie de masse est une technique de détection extrêmement sensible qui permet de déterminer des structures moléculaires, elle est réservée exclusivement à l'analyse des gaz où des fractions légères de l'essence. Cependant ONEAL et WIER ont réussi, en modifiant le système d'introduction, à obtenir les spectres de masse des hydrocarbures lourds. Elle est souvent couplée avec un système de chromatographie en phase gazeuse, et cette association, d'une méthode séparative et d'une méthode d'identification, permet d'étudier des mélanges complexes.

I.5.2.2.-Méthodes chromatographiques : [16]

La chromatographie est une méthode physique de séparation basée sur les différences d'affinités des substances à analyser à l'égard de deux phases, l'une stationnaire ou fixe, l'autre mobile. Selon la technique chromatographique mise en jeu, la séparation des composants entraînés par la phase mobile, résulte soit de leur adsorption et de leur désorption successives sur la phase stationnaire, soit de leur solubilité différente dans chaque phase. Les méthodes chromatographiques peuvent être classées en fonction de la nature physique des phases (mobile et stationnaire). Parmi ces méthodes, les plus courantes sont :

➤ La chromatographie en phase gazeuse (CPG) : [17]

La chromatographie en phase gazeuse (CPG) a toujours été une technique analytique très utilisée pour la caractérisation des hydrocarbures. L'analyse des hydrocarbures gazeux qui se faisait par chromatographie de partage en utilisant de très longues colonnes remplies, s'effectue depuis quelques années avec des colonnes capillaires à film d'adsorbant. Ces colonnes, beaucoup plus efficaces, sont maintenant très stables et employées en laboratoire de contrôle.

Les adsorbants les plus utilisés sont l'alumine et les polymères adsorbants. Cette méthode permet de séparer des mélanges gazeux par suite d'équilibres entre une phase gazeuse mobile et une phase stationnaire, qui peut être liquide ou solide.

Figure 4.1 : Schéma d'un appareil à chromatographie en phase gazeuse

> Chromatographie en phase liquide :

La chromatographie en phase liquide est une technique de séparation basée sur l'adsorption sélective sur un solide, silice ou alumine par exemple.

De plus, la chromatographie en phase liquide est souvent plus efficace que la chromatographie en phase gazeuse dans le cas de séparation difficile.

La chromatographie en phase gazeuse reste donc une méthode qui, pour nombre de séparations n'offrant pas de difficultés particulières, est plus simple, souvent plus rapide et plus sensible que la chromatographie en phase liquide. De ce fait ces deux méthodes ne sont pas concurrentes mais complémentaires.

Figure 5.1 : Schéma d'un appareil à chromatographie en phase liquide.

> Couplage de la CPG avec la spectrométrie de masse:

La spectrométrie de masse (SM) couplée à la GPG (CPG/SM) est la principale technique d'identification. Cette technique a apporté une contribution essentielle à l'analyse des hydrocarbures notamment pour l'analyse détaillée des carburants. Jusqu'à près de 1000 composés ont été identifiés dans les huiles. [18], [19]

Pour les distillats moyens où l'analyse détaillée directe n'est plus possible, en alliant la séparation par point d'ébullition et par carbone de la CPG à l'analyse par famille de la SM, il est possible d'avoir accès à la répartition par carbone de l'analyse par familles chimiques.

En géochimie, l'utilisation de la CPG/SM a marqué une étape importante pour l'étude de la transformation de la matière organique au cours de la sédimentation. On est passé de la comparaison de tracés chromatographiques à l'identification des structures moléculaires et la recherche de marqueurs biochimiques [**21**].

I.6-Coupes pétrolières : [22]

Le pétrole brut ne procure pas seulement de l'essence. Nous utilisons chaque jour l'un ou l'autre de ses nombreux dérivés, souvent sans nous rendre compte qu'ils sont aussi à base de pétrole.

I.6.1Gaz liquéfié :

Le gaz de pétrole liquéfié (GPL), connu aussi sous la dénomination de Liquefied Petroleum Gas (LPG), se compose des fractions les plus légères du pétrole. Il se présente sous forme gazeuse à température ambiante. Ce sont des hydrocarbures issus du raffinage qui se liquéfient à une pression relativement faible et qu'on stocke dans des citernes. Aujourd'hui, le gaz liquéfié sert principalement au chauffage, à l'alimentation des cuisinières à gaz, et comme matière première pour la pétrochimie. Il joue aussi un rôle de plus en plus important en tant que carburant automobile.

I.6.2-Essence :

L'essence est le carburant le plus vendu au monde. Il se compose de fractions légères tirées de la distillation du brut à des températures relativement basses (35°C à 180°C). La plus grande part de ces fractions subiront encore d'autres traitements, puis seront mélangées pour donner de l'essence pour moteurs. A partir de ce distillat, on produit également de l'essence d'aviation (carburant d'un indice d'octane particulièrement élevé pour avions légers), ainsi que des essences spéciales pour l'industrie chimique.

I.6.3-Kérosène :

Le kérosène ou pétrole lampant est plus lourd que l'essence, et son point d'ébullition est plus élevé (entre 150°C et 250°C). Par le passé, ce produit servait à l'éclairage (d'où son nom de pétrole lampant) et au chauffage, ce qui est encore le cas dans plusieurs pays en voie de développement. Aujourd'hui, le kérosène est avant tout un carburant d'aviation produit pour l'alimentation, des turboréacteurs et turbopropulseurs des avions de ligne.

I.6.4-Diesel :

Le diesel, appelé gazole, est le carburant par excellence des poids lourds, des autobus, des bateaux, des machines agricoles et de chantiers. Grâce à des progrès techniques notables, des moteurs diesel économiques équipent de plus en plus les voitures de tourisme. Le carburant diesel se compose – comme le mazout – de chaînes d'hydrocarbures longues. Lors de la distillation, son point d'ébullition se situe dans une plage moyenne de 250°C à 360°C. Par l'adjonction de divers additifs, on optimalise l'aptitude à l'allumage, la résistance au froid et d'autres caractéristiques de qualité de ce carburant.

I.6.5-Mazout :

Le mazout (huile de chauffage extra-legère HEL) représente 40% des ventes intérieures de produits pétroliers.

Le mazout compte parmi les distillats de densité moyenne, tirés du brut à des températures moyennes. Le terme anglais de gasoil désigne globalement les deux produits, mazout et diesel. Pour le différencier du carburant diesel, le mazout est marqué d'une substance chimique et coloré en rouge.

Par rapport à d'autres combustibles, le mazout présente un pouvoir calorifique extrêmement élevé. Il doit résister au froid et, dans une large mesure, brûler sans laisser de résidus.

I.6.6-Huile de chauffage lourde :

L'huile de chauffage lourde, appelée fioul lourd en France, se compose de chaînes moléculaires longues qui n'atteignent leur degré d'ébullition qu'à partir de 350°C. Ce combustible visqueux, formé d'un mélange de produits résiduels, doit être préchauffé pour qu'on puisse le transporter et le brûler.

I.6.7-Bitume :

Fabriqué à partir d'un résidu très visqueux de la distillation, le bitume est élaboré dans une installation spéciale. Les bitumes sont utilisés notamment pour les revêtements routiers, mais servent aussi à la fabrication de produits d'étanchéité ou d'isolation, et d'emballages résistant à l'humidité.

I.6.8-Lubrifiants :

Les lubrifiants réduisent les frottements et l'usure des pièces mobiles des moteurs et des machines. Ils constituent des produits indispensables au déplacement linéaire ou rotatif d'éléments mécaniques. Sans lubrifiant pas de mouvement. Ces huiles spéciales doivent être très stables et supporter des températures extrêmement basses et élevées, ainsi que de fortes sollicitations.

I.7-Qualité et prix du pétrole brut : [23]

Il existe autant de qualités de pétrole qu'il y a de puits de pétrole dans le monde. En effet, chaque poche de pétrole a des caractéristiques qui lui sont propres et qui sont dues à l'histoire géologique de la formation du pétrole de cette poche en particulier.

La qualité du pétrole brut, et donc son prix, dépend de la part relatif des fractions. Sur les marchés cette qualité est repérée souvent par la densité d et le contenu en S du pétrole brut. La densité d'un hydrocarbure liquide extrait varie de 0,74 pour les condensas à 1,03. Le pétrole est classé en "léger" (d < 0,87), "moyen" (0,87 < d < 0,92), "lourd" (0,92 < d < 1), "extra lourd" (d > 1). Les limites entre classes ne sont pas toujours bien définies.

Un pétrole soufré (dit acide en anglais) contient plus de 0,5% de S (en masse). Les pétroles bruts les plus soufrés peuvent contenir plus de 3% de S.

Un pétrole dense a de plus fortes chances d'être soufré par la part importante du bitume, fraction riche en molécules soufrées. Son prix sera toujours inférieur à celui d'un

pétrole léger. Mais un pétrole peu dense peut être aussi soufré par la présence de molécules de faible masse contenant du S (thiols). Les deux paramètres ne sont donc pas strictement corrélés.

Un autre paramètre intéressant est le rapport du nombre d'atomes d'hydrogène par celui d'atomes de carbone, H/C. La densité décroît avec H/C. Les fractions les plus denses ont un H/C faible (1,5 environ pour le bitume contre 2,3 pour la moins dense, propane commercial).

L'indice d'octane qui est un Indice déterminé en laboratoire qui mesure la résistance à l'auto inflammation d'un carburant dans un moteur à allumage commandé ("moteur essence"), et en particulier sa résistance au cliquetis (le cliquetis étant une des façons d'appréhender l'indice d'octane). Plus l'indice est élevé, plus la résistance est grande.

L'indice de cétane c'est un indice déterminé en laboratoire qui mesure l'aptitude d'un gazole à l'auto inflammation dans un moteur diesel (moteur à allumage par compression). Plus l'indice est élevé, plus le :; délai d'inflammation du carburant est court.

Lorsqu'on parle de prix de pétrole brut, on se réfère à des qualités standard : le Brent en Europe, le WTI (West Texas Intermediate) aux USA, le Dubaï pour le Moyen Orient. Le prix de tous les autres bruts dérivent des prix de ces bruts 'marqueurs' de référence en tenant compte de certains différentiels de qualité (densité, teneurs en soufre etc.). Les prix pourront être définis soit au départ des pays producteurs (prix FOB ou Free On Board), soit à l'arrivée dans les pays consommateurs importateurs (prix CIF ou Cost, Insurance, Freight). **[24]**

1.8. Conclusion :

L'industrie pétrolière a eu un rôle majeur dans les grands événements de ces 150 dernières années, elle a accompagné les grandes découvertes et ainsi permis le développement économique.

L'augmentation du nombre de phases stationnaires disponibles, l'amélioration technique des appareils, la possibilité de coupler la CPG avec d'autres techniques physiques d'analyses fonctionnelles (SM, IR,dans le visible et dans l'ultraviolet)permettent de dire que la CPG doit rester longtemps l'une des méthodes fondamentales en analyse organique.

La mesure des propriétés physiques de mélanges complexes a conduit à développer un important savoir faire dans le domaine de l'analyse quantitatives.

CHAPITRE II

Propriétés physiques et thermodynamiques

Des hydrocarbures

2.1-Introduction :

La base pour la conception et la simulation de beaucoup d'unités de traitement chimique est un ensemble de propriétés physiques et thermodynamiques des composés dans un processus qui subit une certaine forme de transformation.

Tout au long de ce chapitre, nous aborderons le problème de la détermination de quelques propriétés physiques et thermodynamiques des hydrocarbures purs, de leurs mélanges ainsi que celles des fractions pétrolières. Nous passerons en revue les méthodes de calcul disponibles dans la littérature et qui ont connu un grand succès et une application dans les différentes industries traitant des hydrocarbures.

2.2 Propriétés de transport :

2.2.1-Densité :

La densité est un paramètre très important dans la plupart des calculs de dimensionnement des équipements tels que : capacité de stockage, hauteur des colonnes, compresseurs....etc. Elle intervient également dans les calculs d'équilibre liquide-vapeur et comme paramètre pour estimer d'autres propriétés physiques.

2.2.1.1-Définition :

La densité d'une substance est le rapport entre sa masse volumique à une température donnée T et celle d'un corps de référence (en général l'eau) se réfère au rapport de la masse volumique d'un échantillon d'eau à la température q (° C) à sa valeur maximale qui est atteinte à la température très proche de 4°C.**[24]**

- Dans le système francophone, on mesure la d_4^{20} ou la d_4^{15}
- Les anglo-saxons utilisent la notion de specific gravity, notée SpGr et définie pour deux températures identiques de 60°F (15.55°C). Elle peut se calculer à partir de la relation :

$$SpGr_{60^{\circ}F}^{60^{\circ}F} = \frac{d_{4}^{15}}{0.99904}$$
....(2.2)

 Dans le système Américain, les densités des bruts sont souvent exprimées en degré API (*American Petroleum Institute*). C'est une fonction hyperbolique de la « specific gravity »

$$API = \left(141.5 / SpGr_{60^{\circ}F}^{60^{\circ}F}\right) - 131.5 \qquad (2.3)$$

Cette propriété est fréquemment utilisée pour classer, d'une manière approximative, les pétroles bruts en : - Brut léger : $0,76 \le d \le 0.82$.

- Brut moven : 0.82 < d < 0.86.
- **Brut moyennement lourd :** 0,86 ≤d < 0,90.

- Brut lourd : d > 0,90.

La densité des hydrocarbures purs croît des paraffines aux aromatiques, les naphtènes ont des densités intermédiaires. Elle augmente avec le nombre d'atomes de carbone dans le cas des hydrocarbures paraffiniques et naphténiques et décroît dans le cas des hydrocarbures aromatiques comme montre la figure suivante :

Figure2.1.Variation de la densité à 20°C des hydrocarbures avec le nombre d'atomes de carbone.

- Les densités des trois familles tendent vers une valeur limite qui correspond à la densité de l'hydrocarbure à nombre de groupement -CH₂- infini.
- Wuithier (1972) propose la valeur de 0.856 pour la densité à 20°C de cet hydrocarbure.
- L'effet de la pression sur la densité des liquides devient significatif aux températures élevées, il est quantifié au moyen d'un coefficient d'expansion w défini par la relation suivante :

L'emploi de cette formule nécessite la connaissance d'une valeur de la densité à P1 et T1, w est donné sur abaques.

 La densité à une température et à une pression données peut être convertie à une autre température et une autre pression par une équation simple attribuée à Lu (1959) et qui utilise des facteurs correctifs fonctions des paramètres réduits T_r et P_r :

 $d_{T_1P} = d_{ref} \frac{C(T_r, P_r)}{C(T_{ref}, P_{ref})}$ (2.5)

Ces facteurs correctifs sont obtenus à partir d'abaques. [3]

2.2.1.2- Mesures expérimentales : [8]

La détermination de la densité se fait au moyen de trois méthodes :

- Méthode du pycnomètre.
- Méthode de l'aréomètre.
- Méthode du densimètre électronique.

La plus utilisée est la méthode du densimètre électronique. Cette méthode est caractérisée par une simple manipulation et une bonne précision.

2.2.1.3-Variation de la densité en fonction de la température à pression atmosphérique :

Nous pour rons déterminer la densité à n'importe quelle température et calculer ensuite la valeur de la d_4^{20} selon la formule :

$$d_{4}^{20} = d_{4}^{T} + \alpha [T(^{\circ}C - 20)] \qquad(2.6)$$

 α :coefficient de dilatation volumique donné par la littérature. [9]

2.2.1.4-Determination de la densité à partir des corrélations :

La densité liquide à 20°C des hydrocarbures purs a été corrélée en utilisant d'autres propriétés physiques. Ainsi, Riazi et Daubert (1980) ont proposé une équation donnant la densité à 20°C en fonction de la température moyenne d'ébullition et de la specific- gravity, Kitous et Chitour (1990) ont corrélé cette propriété avec la température d'ébullition des hydrocarbures purs. Riazi et El-Sahhaf (1995) ont, quant à eux, établi des corrélations en fonction de la masse molaire des n-alcanes, n-alkylcyclohexanes et n-alkylbenzènes.

D'autres corrélations faisant intervenir le nombre d'atomes de carbone ont été établies par Zidelkheir et Chitour (1993) et Skander, Souahi et Chitour (2000). Et récemment Skander et Chitour ont établi une corrélation en utilisant la méthode de contribution de groupes sans interactions (2004).

Cas des corps purs :

Sur la base des données de l'API Technical Data Book, Dermoune et Chitour donnent sur des abaques, la variation de la densité en fonction de différentes autres propriétés physiques. A titre d'exemple : l'indice de réfraction, la masse molaire, la température critique et la température d'ébullition. Connaissant donc la famille de l'hydrocarbure pur et connaissant l'une des autres propriétés, il est possible de déduire la densité de l'hydrocarbure. **[8]**

***** Equation de Rackett : [26]

L'équation de Rackett est la plus connue en ce qui concerne l'estimation de la densité du liquide saturé, elle est de la forme :

 $\rho_{\rm S}$: masse volumique du liquide saturé (g/cm3)

- V_c : Volume critique (cm3/g)
- P_c : pression critique (atm)
- T_r : température réduite (T/Tc)
- Z_c : facteur de compressibilité

Corrélation de Demoune-Chitour: [9]

Ces corrélations sont valables pour les fractions pétrolières légères dont les températures d'ébullition sont :

Paraffines : 35<Teb<175°C. Naphtènes : 50<Teb<185°C. Aromatiques : 80<Teb<185°C.

Elles sont basées sur la compilation des valeurs données par l'API projet 44, pour les différentes familles d'hydrocarbures.

$$Ln(dP) = 7.75*10^{-4}*M + 3.825*10^{-4}*T_{eb} + 0.5613 \dots (2.9)$$
$$Ln(dN) = 1.887*10^{-4}*M + 1.044*10^{-4}*T_{eb} + 0.7469 \dots (2.10)$$
$$Ln(dA) = -1.889*10^{-4}*M - 1.005*10^{-4}*T_{eb} + 0.8965 \dots (2.11)$$

d:densité, M:masse molaire, Teb :température d'ébullition.

Cas des mélanges de corps purs :

La densité est une propriété additive, nous pouvons donc écrire :

$$d = \frac{\sum Vi * di}{\sum Vi}$$
(2.12)

Vi : volume molaire du constituant i, di : densité du constituant i.

Cas des fractions pétrolières : [9]

La densité des fractions pétrolières peut être facilement déterminée expérimentalement. Elle peut être aussi estimée par des corrélations, connaissant ou non la composition molaire en paraffines (P), naphtènes (N) et aromatiques (A). La densité moyenne de la fraction pétrolière est calculée en admettant l'additivité des densités des fractions, soit :

 $d = X_P * d_p + X_N * d_N + X_A * d_A \qquad (2.13)$

Corrélation de Riazi-Daubert: [27], [28]

• Pour 70≤M≤300 et 80≤Teb≤650 °F

$$\rho(20) = 0.982554 * Teb^{0.002016} * Sg^{1.0055} \dots (214)$$

 $\rho(20)$:masse volumique à 20 °C , T_{eb} : température d'ébullition en °R, Sg :specific gravity

• Pour 300≤M≤600 et 650≤Teb≤1000 °F

 $\rho(20) = 2.83086 * M^{0.0395} * I^{1.13543} \dots (2.15)$

M : masse molaire, **I** : indice de corrélation Cette corrélation s'applique aux corps purs

2.2.1.5-Densité des hydrocarbures purs sous pression : [9]

Lu propose une corrélation correspondant aux densités 1 et 2.

$$\rho_2 = \frac{\rho_1 C_2}{C_1} \tag{2.16}$$

 C_1 , C_2 étant les facteurs de corrélation correspondant aux densités 1 et 2. Ces valeurs sont lues sur un abaque.

2.2.2-Volume molaire :

2.2.2.1-Definition : [3]

Le volume molaire d'un corps pur est le volume qu'occupe une mole de ce corps à une température donnée T et une pression donnée P. Il est relié à la masse molaire \mathbf{M} et à la densité \mathbf{d} par la relation suivante:

$$V_M = \frac{M}{d_A^T} \qquad (2.17)$$

Le volume molaire des hydrocarbures purs augmente avec le nombre d'atomes de carbone et, à même nombre de carbone, il diminue des paraffines aux aromatiques, les naphténiques possédant des volumes intermédiaires. Ceci est clairement illustré par les courbes de la figure ci-dessous :

Figure 2.2 : Variation du volume molaire des hydrocarbures avec le nombre d'atomes de carbone.

2.2.2.2-Determination du volume molaire à partir des corrélations :

Cas des corps purs :

Il existe plusieurs corrélations de détermination du volume molaire des hydrocarbures parmi lesquelles nous citons :

Méthode de Tyn-Calus : [29]

Tyn et Calus proposent une corrélation liée aux volumes critiques, de la forme :

 $V_m = 0.285 * V_c^{1.048} \qquad (2.18)$

Vm : volume molaire à la température normale d'ébullition, en cm3/g.mole. Vc : volume critique, en cm3/g.mole.

Cas des mélanges de corps purs : [9]

En mélange, les hydrocarbures contribuent au volume molaire total suivant leur importance. Quand les hydrocarbures appartiennent à la même famille, il n'y a pas de grandeurs d'excès et les règles d'additivité s'appliquent :

Xi : fraction molaire du constituant i ;

Vmi : volume molaire de la substance i dans le mélange.

Cas des fractions pétrolières

La composition par grande famille en paraffines, naphtènes et aromatiques est suffisante, en première approximation pour estimer le volume molaire des fractions pétrolières en connaissant ou en calculant le volume molaire de chaque fraction, par application de la relation suivante ; il faut cependant connaître la masse molaire de la fraction pétrolière et le volume molaire moyen des hydrocarbures hypothétiques représentant chaque famille :

$$V_{mm} = V_{mp} * X_p + V_{mN} * X_N + V_{mA} * X_A$$
 (2.20)

V_{mA}, V_{mN}, V_{mA} : volume molaire de la fraction pétrolière. [9]

Corrélation de Riazi-Daubert : [27]

Elle est donnée par la formule suivante :

$$V_m = 7.6211 * 10^{-5} * T \frac{2.1262}{eb} * Sg^{-1.8688} \dots (2.21)$$

Vm : volume molaire en cm3/g.mole, Teb : en °R, Sg : Specific gravity, 60/60°F. Cette corrélation s'applique aux corps purs.

2.2.3-Masse molaire:

2.2.3-1 *Définition* : [9]

La masse molaire d'une substance est définie comme étant la masse d'une mole de molécules de cette substance. La mesure de la masse molaire de l'hydrocarbure peut être réalisée au laboratoire par ébulliométrie, cryoscopie, tonométrie, osmomètrie et ultracentrifugation.

2.2.3-2-Determination de la masse molaire à partir des corrélations :

> Cas des corps purs

Les masses molaires des hydrocarbures sont portées dans des tables, d'autre part, Dermoune-Abbas Turki-Chitour ont porté graphiquement la masse molaire en fonction d'autres propriétés physiques telles que la densité, l'indice de réfraction, l'enthalpie de vaporisation, etc. Il est donc possible de connaître la propriété physique et la formule de cet hydrocarbure, et de retrouver la masse molaire par simple lecture, connaissant la famille à laquelle appartient l'hydrocarbure.[3]

Méthode graphique du Kuop : [8]

La masse molaire des hydrocarbures purs peut être estimée par des courbes isopropriétés, connaissant le Kuop , la densité et la température d'ébullition.

***** Equation de Hersh : [30]

Elle s'écrit sous la forme suivante :

M : masse molaire

Teb : température d'ébullition normale (°C)

 n_D^{20} : indice de réfraction à 20°C.

Equation de Robert : [31]

Elle est de la forme :

$$M = 1705.45 * n_{D}^{20} + 792.93 * d_{4}^{20} + 40553 * PA - 3287 \qquad (2.23)$$

d4²⁰: densité à 20°C par rapport à l'eau à 4°C, PA : point d'aniline

Cas des mélanges de corps purs [9]

La détermination de la masse molaire ne pose pas de problèmes pour un mélange de corps purs car c'est une propriété additive, il est donc possible d'écrire :

$$Mml = \sum \frac{Mmi * Xi}{\sum Xi}$$
(2.24)

xi : fraction molaire du constituant i Mi : masse molaire.

Cas des fractions pétrolières [9]

En déterminant la composition de la fraction pétrolière en paraffines, naphtènes, aromatiques, nous pouvons calculer la masse de la fraction pétrolière en utilisant l'additivité des propriétés des fractions.

$$MFP = Mp * Xp + MN * XN + MA * XA \qquad (2.25)$$

 M_P , M_N et M_A masses moléculaires des hydrocarbures de type paraffines, naphtènes et aromatiques.

Cependant, différents abaques ont été établis et proposés par Maxwell, et qui donnent la masse molaire en fonction de la température d'ébullition et de la densité. La déduction graphique est facile à faire.

2.3-Propriétés optiques :

2.3.1-Indice de réfraction :

2.3.1.1-Définition : [11]

Les rayons lumineux changent de vitesse et de direction en passant d'un milieu à un autre. Ce phénomène est appelé réfraction, le rapport entre le sinus de l'angle d'incidence et le sinus de l'angle de réfraction,"r" est une constante indépendante de la valeur de l'angle d'incidence pour un milieu donné.

n : indice de réfraction

2.3.1.2-Mesure expérimentale : [9]

On peut facilement mesurer l'indice de réfraction au laboratoire à l'aide d'un réfractomètre, le plus utilisé étant le réfractomètre d'ABBE. L'indice de réfraction dépend de la température à laquelle on fait la détermination de la longueur d'onde de la lumière. En général, elle est faite par rapport à la raie jaune du sodium D = 589.3 nm à 20°C. Pour cela, l'effet de la température est pris en compte à l'aide de la formule :

 $t0 = 20^{\circ}C.$

t : température de mesure.

2.3.1.3-Détermination de l'indice de réfraction à partir des corrélations : [3]

> Cas des corps purs :

Equation de sellmeir-Drude : [32]

Ces auteurs présentent une corrélation de la forme :

$$n-1 = \frac{B}{\left(V_0^2 - V^2\right)} \dots (2.28)$$

n : indice de réfarction

B : constante caractéristique de la substance : B=N*e/3.14*m0

V0 : fréquence des électrons intervenant dans la dispersion

V : fréquence de la lumière

e : charge de l'électron

m0 : masse de l'électron

N : nombre d'électrons dispersés par millimètre : N=k*d*b*A/M

k : nombre d'électron dispersés par liaison par formule

b : nombre de liaisons par molécule

d : densité

M : masse molaire

A : nombre d'Avogadro.

Cas des mélanges de corps purs : [9]

En admettant l'additivité des contributions, on peut déduire l'indice de réfraction d'un mélange d'hydrocarbures ou d'une fraction pétrolière connaissant la composition selon l'équation :

 $n_m = n_p * X_p + n_N * X_N + n_A * X_A \dots (2.29)$
2.3.2-Indice de corrélation :

2.3.2-1 *Définition* : [9]

L'indice de corrélation I, encore appelé facteur de caractérisation de HUANG, est défini par l'équation suivante :

Il permet de situer les différentes familles de fractions pétrolières, mais moins biens que le Kuop.

Paraffines : 0.267< I<0.273 Naphtènes : 0.278< I <0.308 Aromatiques: 0.298< I <0.362

2.3.2.2-Détermination de l'indice de corrélation à partir des corrélations :

Les indices de corrélation peuvent être obtenus à partir de la définition si les indices de réfraction sont disponibles. En outre plusieurs corrélations ont été proposées parmi ces corrélations nous citons :

***** Corrélation de Riazi : [27]

Elle est définie de la façon suivante :

T_{eb} : température normale d'ébullition en °R, M :masse molaire,d :densité.

2.4-Propriétés spécifiques :

2.4.1-Facteur de caractérisation Kuop :

2.4.1.1-Définition :[9]

Watson et Murphy de la société U.O.P (Universal Oil Products) ont proposé en 1937 la formule suivante qui définit le facteur de caractérisation Kuop pour pouvoir rendre compte de la tendance de la fraction pétrolière ou du pétrole brut.

$$Kuop = \frac{\sqrt[3]{Teb}}{SpGr_{60^{\circ}F}^{60^{\circ}F}} \qquad (2.32)$$

SpGr : spécifique gravity. Teb : température d'ébullition en °R.

Ce paramètre intervient comme paramètre intermédiaire dans de nombreuses méthodes de calcul d'autres propriétés.

Les valeurs de ce facteur pour les différentes familles d'hydrocarbures sont les suivantes :

Paraffines	: 13.1-13.5
Naphtènes	: 10.5- 13.2
Aromatiques	: 9.5- 12.5

La figure ci dessous donne les variations de ce facteur à l'intérieur de ces trois familles en fonction du nombre d'atomes de carbone.

Figure 2.3. Variation du facteur Kuop des hydrocarbures avec Nc

2.4.1.1- Détermination du Kuop à partir des corrélations :

Whitson (1983) a proposé une corrélation qui relie le facteur Kuop à la masse molaire et à la specific- gravity. En outre Kitous et Chitour (1990) d'une part et, Bouamra et Chitour (1991) d'autre part, ont établi des corrélations permettant de prédire ce facteur connaissant la température d'ébullition et la densité à 20°C des paraffines, naphtènes et aromatiques.

Skander et Chitour (1997) ont corrélé ce paramètre en fonction du nombre de groupements $-CH_{2}$ -., et récemment Skander et Chitour (2004) ont proposé une autre corrélation en se basant sur la méthode de contribution de groupes sans interactions intramoléculaires.

> Cas des corps purs :

Il existe plusieurs corrélations du Kuop en fonction d'autres propriétés.

Corrélation de Bouamra et Chitour : [33]

Ces auteurs ont proposé une correlation de type Kuop =f(Teb,d) pour chaque famille d'hydrocarbures ayant des points d'ébullition compris entre 200 et 400°C. Les données de base sont prises de l'API

Paraffines :	$Kuop = 11.07003 + 3.335759 * 10^{-3} * T_{eb} + 2.159892 * 10^{-6} * d \dots (2.33)$
Naphtènes :	$Kuop = 36.35006 + 0.0080817 * T_{eb} - 34.95683 * d \qquad (2.34)$
Aromatique:	$Kuop = 13.54416 + 6.185766 * 10^{-3} * T_{eb} - 6.127023 * d \qquad (2.35)$
Oléfines:	$Kuop = 18.72537 + 5.731715 * 10^{-3} * T_{eb} - 11.6137 * d \qquad \dots \dots$

d est la densité et T_{eb} la température d'ébullition en K.

Corrélation de Whitson:[34]

$$Kuop = 4.5579 * M^{0.15178} * SpGr^{-0.84573} \dots (2.37)$$

M : masse molaire ; SpGr ;specific gravity.

Corrélations pour les fractions pétrolières :

Maxwell propose une série d'abaques du Kuop en fonction d'autres propretés physiques (d,Teb),qui permettent de déduire le Kuop et de le situer par conséquent la tendance du pétrole brut ou fraction pétrolière.

Corrélation de Skander-Chitour : [35]

Ces auteurs ont proposé une corrélation donnant le Kuop en fonction du nombre d'atomes de carbone. Cette méthode fait appel à la méthode de contribution de groupes.

$$Kuop = a + bN + cN^{2} + dN^{3} + eN^{4}$$
(2.38)

N: nombre d'atomes de carbone.

Les constantes a, b, c, d, e sont des paramètres qui dépendent de la propriété et de la famille de l'hydrocarbure étudié. Leurs valeurs sont données dans le tableau suivant :

Famille	a	b	c	d	e
paraffines	13.909486	-0.33650895	0.030147353	1.018137*10 ⁻³	1.2308944*10 ⁻⁵
Naphtènes	9.6887212	0.28659891	-0.011657066	2.83174*10-4	-2.9508618*10 ⁻⁶
Aromatique	6.9049661	0.65480276	-0.03461062	9.51342*10 ⁻⁴	- 1.031009*10 ⁻⁵

Tableau 2.1: Valeurs des constantes a, b, c, d de l'équation de Skander-Chitour.

2.4.2-Paramètre I/d : [3]

Ce nouveau facteur a été défini par Vakili-Nezhaad et Madarress (2002) pour caractériser les fractions d'hydrocarbures et les pétroles bruts, au même titre que le facteur de caractérisation de Watson ou le facteur de Huang. Sur la base de la relation de Lorentz-Lorenz et de la nature additive de la réfraction molaire, ces auteurs ont proposé ce nouveau facteur comme suit :

$$R_f/M = I/d$$

Où R_f est la réfraction molaire, M la masse moléculaire, I l'indice de corrélation de Huang et d la densité du produit mesurée à la même température que l'indice de réfraction.

Les valeurs de ce facteur pour les différentes familles d'hydrocarbures sont les suivantes :

Paraffines	: 0.333-0.410
Naphtènes	: 0.329- 0.331
Aromatiques	: 0.278- 0.324

Contrairement aux autres facteurs de caractérisation, le nouveau paramètre I/d permet de délimiter avec précision les plages de valeurs correspondant aux différentes séries homologues d'hydrocarbures telles que les paraffines, les naphtènes et les aromatiques.

La figure ci dessous donne les variations de ce facteur à l'intérieur de ces trois familles en fonction du nombre d'atomes de carbone.

Figure 4.2.Variation du facteur I/d des hydrocarbures avec le nombre d'atomes de carbone.

-Les auteurs de ce facteur ont proposé une règle de mélange pour ce paramètre à partir d'une base théorique, ce qui n'est pas le cas des autres facteurs pour lesquels on applique souvent la règle de Kay en première approximation. Cette dernière ne possédant pas de fondement théorique.

La règle de mélange qu'ils proposent est la suivante :

0 2004

 φ_I est la fraction molaire du constituant I dans le mélange.

Pour les fractions pétrolières, il suffit d'utiliser la relation donnant ce facteur avec les valeurs de la densité et de l'indice de corrélation moyens de la fraction.

Estimation du facteur de caractérisation I/d:

Corrélation de Riazi – Daubert : [28]

A partir de la température du point 50%, de la masse molaire et de la densité, ces deux auteurs ont proposé :

* pour M<200
$$I = 0.003583 * T_{eb}^{1.0147} * (M * 103 / d)^{-0.4787}$$
.....(2.40)

*pour M>200
$$I = 0.0014 * T_{eb}^{1.09} * (M * 103/d)^{-0.3984}$$
(2.41)

2.5-Les propriétés thermiques :

2.5.1-Température d'ébullition : [9]

2.5.1.1- *Définition* :

C'est une propriété physique qui mesure la température à laquelle le liquide est porté à l'état de l'ébullition à une pression donnée.

Elle est obtenue par mesure directe, à partir des tables ou encore à partir des corrélations empiriques.

2.5.1.2- Détermination de la température à partir de l'expérience : [9]

Au laboratoire, la température d'ébullition d'un corps pur est mesurée directement à l'aide de thermomètres. Des couples thermoélectriques sont utilisés pour la mesure des températures d'ébullition supérieures à 500 °C. Concernant les mélanges et les fractions pétrolières, leurs températures moyennes pondérées sont généralement déterminées à partir de la distillation. Pour les fractions étroites, elles peuvent être assimilées à la température du point 50 % de distillation.

2.5.1.3- Détermination de la température d'ébullition à partir des corrélations :

> Cas des corps purs

Equation de Sudgen : [36]

Cette méthode est basée sur les contributions de groupes :

 $T_{eb} = (637 * R_d + B) / [P] \qquad (2.42)$

Teb : température d'ébullition en K Rd : réfraction molaire P : Parachor B : constante dépendante de la nature chimique du composé.

> Cas des mélanges de corps purs et des fractions pétrolières : [37]

Pour les mélanges simples, la température d'ébullition moyenne du mélange est considérée pour une première approximation comme une propriété additive ; pour un mélange de composition connue, nous pouvons appliquer en première approximation la formule suivante :

$$T_{ebm} = \left(\sum X_i * T_{ebi}\right) / \sum X_i$$

T_{ebm}: température d'ébullition du mélange. Xi : fraction molaire. T_{ebi} température d'ébullition du constituant i.

Cette règle est d'autant plus valable que les hydrocarbures appartiennent à la même famille et que les points d'ébullition ne sont pas trop éloignés.

Pour les fractions pétrolières, nous parlerons plutôt de température moyenne d'ébullition correspondant à la température du point 50% de la distillation. Celle-ci est déterminée à partir des courbes de distillation TBP et ASTM en rajoutant des incréments à la température moyenne pondérée Tmav.

2.6-Propriétés critiques :

2.6.1 Température critique :

Nous citons quelques corrélations d'estimation de la température critique.

> Cas des corps purs

Lee et Kesler :[38]

 $Tc=341.7+811*SpGr+(0.4244+0.1174*SpGr)*T_{mav}+(0.46693.2623*SpGr)*10^{5}/T_{eb}...(2.43)$

SpGr : specific gravity 60/60°F Teb : température d'ébullition en °R.

> Cas des mélanges de corps purs et des fractions pétrolières

Equation de Riazi et Daubert : [39]

 $T_c = 24.2787 * T_{mav}^{-2.3125} SpGr^{2.3201} \dots (2.44)$

Tmav : température moyenne d'ébullition exprimée en °R.

2.6.2-La pression critique : [37]

Pour l'estimation de la pression critique des hydrocarbures et des fractions pétrolières, de nombreuses corrélations ont été établies par différents auteurs.

Cas des corps purs

Riazi Daubert : [39]

 $P_c = 3.12281 * 10^{-9} * Teb^{-2.3125} SpGr^{-2.3201}$ (2.45)

Teb : température d'ébullition SpGr : specific gravity

> Cas des mélanges de corps purs et fractions pétrolières

Règle de Kay : [40]

Les pressions pseudo critiques des mélanges sont obtenues généralement à partir de la règle de Kay :

Ppc : pression pseudo-critique du mélange

yi : fraction molaire de l'hydrocarbure i dans le mélange

Pci : pression critique de l'hydrocarbure i

2.6.3-le volume critique :

Plusieurs auteurs ont proposé des corrélations empiriques pour l'estimation du volume critique des hydrocarbures et des fractions pétrolières, les plus utilisées d'entre elles sont citées ci-après.

> Cas des corps purs :

Méthode de Lydersen : [41]

Lydersen propose une relation basée sur les contributions de groupes :

$$V_c = 40 + \sum \delta V_i \qquad (2.47)$$

Vc : volume critique du mélange (cm3/mole) $\Sigma\delta Vi$: contribution du groupe i .

> Cas des mélanges de corps purs et des fractions pétrolières

***** Corrélation de Riazi et Daubert : [39]

Ces auteurs ont modifié la précédente équation afin d'améliorer la prédiction des volumes critiques :

$$V_c = a\theta_1^b\theta_2^c \left[d\theta_1 + e\theta_1 + f\theta_1\theta_2 \right] \quad \dots \qquad (2.48)$$

 $\theta 1$, $\theta 2$: couple de paramètres pouvant caractériser les forces moléculaires et la taille des molécules tels que (Teb,SpGr) ou (M,SpGr).

a, b, c, d, e, f : des constantes données pour chaque propriété.

CHAPITRE III

Méthodes de prédiction des propriétés thermodynamique et physique

3.1. Introduction :

Les propriétés thermodynamiques des corps purs et de leurs mélanges ont fait l'objet de plusieurs centaines de corrélations dont le but principal est d'arriver à cerner au maximum les propriétés des mélanges, et particulièrement celles des pétroles bruts et de leurs fractions.

Dans le cas idéal ces propriétés doivent être mesurées dans le laboratoire. Cependant, la plupart de ces mesures exigent un temps de manipulation plus ou moins long et surtout un coût onéreux, et des équipements requis. À cet effet ces techniques sont souvent remplacées par des méthodes prédictives (corrélations et approches graphiques) pour estimer rapidement ces paramètres et au moindre coût.

Nous présentons dans ce chapitre les différentes méthodes utilisées pour le calcul des propriétés thermodynamiques et physiques des hydrocarbures, une attention particulière est donnée à la méthode de contribution de groupes du fait qu'elle représente la base de notre travail dans cette étude.

En fait, nous pouvons distinguer quatre types de méthodes de prédiction des propriétés thermodynamiques et physiques des hydrocarbures comme nous le résume le schéma suivant:

Figure 3.1 : méthodes de calcul des propriétés physiques et thermodynamiques

3.2 Méthodes de calcul des propriétés thermodynamiques et physiques des hydrocarbures

3.2 .1. Equations d'état :

Les équations d'état sont d'une très grande utilité dans les calculs d'engineering et plus particulièrement dans le domaine pétrolier.

L'intérêt d'une équation d'état est de permettre de prévoir avec une assez bonne précision le comportement volumétrique des fluides, l'évolution des fonctions thermodynamiques avec la température et la pression ainsi que les équilibres de phases.

Une équation d'état est une relation entre les variables de pression, volume, température et composition, de forme générale :

3.2.2 Loi des états correspondants :

La loi des états correspondants constitue un élément de simplification dans la prévision des propriétés thermodynamiques des fluides réels. Cette loi affirme que les propriétés dépendantes des forces intermoléculaires sont reliées aux paramètres critiques de la même manière pour tous les composés; autrement dit, la fonction reliant les propriétés réduites est indépendante de la nature de la substance, soit:

Les termes Tr, Pr et Vr représentent respectivement les température, pression et volume réduits. Sur la base de cette loi, de nombreuses corrélations ont été développées pour l'estimation des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs.

3.2.3 Méthodes empiriques classiques :

Les méthodes empiriques classiques donnent les propriétés des fractions pétrolières sur la base de la connaissance de grandeurs physiques accessibles facilement par expérience comme la densité, indice de réfraction et la température d'ébullition.

3.2 .4 Méthodes de contribution de groupes :

3.2.4.1 Principe :

Les thermodynamiciens des fluides se sont souvent intéressés à deux méthodes qui sont la prédiction des propriétés des mélanges de fluides à partir des propriétés des corps purs ainsi que la représentation des interactions moléculaires par les contributions des groupements fonctionnels. l'estimation des propriétés thermodynamiques des mélanges en termes de contribution de groupes a été suggérée pour la premières fois par Lungmuir(1925),citée par Deal et Derr(1968),qui a essayé de décrire les équilibres liquide –vapeur basés sur les surfaces d'interaction entre différents groupes ;en admettant que le champ de forces autour d'un groupe ou d'un radical d'une molécule,caractéristique de ce groupe ou radical ,est dans une large mesure indépendant de la nature du reste de la molécule .de ce fait il a posé le principe d'indépendance des surfaces d'action . La thermodynamique a noté ensuite des travaux très intéressants et des méthodes plus élaborées telles que la méthode ASOG proposée par Derr et Deal (1969) et la méthode UNIFAC proposée par Abrams et Prausnitz (1975) pour le calcul des coefficients d'activités en négligeant les effets intermoléculaires tels que les effets de cycle et de proximité et celle de Nitta et Coll(1977),Sandler et Coll (1989) ainsi que Dahmani et Ait Kaci(1997).[42]

Le principe de ces méthodes postule que chaque liaison, atome, ou groupement d'atomes constitutif d'une molécule apporte sa contribution aux propriétés macroscopiques de la substance étudiée .Elles ont pour objectif de rapporter les propriétés des corps à leur structure moléculaire. Leurs formes sont assez variées, et dépendent des types de groupements et d'environnement choisis pour évaluer les contributions.

La précision de ces méthodes dépend fortement des données expérimentales des propriétés des corps purs utilisées pour déterminer les valeurs des contributions des groupes. [3]

Les méthodes de contribution de groupes ont connu un grand succès et un développement remarquable. Cependant, leurs applications très au-delà du domaine dans lequel elles ont été définies peut entraîner des erreurs importantes. En outre, la plupart des méthodes existantes ont présenté des insuffisances, tels que leur échec à prédire correctement les propriétés des isomères d'une part et, d'autre part, celles des hydrocarbures à nombre de carbone élevé. Nous avons dans le cadre de notre étude, tenté de remédier à cela en proposant des nouvelles méthodes de contribution de groupes avec interactions intramoléculaires.

L'établissement de quelques corrélations pour l'estimation d'une propriété donnée a pour but d'atteindre une meilleure précision par rapport aux données de tables ou expérimentales. En effet, l'établissement des corrélations a été effectué par deux méthodes :

a) La régression multiple non linéaire.

b) L'ajustement des modèles mathématique retenus.

a) – Régression multiple non linéaire :

Cette méthode consiste à introduire le modèle proposé avec des paramètres quelconques. Le logiciel effectue plusieurs itérations avant de trouver les coefficients (a, b, c,...) qui donnent le meilleur lissage entre les valeurs expérimentales et celles données par la corrélation proposée.

b) – Ajustement des modèles mathématiques :

Cette méthode s'inspire des méthodes d'équations existantes.

Elle consiste à introduire le modèle avec ses coefficients (a, b, c,...) que le logiciel ajuste de telle manière à se trouver avec de nouveaux paramètres (a1, b1, c1,...) qui minimisent l'écart entre la corrélation et l'expérience.

- L'outil informatique utilisé à cet effet, est le logiciel « **Sigma Plot** » qui applique l'algorithme de Marquadt Levenberg basé sur la méthode des moindres carré. [43]
- L'utilisation de ce logiciel a été expliquée en annexe 5.

3.2.4.2.Méthodologie

La démarche suivie pour l'élaboration des nouvelles corrélations a consisté tout d'abord en la collecte des valeurs des propriétés des hydrocarbures purs puis, en l'identification des groupements structuraux présents dans les différentes molécules de la base de données. Une fois ces données disponibles, nous avons procédé à l'établissement des corrélations de contribution de groupes que nous avons comparées à d'autres méthodes de calcul recommandées dans la littérature.

1^{ère} Etape: Collecte des données :

La collecte des données des propriétés des hydrocarbures purs appartenant à différentes familles chimiques est rendue possible grâce à l'existence des banques de données développées par des centres de recherche de grande renommée. Parmi ceci, nous avons consulté les la banque TRC(1994) donnée par The Thermodynamic Research Center de l'Université de Houston (Texas). Cette étape a permis la collecte des valeurs des différentes propriétés pour des hydrocarbures de différentes structures chimiques ; n-paraffines, i-paraffine, oléfines, alcyne, naphtènes et aromatiques. Les données collectées ont été portées sur des feuilles Excel.

2^{ème} Etape: *Définition des groupements structuraux* :

Après avoir constitué la base de données ,nous avons procédé au choix des groupements structuraux et d'interactions susceptibles d'apporter leurs contributions aux propriétés macroscopiques des hydrocarbures étudiés .Ainsi nous avons sélectionné les groupements chimiques caractéristiques pour chaque type de famille d'hydrocarbures comme suit :

Groupements structuraux	Caractéristiques
-CH ₃ -CH ₂ -	Normales paraffines
-CH< >C<	Paraffines ramifiées
=CH ₂ =CH- =C< =C=	Alcènes (ou oléfines)
≡CH ≡C-	Alcynes

Tableau 1.3:Groupements chimiques caractérisant chacune des familles des hydrocarbures

En choisissant ces groupements, nous faisons la distinction entre un groupement présent dans une chaîne linéaire et un groupement lorsqu'il est présent dans un cycle. Ainsi par exemple, la contribution est attribuée au groupement $-CH_2$ - du n-hexane n'est pas la même que celle du $-CH_2$ - dans cyclohexane, de même que le groupement =CH- dans le l-hexéne et dans le benzène. Pour les facteurs correctifs, dans notre travail nous n'avons retenu que les corrections dues aux différences de positions cis et trans dans le cas des molécules de types oléfines et naphtènes.

3^{ème} Etape : Définition des termes principaux d'interactions entre groupements structuraux et leurs environnements.

La démarche suivie pour introduire les termes d'interactions dans la corrélation de contribution de groupes est la suivante:

1- Ecrire la formule semi développée pour chaque famille des hydrocarbures étudiés.

2- Définir les termes principaux d'interactions. Les hydrocarbures sont caractérisés par leurs natures chimiques (A titre d'exemple, normale paraffine C_5H_{12}) et leurs groupements.

En premier lieu par les groupements structuraux A- et -B- qui sont respectivement CH₃- et -CH₂- , dont l'assemblage constitue une chaîne carbonique A-B-B-A [CH₃-CH₂-CH₂-CH₂-CH₃] En deuxième lieu par les groupements principaux d'interactions A-B-B-, -B-B-B- et -B-B-A, ce sont des termes d'interactions entre groupements structuraux et leurs environnements.

Pour mieux expliquer cette méthode nous présentons un exemple d'application. Exemples sur les termes principaux d'interactions entre groupements structuraux et leurs environnements :

• isoparaffines:

types d'interactions	nombre de	2 methylhexane
entre	groupements	ch ₃
groupements	dinteractions	
CH_3 - CH_2 - CH_2	1	
<i>CH</i> ₂ - <i>CH</i> ₂ - <i>CH</i> ₂ -	1	Ch3 ch ch_2 ch_2 ch_2 ch_3
CH ₃ -CH-CH ₃	1	
CH ₃ -CH-CH ₂	2	
CH ₂ -CH ₂ -CH	1	

• Naphtènes

3- Classer par ordre décroissant le nombre des groupements principaux d'interactions.

-1

Groupements		principaux	d'interaction	
n-paraffines	Iso paraffines	Alcènes	Alcynes	
CH ₃ -CH ₂ -CH ₂ - -CH ₂ -CH ₂ -CH ₂ - CH ₃ CH ₃	$\begin{array}{c} CH_{3}\text{-}CH\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}\\ CH_{2}\text{-}CH_{2}\text{-}CH_{2}\text{-}CH_{2}\text{-}\\ CH_{2}\text{-}CH_{2}\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}C\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}C\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}\\ CH_{3}\text{-}CH_{2}\text{-}CH_{3}\text{-}CH_$	CH ₂ -CH ₂ -CH ₂ - CH ₃ -CH ₂ -CH ₂ - -CH ₂ -CH ₂ -CH= -CH ₂ -CH=CH ₂ CH ₃ -C-CH ₂ - CH ₃ -C=CH ₂ - -CH ₂ -CH ₂ -C= -CH ₂ -C=CH ₂ -CH ₂ -C=CH ₂ -CH ₂ -CH=CH- CH ₃ -CH=CH- CH ₃ -CH-CH ₃ CH ₃ -C=CH-	$\begin{array}{l} -CH_{2}-CH_{2}-C\equiv\\ CH_{3}-CH_{2}-CH_{2}-\\ CH\equiv C-CH_{2}-\\ CH_{2}-CH_{2}-CH_{2}-\\ CH_{2}-CH_{2}-CH_{2}-\\ CH_{3}-CH-CH_{3}\\ CH_{3}-CH_{2}-C\equiv\\ -C\equiv C-CH_{3}\\ CH_{3}-CH-C=\\ -C\equiv C-CH_{2}-\\ CH_{3}-C-CH_{3}\\ -CH-CH_{2}-C\equiv\\ CH_{3}-C-CH_{2}-\\ CH_{3}-C-CH_{2}-\\ -CH_{2}-CH_{2}-CH_{2}-\\ CH_{2}-CH_{2}-CH_{2}-\\ \end{array}$	

Les tableaux ci-après résument les principaux groupements d'interactions pour chaque famille d'hydrocarbures.

Tableau 3.2: principaux groupements d'interactions des n-paraffines, isoparaffines, alcèneset alcynes .

		Cycles	Ramifications	Cycles- Ramifications
		-CH ₂ -CH ₂ -CH ₂ -	CH ₃ -CH ₂ -CH ₂ -	CH _{3r} -CH _c -CH _{2c} -
tions		-CH ₂ -CH ₂ -CH-	-CH ₂ -CH ₂ -CH ₂ -	CH _{2r} -CH _c -CH _{2c} -
ract		-CH ₂ -CH-CH ₂ -		CH _{3r} -CH _c -CH _c -
inte		-CH ₂ -CH-CH-		-CH _{2r} -CH _{2r} -CH _c -
x d'	S	-СН-СН-СН-		CH _{3r} -CH _{2r} -CH _c -
incipau	aphtène	-CH ₂ -CH ₂ -C-		CH _{3r} -C _c -CH _{2c} -
		-CH ₂ -C-CH ₂ -		CH _{3r} -C _c -CH _{3r} -
ıd s	Z	-CH ₂ -C-CH-		
nent		-CH ₂ -CH-C-		
ipen		-CH-CH ₂ -CH-		
rou		-C-CH ₂ -CH-		
0		-C-CH ₂ -C-		

 ,			
	=CH-CH=CH-	CH ₃ -CH ₂ -CH ₂ -	-CH _{2r} -C-CH=
x	=CH-CH=C-	-CH ₂ -CH ₂ -CH ₂ -	-CH _{2r} -C=CH-
dne	-CH=CH-C=		$-CH_{2r}-CH_{2r}-C=$
nati	-CH=C-CH=		CH _{3r} -C=CH-
ron	-C=CH-C=		CH _{3r} -C-CH=
A	-C=C-CH=		CH _{3r} -CH _r -C=
	=С-С=СН-		$CH_{3r}-C=C=$
	=C-C=C-		-CH _r -C-C=

Tableau 3.3: principaux groupements d'interactions des naphtènes et des aromatiques

Avec :r : ramification.c : cycle

4^{ème} Etape: Etablissement d'une nouvelle corrélation généralisée.

Pour établir nos corrélations, nous avons testé différentes équations mathématiques découlant de la forme généralisée F (θ) reliant la propriété θ et les contributions $\Delta \theta_i$ et $\Delta \theta_j$ des groupements i et j tel que le montre l'équation suivante:

F est une fonction mathématique qui peut prendre différentes formes telles que présentées dans le tableau (4.3).

Les paramètres a, b, c, d, m, n $\Delta\theta$ i et $\Delta\theta$ j sont des constantes qu'on évalue par régression multilinéaire en utilisant l'algorithme de Levenberg-Marquardt (logiciel Sigma plot) Le processus itératif converge lorsque la différence entre les normes des résidus entre deux itérations successives devient inférieure à la tolérance qu'on se fixe.

Il faut noter que ce logiciel est limité à l'utilisation de 25 paramètres et c'est pourquoi nous avons négligé les plus faibles interactions c'est à dire celles qui contribuent le moins possible dans chaque famille.

Les vingt équations qui dérivent de la forme généralisée (1.3) permettent de tester différentes fonctions mathématiques pour sélectionner ensuite l'équation qui fournit l'écart le plus faible par rapport aux données des tables prises comme référence.

A la convergence du processus itératif, les valeurs des paramètres des différentes équations de contribution de groupes sont déterminées et leurs performances évaluées par le biais des écarts absolus moyens AAD (%) enregistrés par rapport aux valeurs de la base de données.

5^{ème} étape : Sélection des meilleurs corrélations.

Le test des vingt équations nous a permis de sélectionner les meilleures corrélations, ainsi pour chacune des propriétés étudiées nous avons retenu l'équation ayant donné, relativement, le plus faible écart par rapport aux données des tables.

6^{ème} étape : comparaison des corrélations établies avec d'autres méthodes de contribution de groupes

La comparaison entre les corrélations établies et d'autres méthodes basées sur la structure moléculaire et recommandées dans la littérature, nous a permis d'étudier la fiabilité des corrélations proposées. Pour se faire on s'est donc basé sur les déviations absolues moyennes enregistrées par les différentes méthodes par rapport aux données de références et ceci pour les six familles d'hydrocarbures étudiées.

7^{ème} étape : applications aux mélanges d'hydrocarbures et aux fractions pétrolières

La dernière étape consiste à appliquer les corrélations établies aux calculs des propriétés des mélanges d'hydrocarbures et des fractions pétrolières en appliquant la règle d'additivité et l'hypothèse des pseudo composants pour ces derniers.

Eq.	$\mathbf{F}\left(\mathbf{ heta} ight)$
Eq. 1	$\theta = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j \right)$
Eq. 2	$Exp(\theta/P) = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq. 3	$(1/\theta)^{P} = b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)$
Eq. 4	$(MM / \theta) = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq. 5	$(Teb / \theta) = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq. 6	$\theta = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j \right)$
Eq. 7	$Exp\left(\theta / P\right) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq. 8	$(1/\theta)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)$
Eq. 9	$(MM / \theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq.10	$(Teb / \theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$
Eq.11	$\theta = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m$
Eq.12	$Exp(\theta / P) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m$
Eq.13	$(1/\theta)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right) + c \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m}$
Eq.14	$(MM / \theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m$
Eq.15	$(Teb / \theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m$
Eq.16	$\theta = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m + d \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^n$
Eq.17	$Exp(\theta/P) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m + d \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^n$
Eq.18	$(1/\theta)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right) + c \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{n}$
Eq.19	$(MM / \theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m + d \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^n$
Eq.20	$(Teb/\theta) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m + d \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^n$

Tableau 4.3: Différentes formes de l'équation F (θ)

CHAPITRE IV

Etablissement de nouvelle corrélation de contribution de groupe

4.1. Introduction :

Dans ce présent chapitre, nous procédons à l'établissement de quatre corrélations de contribution de groupes avec interactions pour la prédiction de la densité(d_4^{20}),le volume molaire (V_m),le facteur de caractérisation (kuop),et le paramètre(I/d),et ceci en adoptant la méthodologie décrite dans le chapitre précédant.

4.2. Les propriétés de transport :

4.2.1. La densité à 20°C:

Les masses volumiques des hydrocarbures ont été recueillies de la base de données TRC et analysées selon la procédure de régression. Les déviations absolues moyennes fournies par les 20 équations de contribution de groupes avec interactions par rapport aux données des tables sont présentées dans le tableau ci dessous.

Familles	n- paraffines	i-paraffines	oléfines	alcynes	naphtènes	aromatiques	AAD (%)
intervalle	C5-C40	C5-C20	C5-C40	C5-C40	C5-C22	C5-C22	_
Nbr points	36	97	159	77	52	46	467
Eq.1	2.4	1.2	2.0	1.0	6.2	0.1	2.0
Eq.2	0.7	0.6	0.7	0.4	0.7	0.1	0.6
Eq.3	2.4	1.2	1.7	1.0	2.3	0.1	1.4
Eq.4	0.2	0.3	0.7	5.8	1.2	0.0	1.4
Eq.5	3.0	0.7	2.2	1.8	4.6	1.6	2.1
Eq.6	2.4	1.2	1.8	1.0	0.8	0.1	1.3
Eq.7	0.5	0.5	1.3	0.9	0.8	0.1	0.8
Eq.8	2.4	1.2	1.8	1.0	0.8	0.1	1.3
Eq.9	0.2	0.3	0.6	2.8	0.5	0.0	0.8
Eq.10	3.0	0.7	2.0	1.8	0.7	0.6	1.5
Eq.11	0.1	0.4	0.6	1.8	0.7	0.1	0.7
Eq.12	1.6	0.5	0.6	0.4	0.8	0.1	0.6
Eq.13	0.1	0.4	0.6	1.1	0.8	0.1	0.6
Eq.14	0.1	0.3	0.7	2.3	0.5	0.1	0.8
Eq.15	0.7	0.3	0.6	1.0	0.3	0.1	0.5
Eq.16	2.4	0.4	0.6	1.7	0.8	0.1	0.9
Eq.17	1.0	0.5	0.7	0.4	0.8	2.5	0.8
Eq.18	0.1	0.5	0.8	1.8	0.8	0.4	0.8
Eq.19	0.1	0.3	0.7	2.5	0.5	0.1	0.8
Eq.20	3.0	0.3	0.6	1.1	0.5	0.7	0.8

Tableau 1.4. Déviations absolues moyennes AAD (%) enregistrées par les 20 équations dans le cas de la densité

4.2.1.1. Sélection de la meilleure corrélation :

Nous avons tracé dans la figure 4.1 les écarts moyens absolus enregistrés pour les 20 équations étudiées.

Figure 1.4. Comparaison des déviations absolues moyennes enregistrées pour les 20 équations pour la densité.

Les résultats illustrés par le tableau 4.1 montrent que les déviations enregistrées par les différentes équations testées par rapport aux données des tables sont très faibles et ceci pour pratiquement toutes les familles chimiques ,en dépit de cela nous pouvons juger les résultats obtenus de très satisfaisants.

D'après la figure 4.1, il s'avère que l'équation 15 a enregistré le plus faible écart par rapports aux données des tables, de ce fait nous l'avons sélectionné comme étant la corrélation la plus adaptée pour l'estimation de la densité à 20°C.

Dans la figure 4.2 nous présentons la comparaison de l'allure générale de l'équation établie et les données des tables dans le cas de la densité à 20°C pour les six familles chimiques.

25

Figure 2.4 : comparaison entre la méthode établie et les données de table « référence »pour les six familles chimiques dans le cas de la densité.

Nous constatons que les valeurs calculées et celles de références se superposent, ce qui confirme le bon choix de la corrélation établie pour les six familles.

Les valeurs des paramètres (a, b, c, m), des groupements structuraux ainsi que celles des groupements principaux d'interactions sont données en annexes (annexe 1).

4.2.1.2. Comparaison de la corrélation établie avec des corrélations recommandées dans la littérature :

La corrélation sélectionnée a été ensuite comparée à d'autres méthodes de la littérature. Les déviations moyennes enregistrées par les différentes méthodes de calcul par rapport aux données des tables prises comme références, sont données dans le tableau 2.4

Familles chimiques	n-paraffines	i-Paraffines	Oléfines	Alcynes	Naphtènes	Aromatiques	AAD%
Intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	_
Nbre points	36	97	159	77	52	46	467
Corrélation proposée	0,7	0,3	0,6	1,0	0.3	0.1	0.52
Riazi-Daubert	0.8	0.1	0.4	0.4	0.9	0.5	0.43
Dermoune- Chitour	0.8	_	_	_	5.3	3.2	_
Skander-Chitour (MCGS)	0.2	1.2	0.8	0.9	3.1	1.4	1.16

Tableau 2.4. Déviations absolues moyennes enregistrées par la corrélation sélectionnée et d'autres méthodes de la littérature pour la densité.

Dans le tableau précédent, nous avons comparé les performances de la corrélation établie avec celles des méthodes de la littérature. La corrélation proposée a donné les plus faibles déviations moyennes comparativement aux méthodes de Skander-Chitour et de Dermoune-Chitour et ce, quel que soit le type d'hydrocarbures à l'exception des n-paraffines ou la corrélation de Skander-Chitour a fourni un écart plus faible.

La comparaison entre la corrélation établie et la méthode de Riazi-Daubert, montre que cette dernière a enregistré une déviation moyenne supérieure à celle fournie par notre corrélation. Toutefois, l'équation 15 s'est avérée nettement supérieure pour la prédiction de la densité des hydrocarbures paraffiniques, naphténiques et aromatiques.

Les déviations enregistrées par les différentes méthodes sont représentées graphiquement sur la figure 3.4.

Figure 3.4.Déviations absolues moyennes AAD (%) enregistrées par la corrélation sélectionnée et les autres méthodes

4.2.1.3. Exemple d'application :

Afin d'illustrer la méthode établie, nous nous proposons de présenter ci-après un exemple de calcul de la densité (d_4^{20}) de l'heptylbenzène dont les groupements structuraux et d'interactions sont représentés dans le tableau 3.4.

Groupements structuraux		-CH ₃ -CH ₂ - -CH= =C<	1 6 5 1
'interactions	Cycles	=CH-CH=CH- =CH-CH=C- -CH=CH-C= -CH=C-CH=	3 1 1 1
orincipaux d aromatique	Ramific- ations	CH ₃ -CH ₂ -CH ₂ - -CH ₂ -CH ₂ -CH ₂ -	1 4
Groupements p d's	Cycles- Ramifications	$-CH_{2r}-C-CH=$ $-CH_{2r}-C=CH-$ $-CH_{2r}-CH_{2r}-C=$	1 1 1

Tableau 3.4. Groupements structuraux et d'interactions de l'heptylbenzéne

La corrélation établie est sous la forme :

$$(Teb/d) = a + b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right) + c \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)^m$$

Le calcul de $\sum ni\Delta\theta$ et $\sum nj\Delta\theta$, s'effectue de la manière suivante :

$$\begin{split} & \sum n_i \Delta \theta_i = n_{(-CH3)} \Delta (-CH_3) + n_{(-CH2-)} \Delta (-CH_{2^-}) + n_{(-CH=)} \Delta (-CH=) + n_{(=C<)} \Delta (=C<) \\ & \sum n_j \Delta \theta_j = n_{(=CH-CH=CH-)} \Delta (=CH-CH=CH-) + n_{(=CH-CH=C-)} \Delta (=CH-CH=C-) \\ & + n_{(-CH=CH-C=)} \Delta (-CH=CH-C=) + n_{(-CH=C-CH=)} \Delta (-CH=C-CH=) + n_{(CH3-CH2-CH2-)} \Delta (CH_3-CH_2-CH_{2^-}) \\ & + n_{(-CH2-CH2-CH2-)} \Delta (-CH_2-CH_2-CH_{2^-}) + n_{(-CH2r-C-CH=)} \Delta (-CH_{2r}-C-CH=) + n_{(-CH2r-C=CH-)} \Delta (-CH_{2r}-C=CH-) \\ & + n_{(-CH2r-CH2r-C=)} \Delta (-CH_{2r}-CH_{2r}-C=) \\ \end{split}$$

 $\Sigma n_i \Delta \theta_i = 1 \Delta (-CH_3) + 6 \Delta (-CH_2-) + 5 \Delta (-CH=) + 1 \Delta (=C<)$

$$\begin{split} & \sum_{n_j \Delta \theta_j} = 3 \Delta (=CH-CH=CH-) + 1 \Delta (=CH-CH=C-) + 1 \Delta (-CH=CH-C=) + 1 \Delta (-CH=C-CH=) \\ & + 1 \Delta (CH_3-CH_2-CH_2-) + 4 \Delta (-CH_2-CH_2-CH_2-) + 1 \Delta (-CH_{2r}-C-CH=) + 1 \Delta (-CH_{2r}-C=CH-) \\ & + 1 \Delta (-CH_{2r}-CH_{2r}-C=). \end{split}$$

En remplaçant les valeurs des groupements structuraux et les groupements principaux d'interactions ainsi que celles des paramètres (a, b, c, m) par les résultats donnés en annexe 1

Nous trouvons :

$d_4^{20} = 855.6 \text{ kg/m}^3$

Dans le tableau 4.4, nous avons comparé l'écart obtenu par notre corrélation avec celui donné par les autres méthodes recommandées dans la littérature.

		d4 ²⁰ de l'heptylbenzene
	Table (TRC, 1995)	856.70 kg/m ³
C	Equation établie par la CGAI	855.6 kg/m ³
20°(Déviation absolue (%)	0,13
té à	Equation de Riazi-Daubert	862.24 kg/m^3
ensi	Déviation absolue (%)	0.64
D	Méthode de Dermoune -Chitour	792.65 kg/m ³
	Déviation absolue (%)	7.47 kg/m ³
	Méthode de Skander-Chitour	846.24
	Déviation absolue (%)	1.22

Tableau 4.4.Déviations enregistrées pour l'heptylbenzéne.

4.2.2. Volume molaire à 20°C :

Nous avons regroupé les résultats relatifs aux déviations absolues moyennes enregistrées par les 20 équations testées sur cette propriété dans le tableau suivant :

Familles	n- paraffines	i-paraffines	Oléfines	alcynes	naphtènes	aromatiques	AAD (%)
intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	
Nbr points	36	97	159	77	52	46	467
Eq.1	0.2	0.3	0.7	2.5	1.2	0.0	0.9
Eq.2	0.4	0.5	5.9	2.5	4.3	0.0	3.0
Eq.3	0.1	0.3	0.7	2.0	0.1	0.0	0.6
Eq.4	2.1	1.1	2.3	1.0	6.5	0.1	2.1
Eq.5	5.3	0.9	4.5	4.2	10.7	1.4	4.1
Eq.6	0.2	0.3	0.6	2.5	0.5	0	0.7
Eq.7	0.2	0.4	0.7	2.6	0.6	0.1	0.8
Eq.8	0.1	0.3	0.6	2.0	0.5	03.0	0.7
Eq.9	2.1	1.1	2.1	1.0	0.9	0.1	1.4
Eq.10	5.3	0.9	4.0	4.2	1.5	1.4	3.0
Eq.11	0.0	0.3	0.7	2.1	0.5	0.1	0.7

Eq.12	0.3	0.3	0.7	2.8	0.5	0.3	0.9
Eq.13	0.1	0.3	0.7	2.0	0.6	0.1	0.7
Eq.14	2.1	0.5	1.8	1.5	0.8	1.2	1.3
Eq.15	0.6	1.1	0.6	6.6	6.1	2.7	2.5
Eq.16	0.1	0.3	0.7	2.3	0.6	0.1	0.8
Eq.17	0.1	4.9	0.8	2.9	1.7	0.1	2.0
Eq.18	0.1	0.3	0.7	2.3	0.5	0.1	0.8
Eq.19	2.1	0.5	2.5	1.8	0.9	0.1	1.5
Eq.20	2.7	0.7	4.3	1.0	0.9	0.4	2.1

Tableau 5.4: Déviations absolues moyennes AAD (%) enregistrées par les 20 équations dans le cas du volume molaire.

4.2.2.1. Sélection de la meilleure corrélation :

Les résultats du tableau précédent montrent qu'en général les déviations enregistrées par les différentes équations sont satisfaisantes, à l'exception des alcynes et des naphtènes pour lesquels les écarts obtenus sont assez élevés pour quelques équations. Les équations 3, 6, 8, 11,13 ont donné relativement les plus faibles écarts.

Le tracé des déviations absolues moyennes AAD% enregistrées par les 20 équations montre que l'équation 3 est la plus adaptée pour la prédiction du volume molaire puisqu'elle donne l'écart minimal.

Figure 4.4 : Comparaison des déviations absolues moyennes enregistrées par les 20 équations par la méthode de contribution de groupe avec interaction.

La corrélation choisie est donnée par l'équation 3 qui s'écrit sous la forme suivante :

$$(1/V_m)^P = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$$

Les valeurs des paramètres (p, b), des groupements structuraux ainsi que celles des groupements principaux d'interactions sont données en annexes (annexe 2).

La comparaison de l'allure générale de l'équation établie et les données des tables pour le volume molaire est illustrée dans la figure suivante :

Figure 5.4: Comparaison entre la méthode établie et les données de table « référence »pour les six familles chimiques dans la cas du volume molaire.

Nous constatons la superposition des valeurs calculées et celles de référence sur tout l'intervalle des nombres d'atomes de carbone pour les six familles, ce qui confirme le bon choix de la corrélation établie.

4.2.2.2. Comparaison de la corrélation établie avec des corrélations recommandées dans la littérature :

En comparant par la suite les déviations enregistrées par l'équation sélectionnée et les méthodes de la littérature, nous avons obtenu les résultats donnés dans le tableau 6.4.

Familles chimiques	n-paraffines	i-Paraffines	Oléfines	Alcynes	Naphtènes	Aromatiques	AAD%
Intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	-
Nbr points	36	97	159	77	52	46	467
Méthode de CGAI	0.1	0.3	0.7	2.0	0.1	0.0	0.65
Tyn Calus	22.8	11.9	8.3	18.1	9.6	25.0	13.57
Riazi Daubert	7.8	4.7	4.2	6.3	4.9	3.8	4.97
Skander-Chitour (MCGSI)	0.6	1.4	0.8	0.9	3.0	1.2	1.2

Tableau 6.4: Déviations absolues moyennes AAD (%) enregistrées par la corrélationsélectionnée et les autres méthode.

D'après le tableau ci-dessus , et dans le cadre des familles d'hydrocarbures étudiées, nous remarquons que la corrélation proposée reste la plus proche de la référence comparativement aux méthodes de Riazi-Daubert et Tyn-Calus qui ont fourni des déviations assez élevés, particulièrement la corrélation de Tyn -Calus.

Comparé à la méthode de contribution des groupes sans interactions proposée par Skander-Chitour nous constatons une nette amélioration pour la prédiction du volume molaire pour les différentes familles chimiques

Dans la figure 6.4, nous avons représenté les déviations enregistrées par les différentes méthodes pour les six familles chimiques.

4.2.2.3. Exemple d'application :

Afin d'illustrer la méthode établie, nous nous proposons de présenter ci-après un exemple de calcul du volume molaire du 2-methylhexane dont les groupements structuraux et d'interactions sont représentés dans le tableau (7.4).

Groupements structuraux	-CH ₃ -CH ₂ - -CH< >C<	3 3 1 0
Groupements Principaux d'interactions	ch3-ch-ch3 ch3-ch2-ch2 ch3-ch-ch2 ch2-ch2-ch2 ch2-ch2-ch<	1 1 2 1 1

Tableau 7.4. Groupements structuraux et d'interactions du 2-methylhexane.

La corrélation établie est sous la forme :

$$(1/V_m)^P = b \times \left(\sum n_i \Delta \theta_i + \sum n_j \Delta \theta_j\right)$$

 $\begin{array}{ll} \mbox{Le calcul de } & \sum \textit{ni} \Delta \theta \mbox{ et } \sum \textit{nj} \Delta \theta \mbox{ s'effectue de la manière suivante :} \\ & \Sigma n_i \Delta \theta_i = n_{(-CH3)} \Delta (-CH_3) + n_{(-CH2-)} \Delta (-CH_2-) + n_{(-CH3-} \Delta (-CH<) \\ & \Sigma n_j \Delta \theta_j = n_{(-CH3-CH-CH3-)} \Delta (-CH_3-CH-CH_3-) + n_{(-CH3-CH2-CH2-)} \Delta (-CH_3-CH_2-CH_2-) \\ & \quad + n_{(-CH3-CH-CH2-)} \Delta (-CH_3-CH-CH_2-) + n_{(-CH2-CH2-CH2-)} \Delta (-CH_2-CH_2-CH_2-) \\ & \quad + n_{(-CH2-CH2-CH)} \Delta (-CH_2-CH_2-CH) \end{array}$

$$\begin{split} \Sigma n_i \Delta \theta_i &= 3 \, \Delta (\text{-CH}_3) + 3 \, \Delta (\text{-CH}_2\text{-}) + 1 \, \Delta (\text{-CH}<) + 0 \Delta (>C<) \\ \Sigma n_j \Delta \theta_j &= 1 \Delta (\text{-CH}_3\text{-}\text{CH}\text{-}\text{CH}_3\text{-}) \, 1 \Delta \quad \text{(-CH}_3\text{-}\text{CH}_2\text{-}\text{CH}_2\text{-}) + 2 \Delta (\text{-CH}_3\text{-}\text{CH}\text{-}\text{CH}_2\text{-}) + 1 \Delta (\text{-CH}_2\text{-}\text{CH}_2\text{-}\text{CH}_2\text{-}) \\ &\quad + 1 \Delta (\text{-CH}_2\text{-}\text{CH}_2\text{-}\text{CH}). \end{split}$$

En remplaçant les valeurs des groupements structuraux et les groupements principaux d'interactions ainsi que celles des paramètres p et b, par les résultats donnés en annexe 2 Nous trouvons :

 $V_m = 147.87 \text{ cm}^3/\text{mole.}$

Vm du
2-methylhexane
(cm ³ /mole)

С	Table (TRC, 1995)	147.60
20 °	Equation établie par la CGAI	147.87
re à	Déviation absolue (%)	0.18
olai	Equation de Tyn-Calus	160.36
ne m	Déviation absolue (%)	8.64
olun	Méthode de Riazi-Daubert	150.30
Λ	Déviation absolue (%)	1.83
	Méthode de Skander-Chitour	147.91
	Déviation absolue (%)	0.21

Tableau 8.4. Déviations enregistrées par le 2-methylhexane.

Dans le tableau précédant, la valeur obtenue par la corrélation établie est comparée à la valeur des tables ainsi qu'à d'autres méthodes de calcul recommandées dans la littérature. Nous constatons que le résultat trouvé par l'équation 3 est le plus proche de la valeur de référence.

4.3. Propriétés spécifiques au pétrole brut :

4.3.1. Facteur de caractérisation de Watson Kuop:

Les valeurs des facteurs de caractérisation Kuop ont été obtenues à partir des données des températures d'ébullition et des specific- gravity des hydrocarbures purs. Les données ainsi obtenues ont été analysées selon la procédure décrite dans le chapitre 3. La performance de la corrélation testée pour la prédiction du facteur Kuop a été ensuite évaluée en comparant les écarts enregistrés par rapport aux données de référence (banques de données TRC).

Familles	n-	i-	Oléfines	alcynes	naphtènes	aromatiques	AAD(%)
	paraffines	paraffines					
intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	_
Nbr points	36	97	159	77	52	46	467
Eq.1	0.4	0.6	1.4	0.3	1.2	0.3	0.8
Eq.2	0.5	0.6	0.7	0.3	4.3	0.1	0.9
Eq.3	0.4	0.6	0.8	0.3	4.3	0.2	1.0
Eq.4	1.4	0.5	1.5	2.8	6.5	0.1	1.9
Eq.5	5.2	1.9	3.6	2.6	10.7	0.4	3.7
Eq.6	2.2	0.6	0.5	0.3	0.5	0.3	0.6
Eq.7	1.5	0.6	0.6	0.3	0.6	0.2	0.6
Eq.8	0.4	0.6	0.5	0.3	0.5	0.3	0.5

Eq.9	1.4	0.5	1.1	2.8	0.9	0.1	1.2
Eq.10	5.2	1.9	3.6	2.6	1.5	0.4	2.7
Eq.11	0.4	0.9	5.8	0.3	0.5	0.3	2.3
Eq.12	0.4	3.2	0.6	0.4	0.5	0.1	1.0
Eq.13	0.5	0.9	0.7	0.4	0.6	0.3	0.6
Eq.14	0.0	0.3	0.6	2.8	0.8	0.1	0.8
Eq.15	0.1	0.4	0.9	1.4	6.1	0.1	1.3
Eq.16	0.5	0.9	0.7	0.3	0.6	0.4	0.6
Eq.17	0.4	0.9	0.6	0.3	1.7	0.2	0.7
Eq.18	0.5	0.7	0.7	0.3	0.5	0.4	0.6
Eq.19	0.0	0.3	0.6	3.0	0.9	0.2	0.9
Eq.20	0.2	0.5	1.0	1.5	0.9	0.5	0.9

Tableau 9.4: déviation absolues moyennes AAD (%) enregistrées par les 20 équationspour le Kuop.

4.3.1.1. Sélection de la meilleure corrélation :

L'équation 8 a fourni relativement le plus faible écart moyen (0.5%), de ce fait nous l'avons sélectionné comme étant la meilleure corrélation pour la prédiction du facteur de caractérisation de *Watson*.

L'équation 8 se présente comme suit :

$$(1/Kuop)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)$$

Les paramètres (a, b, p) et les groupements structuraux et d'interactions sont données en annexe (3).

Figure 7.4. Comparaison des déviations absolues moyennes enregistrées par les 20 équations par la méthode de contribution de groupe avec interaction.

La comparaison de l'allure générale donnée par l'équation établie et celles de références est illustrée graphiquement sur la figure (8.4).

Figure 8.4: Comparaison entre la méthode établie et les données des tables « référence »pour les six familles chimiques dans le cas du Kuop.

rapport aux données des tables prises comme références, sont données dans le tableau 10.4.							
Familles chimiques	n-paraffines	i-Paraffines	Oléfines	Alcynes	Naphtènes	Aromatiques	AAD%
Intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	-
Nbr points	36	97	159	77	52	46	467
Méthode de CGAI	0.4	0.6	0.5	0.3	0.5	0.3	0.46
Bouamra-chitour	0.9	_	2.7	_	8.2	4.1	_
Dermoune- chitour	1.4	_	_	_	3.4	2.7	_
Whiston	1.1	0.9	0.6	0.9	0.6	0.7	0.76
Skander-Chitour (MCGSI)	0.2	2.3	0.7	1.4	2.6	3.5	1.6

4.3.1.2. Comparaison de la corrélation établie avec des corrélations recommandées dans la littérature :

La corrélation sélectionnée a été ensuite comparée à d'autres méthodes de la littérature. Les déviations moyennes enregistrées par les différentes méthodes de calcul par rapport aux données des tables prises comme références, sont données dans le tableau 10.4.

Tableau 10.4: Déviations absolues moyennes AAD (%) enregistrées par la corrélation sélectionnée et d'autres méthodes de la littérature.

La comparaison de notre corrélation avec les méthodes de Bouamra-Chitour, Dermoune-Chitour ,Whiston et la corrélation de Skander –Chitour, a montré que la corrélation proposée donne de meilleurs résultats. En effet, pour toutes les familles d'hydrocarbures, notre méthode a enregistré de faibles écarts par rapport à la référence a l'exception des n-paraffines ou la méthode Skander –Chitour a enregistré une légère avance. Quand à la méthode de Whiston nous constatons que les deux méthodes sont aussi performantes l'une que l'autre pour l'estimation du facteur de caractérisation Kuop, toutefois nous pouvons dire que notre corrélation est la plus précise puisqu'elle a enregistré des écarts plus faibles.

4.3.1.3. Exemple d'application :

Afin de tester la corrélation établie, nous nous proposons de présenter ci-après un exemple de calcul du Kuop du n-butylcyclohexane dont les groupements structuraux et d'interactions sont représentés dans le tableau ci-dessous.

Groupements structuraux		-CH ₃ -CH ₂ - -CH< >C<	1 8 1 0
aux tène	Cycles	-CH ₂ -CH ₂ -CH ₂ - -CH ₂ -CH ₂ -CH- -CH ₂ -CH-CH ₂ -	3 2 1
ents principa	Ramific-	-CH ₂ -CH ₂ -CH ₂ -	1
ons de naph	ations	-CH ₂ -CH ₂ -CH ₃	1
Groupem	Cycles-	-CH _{2r} -CH _c -CH _{2c} -	2
d'interacti	Ramifications	-CH _{2r} -CH ₂ -CH ₂ -	1

Tableau 11.4. Les groupements structuraux et d'interactions du n-butylcyclohexane

La corrélation établie est sous la forme :

$$(1/Kuop)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)$$

Après avoir calculer $\sum n_i \Delta \theta_i$, $\sum n_j \Delta \theta_j$ nous trouvons Kuop=11.66

		Kuop du n-butylcyclohexane
Kuop	Table (TRC, 1995)	11.63
	Equation établie par la CGAI	11.66
	Déviation absolue (%)	0.32
	Equation de Bouamra-Chitour	11.04
	Déviation absolue (%)	5.07
	Méthode de Dermoune-Chitour	11.74
	Déviation absolue (%)	0.94
	Méthode de Skander-Chitour	12.06
	Déviation absolue (%)	3.69

Tableau 12.4. Les déviations enregistrées par le n-butylcyclohexane.

4.3.2. Paramètre I/d :

Les valeurs des facteurs I/d ont été obtenues à partir des indices de corrélation I et des densités à 20°C. Les performances des vingt équations testées pour la prédiction du facteur I/d ont été évaluées en comparant les écarts enregistrés par rapport aux données de référence (banques de données).

Familles	n- paraffines	i-paraffines	Oléfines	alcynes	naphtènes	aromatiques	AAD(%)
intervalle	C ₅ -C ₄₀	C ₅ -C ₁₁	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₅ -C ₂₂	_
Nbr points	35	58	159	77	52	46	427
Eq.1	0.5	0.2	1.4	0.2	7.1	0.0	1.5
Eq.2	0.5	0.2	0.6	0.2	0.4	0.0	0.4
Eq.3	0.4	0.2	0.6	0.2	0.7	0.0	0.4
Eq.4	0.0	0.2	0.8	3.3	0.2	10.9	2.1
Eq.5	5.0	0.7	3.2	2.6	3.6	0.6	2.7
Eq.6	0.5	0.2	0.5	0.2	0.1	0.0	0.3
Eq.7	0.5	0.2	0.5	0.2	0.1	0.0	0.3
Eq.8	0.5	0.2	0.5	0.2	0.1	0.0	0.3
Eq.9	0.0	0.2	0.4	3.3	0.1	0.0	0.8
Eq.10	5.0	0.7	3.2	2.6	1.1	0.6	2.4
Eq.11	0.5	0.2	0.6	0.4	0.1	0.0	0.4
Eq.12	0.5	0.2	0.5	0.3	0.2	0.1	0.3
Eq.13	0.5	0.2	0.6	0.8	0.2	0.0	0.5
Eq.14	0.0	0.2	0.5	2.9	0.1	0.0	0.7
Eq.15	0.1	0.4	0.7	1.5	0.4	0.1	0.7
Eq.16	0.2	0.2	0.4	0.4	0.3	0.1	0.3
Eq.17	0.5	0.2	0.4	0.2	0.2	0.1	0.3
Eq.18	0.0	0.2	0.2	0.4	0.2	0.1	0.2
Eq.19	0.0	0.2	0.8	3.1	0.1	0.0	0.9
Eq.20	0.1	0.2	0.7	1.6	0.5	0.7	0.7

Tableau 13.4: Déviation absolues moyennes AAD (%) enregistrées par les 20 équations dans le cas du paramètre I/d.

4.3.2.1. Sélection de la meilleure corrélation :

Nous avons tracé les écarts moyens absolus des 20 équations utilisées pour sélectionner la meilleure équation, celle qui donne l'écart le plus faible.

Figure 10.4 .Comparaison des déviations absolues moyennes enregistrées par les 20 équations.

Le graphique de la figure 10.4 montre que l'équation 18 a fourni l'écart moyen le plus faible, de ce fait nous l'avons sélectionné comme étant la meilleure corrélation. Elle se présente sous la forme suivante :

$$(1/\theta)^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right) + c \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{n}$$

Les valeurs des paramètres (a, b, c, m, d, n), des groupements structuraux ainsi que celles des groupements principaux d'interactions sont données en annexes (annexe 4).

Dans la figure 11.4 nous présentons la comparaison de l'allure générale de l'équation établie et les données des tables pour le paramètre I/d pour les différentes familles chimiques

Figure 11.4 : Comparaison entre la méthode établie et les données de table « référence »des familles chimiques pour le paramètre I/d.

A l'exception des naphtènes et des alcynes nous constatons la superposition entre les valeurs calculées et celles de référence.

4.3.2.2. Comparaison de la corrélation établie avec des corrélations recommandées dans la littérature :

Une fois la corrélation de contribution de groupes pour la prédiction du facteur I/d établie, nous l'avons comparée à d'autres corrélations de la littérature. Le tableau ci-dessous résume les déviations absolues moyennes enregistrées par les différentes méthodes de calcul par rapport aux données des tables.

familles	n-paraffines	i-Paraffines	Oléfines	Alcynes	Naphtènes	Aromatiques	AAD%
Intervalle	C ₅ -C ₄₀	C ₅ -C ₂₀	C ₅ -C ₄₀	C ₅ -C ₄₀	C ₅ -C ₂₂	C ₇ -C ₂₂	

Nbr points	35	58	159	77	52	46	427
Méthode de CGAI	0.0	0.2	0.2	0.4	0.2	0.1	0.2
Riazi -Daubert	6.25	6.3	7.1	4.1	3.1	3.5	5.5
Skander-Chitour (MCGSI)	0.1	0.2	0.4	0.2	3.6	0.4	0.7

Tableau 14.4: Déviations absolues moyennes AAD (%) enregistrées par la corrélation sélectionnée et d'autres méthodes de la littérature.

L'équation 18 établie a enregistré de faibles écarts par rapport aux données des tables, comparée à la méthode de Riazi-Daubert, l'équation proposée est plus précise pour les différentes familles d'hydrocarbures.

L'équation de Skander-Chitour s'est avérée très performante pour la prédiction de ce paramètre et ce pour toutes les familles chimiques à l'exception des naphtènes.

La représentation graphique des écarts enregistrés par la corrélation établie et les autres corrélations pour les familles d'hydrocarbures est donnée dans la figure suivante :

Figure 12.4.Déviations absolues moyennes AAD (%) enregistrées par la corrélation sélectionnée et les méthodes de Riazi -Daubert et de Skander-Chitour.

4.3.2.3. Exemple d'application :

Nous présentons ci-après un exemple de calcul du paramètre I/d du 2,4 dimethyl-2pentene dont les groupements structuraux et d'interactions sont représentés dans le tableau (15.4).

-CH ₃	4
-CH ₂ -	0
-CH< >C< =CH- =C<	1 1 1
----------------------------	---
ch3-ch-ch3	1
ch3-c=ch-	2
ch3-c-ch3	1
ch3-ch-ch=	2
>c=ch-ch<	1
	-CH< >C< =CH- =C< ch3-ch-ch3 ch3-c=ch- ch3-c-ch3 ch3-ch-ch= >c=ch-ch<

Tableau 15.4. Les groupements structuraux et d'interactions du 2,4 dimethyl-2-penténe

La corrélation établie est sous la forme :

$$(1/(I/d))^{P} = a + b \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right) + c \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{j}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{j} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i} + \sum n_{i} \Delta \theta_{i}\right)^{m} + d \times \left(\sum n_{i} \Delta \theta_{i}\right)^{m} + d \times \left($$

Les valeurs des paramètres (a, b, c, m, d, n) et celles des groupements structuraux et d'interaction sont données en annexe (4). Après avoir calculer $\sum ni\Delta\theta$, $\sum nj\Delta\theta$

Nous trouvons : I/d = 0.349

	2,4 dimethyl-2- pentene
Table (TRC, 1995)	0.352
Equation établie par la CGAI	0.349
Déviation absolue (%)	0.73
Equation de Riazi-Daubert	0.381
Déviation absolue (%)	8.23
Equation de Skander-Chitour	0.3486
Déviation absolue (%)	0.96

Tableau 16.4. Déviations enregistrées pour le 2,4 dimethyl-2-pentene

4.4. Conclusion :

Dans cette partie, nous avons proposé quatre corrélations de contribution de groupes concernant les quatre propriétés suivantes, la densité à 20°C, le volume molaire, le facteur de caractérisation Kuop, et le paramètre I/d, pour six familles chimiques.

Les corrélations de contribution de groupes établies ont amélioré la prédiction des propriétés des hydrocarbures purs par rapport aux méthodes existantes et ce, pour la plupart des propriétés étudiées.

D'après les résultats trouvés nous pouvons dire que les corrélations élaborées en utilisant les interactions intramoléculaires ont amélioré la prédiction des corps purs des quatre propriétés comparées aux corrélations de contributions de groupes sans interactions proposées par Skander-Chitour.

Enfin, les écarts un peu élevés enregistrés pour certains hydrocarbures peuvent être dû au choix des équations mathématiques qui peuvent ne pas être les plus performantes.

CHAPITRE V

Application des corrélations établies au mélange

Binaire et ternaire

5.1. Introduction :

L'une des applications des corrélations élaborées, antérieurement est la prédiction des propriétés de mélanges de compositions finies. Pour ce types de mélanges, nous allons considérer en première approximation que les propriétés étudiées sont additives, de ce fait il suffit d'appliquer les règles de mélange conventionnelles de types règles de Kay (1936). Ces règles de mélanges sont basées sur le fait qu'il n'y a pas d'interactions intermoléculaires entre les hydrocarbures, les grandeurs d'excès sont donc supposées négligeables en première approximation pour les besoins du calcul :

$$Pm\acute{e}l = \Sigma Pi. Xi / \Sigma Xi$$
(1)

Xi représente la fraction molaire du constituant *i* dans le mélange. Pi est la valeur de la propriété du constituant *i* calculée par la corrélation établie.

Nous avons choisi des mélanges d'hydrocarbures purs, binaires et ternaires appartenant soit à la même famille, soit à deux familles différentes.

5.2. Mélanges binaires :

Nous avons considéré une vingtaine de mélanges binaires Tableau (1.5). Les mélanges étudiés sont composés des hydrocarbures appartenant aux trois familles d'hydrocarbures présentes dans le pétrole. Ils peuvent aussi appartenir à la même famille ce qui nous permet de tester indirectement la validité dans un intervalle de température borné par les deux températures d'ébullition.

N°				
mélange	constituant1	constituant2	x%1	x%2
1	n-décane	n-tétradécane	78.9	21.1
2	n-héptane	n-tridécane	8789	12.11
3	n-héptane	méthylcyclohexane	64.42	35.58
4	n-hexane	cyclohexane	77.78	22.22
5	n-tridécane	Toluène	30.45	69.55
6	n-tridécane	ethylbenzene	28.16	71.84
7	cyclohexane	1,2-dimethylcyclohexene	58.58	41.42
8	cyclohexane	méthylcyclohexane	54.68	45.32
9	cyclohexane	n-tétradécane	71.11	28.89
10	méthylcyclohexane	n-hexane	49.04	50.96
11	méthylcyclohexane	Toluène	47.2	52.8
12	cyclohexane	n-pentylbenzene	60.57	39.43
13	benzène	ethylbenzene	25.49	74.51
14	benzène	Toluène	53.55	46.45
15	benzène	n-tétradécane	74.95	25.05
16	ethylbenzene	n-hexane	52.23	47.77
17	ethylbenzene	méthylcyclohexane	51.63	48.37
18	benzène	cyclohexane	58.56	41.44
19	1,2-dimethylcyclohexene	tert-butylbenzene	60.19	33.81
20	benzène	tert-butylbenzene	75.56	24.44

Tableau (1.5): Compositions des mélanges binaires.

Le calcul des propriétés consiste en premier temps, au calcul de chaque propriété de tous les constituants présents dans chaque mélange, en utilisant, les méthodes de contribution de groupes avec interactions établies précédemment , puis dans un deuxième temps, à la détermination de la propriété moyenne de chaque mélange au moyen de la règle d'additivité simple, et enfin pour ce qui est des performances de nos corrélations, nous avons comparé les résultats obtenus à ceux des autres méthodes disponibles dans la littérature. Nous avons résumé les principaux résultats obtenus dans les tableaux ci dessous.

5.2.1. La densité d₂₀⁴:

Les résultats obtenus lors du calcul des densités à 20°C pour les 20 mélanges binaires sont représentés dans le **tableau (2.5)** suivant :

N°	d(Kg/dm ³)	MCGAI	AAD%	Skander- Chitour	AAD%	Riaz-	AAD%	Dermoune-	AAD%
melange	référence			(MCGSI)		Daubert		Chitour	
1	0,7387	0,7368	0,2596	0,7347	0,5464	0,7377	0,1354	0,754	2,0737
2	0,7209	0,6875	4,6352	0,6922	3,9802	0,6932	3,8424	0,691	4,1452
3	0,7313	0,709	3,0461	0,7071	3,3117	0,7147	2,2699	0,6765	7,4877
4	0,6819	0,6875	0,8173	0,6696	1,8027	0,6863	0,6453	0,6552	3,9192
5	0,8083	0,8312	2,8368	0,8100	0,2122	0,824	1,9423	0,7115	11,972
6	0,816	0,8331	2,0993	0,8142	0,2245	0,8358	2,4265	0,7236	11,318
7	0,7739	0,7914	2,265	0,7537	2,6042	0,7784	0,5815	0,7757	0,2372
8	0,774	0,7731	0,114	0,7210	6,8444	0,7745	0,0646	0,7734	0,0801
9	0,7674	0,7714	0,5219	0,7157	6,7333	0,7742	0,8861	0,7827	1,9893
10	0,7143	0,7147	0,0585	0,7047	1,3428	0,7137	0,0840	0,7731	8,2335
11	0,8134	0,8158	0,2939	0,7944	2,3412	0,8214	0,9835	0,7759	4,6088
12	0,8169	0,8085	1,0255	0,7552	7,5582	0,8104	0,7957	0,8425	3,1301
13	0,8684	0,8707	0,261	0,8225	5,2869	0,8696	0,1382	0,8205	5,511
14	0,8714	0,8741	0,3081	0,8042	7,7082	0,8735	0,2410	0,8439	3,152
15	0,8144	0,8505	4,4336	0,7736	5,0041	0,8496	4,3222	0,8419	3,3775
16	0,7678	0,7692	0,1842	0,7536	1,8482	0,7679	0,0130	0,8415	9,6032
17	0,8169	0,8173	0,0468	0,7950	2,6780	0,8197	0,3428	0,8403	2,8599
18	0,8269	0,8364	1,1498	0,7446	9,9514	0,8371	1,2335	0,8466	2,3822
19	0,8294	0,7865	5,1691	0,8143	1,8236	0,7899	4,7625	0,7378	11,042
20	0,8713	0,8713	0,0047	0,8139	6,5918	0,8755	0,4820	0,8596	1,3438
	AAD%	moyen	1.4765		3,9197		1,3096		4.9233

Tableau 2.5 .Déviations absolues moyennes enregistrées par les différentes méthodes pour le calcul de la densité des mélanges binaires.

La représentation graphique des différents écarts enregistrés (AAD%) par les différentes méthodes est donnée dans la figure (1.5).

Figure 1.5.Déviations absolues moyennes enregistrées pour la densité

5.2.2. Volume molaire :

Dans le tableau ci-dessous, nous avons comparé notre corrélation aux corrélations de Skander-Chitour, Riazi-Daubert et de Tyn-Calus .Nous remarquons que la corrélation proposée donne de faibles écarts par rapport aux autres méthodes.

N°	Vm(cm3/mole)	MCGAI	AAD%	Skander- Chitour	AAD%	Tyn-	AAD%	Riazi-	AAD%
mélange	Référence			(MCGSI)		Calus		Daubert	
1	208,655	209,016	0,173	207,031	0,778	258,202	23,746	217,361	4,172
2	160,321	160,386	0,040	155,922	2,744	181,117	12,971	141,312	11,857
3	139,825	141,331	1,077	138,434	0,995	154,225	10,299	127,15	9,065
4	125,67	122,841	2,251	125,443	0,181	134,602	7,107	129,327	2,91
5	148,176	148,212	0,024	149,874	1,146	171,824	15,959	141,182	4,721
6	161,243	161,329	0,054	158,606	1,635	190,732	18,289	155,046	3,843
7	118,573	111,493	5,971	123,034	3,762	135,516	14,289	115,827	2,316
8	116,95	112,386	3,903	122,599	4,830	126,285	7,982	112,896	3,467
9	152,035	143,711	5,475	158,556	4,289	173,166	13,899	139,965	7,939
10	136,446	137,998	1,138	127,970	6,212	149,219	9,362	141,638	3,805
11	123,35	124,947	1,294	118,326	4,073	137,553	11,514	123,027	0,262
12	133,519	126,372	5,353	140,360	5,124	151,307	13,322	129,2	3,235
13	113,901	114,228	0,287	119,062	4,531	130,037	14,167	113,603	0,261
14	96,962	97,559	0,616	104,063	7,323	106,729	10,073	96,572	0,402
15	131,778	132,701	0,700	139,365	5,757	150,802	14,436	119,685	9,177
16	126,393	126,286	0,085	126,650	0,204	140,891	11,47	129,702	2,618
17	124,961	126,99	1,624	127,012	1,642	140,498	12,433	124,948	0,011
18	96,838	92,634	4,341	107,074	10,571	104,312	7,719	93,478	3,469
19	132,654	132,4	0,191	127,324	4,018	160,536	21,019	137,27	3,48
20	105,005	105,884	0,837	110,459	5,194	117,638	12,031	100,421	4,366
	AAD%	moyen	1,772		3,750		13,104		4,069

Tableau 3.5. Déviations absolues moyennes enregistrées par les différentes méthodespour le calcul du volume molaire des mélanges binaires.

Figure 2.5. Déviations absolues moyennes enregistrées pour le volume molaire

5.2.3. Facteur de caractérisation Kuop :

A priori, cette propriété n'est pas une propriété additive, nous avons tout de même admis l'hypothèse d'additivité comme première approximation pour obtenir les propriétés moyennes de ces mélanges.

\mathbf{N}°	Kuop	Kuop		Skander- Chitour		Dermoune-		Bouamra-			
mélange	Référence	MCGAI	AAD%	(MCGSI)	AAD%	Chitour	AAD%	Chitour	AAD%	Whiston	AAD%
1	12,687	12,791	0,820	12,726	0,309	13,127	3,468	11,707	7,722	12,604	0,655
2	12,703	12,695	0,063	12,695	0,062	12,952	1,96	11,454	9,83	11,645	8,329
3	12,207	12,193	0,115	12,430	1,823	12,365	1,297	10,998	9,902	11,432	6,349
4	12,397	12,273	1,000	12,645	2,000	12,575	1,434	10,965	11,554	12,139	2,081
5	10,934	11,001	0,613	11,982	9,583	11,255	2,932	8,439	22,817	10,945	0,103
6	11,042	11,076	0,308	11,977	8,469	11,337	2,672	8,473	23,266	11,014	0,253
7	10,948	10,948	0,000	11,859	8,321	11,274	2,973	9,293	15,119	10,74	1,904
8	11,141	11,137	0,036	12,106	8,664	11,273	1,186	10,011	10,147	10,945	1,758
9	11,514	11,532	0,156	12,393	7,633	12,046	4,618	10,407	9,62	11,324	1,649
10	12,075	11,996	0,654	12,378	2,507	12,235	1,324	10,796	10,592	11,852	1,845
11	10,696	10,725	0,271	11,790	10,230	11,479	7,319	8,515	20,391	10,601	0,891
12	11,002	10,985	0,155	12,032	9,365	10,532	4,265	9,076	17,499	10,834	1,523
13	10,208	10,233	0,245	11,719	14,801	11,063	8,371	7,342	28,075	10,259	0,499
14	9,922	9,986	0,645	11,772	18,650	10,614	6,973	7,463	24,787	9,979	0,578
15	10,505	10,581	0,723	12,131	15,479	10,962	4,35	8,916	15,127	10,604	0,944
16	11,53	11,46	0,607	12,188	5,703	11,674	1,248	9,712	15,766	11,348	1,578
17	10,831	10,835	0,037	11,810	9,040	10,945	1,059	9,234	14,743	10,836	0,047
18	10,256	10,295	0,380	12,031	17,302	10,374	1,149	8,692	15,25	10,13	1,224
19	10,153	10,159	0,059	10,574	4,146	10,89	7,258	7,679	24,368	11,329	11,58
20	9,959	10,013	0,542	11,695	17,427	10,313	3,551	8,333	16,324	10,084	1,257
	· · · ·	,	,	,		· · ·	,	, , , , , , , , , , , , , , , , , , ,		, í	,
	AAD%	moyen	0,372		8,5758		3,47		16,145		2,252

Tableau 4.5 .Déviations absolues moyennes enregistrées par les différentes méthode	2S
pour le calcul du Kuop des mélanges binaires.	

Figure 3.5. Deviations absolues moyennes enregistrées pour le Kuop.

5.2.4. Paramètre I/d :

Comme pour les trois précédentes propriétés, nous avons admis l'additivité du facteur I/d pour pouvoir appliquer la corrélation établie. Cette additivité n'est cependant pas évidente du fait que l'indice de réfraction intervenant dans I ne présente pas d'additivité.

N° mélange	I/d référence	I/d MCGAI		Skander - Chitour		Riazi- Daubert	
1	0.3400	0.3401	0.0300	0.3401	0.0313	0.3776	11.012
2	0.3436	0.3434	0.0416	0.3436	0.0099	0.3818	10.95
3	0,3400	0,3394	0,1650	0,3398	0,0763	0,3788	11,429
4	0,3432	0,3430	0,0494	0,3443	0,3297	0,3839	11,891
5	0,3380	0,3379	0,0299	0,3402	0,6301	0,3621	7,1663
6	0,3376	0,3376	0,0157	0,3396	0,5853	0,364	7,888
7	0,3309	0,3291	0,5552	0,3336	0,8051	0,3708	12,134
8	0,3301	0,3295	0,2098	0,3325	0,7255	0,3704	12,213
9	0,3336	0,3335	0,0107	0,3363	0,8310	0,3647	9,9201
10	0,3387	0,3380	0,2151	0,3383	0,1033	0,3776	11,318
11	0,3344	0,3336	0,2178	0,3361	0,5121	0,3668	9,6616
12	0,3326	0,3326	0,0175	0,3363	1,0871	0,3671	10,657
13	0,3366	0,3364	0,0625	0,3415	1,4815	0,364	8,1804
14	0,3364	0,3357	0,2179	0,3442	2,3201	0,3637	8,1396
15	0,3365	0,3359	0,1846	0,3429	1,9032	0,3545	5,5345
16	0,3412	0,3412	0,0133	0,3431	0,5475	0,3748	9,6811
17	0,3342	0,3336	0,1643	0,3356	0,4383	0,3669	9,8309
18	0,3327	0,3319	0,2320	0,3416	2,6968	0,366	9,9989
19	0,3337	0,3316	0,6486	0,3327	0,3237	0,3631	15,766
20	0,3352	0,3344	0,2370	0,3419	2,0023	0,3567	6,4133
	AAD%	moyen	0,1659		0,8720		9,9892

Tableau 5.5 .Déviations absolues moyennes enregistrées par les différentes méthodes pour le calcul du paramètre I/d des mélanges binaires.

Figure 4.5. Déviations absolues moyennes enregistrées pour le paramètre I/d.

5.2.5. Interprétation des résultats :

L'examen des différents écarts montre que d'une manière générale, les corrélations proposées ont fourni les plus faibles écarts pour les quatre propriétés, comparativement aux autres méthodes de calcul et ceci pour les vingt mélanges considérés, à l'exception de la densité ou la corrélation de Riazi Daubert a donné de meilleurs résultats par rapport à la corrélation élaborée pour quelques mélanges.

Pour ce qui est du facteur de caractérisation Kuop et du facteur I/d, les résultats obtenus semblent très recevables avec des écarts moyens très faibles par rapport aux valeurs de référence. Et ceci malgré l'hypothèse d'additivité admise pour ces deux propriétés qui ne sont pas à priori des propriétés additives. Nous signalons que la corrélation de Skander-Chitour pour le facteur I/d a, elle aussi, fourni de bon résultats.

Nous pouvons confirmer la fiabilité de ces nouvelles corrélations pour le calcul des quatre propriétés dans le cas des mélanges binaires étudiées. Ces corrélations, il faut le rappeler ne sont valables en toutes rigueur que pour les mélanges considérés. On peut au mieux interpoler les résultats, mais l'extrapolation demande l'expérimentation sur d'autres mélanges.

5.3. Mélanges ternaires :

Comme pour le cas des mélanges binaires, nous avons recueilli les propriétés d'une vingtaine de mélanges (**tableau 6.5**) pour lesquels nous avons calculé et mesuré les propriétés en choisissant les hydrocarbures dont au moins deux familles. Naturellement deux hydrocarbures d'une même famille et un autre d'une autre famille ramènent à un binaire. Le but est aussi à travers ce ternaire de délimiter les bornes en températures d'ébullition préfigurant ainsi les fractions pétrolières.

N°						
mélange	Constituant 1	Constituant 2	Constituant 3	X1%	X2%	X ₃ %
1	n-heptane	n-decane	methyl cyclohexane	20.23	31.87	47.9
2	Cyclohexane	n-hexane	methyl cyclohexane	34.52	43.38	22.09
3	Cyclohexane	methyl cyclohexane	ethyl benzene	37.42	43.12	19.46
4	Benzene	ethyl benzene	methyl cyclohexane	29.06	52.54	18.39
5	n-tridecane	methyl cyclohexane	toluene	8.19	68.25	23.56

6	n-dodecane	n-tridecane	cyclohexane	24.2	23.61	52.19
7	n-décane	Toluene	ethyl benzene	22.4	42.14	35.46
8	Benzene	ethyl benzene	n-tridecane	31.69	22.38	45.93
9	n-hexane	n-heptane	n-nonane	39.35	34.08	26.57
10	Benzene	ethyl benzene	terbutyl Benzene	48.82	35.55	15.63
11	Methylcyclohexane	toluene	n-heptane	25.85	42.97	31.18
12	n-tridecane	cyclohexane	benzene	15.3	37.39	47.31
13	n-hexane	n-décane	n-dodecane	51.6	26.49	21.91
14	Benzene	Toluene	methyl cyclohexane	31.69	22.38	45.93
15	n-décane	cyclohexane	pentyl Benzene	28.74	51.88	19.38
16	n-hexane	pentyl Benzene	terbutyl Benzene	33.16	25.65	41.19
17	n-heptane	cyclohexane	methyl cyclohexane	27.94	37.85	34.2
18	n-tridecane	cyclohexane	Pentyl Benzene	22.16	47.59	30.25
19	Benzene	toluene	ethyl benzene	29.2	37.22	33.59
20	n-decane	cyclohexane	benzene	19.97	36.51	43.52

 Tableau (6.5): Compositions des mélanges ternaires.

La précision de la composition est vérifiable. Nous avons résumé les principaux résultats obtenus dans les tableaux ci-dessous, dans lesquels nous avons reporté les écarts moyens enregistrés par les différentes méthodes de calcul par rapport à la référence.

531	Densité	•
2.2.1.	Densite	٠

N° mélange	d(Kg/dm ³) référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
1	0,7395	0,7355	0,5414	0,7292	1,3907	0,74	0,0624	0,7516	1,6314
2	0,7248	0,7244	0,0423	0,6933	4,3403	0,7251	0,0443	0,7203	0,6087
3	0,7918	0,7902	0,1963	0,7472	5,6360	0,7939	0,2744	0,7911	0,084
4	0,8524	0,8511	0,1477	0,8040	5,6733	0,8511	0,1535	0,8508	0,1837
5	0,7912	0,7907	0,0659	0,7699	2,6959	0,7928	0,204	0,7992	1,0034
6	0,766	0,7611	0,6481	0,7227	5,6509	0,7645	0,1938	0,7963	3,9473
7	0,8362	0,834	0,2733	0,8117	2,9279	0,834	0,267	0,8371	0,1018
8	0,8198	0,8162	0,4471	0,7804	4,8088	0,8231	0,3915	0,8349	1,8341
9	0,6832	0,68	0,4676	0,6835	0,0467	0,6848	0,2367	0,7247	6,0781
10	0,8728	0,8705	0,258	0,8222	5,8013	0,8714	0,1593	0,8667	0,6889
11	0,7845	0,7827	0,2317	0,7655	2,4234	0,7861	0,204	0,7846	0,0043
12	0,8226	0,818	0,5605	0,7442	9,5285	0,8246	0,2363	0,8611	4,6766
13	0,6977	0,6952	0,3629	0,6978	0,0072	0,6952	0,3633	0,7034	0,8178
14	0,8259	0,8243	0,1991	0,7775	5,8572	0,824	0,2296	0,8275	0,1879
15	0,7802	0,7751	0,6576	0,7345	5,8561	0,7825	0,2902	0,7767	0,4547
16	0,7959	0,7966	0,0821	0,8168	2,6219	0,797	0,134	0,7625	4,1999
17	0,7488	0,7458	0,4032	0,7113	5,0050	0,7461	0,3677	0,7448	0,5369
18	0,7979	0,7945	0,4265	0,7543	5,4676	0,7942	0,4684	0,7996	0,2105

20 0,8126 0,807 0,6819 0,7385 9,1138 0,808 0,5596 0,8093 0	19	0,8705	0,869	0,1777	0,8192	5,8980	0,8602	1,1888	0,868	0,2914
1 = 10000000000000000000000000000000000	20	0,8126	0,807	0,6819	0,7385	9,1138	0,808	0,5596	0,8093	0,4065

Tableau 7.5 .Les déviations absolues moyennes enregistrées par les différentes méthodespour le calcul de la densité des mélanges ternaires.

Les écarts obtenus par les différentes corrélations sont représentés dans la figure suivante.

Figure 5.5. Déviations absolues moyennes enregistrées pour la densité.

Les valeurs des écarts obtenues avec la corrélation proposée sont les plus fiables comparativement aux autres corrélations, notamment celle de Riazi-Daubert et celle de Skander-Chitour qui ne fait pas appel à la prise en compte des interactions.

5.3.2. Volume molaire :

Les résultats obtenus lors du calcul du volume molaire des mélanges ternaires sont reportés dans le tableau suivant :

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn-Calus	AAD%	Riazi- Daubert	AAD%
1	152,89	155.016	1.391	152,179	0,465	176.522	15.457	154.930	1.335
2	122,202	118.933	2.675	124,388	1,789	131.394	7.522	125.581	2.765
3	119,316	116.703	2.190	123,911	3,851	130.839	9.658	120.080	0.641
4	113,638	114.752	0.981	118,582	4,351	127.963	12.606	112.629	0.887
5	132,117	134.958	2.150	133,211	0,828	146.990	11.257	129.778	1.770
6	169,043	163.023	3.561	173,414	2,586	195.411	15.598	166.590	1.451
7	131,871	131.953	0.062	133,963	1,587	154.200	16.932	130.130	1.321
8	167,564	168.045	0.287	170,989	2,044	197.083	17.616	157.206	6.182
9	148,856	148.856	0.000	146,270	1,737	167.302	12.392	157.910	6.082
10	111,132	111.700	0.511	115,847	4,243	126.044	13.418	108.166	2.668
11	124,364	125.428	0.855	125,076	0,572	137.629	10.666	124.698	0.268

12	119,769	115.936	3.201	128,197	7,037	133.408	11.387	114.347	4.528
13	168,903	168.938	0.021	166,539	1,400	195.889	15.977	177.394	5.027
14	110,569	112.822	2.038	114,942	3,955	121.011	9.444	108.526	1.848
15	145,534	139.531	4.125	150,565	3,457	169.231	16.283	146.529	0.683
16	151,402	151.308	0.062	146,703	3,103	175.382	15.839	151.152	0.165
17	125,514	122.485	2.414	128,731	2,563	136.720	8.927	127.358	1.469
18	157,68	152.119	3.527	162,715	3,193	182.511	15.748	156.442	0.785
19	106,648	106.972	0.304	111,996	5,014	119.848	12.377	106.437	0.198
20	117,06	113.330	3.186	124,887	6,687	132.051	12.806	113.713	2.860
	AAD%	moyen	1.677		3.023		13.096		2.147

Tableau 8.5.Déviations absolues moyennes enregistrées par les différentes méthodes pour le calcul du volume molaire des mélanges ternaires.

Figure 6.5. Déviations absolues moyennes enregistrées pour le volume molaire.

La corrélation proposée donne les écarts les plus faibles notamment par rapport à la corrélation de Tyn et Calus.

5.3.3. Facteur de caractérisation Kuop:

N° mélange	Kuop Reference	Kuop MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Dermoune -Chitour	AAD%	Bouamra- Chitour	AAD%	Whiston	AAD%
1	12,025	12,056	0,258	12,348	2,685	12,171	1,214	12,998	8,0915	11,984	0,344
2	11,847	11,776	0,599	12,401	4,672	11,571	2,33	13,839	16,814	11,742	0,884
3	11,013	11,012	0,009	12,003	8,988	10,669	3,124	12,3	11,686	11,021	0,07
4	10,36	10,363	0,029	11,784	13,749	10,998	6,158	10,927	5,473	10,396	0,343
5	11,161	11,182	0,188	11,959	7,146	11,34	1,604	11,562	3,5929	11,182	0,192
6	11,826	11,871	0,381	12,484	5,565	12,176	2,96	12,317	4,1519	11,872	0,388
7	10,783	10,833	0,464	11,878	10,155	11,43	6,00	11,694	8,4485	10,745	0,356
8	11,266	11,312	0,408	12,255	8,781	11,91	5,716	11,457	1,6954	11,276	0,091
9	12,723	12,677	0,362	12,714	0,071	12,898	1,375	11,849	6,8694	12,616	0,839

	AAD%	moven	0.224		8.149		6.741		8.240		0.41
20	10,778	10,794	0,148	12,175	12,959	10,904	1,169	12,427	15,3	10,76	0,163
19	10,099	10,12	0,208	11,718	16,028	10,673	5,684	11,146	10,367	10,148	0,489
18	11,391	11,399	0,07	12,203	7,128	11,579	1,65	12,737	11,816	11,435	0,385
17	11,579	11,57	0,078	12,262	5,899	11,723	1,244	12,313	6,3391	11,527	0,449
16	11,456	11,395	0,532	11,804	3,040	11,622	1,449	12,35	7,8038	11,407	0,429
15	11,475	11,496	0,183	12,265	6,883	11,556	0,706	12,584	9,6645	11,468	0,058
14	10,555	10,565	0,095	11,872	12,477	10,953	3,771	11,251	6,594	10,566	0,103
13	12,744	12,715	0,228	12,748	0,029	12,967	1,75	12,32	3,3271	12,694	0,389
12	10,668	10,677	0,084	12,154	13,933	10,889	2,072	12,523	17,388	10,71	0,393
11	11,24	11,257	0,151	12,045	7,164	11,583	3,052	11,003	2,1085	11,131	0,973
10	10,104	10,104	0	11,682	15,621	9,997	1,059	10,838	7,2644	10,197	0,925

Tableau 9.5 .Déviations absolues moyennes enregistrées par les différentes méthodes pour le calcul du K_{uop} des mélanges ternaires.

Il faut tout d'abord préciser que donner une valeur de K_{UOP} avec une précision à trois chiffres après la virgule n'a pas de sens. Ces valeurs sont celles du calcul. Nous prendrons pour les calculs au mieux un chiffre après la virgule. Nous avons à la fois une imprécision sur la densité et la température d'ébullition.

Les écarts obtenus par les différentes corrélations sont représentés dans la figure 7.5

Figure 7.5. Déviations absolues moyennes enregistrées pour le Kuop.

Les valeurs présentées par la corrélation proposée donnent la aussi les plus faibles écarts par rapport aux corrélations de Skander, Dermoune Bouamra . Cependant la corrélation de Whiston de loin la meilleure.

5.3.4. Paramètre I/d :

Nous avons regroupé dans le tableau (10.5) les principaux résultats relatifs aux écarts moyens enregistrés par les différentes méthodes de calcul par rapport à la référence. La précision de I/d n'est laissée que pour les besoins du calcul.

N°	I/d	I/d MCCAL	AAD%	Skander -	AAD%	Riazi-	AAD%
melange	reference	MCGAI	0 22 49	Chitour	0.0699	Daubert	12 5960
1	0,3374	0,3363	0,3348	0,3372	0,0688	0,3799	12,5869
2	0,3372	0,3369	0,1026	0,3388	0,4694	0,3835	13,7228
3	0,3317	0,3309	0,2524	0,3339	0,6657	0,3696	11,4248
4	0,3354	0,3347	0,2125	0,3400	1,3541	0,3688	9,9672
5	0,3335	0,3323	0,3623	0,3339	0,1272	0,3644	9,2559
6	0,3356	0,3338	0,5295	0,3375	0,5619	0,3605	7,4352
7	0,3383	0,338	0,0742	0,3408	0,7648	0,3693	9,1898
8	0,3377	0,3368	0,2575	0,3405	0,8306	0,4547	34,6520
9	0,3446	0,3448	0,0688	0,3445	0,0040	0,4033	17,0371
10	0,3359	0,3352	0,2007	0,3413	1,6066	0,3642	8,4190
11	0,3382	0,3377	0,1491	0,3396	0,4254	0,3993	18,0788
12	0,3343	0,3328	0,4408	0,3405	1,8680	0,3521	5,3334
13	0,3426	0,3436	0,3014	0,3426	0,0197	0,4211	22,9379
14	0,3337	0,3328	0,2627	0,3375	1,1385	0,3652	9,4523
15	0,3350	0,3337	0,3904	0,3376	0,7851	0,3751	11,9577
16	0,3381	0,3392	0,3256	0,3377	0,1223	0,3819	12,9611
17	0,3346	0,3337	0,2636	0,3362	0,4694	0,3773	12,7741
18	0,3346	0,3332	0,4056	0,3370	0,7389	0,3685	10,1541
19	0,3367	0,3362	0,1557	0,3423	1,6664	0,3660	8,6958
20	0,3349	0,3335	0,4298	0,3410	1,8148	0,3747	11,8580
	AAD%	moyen	0,2760		0,7751		12,8947

CHAPITRE 5 : Application des corrélations établies aux mélanges binaires et ternaires_

Tableau 10.5 .Les déviations absolues moyennes enregistrées par les différentes méthodes pour le calcul du paramètre I/d des mélanges ternaires.

Figure 8.5. Déviations absolues moyennes enregistrées pour le I/d.

La corrélation proposée est meilleure que celle de Skander-Chitour, une amélioration sur la prise en compte des interactions parait donc correcte. L'erreur obtenue avec la corrélation de Riazi Daubert est de loin plus importante.

5.4. Conclusion :

Les corrélations établies permettent une meilleure prédiction des propriétés physiques étudiées comparées aux méthodes conventionnelles citées dans la littérature. Les résultats obtenus présentent de faibles écarts par rapport aux données expérimentales et ceci aussi bien pour les mélanges binaires que ternaires. Cette méthode de contribution de groupe avec la prise en compte des interactions apporte un plus par rapport à la méthode sans interaction de Skander –Chitour. Cette étape intermédiaire nous amène dans le prochain chapitre à tenter d'appliquer ces corrélations aux fractions pétrolières.

CHAPITRE VI

Application aux fractions pétrolières

6.1. Introduction :

Nous avons tenté d'extrapoler les méthodes de contribution de groupes établies, précédemment, pour la détermination des propriétés étudiées pour des mélanges complexes dont la composition est inconnue, pour cela, nous avons recueilli les caractéristiques d'un échantillon de fractions légères, moyennes et un autre, constitué de fractions lourdes. Il est à noter que les fractions moyennes et lourdes choisies sont étroites et issues de la distillation TBP d'un pétrole Algérien (El Agreb).

6.2. Fractions légères, moyennes et lourdes :

• Fractions légères :

Pour ce type de fractions nous appliquons exactement la même démarche que celle adoptée pour les mélanges simples (chap.5), puisque la composition quantitative et qualitative des fractions est connue.

Par conséquent nous utilisons la règle d'additivité suivante :

$$P_{FP} = \frac{\sum P_i * X_i}{\sum X_i}$$

P_{FP}: la valeur de la propriété de la fraction.

Pi : la valeur de la propriété du constituant i

Xi : la fraction molaire du constituant i dans la fraction.

• Fractions moyennes et lourdes :

Pour les fractions moyennes et lourdes nous avons suivi la démarche suivante :

- Déterminer la masse molaire des fractions pétrolières à partir de la corrélation de Hersh.
- Déduire la température moyenne d'ébullition en prenant le milieu de l'intervalle d'ébullition puisque les fractions considérées sont étroites.
- Estimer la composition en paraffine, naphtène et aromatique par la méthode de Riazi-Daubert.
- Appliquer l'hypothèse du pseudo composant en assimilant chaque fraction à un mélange ternaire d'une paraffine, un naphtène et un aromatique ayant soit la même masse molaire que cette fraction, soit la même température d'ébullition.
- Déduire les propriétés des fractions par la méthode de contribution de groupes tout en appliquant la règle suivante :

$$P_{frac} = X_p P_p + X_n P_n + X_a P_a$$

Comparer par la suite, ces méthodes à d'autres qui existent dans la littérature.

La méthode de Hersh utilisée pour la détermination de la masse molaire s'écrit comme suit :

M : masse molaire, Teb : température d'ébullition en °C ; n_D^{20} : indice de réfraction à 20°c.

La méthode de Riazi-Daubert utilisée pour l'estimation de la composition en paraffines, naphtènes, et aromatiques se présente comme suit:

• Pour M<200 (fractions légères) :

P%=373.87-408.29*SpGr+1.4772*m N%=-150.27+210.152*SpGr-2.388*m A%=100-(P%+N %)

• Pour M>200 (fractions lourdes) :

P%=198.42-27.722*Ri-15.643*C/H N%=59.77-76.174*Ri+6.80048*C/H A%=100-(P%+N %)

Avec : C/H=100/[2.5531*Kuop-0.0022248*Teb(°R)-14.77732618]-1 m=M*(n-1.475) $R_{I=}n-(d_{20}^{-4}/2)$

6.3. Caractéristiques des fractions pétrolières utilisées :

Les caractéristiques des fractions pétrolières utilisées pour appliquer nos corrélations sont données dans le tableau suivant :

Fraction pétrolière	Intervalle d'ébullition (°C)	SpGr	Kuop	n_{D}^{20}	T _{mav} (°K)	MM(g/mole)	X _P	X _N	X _A
		<u> </u>	Fractions	légères	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>.</u>
		-			-				
FP1	C5-80°C	0.6539	-	1.3761	37.80	89.58	-	-	-
FP2	65-70	0.6844	_	1.3925	67.50	89.58	-	_	-
	_	_	Fractions	moyennes					
				-					
FP 3	220-230	0.808	11.93	1.456	498.2	186.6	38.74	27.93	33.3
FP4	240-250	0.819	11.93	1.463	518.2	202.5	69.50	21.83	8.65
FP5	280-290	0.836	11.98	1.474	558.2	237.2	69.21	21.81	8.86
FP6	290-300	0.838	12.02	1.475	568.2	247.3	69.81	21.87	8.30
	_	_	Fractions	lourdes					
Fp7	310-320	0.862	11.83	1.487	588.2	259.0	64.64	23.47	11.9
FP8	340-350	0.872	11.89	1.493	618.2	288.3	65.11	23.8	11.1
FP9	350-360	0.88	11.84	1.495	628.2	296.1	63.65	24.69	11.6
FP10	360-370	0.886	11.82	1.497	638.2	304.8	62.73	24.91	12.3

Tableau 1.6. Caractéristiques des fractions légères, moyennes et lourdes.

6.4. Résultas obtenus :

6.4.1. Propriétés de transport : 6.4.1.1. La densité d₄²⁰:

Fractions légères :

Pour les fractions légères, nous disposons de leurs compositions en constituants individuels et en pourcentages molaires, comme le montre le **tableau (2.6)** suivant :

Noms des	% n	nolaire
constituants	Coupe 36-80°C	Coupe 80-150°C
Isobutane	0.01	-
n-butane	0.16	2.05
Isopentane	19.15	11.9
n-pentane	18.99	29.14
2,2-dimethylbutane	2.3	0.4
Cyclopentane	0.57	-
2,3-dimethylbutane	3.18	2.59
2-metylpentane	14.65	11.81
3-methylpentane	8.37	6.92
n-hexane	16.99	23.94
methylcyclopentane	3.17	4.64
2,2-dimethylpentane	1.16	-
Benzene	4.34	4.5
3,3-dimethylpentane	0.15	-
Cyclohexane	2.7	2.37
2-methylhexane	1.5	0.41
2,3-dimethylpentane	0.58	-
3-methylhexane	1.07	0.25
1-cis-3-dimethylcyclopentane	0.09	0.07
1-trans-3-dimethylcyclopentane	0.12	0.06
3-ethylpentane	0.16	-
n-heptane	0.44	0.1
methylcyclohexane	0.15	0.1
2,4-dimethylpentane	-	0.37
2,2,3-trimethylbutane	-	0.06
1,1-dimethylcyclopentane	-	0.09
1,trans-2-dimethylcyclopentane	-	0.1

Tableau 2.6. Identification des coupes d'essence en composés individuels.

A partir de ces données de compositions, nous avons calculé la densité de ces deux fractions pétrolières par la corrélation élaborée, en ce basant toujours sur la règle d'additivité.

Nous avons regroupé les écarts moyens correspondants aux différentes méthodes de prédiction de la densité dans le tableau (3.6).

Fractions pétrolières	d ₄ ²⁰ (Kg/m3) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
1	662,201	665,600	0,513	654,632	1,143	664,901	0,408	644,800	2,628
2	674,412	673,542	0,129	665,659	1,298	673,212	0,178	654,901	2,893

Tableau 3.6. Déviations absolues moyennes enregistrées par différentes de calcul de la densité des fractions légères.

Dans la figure suivante, nous avons représenté graphiquement les écarts enregistrés par la corrélation établie et les autres corrélations.

Figure 1.6 : Déviations absolues moyennes enregistrées par les différentes corrélations pour les fractions légères.

La comparaison de la corrélation établie avec les autres méthodes a montré que comparativement à la méthode de Riazi-Daubert , nous remarquons que les deux méthodes sont très proches en terme d'écarts par rapport à la référence ,toutefois l'équation proposée a légèrement amélioré la prédiction de la densité pour la deuxième fraction .

La corrélation établie par Dermoune-Chitour, a, quant à elle, enregistré pour les deux fractions légères des déviations moyennes plus élevées que celles fournies par l'équation 15, établie pour les hydrocarbures purs.

Comparé à la méthode de contribution de groupes sans interactions proposée par Skander-Chitour, nous constatons que la corrélation élaborée a enregistré de plus faibles écarts.

***** Fractions moyennes :

Comme nous ne nous disposons pas de la composition quantitative et qualitative pour les fractions moyennes et lourdes, nous utilisons la méthode basée sur la composition PNA Cette méthode, établie par Riazi-Daubert (1980), est basée sur les hypothèses des pseudo composants et de l'additivité des propriétés. Une fraction pétrolière est assimilée à un mélange ternaire composé d'une n-paraffine, d'un naphtène (n-alkylcyclohexane) et d'un aromatique (n-alkylbenzène), ayant les mêmes masses molaires ou les mêmes températures d'ébullition que la fraction pétrolière. La propriété moyenne de la fraction est déduite ensuite à partir de la relation suivante :

$$P_{FP} = P_P \cdot X_P + P_N \cdot X_N + P_A \cdot X_A$$

 P_P , P_N , P_A sont les propriétés des trois pseudo composants.

 X_P , X_N et X_A sont les fractions molaires en hydrocarbures paraffiniques, naphténiques et aromatiques contenues dans la fraction pétrolière et déterminés par la méthode de Riazi-Daubert citée dans le paragraphe 6.2.

Cette méthode a été largement utilisée par les chercheurs pour la prédiction des propriétés moyennes des mélanges complexes et les résultats obtenus se s'ont avérés assez probants. [3] Dans le cadre de cette étude, nous nous proposons uniquement d'illustrer cette méthode par un exemple d'application.

Exemple d'application :

Nous proposons dans cet exemple la détermination de la paraffine, naphtène et aromatique en utilisant la masse molaire.

✓ Nous supposons que la troisième fraction peut être assimilée à une normale paraffine de formule globale : C_nH_{2n+2} et qui possède la même masse molaire que la coupe que nous avons à traiter.

La masse molaire serait égale à : 12n + 2n+2 = 186.614n=184.6

Le composé correspondant aurait donc pour formule chimique : C13 H28. n-tridécane.

✓ La structure de l'hydrocarbure naphténique est obtenue en prenant en considération les composés cycliques avec une ramification d'une chaîne hydrocarbonée linéaire :

Avec la masse molaire =

CH3.....15 -(CH2)n-....12n+2n

Calcul de n:

$$83 + 15 + 12 n + 2n = 186.6$$

 $n \approx 6$

Donc le nombre de Carbonne de la chaîne linéaire est 7.

D'où le composé correspondant aurait pour formule chimique C13H26. n-decylcyclohaxane.

✓ La structure de l'hydrocarbure aromatique est obtenue en prenant en considération le composé benzène avec une ramification d'une chaîne hydrocarbonée linéaire :

Calcul de la masse molaire :

77 + 15 + 12 n + 2n = 186.6 $n \approx 7$

Le nombre de carbone de la chaîne linéaire est 8. Donc le composé correspondant est l'octylbenzene C14H22.

Nous procédons de la même manière pour toutes les autres fractions moyennes et lourdes.

Une fois les mélanges ternaires désignés. Nous calculons, ensuite, leurs densités de référence, celles des contributions de groupes et celles des autres méthodes par l'application de la règle de mélange suivante :

$$P_{FP} = P_P \cdot X_P + P_N \cdot X_N + P_A \cdot X_A$$

Et cela, après avoir déterminer les densités de référence et celles de la corrélation établie qui correspondent à chacun des constituants.

Fractions pétrolières	FP3	FP4	FP5	FP6
MM (g/mole)	186.6	202.5	237.2	247.3
n-paraffine	nC13	nC14	nC16	nC17
MM (g/mole)	184.4	198.4	226.4	240.5
d _P (reference) (Kg/m3)	756,100	762,550	773,530	778,000
d _P (estimé) (Kg/m3)	751,305	759,554	773,495	779,087
Naphtènes	nC7cyc6	nC8cyc6	nC10cyc6	nC11cyc6
MM (g/mole)	182.3	196.4	224.4	238.4
d _N (référence) (Kg/m3)	811,000	814,900	818,600	821,000
d _N (estimé) (Kg/m3)	813,493	816,913	824,021	823,926
Aromatiques	nC8Bz	nC9BZ	nC11Bz	nC12Bz
MM (g/mole)	190.3	204.3	232.4	246.4
d _A (référence) (Kg/m3)	856,700	855,800	855,300	855,100

✓ En utilisant la masse molaire :

d _A (estimé) (Kg/m3)	858,825	855,996	856,703	855,266
d _{FP} (référence) (Kg/m3)	804,707	781,892	789,676	793,819
d _{FP} (estimé) (Kg/m3)	804,253	780,266	790,959	795,218

Tableau 4.6.Calcul de la densité des fractions moyennes en utilisant la caractérisation de
la masse molaire.

Fractions pétrolières	d (Kg/m3) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
3	804,707	804,253	0,056	799,449	0,653	804,2	0,057	788,015	2,074
4	781,892	780,266	0,208	784,468	0,329	782	0,014	807,123	3,227
5	789,676	790,959	0,162	789,487	0,023	790,4	0,095	832,356	5,405
6	793,819	795,218	0,176	788,012	0,731	794,6	0,102	845,210	6,474

Tableau 5.6. Déviations absolues moyennes enregistrées pour les fractions moyennes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Fractions pétrolières	FP3	FP4	FP5	FP6
Tmav (°K)	498.2	518.2	558.2	568.2
n-paraffine	nC13	nC14	nC16	nC17
Teb(°K)	508.6	526.7	560.01	575.1
d _P (reference) (Kg/m3)	756,100	762,550	773,530	778,000
d _P (estimé) (Kg/m3)	751,305	759,554	773,495	779,087
Naphtènes	nC6cyc6	nC7cyc6	nC9cyc6	nC10cyc6
Teb(°K)	497.8	518.0	554.7	570.7
d _N (référence) (Kg/m3)	807,600	811,000	816,000	818,600
d _N (estimé) (Kg/m3)	807,597	813,493	816,124	818,125
Aromatiques	nC6Bz	nC7BZ	nC9Bz	nC10Bz
Teb(°K)	499.0	537.0	555.0	571.0
d _A (référence) (Kg/m3)	860,200	856,700	855,800	855,400
d _A (estimé) (Kg/m3)	857,240	858,825	855,996	855,975
d _{FP} (référence) (Kg/m3)	804,922	781,118	789,154	793,148
d _{FP} (estimé) (Kg/m3)	802,078	779,764	789,174	793,850

Tableau 6.6.Calcul de la densité des fractions moyennes en utilisant la caractérisation de la température d'ébullition.

Fractions pétrolières	d ₄ ²⁰ (Kg/m3) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
3	804,922	802,078	0,353	794,848	1,252	803,58	0,166	813,125	1,019
4	781,118	779,764	0,173	775,760	0,686	779,742	0,176	815,313	4,377
5	789,154	789,174	0,002	785,455	0,469	789,103	0,006	838,099	6,202
6	793,148	793,85	0,088	789,012	0,521	792,78	0,046	851,247	7,325

Tableau 7.6. Déviations absolues moyennes enregistrées pour les fractions moyennes enutilisant la température d'ébullition.

Figure 2.6 : AAD% des fractions moyennes en utilisant la masse molaire.

Figure 3.6 : AAD% des fractions moyennes en utilisant la T_{eb}

Commentaire :

L'examen des différents résultats montre que les écarts enregistrés par notre corrélation sont plus faibles par rapport à la référence que ceux fournis par les méthodes de Skander-Chitour et de Dermoune-Chitour qui ont donné des écarts plus au moins élevés particulièrement celle de Dermoune-Chitour.

Comparée à la méthode de Riazi-Daubert, nous constatons que les deux méthodes sont très proches en terme de performance.

De plus, comparée à la méthode basée sur la masse molaire, nous remarquons qu'à l'exception de la fraction 3 tous les autres écarts absolus enregistrés en utilisant la caractérisation basée sur la température d'ébullition sont plus faibles, ceci pourrait s'expliquer par les erreurs commises sur la composition où par le choix des hydrocarbures représentatifs de la fraction pétrolière dont la masse molaire des 3 constituants s'écarte de celles de la

fraction pétrolière, par exemple dans le cas la fraction 5 nous constatons que la masse molaire de la normale paraffine s'écarte largement de celle de la fraction pétrolière.

Fractions lourdes :

Dans le cas de ce types de fractions, la composition quantitative et qualitative n'est pas connue également ,nous utilisons donc la méthode des pseudo composants,afin de calculer la densité de ces fractions lourdes par la corrélation élaborée.

Par la suite nous comparant les résultats obtenus à ceux de la référence et d'autre méthodes de la littérature.

Fraction pétrolière	FP7	FP8	FP9	FP10
MM (g/mole)	259.0	288.3	296.1	304.8
n-paraffine	nC18	nC20	nC21	nC22
MM (g/mole)	254.59	268.52	282.55	296.58
d p(reference)(Kg/m ³)	782,800	784,300	791,600	794,300
$d_{p}(estimé)(Kg/m^{3})$	783,825	785,043	793,852	797,975
Naphtènes	nC12cyc6	nC14cyc6	nC15cyc6	nC16cyc6
MM (g/mole)	250.46	280.53	2493.56	308.6
d _N (reference)(Kg/m ³)	822,000	825,000	827,000	828,100
d _{N(} estimé)(Kg/m ³)	825,538	827,476	829,458	830,880
Aromatiques	nC13Bz	nC15Bz	nC16Bz	nC17Bz
MM (g/mole)	260.4	288.5	302.5	316.5
d _A (référence)(Kg/m ³)	855,000	854,800	854,700	854,600
d _A (estimé)(Kg/m ³)	854,905	854,869	854,324	854,601
d _{FP} (référence)(Kg/m ³)	800,414	801,634	807,527	810,002
d _{FP} (estimé)(Kg/m ³)	801,896	802,714	809,523	813,000

✓ En utilisant la masse molaire :

Tableau 8.6.Calcul de la densité des fractions lourdes en utilisant la caractérisation de lamasse molaire.

Fractions pétrolières	d ₄ ²⁰ (Kg/m3) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
7	800,414	801,896	0,185	796,275	0,517	801,941	0,191	860,158	7,464
8	801,634	802,714	0,135	801,651	0,002	802,839	0,15	882,021	10,028
9	807,527	809,523	0,247	804,783	0,340	808,47	0,117	892,987	10,583
10	810,002	813	0,37	807,546	0,303	810,976	0,12	896,236	10,646

 Tableau 9.6. Déviations absolues moyennes enregistrées pour les fractions lourdes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Nous avons regroupé dans le tableau (11.6) les écarts moyens correspondants aux différentes méthodes de prédiction de la densité.

Fractions Pétrolières	FP7	FP8	FP9	FP10
Tmav (°K)	588.2	618.2	628.2	638.2
n-paraffine	nC18	nC20	nC21	nC22
Teb (°K)	589.4	603.0	616.9	629.7
d _p (référence)(Kg/m ³)	782,8	784,3	791,6	794,3
d_p (estimé) (Kg/m ³)	783,825	785,043	793,852	797,975
Naphtènes	nC11cyc6	nC13cyc6	nC14cyc6	nC15cyc6
Teb (°K)	586.2	614	627	639.0
d _N (référence)(Kg/m ³)	821	824	825	827
d _N (estimé)(Kg/m ³)	823,926	826,95	827,476	829,458
Aromatiques	nC11Bz	nC13Bz	nC14Bz	nC15Bz
Teb (°K)	586.0	614.0	627.0	639.0
d _A (référence)(Kg/m ³)	855,3	855	854,9	854,8
d _A (estimé)(Kg/m ³)	855,266	854,905	854,869	854,869
d _{FP} (reference)(Kg/m ³)	800,47132	801,674	806,714	809,410
d _{FP} (estimé)(Kg/m ³)	801,81657	802,850	808,755	812,336

Tableau 10.6.Calcul de la densité des fractions lourdes en utilisant la caractérisation de la température d'ébullition.

Fractions pétrolières	d (Kg/m3) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Riazi- Daubert	AAD%	Dermoune- Chitour	AAD%
7	800,471	801,816	0,168	795,543	0,616	801,853	0,172	860,254	7,468
8	801,674	802,85	0,146	801,055	0,077	802,708	0,128	880,12	9,785
9	806,714	808,755	0,253	804,221	0,309	808,983	0,281	888,123	10,091
10	809,41	812,336	0,361	807,024	0,295	811,901	0,307	897,534	10,887

 Tableau 11.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul de densité des fractions lourdes en utilisant la température d'ébullition.

Figure 4.6: AAD% des fractions lourdes en utilisant la masse molaire.

Figure 5.6 : AAD% des fractions lourdes en utilisant la température d'ébullition.

Interprétation des résultats :

En analysant les **tableaux** (9.6) et (11.6) nous remarquons que les écarts enregistrés par l'application de la corrélation établie pour les fractions pétrolières 7, 8 et 9 sont assez faibles par rapport à la référence, tandis que pour la fraction pétrolière 10, l'écart enregistré reste légèrement élevé, ceci peut s'expliquer par l'hypothèse des pseudo composant.

Comparé aux méthodes de Skander-Chitour et Riazi –Daubert, la corrélation sélectionnée a enregistré pratiquement des déviations du même ordre de grandeur même si notre corrélation a amélioré la prédiction de la densité de quelques fractions.

6.4.1.2. Volume molaire :

Nous avons adopté la même démarche que précédemment afin d'appliquer la corrélation de contribution de groupes établie pour le volume molaire aux fractions pétrolières déjà étudiées dans le cas de la densité.

Fractions légères :

Les résultats issus de la comparaison de notre corrélation avec les méthodes de Skander-Chitour, Tyn-Calus et de Riazi-Daubert pour les fractions légères sont regroupés dans le tableau 12.6 et représentés graphiquement sur la figure 6.6

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn- Calus	AAD%	Riazi- Daubert	AAD%
1	122,713	122.211	0.409	121,696	0,829	127.872	4.204	126.062	2.729
2	123,300	122.735	0.459	122,041	1,021	128.716	4.392	126.242	2.386

Tableau 12.6.AAD% enregistrées par différentes méthodes de calcul du volume molairedes fractions légères.

Figure 6.6. Les déviations absolues moyennes enregistrées par les différentes corrélations pour les fractions légères.

D'après le tableau précédent, nous remarquons que la corrélation proposée a fourni les meilleurs résultats pour les deux fractions pétrolières légères.

***** Fractions moyennes :

Les valeurs des écarts moyens obtenus par les différentes méthodes sont données dans les tableaux (14.6) et (16.6).

Fractions pétrolières	FP3	FP4	FP5	FP6
MM (g/mole)	186.6	202.5	237.2	247.2
n-paraffine	nC13	nC14	nC16	nC17
V_{mP} (référence)(cm ³ /mole)	243.837	260.169	292.744	309.091
$V_{mP}(estimé)(cm^3/mole)$	244.082	260.373	292.985	309.306
Naphtènes	nC7cyc6	nC8cyc6	nC10cyc6	nC11cyc6
V _{mN} (référence))(cm ³ /mole)	224.845	240.982	274.163	290.447
$V_{mN}(estimé))(cm^3/mole)$	225.132	243.741	272.564	295.247
Aromatiques	nC8Bz	nC9BZ	nC11Bz	nC12Bz
V _{mA} (référence))(cm ³ /mole)	222.165	238.789	271.728	288.196
$V_{mA}(estimé))(cm^3/mole)$	222.180	238.697	271.692	288.173
V_{mFP} (référence))(cm ³ /mole)	231.287	254.079	286.752	303.217
V _{mFP} (estimé))(cm ³ /mole)	234.502	254.815	286.566	304.415

✓ En utilisant la masse molaire :

Tableau 13.6.Calcul du volume molaire des fractions moyennes en utilisant la caractérisation de la masse molaire.

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn- Calus	AAD%	Riazi- Daubert	AAD%
3	231,287	234.502	1.390	238,251	3,011	281.267	21.610	235.094	1.646
4	254,079	254.815	0.289	276,512	8,829	310.757	22.307	255.767	0.665
5	286,752	286.566	0.065	297,802	3,853	355.909	24.118	285.378	0.479
6	303,217	304.415	0.395	312,268	2,985	379.021	25.000	299.654	1.175

Tableau 14.6. AAD% enregistrées par différentes méthodes de calcul du volume molaire des fractions moyennes en utilisant la masse molaire.

Fractions pétrolières	FP3	FP4	FP5	FP6
Tmav (°K)	498.2	518.2	558.2	568.2
n-paraffine	nC13	nC14	nC16	nC17
Vm_P (reference)(cm ³ /mole)	243.837	260.169	292.744	309.091
Vm_P (estimé)(cm ³ /mole)	244.082	260.373	292.985	309.306
Naphtenes	nC6cyc6	nC7cyc6	nC9cyc6	nC10cyc6
Vm _N (reference)(cm ³ /mole)	208.423	224.845	257.847	274.163
Vm _N (estimé)(cm ³ /mole)	208.412	227.132	257.801	272.564
Aromatiques	nC6Bz	nC7BZ	nC9Bz	nC10Bz
Vm _A (reference)(cm ³ /mole)	188.648	205.792	238.789	255.299
Vm _A (estimé)(cm ³ /mole)	189.105	205.650	238.697	255.200
Vm_{FP}(reference) (cm ³ /mole)	215.533	247.702	280.259	296.926
Vm_{FP}(estimé) (cm ³ /mole)	215.777	248.331	280.408	296.718

✓ En utilisant la température d'ébullition :

Tableau 15.6. Calcul du volume molaire des fractions moyennes en utilisant la
caractérisation de la température d'ébullition.

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn-Calus	AAD%	Riazi- Daubert	AAD%
3	215,533	215.777	0.113	216,395	0,400	260.001	20.632	218.466	1.361
4	247,702	248.331	0.254	247,308	0,159	301.908	21.883	252.872	2.087
5	280,259	280.408	0.053	279,958	0,107	347.068	23.838	283.191	1.046
6	296,926	296.718	0.070	296,648	0,094	370.240	24.691	297.876	0.320

Tableau 16.6. AAD% enregistrées par différentes méthodes de calcul du volumemolaire des fractions moyennes en utilisant la Teb.

Interprétation des résultats obtenus :

Figure 8.6: AAD% des fractions moyennes en utilisant la Teb.

L'examen des différents écarts montre que d'une manière générale, la méthode proposée fournit les plus faibles écarts pour toutes les fractions moyennes comparativement aux autres méthodes de calcul dans les deux cas.

Fractions lourdes :

Fractions pétrolières	FP7	FP8	FP9	FP10
MM(g/mole)	259	288.3	296.1	304.8
n-paraffine	nC18	nC20	nC21	nC22
V _{mP} (reference)(cm3/mole)	325.115	360.262	374.659	391.045
V _{mP} (estimé))(cm3/mole)	325.636	358.320	374.674	391.036
Naphtenes	nC12cyc6	nC14cyc6	nC15cyc6	nC16cyc6
V _{mN} (reference))(cm3/mole)	307.158	340.046	356.184	372.650
V _{mN} (estimé))(cm3/mole)	317.960	328.218	337.862	346.961
Aromatiques	nC13Bz	nC15Bz	nC16Bz	nC17Bz
V _{mA} (reference))(cm3/mole)	304.635	337.526	353.977	370.431
V _{mA} (estimé))(cm3/mole)	304.643	337.555	353.997	370.125
V _{mFP} (reference))(cm3/mole)	318.404	352.862	367.615	383.841
V _{mFP} (estimé))(cm3/mole)	321.277	348.785	363.103	377.398

✓ En utilisant la masse molaire :

Tableau 17.6 Calcul du volume molaire des fractions lourdes en utilisant la
caractérisation de la masse molaire.

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn- Calus	AAD%	Riazi- Daubert	AAD%
7	318,404	321.277	0.902	318,445	0,013	289.88	8.959	315.291	0.978
8	352,862	348.785	1.155	351,322	0,436	313.431	11.175	346.300	1.859
9	367,615	363.103	1.227	367,470	0,039	324.914	11.616	356.809	2.94
10	383,841	377.398	1.679	383,699	0,037	336.354	12.372	369.776	3.664

Tableau 18.6: AAD% enregistrées par différentes méthodes de calcul du volume molaire des fractions lourdes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Fractions pétrolières	FP7	FP8	FP9	FP10
tmav(g/mole)	588.15	618.15	628.15	638.15
n-paraffine	nC1	nC20	nC21	nC22
V _{mP} (référence) (cm3/mole)	325.115	360.262	374.659	391.045
V _{mP} (estimé) (cm3/mole)	325.636	358.320	374.674	391.036
Naphtènes	nC11cyc6	nC13cyc6	nC14cyc6	nC15cyc6
V _{mN} (référence) (cm3/mole)	290.447	323.435	340.046	356.184
V _{mN} (estimé)(cm3/mole)	295.247	317.960	328.218	337.862
Aromatiques	nC11Bz	nC13Bz	nC14Bz	nC15Bz
V _{mA} (référence) (cm3/mole)	271.728	304.635	321.078	337.526
V _{mA} (estimé))(cm3/mole)	271.692	304.643	321.104	337.555
V _{mFP} (référence(cm3/mole)	310.576	345.267	359.801	375.679
V _{mFP} (estimé) (cm3/mole)	312.035	342.701	356.894	371.112

Tableau 19.6. Calcul du volume molaire des fractions lourdes en utilisant la
caractérisation de la température d'ébullition.

N° mélange	Vm(cm3/mole) Référence	MCGAI	AAD%	Skander- Chitour (MCGSI)	AAD%	Tyn-Calus	AAD%	Riazi- Daubert	AAD%
7	310,576	312.035	0.470	310,704	0,041	389.875	25.533	308.854	0.554
8	345,267	342.701	0.743	343,790	0,427	436.101	26.308	339.762	1.595
9	359,801	356.894	0.808	359,605	0,054	454.281	26.259	350.188	2.672
10	375,679	371.112	1.216	375,569	0,029	464.146	23.549	362.643	3.470

 Tableau 20.6. AAD% enregistrées par différentes méthodes de calcul du volume molaire des fractions lourdes en utilisant la température d'ébullition.

Figure 9.6: AAD% des fractions lourdes en utilisant la masse molaire.

Figure 10.6: AAD% des fractions lourdes en utilisant la t_{eb}

Commentaire :

L'application de l'équation 3 établie pour les hydrocarbures purs , aux fractions lourdes a donné elle aussi de très bons résultats, à savoir de très faibles écarts par rapport à la référence. Même si la méthode de Skander –Chitour est la plus adaptée puisqu'elle a fourni des écarts plus faibles dans les deux cas.

De plus nous constatons que l'utilisation de la température d'ébullition a permis d'enregistrer des résultats plus performants que ceux donnés par la caractérisation en utilisant la masse molaire ceci est certainement dû aux bon choix des hydrocarbures représentatifs des fractions pétrolière

6.4.2. Propriétés spécifiques :

6.4.2.1. Le facteur de caractérisation Kuop :

Comme pour les propriétés de transport(d_4^{20} , V_m , nous avons appliqué les corrélations proposées dans le cas du Kuop aux fractions légères, moyennes et lourdes, en assimilant toujours l'additivité de cette propriété et en suivant la même démarche expliquée précédemment.

Fractions pétrolières	Kuop Référence	Kuop MCGAI	AAD%	Skander- Chitour	AAD%	Bouamra- Chitour	AAD%	Whiston	AAD%
1	12,621	12,428	1,531	13,010	3,079	11,298	10,482	12.411	1.663
2	12,88	12,642	1,848	13,1477	2,079	11,283	12,398	12.328	4.285

Fraction légère :

Tableau 21.6.Déviations absolues moyennes enregistrées par différentes méthodes de
calcul du Kuop des fractions légères.

Figure 11.6: Déviations absolues moyennes enregistrées par les différentes corrélations pour les fractions légères.

Commentaire :

Le tableau (11.6) montre qu'en général, les écarts des différentes méthodes par rapport à la référence sont assez faibles à l'exception de la méthode de Bouamra-Chitour pour laquelle nous remarquons une augmentation des erreurs. Comparée à la méthode de skander -Chitour et de Whiston nous constatons que notre corrélation a amélioré la prédiction du facteur de caractérisation pour les deux fractions pétrolières considérées.

***** Fractions moyennes :

✓ En utilisant la masse molaire :

Fractions pétrolières	FP3	FP4	FP5	FP6
MM(g/mole)	186.6	202.5	237.2	247.2
n-paraffine	nC13	nC14	nC16	nC17
Kuop _P (reference)	12.758	12.803	12.883	12.924
Kuop _P (estimé)	12.757	12.727	12.949	12.979
Naphtenes	nC7cyc6	nC8cyc6	nC10cyc6	nC11cyc6
Kuop _N (reference)	11.979	12.065	12.259	12.332
Kuop _N (estimé)	11.980	12.001	12.168	12.252
Aromatiques	nC8Bz	nC9BZ	nC11Bz	nC12Bz
Kuop _A (reference)	11.487	11.626	11.845	11.944
Kuop _A (estimé)	11.490	11.521	11.778	11.906
Kuop _{FP} (reference)	12.116	12.538	12.652	12.711
Kuop FP(estimé)	12.325	12.550	12.680	12.728

Tableau 22.6. Calcul du Kuop des fractions moyennes en utilisant la caractérisation de
la masse molaire.

Fractions pétrolières	Kuop Référence	Kuop MCGAI	AAD%	Skander- Chitour	AAD%	Bouamra- Chitour	AAD%	Whiston	AAD%
3	12,116	12,325	1,725	12,310	1,597	12,354	1,964	12,046	0,578
4	12,538	12,55	0,096	12,649	0,886	12,597	0,471	12,465	0,582

5	12,652	12,68	0,221	12,689	0,292	12,714	0,490	12,61	0,332
6	12,711	12,728	0,134	12,725	0,110	12,778	0,527	12,673	0,299

Tableau 23.6 : Déviations absolues moyennes enregistrées par différentes méthodes de calcul du Kuop des fractions moyennes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Fractions pétrolières	FP 3	FP 4	FP 5	FP 6
Tmav (°K)	498.2	518.2	558.2	568.2
n-paraffine	nC13	nC14	nC16	nC17
Kuop _p (reference)	12,758	12,803	12,883	12,924
Kuop _P (estimé)	12,757	12,727	12,949	12,979
Naphtenes	nC6cyc6	nC7cyc6	nC9cyc6	nC10cyc6
Kuop _N (reference)	11,871	11,979	12,181	12,259
Kuop _N (estimé)	11,869	11,980	12,188	12,168
Aromatiques	nC6Bz	nC7BZ	nC9Bz	nC10Bz
Kuop _A (reference)	11,164	11,364	11,626	11,742
Kuop _A (estimé)	11,124	11,358	11,521	11,650
Kuop _{FP} (reference)	11,976	12,496	12,603	12,678
Kuop FP(estimé)	11,961	12,443	12,641	12,689

Tableau 24.6: Calcul du Kuop des fractions moyennes en utilisant la caractérisation de
la température d'ébullition.

Fractions	Kuop	Киор		Skander-		Bouamra-			
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Chitour	AAD%	Whiston	AAD%
3	11,976	11,961	0,119	12,268	2,435	10,944	8,614	11.909	0.556
4	12,496	12,443	0,425	12,590	0,749	11,944	4,418	12.422	0.592
5	12,603	12,641	0,301	12,653	0,397	12,059	4,317	12.57	0.262
6	12,678	12,689	0,086	12,692	0,113	12,129	4,329	12.776	0.773

Tableau 25.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du Kuop des fractions moyennes en utilisant la température d'ébullition.

Figure 12.6: AAD%des fractions moyennes en utilisant la masse molaire.

Figure 13.6: AAD% des fractions moyennes en utilisant la t_{eb}

Malgré les hypothèses faites pour le calcul du Kuop de ces fractions pétrolières, à savoir l'application de la règle d'additivité et la simulation de ces fractions à des mélanges ternaires, nous avons obtenu des écarts considérablement faibles.

En outre, les déviations fournies par la deuxième méthode (en utilisant la t_{eb}) sont toujours plus faibles.

Fractions lourdes :

Fractions pétrolières	FP 7	FP 8	FP 9	FP 10
MM (g/mole)	259	288.3	296.1	304.8
n-paraffine	nC18	nC20	nC21	nC22
Kuop P(référence)	12.950	13.124	13.093	13.131
Kuop _P (estimé)	13.010	13.071	13.101	13.132
Naphtenes	nC12cyc6	nC14cyc6	nC15cyc6	nC16cyc6
Kuop _N (référence)	12.418	12.551	12.607	12.668
Kuop _N (estimé)	12.419	12.502	12.586	12.669
Aromatiques	nC13Bz	nC15Bz	nC16Bz	nC17Bz
Kuop _A (référence)	12.035	12.199	12.270	12.359
Kuop _A (estimé)	12.037	12.259	12.366	12.365
Kuop FP(référence)	12.714	12.882	12.874	12.918
Kuop _{FP} (estimé)	12.753	12.843	12.886	12.919

✓ En utilisant la masse molaire :

 Tableau 26.6. Calcul du Kuop des fractions lourdes en utilisant la caractérisation de la masse molaire.

Fractions	Kuop	Kuop		Skander-		Bouamra-			
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Chitour	AAD%	Whiston	AAD%
7	12,714	12.753	0.306	12,692	0,171	10.926	14.061	12.496	1.742
8	12,882	12.843	0.302	12,764	0,914	11.074	14.037	12.877	0.037
9	12,874	12.886	0.093	12,786	0,684	11.065	14.050	12.899	0.196
10	12,918	12.919	0.007	12,811	0,831	11.068	14.322	12.957	0.300

Tableau 27.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du Kuop des fractions lourdes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Fractions pétrolières	FP 7	FP 8	FP 9	FP 10
T mav(°K)	588.2	618.2	628.2	638.2
n-paraffine	nC1	nC20	nC21	nC22
Kuop P (référence)	12.950	13.124	13.093	13.131
Kuop _P (estimé)	13.010	13.071	13.101	13.132
Naphtenes	nC11cyc6	nC13cyc6	nC14cyc6	nC15cyc6
Kuop N (référence)	12.332	12.483	12.551	12.607
Kuop _N (estimé)	12.252	12.419	12.502	12.586
Aromatiques	nC11Bz	nC13Bz	nC14Bz	nC15Bz
Kuop _A (référence)	11.845	12.035	12.121	12.199
Kuop _A (estimé)	11.778	12.031	12.156	12.280
Kuop _{FP} (référence)	12.671	12.836	12.843	12.883
Kuop _{FP} (estimé)	12.683	12.798	12.841	12.881

Tableau 28.6. Calcul du Kuop des fractions lourdes en utilisant la caractérisation de la
température d'ébullition.

Fractions	Kuop	Kuop		Skander-		Bouamra-			
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Chitour	AAD%	Whiston	AAD%
7	12,671	12.683	0.093	12,678	0,054	11.484	9.370	12.643	0.219
8	12,836	12,798	0,296	12,750	0,669	11,598	9,645	12.835	0.007
9	12,843	12.841	0.017	12,771	0,559	11.624	9.490	12.860	0.138
10	12,883	12,881	0,016	12,795	0,679	11.653	9.548	12.915	0.253

Tableau 29.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du Kuop des fractions lourdes en utilisant la température d'ébullition.

Figure 15.6: AAD% des fractions lourdes en utilisant la température d'ébullition.

L'application de la corrélation établie dans le cas du Kuop, aux fractions pétrolières lourdes a donné de très bons résultats à savoir de très faibles écarts. Comparativement aux autres méthodes de calcul, notre corrélation a enregistré les meilleurs résultats, nous devons tout de même signaler l'adaptation des méthodes de Skander-Chitour et de Whiston à l'estimation du Kuop de ces fractions pétrolières.

6.4.2.2. Paramètre I/d :

Fractions légères :

Fractions	I/d Référence	I/d MCGAI		Skander-		Riazi-	
1	0,3465	0,3464	0,0289	0,3457	0,2168	0,38	9,697
2	0,3531	0,3527	0,1133	0,3521	0,2913	0,381	7,9864

Tableau 30.6.Déviations absolues moyennes enregistrées par différentes méthodes decalcul du paramètre I/d des fractions légères.

Dans le tableau 30.6, nous avons comparé l'équation sélectionnée avec la corrélation de Riazi-Daubert et celle de Skander-Chitour .La corrélation proposée s'est avérée nettement supérieure à la corrélation de Riazi –Daubert en termes de performances. Tandis que par rapport à la méthode de Skander-Chitour, ces deux équations sont aussi performantes l'une que l'autre.

Figure 11.6: Les déviations absolues moyennes enregistrées par les différentes corrélations pour les fractions légères.

***** Fraction moyennes :

\checkmark	En	utilisant	la	masse	molaire	:
--------------	----	-----------	----	-------	---------	---

Fractions pétrolières	FP5	FP6	FP8	FP9
MM (g/mole)	186,58	202.2	237,24	247,3
n-paraffine	nC13	nC14	nC16	nC17
I/d (référence)	0,3386	0,3380	0,3370	0,3366
I/d (estimé)	0,3387	0,3381	0,3372	0,3368
Naphtènes	nC7cyc6	nC8cyc6	nC10cyc6	nC11cyc6
I/d (référence)	0,3305	0,3300	0,3304	0,3303
I/d (estimé)	0,3303	0,3304	0,3306	0,3306
Aromatiques	nC8Bz	nC9BZ	nC11Bz	nC12Bz
I/d (référence)	0,3344	0,3344	0,3338	0,3335
I/d (estimé)	0,3348	0,3345	0,3339	0,3336
I/d (référence)	0,3349	0,3359	0,3352	0,3349
I/d (estimé)	0,3350	0,3361	0,3354	0,3352

Tableau 31.6. Calcul du paramètre I/d des fractions moyennes en utilisant la
caractérisation de lamasse molaire.

Fractions	I/d	I/d		Skander-		Riazi-	
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Daubert	AAD%
3	0,3349	0,335	0,041	0,3354	0,149	0,3661	9,316
4	0,3359	0,3361	0,059	0,3357	0,059	0,368	9,556
5	0,3352	0,3354	0,052	0,3354	0,059	0,3656	9,069
6	0,3349	0,3352	0,074	0,332	0,865	0,3648	8,928

Tableau 32.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du paramètre I/d des fractions moyennes en utilisant la masse molaire.

Fractions pétrolières	FP 3	FP 4	FP 5	FP 6
Tmav(°K)	498.2	518.2	558.2	568.2
n-paraffine	nC13	nC14	nC16	nC17
I/d _P (reference)	0,3386	0,3380	0,3370	0,3366
I/d _P (estimé)	0,3387	0,3381	0,3372	0,3368
Naphtenes	nC6cyc6	nC7cyc6	nC9cyc6	nC10cyc6
I/d _N (reference)	0,3310	0,3305	0,3310	0,3304
I/d _N (estimé)	0,3310	0,3303	0,3010	0,3306
Aromatiques	nC6Bz	nC7BZ	nC9Bz	nC10Bz
I/d _A (reference)	0,3340	0,3350	0,3344	0,3340
I/d _A (estimé)	0,3350	0,3350	0,3345	0,3340
I/d _{FP} (reference)	0,3348	0,3360	0,3351	0,3350
I/d _{FP} (estimé)	0,3352	0,3361	0,3287	0,3351

✓ En utilisant la température d'ébullition :

Tableau 33.6. Calcul du volume molaire des fractions moyennes en utilisant la
caractérisation de la température d'ébullition.

Fractions	I/d	I/d		Skander-		Riazi-	
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Daubert	AAD%
3	0,3348	0,3352	0,1195	0,3359	0,3286	0,3662	9,3822
4	0,336	0,3361	0,0298	0,3363	0,0893	0,3608	7,3695
5	0,3351	0,3287	1,9099	0,3357	0,1791	0,3681	9,862
6	0,335	0,3351	0,0299	0,3354	0,1194	0,3652	9,0276

Tableau 34.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du paramètre I/d des fractions moyennes en utilisant la température d'ébullition. Commentaire :

La corrélation élaborée et la méthode de Skander-Chitour sont les plus adaptées pour l'estimation du facteur I/d Comparativement à la methode de Riazi-Daubert et ceci malgré la simulation des fractions à des mélanges ternaires de pseudo composants ainsi que l'hypothèse de l'additivité admise pour cette propriété. En effet, cette propriété n'étant pas à priori une propriété additive, nous avons tout de même utilisé cette hypothèse comme première approximation pour obtenir les propriétés moyennes des fractions pétrolières.

Malgré ces suppositions, les résultats obtenus semblent très satisfaisant aussi bien pour la caractérisation en utilisant la masse molaire que celle utilisée avec la température d'ébullition.

Fractions lourdes :

✓ En utilisant la masse molaire :

Fractions pétrolières	FP 7	FP 8	FP 9	FP 10
MM (g/mole)	258.99	288.27	296.13	304.78
n-paraffine	nC18	nC20	nC21	nC22
I/d _P (reference)	0,3359	0,3377	0,3356	0,3353
I/d _P (estimé)	0,3365	0,3359	0,3353	0,3351
Naphtenes	nC12cyc6	nC14cyc6	nC15cyc6	nC16cyc6
I/d _N (reference)	0,3310	0,3311	0,3311	0,3310
I/d _N (estimé)	0,3314	0,3309	0,3310	0,3306
Aromatiques	nC13Bz	nC15Bz	nC16Bz	nC17Bz
I/d _A (reference)	0,3333	0,3330	0,3330	0,3330
I/d _A (estimé)	0,3333	0,3327	0,3320	0,3310
I/d _{FP} (reference)	0,3345	0,3356	0,3340	0,3337
I/d _{FP} (estimé)	0,3350	0,3344	0,3337	0,3333

Tableau 35.6: Calcul du paramètre I/d des fractions lourdes en utilisant la caractérisation de la masse molaire.

Fractions	I/d	I/d		Skander-		Riazi-	
pétrolières	Référence	MCGAI	AAD%	Chitour	AAD%	Daubert	AAD%
7	0,3345	0,3350	0,1495	0,3350	0,1495	0,363	8,5286
8	0,3356	0,3344	0,3576	0,3346	0,2980	0,3602	7,317
9	0,3340	0,3337	0,0898	0,3343	0,0898	0,3612	8,1482
10	0,3337	0,3333	0,1199	0,3341	0,1199	0,3609	8,1365

Tableau 36.6: Déviations absolues moyennes enregistrées par différentes méthodes de calcul du paramètre I/d des fractions lourdes en utilisant la masse molaire.

✓ En utilisant la température d'ébullition :

Fractions pétrolières	FP10	FP12	FP13	FP14
Tmav(°K)	588,15	618,15	628,15	638,15
n-paraffine	nC18	nC20	nC21	nC22
I/d (référence)	0,3359	0,3377	0,3356	0,3353
I/d (estimé)	0,3365	0,3359	0,3353	0,3351
Naphtenes	nC11cyc6	nC13cyc6	nC14cyc6	nC15cyc6
I/d (référence)	0,3303	0,3307	0,3311	0,3311
I/d (estimé)	0,3306	0,3308	0,3309	0,3310

Aromatiques	nC11Bz	nC13Bz	nC14Bz	nC15Bz
I/d (référence)	0,3338	0,3333	0,3332	0,3330
I/d (estimé)	0,3339	0,3333	0,3330	0,3327
I/d (référence)	0,3343	0,3355	0,3341	0,3339
I/d (estimé)	0,3348	0,3343	0,3339	0,3337

Tableau 37.6: Calcul du I/d des fractions lourdes en utilisant la caractérisation de la Teb.

Fractions pétrolières	I/d Référence	I/d MCGAI	AAD%	Skander- Chitour	AAD%	Riazi- Daubert	AAD%
7	0,3343	0,3348	0,1496	0,335	0,2094	0,3501	4,7282
8	0,3355	0,3343	0,3577	0,3346	0,2683	0,352	4,9252
9	0,3341	0,3339	0,0599	0,3344	0,0898	0,351	5,0523
10	0,3339	0,3337	0,0599	0,3423	2,5157	0,3516	5,2897

Tableau 38.6. Déviations absolues moyennes enregistrées par différentes méthodes de calcul du paramètre I/d des fractions lourdes en utilisant la température d'ébullition.

Comme pour les trois précédentes propriétés, ce facteur semble insensible à l'imprécision de la composition, nous remarquons en effet que notre corrélation a donné de très faibles écarts.

6.5. Conclusion :

En conclusion, les corrélations établies permettent d'approcher les valeurs de la densité d_4^{20} , du volume molaire, du Kuop ainsi que celle du paramètre I/d des fractions légères et étroites et les résultats obtenus sont aussi bon que ceux de certaines méthodes proposées par la littérature et meilleurs que d'autres. De plus les hypothèses émises sur l'additivité de la propriété et l'adoption des pseudo composants semblent compatibles.

CONCLUSION GENERALE

La présente étude vient enrichir la liste des corrélations qui existent dans la littérature et qui visent à estimer les propriétés physiques des hydrocarbures purs, des mélanges et des fractions pétrolières. En effet, ces méthodes permettent d'éviter le recours aux manipulations expérimentales qui sont souvent complexes et onéreuses.

Plusieurs méthodes empiriques ont été utilisées, notamment celles basées sur les contributions de groupe. Récemment, Skander et Chitour ont développé une méthode originale de contribution de groupe sans interactions entre les groupements. Il nous a paru intéressant de voir s'il était possible d'améliorer les résultats en prenant en compte les termes d'interactions entre groupements structuraux, ce qui nous a conduit à l'élaboration d'une nouvelle méthode de contribution de groupes avec interactions intramoléculaires pour l'estimation des propriétés physiques plus importantes du pétrole.

Cette recherche a consisté, donc, en l'estimation des propriétés suivantes : La densité d_4^{20} , le volume molaire, le facteur de caractérisation Kuop ainsi que le facteur I/d par des méthodes de contribution de groupe en tenant compte des interactions intramoléculaires.

Dans la première étape nous avons sélectionné une équation qui fournit la plus faible déviation moyenne par rapport à la référence (banque TRC) parmi vingt pour chaque propriété. Pour mesurer la performance de nos corrélations nous avons essayé de les comparer aux méthodes de contribution de groupes sans interactions (MGSI) ainsi qu'à d'autres méthodes de la littérature. Nous avons enregistré de meilleurs résultats comparés aux autres méthodes. Cela signifie que les interactions et la distinction des groupements jouent un rôle important dans la prédiction des propriétés physiques et thermodynamiques.

Nous ne pouvions clore cette étude sans une application des corrélations établies à des mélanges d'hydrocarbures binaires et ternaires et des fraction pétrolières (légères,moyennes et lourdes) et les résultats obtenus sont satisfaisants, ce qui montre que les corrélations élaborées pour l'estimation des propriétés physiques des corps purs sont applicables aux mélanges

simples et complexes en utilisant quelques hypothèses(hypothèses d'additivité et celle des pseudo-composants) qui semblent tout de même acceptables dans la majorité des cas.

En dépit de cela, nous pouvons dire que les méthodes proposées possèdent un intérêt qui réside dans le fait, qu'il suffit de connaître la structure moléculaire des hydrocarbures purs, pour déterminer ces propriétés physiques et elles évitent probablement à l'ingénieur pétrolier le recours à l'expérimentation.

Comme perspectives et suite à ce travail, nous proposons d'enrichir cette modeste recherche par l'étude des effets des interactions intermoléculaires sur l'estimation des propriétés des hydrocarbures purs et de leurs mélanges.

Références bibliographiques

REFERENCES BIBLIOGRAPHIQUES

[1] Site Internet : Wikipidia.

[2] X.Normand .l'industrie du raffinage du pétrole, tome1 ; 6^{éme} édition (1985).

[3] N.Skander. Thèse de doctorat : Evaluation des propriétés des pétroles bruts et des fractions pétrolières par les méthodes d'analyse et par corrélations .Directeur de thèse : C E Chitour. Laboratoire de valorisation des énergies fossiles .Ecole nationale polytechnique. Alger (2004).

[4] I.Halligen : les métiers du pétrole et du gaz, puplication faite par TOTAL ; ONISEP (2007).

[5] William A.Gruse .R.Donald chemical technology of petroleum.Mc Graw-Hill Book Company INC (1960)

[6] www.planete-energies.com

[7] J.Perret et P.wuitier .Pétrole brut et fractions petrolieres .Edition Technip (1970).

[8] P.wuitier.le petrole, raffinage et génie chimique ; tome1 edition Technip (1972).

[9] C.E. Chitour.Raffinage; Tome 1; OPU (1999).

[10] J.P Wauquier : Pétrole brut, produits pétroliers, schémas de fabrication .IFP. Édition Technip(1994)

[11] N. BENHABILES. Thèse de magister : établissement de nouvelles corrélations de contribution de Groupes sans et avec interactions pour la prédiction des propriétés physiques des corps purs et leurs applications aux mélanges et aux fractions pétrolières. Directeur de thèse :C.E.Chitour .ENP .Alger (2006).

[12] H.Ferrah : PFE :établissement de nouvelles corrélations de contribution de groupes, pour l'estimation du facteur acentrique et le facteur de compressibilité critique, des corps purs, des mélanges et des fractions pétrolières .Directeur C.E.Chitour. ENP. Alger (2007).

[13] F.Souahi .thèse de doctorat : Contribution à l'étude physico chimique des pétroles bruts.

[14] O.Rebas, thèse de magister : Etablissement de nouvelles corrélations de contribution de groupes avec interactions pour l'estimation des propriétés physiques des hydrocarbures et de leurs mélanges.Directeur de these C.E.Chitour .ENP.alger.(2006).

[15] ASTM D37 10 1990.Boiling rang distribution of gasoline and gasoline fractions by chromatography.

[16] www.culte.gouv.fr

[17] J.P.Durand : le rôle de la CPG dans l'industrie pétrolière .IFP.(1998).

[18] J.Korch ; J.Ellis ; T.Crisp : Fuel. 67, 1331-1335 (1998).

[19] S.Guo ;Zruan : Fuel.74,1791-1721.(1995).

[20] I.Dzidic ;H.Petreson ;P.Wadsorth .Anal chem.64,2227-2235.(1992).

[21] ASTM D37 10 1990. Boiling rang distribution of gasoline and gasoline fractions by chromatography.

[22] www.swisoil.ch.

[23] http://r0.unctad.org/infocomm/francais/petrole/prix.htm

[24]_www.rtl.fr/Petrole

[25] Techniques de l'ingénieur

[26] H.G.Rackett.Equation of state for saturated liquids.J.chem.Eng.Data, 15.514. (1944).

[27] M.R.Riazi, TE.Daubert.Hydrocarbon .Processing, pp115-116. (1980).

[28] M.R,T.E.Daubert."Molecular weight of heavy oil fractions estimated from viscosity"oil and gaz journal, 110-112, 28 (1987).

[29] M.T.Tyn and W.I.Calus.processing. . (1975).

[30] K.E,Hersh,M.R.Fenske,E.R.Booser,E.F.Kuch.(1950) journal of institute of petrolium,vol.36,N°322,

[31] Robert cité par C.E.Chitour.(1983). Corrélations sur le pétrole brut et les fractions pétrolières Tome 2.edition OPU .Alger.

[32] Selmieire-Drude cité par Bentamin T.brooks.S.Kurtz.J.R.Cecile.E, Boord.LC.(1954).

[33] F.Bouamra : Contribution à l'étude des propriétés physique et chimique des fractions pétrolières .Thèse de magister .directeur de thèse C.E.Chitour. ENP (1991)

[34] site IFP .[35] N.Skandar : Contribution à la détermination des propriétés physiques des mélanges d'hydrocarbures et des fractions pétrolières par des méthodes de contribution des groupes .Thèse de magister .Directeur C.E.Chitour.ENP. (1996)

[36] Lyman, «Chemical property estimation methods environnement behaviors of organic compound», (1986).

[37] C.E. Chitour : Raffinage les propriétés thermiques, Tome 3, édition OPU, (1999).

[38] M.G Kesler and Lee, «Hydrocarbon processing», vol 53, N°3. (1976).[39] M.R.Riazi, TE.Daubert. (1987). Ind. ENG. CHEM. RES, VOL. 26, N°4.

[40] W.B.Kay. Ind.Eng.Chem, p28, (1976).

[41] A.L.Lydersen, «Estimation of critical properties of organic compounds by method of groups contributions», University of Winconsin, Engineering Experiment Station, Report N°3, Madison, Wis, (1955).

[42] Vidal.J thermodynamique application au genie chimiqe et à l'industrie petrolieres . Edition Technip, Paris (1997).

[43] G. Calot, H. Hierche : Cours de statistique de descriptives, Volume (6). DUNOD, Paris 1965.

Paramètres de la corrélation de contribution de groupes proposés Pour la prédiction de la densité.

n-paraffi	ines	Iso paraffines	5
naramètres		paramètres	
parametres		a	-0,01107406
a	-22,65870946	b	0,827004686
b	0.764608135	c	-0,54989042
-		m	1,124941965
c	-37,48522924	groupements structur	aux
m	-0,003983231	-CH3	0,927436669
anonnomonte stu		-CH2-	0,185262104
groupements str	ucturaux	-CH<	-0,66181859
		>C<	-1,53325108
-СН3-	72,37635227	groupements principaux d'in	iteractions
-CH2-	0.025705248	ch3-ch-ch3	0,000644582
groupements principau	x d'interactions	ch3-c-ch3	0,005606556
		ch3-ch2-ch2	-0,03663863
		ch3-ch-ch2	0,003715449
ch3-ch2-ch2	-16,40437549	ch3-c-ch2	0,011174685
	0.01025141	ch3-ch2-ch	-0,01528634
cn2-cn2-cn2	-0,01925141	ch3-ch-ch	0,000466573
ch3ch3	-33,81322036	ch3-c-ch	0,01528894
		ch3-ch2-c	-0,01877629
		ch3-ch-c	-0,00704073
		ch3-c-c	0,018668256
		ch2-ch2-ch2	0,012113123
		ch2-ch-ch2	-0,01835627
		ch2-c-ch2	-0,02168525
		ch2-ch2-ch	0,003935398
		ch2-ch-ch	-0,00164426
		ch2-c-ch	0,03485871

Alcynes	
paramètres	
a	-0,264962484
b	0,375992984
с	-0,109973671
m	1,36104985
groupements s	structuraux
-CH3	0,152962271
-CH ₂ -	0,091956459
-CH<	0,096037671
>C<	0,081390803
≡CH	1,567007927
≡C-	1,664862314
Groupements principaux d'interactions	
ch2-ch2-c=-	-0,09212406
ch3-ch2-ch2	0,019872654
ch=-c-ch2	0,17909097
ch2-ch2-ch2	0,075543536
c=-c-ch2	0,107271536
ch3-ch-ch3	-0,04658349
ch3-ch2-c=-	-0,1076098
c=-c-ch3	-0,09047278
ch3-ch-ch2	-0,01722325
ch3-ch-c=-	-0,02249925
c=-c-ch	0,077477747
ch3-c-ch3	-0,0393998
ch-ch2-c=-	-0,12096204
ch3-c-ch2	-0,03816586
ch2-ch2-ch	0,087283215

Oléfines			
paramètres			
a	1,032684032		
b	0,025547064		
c	-0,78238532		
m	-0,388098859		
groupements st	ructuraux		
-CH3	0,088280481		
-CH2-	0,185946778		
-CH<	0,239997001		
>C<	0,268379231		
=CH2	0,651306134		
=CH-	0,764446058		
=C<	0,810227934		
cis	-0,012972157		
trans	0,003997539		
groupements p d'interact	groupements principaux d'interactions		
ch2-ch2-ch2	0,053289677		
ch3-ch2-ch2	-0,003113024		
ch2-ch2-ch=	0,008119349		
ch2-ch=ch2	0,00018053		
ch3-c-ch2-	-0,007779094		
ch3-c=ch2-	0,006522409		
ch2-ch2-c=	0,012117008		
ch2-c=ch2	0,016500229		
ch2-ch=ch	0,017935548		
ch3-ch=ch-	0,002556303		
ch3-ch-ch3	0,010904522		
ch3-c=ch-	0,018873098		

Naphtènes	
paramètres	
a	0,243571554
b	0,257483055
c	-0,14854678
m	1,135957196
groupements structuraux	
-СН3	0,94552823
-CH ₂ -	0,45263121
-CH<	-0,043923739
>C<	-0,225149527
cis	-0,057427768
trans	-0,017867438
groupements principaux d'interactions	
ch2-ch2-ch2	-0,059718113
ch2-ch2-ch	-0,073262366
ch2-ch-ch2	-0,037259864
ch2-ch-ch	-0,072035438
ch-ch-ch	0
ch2-ch2-c	-0,218249092
ch2-c-ch2	-0,250905649
ch2-c-ch	-0,260610764
ch2-ch-c	-0,260610764
ch-ch2-ch	-0,08826767
c-ch2-ch	-0,235670725
c-ch2-c	0
ch3-ch2-ch2	0,061847322
ch3-ch-ch3	-0,075307827
ch2-ch2-ch2	0,021135218

Aromatiques	
parametres	
a	0,376830037
b	0,191335547
c	-0,08839142
m	1,211342133
groupements structuraux	
-СН3	0,859752331
-CH ₂ -	0,313539003
-CH<	-0,22237064
>C<	-0,86448988
=СН-	-0,00208846
=C<	-0,1494856
groupements principaux d'interactions	
ch-ch=ch-	0,03367575
ch-ch=c-	-0,19305742
ch=ch-c=	0,072263417
ch=c-ch=	-0,15367001
c=ch-c=	-0,17866008
c=c-ch=	-0,40616629
c-c=ch-	-0,16250214
c-c=c-	-0,41756962
CH2r-c-ch=	0,023886396
CH2r-c=ch-	0,045317386
ch3-ch2-ch2	0,03272311
CHr-c=-c=	-0,04810344
ch2-ch2-ch2	0,07505691
CH3-c-ch=	0,063192061
CH3-c-c=	0,081742087

n-paraffines	
paramètres	
р	-0,989589092
b	61,51201744
groupements structuraux	
-CH3-	0,702646157
-CH2-	0,65234018
groupements principaux d'interaction	
ch3-ch2-ch2	-0,297353012
ch2-ch2-ch2	-0,404923858
ch3ch3	-0,594704741

Paramètres de la corrélation de contribution de groupes proposés pour la prédiction du volume molaire.

Iso paraffines	
paramètres	
p	-0,941905181
b	46.87429049
groupements structuraux	
-CH3	0,63672433
-CH2-	0,26813393
-CH<	-0,21450306
>C<	-0,663182983
groupements principaux d'interaction	
ch3-ch-ch3	-0,004835121
ch3-c-ch3	0,009189844
ch3-ch2-ch2	-0,081383595
ch3-ch-ch2	0,000657318
ch3-c-ch2	0,005458733
ch3-ch2-ch	-0,063546765
ch3-ch-ch	9,80854E-05
ch3-c-ch	0,000433932
ch3-ch2-c	-0,067046934
ch3-ch-c	-0,012509257
ch3-c-c	-0,00674137
ch2-ch2-ch2	-0,031139454
ch2-ch-ch2	-0,002815762
ch2-c-ch2	-0,003892743
ch2-ch2-ch	-0,015842565
ch2-ch-ch	0,004345702
ch2-c-ch	0,001380753
ch2-ch2-c	-0,00102021
ch2-ch-c	0,007890366

Alcynes	
paramètres	
D	-0 825645946
P	19 30649624
groupements	13,30043024
	1 042008022
CII	1,043030023
-CH ₂ -	0,126631156
-CH<	-0,589945895
>C<	0,218195682
≡CH	1,024858678
≡C-	0,14889075
groupements principaux d'interactions	
ch2-ch2-c=-	-0,407780289
ch3-ch2-ch2	0,073375484
ch=-c-ch2	0,437484217
ch2-ch2-ch2	0,122128378
c=-c-ch2	0,313797428
ch3-ch-ch3	-0,068303961
ch3-ch2-c=-	-0,347225629
c=-c-ch3	-0,22698545
ch3-ch-ch2	-0,037797434
ch3-ch-c=-	-0,119918395
c=-c-ch	0,304478816
ch3-c-ch3	-0,2617917
ch-ch2-c=-	-0,455944918
ch3-c-ch2	-0,501760261
ch2-ch2-ch	0,113198112
ch3-c-c=-	-0,327541429
ch2-ch-c	0,172088184

Oléfines	
paramètres	
p	-0,9796518
b	41 75327162
groupements structuraux	
-CH3	0,289534439
-CH2-	0,337221308
-СН<	0,328738281
>C<	0,353131959
=CH2	0,678968033
=СН-	0,794905722
=C<	0,724120709
cis	-0,062175677
trans	-0,078183964
groupements principaux d'interactions	
ch2-ch2-ch2	0,003158145
ch3-ch2-ch2	-0,000359334
ch2-ch2-ch=	-0,031245464
ch2-ch=ch2	-0,018514912
ch3-c-ch2-	0,030506833
ch3-c=ch2-	0,016843361
ch2-ch2-c=	-0,00792387
ch2-c=ch2	0,007022677
ch2-ch=ch	-0,013193534
ch3-ch=ch-	-0,055158248
ch3-ch-ch3	0,070448841
ch3-c=ch-	-0,008396587
ch3-c-ch3	0,043659776
ch2-ch-c	-0,024566074

Naphtènes	
paramètres	
p	161,057592
b	۔ 0,532778806
groupements	
-CH3	5.271598159
-CH ₂ -	- 30.54293237
-CH<	6,49278991
>C<	8,499906223
cis	0,49234758
trans	0,447017613
groupements principaux d'interactions	
ch2-ch2-ch2	29,97405866
ch2-ch2-ch	13,75447842
ch2-ch-ch2	19,2652135
ch2-ch-ch	3,026280812
ch-ch-ch	0
ch2-ch2-c	12,10536621
ch2-c-ch2	14,84671007
ch2-c-ch	0,18105309
ch2-ch-c	0,18105309
ch-ch2-ch	۔ 2,565230857
c-ch2-ch	- 3,913065743
c-ch2-c	0
ch3-ch2-ch2	60,71281867
ch3-ch-ch3	- 12,62144061
ch2-ch2-ch2	29,65406676
ch3-c-ch3	30,08540422
ch2-ch-c	0,06840021

Aromatiques	
naramètres	
p	-4,032042997
b	10,68360554
groupements structuraux	
-CH3	62,49928922
-CH ₂ -	78,88108025
-CH<	156,4393571
>C<	129,4869708
=СН-	48,39107909
=C<	64,96163905
groupements principaux d'interactions	
ch-ch=ch-	110,9486268
ch-ch=c-	119,1862243
ch=ch-c=	92,93650972
ch=c-ch=	126,4689332
c=ch-c=	86,25422721
c=c-ch=	132,8468663
c-c=ch-	42,44414634
c-c=c-	41,03649777
CH2r-c-ch=	-9,916400281
CH2r-c=ch-	64,77889832
ch3-ch2-ch2	60,05439878
CHr-c=-c=	-6,468262135
ch2-ch2-ch2	2,563923735
CH3-c-ch=	38,35643276
CH3-c-c=	64,3654924
ch3-c-ch3	-33,08287967
ch2-ch-c	-7,509875658

n-paraffines	
paramètres	
р	-1,080241876
a	5,020274803
b	0,713135184
groupements structuraux	
-СН3-	2,237850555
-CH2-	0,574955721
groupements principaux d'interactions	
ch3-ch2-ch2	2,237850554
ch2-ch2-ch2	-0,51804933
ch3ch3	4,47570071

Paramètres de la corrélation de contribution de groupes proposés Pour la prédiction du Kuop.

Iso-paraffines	
paramètres	
p	-0,998825652
a	13,28726694
b	0,187696583
groupements structuraux	
-CH3	-0,099191156
-CH2-	0,40797734
-CH<	-1,305453782
>C<	-1,18761475
groupements principaux d'interactions	
ch3-ch-ch3	-0,421244388
ch3-c-ch3	-0,03486923
ch3-ch2-ch2	-2,043625113
ch3-ch-ch2	0,003576166
ch3-c-ch2	-0,202930248
ch3-ch2-ch	-1,527813541
ch3-ch-ch	0,031244793
ch3-c-ch	-0,362302431
ch3-ch2-c	-1,815034439
ch3-ch-c	-0,262679416
ch3-c-c	-0,361047716
ch2-ch2-ch2	-0,281290723
ch2-ch-ch2	0,118838625
ch2-c-ch2	0,091735095
ch2-ch2-ch	-0,268109067
ch2-ch-ch	-0,042540545
ch2-c-ch	0,18253464
ch2-ch2-c	-0,075905429

Alcyr	nes
paramètres	
р	-1,323523996
a	17,18816275
b	0,475682376
groupements structuraux	
-СН3	-1,69321302
-CH ₂ -	-0,31419396
-CH<	0,355288107
>C<	-0,483261934
≡CH	10,22008103
≡C-	12,35326032
groupements principaux d'interactions	
ch2-ch2-c=-	-0,35293097
ch3-ch2-ch2	-0,491967914
ch=-c-ch2	-0,443731433
ch2-ch2-ch2	0,638066267
c=-c-ch2	0,836443735
ch3-ch-ch3	0,273875845
ch3-ch2-c=-	-1,548457409
c=-c-ch3	-1,808119952
ch3-ch-ch2	0,097964951
ch3-ch-c=-	0,5006136
c=-c-ch	-0,04731477
ch3-c-ch3	0,555525099
ch-ch2-c=-	0,351579062
ch3-c-ch2	0,582559717
ch2-ch2-ch	0,823302105
ch3-c-c=-	1,018966148

Oléfines							
paramètres							
р	-0,97098831						
a	13,04503625						
b	0,053546734						
groupements structuraux							
-CH3	-0,418098493						
-CH2-	-0,498215578						
-CH<	-2,947048854						
>C<	-4,64114701						
=CH2	-13,148656						
=СН-	-12,16639879						
=C<	-16,95152914						
cis	-2,052087408						
trans	-1,902183343						
groupements principaux d'interactions							
ch2-ch2-ch2	1,108788745						
ch3-ch2-ch2	-0,485412095						
ch2-ch2-ch=	-0,408105896						
ch2-ch=ch2	-0,972685567						
ch3-c-ch2-	1,329303844						
ch3-c=ch2-	0,447338636						
ch2-ch2-c=	0,063022095						
ch2-c=ch2	0,654885399						
ch2-ch=ch	0,192164831						
ch3-ch=ch-	-0,493701034						
ch3-ch-ch3	2,263524983						
ch3-c=ch-	0,57704331						
ch3-c-ch3	1,526204576						

Naphtènes							
paramètres							
р	-1,021272932						
a	11,59753241						
b	0,740597441						
groupements structuraux							
-CH3	-0,141797698						
-CH ₂ -	0,731738151						
-CH<	-0,172284721						
>C<	-0,156428952						
cis	-0,333184489						
trans	-0,201727782						
groupements principaux d'interactions							
ch2-ch2-ch2	-0,741147223						
ch2-ch2-ch	-0,186457191						
ch2-ch-ch2	-0,307810764						
ch2-ch-ch	0,155680685						
ch-ch-ch	0						
ch2-ch2-c	-0,144985157						
ch2-c-ch2	-0,219057764						
ch2-c-ch	0,09401099						
ch2-ch-c	0,09401099						
ch-ch2-ch	0,394436237						
c-ch2-ch	0,371372761						
c-ch2-c	0						
ch3-ch2-ch2	-1,085757003						
ch3-ch-ch3	0,516616201						
ch2-ch2-ch2	-0,610344682						
ch3-c-ch3	-0,701141111						

Aromat	iques
paramètres	
р	-1,861432488
a	13,54721552
b	4,693848792
groupements	
structuraux	
-CH3	0,631076968
-CH ₂ -	0,523473419
-CH<	0,761869046
>C<	0,387333916
=СН-	0,615588516
=C<	0,780732383
groupements	
principaux	
d'interactions	
ch-ch=ch-	1,448797814
ch-ch=c-	1,405026938
ch=ch-c=	1,210226909
ch=c-ch=	1,401065251
c=ch-c=	1,077615301
c=c-ch=	1,3998515
c-c=ch-	0,706020062
c-c=c-	0,663922405
CH2r-c-ch=	-0,113582172
CH2r-c=ch-	0,443443571
ch3-ch2-ch2	0,49538571
CHr-c=-c=	0,045389797
ch2-ch2-ch2	-0,099749791
CH3-c-ch=	0,295872813
CH3-c-c=	0,503080703
ch3-c-ch3	-0,259062084

Iso-paraffines							
paramètres							
р	-1,008459233						
a	0,338143691						
b	-0,000675195						
c	0,020642236						
m	-0,975593454						
d	0,020642234						
n	-0,975593486						
groupements structuraux							
-CH3	-0,813310992						
-CH2-	0,685056223						
-CH<	3,880593076						
>C<	6,503658013						
groupements principaux d'interactions							
ch3-ch-ch3	0,18141514						
ch3-c-ch3	0,010474121						
ch3-ch2-ch2	1,337000254						
ch3-ch-ch2	0,019215087						
ch3-c-ch2	-0,32287638						
ch3-ch2-ch	1,29841086						
ch3-ch-ch	0,097019359						
ch3-c-ch	-0,298201938						
ch3-ch2-c	1,855044431						
ch3-ch-c	0,975360105						
ch3-c-c	-0,480655646						
ch2-ch2-ch2	0,308633141						
ch2-ch-ch2	-0,086439695						
ch2-c-ch2	0,121555468						

n-paraffines							
paramètres							
р	-1,35048264						
a	-0,245269075						
b	0,022902244						
c	0,228944036						
m	-0,013107934						
d	0,228944092						
n	-0,013108432						
groupements structuraux							
-СН3-	0,129521414						
-CH2-	0,115078488						
groupements principaux d'interactions							
ch3-ch2-ch2	0,129521433						
ch2-ch2-ch2	-0,109353555						
ch3ch3	-0,745781699						

Oléfir	es	Alcynes			
paramètres		paramètres			
р	-0,983117738	р	-1,002283871		
a	0,343784168	a	0,337837236		
b	-0,00072502	b	-0,000279241		
c	0,077871598	c	0,000837379		
m	-3,730743839	m	-0,012050363		
d	0,077871598	d	0,000837379		
n	-3,730743836	n	-0,012050383		
groupements structuraux		groupements structuraux			
-CH3	0,034727021	-CH3	0,876870973		
-CH2-	0,126345777	-CH ₂ -	0,997249025		
-CH<	0,205834855	-CH<	0,968827386		
>C<	0,293693098	>C<	-0,040204847		
=CH2	0,760847514	≡CH	1,574315818		
=СН-	0,726135779	≡C-	0,865585385		
=C<	0,863095026	groupements			
cis	0,084699027	d'interactions			
trans	0,047609723	ch2-ch2-c=-	0,289916016		
groupements		ch3-ch2-ch2	0,292531892		
d'interactions		ch=-c-ch2	0,534625261		
ch2-ch2-ch2	-0,017230709	ch2-ch2-ch2	-0,003867492		
ch3-ch2-ch2	0,033972142	c=-c-ch2	-0,447685569		
ch2-ch2-ch=	-0,045191359	ch3-ch-ch3	-0,941655355		
ch2-ch=ch2	0,009288517	ch3-ch2-c=-	-1,225020855		
ch3-c-ch2-	-0,020889574	c=-c-ch3	-0,734207774		
ch3-c=ch2-	-0,001809091	ch3-ch-ch2	-0,140972303		
ch2-ch2-c=	-0,055699409	ch3-ch-c=-	-0,750789042		
ch2-c=ch2	-0,004881369	c=-c-ch	-2,151275505		
ch2-ch=ch	-0,00590467	ch3-c-ch3	-0,528434758		

Aromatiques							
paramètres							
р	-1,283123935						
a	0,261435579						
b	0,223311456						
c	-0,065500152						
m	1,35551003						
d	-0,246009334						
n	0,439362313						
groupements structuraux							
-CH3	0,618180178						
-CH ₂ -	-0,008148864						
-CH<	-0,646545278						
>C<	-1,296201793						
=СН-	0,834121651						
=C<	0,628816741						
groupements principaux d'interactions							
ch-ch=ch-	-0,313871572						
ch-ch=c-	-0,532047488						
ch=ch-c=	-0,298195858						
ch=c-ch=	-0,477084345						
c=ch-c=	-0,525270943						
c=c-ch=	-0,724360277						
c-c=ch-	-0,486924396						
c-c=c-	-0,740491131						
CH2r-c-ch=	0,0020959						
CH2r-c=ch-	-0,004006743						
ch3-ch2-ch2	-0,01288195						
CHr-c=-c=	-0,010407274						

Naphtè	nes
paramètres	
р	-0,997341693
a	0,332026487
b	8,49469E-05
c	-0,000973064
m	-0,000200461
d	-0,000973064
n	-0,000200475
groupements	
structuraux	
-CH3	1,722975027
-CH ₂ -	0,968849196
-CH<	1,825543981
>C<	2,213810286
cis	0,552032676
trans	5,404097625
groupements	
principaux	
	0.00007000
cn2-cn2-cn2	-0,968837986
cn2-cn2-cn	0,646944432
cn2-cn-cn2	1,595097405
cn2-cn-cn	-0,647443149
cn-cn-cn	0
cn2-ch2-c	0,432500803
ch2-c-ch2	1,972010775
ch2-c-ch	-1,82159087
ch2-ch-c	-1,82159087
ch-ch2-ch	4,458993057
c-ch2-ch	7,893195277
c-ch2-c	0

Méthodologie de travail sur le logiciel Sigma Plot :

L'activation du logiciel s'effectue en cliquant sur l'icône correspondante. Un tableau s'affiche dans lequel nous introduisons les valeurs expérimentales de la propriété ainsi que les nombres des différents groupements structuraux et ceux relatifs aux interactions pour tous les corps purs de la base de données. Les valeurs de la masse molaire et de la température d'ébullition de chaque corps sont également saisies dans le même tableau.

∑ Sig	maPlot	- [Data 1	"]					2008-00				
File	e Edit	Insert View	w Format Tools	Graph Statisti	s Transforms	Toolbox Phar	macology Windo	w Help				- 6
Arial		~	10 • B I	$\underline{U} = x^2 - x_2 - N$	$\alpha \equiv \equiv$		• • 10 •	∓ ₹ 1				
D	2	🖶 🐰	B 🔒 🗠 🖉	> 🗎 🖾 🖨		1 2 2	50% × 🔎	N? 🛛 🖻				
]	000		1-i/d exp	2CH3-	3CH2-	4CH	5-CH3-CH-CH3	6-CH3-C-CH3	7-CH3-CH2-CH2	8-CH3-C-CH2	9-CH3-CH2-CH	10-CH3-CH-CH
• • • • •	27	1	0,3508	3,0000	1,0000	1,0000	0,0000	1,0000	0,0000	0,0000	2,0000	0,0000
		2	0,3474	4,0000	1,0000	0,0000	1,0000	0,0000	3,0000	0,0000	0,0000	3,0000
N	0 ⁰⁰	3	0,3460	4,0000	0,0000	2,0000	0,0000	2,0000	0,0000	0,0000	0,0000	0,0000
<u></u>		4	0,3475	3,0000	2,0000	1,0000	0,0000	1,0000	0,0000	1,0000	2,0000	0,0000
N	P	5	0,3456	4,0000	1,0000	2,0000	0,0000	2,0000	0,0000	0,0000	4,0000	0,0000
		6	0,3431	5,0000	0,0000	1,0000	1,0000	1,0000	3,0000	0,0000	0,0000	0,0000
N		7	0,3426	4,0000	2,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	4,0000
		8	0,3455	4,0000	2,0000	0,0000	1,0000	2,0000	0,0000	1,0000	0,0000	3,0000
0)		9	0,3452	3,0000	3,0000	1,0000	0,0000	1,0000	0,0000	1,0000	1,0000	0,0000
T		10	0,3421	3,0000	3,0000	1,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
A		11	0,3437	5,0000	1,0000	1,0000	1,0000	1,0000	3,0000	0,0000	2,0000	3,0000
•••7		12	0,3394	5,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	2,0000
		13	0,3415	4,0000	3,0000	0,0000	1,0000	0,0000	1,0000	1,0000	0,0000	4,0000
ШП		14	0,3408	5,0000	1,0000	1,0000	1,0000	0,0000	3,0000	0,0000	1,0000	0,0000
		15	0,3403	5,0000	0,0000	3,0000	0,0000	2,0000	0,0000	0,0000	0,0000	0,0000
		16	0,3425	3,0000	4,0000	1,0000	0,0000	0,0000	0,0000	2,0000	2,0000	0,0000
1Å.		17	0,3423	3,0000	4,0000	1,0000	0,0000	0,0000	0,0000	1,0000	2,0000	0,0000
1÷Ĥ		18	0,3436	4,0000	3,0000	0,0000	1,0000	0,0000	3,0000	1,0000	0,0000	3,0000
A		19	0,3437	4,0000	2,0000	2,0000	0,0000	2,0000	0,0000	0,0000	4,0000	0,0000
S		20	0,3435	3,0000	4,0000	1,0000	0,0000	1,0000	0,0000	1,0000	1,0000	0,0000
	19	21	0,3400	4,0000	2,0000	2,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
		22	0,3390	4,0000	3,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	2,0000
		23	0,3362	4,0000	4,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	0,0000
		24	0,3384	5,0000	1,0000	3,0000	0,0000	2,0000	0,0000	0,0000	0,0000	0,0000
		25	0,3403	5,0000	1,0000	3,0000	0,0000	2,0000	0,0000	0,0000	3,0000	0,0000
		26	0,3424	4,0000	4,0000	0,0000	1,0000	0,0000	3,0000	1,0000	0,0000	3,0000
		27	0,3423	4,0000	3,0000	2,0000	0,0000	2,0000	0,0000	0,0000	4,0000	0,0000
		28	0,3387	6,0000	0,0000	2,0000	1,0000	1,0000	3,0000	0,0000	0,0000	0,0000
		29	0,3411	3,0000	5,0000	1,0000	0,0000	0,0000	0,0000	1,0000	2,0000	0,0000
		30	0,3412	3,0000	5,0000	1,0000	0,0000	0,0000	0,0000	2,0000	2,0000	0,0000
		31	0,3402	4,0000	3,0000	2,0000	0,0000	1,0000	0,0000	1,0000	1,0000	0,0000
		32	0,3421	3,0000	5,0000	1,0000	0,0000	1,0000	0,0000	1,0000	1,0000	0,0000
		1 33	N 3426	5 0000	2 0000	1 0000	1 0000	1 0000	3 0000	0 0000	2 0000	3 0000
or Hole	n nress E	:1							0	R	AP NUM	_

Ensuite, en cliquant en haut sur statistics il apparaît une fenêtre dans laquelle nous programmons les différentes équations relatives au processus de régression. La régression non lineaire se déclenche en cliquant sur le bouton « *run* ».

N

🗵 Sig	maPlot	- [Da	ta 1ª	1									-	đΧ
File	e Edit I	Insert	View	Format Tools	s Graph Statist	ics Transforms	Toolbox Phan	macology Windo	w Help					- 8 ×
Arial			* 1	0 - B I	<u>U</u> x ² × ₂ N	v α 📰 🗐	E 🗐 🛕 🔤	· · 10 · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	z	6	Ж	h 🛍 🗠 🛛	× 🗎 🖾 🖬) 📼 💷 📼	👿 🖉 🔊	50% - 🔎	N? 🛛 🖄					
	177577			1	2	3	4	5	6	7	8	9	10	•
	2		1	626,2000	2,0000	3,0000	2,0000	1,0000	1,0000					
			2	659,4100	2,0000	4,0000	2,0000	2,0000	1,0000					
N	0°°		3	683,6900	2,0000	C 0000	0.0000	0.0000	4.0000					
[]	Aurel		4	702,5600	2,0000	Function - U	ntitled							
Nº	E		5	717,7200	2,0000	Equation			Variables				1	
		_	6	730,1200	2,0000	F=b*(a1*×1	+a2*x2+a3*x3+	-a4*×4+b1*×5)	×1=col(2)		~			
		-	7	740,2000	2,0000	fit F to y			×2=col(3) ×3=col(4)					
	4	_	8	748,7500	2,0000				×4=col(5)			-		
(Φ)		-	9	756,1000	2,0000				×5=col(6)					
A		-	10	762,5500	2,0000									_
1.		-	11	768,3800	2,0000	_ Initial parame	ters	Con	straints C	Options				
		-	12	773,5300	2,0000	b=0,001		~	I	terations				
		-	13	770,0000	2,0000	a1=1				100				
		-	15	784 3000	2,0000	a3=0			<u>e</u>	Step size			1	
			16	791,6000	2,0000	a4=0				100				
Fe .			17	794,3000	2,0000	01-0		1000		olerance				
<u><u></u></u>			18	796,8000	2,0000					0,000100			1	
			19	799,0000	2,0000	Trigonometric	units							
S			20	801,1000	2,0000	C Degrees	Radians	C Grads						
			21	803,1000	2,0000	-		4705						
			22	804,9000	2,0000	Help	Add As.	Run	OK	Cani	:el			
			23	806,6000	2,0000						57			
			24	808,2000	2,0000	Regression W	nzaro	-			×			
			25	809,6000	2,0000	Select the equ	ation to fit your o	lata	Equation Categor	У	Save			
		-	26	811,0000	2,0000	Select the equ	acion contro your c	Jaca	User-Defined					
		-	27	812,3000	2,0000				Equation Name	:	5ave As			
		-	28	813,5000	2,0000	Du			Untitled	5				
		-	29	814,7000	2,0000	Pre	view not available	3.			New			
		-	31	915,7000	2,0000					-				
		1	32	817 8000	2,0000					E	dit Code			
			33	818 7000	2,0000	L								-
		4					Help	Cancel	Back	Next	Elpish			
For Help	, press F1	1				6	noip		Juck		11120	NUM		

Les résultats de la régression s'affichent dans une fenêtre.

Les valeurs des paramètres a,b,c,d,p,m,et n sont alors fournis par le programme de calcul, de même que les valeurs des différentes propriétés estimées à partir de l'équation établie. Paramètre calculé propriété estimé

	par le logiciel										par le logiciel			
Σ Sig	maPlot	- [Data 1	-								/		a 🗙	
File	e Edit :	Insert Vie	w Format Too	ls Graph Statist	tics Transforms	Toolbox Pharn	nacology Windo	w Help	•				- 8 ×	
Arial		*	10 - B /	U x ² ×, 1	$\alpha \equiv \equiv$		- 10 -	I II						
	~ □	Z V	Pa in lo			ma	- 0	N2 00 10						
							5030 7 30	T U	7 Devenetere	O. Due diskeld	O. Daviduala	10		
	ROY	1	1-the exp	2	3	-	5	0	8.1488e-3	o-predicted	9-Kesiuuais	10	-	
	654	2	0.3508	3.0000	1.0000	1.0000	0.0000	1.0000	21,6366	0.3477	3.0730e-3		_	
A.	1000	3	0,3474	4,0000	1,0000	0.0000	1,0000	0.0000	-0.1658	0.3456	1.8456e-3			
1. March 1.	المحطا	4	0,3460	4.0000	0,0000	2,0000	0,0000	2.0000	-22,2172	0,3455	4,7376e-4			
1. 1	1251	5	0,3475	3,0000	2,0000	1,0000	0,0000	1.0000	-43,9751	0,3464	1,1623e-3			
14		6	0,3456	4,0000	1,0000	2,0000	0,0000	2,0000	0,1431	0,3441	1,4311e-3			
	1	7	0,3431	5,0000	0,0000	1,0000	1,0000	1,0000		0,3433	-2,6104e-4			
		8	0,3426	4,0000	2,0000	0,0000	1,0000	0,0000		0,3442	-1,5536e-3			
(A)		9	0,3455	4,0000	2,0000	0,0000	1,0000	2,0000		0,3465	-1,0394e-3			
E		10	0,3452	3,0000	3,0000	1,0000	0,0000	1,0000		0,3450	1,7915e-4			
A		11	0,3421	3,0000	3,0000	1,0000	0,0000	0,0000		0,3438	-1,7605e-3			
(12	0,3437	5,0000	1,0000	1,0000	1,0000	1,0000		0,3420	1,7222e-3			
		13	0,3394	5,0000	1,0000	1,0000	1,0000	1,0000		0,3420	-2,6312e-3			
		14	0,3415	4,0000	3,0000	0,0000	1,0000	0,0000		0,3429	-1,3220e-3			
		15	0,3408	5,0000	1,0000	1,0000	1,0000	0,0000		0,3408	-4,6149e-5			
		16	0,3403	5,0000	0,0000	3,0000	0,0000	2,0000		0,3408	-4,4477e-4			
āğ.		17	0,3425	3,0000	4,0000	1,0000	0,0000	0,0000		0,3425	-2,1306e-5			
Å Å Å		18	0,3423	3,0000	4,0000	1,0000	0,0000	0,0000		0,3425	-1,6347e-4		-	
5		19	0,3436	4,0000	3,0000	0,0000	1,0000	0,0000		0,3429	7,8784e-4			
S		20	0,3437	4,0000	2,0000	2,0000	0,0000	2,0000		0,3428	8,9620e-4			
		21	0,3435	3,0000	4,0000	1,0000	0,0000	1,0000		0,3437	-1,9239e-4			
		22	0,3400	4,0000	2,0000	2,0000	0,0000	0,0000		0,3405	-4,3998e-4			
		23	0,3390	4,0000	3,0000	0,0000	1,0000	0,0000		0,3429	-3,8991e-3			
		24	0,3362	4,0000	4,0000	0,0000	1,0000	0,0000		0,3415	-5,2895e-3			
		25	0,3384	5,0000	1,0000	3,0000	0,0000	2,0000		0,3394	-9,8092e-4			
		26	0,3403	5,0000	1,0000	3,0000	0,0000	2,0000		0,3394	9,2444e-4			
		27	0,3424	4,0000	4,0000	0,0000	1,0000	0,0000		0,3415	9,0727e-4			
		28	0,3423	4,0000	3,0000	2,0000	0,0000	2,0000		0,3414	8,6796e-4			
		29	0,3387	6,0000	0,0000	2,0000	1,0000	1,0000		0,3386	8,2059e-5			
		30	0,3411	3,0000	5,0000	1,0000	0,0000	0,0000		0,3411	2,6794e-6			
		31	0,3412	3,0000	5,0000	1,0000	0,0000	0,0000		0,3411	7,0730e-5		-	
		32	0,3402	4,0000	3,0000	2,0000	0,0000	1,0000		0,3403	-5,6856e-5			
		33	0.3421	3.0000	5.0000	1.0000	0.0000	1.0000		0.3423	-1.6287e-4		- · -	
Conditate											60.054			
For Help	, press F	1						We have been a second se	JON	R	INOM	-	Contract on the second	
	temai	rer	🕑 😂 😏	🔲 4 Explora	👻 🔣 3 Micro	iso 👻 ∑ Si	igmaPlot	🍯 Sans titre	🛛 👹 Sans titr	e 🔀 Mi	crosoft E F	FR < 🔀 🧮	13:39	