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 :ملخص

 
حساس و   محاور3- التي تحتوي على جيروسكوب DOF IMU-6 الهدف من هذا المذكرة هو تقدير لتحديد المواقع باستخدام

 .الحساس محاور. وأيضا أوضحنا الخوارزمية خلال هذا البحث. كما تم اقتراح حلول لأخطاء الناتجة من3 التسارع من

 

  Drift –GDOF  –INS  –IMU كلمات مفتاحية:

 

 

 

Abstract: 

 

The aim of this work is the estimation of the positioning using a 6-DOF IMU which contain a 

3-axis gyroscope and a 3-axis Accelerometer. The algorithm is explained through this project. 

Also the solutions to errors are proposed. 

 

Keywords: IMU – INS – GDOF – Drift 

 

 

 

 

Résumé: 

Le but de ce travail est l'estimation du positionnement en utilisant un IMU 6-DOF, qui contient 

un gyroscope 3-axes et un accéléromètre 3-axes. L'algorithme est expliqué à travers ce projet. 

Aussi les solutions aux erreurs sont proposées. 

 

Mots-clés : IMU – INS – GDOF – Drift 
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1. Introduction

1 Introduction
In this project we intend to apply a method used to calculate the positioning and

velocity of a body using a simple IMU (Inertial Measurement Unit). The sensor used is of
MEMS (Microelectromechanical systems) type. Through this project we are going first to
introduce Inertial Navigation Systems (INS). Second, explain how we obtain the position
computation using an IMU. Third an implementation using an MPU6050 IMU sensor
data and a MATLAB Code. Finally a general discussion about the algorithm and the
results obtained. This project is a following of the work done in the graduation project
since the real sensor data are taken from the Simulink MPU6050 bloc also the results of
the orientation Filter will be used.
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2. Inertial navigation:

2 Inertial navigation:
Inertial navigation is a relative positioning technique in which an inertial measurement

unit (IMU) is tracked relative to its initial starting point, orientation and velocity. An
IMU that can be tracked in 3-dimensions usually consists of three orthogonal accelerome-
ters and three gyroscopes that are aligned with the accelerometers, as shown in Figure 2.1.

Figure 2.1: The components of a typical IMU.

An inertial navigation system (INS) Fig 2.2 consists of an IMU together with a naviga-
tion processor, which uses measurements from the IMU in order to track its orientation,
position and velocity in some frame of reference in which they are desired (the reference
frame). The processor uses angular rate measurements obtained from the gyroscopes in
order to track the orientation of the IMU relative to this frame. The known orientation is
then used to transform the specific force (acceleration due to all forces except for gravity)
measured by the accelerometers into this frame. Acceleration due to gravity is then added
to the specific force to obtain the acceleration of the device. Finally, this acceleration is
integrated once to track velocity and once more to track the device’s position in the ref-
erence frame.
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3. The potential of inertial sensors:

Figure 2.2: The component of an Inertial Navigation System.

Stable platform and strapdown INSs are both based on the principle of double inte-
grating acceleration in the reference frame. Strapdown systems have reduced mechanical
complexity and as a result tend to be physically smaller and lighter than stable platform
systems. These benefits are achieved at the cost of increased computational complexity,
however the requirements are now trivial relative to the computational power of modern
processors. As a result strapdown systems have become the dominant type of INS.

3 The potential of inertial sensors:
MEMS IMUs contain three orthogonal gyroscopes and accelerometers. The gyroscopes

measure the angular velocity of the IMU body with respect to inertial space. In other
words they measure the IMU’s angular velocity with respect to any inertial coordinate
frame, which is any frame that does not accelerate or rotate with respect to the rest of the
universe. The accelerometers measure the specific force acted upon the IMU, also with
respect to inertial space. Since the inertial sensors are rigidly attached to the body of the
IMU, all measurements are made in the IMU’s own frame of reference. This is known as
the body frame, as shown in 3.1.

Figure 3.1: Illustration of body and local frames of reference [1].

3



3. The potential of inertial sensors:

The basic principle is to track changes in the device’s orientation using the gyroscopes
and Accelerometer measurements, which can be used to project the accelerations mea-
sured locally by the device into a global frame of reference. These accelerations can then
be double integrated to track changes in the object’s position Fig 3.2 . In practice however,
errors rapidly accumulate in the tracked position due to the propagation of measurement
errors through the projection and integration calculations. Such errors are collectively
referred to as drift.

Figure 3.2: A typical inertial navigation algorithm

Let’s explain briefly with mathematic equations how to obtain theoretically the posi-
tion from a 6-DOF IMU sensor Fig 3.2. The orientation, or attitude, of an IMU relative
to a local reference frame can be tracked by integrating its angular velocity [1].

ωb(t) = (ωbx(t) , ωby(t) , ωbz(t))T . (3.1)
The orientation of the device can be specified using several different representations,

including Euler angles, quaternions and direction cosines. The direction cosines repre-
sentation is used in the derivations below. In the direction cosines representation the
orientation of the IMU’s body frame relative to the local frame is specified by a 3 × 3
rotation matrix C , in which each column is a unit vector along one of the body axes
specified in terms of the local axes Fig 3.1.

υg = Cυb (3.2)
A vector quantity defined in the body frame is equivalent to the vector defined in the

local frame. The inverse transformation is given by:

υb = CTυg (3.3)
Since the inverse of a rotation matrix is equivalent to its transpose. The orientation

of the IMU at time t is given by C(t) calculated with each new data coming from the
gyroscope data.
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4. Correcting orientation error using GDOF

To track the position of an IMU the specific force given by the 3-axis accelerometer.

f b(t) = (f bx(t) , f by(t) , f bz(t))T (3.4)
is first projected into the local frame of reference

f g(t) = C(t)f b(t) (3.5)
Acceleration due to gravity is then added to obtain the acceleration of the IMU, which

is integrated once to obtain velocity and again to obtain displacement

ag(t) = f g(t) + gg. (3.6)

vg(t) = vg(0) +
∫ t

0
ag(t)dt (3.7)

sg(t) = sg(0) +
∫ t

0
vg(t)dt (3.8)

Where vg(0) is the initial velocity of the device, sg(0)is the initial displacement and is
acceleration due to gravity specified in the local frame of reference.

4 Correcting orientation error using GDOF
The application of a gradient descent orientation filter can eliminate the errors from

the gyro drift when calculating Orientation. We take for example the Madgwik AHRS
algorithm; the algorithm use a fusion between the gyro data and the accelerometer data
for better orientation estimation. But this method is efficient only if we have a Magne-
tometer in addition to the IMU (gyroscopes + accelerometer) 9-axis degree. With 6-axis
degree IMU sensor the algorithm suffer from a clear drift in the yaw angle. This will make
an error propagate in the next integration steps for the calculation of the position[2].

Figure 4.1: Correction of Orientation outputs using a Fusion Filter

4.1 Errors constraints:
With the existence of the Yaw angle drift, the user of the 6-axis degree IMU can cal-

culate only the positioning orthogonal to the yaw variation angle plan for our case the
z-axis since there is now error detected from the acceleration projection step. This type
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4. Correcting orientation error using GDOF

of limited axis movement is applied as an example for the calculation of the frequency
vibration of any vertical displacements. But this can be achieved only by the use of an
accelerometer to compute a linear acceleration.

4.2 Drift Accelerometre Error correction:
The drift is due to the integration and it occurs even if the accelerometer bias is

exactly zero. it is issued from the accumulating white noise in the sensor data reading,
knowing that Noise are high frequency signals whereas drifts are low or very low frequency
signals. To correct drift, we add a High pass filter to eliminate the drift error accumulated
after each stage of integration. One when calculating the velocity and another one when
integrating to velocity to find the position [3] as shown in Fig 4.2.

Figure 4.2: Addition of a High pass filter to eleminate the drift.
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5. Implementation:

5 Implementation:
In the implementation we used as a sensor the MPU6050 IMU from Invensense,contained

in the GY-521 evaluation board. the data acquisition is performed by the rapid proto-
typing platform build in the graduation project using Simulink and the Zedboard 5.1.
Then the sensor data were saved to the Matlab workspace to be used in the localization
algorithm explained above, so this is called offline simulation.

Figure 5.1: The design platform.

The 5.2 show the Simulink environment which contain a Sensor S-function bloc to
feed a Simulink bloc named “To workspace”. The last one saves the sensor data to the
MATLAB workspace.

Figure 5.2: Mpu6050 Sensor Simumink Driver Bloc .
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5. Implementation:

After a simulation was effected, six vectors representing the 3-axis gyroscopes and 3-
axis Accelerometer containing a finite time running sensor data as shown in figure below
fig 5.3.

Figure 5.3: Obtained Data in the Matlab worckspace.

Next using data we are going to implement the localization algorithm using Mat-
lab. The original code is available in GitHub [4]. Containing all the necessary libraries
and functions to execute the code like “@MadgwickAHRS” responsible for the orienta-
tion calculation and the “quaternion_library” transform calculated quaternion to rotation
matrix. “SixDOFanimation” function is used to animate the movement variation of the
sensor reference as shown in the figure 5.5.

Figure 5.4: Classic attitude estimation
.

after the simulation run the “SixDOFanimation” function plot the total axis mouve-
ments as shown in figure ??.
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5. Implementation:

Figure 5.5: SixDOFanimation function animation
.

Results and Discussion:
After applying this method for the calculation of 3D positioning using only an IMU,

some errors appears for example drift positioning due still exist as shown in figure 5.6..
The resulted displacement exceed the length of the wires used to attach the MPU6050
Sensor to the Zedboard which is 0.30 m. Also as discussed in section 4.1 if the calculated
orientation are wrong the calculated positioning in the y-x plan will not fit the actual
movement. In the next section a state-of-art is given, showing different techniques used
to correct errors for the inertial navigation system.

Figure 5.6: Resulted 3-axis positionig .
.
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7. Conclusion

6 INS error correction:
It is now well-known that the use of numerical integration of acceleration/angular rate

information from inertial sensors (accelerometers/gyroscopes) to obtain position/orienta-
tion information inherently causes position/orientation errors to grow with time, which
is commonly known as “integration drift”. For that reason, estimation of position/ori-
entation using inertial sensors is performed with the help of externally-referenced aided
sensors or sensing systems , or prior knowledge about the motion to correct for the drift.
With the aided sensors or sensing systems, Kalman filters (KF) or extended-Kalman filters
(EKF) are commonly used to fuse two sources of information: one coming from the iner-
tial sensors, and the other from aided sensors or sensing systems in an attempt to correct
for the drift. For example, correction of orientation drift using EKF and a magnetometer
as an aided sensor is described in . Correction of position and orientation drift using
EKF and ultrasonic sensors as aided sensors is presented in [1]. One of the drawbacks of
having to rely on aided sensors to correct for the drift is that the accuracy depends on
the update rate, availability, and reliability of the aided sensors. An example application
of the use of inertial sensors with prior knowledge of motion is in human-walking studies.
The use of prior knowledge of motion of human walking makes it possible to avoid the
use of aided sensors or sensing systems for correction of the drift [3], allowing studies of
natural walking outside the laboratory. Another application of the use of inertial sensors
with prior knowledge of motion is physiological tremor sensing. In physiological tremor
sensing for real-time compensation [5], zero-phase adaptive filtering algorithms based on
truncated Fourier series such as weighted-frequency Fourier linear combiner (WFLC)[6]
or band-limited multiple Fourier linear combiner (BMFLC)[7], which can detect periodic
or quasi-periodic signals, are employed [8].

7 Conclusion
Through this project, an algorithm of position tracking was explained using only an

IMU. Errors in orientation were corrected using GDOF algorithm and accelerometer drift
was suppressed using a high pass filter. Finally, a state of art solutions were proposed to
correct drift error in Inertial Navigation Systems.
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Main code : 

%% Housekeeping 
addpath('ximu_matlab_library'); % include x-IMU MATLAB library 
addpath('quaternion_library');  % includerion  quatenlibrary 
close all;                      % close all figures 
clc;                            % clear the command terminal 
%% Import data 
samplePeriod = 0.01; 
acc=[acc_x ,  acc_y , acc_z]; 
gyr=[gyr_x ,gyr_y ,gyr_z]; 

  
%% Process data through AHRS algorithm (calcualte orientation) 
% See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ 

  
R = zeros(3,3,length(gyr));     % rotation matrix describing sensor 

relative to Earth 

  
ahrs = MadgwickAHRS('SamplePeriod', samplePeriod, 'Beta', 0.1); 
% ahrrs = MahonyAHRS('SamplePeriod', samplePeriod, 'Kp', 0.5); 

  
for i = 1:length(gyr) 
    ahrs.UpdateIMU(gyr(i,:) * (pi/180), acc(i,:));  % gyroscope units 

must be radians 
    R(:,:,i) = quatern2rotMat(ahrs.Quaternion)';    % transpose because 

ahrs provides Earth relative to sensor 
end 

  
%% Calculate 'tilt-compensated' accelerometer 

  
tcAcc = zeros(size(acc));  % accelerometer in Earth frame 

  
for i = 1:length(acc) 
    tcAcc(i,:) = R(:,:,i) * acc(i,:)'; 
end 

  
%% Calculate linear acceleration in Earth frame (subtracting gravity) 

  
linAcc = tcAcc - [zeros(length(tcAcc), 1), zeros(length(tcAcc), 1), 

ones(length(tcAcc), 1)]; 
linAcc = linAcc * 9.81;     % convert from 'g' to m/s/s 

  

  
%% Calculate linear velocity (integrate acceleartion) 

  
linVel = zeros(size(linAcc)); 

  
for i = 2:length(linAcc) 
    linVel(i,:) = linVel(i-1,:) + linAcc(i,:) * samplePeriod; 
end 

  
%% High-pass filter linear velocity to remove drift 

  
order = 1; 
filtCutOff = 0.08; 
[b, a] = butter(order, (2*filtCutOff)/(1/samplePeriod), 'high'); 
linVelHP = filtfilt(b, a, linVel); 

  
%% Calculate linear position (integrate velocity) 
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linPos = zeros(size(linVelHP)); 

  
for i = 2:length(linVelHP) 
    linPos(i,:) = linPos(i-1,:) + linVelHP(i,:) * samplePeriod; 
end 

  
%% High-pass filter linear position to remove drift 

  
order = 1; 
filtCutOff = 0.08; 
[b, a] = butter(order, (2*filtCutOff)/(1/samplePeriod), 'high'); 
linPosHP = filtfilt(b, a, linPos); 

  
figure('Name', 'Sensor Data'); 
axis(1) = subplot(3,1,1); 
hold on; 
plot(linPos(:,1), 'r'); 
xlabel('Samples'); 
ylabel('X(m)'); 
axis(2) = subplot(3,1,2); 
hold on; 
plot(linPos(:,2), 'b'); 
xlabel('Samples'); 
ylabel('Y(m)'); 

  
hold off; 
axis(3) = subplot(3,1,3); 
hold on; 
plot(linPos(:,3), 'g'); 
xlabel('Samples'); 
ylabel('Z(m)'); 
hold off; 
linkaxes(axis, 'x'); 

  
% plot(linPos(:,3)) 
% scatter3(linPos(:,1),linPos(:,2),linPos(:,3)); 

  
% scatter3(linPosHP(:,1),linPosHP(:,2),linPosHP(:,3),'r'); 

  
% %% Play animation 
%  
% SamplePlotFreq =2; 
%  
% SixDOFanimation(linPosHP, R, ... 
%                 'SamplePlotFreq', SamplePlotFreq, 'Trail', 'Off', ... 
%                 'Position', [9 39 1280 720], ... 
%                 'AxisLength', 0.1, 'ShowArrowHead', false, ... 
%                 'Xlabel', 'X (m)', 'Ylabel', 'Y (m)', 'Zlabel', 'Z 

(m)', 'ShowLegend', false, 'Title', 'Unfiltered',... 
%                 'CreateAVI', true, 'AVIfileNameEnum', false, 'AVIfps', 

((1/samplePeriod) / SamplePlotFreq));             

  
%% End of script 
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