République Algérienne Démocratique et Populaire

Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

?

L

'
Sl asnaz ] b i, Al
Ecole Nationale Polytechnique

Ecole Nationale Polytechnique d’Alger

Department of Automatic Control

Thesis

Presented by Yassine SOUKKOU
For the degree of Doctor of Sciences in
Electrical Engineering

Option: Automatic Control

Theme

[NV TC R I

Laboratoire de Command des Processus

CONTRIBUTION TO ADAPTIVE CONTROL OF
TRIANGULAR NONLINEAR SYSTEMS WITH

APPLICATION

Discussed on: 28/09/2020 in front of the jury:

Hachemi Chekireb

Mohamed Tadjine

Salim Labiod
Mokhtar Nibouche

Khelifa Benmansour

Abdelkrim Nemra
Ahsene Boubakir

Rachid Illoul

Prof. National Polytechnic School of Algiers (ENP)
Prof. National Polytechnic School of Algiers (ENP)

Prof. University of Jijel

Dr. University of the West of England (UWE),
Bristol, UK

Prof. Higher School of the Territory Air Defense
(ESDAT)

Dr. Polytechnic Military School (EMP)
Dr. University of Jijel
Dr. National Polytechnic School of Algiers (ENP)

President

Director of thesis

Co-Director of thesis

Co-Director of thesis
abroad

Examinator

Examinator
Examinator

Examinator

ENP 2020

This thesis was prepared within the Process Control Laboratory (LCP) of the National Polytechnic School of Algiers (ENP),
10, Avenue of the Oudek Brothers, Hassen Badi, BP.182, 16200, El-Harrach, Algiers, Algeria

www.enp.edu.dz


http://www.enp.edu.dz/




République Algérienne Démocratique et Populaire

Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

?

L

'
Sl asnaz ] b i, Al
Ecole Nationale Polytechnique

Ecole Nationale Polytechnique d’Alger

Department of Automatic Control

Thesis

Presented by Yassine SOUKKOU
For the degree of Doctor of Sciences in
Electrical Engineering

Option: Automatic Control

Theme

[NV TC R I

Laboratoire de Command des Processus

CONTRIBUTION TO ADAPTIVE CONTROL OF
TRIANGULAR NONLINEAR SYSTEMS WITH

APPLICATION

Discussed on: 28/09/2020 in front of the jury:

Hachemi Chekireb

Mohamed Tadjine

Salim Labiod
Mokhtar Nibouche

Khelifa Benmansour

Abdelkrim Nemra
Ahsene Boubakir

Rachid Illoul

Prof. National Polytechnic School of Algiers (ENP)
Prof. National Polytechnic School of Algiers (ENP)

Prof. University of Jijel

Dr. University of the West of England (UWE),
Bristol, UK

Prof. Higher School of the Territory Air Defense
(ESDAT)

Dr. Polytechnic Military School (EMP)
Dr. University of Jijel
Dr. National Polytechnic School of Algiers (ENP)

President

Director of thesis

Co-Director of thesis

Co-Director of thesis
abroad

Examinator

Examinator
Examinator

Examinator

ENP 2020

This thesis was prepared within the Process Control Laboratory (LCP) of the National Polytechnic School of Algiers (ENP),
10, Avenue of the Oudek Brothers, Hassen Badi, BP.182, 16200, El-Harrach, Algiers, Algeria

www.enp.edu.dz


http://www.enp.edu.dz/

République Algérienne Démocratique et Populaire
Ministere de 1I’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique d’Alger

7 Lagadiebled gl 0.
'
el i pan ol i)
Ecole Nationale Polytechnigque Laboratoire de Commands des Processus

Département d’ Automatique

These

Présentée par Yassine SOUKKOU
Pour I’obtention du diplome de Docteur en Sciences en
Génie Electrique

Option: Automatique

Theme

CONTRIBUTION A LA COMMANDE ADAPTATIVE DES
SYSTEMES NON LINEAIRES TRIANGULAIRES AVEC
APPLICATION

Soutenue le: 28/09/2020 devant le jury:

Hachemi Chekireb Prof. Ecole Nationale Polytechnique d’Alger (ENP) Président
Mohamed Tadjine Prof. Ecole Nationale Polytechnique d’Alger (ENP) Directeur de la thése
Salim Labiod Prof. Université de Jijel Co-Directeur de la thése
Mokhtar Nibouche Dr. Université de 1’Ouest de 1’Angleterre (UWE), Co-Directeur de la thése
Bristol, UK a I’étranger
Khelifa Benmansour Prof. Ecole Supérieure de la Défense Aérienne du Examinateur
Territoire (ESDAT)
Abdelkrim Nemra Dr. Ecole Militaire Polytechnique (EMP) Examinateur
Ahsene Boubakir Dr. Université de Jijel Examinateur
Rachid Illoul Dr. Ecole Nationale Polytechnique d’Alger (ENP) Examinateur
ENP 2020

Cette thése a été préparée au sein du Laboratoire de Commande des Processus (LCP) de I’Ecole Nationale Polytechnique d’Alger (ENP),
10, Avenue des Fréres Oudek, Hassen Badi, BP.182, 16200, El-Harrach, Alger, Algérie
www.enp.edu.dz


http://www.enp.edu.dz/

Abstract/Résumé/sasl

S

3850 ad) Aplad DU Aadaill (e 401 A yall Al aSaill il ]y sha 5 Al )2y Ll a5 plaY) 038 b
Gy el ladi] ASGe (e Sl lasall ) g0 ae (xS aSatil) Laladie ey i Al JS5
Uaul 50 fial) Al oSaill 5 4l WSadll 3k aladiuly Al Y oSadll cdlaad ) Sl sy
e oS pall e yall xSl Sl Gl e AN 5 GulaaiY) g oS pall Sealisall o) 8 oSl
g 5 o Slagyall S 5zl ) ol A8 sall Ldp il il i) aladin) o3 aedl) ladi) A5 e oLl
Aok ahaiuly ds yRd) A8 el Sl WSadl) Gllabadae ) E) diad @3 disieg s LAWY g sendll
aldail BlSlaall il ia je A3 53 sana Adlial) Adlal) aUss 8 ol LAY qaen (585 O lanal Cagisldd ) i)
Ao yiall A8 yall (A4Sl pSadll g Allad ledal (SilSae s S

el (bl 5 Gulanil) o Saalinall mhadl 8 pSadl) casall )5 ¢¢piall aSail) ¢ Sl pSadll Aalide cilals
Al A8l oSl ol B cCagipld R Ak BaShe e AhaY delail (il aa )l
(S5 S

Résumé:

Dans cette thése, on s’est intéressé a 1’étude et le développement de stratégies de la
commande adaptative composite pour une classe des systemes non linéaires incertains en
forme triangulaire inférieure. Le schéma de commande adaptative par backstepping avec
fonctions de réglage composite souffre du probléme de I’explosion de la complexité causée
par les dérivations répétées des entrées de commande virtuelles. Par 1’utilisation des
méthodes de commande adaptative et adaptative robuste par la commande de surface
dynamique composites, et immersion et invariance basée sur la commande filtrée
adaptative par backstepping composite, le probléeme de I’explosion de la complexité est
éliminé. Lois adaptatives composites de type somme, projection et o-modification baseées
sur le gradient et les moindres carrés sont utilisées. L’analyse de la stabilité des schémas de
commande adaptative composite proposés est effectuée par la théorie de la stabilité de
Lyapunov pour garantir la bornitude de tous les signaux du systéme en boucle fermée. Les
résultats de simulation d’un systeme électromécanique sont présentés pour montrer

I’efficacité des techniques de commande adaptative composite proposees.

Mots-clés: Commande adaptative, commande robuste, fonctions de réglage, commande de
surface dynamique, immersion et invariance, commande filtrée par backstepping, systéemes
non linéaires incertains, théorie de la stabilité de Lyapunov, lois adaptatives composites,

systeme électromécanique.
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Abstract:

In this thesis, we are interested in the study and development of composite adaptive
control strategies for uncertain nonlinear systems in lower triangular form. Composite
tuning functions based adaptive backstepping control scheme suffers from the problem of
explosion of complexity caused by the repeated derivations of virtual control inputs. By
using the composite adaptive and robust adaptive dynamic surface control, and composite
immersion and invariance based adaptive command filtered backstepping control methods,
the problem of explosion of complexity is eliminated. Composite sum, projection and o-
modification based gradient and least squares adaptive laws are used. Stability analysis of
the proposed composite adaptive control schemes is performed by using the Lyapunov
stability theory to guarantee that all signals in the closed-loop system are bounded.
Simulation results of an electromechanical system are presented to show the effectiveness

of the proposed composite adaptive control techniques.

Key words: Adaptive control, robust control, tuning functions, dynamic surface control,
immersion and invariance, command filtered backstepping control, uncertain nonlinear

systems, Lyapunov stability theory, composite adaptive laws, electromechanical system.




Acknowledgements

Acknowledgements

This thesis was carried out at the National Polytechnic School of Algiers (ENP),
whitin the Process Control Laboratory (LCP), the University of Jijel, whitin the Automatic
Laboratory of Jijel (LAJ), the Research Center in Industrial Technologies (CRTI) and the
Power Systems and Electronics Research Laboratory, University of the West of England
(UWE), Bristol, UK.

Above all, | thank the Almighty GOD (ALLAH) for his generosity to give me
health, willingness and patience throughout this research work.

| would like to thank Prof. Mohamed Tadjine and Prof. Salim Labiod for their
supervision, advices, help, invaluable guidance and the confidence that they have shown
me throughout this thesis.

In addition, 1 would like to thank my supervisory team in UK; Dr. Mokhtar
Nibouche and Prof. Quan Min Zhu for their supervision during my stay at UWE and for
allowing me to use the research facilities in the Power Systems and Electronics Research
Laboratory.

My gratitude goes to Prof. Hachemi Chekireb for doing me the honor of being the
jury president.

| am very thankful to the jury members, Prof. Khelifa Benmansour, Dr.
Abdelkrim Nemra, Dr. Ahsene Boubakir and Dr. Rachid Illoul for discussing this
thesis.

I would like also to take this opportunity to thank all those who have contributed

from near or far to the success of this research work.




Dedications

| dedicate this thesis

To my mother and father
To my brothers and sisters
To my wife

To my friends and colleagues

To my professors

Dedications




Table of contents

Table of contents

List of figures
General introduction 13

Chapter 1: State of the art and basic notions

1.1  Introduction 18
1.2 Lyapunov stability 19
1.2.1 Stability definitions 19
1.2.2 Lyapunov’s direct method 20
1.2.3 Control Lyapunov functions 22
1.2.4 Some useful lemmas 23
1.3 Design of backstepping control 23
1.4  Adaptive control techniques 25
1.5 Conclusion 27

Chapter 2: Composite tuning functions based adaptive backstepping
control

2.1  Introduction 29
2.2  Direct tuning functions based adaptive backstepping control 30
2.3 Indirect adaptive control 36
2.3.1 Identification based x-swapping filters 36
2.3.2 Choice of adaptive laws 37
2.3.3 Proof of stability 38
2.3.3.1 Gradient adaptive law 38
2.3.3.2  Least squares adaptive law 39
2.4 Composite tuning functions based adaptive backstepping control 40
2.4.1 Composite sum based gradient adaptive law 40
2.4.2 Composite o-modification based gradient and least squares adaptive 42

laws
2.5 Dynamic model of the electromechanical system 44
2.6 Simulation results 45
2.6.1 Composite sum based gradient adaptive laws 46
2.6.2 Composite c-modification based gradient adaptive laws 48
2.6.3 Composite c-modification based least squares adaptive laws 50
2.7  Conclusion 52

Chapter 3: Composite adaptive dynamic surface control

3.1 Introduction 54
3.2 Direct adaptive dynamic surface control 55
3.2.1 Stability analysis 57

3.3 Indirect adaptive control 59




Table of contents

3.3.1 Identification based x-swapping filters 60
3.3.2 Choice of adaptive laws 60
3.3.3  Proof of stability 61
3.3.3.1  Gradient adaptive laws 61
3.3.3.2  Least squares adaptive laws 62
3.4  Composite adaptive dynamic surface control 63
3.4.1 Composite projection based gradient adaptive laws 64
3.4.2 Composite projection based least squares adaptive laws 65
3.4.3 Composite o-modification based gradient and least squares adaptive 67
laws
3.5  Simulation results 70
3.5.1 Composite projection based gradient adaptive laws 70
3.5.2 Composite projection based least squares adaptive laws 72
3.5.3 Composite o-modification based gradient adaptive laws 74
3.5.4 Composite o-modification based least squares adaptive laws 76
3.6 Conclusion 78

Chapter 4: Composite robust adaptive dynamic surface control

4.1 Introduction 81
4.2  Direct robust adaptive dynamic surface control 82
4.2.1 Stability analysis 85
4.3  Indirect robust adaptive control 88
4.3.1 Identification based modified x-swapping filters 89
4.3.2 Choice of adaptive laws 90
4.3.3 Proof of stability 90
4.3.3.1  Gradient adaptive laws 90
4.3.3.2  Least squares adaptive laws 92
4.4  Composite robust adaptive dynamic surface control 93
4.4.1 Composite projection based gradient adaptive laws 94
4.4.2 Composite projection based least squares adaptive laws 96
4.4.3 Composite o-modification based gradient and least squares adaptive 99

laws
4.5  Simulation results 102
45.1 Composite projection based gradient adaptive laws 103
4.5.2 Composite projection based least squares adaptive laws 105
4.5.3 Composite o-modification based gradient adaptive laws 107
45.4 Composite c-modification based least squares adaptive laws 109
4.6 Conclusion 111

Chapter 5: Composite immersion and invariance based adaptive
command filtered backstepping control

5.1 Introduction 113
5.2 Immersion and invariance based adaptive command filtered backstepping 114
control
5.2.1 Estimator design 115
5.2.2 Controller design 117
5.3 Indirect adaptive control 119

5.3.1 Identification based x-swapping filters 120




Table of contents

5.3.2 Choice of modified adaptive laws
5.3.3 Proof of stability
5.3.3.1 Modified gradient adaptive laws
5.3.3.2 Modified least squares adaptive laws
5.4 Composite immersion and invariance based adaptive command filtered
backstepping control
5.4.1 Composite projection based gradient adaptive laws
5.4.2 Composite o-modification based gradient and least squares adaptive
laws
5.5 Simulation results
5.5.1 Composite projection based gradient adaptive laws
5.5.2 Composite s-modification based gradient adaptive laws
5.5.3 Composite s-modification based least squares adaptive laws
5.6 Conclusion

General conclusion and future works
Bibliographical references

120
121
121
122
123

124
125

128
129
131
133
135

136
139




List of figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16

Figure 2.17

Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25

Figure 2.26
Figure 2.27

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13

List of figures

Angular position: desired xi4 ("-") and actual x1 ("--").
Angular velocity: desired Xoq ("-") and actual x; ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position tracking error: e;.
Angular velocity tracking error: e,.
Motor armature current tracking error: es.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").

Parameter estimate: actual 8, ("-") and estimate 6, ("--").

Control input: u.
Angular position: desired xiq ("-") and actual x1 ("-- '9
Angular velocity: desired X4 ("-") and actual x; ("--")

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position tracking error: e;.
Angular velocity tracking error: e,.
Motor armature current tracking error: es.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").

Parameter estimate: actual 6, ("-") and estimate 0, ("--").

Control input: u.
Angular position: desired X4 ("-") and actual x1 ("--").
Angular velocity: desired X4 ("-") and actual xz ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position tracking error: e;.

Angular velocity tracking error: e,.

Motor armature current tracking error: es.
Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Parameter estimate: actual 0, ("-") and estimate 6, ("--").
Control input: u.

Angular position: desired xi4 ("-") and actual x1 ("--").
Angular velocity: desired X4 ("-") and actual xz ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Parameter estimate: actual 0, ("-") and estimate 9, ("--").
Control input: u.

Angular position: desired Xiq ("-") and actual x1 ("--").
Angular velocity: desired X4 ("-") and actual xz ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.

46
46
47
47
47
47
47

47

47
48
48
49
49
49
49
49

49

49
50
50
51
51
51
51
51

51
51

71
71
71
71
71
71
72

72

72
73
73
73
73




List of figures

Figure 3.14
Figure 3.15
Figure 3.16

Figure 3.17

Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25

Figure 3.26

Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Figure 3.32
Figure 3.33
Figure 3.34

Figure 3.35
Figure 3.36

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17

Figure 4.18
Figure 4.19

Figure 4.20
Figure 4.21
Figure 4.22

Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual o, ("-") and estimate

Parameter estimate: actual 6, ("-") and estimate

Control input: u.
Angular position: desired Xi4 ("-") and actual x1 ("--").
Angular velocity: desired X4 ("-") and actual x; ("--").

b, ("--").
b, ("-").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").

Parameter estimate: actual 6, ("-") and estimate 0, ("--").

Control input: u.
Angular position: desired Xi4 ("-") and actual x1 ("--").
Angular velocity: desired Xoq ("-") and actual x; ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Control input: u.

Angular position: desired X14 ("-") and actual x1 ("--").
Angular velocity: desired Xoq ("-") and actual x; ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S.
Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Parameter estimate: actual 6, ("-") and estimate 6, ("--").
Parameter estimate: &, .

Control input: u.
Angular position: desired X14 ("-") and actual x; ("--").
Angular velocity: desired X4 ("-") and actual x; ("--").

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate
Parameter estimate: actual 0, ("-") and estimate
Parameter estimate: &, .

Control input: u.
Angular position: desired X14 ("-") and actual x; ("--").
Angular velocity: desired X4 ("-") and actual x; ("--").

9‘ (n__ /9.
0y (=),

73
73
74

74

74
75
75
75
75
75
75
76

76

76
77
77
77
77
77
77
78

78
78

104
104
104
104
104
104
104

104
105

105
106
106
106
106
106
106
106

106
107

107
108
108




List of figures

Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27

Figure 4.28
Figure 4.29

Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37

Figure 4.38
Figure 4.39
Figure 4.40

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17

Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25

Figure 5.26
Figure 5.27

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.
Angular velocity surface error: S,.
Motor armature current surface error: Ss.

Parameter estimate: actual o, ("-") and estimate
Parameter estimate: actual 6, ("-") and estimate

Parameter estimate: &, .

Control input: u.
Angular position: desired Xi4 ("-") and actual x1 ("--").
Angular velocity: desired X4 ("-") and actual x; ("--").

é (n__ '9-
9"3 (n__ '9-

Motor armature current: desired Xsq ("-") and actual x3 ("--").

Angular position surface error: S;.

Angular velocity surface error: S,.

Motor armature current surface error: Ss.

Parameter estimate: actual 6, ("-") and estimate 6, ("--").

Parameter estimate: actual 8, ("-") and estimate 9, ("--").

Parameter estimate: &, .
Control input: u.

Angular position: desired X14 ("-") and actual x1 ("--").
Angular velocity: signal xac ("-") and actual x; ("--").

Motor armature current: signal Xsc ("-") and actual x3 ("--").
Angular position tracking error: e;.

Angular velocity tracking error: e,.

Motor armature current tracking error: es.

Parameter estimate: actual 6, ("-") and estimate

Parameter estimate: actual 6, ("-") and estimate

Control input: u.
Angular position: desired X14 ("-") and actual x1 ("--").
Angular velocity: signal xy¢ ("-") and actual x, ("--").

Motor armature current: signal xsc ("-") and actual x3 ("--").
Angular position tracking error: e;.

Angular velocity tracking error: e,.

Motor armature current tracking error: es.
Parameter estimate: actual 6, ("-") and estimate

Parameter estimate: actual 0, ("-") and estimate

Control input: u.
Angular position: desired Xi4 ("-") and actual x1 ("--").
Angular velocity: signal xa¢ ("-") and actual x; ("--").

Motor armature current: signal xsc ("-") and actual x3 ("--").
Angular position tracking error: es.

Angular velocity tracking error: e,.

Motor armature current tracking error: es.
Parameter estimate: actual 6, ("-") and estimate

Parameter estimate: actual 6, ("-") and estimate
Control input: u.

6, ("--").
6, ("--").

0, (")
9" (u__ '9-

9" (u__ '9-
by (")

108
108
108
108
108

108
109

109
110
110
110
110
110
110
110

110
111
111

130
130
130
130
130
130
130

130

131
132
132
132
132
132
132
132

132

133
134
134
134
134
134
134
134

134
135




General introduction

General introduction

In recent years, the control design of nonlinear systems has attracted considerable attention
from both theoretical interests and practical applications, and many effective control
schemes have been proposed. Over the past decades, adaptive control of uncertain
nonlinear systems has obtained many significant results where numerous approaches have
been proposed for the design of nonlinear control systems. Among these adaptive control
strategies, as an efficient design methodology, adaptive backstepping control has been
studied for a class of uncertain nonlinear systems in lower triangular form (strict feedback
form) with overparameterization [Kan91]. The overparameterization problem inherent in
the conventional adaptive backstepping control has been eliminated by introducing tuning
functions [Krs92]. The book of Krstic et al. [Krs95a] introduced a comprehensive
methodology for adaptive backstepping control and tuning functions based adaptive
backstapping control designs to deal with large classes of uncertain nonlinear systems. In
recent years, tuning functions based adaptive backstepping control approach has been
widely designed to control a class of uncertain nonlinear systems [Cil07, Wan16, ZhoO8].

Nevertheless, the conventional backstepping control approach suffers from the problem of
explosion of complexity, which is caused by repeated differentiations of the virtual
controllers at each step, as pointed out in [Hed00, Swa00, Swa97]. As a result, the
computational complexity of backstepping controller grows drastically as the order of the
system increases. To overcome the problem of explosion of complexity, the dynamic
surface control (DSC) approach was proposed for a class of nonlinear systems in [HedQO,
Swa00, Swa97] by introducing a first-order low-pass filter at each step of the conventional
backstepping control method. Consequently, the dynamic surface control technique was
suggested for designing adaptive controllers of uncertain nonlinear systems [Hed0O,
Yip98]. Several adaptive dynamic surface control schemes have been developed for a class
of uncertain nonlinear systems [Khel5, Liul8a, Yul5b]. Besides dynamic surface control,
the command filtered backstepping control was also proposed to solve the problem of
explosion of complexity inherent in the conventional backstepping control approach
[Far09, Far08]. In [Don12, Don10], the command filtered backstepping control method has

extended to adaptive control. Several adaptive command filtered backstepping control
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General introduction

approaches have been introduced to control a class of uncertain nonlinear systems [Pan18,
Yul8b, Yul5a].

Recently, immersion and invariance (1&1) based adaptive control of nonlinear systems was
proposed by Astolfi and Ortega [Ast03]. It has been established for controlling many
uncertain nonlinear systems in lower triangular form [Ast08a, Ast08b, Kar08, Sou21]. The
design procedures of immersion and invariance based adaptive control consisted of a
general two steps, while the first step is to design an estimator and the second step is to
design a control law. Recently, immersion and invariance based adaptive command filtered
backstepping control method has been designed for uncertain nonlinear systems [Son10a,
Son10b]. Moreover, immersion and invariance based adaptive dynamic surface control
technique has been also proposed [Fuj12, Sou21].

In adaptive control, the way of parameter estimation gives rise to two different schemes,
direct and indirect techniques, a direct scheme that utilizes tracking errors and an indirect
scheme that utilizes estimation errors. Composite adaptive control method is an integrated
direct and indirect adaptive control schemes which aim to achieve better tracking and
parameter convergence through faster and smoother parameter adaptation [SI089]. The
types of adaptive law modifications have been presented such as sum, o-modification, e-
modification and projection [Chel0, Far06, loa07, 10a96, Pol96, Sou2l, Soul9, Souls,
Soul7, Soulb, Yao97]. In [Cil07], a composite tuning functions based adaptive
backstepping control method has been utilized for a class of single-input and single-output
(SISO) uncertain nonlinear systems in lower triangular form to avoid the
overparametrization problem. A composite adaptive dynamic surface control technique has
been introduced for a class of SISO uncertain nonlinear systems in lower triangular form to
overcome the problem of explosion of complexity [Soul8]. In [Panl6b], a composite
adaptive command filtered backstepping control approach has been also proposed for a
class of SISO uncertain nonlinear systems in lower triangular form to solve the problem of
explosion of complexity.

Besides adaptive control, robust adaptive control scheme that combine robust control and
adaptive control for uncertain nonlinear systems with external disturbances has also
received a great attention in recent years and has been extensively used to control a large
class of nonlinear systems. In [Zhal5b], robust tuning functions based adaptive
backstepping control approach has been presented for a class of uncertain nonlinear
systems with external disturbances to avoid the overparametrization problem. In [Houll,

Zhal8a, Zhal8b, Zhal7], robust adaptive dynamic surface control technique has been
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proposed for a class of uncertain nonlinear systems with external disturbances to overcome
the problem of explosion of complexity. Furthermore, composite robust adaptive dynamic
surface control method of uncertain nonlinear system has been also designed in [Chel0].
This thesis proposes the study of the composite adaptive control for a class of uncertain
nonlinear systems in lower triangular form. This is to synthesize stable adaptive control
laws with composite adaptive laws. The complexity of these control laws should be kept
reasonable by the introduction of a filtering at the level of the virtual controllers. The
combination aims to combine the direct adaptive laws (from a Lyapunov function) and the
indirect adaptive laws (gradient or least squares) by considering sum, projection and o-
modification based adaptive laws.
This thesis presents a new approaches that combines adaptive laws for the adaptive control
schemes of SISO uncertain nonlinear systems in lower triangular form. In these schemes,
by utilizing the adaptive control designs and the gradient and least squares identifier with
x-swapping filters of the indirect adaptive control designs, a novel composite mechanisms
of adaptive laws with sum, projection and o-modification techniques are developed while
both tracking (surface) errors and estimation errors are combined to obtain better trajectory
tracking performances, parameter estimates and control convergence. Composite tuning
functions based adaptive backstepping control design is proposed to avoid the
overparametrization problem. Composite adaptive dynamic surface control and composite
robust adaptive dynamic surface control approaches are presented to overcome the
problem of explosion of complexity. Composite immersion and invariance based adaptive
command filtered backstepping control design is also developed to solve the problem of
explosion of complexity. The boundedness of all signals in the closed-loop system is
guaranteed based on the Lyapunov stability analysis theory. Simulation results for an
electromechanical system (one-link manipulator actuated by a brush DC motor system) are
provided to demonstrate the effectiveness of the proposed composite adaptive control
techniques.
The thesis is organized as follows.
= The first chapter gives some basic definitions and tools on Lyapunov stability. These
important tools are utilized to introduce the backstepping control design procedure.
Then, the state of the art on the adaptive control techniques is discussed.
» In the second chapter, the composite tuning functions based adaptive backstepping
control technique for a class of SISO uncertain nonlinear systems in lower triangular

form is applied to remove the overparametrization problem in the conventional adaptive
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backstepping control design. Stability analysis using Lyapunov stability theory is
performed to guarantee that all signals in the closed-loop system are bounded. A
comparative simulation results for the control of an electromechanical system are
implemented to demonstrate the validity of the proposed composite adaptive control
method.

= The third chapter discusses a novel design of composite adaptive dynamic surface
control technique for a class of SISO uncertain nonlinear systems in lower triangular
form in order to avoid the problem of explosion of complexity inherent in the
conventional adaptive backstepping control and the composite tuning functions based
adaptive backstepping control schemes. By introducing the Lyapunov stability theory,
the proposed composite adaptive control method guarantees the boundedness of all
signals in the closed-loop system. Simulation results for the control of an
electromechanical system are provided to show the performance of the proposed
composite adaptive control scheme in comparison with direct and indirect adaptive
control designs.

= In the fourth chapter, the results of third chapter are extended to robust adaptive
nonlinear control. The composite robust adaptive dynamic surface control approach for
a class of SISO uncertain nonlinear systems in lower triangular form with unknown
external disturbances is proposed to overcome also the problem of explosion of
complexity. The proposed composite robust adaptive control technique guarantees that
all signals in the closed-loop system are bounded by using the Lyapunov stability
theory. A comparison for the control of an electromechanical system with direct and
indirect robust adaptive control designs is made to illustrate the efficiency and
robustness of the proposed composite robust adaptive control method.

»= The last chapter introduces the composite immersion and invariance based adaptive
command filtered backstepping control method for a class of SISO uncertain nonlinear
systems in lower triangular form to overcome also the problem of explosion of
complexity. The boundedness of all signals in the closed-loop system is guaranteed by
introducing the Lyapunov stability theory. A comparative study for the control of an
electromechanical system is tested to verify the effectiveness of the proposed composite
adaptive control approach.

Finally, general conclusion and future research works are formulated to finish the thesis.
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Chapter 1

State of the art and basic notions

1.1 Introduction

The Lyapunov stability theory is a very important tool for the control of nonlinear systems.
It is used to analyse the stability of the closed-loop system. The backstepping control
method is one of the nonlinear control techniques. It has been widely adopted in the control
of so many nonlinear systems, and has been also introduced in adaptive control methods.
Then, the adaptive control techniques have also received a lot of attention from the control
research community in recent years.

In this chapter, the important definitions and basic tools on Lyapunov stability are
presented. These important tools are then utilized to introduce the backstepping control
design procedure for SISO nonlinear systems in lower triangular form. Then, several
adaptive control techniques are introduced to handle a large class of uncertain nonlinear
systems.

The rest of this chapter is structured as follows. The Lyapunov stability concepts are
presented in Section 1.2. In Section 1.3, the backstepping control method is designed. The
state of the art on adaptive control techniques is discussed in Section 1.4. Conclusions are
given in Section 1.5.

The following notations are adopted throughout this thesis. R, R* and R"denote the set

of all real numbers, the positive real numbers and the real n-dimensional vectors space,

respectively. |¢| and [e| denote the absolute value and the Euclidean norm. L, and L,
denote the spaces of square integrable and bounded signals. sign(-) and tanh(o) are the

standard sign function and hyperbolic tangent function, respectively. min(e) and max (e)
denote the functions of minimum and maximum. tr(e) denotes the trace operation. (#)

denotes the estimate of (#) and (3) denotes the parameter estimation error of (e).
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1.2 Lyapunov stability
In this section, we present some definitions and basic tools on stability [Far06, 10a96,
Kha02, Kha96, Krs95a, Slo91, Son10a].

1.2.1 Stability definitions
We consider the following system described by ordinary differential equation of the form:

x=f(t,x), x(t))=x (1.2)
where, xeR", and f:R"xR" — R" is a piecewise continuous function in t and locally

Lipschitz in x. The following definitions of stability (stability in the sense of Lyapunov)
are presented [Far06, Kha96].

Definition 1.2.1: A function f(t,x) satisfies a Lipschitz condition on D if
| (t.x)— f(t,y)|<»|x—y||, with Lipschitz constant y for all points (t,x) and (t,y) in
D, where D R" is adomain that contains the origin x=0.

Definition 1.2.2: Any point x, € R" such that f (t,x,)=0, for all t>1, is an equilibrium

point of the system described by (1.1). It can be assumed, without loss of generality, that

the system described by (1.1) has an equilibrium point x, =0.

The following definitions 1.2.3 to 1.2.8 give the stability of this equilibrium point.
Definition 1.2.3: The equilibrium point x, =0 of the system described by (1.1) is stable

(stability in the sense of Lyapunov) if for each ¢>0 and any t,>0, there exists a
5(ety)>0 such that |x(t, )| < 5(e,t,) implies that |x(t)[<e forall t>t,.

Definition 1.2.4: The equilibrium point X, =0 of the system described by (1.1) is
uniformly stable if for each ¢>0 and any t;, >0, there exists a 5(e)>0 such that
[x(t,)] < 5(€) implies that |x(t)|<e forall t>t,.

Definition 1.2.5: The equilibrium point x, =0 of the system described by (1.1) is unstable
if it is not stable.

Definition 1.2.6: The equilibrium point X, =0 of the system described by (1.1) is

asymptotically stable if it is stable, and for any t, >0, there exists a n(to) >0 such that

[x(t,)] <7(t;) implies that lim,_,, |x(t)|=0.
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Definition 1.2.7: The equilibrium point x, =0 of the system described by (1.1) is
uniformly asymptotically stable if it is uniformly stable, and there exists a &>0
independent of t such that for all ¢>0, there exists a T(e)>0 such that |x(t,)|<o
implies that |x(t)] <e forall t>t,+T (c).

Definition 1.2.8: The equilibrium point x, =0 of the system described by (1.1) is

exponentially stable if for any e >0 there exists a §(¢)>0 such that |x(t,)| <& implies

that [[x(t)] <ee ) forall t>t, >0 for some a>0.

In some cases, it may not be possible to prove stability of x,. In such cases concepts

related to boundedness are important [Far06, Kha96].

Definition 1.2.9: The equilibrium point x, =0 of the system described by (1.1) is
uniformly ultimately bounded if there exist positive constants R, T(R) and b such that
[x(t,)| <R implies that |x(t)|<b forall t>t,+T .

Definition 1.2.10: The equilibrium point x, =0 of the system described by (1.1) is

globally uniformly ultimately bounded if R =o0.

The constant b is referred to as the ultimate bound.

1.2.2 Lyapunov’s direct method

The stability properties of the equilibrium point or solution of (1.1) can be studied by using
the so-called Lyapunov’s direct method (or Lyapunov’s second method). The ideas of
Lyapunov’s direct method are rigorously summarized by the Theorem 1.2.1 [Far06,
Kha96]. Before presenting that theorem, the following definitions are introduced [Far06,

Kha96]. b’( r) denotes an open set containing the origin.

Definition 1.2.11: A continuous function V (x) is positive definite on & (r) if V(0)=0
and V (x)>0 forall xe Z(r) such that x=0.

Definition 1.2.12: A continuous function V (x) is positive semi-definite on Z(r) if
V(0)=0 and V(x)>0 forall xe &(r) suchthat x=0.

Definition 1.2.13: A continuous function V (x) is negative (semi-)definite on & (r) if

-V (x) is positive (semi-)definite.
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Definition 1.2.14: A continuous function V (x) is radially unbounded if V (0)=0, V >0
on R"—{0} and V (x) - as x| — .

Definition 1.2.15: A continuous function V (t,x) is positive definite on Rx Z(r) if there
exists a positive definite function @(x) on & (r) such that V (t,0)=0 for all t>0, and
V(t,x)>w(x) forall t>0 and forall xe Z(r).

Definition 1.2.16: A continuous function V(t,x) is radially unbounded if there exists a
radially unbounded function @(x) such that V (t,0)=0 for all t>0, and V (t,x) > o(x)

forall t>0 and forall xeR".

Definition 1.2.17: A continuous function V (t,x) is decrescent on Rx £ (r) if there exists
a positive definite function w(x) on &(r) such that V (t,x) <w(x) forall t>0 and for
all xe Z(r).

Let us assume (without loss of generality) that x, =0 is an equilibrium point of the system

described by (1.1) and define V to be the time derivative of the function V (t, x) along the

solution of the system described by (1.1), i.e.,

.oV oV
V="—--+—1(t, 1.2
6t+8x (X) (1.2)

The Lyapunov’s direct method is summarized by the following theorem.

Theorem 1.2.1: Let V(t,x):]R*xD—HR be a continuously differentiable and positive

definite function, where D is an open region containing the origin. Then, the following

statements are true:

(i) If V <0 (negative semi-definite) for x e D, then the equilibrium point x, =0 is
stable.

(i) If V is decrescent and V <0 for xeD, then the equilibrium point x, =0 is
uniformly stable.

(iii) If V <0 (negative definite) for xeD, then the equilibrium point x, =0 is
asymptotically stable.

(iv) If V is decrescent and V <0 for xeD, then the equilibrium point x, =0 is

uniformly asymptotically stable.
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(v) If there exist three positive constants ¢, ¢, and ¢, such that
o [X|* <V (t,x)<c, |x|" and V (t,x) < —¢,|x|* for all t>0 and for all xe D, then

the equilibrium point x, =0 is exponentially stable.

1.2.3 Control Lyapunov functions
The control Lyapunov function (CLF) is an extension of the Lyapunov function concept to
control design. Consider the following system [Krs95a]:

x=f(xu), f(0,0)=0 (1.3)
where, x e R" is the system state and u R is the control input. The control objective is

to design a feedback control law «(x) for the control input u such that the equilibrium
x=0 of the closed-loop system x=f (x,a(x)) is globally asymptotically stable. To
prove stability, we can choose a function V (x) as a Lyapunov candidate, and require that
its derivative along the solutions of x = f (x,a(x)) satisfies V (x)<-W (x), where W (x)
is a positive definite function. Therefore, we need to find a(x) to ensure that for all
xeR":

aa_\x’(x) f(x (X)) <-W (x) (1.4)

A stabilizing control law for the system described by (1.3) may exist but we may fail to

satisfy (1.4) due to a poor choice of V (x) and W (x) A system for which a good choice

of V (x) and W(x) exists is said to possess a CLF. More precisely, the definition of a
CLF is given below.

Definition 1.2.18 (CLF) [Krs95a]: A smooth positive definite and radially unbounded
function V :R"xR" is called a CLF for the system described by (1.3) if:

inf{a—v(x)f(x,u)}<0, vx#0 (1.5)

ueR 8X

The existence of a CLF is equivalent to global asymptotic stabilizability.

For systems affine in the control [Krs95a]:
x=f(x)+g(x)u (1.6)
The CLF inequality described by (1.4) becomes:
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% f (x)+&g(x)a(x)£—w(x) (1.7)
The main deficiency of the CLF concept as a design tool is that for most nonlinear systems
a CLF is not known and the task of finding one may be as complex as that of designing a
stabilizing feedback law. Backstepping control design procedure was introduced to solve

these two tasks simultaneously for several important classes of nonlinear systems.

1.2.4 Some useful lemmas
The following useful lemmas are introduced for the convenience of the subsequent

synthesis and analysis.

Lemma 1.2.1 (Barbalat lemma) [Far06]: Let ¢(t):R* —R be uniformly continuous

function on [0,00). If lim_,, j;¢(r)dr =M <o (exists and finite), then lim,_,_ ¢(t)=0.
Remark 1.2.1: Combining this lemma with Lyapunov’s direct method leads to the
powerful theorem by LaSalle and Yoshizawa [Krs95a].

Lemma 1.2.2 [Far06]: Suppose V (t) >0 satisfies the following inequality:
V(t)<—cV (t)+4 (1.8)
where, ¢ and A are positive constants. Then, V (t) satisfies:

v(t)sL(v(o)_iJe-d (L9)
c c
Lemma 1.2.3 (Young's inequality) [Krs95a]: The following inequality holds for any

(x,y)eR?:
P 1
SR (110

where, ¢£>0 is a positive constant, p>1 and g>1 are constants which satisfy

(p-1)(q-1)=1.

1.3 Design of backstepping control

The control of nonlinear systems has attracted a great attention from the research
community. Backstepping control design is one of these nonlinear control methods
[Kha02, Krs95a]. Over the past few decades, Backstepping control method is one of the

most popular and effective control approaches to deal with nonlinear systems in lower
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triangular form. Nevertheless, the backstepping control technique suffers from the problem
of explosion of complexity resulting from repeated derivations of virtual controllers at each
recursive step. The problem of explosion of complexity has been solved by dynamic
surface control [Hed00, Swa00, Swa97], and command filtered backstepping control

[Far09, Far08]. Consider the following SISO nonlinear system in lower triangular form:
%=1 (%)+ 6 (%)%
% =f(%)+9(X)X.0,i=2,,n-1 (1.11)
X, = f,(x)+9,(x)u
where, x=[x X, - x,] eR" is the system state vector with X =[x X, - xi]T
and x=X,, and ueR is the control input. The nonlinear functions f, and g, #0 are
assumed to be known and continuous. The control objective of this approach is to construct
a backstepping controller u such that the system output x, tracks the desired trajectory
X4, Where x, and its derivatives X,,---, xfg’l) and x\") are assumed to be known,
continuous and bounded.
The main procedures of the backstepping control design are summarized as follows.
Define the tracking errors as e, =X, —x,, and ¢ =X —¢,, for i=2,---,n, where ¢, , are
virtual controllers. Construct the virtual controllers «; and the actual control law u as:

1

o, =—(-ke - f,+%,) (1.12)
1
1 . :
@ = g_(_kiei —fitdy—0i8)i=2n-1 (1.13)
1 .
u= g_(_knen - fn + an—l - gn—len—l) (114)

where, k; >0 are positive constants, and ¢, , with i=2,---,n, are obtained by:

Gy = Z 860; (ft 0xa) + Z ai?) X (1.15)
The closed-loop tracking error dynamics are given by:

& =-ke +0ge, (1.16)

é =-ke+0e.,,-0.,i=2--,n-1 (1.17)

e, =—-ke —0,.€ (1.18)

By choosing the Lyapunov function as:
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V= %Z e (1.19)
and taking its time derivative, further analysis shows that:

V=-Yke<-aV (1.20)
k=1

where, o =min(2k, )>0. This implies the exponential converge of the tracking errors to

zero. Then, the controller guarantees that the closed-loop tracking error dynamics is

globally exponentially stable.

1.4 Adaptive control techniques

The adaptive control techniques have been widely designed to control a large class of
uncertain nonlinear systems in recent decades due to great demands from the industrial
applications. In the literature, several significant types of adaptive control for uncertain
nonlinear systems have been proposed including adaptive backstepping control [Kan91,
Krs95a], adaptive feedback linearization [Isi89, Sas89], immersion and invariance based
adaptive control [Ast08a] and adaptive sliding mode control [Utk92]. By introducing
tuning functions, the overparametrization problem inherent in the conventional adaptive
backstepping control has been eliminated [Krs95a, Krs92]. In [Leel2], adaptive
backstepping control of uncertain nonlinear systems using fuzzy neural networks has been
proposed. In [Dinl5, Shel7a, Shel7b, Weil6, Weil5], adaptive backstepping control for a
class of nonlinear fractional order systems has been also proposed. In addition, adaptive
backstepping control for a class of nonlinear chaotic systems has been introduced in [Ge04,
Ge00a, Ge00b, Wan01].

Recently, adaptive dynamic surface control technique has been proposed to solve the
problem of explosion of complexity arose from the repeated differentiations of virtual
control functions for adaptive backstepping control and composite tuning functions based
adaptive backstepping control approaches [Hed00, Yip98]. Several fuzzy or neural
adaptive dynamic surface control approaches have been developed [Wan05, Yo0o007,
Zhal6, Zha08]. In [Lil2a, Liull], adaptive dynamic surface control for a class of
nonlinear chaotic systems has been also studied. For uncertain nonaffine nonlinear
systems, an adaptive dynamic surface approach has been presented by using the modified
linear filters [Liul7a]. In this way, adaptive command filtered backstepping control

method has been also proposed to overcome the problem of explosion of complexity

25



Chapter 1 State of the art and basic notions

[Don12, Donl0], and has been widely utilized to control a particular class of uncertain
nonlinear systems [Pan18, Soul9, Yul8b, Yul5a, Zou20].

The immersion and invariance based adaptive control has been also a great attention in the
few recent years, which has been widely used to the control of a class of uncertain
nonlinear systems [Han19, Hanl8, Liul4, Sonl0a, Zhal2b, Zhall]. Many significant
different types of nonlinear control approaches have been devised in the literature
including, adaptive command filtered backstepping control [Sonl0Oa], adaptive
backstepping control [Kar08, Zhal2b, Zhall], adaptive sliding mode control [Han15] and
adaptive dynamic surface control [Fuj12, Sou21].

To deal with the uncertain nonlinear systems with unmeasured states, two useful observers
have been proposed. An Observer based adaptive backstepping control with tuning
functions method has been proposed in [Krs95a, Shel7b, Weil6, Zhal2a, ZhoO7]. In
[Lil2a, Liul2, Liull, Zhal5a, Zhal3, Wanl2], observer based adaptive dynamic surface
control method has been presented.

During the last years, to improve parameter estimation and obtain better control
performance than conventional adaptive control techniques, the composite adaptive control
method that utilized both the tracking errors and the estimation errors for parameter
adaptive laws has been proposed for uncertain nonlinear systems. The performance
improvements of composite adaptive control schemes which integrate direct and indirect
adaptive laws have been implemented in several control techniques [Cil09, Hul0, Li10b,
Moh11, Pan17, Pan13, Pat10, Slo89, Weil3, Yao03]. A composite tuning functions based
adaptive backstepping control technique has been proposed to avoid the
overparametrization problem [Cil07, Soul5]. In [Soul8, Soul7], a composite adaptive
dynamic surface control approach has been developed to eliminate the problem of
explosion of complexity. In [Panl6a, Panl6b, Panl6c], a composite adaptive command
filtered backstepping control method has been further developed to overcome the problem
of explosion of complexity.

In particular, a robust tuning functions based adaptive backstepping control scheme has
been applied to eliminate the overparametrization problem [Zhal5b]. A robust adaptive
dynamic surface control method has been proposed to avoid the problem of explosion of
complexity [EIm19, Gan15, Hel6, Houll, Liul8b, Lil2b, Lil10a, Lil0b, Shel7c, Zhal8a,
Zhal8b, Zhal7]. In [Chel0Q], a robust composite adaptive dynamic surface control

approach has been also developed.
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1.5 Conclusion

This chapter presents some basic definitions and lemmas on the system stability, which
play important roles in the controller design and the stability analysis. The backstepping
control design with stability analysis is studied for SISO nonlinear systems in lower
triangular form. The state of the art on adaptive control methods of uncertain nonlinear
systems is discussed. Next works will focus on designing of composite adaptive control

techniques.
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Chapter 2

Composite tuning functions based adaptive

backstepping control

2.1 Introduction

Backstepping control technique is a systematic nonlinear control approach based on the
Lyapunov stability theory. It provides a systematic and a recursive formulation for
nonlinear control systems [Kha02]. Backstepping control design has been widely used in
many nonlinear control systems, and has been also introduced in adaptive control methods.
Adaptive backstepping control design is one of nonlinear adaptive control approaches,
which has received much attention [Krs95a]. The first adaptive backstepping design has
been developed and proposed by Kanellakopoulos et al. [Kan91] to achieve global
stabilization in the presence of unknown parameters. It has been established for controlling
of many uncertain nonlinear systems [Ben00, Kan91, Krs95a, vanll, Wanl7, Zho08].
However, the main drawback in this approach is the overparametrization problem. This
problem has been removed by using tuning functions design [Krs95a, Krs92], in which the
number of parameter estimates is reduced to be minimal, that is, exactly equal to the
number of unknown constant parameters. Tuning functions based adaptive backstepping
control has been also a great attention in the few recent years, which has been widely used
to the control of a class of uncertain nonlinear systems [Cil07, Cob19, Soul5, Wanl6,
Zhal5b, Zho08]. Composite adaptive control has also received a great attention in recent
years and has been extensively used to control a particular class of nonlinear systems
[Cil09, Hul0, Moh11, Panl7, Panl3, Patl0, Slo89, Weil3, Yao03]. In the recent years,
composite tuning functions based adaptive backstepping control has been utilized for a
class of SISO uncertain nonlinear systems [Cil07, Soul5].

This chapter presents a new approach that combines direct and indirect adaptive laws for
composite tuning functions based adaptive backstepping control for a class of SISO

uncertain nonlinear systems in lower triangular form. In this method, by applying of direct
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tuning functions based adaptive backstepping control and the x-swapping filters with
gradient and least squares adaptive laws of indirect adaptive control, a novel composite
mechanism of adaptation is proposed. The composite sum based gradient adaptive law and
the composite o-modification based gradient and least squares adaptive laws are
introduced in order to achieve better parameter estimation and, hence, better trajectory
tracking performances. Tuning functions are introduced to avoid the overparametrization
problem inherent in the conventional adaptive backstepping control. The boundedness of
all signals in the closed-loop system is performed by using the Lyapunov stability analysis
theory. In order to demonstrate the effectiveness of the proposed composite adaptive
control approach, simulation results for an electromechanical system are provided.
Moreover, direct and indirect adaptive control designs are also studied and simulated for
comparison purposes with the proposed composite adaptive control scheme.

The remaining of the chapter is organized as follows. The direct tuning functions based
adaptive backstepping control is presented in Section 2.2. Section 2.3 is devoted to the
indirect adaptive control. The composite tuning functions based adaptive backstepping
control is proposed in Section 2.4. Section 2.5 is discussed the description of the dynamic
model of an electromechanical system. Section 2.6 is concerned with the simulation results
and discussions of the proposed adaptive controller designs. Conclusions are given in
Section 2.7.

2.2 Direct tuning functions based adaptive backstepping control
In this section, we will consider the following SISO uncertain nonlinear system in lower

triangular form:

6, (%)% 4y (%)0+y3(x)
(,)x,ﬂw,( )0+y,(%),i =201 (2.0)

% =0y (X)u+ e, (x)0+y, ()
where, x=[x X, - x] eR" and ueR are system states and the control input,
respectively. < RP is unknown constant parameter vector, X =[x % - xi]T and

x = X_. The nonlinear functions ¢, , i, and g, =0 are known and continuous. The control

objective of this approach is to construct a direct tuning functions based adaptive

backstepping controller u such that the system output x, tracks the desired trajectory X

and to ensure that all signals in the closed-loop system are bounded. Throughout this
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chapter, to achieve the control objective, the following standard assumptions of the system
(2.1) are required.

Assumption 2.2.1: There is a positive constant g, where, ‘gi (Z)‘ >g,, 1=1--,n.

Assumption 2.2.2: The desired trajectory x,, and its derivatives X,,---, X7 and x(] are

known, continuous and bounded.

Remark 2.2.1: Assumption 2.2.1 is employed to guarantee the controllability of system
(2.1). Assumption 2.2.2 is required to ensure the boundedness of the time derivatives of
virtual controllers during the stability analysis.

The detailed procedures of the direct tuning functions based adaptive backstepping control
design for system (2.1) with stability analysis using Lyapunov stability theory are given as
follows.

Step 1: Define the first tracking error as e =X, — X, then, the time derivative of e, is
obtained as:

€ =0+ 0+, — %y = 0,8, + G+ 0+, — Xy (22)
The corresponding Lyapunov function candidate V, is defined as:

1 1 ~
V,==e’+=0'T"0 2.3
=S+ 23)

where, T =T" >0 is a positive definite constant matrix and 0=0-0 is the parametric

estimation error. The time derivative of V, is given by:
vl =€ (gle2 +0,0 + ColTé"' Wi — Xy )_ or (é_r(/’lel) (2.4)

The tuning function 7, is defined as:

n,=Tpe (2.5)

We choose the virtual control ¢, as:

1 A )
alzg_(_klel_(ofe_‘ﬂl—i_xid) (2.6)

1

where, k, >0 is a positive design constant. Substituting (2.6) into (2.4), the derivative of

the Lyapunov function V, becomes:

V,=—ke’+gee,-0'T" (9 - rl) (2.7)
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Step 2: Define the second tracking error as e, = X, — ¢, then, the time derivative of e, is

obtained as:

6-3 28l (28)

oa
&, = 0,8, + 0,0, + 9, 0+, ——1(glx2 +(pf9+y/l)
X, = ox!

The corresponding Lyapunov function candidate V, is defined as:
1.
V, =V, +Ee2 (2.9)

The time derivative of Vv, is given by:

A oa A
:_k1e12 +ez(91e1+gzes +0,a, +¢2T‘9+'//2 _a_Xll(ngZ +§01T‘9+W1)

(2.10)
aézz: x%) 9T_107+F(oal(oe
69 = aXlk 1 d 1 2 axl 1 2
The tuning function 7, is defined as:
oa
7, =Tl—l“(—§02 +a—)(11(plje2 (2.11)

We choose the virtual control «, as:

1 A o . oa
a4 =— _kzez_glel_(pzT‘g_‘//z+_1(g1xz+(91T9+‘//1) TZ"'Z kll de (2.12)
9, X, kla

where, k, >0 is a positive design constant. Substituting (2.12) into (2.10), the derivative of

the Lyapunov function V.2 becomes:
V, = k€2 — k,e2 + 0,68, - ‘20 (0— ) éTr-l(é—Tz) 2.13)

Step 3: Define the third tracking error as e, = X, —a,, then, the time derivative of e, is

obtained as:
058 + 9503 + 30+ (91X2+¢’1Te+‘//1)
(2.14)
0 A 3 oa k)
] (gzx ‘sz‘g‘“//z) 3‘9_;6)(1(521) (d
The corresponding Lyapunov function candidate V, is defined as:
1.,
V, =V, +6 (2.15)

32



Chapter 2 Composite tuning functions based adaptive backstepping control

The time derivative of V, is given by:

i A oa A
V, = -ke? —k,e2 +e3(gze2 + 048, + 00, + 01 0+, _8_x12(glx2 +¢1T¢9+z//1)

a, TA 60‘2 AS 60‘2 (k) 60‘1( )
-——= X, + @ 0+ ——=0- - -1 2.16
aXz (g2 ’ ’ l/lz) 00 kz_;axl(g_l) & 00 ( )

| A oa oa
-0'T 1(0_TZ+F[_¢3+5_X12¢1+§:%}€3J

The tuning function 7, is defined as:

ox oa
3=10 _r[_% +a_xlz§01+8722¢’2jes (2.17)
We choose the virtual control «; as:
1 A oa A
o3 = g [ kq€; — gzez_(PsTe_‘//3+8_Xf(glxz+(/’1TH+‘//1)
’ (2.18)
o A ox
+——2 (92X3+(/’;0+‘//2) +Z k21 Xid Vs
X, k=1 8 X4
where, v, =e, 8a11_ -, + Oat —2¢ +a—go and k,>0 is a positive design constant.
C o6 ox X, ’

Substituting (2.18) into (2.16), the derivative of the Lyapunov function \/'3 becomes:

. 6 oa. e A
V, =—ke’ -k, kel +g.ee, - oy (49 1'3) Iy (49— ) QTF1(9—13)—e3v3 (2.19)

one has,

A A oa oa
0—r2=9—13—F(—¢3+8—X:¢1+6722¢2j63 (2.20)

Substituting (2.20) into (2.19), we obtain:

: oa oa ~ A
V., =—ke?—ke?-k.e?+q.ee —(e —2 1, 1}(9— ) HTF‘l(H—r) 2.21
3 1v1 2v2 3¥3 g3 3¥4 3 60 89 3 ( )

Step i(i=4,---,n—1): Define the i" tracking error as e =x —a, ,, then, the time
derivative of g is obtained as:

oo, T 0o, i ~ 00,
(g X, o 0+, )——2LO0— = (2.22)
& ox, ( kXiar T Pk V/k) 20 2o X

=0i6., T 0 +¢)i-r0+l//i -

The corresponding Lyapunov function candidate V, is defined as:
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V.=V, +%eﬁ (2.23)

The time derivative of V. is given by:

i-1 i-1

| oa. oo, | A
Viz_zkkekZ_I_e Egl 8,108, +0,0+0 9+l//l Z axl l(gka+1+§0k9+‘//k) _aéle

k=1 k=1 k

L Oa, 2 6ak( ) A & oa
- ' € — -0'T -7 +T| - + [
kz;axl(g J L k+L i-1 1 kZ; P k
The tuning functions 7; are defined as:
i-1
n=7,-T-¢ +z%¢k & (2.25)
k=1 axk
We choose the virtual controllers ¢; as:
1 TA 1
a; :g_ —kie, — 0.6, —9 0—y; + Z (gkxk+1+¢k9+l/jk)
! “ (2.26)

Ja;, SR ING
+— T, + -V,
00 éaxg-@ &

i-2 i-1
where, v, zzekﬂ%l“(—(pi +Zaa‘*1 gok] and k; >0 is a positive design constants.

k=1 k=1 Kk

Substituting (2.26) into (2.24), the derivative of the Lyapunov function \/'i becomes:

oo, SIS G f
V'__zkek+g| i€ 6 6(9 (‘9 f) Zek+1 A( 1)—9F (e_ri)_eivi (2.27)

k=1

one has,

é—rH:é—fi—( +Z - k} (2.28)
k

Substituting (2.28) into (2.27), we obtain:
i i-1 R - R
=Skl + g8 Zemaii‘(@—ri)—HTF'l(H—ri) (2.29)
k=1 k=1 00

Step n: Define the n" tracking error as e, =X, —«,_,, then, the time derivative of ¢, is

n-17

obtained as:

. oo oo, » & O, "
e =g U+ O+y, — (g X+ O O+, |- O - Ly} (2,30
2 ; ox, ( kKK T P V/k) 50 ;ﬁxl(g_l) 9 (2.30)

The corresponding Lyapunov function candidate V =V, is defined as:
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V=V ;e (2:31)

The time derivative of V is given by:

n-1 R n-1 R R
V=-) ke e, [gn_len_ﬁ 00+ gL0+y,~ 3 (g, x, a4y, ) - aggl 6
k=1 k=1 k
(2.32)
1 Oa 1 (k) -2 60{k ( A ) 1| A _
- j - eu—=|0-7,,|-0T"|0-7,,+T| -0, Lo e,
kZ;axl(kl)de] k:1k159 1 1 ? 2
The tuning function 7, is defined as:
_p[_% L o, je” (2.33)
We choose the actual control input u as:
1 A = oa A
u :g_(_knen L _(D:;e_l//n +Z axn—l (gkxk+l +¢;9+Wk)
” o (2.34)
aa 0o,y +Z oo, -1
k=1 axm
n-2 n-1
where, v.= > e aifl“ -, + 064 ¢, | and k >0 is a positive design constant.
n k+1 69 n 8 k n
k=1 k=1 Kk

Substituting (2.34) into (2.32), the derivative of the Lyapunov function V becomes:
oa, 4 < oa, AT-1( A
V=- Zk ek—e by (9 1') Zek+1 ( ., |-0'T (9—rn -ev,  (2.35)

The direct adaptive law is given by:

A

O=r, (2.36)
Substituting (2.36) into (2.35), we obtain:
. n , n-2 aak 5
V==>ker->e. —A(Q—rnl)—envn (2.37)
k=1 k=L 00
one has,
A -1 a
0-7,,=7,-7 -I'|-p, + z Lo e, (2.38)
Substituting (2.38) into (2.37), we obtain
V=->kei<0 (2.39)
k=1

From (2.39), it is clearly that V is negative semi-definite and V e L_ (bounded).
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From (2.39), we establish that V is non-increasing. Hence, ¢, k=1,---,n and 0 are
bounded. Furthermore, all signals in the closed-loop system, i.e., X, >‘<1d,---,x£;‘*”, xL?),
a;, U and @ are also bounded.

By integrating of inequality (2.39) over [O,oo], we obtain:

Tikkekzdr <V (0)-V () <0 (2.40)

0 k=1

It means that, e cL,, k=1,---,n (square integrable). Therefore, e, eL,nL,_, k=1---,n.

00

By applying Barbala’s lemma [Sl0o91], we get lim,__e =0, k=1,---,n, which implies the

t—w

asymptotic convergence of tracking errors to zero.

2.3 Indirect adaptive control

In this section, the x-swapping filters with gradient and least squares adaptive laws are
designed for the indirect adaptive control design. The indirect adaptive law based on x-
swapping filters as described in this section is used to estimate the unknown parameters. In
the following, the detailed procedures for the indirect adaptive control design with stability

analysis are established.

2.3.1 ldentification based x-swapping filters

The swapping filters are used as an analytical device that uses regressor filtering to account
for the time-varying nature of the parameter estimates. The idea of a swapping filter is to
use nonlinear regressor filtering to convert the dynamic parametric system into a static
form in such a way that a standard parameter estimation algorithm can be used. Two
different types of swapping schemes are presented, one using z-swapping based identifier
derived from the tracking error model, and the other using x-swapping based identifier
derived from the state dynamics [Krs95a, Krs95b, Krs93, Son09, Soul8, Soul7, Souls,
vanll, vanl0, Wul8]. Each of these two swapping based identifiers allows application of
gradient and least squares adaptive laws. The uncertain nonlinear system in lower
triangular form (2.1) can be rewritten under the following nonlinear system in parametric

x-model form as:
x=f(xu)+¢" (x)0 (2.41)

where,
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glx2 + l//l

f(xU)= : .
(X’U) GnaXn t¥Woa (242)

g.u+y,

We introduce the following x-swapping filters as [Krs95a]:
Qy = A(Q, +x)— f(xu),Q eR" (2.43)
Q' =AQ" +¢" (x),QeR (2.44)

where, A<O0 is a negative definite matrix for each x continuous in t. We define the

estimation error vector as:
e=Xx+Q,-Q'h,ecR" (2.45)

with, 0 the estimate of @ and let:

E=X+Q, -0, eR" (2.46)
We obtain:

e=0'0+¢ (2.47)
The dynamics of € is governed by:

E=Xx+Q,-Q'0=A (2.48)

To guarantee the boundedness of 2 when go(x) grows unbounded, a particular choice of
A is made:

A=A -1¢" (X)p(x)P (2.49)
where, 4 >0 and A, is an arbitrary constant matrix satisfying:

PA +AIP=—I,P=P" >0 (2.50)

2.3.2 Choice of adaptive laws
The gradient adaptive law is given by:
f=r— 2 r_I">0,>0 (2.51)
1+vtr{Q'Q)}
The least squares adaptive law is given by:
A Qe

H:F1+ vtr{QTrQ} (252)

where, T is defined as:
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For 99 I,r(0)=r"(0)>0,v>0 (2.53)
L+vtr{QTQ]

2.3.3 Proof of stability
Lemma 2.3.1: To establish the identifier properties, let [O,tf), the maximal interval of
existence of solutions of (2.41), the x-swapping filters (2.43) and (2.44), and the gradient

adaptive law (2.51) or the least squares adaptive law (2.52) and (2.53). Then for v >0, the
following properties hold [Krs95a]:

fel, (2.54)
celnlL, (2.55)
Del,AL, (2.56)

2.3.3.1 Gradient adaptive law

We consider the following Lyapunov function as:
V= %éTr-lé +& P (2.57)

Along the dynamic equations (2.48) and (2.51), the derivative of the Lyapunov function V

becomes:
V=0T 0+ Pe+& Pé=0'T0+& ATPe +&"PAZ (2.58)
Applying of the following inequality [Krs95b]:
PA+ AP =1 —2/1P¢T(x)go(x)PS—l (2.59)
We obtain:
T
Vedrigce——— 99 o
1+vir{Q'Q}
T T

€ € € ~ ~T~
€ —€ €

Lvir{Q'o) 1t vir{Q'0)

g_§ €'e _1 €'e + ¢’ E—¢Te (2.60)
41+vtr{Q'Q} 4(1+Vtr{QTQ})2 L+vtr{Q'Q}

:_E €'e 3 € _~T € .
410r{Q7Q) | 2(1+vir{QT0}) 2(1+vir{QT0})

L3 de

- Alevtr{QTO}
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The nonpositivity of V proves that, 0e L, (bounded). Due to e=Q'0+¢ and the

boundedness of Q, it follows that € L, which, in turn proves that d e L .

By integrating of inequality (2.60) over [O,oo], we obtain:

<—(V(0)-V 2.61

;[1+vtr Q' dr 3( (0)-V ())<= (261)

This means that, < eL,. Since Q is bounded, then € € L,. The boundedness
Jrvir{erol

of Q2 and the square integrability of ¢ prove that ée L,.

2.3.3.2 Least squares adaptive law
From (2.52) and (2.53), we have the following identity:

d QO'

— () =-TIT" = >0 2.62

dt () L+vir{Q'TQ] (262)
We consider the following Lyapunov function as:

V=0"T"(t)0+€E"Pe (2.63)

Along the dynamic equations (2.48), (2.52) and (2.53), and by applying of inequality

(2.59), the derivative of the Lyapunov function V becomes:
V=0'T%+4" %(rlé)ﬁ” Pé+¢"Pé

T -0 T T 00 T 0+ N Pe+¢ PAC
< 0T H-0T T O-0'T9-¢c"¢

~ Q' . 0000 00 o
1+vtr{QTm} 1+vtr{QTrQ} 1+vtr{QTm}
Qo 0" Qe Te

1+ vir{QTQ) 14 vtr{QTO) -
€ e e'e T~

T 1ovr{QTro) +1+vtr{QTFQ} B

T
€ €

Lovtr{QTQ) (2.64)

Which, due to the positive definiteness of I'™* (t) proves that, 0e L, (bounded).
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By integrating of inequality (2.64) over [O,oo], we obtain:

T
€ €

£1+ vtr{Q'TQ}

dr SV(O)—V (oo)<oo (2.65)

€

This means that,
\/1+ vtr[Q'TQ)

€ L,. Using the boundedness of I" and Q, following

the same line of argument as for the gradient adaptive law, we prove that e L, nL_ and

delnL,.

2.4 Composite tuning functions based adaptive backstepping control

In this section, the proposed composite tuning functions based adaptive backstepping
control is based on the combination of both tracking error based parameter adaptive law of
the direct tuning functions based adaptive backstepping control described by (2.36) with
the estimation error based parameter adaptive law of the indirect adaptive control described
by (2.51) and (2.52). The control objective of this approach is to design a composite tuning

functions based adaptive backstepping controller u such that the system output X, tracks

the desired trajectory x, and to ensure the boundedness of all signals in the closed-loop

system. The main procedures for designing the composite tuning functions based adaptive

backstepping control method for system (2.1) with stability analysis are given as follows.

2.4.1 Composite sum based gradient adaptive law
We use the same steps as that in the direct tuning functions based adaptive backstepping
control described by (2.2)-(2.33).

Then, we choose the actual control input U as:

1 A oo A oa
U=— _knen_gnf €1~ ;9_ n T = Qi Xia t+ 0+ + - Th
n[ A 4 kZ:;, o, ( kR T Pk Wk) 00
, (2.66)
oa, , oa, a < Qe
+ —-V, + €
Z_l‘é ( 00 §0+en Z;‘ o ][ 1+vtr{QTQ}B

n-2 n-1
where, v, =Zek+1%l"£—gpn +Zag“ gok] and k, >0 is a positive design constant.

k=1 k=1 k

Substituting (2.66) into (2.32), the derivative of the Lyapunov function V becomes:
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v_—Zk e v ( ) Z " “k(a— ) éTrl(é—rn)

(2.67)
e aan 1 z QG
"\ 06 §0+e§ i 1+vtr{QTQ}
The composite sum based gradient adaptive law is defined as:
A Q
§=7, 4T —— (2.68)
L+vtr{Q'Q}

2 n-2 n-2
- e .
where, €=X+Q,—Q'6. We assume that, —"— > e, ~ > &, for sufficiently small

0+ n k=1 k=1
¢, then,

; : 0" Qe
V=-Nke-—""" 2.69
; S 1+ vtr{QTQ} (2.69)

Theorem 2.4.1: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by state space form (2.1). Suppose that assumptions 2.2.1
and 2.2.2 are satisfied. Then, the virtual controllers (2.6), (2.12), (2.18) and (2.26), the
actual control input (2.66) and the composite sum based gradient adaptive law (2.68)
guarantee that all signals in the closed-loop system are bounded.
Proof: We consider the following Lyapunov function as:

= izn:ef +%¢9~Tr—1é+€T Pé (2.70)

i=1

The derivative of the Lyapunov function V becomes:

n AT
V==Y ke __ 99 speLepé
~ 1+ vtr{QTQ}

~r (2.71)
= Zk LAY\ IV Y
= Levtr{Q'Q)
Applying of inequality (2.59), we obtain:
. n 0" Qe
V<-Yke-—— __¢'¢
kZ:;‘ o 1+vtr{Q'Q)}
(2.72)

: , 3 €e
< Yker-3

s 41+ vtr{QTQ}

Therefore, we can conclude that, V , e,, k=1,---,n, @ and € are bounded.
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Furthermore, all signals in the closed-loop system, i.e., X, %4~ X0, X", &, u and

0 are also bounded.

2.4.2 Composite e-modification based gradient and least squares adaptive laws

In order to robustify the adaptive law, we introduce a o-modification term into the adaptive
law (2.36). Then, we use the same steps as that in the direct tuning functions based
adaptive backstepping control described by (2.2)-(2.33).

The actual control input u is defined as:

1 A oo, A oa
u= _[_knen L _qor-:e—l//n + Z - (gkxk+1 + (pII0+V/k)+ aé_l Ty

n k=1 Kk

n aanil (k) a n n n-2 8ak R _ (273)
Lo g e 5 o o 0P)

= d n —

& O« G oa . . :
where, v, =Zek+16—ékl“ -@, + aX”‘l o, | and k, >0 is a positive design constant.
k

k=1 k=1

Substituting (2.73) into (2.32), the derivative of the Lyapunov function V becomes:

\/——Zn:k ez—e ( ) nie 8ak( )—éTF‘l(é— )
- k~k k+1 A Tn
k=1

; v (2.74)
—g, | o1y 7 € % Fag(e 6)
00 é’o en k1 00

The composite o-modification based gradient and least squares adaptive laws are given by:

ézz‘n—l"ag (é—g) (2.75)
n-2 n-2
We assume that, > D61~ D &, forsufficiently small ¢, then,
Co en k=1 k=1
V=-> kel +0,0(0-0) (2.76)
k=1

where, o, is small design constant to introduce the s-modification for the closed-loop

system and @ is computed with the gradient method as follows:
-~ Qe

g=T— >  _T=I">0 2.77
1+vtr{QTQ} @77)

or with the least squares method as follows:

Qe
1+ vtr{QTfQ}

=T (2.78)
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where, T is given by:

I L T, 0(0)=T"(0)>0,v>0 (2.79)
1+vtr{Q'TQ}

with, e =x+Q,-Q'6 .

Theorem 2.4.2: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by state space form (2.1). Suppose that assumptions 2.2.1
and 2.2.2 are satisfied. Then, the virtual controllers (2.6), (2.12), (2.18) and (2.26), the
actual control input (2.73) and the composite o-modification based gradient and least
squares adaptive laws (2.75) guarantee that all signals in the closed-loop system are
uniformly ultimately bounded (UUB) and the tracking errors converge to a sufficiently
small neighborhood of the origin by appropriately adjusting the design parameters.

Proof: We consider the following Lyapunov function as:

Y% :lzef Lorg (2.80)
257" 2

We assume that, @ —@ is bounded, thus, e, =6—8 is bounded, § =0 —e¢, and 6=60—-0.

The derivative of the Lyapunov function V becomes:

vV :—Zn:kkef +0,0" (é—9+e9)
k=1

) (2.81)
= —z kel -c,0'0+0,0"e,
k=1
Applying of the following inequality:
. 00 ¢
fe,<—+2 2.82
R (2:82)
We obtain:
C 2 Oy a7 0 A2
Vv S—Zkkek 5 0'0+—"Fe,
. (2.83)
<> ke&i-—20"0+u
k=1
Based on the above discussions, we can get the following inequality:
V<—nV+u (2.84)

where, 7=min{2k T'o,} and u =%e§. From the inequality (2.84), if V = p and 7z>%,

then V <0. Itimplies that V (t)< p forall t>0 for V(0)<p.
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Multiplying both sides in (2.84) by e™ yields:

d

E(V (t)e™)< ue™ (2.85)

Moreover, by integrating (2.85) over [0,t], we have:

/u ;u -t
OV (t)<=+|V(0)-= 2.86
=4+ (v(0)-“)e 22
Since £ >0 , It can be obtained that:
T
0<V (t)<V(0)e™+£ (2.87)
T

Therefore, we know that, e, k=1,---,n, @ and e are UUB. Furthermore, all signals in the

closed-loop system, i.e., X, Xz, Xg X", X", ¢, u and 6 are also UUB. In

addition, from (2.80) and (2.87), it follows that: |e|= Zn:ekz < JV (0)e +[2u/x .
k=1

Accordingly, when t —oo, it is easy to show that: [e]| < \/24/7 . This completes the proof.

2.5 Dynamic model of the electromechanical system
This section describes the dynamic model of the electromechanical system (one-link
manipulator actuated by a brush DC motor) [Bec13, Car95, Daw94, Lil0a, Pan15, Sou21l,
Sunl3, Yul8a, Yulb5a, Zhal8a, Zhal8b, Zhal7]. The dynamic model of the
electromechanical system can be described by following equations as in [Bec13, Lil0a,
Zhal8a, Zhal8b, Zhal7]:
Dq:+ Bd+Nsin(q)=1+A,(t) (2.89)
MI+HI+K_g=V
where, g, ¢ and ¢ denote the link angular position, the angular velocity, and the
acceleration, respectively. | is the motor armature current. V is the input control voltage.

M is the armature inductance. H is the armature resistance. K_ is the back-emf
coefficient. D, B and N are constants. A, (t) is the external disturbance.

Let’s then define the state variables as follows: X, =0, X, =¢ and X, =1 . We obtain then

the dynamic model of the electromechanical system, described in the following state space

form as:
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X =X
X, = f,(X,)+b,%; +d, (1) (2.89)
X, = f5(X)+byu
- . B K, H 1
where, fz(xz)———sm(xl)—sxz, f3(x)_—Vx2—Mx3, b, =5 b,=—and u=V.

2.6 Simulation results

This section presents the simulation results for composite tuning functions based adaptive
backstepping control method as applied to an electromechanical system mathematical
model. Direct tuning functions based adaptive backstepping control, indirect adaptive
control and composite tuning functions based adaptive backstepping control techniques
have been simulated in order to verify the performance, validity and effectiveness of the
proposed composite adaptive control approach. The simulations are performed using
MATLAB/Simulink. The simulation results are obtained based on the electromechanical
system parameters [Bec13, Lil0a, Sun13]: D=1, B=1, M =0.05, H=0.5, N=10
and K, =10. The external disturbance is chosen as [Daw94, Pan15, Sun13]: d,(t)=0.

m

N K
The values of unknown constant parameters are assumed as: 6, = D and 6, = IV where,

0=6, 03]T, @, =—sin(x,) and ¢; =—Xx,. The control objective of this simulation is to

design the composite tuning functions based adaptive backstepping controller u for the
electromechanical system in such a way that the link angular position ¢ tracks the desired
trajectory x4 and to ensure the boundedness of all signals in the closed-loop system. The

desired trajectory used in the simulation test is taken from [Car95]:

X, :%sin(t)(l—e’o'uz)[rad]. The virtual controllers «, and a, are defined as:

o = —Ke + Xy (2.90)
1 : ~ B oa 2, da

a,=—| —k,e, —e, +sin(x)6, +— X, + —L%, + ¥ —L_x*) (2.91)

2 bz[ €, — € (X1)2 Dz axl 2 kz_l:axg_l))ﬁd
For the swapping based identifier, we use the following x-swapping filters:

) i 2 B
Q, = (—0.5—1Z (sin(x,)) )(QO2 + x2)+5x2 ~b,x, (2.92)
Q) :(—0.5—/12(sin(x1))2)§2; —sin(x,) (2.93)
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: H
Lo, :(_0-5—/13)(22)(903+X3)+MX3—b3u (2.94)

O =(-05-24 ) - x, (2.95)

2.6.1 Composite sum based gradient adaptive laws

The actual control input u is chosen as:

2

1 A~ H oa oa . ~ B
u =—[—k3e3—b2e2+x26?3+ﬁx3+a—xfx2 + 8x2 (—sm(xl)e2 “ox +b2x3j

3
oa : oa 3 da oa Qe

+—2| -T,sin(x)| &, ——2¢e, [ [+, T x4 222 22

00 OX, = oxt 06, “1+wtr{Q)Q,]

2

J (2.96)

The composite sum based gradient adaptive laws are defined as:

A i oa Qe

6,=-T,| sin e,——2e, |- 22 2.97

, =T, (xl)( " ] 1+V2tr{Q;QZ}J (2.97)

A Qe

0, =-T',| X,8,— 22 2.98

R 1+v3tr{Q;Q3}J (2:98)
where, ¢ =x+Q,-Q'8, i=23. The selected initial conditions are set as:

x(0)=[0 0 0], 6,(0)=0, 4,(0)=0, Q,(0)=Q}(0)=0 and O (0)=0 (0)=0.
The design parameters are selected as follows: k =0.5, k, =50, k,=3500, T, =1,

I'; =300, 4,=2,=0.1 and v, =v, =0.1. The simulation results are shown in Figures 2.1-

2.9. Figures 2.1-2.3 show the trajectories of the output variables. The trajectories of the
tracking errors are illustrated in Figures 2.4-2.6. Figures 2.7 and 2.8 show the trajectories

of the parameter estimates. The trajectories of the control inputs are shown in Figure 2.9.
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5 1 - indirect Q | § Y= x,indirect
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3 ! \ i g \ i i
c | 3 ‘
< -l i <)
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-1.5r b -15
L L L L L L L L
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Fig. 2.1: Angular position: desired x4 ("-") and Fig. 2.2: Angular velocity: desired X,4 ("-") and
actual x; ("--"). actual x; ("--").
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2.6.2 Composite o-modification based gradient adaptive laws

The actual control input u is given by:

1 ~ H oa oa
u= b—s(—k3e3 —h,e, + x,0, % +—2X, + 8x22 (—sm (%)6, ——=x, +b,x
; (2.99)
oa, ) oa oa N oa A=
+—2| -I',sin e,——=2e, ||+ 2y _Z221 & (6, -
892 ( 2 (Xi){ 2 8X2 BJJ ;axl(ld(l) de 892 2 6’2( 2 Z)J
The composite s-modification based gradient adaptive laws are defined as:
ézz—rz(sin(xl)(ez—%%}o& (éz—éz)J (2.100)
0X, ?
and,
g, =T, (x2e3 +a, (6, —53)) (2.101)
where, 6, and 6, are computed with the gradient method as follows:
g-T 46 (2.102)
Leytr{QfQ}
where, ¢ =x+Q,-Q'6,, i=23. The selected initial conditions are set as:

x(0)=[0 0 0], 4,(0)=6,(0)=0, 4,(0)=6,(0)=0, Q,(0)=0](0)=0 and
0y, (0)=Q; (0)=0. The design parameters are selected as follows: k, =0.5, k, =50,
k,=3500, I',=1, [,=5, I',=300, [,=10, o, =0, =01, 4,=4=01 and
v, =v,=0.1. The simulation results are shown in Figures 2.10-2.18. Figures 2.10-2.12

show the trajectories of the output variables. The trajectories of the tracking errors are
illustrated in Figures 2.13-2.15. Figures 2.16 and 2.17 show the trajectories of the

parameter estimates. The trajectories of the control inputs are shown in Figure 2.18.
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2.6.3 Composite o-modification based least squares adaptive laws
The actual control input u and the composite s-modification based least squares adaptive
laws are the same as that in the composite o-modification based gradient adaptive laws
described by (2.99)-(2.101), respectively. 8, and 6, are computed with the least squares
method as follows:

- Qe

62 =T, 2.103
1+vtr{QTrQ} (2103
with, T, is given by:
= QO _
I, =-T, ——— 1, (2.104)
Levtr{QTQ
where, ¢ =x+Q,-Q'6,, i=23. The selected initial conditions are set as:

x(0)=[0 0 0], 4,(0)=6,(0)=0, 4,(0)=6,(0)=0, ©,(0)=Q(0)=0 and
Q4 (0)=0Q; (0)=0. The design parameters are selected as follows: k, =0.5, k, =50,
k,=3500, ', =1, I,(0)=5, I';=300, [,(0)=10, o, =0, =0.1, 4,=4,=0.1 and
v, =v,=0.1.

The simulation results are shown in Figures 2.19-2.27. Figures 2.19-2.21 show the
trajectories of the output variables. The trajectories of the tracking errors are illustrated in

Figures 2.22-2.24. Figures 2.25 and 2.26 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 2.27.
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From all the results, it can be seen that all system states asymptotically converge to their
desired values, that the tracking errors converge to zero and that the convergence of the
parameter estimates to their true values is guaranteed. As shown in simulation results, we
can conclude then that the proposed composite adaptive control scheme is effective,
ensures faster convergence and achieve better parameter estimation in comparison with

direct and indirect adaptive control designs.

2.7 Conclusion

In this chapter, a new composite tuning functions based adaptive backstepping control
method for a class of SISO uncertain nonlinear systems in lower triangular form is
proposed. The proposed composite adaptive control scheme is designed to avoid the
overparametrization problem inherent in the conventional adaptive backstepping control
design. The proposed composite adaptive control scheme is applied to an
electromechanical system. Based on the Lyapunov stability analysis theory, it has been
proven that the proposed composite adaptive control algorithm guarantees the boundedness
of all signals in the closed-loop system. The performance of the proposed composite
adaptive control scheme is validated through numerical simulations. The simulation results
clearly show that performance, validity and effectiveness, and, improved tracking
performance can be achieved with the proposed composite adaptive control scheme
compared to direct and indirect adaptive control designs. In the next chapters, we will
develop novel composite adaptive control methods in order to overcome the problem of

explosion of complexity.
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Chapter 3

Composite adaptive dynamic surface control

3.1 Introduction

Over the past few years, adaptive backstepping control and tuning functions based adaptive
backstepping control methods are the most popular and effective control approaches for
uncertain nonlinear systems, which has received much attention [Cil07, Kan91, Krs95a,
Krs92, Wan16, Zho08]. However, adaptive backstepping control and composite tuning
functions based adaptive backstepping control techniques suffer from the problem of
explosion of complexity, which is caused by the repeated derivations of the virtual control
inputs. In recent years, a dynamic surface control (DSC) scheme has been proposed to
eliminate this problem by introducing a first-order low-pass filter at each step of the
conventional backstepping control method [Hed00, Swa00, Swa97]. In [Hed00, Yip98],
the dynamic surface control method has extended to adaptive control and has been widely
applied for a class of uncertain nonlinear systems [Khel5, Liul8a, Liul7a, Liul7b,
Yul5b]. Composite adaptive dynamic surface control has been also introduced for a class
of SISO uncertain nonlinear systems in lower triangular form [Soul8, Soul7].

In this chapter, a novel composite adaptive dynamic surface control approach is proposed
for a class of SISO uncertain nonlinear systems in lower triangular form. The proposed
composite adaptive control technique is introduced to improve parameter estimation. By
using the proposed composite adaptive control technique, the problem of explosion of
complexity inherent in the conventional adaptive backstepping control and composite
tuning functions based adaptive backstepping control designs is eliminated. It has been
proved that all signals in the closed-loop system are bounded by using the Lyapunov
stability theory. Simulation results for an electromechanical system are presented to
illustrate the efficiency of the proposed composite adaptive control scheme compared to
direct and indirect adaptive control designs.

The rest of this chapter is arranged as follows. The direct adaptive dynamic surface control

is presented in Section 3.2. Section 3.3 is dedicated to the indirect adaptive control. The
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composite adaptive dynamic surface control is proposed in Section 3.4. The simulation
results are included in Section 3.5. Finally, conclusions are given in Section 3.6.

3.2 Direct adaptive dynamic surface control
In this section, we will consider the following SISO uncertain nonlinear system in lower

triangular form:

)6 +y,(%),i=2,--,n-1 (3.1)

where, x=[x X, - xn]T eR" and ueR are system states and the control input,

respectively. 8 e R™ are unknown constant parameter vectors, X, =[x X, - X, ]T and

x = X, . The nonlinear functions ¢ , v, and g, # 0 are known and continuous. The control

objective of this approach is to construct a direct adaptive dynamic surface controller u

which ensures that the system output x, tracks the desired trajectory x,, while all signals

in the closed-loop system are bounded. Throughout this chapter, to facilitate the control
design and synthesis, the following standard assumptions of the system (3.1) are exploited.

Assumption 3.2.1: There is a positive constant g, where, ‘gi (Z)‘ >(g,, 1=1---,n.
Assumption 3.2.2: The desired trajectory x,, and both its first and second derivatives X,

and X, are known, continuous and bounded.

The main procedures of the direct adaptive dynamic surface control design for system (3.1)

with stability analysis using Lyapunov stability theory are summarized as follows.
Step 1: Define the first surface error as S, = X, — X4, then, the time derivative of S, is
obtained as:

S, =% %y = 0%+ 6 +y;, — (3.2)
We choose the virtual control X, to drive S; towards zero with,

_ 1 A )
X, :g_(_(ﬂlTel_‘//l"'Xid - Klsl)_glsl (3.3)

1

where, K, is a positive design parameter.

To avoid the problem of explosion of complexity in the conventional adaptive

backstepping control and composite tuning functions based adaptive backstepping control,
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we introduce a new variable x,, and let X, pass through a first order filter, with time

constant 7, to obtain x,, as:

Ty %pq +Xoq = %51 %oq (0) =%, (0) (3.4)

) 1 1 A )

X4 ZT_(_de +g_(_(01Te1_‘//1+X1d - Klsl)_ 9151j (3.5)
2 1

Step i(i=2,---,n—1): Define the i" surface error as S; = X, — X, then, the time derivative
of S, is obtained as:
Si =X —Xq = giXi+1+(P|T‘9i +V¥; — Xy (3.6)

We choose the virtual controllers X, to drive S, towards zero with,

= 1 A ,

Xi+1:E(_¢iT0i_l//i+Xid _Kisi)_gisi (3.7)
where, K; is the positive design parameters. We introduce a new variable X, and let
X.., pass through a first order filter, with time constant z,,, to obtain X(isya @S

X T X = X X (0) =X (O) (38)

. 1 1 A .

Xia = T_(_X(m)d +g_(_§0iT€i —¥i+ % —KS, )_ giSiJ (3.9)

i+1 i

Step N : Define the n" surface error as S, =X, —X,, then, the time derivative of S, is
obtained as:

Sy =X, — X = QU+ 6, +1, — %4 (3.10)
We choose the actual control input u to drive S, towards zero with,

u =gi(—(p;én Yo+ %~ K, ) (3.11)

where, K, is a positive design parameter. The direct adaptive laws are given by [Yip98]:

él=F181g01
0 =TSp,i=2"n-1 (3.12)
én =I'.S, o,

where, T', >0, i=1---,n are design parameters that can be adjusted for the rate of

convergence of the parameter estimates.
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3.2.1 Stability analysis
Define the boundary layer errors as [Yip98]:

Y, =Xy —X,01=2,---,n (3.13)
and the parameter estimation errors as:
6=6-6,i=12,--,n (3.14)
Then, the closed-loop dynamics can be expressed in terms of the surface errors S,, the
boundary layer errors y,, and the parameter estimation errors &, .
The dynamics of the surface errors are expressed, for i =1, as:
Sl =X =Xy = 91X2+§01THl+W1_X1d
= 0,5, + 01 Xyq + (DlT O+, — Xy
=0,5,+ 0, Y, +9,%, +(/)1T€1 +yY— Xy
=0,5,+0,Y, —K;S; + (/)1T€1 - 91251

(3.15)

Fori=2,---,n-1:
Si =X =% = 0%, + @ 6+, — X

= 0iSi1 +0iX

i~i+l

i+1)d +§0iT‘9i +¥; — X

e | (3.16)
=051+ 0 T 0%+ @ 6+ — Xy

i~i+l

+0 Vi —KiS; +(DiTéi _giZSi
For i=n:
S‘n :Xn_xnd :gnu+¢:9n+lr//n_xnd

" (3.17)
= _KnSn +¢r-:-‘9

The dynamics of the boundary layer errors 'y, are expressed, for i =2, as:

. . - 1 A . -
Yo =X =% :_[_de +_(_¢1T91_W1+ Xg — Klsl)_ glslj_xz
1

(3.18)

Fori=3,---,n:

. . = 1 1 A . =
Yi=Xg =% = ;[_xid +__(_¢iT—10i—l “Via T Xiga ~ Ki—lsi—l)_ gilsill_ X
' - (3.19)

== (X +%) =% ==(-y, - X +X)-X :—ly. -X
T id i i : i i i i 7 i i

We consider the following Lyapunov function as:
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V=Y V+DV,+>V, (3.20)
i=1 i=2 i=1
where,
1 1 1z
Vi ==S2V, ==y .V, ==0'T"6, 3.21
is 2 i iy 2 yl i0 2 i i i ( )

Then, for i =1,---,n—1, by some simple computations, one has,

vis = SiS =0;S;Si1 T ;S Vi — Kisi2 + Si(”.Téi - gizsiz (3.22)
Applying of the following Young’s inequalities:
l 2 1.,
<= S +=S: 3.23
gl i |+1 2 g 2 i+l ( )
1 1
giSiyi+l S_giZSiZ +_Yi2+1 (3-24)
2 2
We obtain:
» 1o 1., T5
Vi <-KSf + 28|+1+§ Vi +5:9, 6 (3.25)
and, for i =n:
Vns = SnS.n = _KnSr12 + Sn(DrTén (326)

one has, % =S, + X, and % =S, + Y, + X, then from,

- 1 a . ’.‘ S a .
Xzzg_( (aii Xije ¢1 ox, X1+X1d K, j_glsl_[a_)g(ixiJsl (3.27)

and, by induction, it is easy from:

(Dl—l A A < oW, , i Ly
' 0 )
gll[ {Z J ?10i4 JZ:; axj X+X( .1|1] g|1|1 (Z _ ]

(3.28)

one has,

) 1 1 op, . A o :
R ([%&JH (010_%)(1"')%_'(15}"918 +[a?(11 ]S (3.29)

17 9,

Since all terms in (3.29) can be dominated by some continuous functions, it follows that:

Y2+_y2 <B (Sl’SZ’y2’911X1d1X1d'X1d) (3-30)

[§)

yz +_y2

[§)

where, B, (.) is a continuous function. Thus,
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.1
Y2Y> +z__ )/22 <B, ()|Y2| (3.31)

2

By using Young’s inequality, it gives:

yz 2_()

VoY, S —— y2 2 (3.32)
as similarly for, i =3,---,n, we obtain:
| 2 Bl
g, <—Lyza ey Bol) (3:33)
7, 2 2
where, B, (.):Bn(Sl-- S.,Y, Y., 0, xld,xld,xld) is a continuous function. From
(3.32) and (3.33), we can write:
; 1, ¥ Bi2 () .
V, <——y ' +=t+—21=2,---)n 3.34
- ittt (3.34)
one has,
vie = éiTFi_léi = _éTri—lé = _éT Sip (3.35)
Therefore, the derivative of the Lyapunov function V becomes:
V=) Ve+ DV, + >V,
i=1 i=2 i=1
N 2 1, TA 2 C 1, '2 BZ(') o AT
<z KS T S|+1-|_2yi+1-|-si(pi9i _KnSn+Sn(pn n+z -——Yi +_ T _Zel Si@i
i=: i=2 T i=1
0 (3.36)

n-: n n 2
xS £

i=2 i=2 i=2

n-1 n
<-K,S; —Z(Ki —%jsf —(Kn —%jsnz —Z[%—ljyf +¢

i=2 i=2

M. . .
where, (/’227' and M, are the maximums of B, () Based on (3.36), by choosing the

i=2
design parameters such that, K, >0, K, >%, K, >% and 7, <1, we can conclude that, S,

and Y; are bounded.

3.3 Indirect adaptive control

The main procedures for designing the indirect adaptive control with stability analysis are

described as follows.
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3.3.1 Identification based x-swapping filters
To illustrate the identification based x-swapping filters design procedures, we consider the
SISO uncertain nonlinear system (3.1), which can be rewritten under the following

nonlinear system in parametric x-model form as [Soul8]:

% = fi(xu)+g (%) (3.37)
where,
0,%;, +y
fou)=| 3.38
( ) gn—lxn +l//n—1 ( )
g.u-+y,

We introduce the x-swapping filters as follows:
Qy =a (Qy +%)—f,(x,u),Q, eR (3.39)
Qf =aQ +¢ (%),Q, eR” (3.40)
where, i =1,---,n and a, <0 is a negative definite scalar function for each x continuous in
t. We define the estimation errors as:

& =%+Q; -0

10,6 eR (3.41)
with, 4, the estimate of ¢, and let:

E=x+Q,-Q'9,écR (3.42)
Then, we obtain:

€ =00 +¢ (3.43)

The error signal € satisfies:

6 =%+ -6 =a8 (3.44)
To guarantee the boundedness of Q; when ¢, (X,) grows unbounded, a particular choice of
a, is made:

2 =2, ~ gl (X)0 (%)R (3.45)
where, 4, >0 and a,; is an arbitrary negative constant satisfying [Sou18]:

2Pa, =-1P >0 (3.46)

3.3.2 Choice of adaptive laws

The gradient adaptive laws are defined as:
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6-1,— % 1 50v>0 (3.47)
L+ytr{Qf Q]

The least squares adaptive laws are defined as:

Qe
"Lvr QT Q)

=T (3.48)

where, T, is given by:

Q0]

I =-T; 1+wtr {QiTriQi}

r,,T;(0)>0,v,>0 (3.49)

3.3.3 Proof of stability

Lemma 3.3.1: To establish the identifier properties, let [O,tf), the maximal interval of
existence of solutions of (3.37), the x-swapping filters (3.39) and (3.40), and the gradient
adaptive laws (3.47) or the least squares adaptive laws (3.48) and (3.49). Then for v, 20,

the following properties hold:

0el, (3.50)
eel,NnL, (3.51)
0ecl,NL, (3.52)

3.3.3.1 Gradient adaptive laws
We consider the following Lyapunov function as:

V=T, + e (353)
Along with dynamic equations (3.44) and (3.47), the derivative of the Lyapunov function

V. becomes:

vi = éjrﬁé + 2F)I€I€I
TG 2

=010, +2R (3, ~ 0] (%) (X)R)& .
=410, +(-1-24Rg] (%)@ (%) R)&
Applying of the following inequality [Soul8]:
~1-24R] (%)@ (X)R <1 (355)

We obtain:
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[ <—0] 71;—"2—_£_~2
hErahae Levtr{o)
_ _ Eiz I € €_~2
= 1+vitr{QiTQi} 1+Vitr{QiTQi}i i
_3 ¢ 1 € € .
] 414vir{QI0, 4(1+vitr{QiTQi})2+l+vitr{QiTQi}i - (356)
=_§ ¢ B € P 2
41+vitr{QiTQi} 2(1+Vitr{QiTQi}) i
3 e’

<-——
41+vtr{Q/o
The nonpositivity of V, proves that, 8 €L, (bounded). Due to ¢ =Q8 +¢ and the

boundedness of €, it follows that ¢ € L, which, in turn proves that é, el,.
By integrating of inequality (3.56) over [O,oo], we obtain:

. .
! Wdf <5 (Vi(0)-Vi(w)) < (357)

This means that, G el,. Since €; is bounded, then ¢elL,. The

Jvitrioio))

boundedness of €; and the square integrability of ¢ prove that 67, el,.

3.3.3.2 Least squares adaptive laws
From (3.48) and (3.49), we have the following identity:

.
g(F;l) =T = i >0 (3.58)
dt Lentr{QTQ}

We consider the following Lyapunov function as:

Vi =0T ()6 +Pé’ (3.59)

Along with dynamic equations (3.44), (3.48) and (3.49), the derivative of the Lyapunov

function V, becomes:
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=0T S 2mi
dt

=0T -0 TG 0T + 2P

. . (3.60)
=0T -G TN T0-0]T,0 +2R (a5~ Ag) () (% )R )&

~OT - T LG -47T G +(-1-22Pg] (7)o, (%)P)

Applying of inequality (3.55), we obtain:

<TG -G 0T -

O e, 00,00 0’ Qe "

LhvtrloTa) "L vl oo ‘

_ QiTéiei _ éiTQigi 2
: LevirlQra | 1evtr{QT o) ’ (360

2 ~2
€ € 2

- + €
Lovtr{QTQ | Levtr{QTQ

2
§

< — 4
Levtr{QTQ |

Which, due to the positive definiteness of T';*(t), proves that, 8 e L, (bounded).

By integrating of inequality (3.61) over [O,oo], we obtain:

2
€.

llwgr{éjrigi}

dz <V, (0)-V, () <o (3.62)

This means that, G e L, . Using the boundedness of I"; and €2, following
Jrvtrioiro,)

the same line of argument as for the gradient adaptive laws, we prove that ¢ e L, nL_ and

del,nL,.

3.4 Composite adaptive dynamic surface control

The composite adaptive dynamic surface control proposed in this section is driven by the
combination of both surface error based parameter adaptive laws of the direct adaptive
dynamic surface control described by (3.12) with the estimation error based parameter
adaptive laws of the indirect adaptive control described by (3.47) and (3.48). The control

objective of this approach is to construct a composite adaptive dynamic surface controller

63



Chapter 3 Composite adaptive dynamic surface control

u such that the system output x, tracks the desired trajectory x,, and to guarantee that all

signals in the closed-loop system are bounded. The detailed procedures for the composite
adaptive dynamic surface control approach for system (3.1) with stability analysis are

summarized as follows.

3.4.1 Composite projection based gradient adaptive laws

Projection properties: We assume that 6, is estimated by éi , where, 0. are the estimates

of 6.. The estimation errors are given by:

6,=6,-6 (3.63)
The projection operators are defined as [Far06, loa07, 10a96, Soul8]:
_ o if §6<M? orif (§6=M7 and 6 <0),
Proj, ()= (3.64)
' 0 otherwise.

where, ‘¢’ represents any reasonable adaptation function. The projection algorithm
guarantees that the parameter estimates éi of 6 remain bounded and satisfy the
inequality, HH,“S M, .
Moreover, the projection mapping used in (3.64) guarantees that:

4] Proj, (o)< o, (3.65)
Therefore, the composite projection based gradient adaptive laws are defined as:

4 = Proj, [r, [S,gol +Q—€Br 0,20 (3.66)

' 1+vtr{QfQ}

The dynamics of estimation errors are given by:

2 A . Qe
6. =-6.=Proj, | -I';| S +—————||,[, >0,v, >0 (3.67
1 I ng { I[ |§0| 1+Vltr{QTQI}]J ( )

A
i

where, € =x +Q, —Q' 6.
Theorem 3.4.1: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are
satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the
composite projection based gradient adaptive laws (3.66) guarantee that all signals in the

closed-loop system are bounded.
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Proof: We consider the following Lyapunov function as:

V=YV +DV,+>V, (3.68)
i=1 i=2 i=1
and,
Vi :%Siz’viy = % yi27Vi = %éiTriléi + Puguz (3.69)

where, V,S, . and V'iy are expressed in (3.25), (3.26), (3.34), and,

V.i = _éiTrfléi _€iz

~ Qe
=-0'T;'Proj, | T,| S, + —————— | |- &7 3.70
I 1 Jei [ I[ |¢| 1+V|tr{QTQI}J} ( )

0" Qe .2

g_éiTs_ L R

I¢I
Leytr{Q O}
Therefore, the derivative of the Lyapunov function V becomes:

V=3, 43, + D,

n . L 2 B2,
Z( K.S2+= S.iﬁ%yiﬁsicofﬁi]—KnS§+Sn¢I9n+Z[—iyf+—3; n .2()]
i=2\ T

n n nT n
ST LU,

i=1 i 1+ Vi tr {QTQI } i=1
82 3a 2

LRIV
7 1in zz 4.11+vtr{QTQ}

3¢ €’
—1Iv2 S N I
Jy' e 4§1+Vitr{QiTQi}

(3.71)

n

where, (P:Z% and M, are the maximums of B, () Therefore, based on (3.71), by
i=2
. . 1 1
choosing the design parameters such that, K, >0, K, >E’ K, >§ and 7, <1, we can

conclude that, V, S;, V;, é, and ¢ are bounded. Furthermore, all signals in the closed-

loop system, i.e., X, Xq4, Xg, X,,°**, %,,, U and 0 are also bounded.

3.4.2 Composite projection based least squares adaptive laws
The composite projection based least squares adaptive laws are defined as:
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QN
1+ v,tr{Q,TFIQI}J (3.72)

éi = Projg_ I (S.(”. +

The dynamics of estimation errors are given by:

L A ) Qe
6, =-6 =Proj, | -I',| S;p, + — 3.73
b [ i 1+vitr{QiTFiQi}J G719

where, T'; are given by:

Q0]

e vtr{orQ|

I,,I;(0)>0,v,>0 (3.74)

with, & =X +Qy; Q'8

Theorem 3.4.2: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are
satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the
composite projection based least squares adaptive laws (3.72) guarantee that all signals in
the closed-loop system are bounded.

Proof: We consider the following Lyapunov function as:

V=YV, +>V, +%Zvi (3.75)
i=1 i=2 i=1
and,
N 1 2 . 1 2 ATl A ~2
Vi _ES‘ A% _Eyi V=0T, (t)gu +PRé¢ (3.76)

where, V,,, V,, and V, are expressed in (3.25), (3.26), (3.34), and,

Is?

V= —0[T}0, -0 TN L0, - 010, - &

;
= Proj, | T\[ Sip+ R v S
| L+vtr{QTQ}
~ . Q.c
6T 'Proj, | T, | S, + N -él 3.77
bi [ “ 1+v,tr{Q,Tr|Q,}N 3.77)
TH NT TH NT
S‘(”iTSﬂNi _ 6 6, " 6, Q,Q; 6, _ ”iT - 0, Qi _giz
lvtr{QTQ} 1+vtr{QT,Q} 1+vtr{QTQ
;5 eiQiTéi éiTQiQiTéi éiTQiEi ~2

< _ZSi(DiTe. i

Ltvtr{QTe) e virlQro) Levrioro)
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Therefore, the derivative of the Lyapunov function V becomes:

V= Zn:\/is +iviy +12n:vl

i=1 i=2 2 i=1
S wer ler 1o 5]k o2 T

< K S t3 2 S|+1+ 2 yi+1 +Si(/)i HI KnSn +Sn(0n en
i-1
C _1 2 y_|2 m _ \ _- \ 6|g-‘2|T i 1< 0TQ|QT0|

+ZZ:[ 7, SR le lel+vtr{QlTFIQl}+2;1+vtr{QTF,Q,}

1 9TQ€ 1Zn:€2 (3.78)

2.11+vtr{QTFQ} 24

s e e R

i Z\ 7 = 23 1+wtr Q,TF,Q,
= 1 1 L1 13 6-2
o Zz: 2 2 i;ri e 22_1:1+vtr{Q,TF,Q,}

where, ¢=Z% and M, are the maximums of B,(.). Based on (3.78), by choosing the

i=2

. 1 1
design parameters such that, K, >0, K, >§’ K, >§ and 7, <1, we can conclude that, V ,

S, Vi, ¢9~, and ¢ are bounded. Furthermore, all signals in the closed-loop system, i.e., X;,

Xig s Xig» X,y %,;, U and 9 are also bounded.

' i+l

3.4.3 Composite e-modification based gradient and least squares adaptive laws
The composite o-modification based gradient and least squares adaptive laws are defined

as:
0.=T\(s¢-0,(0-8)).T,>0,0, >0 (3.79)
where, o, are small design constants to introduce the c-modification for the closed-loop

system and 6, are computed with the gradient method as follows:

g-T— % T .0v>0 (3.80)
L+ytr{Q/Q

or with the least squares method as follows:
- — Qe

S ara) (3.81)

where, T

are given by:
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For_ 2% T,(0)>0,%,>0 (3.82)
RERAToN ORI o '

with, ¢ =x +Q, —Q' 8 .

Theorem 3.4.3: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are
satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the
composite s-modification based gradient and least squares adaptive laws (3.79) guarantee
that all signals in the closed-loop system are UUB and the surface errors converge to a
sufficiently small neighborhood of the origin by appropriately adjusting design parameters.

Proof: We consider the following Lyapunov function as:

V=)Vi+DVy+>V, (3.83)
i=1 i=2 i=1
and,
1 1 1z
Ve =<8V, ==y .V, ==6T'4 3.84
is 2 i iy 2 yl 14 2 i i i ( )

where, V,, V,, and V, are expressed in (3.25), (3.26), (3.34), and,

Vi, =0T, =~0]T7"
= _éiTri_l(riSi¢i ~Lioy, 0, - _)) (3.85)

We assume that, 6,—6, is bounded, thus, &, =6 -6 is bounded, @ =6 —e, and
6 =6 —@ . The derivative of the Lyapunov function V,, becomes:
vi :_éiTSi(/’i+O'-éiT éi_0i+e-
T " ( ) i) (3.86)
:_eiTSi(oi —O'é,ﬂiTHi "'O_aieiTee'i
Applying of the following inequality:
00 e
O'e, <-4+ 3.87
& < (3.87)
We obtain:
. ~ Oy ~~~ O,
Vi <=07Sip =016, + ¢ (3.88)

Therefore, the derivative of the Lyapunov function V becomes:
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n n n

\Y; :Z\/'iS +Z\iiy +Z\/w
i=1 i=2 i=1
= 1., .1 - 5o L. v B
<Y | -KS*+=S2 +=y2 +S0'6 |-K S?+S 00 +> | ——y +2+ 122
i_l( i~ 2 i+1 2y|+1 |§0| |j n*n nq)n n ;( Ti yl 2 2
Y ASa -2 LG+ e
i=1 i=1 2 =1 2 I
n-1 n n B2 n ~
<Kks2-S[k -1 sf—(Kn-1 st-y [ Loaleey '()—Zﬁefe, £y Zag
i=2 2 2 i=2 \_Tj iz 2 iz 2 i=1 '
n-1 n n - n
skt -3 k-3 Jsi-(Kam3 Jsi -3 Foaeo- 2R a0 3 e
i=2 2 2 i=2 \ Tj o 2 i=1 '
) & 1) 1\e: [ 1 2 % st
S_l‘<1Sl KI__ SI - Kn__ Sn _Z __1 yl _Z I gl 0I+ILI
i=2 2 2 i=2 \_Tj i=1
(3.89)
The above inequality can be rewritten as follows:
V<-aV+u (3.90)
. 1 1 1 L0, , M,
where, 7=min{2K,2| K,—= [,2| K, —= [,2| —=1|T0, ¢, u=@+ ) —e, , p=) —
rds3)e(k3) o) nmo B 02
and M, are the maximums of B, () Multiplying (3.90) by e™ yields:
d it it
a(v(t)e )< e (3.91)
Integrating (3.91) over [0,t], we have:
osv(t)sﬁ+(v (o)—ﬁje-’ft (3.92)
T T
Since £ >0 , it can be obtained that:
T
0<V(t)<V(0)e™+£ (3.93)
T
1

Therefore, based on (3.89), by choosing the design parameters such that, K, >0, K. >§,

Kn>%, 7;<1 and o, >0, we can conclude that, S;, Y, é, and ¢ are UUB.

Furthermore, all signals in the closed-loop system, i.e., X, Xy, X4, X,***,%X,,, U and éi

i+1?

are also UUB.
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In addition, from (3.83) and (3.93), it follows that: |S|= Zn:Sf < J2V (0)e ™ +\2u/x .
i=1

Accordingly, when t —oo, it is easy to show that: [|S|<\/2u/7 . This completes the proof.

3.5 Simulation results

This section presents the simulation results for composite adaptive dynamic surface
control approach as applied to an electromechanical system mathematical model and as in
previous chapter. The control objective of this simulation is to construct the composite
adaptive dynamic surface controller u for the electromechanical system in such a way

that the link angular position q tracks the desired trajectory x,, and all signals in the
closed-loop system are bounded.
The signals X,, and X;, are generated by the filters:

. 1 )
Xpg = _(_de + %y = KS, — Sl) (3.94)

2
: 1 1( . ~ B ;
X,y = —(—x?,d +—(sm (%) 6, +—= X, + %o — Kzszj—bzszj (3.95)
7, b, D
The actual control input u is chosen as:
1 ~ H .
u =b—3(x293+mx3+x3d - KSSJ (3.96)
For the swapping based identifier, the x-swapping filters are the same as that in the chapter
2 described by (2.92)-(2.95).

3.5.1 Composite projection based gradient adaptive laws

The composite projection based gradient adaptive laws are defined as:

452 =Proj, | T, [Slsin(xl)L 26 B (3.97)

L+wtr{Q]Q,}

and,

; . Qe
0, =Proj. | -I'.| S.x, — 33 3.98
’ 2 { o (1+v3tr{Q;Qs}D &%)

where, ¢ =x +Q, —-Q'8, i=2,3.
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The initial conditions are selected as: x(0)=[0 0 O]T, 6,(0)=

Xoq (0) = X5 (0)

parameters are chosen as: K, =10, K, =5, K,=550, I', =150, I'; =550, 4, =1,=0.1,

0, 6,(0)=0,

0, (0)=0;(0)=0, ©4(0)=Q;(0)=0 and =0. The control

v,=v,=01and r,=7,=10".
The simulation results are shown in Figures 3.1-3.9. Figures 3.1-3.3 show the trajectories

of the output variables. The trajectories of the surface errors are illustrated in Figures 3.4-

3.6. Figures 3.7 and 3.8 show the trajectories of the parameter estimates. The trajectories of

the control inputs are shown in Figure 3.9.

- desired -, desired
x, diect L5r \ | = x, direct
E - indirect g \_ X indirect
g . 3 .
= = X, composite g == X, composite
2 \ >
A 9 |
: :
5 > i
3 8
2 3
< g
<
15
_2 L L L L _2 L L L L
0 5 10 15 20 25 0 5 10 15 20 25

Time [sec]

Time [sec]

Fig. 3.1: Angular position: desired x;4 ("-") and Fig. 3.2: Angular velocity: desired X,q ("-") and

actual x; ("--").

actual x, ("--").

10 0.0
l ’\ \ L ==X, desired _ l : l : S, direct
T
H f \ 'I \‘ { x, direct 2 oot = S, indirect
2 [ ~0 |
2 5 I \ \ |=% indirect 2 == S, composite
H )
£ /\ ] i , == X, Composite o 0.021
=} o
5} 1 ‘ g .
g 0 ! ! i ! , 2 Ops, ::d‘d: - - e
é “ ‘ ‘ { g [} , L
= S 57
8 i { 2002 4
2 5 ! ‘ e v
2 8
VUV
c
\ <
. L L L L -0 0R L L L L
100 5 10 15 20 25 006 5 10 15 20 25
Time [sec] Time [sec]

Fig. 3.3: Motor armature current: desired Xsq

("-") and actual x3 ("--").

Fig. 3.4: Angular position surface error: S;.

— 0 - = 02 -
° ? l l l s, direct <7 l l l s, direct
9 =
3 04r =S, indirect g oy = S, indirect
g 2 H 3
- . i 9 015k . i
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02k y 5
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s 005 %
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<
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Fig. 3.5: Angular velocity surface error: S,.

Fig. 3.6: Motor armature current surface error:

Ss.
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Fig. 3.7: Parameter estimate: actual ¢, ("-") and Fig. 3.8: Parameter estimate: actual 6, ("-") and

estimate 4, ("--"). estimate 4, ("--").
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Fig. 3.9: Control input: u.

3.5.2 Composite projection based least squares adaptive laws
The composite projection based least squares adaptive laws are defined as:

A . . Qe
6, =Proj, | -T',| S,sin - 22 (3.99)
2 = Prol; | =T Sisin(x) (l+vztr{QZF2Q2}J
and,
A . Qe
6, =Proj, | —T,| S;X, — 33 (3.100)
R I {l+v3tr{Q;F393}J
with, T, is given by:
.
I =-T 28 T, (3.101)

" enr{QTO

where, € =x +Q, —-Q' 9, i=2,3.

A

The initial conditions are selected as: x(0)=[0 0 O]T, ,(0)=0, 6,(0)=0,

0,(0)=0;(0)=0, ©Q,(0)=0Q;(0)=0 and X,(0)=x,(0)=0. The control

72



Chapter 3 Composite adaptive dynamic surface control

are chosen as: 50

parameters K,=10, K,= K, =750,

//LZ :13 =0,11 V2 =V3 =0_1 and z‘z 22'3 :10_3 )
The simulation results are shown in Figures 3.10-3.18. Figures 3.10-3.12 show the

trajectories of the output variables. The trajectories of the surface errors are illustrated in

Figures 3.13-3.15. Figures 3.16 and 3.17 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 3.18.
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3.5.3 Composite e-modification based gradient adaptive laws

The composite o-modification based gradient adaptive laws are defined as:

6, =-T,5,sin(x)-T,0, (6,-,) (3.102)
and,

6,=-T,5%,~T0, (6,-0,) (3.103)
where, 6, and 6, are computed with the gradient method as follows:

6 =T m?{—egm} (3.104)
with, ¢ =x +Q,, —Q/ 6, 1=2,3.
The initial conditions are selected as: x(0)=[0 0 0], 6,(0)=6,(0)=0,

é3(0): _3(0):0’ Qoz(o):Q; (O)ZO’ 903(0)252; (O)ZO and X, (O):Xsd (O):O. The
control parameters are chosen as: K, =10, K,=5, K,=550, I', =150, I'; =550,

r,=5,T,=50, o, =0, =01, 24,=24=01,v,=v,=01and 7, =1, =107,
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The simulation results are shown in Figures 3.19-3.27. Figures 3.19-3.21 show the

trajectories of the output variables. The trajectories of the surface errors are illustrated in

Figures 3.22-3.24. Figures 3.25 and 3.26 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 3.27.
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3.5.4 Composite e-modification based least squares adaptive laws
The composite o-modification based least squares adaptive laws are the same as that in the
composite o-modification based gradient adaptive laws described by (3.102) and (3.103).

0, and 6, are computed with the least squares method as follows:

0 =T L (3.105)

" eyir{QTO

with, T, is given by:

. T
fop_ 2% F (3.106)
L+ytr{Q T,
where, ¢ =x +Q, -Q' 0 ,i=23.
The initial conditions are selected as: x(0)=[0 0 O]T, 6,(0)=6,(0)=0,

0,(0)=6,(0)=0, Q,,(0)=0} (0)=0, Oy, (0)=0] (0)=0 and X,, (0) =X, (0)=0. The
control parameters are chosen as: K, =2.5, K,=10, K,=50, I',=100, I',=250,

I,(0)=55, I,(0)=550, 6, =0, =0.1, 4,=4,=01, v,=v,=01and 7, =7,=10".
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The simulation results are shown in Figures 3.28-3.36. Figures 3.28-3.30 show the

trajectories of the output variables. The trajectories of the surface errors are illustrated in

Figures 3.31-3.33. Figures 3.34 and 3.35 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 3.36.
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It can be clearly observed from all the results that all actual trajectories converge to their

desired values, that the surface errors converge to zero, that the parameter estimates

converge to its true values and that the proposed composite adaptive control approach has a

reasonable control effort. The simulation results clearly show that effectiveness, higher
accuracy and improved that the trajectory tracking performances can be achieved under the
proposed composite adaptive control scheme compared to direct and indirect adaptive

control designs.

3.6 Conclusion

This chapter presents a novel composite adaptive dynamic surface control scheme for a
class of SISO uncertain nonlinear systems in lower triangular form. In order to overcome

the problem of explosion of complexity inherent in the conventional adaptive backstepping

control and the composite tuning functions based adaptive backstepping control designs,

the proposed composite adaptive control scheme is designed. To demonstrate the
effectiveness of the proposed controller, an implementation to an electromechanical system
is studied. Based on the Lyapunov stability theory, the proposed composite adaptive
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control scheme can guarantee that all signals in the closed-loop system are bounded.
Theoretical proof improvements claimed above are proved and implemented by simulation
results for an electromechanical system to show the effectiveness of the proposed
composite adaptive control scheme in comparison with direct and indirect adaptive control
schemes. For next work, we will focus on designing of composite robust adaptive dynamic
surface control algorithm under unknown external disturbances in order to remove also the

problem of explosion of complexity.
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Chapter 4
Composite robust adaptive dynamic surface

control

4.1 Introduction

During the past few years, robust adaptive control approaches that combine robust control
and adaptive control methods of uncertain nonlinear systems with external disturbances
have received much attention [Xil9, Yao02, Ya097, Zhal5b]. Compared with the works
considering the adaptive dynamic surface control, robust adaptive dynamic surface control
has been also introduced to eliminate the problem of explosion of complexity inherent in
the conventional adaptive backstepping control and composite tuning functions based
adaptive backstepping control approaches. Recently, there are a few works regarding to
the robust adaptive dynamic surface control of uncertain nonlinear systems with additive
external disturbances [EIm19, Ganl5, Hel6, Houll, Liul8b, Lil2b, LilOa, Lil0Ob,
Shel7c, Zhal8a, Zhal8b, Zhal7]. In addition, composite robust adaptive dynamic surface
control of uncertain nonlinear system has been also proposed [Che10].

This chapter presents a novel composite robust adaptive dynamic surface control technique
for a class of SISO uncertain nonlinear systems in lower triangular form under unknown
external disturbances. The proposed composite robust adaptive control scheme is utilized
to achieve higher tracking accuracy and better parameter convergence. The proposed
composite robust adaptive control method is introduced to avoid the problem of explosion
of complexity. The boundedness of all signals in the closed-loop system is proven based on
the Lyapunov stability theory. To demonstrate the effectiveness and robustness of the
proposed composite robust adaptive control scheme, simulation results for an
electromechanical system are provided. In addition, direct and indirect robust adaptive
control designs are also studied and simulated in comparison with the proposed composite

robust adaptive control scheme.
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The remaining of the chapter is organized as follows. The direct robust adaptive dynamic
surface control is presented in Section 4.2. Section 4.3 is devoted to the indirect robust
adaptive control. The composite robust adaptive dynamic surface control is proposed in
Section 4.4. Section 4.5 is concerned with the simulation results. Conclusions are given in
Section 4.6.

4.2 Direct robust adaptive dynamic surface control
In this section, we will consider the following SISO uncertain nonlinear system in lower

triangular form with external disturbances:

% =0 (%)% + @ (%)6 +v;(x)+d, (1)
% =0 (%) %1+ o (X)6 +y; (%) +d, (t),i=2,,n-1 (4.1)
)

X, =0, (X)u+g] (X)6, +y, (x)+d, (t
where, x=[x X, - xn]T eR" and ueR are system states and the control input,
respectively. 6 e R™ are unknown constant parameter vectors, X =[x X, -+ X ]T and
x=X_. The nonlinear functions ¢, w, and g, #0 are known and continuous. The

unknown functions d, (t)eR, i=1---,n, represent the external disturbances. The control

objective of this approach is to construct a direct robust adaptive dynamic surface

controller u such that the system output X, tracks the desired trajectory x, and all signals

in the closed-loop system are bounded. Throughout this chapter, the following standard
assumptions and lemma of the system (4.1) are exploited to facilitate the control design

and analysis.
Assumption 4.2.1: There is a positive constant g, where, ‘g ‘> Oy, 1=1---,n.
Assumption 4.2.2: The desired trajectory x,, and both its first and second derivatives x,
and X, are known, continuous and bounded.
Assumption 4.2.3: The external disturbances d,(t) are assumed to be continuous and
bounded, i.e.,

di(t) <, (4.2)
where, 5, are an unknown positive constants.

Lemma 4.2.1 [Pol96]: The following inequality holds for any £ >0 and forany neR:
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0<|n|-ntanh (ﬂj <ke (4.3)
&

where, « is a constant that satisfies K:e’(“l), i.e, k=02785.

Remark 4.2.1: In reality, the energy of external disturbances d; (t) is always finite and

hence it is reasonable to assume d;(t) is bounded by an unknown constant. For

assumption 4.2.3, the external disturbances are assumed as bounded and the boundary is
unknown.

Remark 4.2.2: The above assumptions and lemma are necessary and reasonable.

The main procedures for designing the direct robust adaptive dynamic surface control
method for system (4.1) with stability analysis using Lyapunov stability theory are given as
follows.

Step 1: Define the first surface error as S, =X, — X, then, the time derivative of S, is
obtained as:

S, =% ~ %y = 0%, + 1 6+ +dy (1) =X (4.4)
We choose the virtual control X, to drive S; towards zero with,

1 ; 3 S,y
X; = _(_%T 6, -y, — 6, tanh (8_1] X9~ Klslj ~ 9,5, (4.5)

1 1

where, K, is a positive design parameter, &, is a small positive constant and tanh [—1J IS
81

an hyperbolic tangent function. To avoid the problem of explosion of complexity in the
conventional adaptive backstepping control and composite tuning functions based adaptive

backstepping control designs, we introduce a new variable X,, and let X, pass through a
first order filter, with time constant r, to obtain x,, as:
Ty %pq +Xoq = %51 %oq (0) =%, (0) (4.6)
; 1 1 TA A ST
Xog =—| —Xoq +—| —, 6, —y, — 0, tanh| =+ |+ %, -KS, |-0,S, | (4.7)
73 9 &
Step i(i = 2,-~~,n—1): Define the i" surface error as S, = x. — X, then, the time derivative
of S, is obtained as:

Si =% =Xy = 0%+ 0+ +d, (t)_xid (4.8)
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We choose the virtual controllers X

i+1

to drive S, towards zero with,

Xm = gi(_(piTéi —Vi _éA‘i tanh[%}" Xid o Kisij_ giSi (4-9)

where, K, is the positive design parameters, ¢, are a small positive constants and

S, : . : .
tanh [—'j are an hyperbolic tangent functions. We introduce a new variable x;,,, and let
&i
X..1 pass through a first order filter, with time constant z,,, to obtain X, , as:
Ti+1X(i+1)d F X = X1 X1 (0) = X1 (0) (4.10)
: 1 1 T A A S, ) .
Xi11)d :T'_l ~Xi11)a +E —¢, 6 —y; — o tanh - +X%q —KiS [-G;S; (4.11)

Step n: Define the n" surface error as S, =X, — X, then, the time derivative of S, is
obtained as:
Sy =%, =% = QU+ 0, +y, +d, (1) =X (4.12)

We choose the actual control input u to drive S, towards zero with,

u= i(_¢g én ~VYn gn tanh (ij + Xnd - KnSn} (413)

g, 2

. . . . . S, | .
where, K is a positive design parameter, ¢, is a small positive constant and tanh| — | is

&y

an hyperbolic tangent function. The direct adaptive laws for 6, are given by [Yip98]:

él =T'.S¢
0

Hn = Fnsnwn

ISp,i=2-n-1 (4.14)

The direct adaptive laws for 5 are given by:

i

5 =5, tanh (S—J (4.15)

where, T, >0, » >0, i=1---,n are design parameters that can be adjusted for the rate of

convergence of the parameter estimates and &, >0 are a small constants.
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4.2.1 Stability analysis
Define the boundary layer errors as [Yip98]:

Y, =Xy —X,01=2,---,n (4.16)
and the parameter estimation errors as:
0=60-0,i=12--,n (4.17)

and,
5=6-5,i=12,,n (4.18)

Then, the closed-loop dynamics can be expressed in terms of the surface errors S,, the
boundary layer errors Y, and the parameter estimation errors 6, and 5,
The dynamics of the surface errors are expressed, for i =1, as:
S‘1 =% — ¥ = 9% + 9 6+, +d, ( ) Xy
=0:5,+9:%q & 91+‘//1+d1( )_Xid
=0,5,+0,Y, + 9.5 + ¢ 6, +y, +d, (t)— X (4.19)
~ A S
=0,5,+0,Y, K S, + (DlTel +d, (t) — o, tanh (g_lj - 91281
1

Fori=2,---,n-1:
S =% =%y = 0%+ 6, +y,+d; (1) X
= 0iSiu1 + 91310 + 97 0, +y; +d; (1) =%,
gl |+l+g y|+l+g| |+l+(0| 0+Wi+di(t)_xid (420)
=00+ 0iYia — KiSi + 9076+, (1)~ 5“‘”%%‘95&
&i

For i=n:
Sy =X, —Xg =0U+@ 0, +y, +d, ()= X
~ 4.21
=—K,S, +¢,0,+d, (1) 5tanh£s—] (1.21)
£

The dynamics of the boundary layer errors y, are expressed, for i =2, as:

| 1 S, .
Yo =X X%, :T_[ Xoq g [ (%) 6 ol 20 D tanh(g ] Xig _Klslj_glsl]_xz
2 ! ! (4.22)
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S | 1 A A S, . -
Yi=Xg =% = ;[_Xid "'gf[‘(”lﬂi-1 ~y,,—6,,tanh [8_1j+ i ~ Ki—lsi—lj_ gi—lsi—l]_ X
i i-1 -1 (423)

=L (g +R) R = (Y8 %) K =K
T

We consider the following Lyapunov function as:

V=YVi+DVy+ >Vt DV (4.24)
i=1 i=2 i=1 i=1
where,
1 1 1~ ~ 1 -
V. ==S*V, ==y’ V,==0'T'0 V., =—05" 4.25
is 2 i iy 2 yl i0 2 i [ i0 2 i ( )

Then, for i =1,---,n—1, by some simple computations, one has,

vis = Sisi = 0,551+ 9;S: Vi1 — K S/ +Si€0iTéi +35,d; (t)_sié} tanh£i
E.

]_ gi25i2 (4.26)

Applying of Young’s inequalities (3.23) and (3.24), and, applying the following inequality:
Sd; (t)<|Si|s, (4.27)

We obtain:

i+1

Vi S—KiSi2+%S.2 +%y§1+si¢3é +[S:|8 -6 tanh{i] (4.28)
&

and, for i=n:

V,=S.S,=-K,S+S,p 60, +S.d,(t)-S,3, tanh(i] (4.29)

ns n
gn

Applying of the following inequality:
Sndn(t)s|8n|5n (4.30)
We obtain:

V, <-K,S2+S,01 (X)0,+|S,|8, -S,5, tanh [S—J (4.31)

&y

one has, % =S, + X, and % =S, +V, + X, then from,

=1 oo . A Oy, . A S
X, =— _( aﬁi X1]91_¢’1T‘91_ al)/(/llxi_é‘ltanh(g_lJ
1

A 8{tanh(s/glﬂ o, JS (4.32)
5 1

Sl +K1 S.1+X'ld _glsl_(ﬁxlxl
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and, by induction, it is easy from:

i-1

- 1 = 5(0,T_ . A A al//i_ . & Si—
X; :_[_(Zalexj]eil_(piTﬂil_zalexi —0,, tanh) —=

0i4 j=1 j=1 €i4
8[tanh(si% ﬂ B (4.33)
2 &g : o : < 004 .
—10,_ + K S+ Xy [0Sy —| ) ==X |S,.
1 25, , 1 17 Xica)d 19i-1 [JZ_; ox. i |t

one has,

. 1 1((0g . oy S
S VIl 6, + 9+ +§tanh -+
Y, Y, [( 2%, le 2 ox, % [glj

[P 0,
ol ann (% ] NS
+46, ) YA 4K LS K%y |+9,S, J{axi xijsl

Since all terms in (4.34) can be dominated by some continuous functions, it follows that:

y2+_y2 y2+_y2 <B (Sl’SZ’yZ’el’é‘Ude’de’de) (4-35)

where, B, (.) is a continuous function. Thus,

1
Y2Y> +T_ 3/22 <B, ()|y2| (4.36)

2
By using Young’s inequality, it gives:

v, B ()
<—— = 4.37
y2y2 y2 2 2 ( 3 )

as similarly for, 1=3,---,n, we obtain:

v yn n ( )
e p— o 4.
YoYa yn 2 2 (4.38)

where, B, (.):Bn(Sl---Sn,yz---yn,él---én,xld,xld,xld) is a continuous function. From

(4.37) and (4.38), we can write:
) 1 y.2 B-Z(.),
V, <—=y242b 4222 i=2,-n 4.39
= it (4.39)

one has,

V,, =G'T,0, =410, =07 S (4.40)
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and, we have:

V,, = ! 255 =—i5$ =-58, tanh(S J (4.41)
7/i }/I gi

Therefore, the derivative of the Lyapunov function V becomes:
V ZVIS + Zvly + ZV.e + zvus
i=1 i=2

n-1
~K,SZ+= 52 s 1y 5070 +[5 |6 -5,8 tanh| 2| |-K S2 45,076 +6, S,
i+1 2 i+1 171 I 1 I 11 &

i=1

~S,6, tanh ( Tl 8‘22(')j—izl:éTsi¢i —g[&si tanh {i—n
<-KSZ->° (K ——j (K ——jsz+z[|s|5 Sétanh(z D
B g(as h(_n

, & 1)z Ne: (1 S,
<-K,S - ( ‘_Ejs‘ —(Kn—zjsn Z(——1]y,+¢+z(|s|5 S§tanh( D
i=2 i=2 \ 7, gl

WM:

(4.42)
From lemma 4.2.1, it is easy to show that:
|Si| 5, - S5tanh[sj<§zcg O.E (4.43)
Substituting (4.43) into (4.42) yields to:
j . 1)e2 1le2 v[ 1 2 oo
V<-KSI-> Ki—E S?— Kn—E SE-D | =-1y +e+> .65
i= i=2 \_Tj i=
i i ' (4.44)
-K Sz—nf: K 1 SZ—(K _EJSZ_ n i—1 Yo+
11i:2i2in2ni:2Ti i TH
n M
where, (/)=Z7', M; are the maximums of B (.), u= (p-l—z =xe, and

i=2

k=0.2785. Therefore, based on (4.44), by choosing the design parameters such that,

K,>0, K, >%, K, >% and 7, <1, we can conclude that, S; and Y; are bounded.

4.3 Indirect robust adaptive control
In the following, the main procedures for designing the indirect robust adaptive control
with stability analysis are introduced.
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4.3.1 ldentification based modified x-swapping filters
In order to demonstrate the identification based modified x-swapping filters design
procedures, we consider the SISO uncertain nonlinear system with external disturbances

(4.1), which can be rewritten under the following nonlinear system in parametric x-model

form as:
K = £,(x0)+o] (1), (1) (4.45)
where,
91X, Ty
f.(xu)= : 4.46
( ) Ona X, ¥, ( )
guty,

We introduce the following modified x-swapping filters as:
O =8 (Qy +% ) fi(x,u)=5sign(&),Qy e R (4.47)

QIT =aQ +¢ (K),Qi cRP (4.48)

where, 1=1,---,n , Si denote the estimates of &, € is given in (4.50) and a <0 is a

1
negative definite scalar function for each x continuous in t. We define the estimation

€rrors as:

€=%+Q, - 0,6k (4.49)

with, 0, the estimate of 6, and let:

X +Q, - 0,6 eR (4.50)

Si

We obtain:

=010 +¢ (4.51)
The dynamics of € are governed by:

€ =%+0y— Q0 =aé +d,(t)-5sign () (4.52)
To guarantee the boundedness of €); when ¢, (Y,) grows unbounded, a particular choice of
a, is made:

8 =a, — g (%)o (X)R (4.53)
where, 4 >0 and &, is an arbitrary negative constant satisfying [Sou18]:

2Pay =-1P >0 (454)
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4.3.2 Choice of adaptive laws
The gradient adaptive laws are given by:
6-T— %5 150y >0 (4.55)
1+vtr{Q/Q,}
The least squares adaptive laws are given by:
A Qi

b= L+ytr{QTQ} (4.56)

where, T, is defined as:

- 0!
e vir{ara,)

r

,(0)>0,v,>0 (4.57)
4.3.3 Proof of stability

Lemma 4.3.1: To establish the identifier properties, let [O,tf), the maximal interval of

existence of solutions of (4.45), the modified x-swapping filters (4.47) and (4.48), and the
gradient adaptive laws (4.55) or the least squares adaptive laws (4.56) and (4.57). Then for

v; 20, the following properties hold:

0,6 el (4.58)
e¢elb,NL, (4.59)
0.5 eL,NL, (4.60)
4.3.3.1 Gradient adaptive laws
The Lyapunov function is chosen as follows:
1 15 ~2 1 5
Vi=-0'T76+Rg +-—9 (4.61)
2 2y,

where, 8 =0 -6 and & =& —&, are the parameter estimation errors, and >0 is an
adaptive gain.
Then, along the dynamic equations (4.52) and (4.55), the derivative of the Lyapunov

function V, becomes:
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V= 07T,6 + 2P 6,
= 41T, '6, +2Rag? + 2P4d, (t) ~2P&SsigN () 5.
| Y . 482
=076, + 2R (ay = A0 (%), (%) R) & +2P4d; (1) - 2RéSsign (&) - — 54,
Vi
=éjr;lé+(—1—2/zp¢ (%) (%) P )& +2Pad, (t)— 2Pi€i5]sign(€i)—i}5*i
Vi
Applying of inequality (3.55) and the following inequality:
&d; (t)<|g|s (4.63)
We obtain:
V <-d'T - ign 7)- 155 (4.64)
We choose the adaptive laws for &, as:
3, =2y, Pésign (&) (4.65)
Substituting (4.65) into (4.64), we obtain:
V, <4710, - + 2P| 5, — 2P sign (& ) — 2R ésign (& )
0’ Qe i
=—— T g2} 2P 2PséEs 2
L+ytr{Qf ] § o, ~2Radsion(@)
2
€ € - 2 ~ ~
= ! —&°+2P€|0. — 2P0 |e
1+vtr{QlQ,} 1+vtr{QTQ}€ &+ 2Rfalo-2Rafe
2 2
<3 & 1 9 b S ___a_z (466)

41+vtr{Q O} 4(1+,,itr{QiTQi})2 1+vtr{Q/Q,}

2

=_§ Eiz _ Ei =
41+vitr{QiTQi} 2(1+Vitr{QiTQi}) i
3 e

The nonpositivity of V, proves that, 8 €L, and & €L, (bounded). Due to ¢ =Q' 6 +¢
and the boundedness of €Q;, it follows that ¢ € L, which, in turn proves that é?, elL, and
ééi el,.

By integrating of inequality (4.66) over [O,oo], we obtain:
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K 4
dr <—(V,(0)-V, < 4.67
'([1+vtr{QT Q} ‘ 3( (0)-Vi(e)) <0 (4.67)
This means that, G el,. Since €, is bounded, then ¢ elL,. The

Jvitriojo))
boundedness of €, and the square integrability of ¢ prove that 49, e L, and 6, el,.

4.3.3.2 Least squares adaptive laws
From (4.56) and (4.57), we have the following identity:

i e b N QiQiT
dt () =-Tr, l+vitr{QiTFiQi}20 (4.68)

We consider the following Lyapunov function as:

V,=0'T;*(t)6 +Pe +%5f (4.69)

Along the dynamic equations (4.52), (4.56) and (4.57), the derivative of the Lyapunov

function V, becomes:

V= eﬁrlle,mj(r )+ 2pei -~ 3b

7i

TG -6 -G + 2ai +2RE0, (1) -2Redsion (¢)-— 86
4 (4.70)
=616 -GG G764 2P (, - A0] (7)o ())& + 2Pzd, (1)~ 2Pedsion(&) -~ 6

0TG- T 1¢9+( 1-2Pg! (%)@, (%) P )& +2Péd (t)- 2e€if§isign(€i)-35}(§i

Applying of inequalities (3.55) and (4.63), we obtain:

V,<-§TTH -T2 2PJ¢|5 —2Pedsion ()~ 166 (4.71)
7

We choose the adaptive laws for éi described by (4.65) and substituting (4.71) into (4.70),

we obtain:
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V<TG -G TR -0TT ) ¢ +2P\e\5 2PESsign (&)~ 2P sign (¢
—97 -0 -0 -19

Qe QTQIQ,THI HTQe " .
=- + —€ +2F’i‘ei -
1+vtr{QTrQ} 1+vtr{QTrQ} 1+vtr{QTrQ}

-2Psésign(é)

TH N7 ~
Q. 06 0 Q€ ~2 (472)

B 1+vtr{QTrQ} 1+vtr{QTrQ} ~

_ 6i2 €~.2 ~2
B 1+vtr{QTrQ} 1+vtr{QTrQ} ~

¢
S 1

1+vtr{QTrQ}

Which, due to the positive definiteness of I';*(t), proves that, 6 eL, and & elL,

(bounded).
By integrating of inequality (4.72) over [0,], we obtain:

2
€

£1+W”{bﬁjg&dfngp)_w(w)<m (4.73)

This means that, G e L, . Using the boundedness of I'; and €2, following

Jrvtrioiro,)

the same line of argument as for the gradient adaptive laws, we prove that ¢ €L, NL,,

éiELszw andéieLszw.

4.4 Composite robust adaptive dynamic surface control

In this section, the composite robust adaptive dynamic surface control is proposed, which
utilizes both surface error based parameter adaptive laws of the direct robust adaptive
dynamic surface control described by (4.14) and (4.15) with the estimation error based
parameter adaptive laws of the indirect robust adaptive control described by (4.55), (4.56)
and (4.65). The control objective of this approach is to construct a composite robust

adaptive dynamic surface controller u such that the system output X, tracks the desired
trajectory x, and to guarantee the boundedness of all signals in the closed-loop system. In

the following, the main procedures for designing the composite robust adaptive dynamic
surface control technique for system (4.1) with stability analysis are described.
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4.4.1 Composite projection based gradient adaptive laws
Projection properties: The projection operators and the projection mapping for the

adaptive laws éi are similar as that in the chapter 3 described by (3.64) and (3.65).

As similarly, we assume that &, is estimated by &, where, & are the estimates of ;. The

estimation errors are given by:

~ A

5=6-5

| — 0, (4.74)
Therefore, the projection mapping for the adaptive laws Si is similar as that in the chapter
3 described by (3.65), i.e.,
—~5Proj; (¢,) <-4+, (4.75)
The composite projection based gradient adaptive laws are defined as:
é=Pmb£n{ag+-——fﬁL——J]Jy>szo (4.76)
' 1+vtr{QfQ,}

and,

i

¢i:Pmk[%(Sme(§}+2eaquQﬂJJq>Qgp>o (4.77)

The dynamics of estimation errors are given by:

2 A . Qe
6 =-0 =Proj, | -T.| Sp+——— || [, >0,v.20 (478
] ] J@I{ I[ I(DI 1+Vltr{QTQI}]J ( )

and,

ci = —5, = Proj; (—yi [Si tanh (ij +2Pésign (¢ )D,yi >0, >0 (4.79)
i €|

where, € =X +Q, —QI 0 and € =x +Q,, - 9.

Theorem 4.4.1: Consider the SISO uncertain nonlinear system in lower triangular form
with external disturbances composed of the plant described by state space form (4.1).
Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and
(4.9), the actual control input (4.13) and the composite projection based gradient adaptive

laws (4.76) and (4.77) guarantee that all signals in the closed-loop system are bounded.

Proof: We consider the following Lyapunov function as:

V= Zn:Vis + Zn:Viy + Zn:Vi (4.80)
i=1 i=2 i=1
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and,
Vi = lsizvViy = 1 in'Vi = léTrfléi + Puguz +i5‘i2 (4.81)
2 2 2 2y,
where, V.., V.. and V,, are expressed in (4.28), (4.31), (4.39), and,

V, = =07 170, —&" +2Pé| 6, ~2REsign (&) -~ 54,
7

~ ] Q.e
=—O0'T7Proj. | T".| Sop +——""111 | |—e24+2Plels
P roje[ '[ '¢'+1+vitr{QiTQi}B SRl

—2Peédsign (&) —ié:iProjg_ (7@ (Si tanh (EJ +2Pésign (& )D
4 ' &

NT
B R L U P ]
Leytr{Q Q] £,

(4.82)

Therefore, the derivative of the Lyapunov function V becomes:

n n n

V=YV, + DV, + DV,

i=1 i=2 i=1

z[ st S5t Dot setdels]a -siam( 2

S n 1 y.2 Biz(.)
~-K S?+8S S, |0, S5t h| — [+ Sy R A
SEosolols o, s 2o Ly L8

_Zes(p—ZL 2 i[%tanh[in

i 1+Vitl’{QiTQ } i1 =L

—Klsf—g(Ki—%ij—(Kn—%]S |=1(|s|5 Sétanh[i—in
_Z[——ljy. _nz j.llwtr{g o] IZ::(&Stanh[i—D
_Klsf—ni(Ki—%)Sﬁ—(Kn—%]sj—zn:[l_ljyiz

i=2 i—2 \ 7

n 2 n 4.83
+¢—%Z€++Z(ISI5 S§tanh[S—D @5

Tlvtr{QiQ}

Applying of inequality (4.43), we obtain:
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i=2 i i=1 1+ Vitl’ i1

n— n n 2 n
B R L T o AU D g
_ 2_n—l _1 2 _1 2_n l_ Z_En Eiz
=T Z(K‘ st‘ (K” ZJS" Z[fi 1jy‘ P (oo "

i=2 i—2 i L+v,tr ,
(4.84)
5 M. . I
where, ¢=Z7', M; are the maximums of B/(.), u=¢+)> 65, &=xre and
i=1

i=2

xk=0.2785. Based on (4.84), by choosing the design parameters such that, K, >0, K, > %

Kn>% and 7, <1, we can conclude that, V, S;, VY, él 5 and ¢ are bounded.

A

Furthermore, all signals in the closed-loop system, i.e., X, X4, X4, X,"*,X,,, U, 6, and

5. are also bounded.

4.4.2 Composite projection based least squares adaptive laws

The composite projection based least squares adaptive laws are defined as:

A . SZG
6 =Proj. | T;| S + N 4.85
' Je[ [ i 1+vltr{QlTF,Q,}B (4:89)

and,

5, = Proj;, (}/i [Si tanh [i}r Pésign (& )H,yi >0, >0 (4.86)
' &

The dynamics of estimation errors are given by:

z A ) Qe
6, =-6 =Proj, | -I',| S;p, + ~ 4.87
J@-[ { “ 1+vitr{QiTFiQi}N (4.87)

and,

S0
&

gi = —5} = Proj, [—yi (Si tanh(s' }+ Pésign (¢ )]J,yi >0,6>0  (4.88)

where, T, are given by:

:
I =-T 24

T r,,[;(0)>0,v,>0 4.89
' '1+vitr{QiTFiQi}' (0)>0. (4.89)

with, € =X +Q, —Q/ 0 and & =X +Q, — V6.
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Theorem 4.4.2: Consider the SISO uncertain nonlinear system in lower triangular form
with external disturbances composed of the plant described by state space form (4.1).
Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and
(4.9), the actual control input (4.13) and the composite projection based least squares
adaptive laws (4.85) and (4.86) guarantee that all signals in the closed-loop system are
bounded.

Proof: We consider the following Lyapunov function as:

n n 1 n
V=>V,+DV, +§Zvi (4.90)
i1 i—2 i1
and,
I P N A N T 2, 1
Vis _Esi Ny —EYi N, =6'T, (t) L +B&" +—9, (4.91)

where, V,,, V,, and V, are expressed in (4.28), (4.31), (4.39), and,

2
Vi

Vi =016, - 01T T\ 170 - 67T6,~ & + 2R |G| &~ 2Padsion (6) - =60,

Qe
+
L+ntr{QTQ

T
= —PrOjé LFI Si(oi }]\J F;lél _éiTI"iflfiFifléi

~ Q.c
—0'T*Proj. | T.| S.o i —&*+2Plels
1 ] rojlgl I[ I¢I+1+V|tr{QTFIQI}]J EI + ||€|| ]

—2Pé&Ssign(é) - E&Projé (yi [Si tanh (i] +Pésign (¢ )n
7 i £

T NT T
< _€0iTSiéi - i fl + i QiQTi 6 _éiT S,
Lvtr{QTQ ) 1+vtr{QTQ
N7
L. U e
Lentr{QTQ} &
TH NT T) T
< _zsiﬁﬁiTéi _ 6<% 0 n 6 Q%0 6 i & _Zgisi tanh S
Lentr{QTQ ) 1+vtr{QTQ} 1+ytr{QT,Q &,

(4.92)

Therefore, the derivative of the Lyapunov function V becomes:
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L n 1< .
V=YV, +>V, + E;V‘

i=1 i=2
n-1

[ K82+1s.il+iyii1+si¢:e:+|si|@—si(itanh{i]]
~ 27Ty |

n 2 2
~K,S2+S,010,+[5,/3, S§tanh(S—J z[_iygﬂ_iﬁi (-)]

&
O R N
iZzllsi(oié’i 22 +2

T lentr{ QT

n nT n n
_%z 0 Qe 1 &2 _Z(Sisi tanh[iD

i1 1+Vitl‘{QiTFiQi} 23 i=1

ot -{e oS -siom( 2
‘ZE*JV“Z@‘%%WU{Q O, 2_1:(58 tanhL%)J
S—Kle—ni(Ki—%ij ( ZZ[ —1]yf+(p—%2n‘, d s

= T Lvtr{QTQ,

S oanl]

Applying of inequality (4.43), we obtain:

Veksi-S[K-Llsz (k-1 32 S Loalrip-1 i 57
SRy T @ ZZ "’Z iGi

=) i i1 1+Vitr{QiTFiQi} i1

n-1 n n 2
~K,S? -~ Z(K ——jSZ (Kn—%Jsﬁ— (1_1}/3_%2 f +u
i=2

= T l+vtr{QTQ )

(4.94)
where, (/)=Z%, M; are the maximums of B(.), u=¢+) 6z, &=xre and
i=2 i=1

xk=0.2785. Based on (4.94), by choosing the design parameters such that, K, >0, K, > %

Kn>% and 7, <1, we can concluded that, V, S;, V,, 6, 5 and ¢ are bounded.

A

Furthermore, all signals in the closed-loop system, i.e., X, Xy, Xq, X,,-**, %,,, U, 6 and

YN+ i

5, are also bounded.
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4.4.3 Composite o-modification based gradient and least squares adaptive laws
The composite o-modification based gradient and least squares adaptive laws are defined

as.
6=T\(s¢-0,(0-8)).T,>0.0, >0 (4.95)

and,

éi =7 {si tanh (EJ—% (5i —aﬁ)],yi >0,¢ >0,0, >0 (4.96)
(9' I I

where, o, and o, are small design constants to introduce the c-modification for the

closed-loop system and &, are computed with the gradient method as follows:

§-T— 25 _F 5o (4.97)
1+vtr{QQ}

or with the least squares method as follows:
o _T Qi

G=h vir{QIT.Q,} (4.98)

where, T, are given by:

N _ Q.07 _
T CY T[T (0)>0,v,20 4.99
'1+vitr{QiTFiQi} 2Ti(0)>0 (4.99)

o, are computed as follows:

5 = 27Pésign(&),7, > 0 (4.100)
with, ¢ =X +Qy, —-Q/6, and € =x +Q, - Q4.
Theorem 4.4.3: Consider the SISO uncertain nonlinear system in lower triangular form
with external disturbances composed of the plant described by state space form (4.1).
Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and
(4.9), the actual control input (4.13) and the composite o-modification based gradient and
least squares adaptive laws (4.95) et (4.96) guarantee that all signals in the closed-loop
system are UUB and the surface errors converge to a sufficiently small neighborhood of

the origin by appropriately adjusting the design parameters.

Proof: We consider the following Lyapunov function as:

V= Zn:Vis + Zn:Viy + Zn:Vm + Zn:Vi(s (4.101)
i=1 i=2 i=1 i=1
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and,
V, = % SEV, = % Y2V, = %éﬁrilé Vi = Ziyia? (4.102)
where, V,;, V,, and V, are expressed in (4.28), (4.31), (4.39), and,
Vi, =0T, =071
-0 (s0.-,(0-0)) (4.103)

:_éiTSi¢i+O-0i0~iT (é’._ i)
We assume that, 6, -6 is bounded, thus, e, =6, - is bounded, =6, —¢, and

5} =0 —49, and, applying of inequality (3.87), the derivative of the Lyapunov function V,,

becomes:
via =_éiTSi¢)i +Uei6~)iT (éu -0, +eei)
=-0'S0-0,010+0,0'e, (4.104)
~ O) ~r ~ O
<-0'Sp——2070 +—2 g2
i 2i® 2 i i 2 o,
and, we have,

(4.105)

We assume that, &, -5, is bounded, thus, e, =& —4& is bounded, & =6 —e, and

Si = —Si , and, applying of the following inequality:

. 52 e
oe, <+ 4.106
& <5t ( )

The derivative of the Lyapunov function V,; becomes:

V,, = -4, tanh Si +é0, (5—@ +e§_)
gl 1 1
~ S. ~ -
=-g,S,tanh| — |-0,0" + 0,06, (4.107)
gl 1 1 1
S S Os z2 95 2
<=5, tanh| — |- —-5"+—¢€;
£ 2 2 "
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Therefore, the derivative of the Lyapunov function V becomes:

v:i%+iw+i%+i%
i=2 i=1 i=1

Z[ K.SZ+= S|il+%yi2+l+si¢| | +[S;[ 5 - S5tanh(s—j
&
B,

2 n
+S,01 0, +|S,|6, Sétanh[ j+2(__yl +?+ 2()]_ZéiTSi¢i
—Zn:ﬁéfé +Zn:%e§ —Zn“LSiSi tanh(ijj_zn“ﬁgf +Zn“ﬁe§

i 2 iz 2 & 2 i

i=1 i=1 i=1

2
gl s (2

L R IEOVE L) EER R

i1 ] i

S_Klslz_E(Ki_%jSiz_ Kn j i(i_]) _Zn‘,%é:é

i=2 \ T

+Zn:%e§|+_zn:(|s|5 S§tanh(.D nl 5%+ ZO-Z e2

i i i=1

(4.108)
Applying of inequality (4.43), we obtain:

. ) n-1 1 ) 1 ) n 1 ) n Ug_ -
VS_KlSl _z Ki_E Si - Kn_E Sn_z —-1 Yi +§0—Z7 i Yi

i=2
DRI ETRL
i=1 i=1 i=1
) & 1)e 1oz 2 2 % 515 N6
-KiSf -2 K= S| %3 Si-2 | =1y —27@ @—27@ +u
i= i i=1 i=1

(4.209)
Based on the above discussions, we can get the following inequality:

V<—nV+u (4.110)

Where,(pzzn:% M; are the maximums of B;(.), x= ¢+Z |+Z e2+Z—e5,

i=2

& =kg, k=02785 and ﬂ=min{2Kp2(Ki—%],Z(Kn—%),2(3—1}1?%%%}

7

Multiplying both sides in (4.110) by e™ yields:
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d

E(V (t)e™ )< pe™ (4.111)

Moreover, by integrating (4.111) over [0,t], we obtain:

o<V (t)§£+(v (O)—ﬁ]e”t (4.112)
T T
Since Il >0, it can be obtained that:
T
0<V(t)<V(0)e™+£ (4.113)
T

Therefore, based on (4.109), by choosing the design parameters such that, K, >0, K, > % ,

K, >%, 7,<1, o, >0 and o, >0, we can conclude that, S;, y;, él 5. and ¢ are UUB.

A

Furthermore, all signals in the closed-loop system, i.e., X, X, X4, X,,"*, %X, U, 6, and

i+1? i

A

o, are also UUB. In addition, from (4.101) and (4.113), it follows that:

Is]|= Zn:Sf <2V (0)e**" +/2/7 . Accordingly, when t— oo, it is easy to show that:
i=1

IS| <24/ 7 . This completes the proof.

4.5 Simulation results

This section presents the simulation results for composite robust adaptive dynamic surface
control technique as applied to an electromechanical system mathematical model and as in
previous chapters. The time-varying external disturbance is chosen as [Becl3, Lil0a,

A (t 4sin(t
Zhal8a, Zhal8b, Zhal7]: d,(t)= ID( )_ sg( ) to test the performance robustness of

the proposed composite scheme. The control objective of this simulation is to design the
composite robust adaptive dynamic surface controller u for the electromechanical system

in such a way that the link angular position ¢ tracks the desired trajectory x, and to
ensure the boundedness of all signals in the closed-loop system. The signals X,, and X,

are generated by the filters:

) 1 ;
Xog = —(—Xoq +%g —K;S, = S,) (4.114)

2
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Xpy = i[—xsd Jri[sin(xi)é2 +Ex2 5, tanh (i]-i- Xoq — KZSZJ—bZSZJ (4.115)
7, b, D &,
The actual control input u is chosen as:
1 ~ H
u :—(x293+—x3+>'<3d - K383] (4.116)
b, M

For the swapping based identifier, we use the following modified x-swapping filters:

o, = (_0.5_/12 (sn (Xl))z)(QOZ + x2)+%x2 ~b,x, - dsign(é,)  (4.117)

Q) :(—0.5—/12(sin(x1))2)§2; —sin(x,) (4.118)
Qg =(-0.5- 4G ) (Qs + x3)+%x3 ~byu (4.119)
O =(-05-24% )% - X, (4.120)

4.5.1 Composite projection based gradient adaptive laws

The composite projection based gradient adaptive laws are defined as:

A . . Qe

6, =Proj, | -I',| S,;sin(x,)— =< (4.121)
2 =0, 2{ wsin(x) £1+vztr{Qggz}H

X . Qe

0, =Proj, | -T'5| S;x, — 28 (4.122)

3 )i, 3{ 2 [1+v3tr{Qgﬂs}D

A : S, .

8, =Proj; | 7,| S, tanh| =2 |+ 2&sign(é,) (4.123)

2 (92

where, € =x+Q, -4, i=23 and §&=Xx, +Q, - 6,. The selected initial

conditions are set as: x(0)=[0 0 O]T, 0,(0)=0, 6,(0)=0, §,(0)=0,
0Q,(0)=0; (0)=0, O (0)=0Q; (0)=0 and X, (0) =X, (0)=0. The design parameters
are selected as follows: K, =200, K,=5, K,=550, I',=40, I';=550, y,=425,

& =001, 4, =4=0.1, v,=v,=0.1and r, =z, =10". The simulation results are shown

in Figures 4.1-4.10. Figures 4.1-4.3 show the trajectories of the output variables. The
trajectories of the surface errors are illustrated in Figures 4.4-4.6. Figures 4.7-4.9 show the
trajectories of the parameter estimates. The trajectories of the control inputs are shown in
Figure 4.10.
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4.5.2 Composite projection based least squares adaptive laws
The composite projection based least squares adaptive laws are defined as:
b, =Proj, | -T, | S,sin(x,)- 2 (4.124)
: 1+wtr{Q)r,Q, |
A . Qe
6, =Proj. | .| S;x, — £3 (4.125)
’ ] [1+ vitr {QIT,Q, )

and,

52 = Proj; (72 (Sz tanh (i}gzsign (€2 )D (4.126)
2 &

2
with, T, is given by:

:
I =-T 2

" vr{QTo) (4.127)

where, ¢ =x+Q,-Q'6, i=23 and & =%+0Q,-6,. The selected initial

conditions are set as: x(0)=[0 0 0], 4,(0)=0, 4,(0)=0, 4,(0)=0,
0Q,(0)=0; (0)=0, O (0)=0Q; (0)=0 and X, (0) =X, (0)=0. The design parameters
are selected as follows: K, =25, K, =5, K, =1050, I',(0)=50, I';(0)=500, y,=4.5,
£ =001, ,=4=0.1, v,=v,=0.1and 7, =z, =10". The simulation results are shown

in Figures 4.11-4.20. Figures 4.11-4.13 show the trajectories of the output variables. The
trajectories of the surface errors are illustrated in Figures 4.14-4.16. Figures 4.17-4.19

show the trajectories of the parameter estimates. The trajectories of the control inputs are

shown in Figure 4.20.
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4.5.3 Composite e-modification based gradient adaptive laws

The composite s-modification based gradient adaptive laws are defined as:

0, =-T,8;sin(x)-T,0, (6,-6,) (4.128)
6,=-T,5% -T,0,(6,-8,) (4.129)
and,
A 32 A =
8,=7,| S,tanh| 2 |-, (5,-5,) (4.130)
&
where, 8, and 6, are computed with the gradient method as follows:
g-T 6 (4.131)

"Lrvr{ofQ)

and, &, is computed as follows:

5, =27,6,5ign(&,) (4.132)

with, ¢ =% +Q —Q76,, 1=2,3 and  =x, +Q,, —Q)d,. The selected initial conditions
are set as: x(0)=[0 0 0], ,(0)=6,(0)=0, 6,(0)=6,(0)=0, 4,(0)=5,(0)=0,
0, (0)=0; (0)=0, Oy (0)=0} (0)=0 and X, (0) =Xy, (0)=0. The design parameters
are selected as follows: K, =25, K, =10, K,=50, I, =10, ', =250, [, =5, ', =50,
0, =0, =01, 0, =05, 7,=7,=45, £=001, 4 =4=01, v,=r,=01 and

r,=7,=10". The simulation results are shown in Figures 4.21-4.30. Figures 4.21-4.23

show the trajectories of the output variables. The trajectories of the surface errors are
illustrated in Figures 4.24-4.26. Figures 4.27-4.29 show the trajectories of the parameter

estimates. The trajectories of the control inputs are shown in Figure 4.30.
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4.5.4 Composite s-modification based least squares adaptive laws
The composite o-modification based least squares adaptive laws are the same as that in the

composite c-modification based gradient adaptive laws described by (4.128)-(4.130). 6,

and 6, are computed with the least squares method as follows:
) £ (4.133)

4= vir{QTo,)

with, T, is given by:
.
=T, QiQTi_ T, (4.134)
L+ytr{Q T,

and, &, is computed as follows:
(4.135)

5‘2 = 772523ign (€2)

where, ¢=X%+Q;-Q/6, i=23 and &=X+Q,-Q6,. The selected initial

conditions are set as: x(0)=[0 0 0], 4,(0)=6,(0)=0, 4,(0)=6,(0)=0,

5,(0)=5,(0)=0, Q,,(0)=QF (0)=0, Oy, (0)=Q (0)=0 and X,, (0) =, (0)=0. The
design parameters are selected as follows: K, =25, K,=10, K,=50, T, =10,
r,=250, I,(0)=550, I';(0)=5500, o, =0, =01, o0, =05, y,=7,=45,
& =001, ,=4=0.1, v,=v,=0.1and r, =z, =10". The simulation results are shown
in Figures 4.31-4.40. Figures 4.31-4.33 show the trajectories of the output variables. The
trajectories of the surface errors are illustrated in Figures 4.34-4.36. Figures 4.37-4.39

show the trajectories of the parameter estimates. The trajectories of the control inputs are

shown in Figure 4.40.
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It can be seen from the results that all system states converge to their desired values, the
surface errors converge to zero and the parameter estimates converge to its true values. All
the results further verify that the proposed composite robust adaptive control approach is
robust against the unknown external disturbances. The simulation results verify that
designing of the proposed composite robust adaptive control scheme compared to direct
and indirect robust adaptive control approaches is effective and useful to improve the

performance of control and parameter estimation.

4.6 Conclusion

In this chapter, a new composite robust adaptive dynamic surface control approach for a
class of SISO uncertain nonlinear systems in lower triangular form under unknown
external disturbances is proposed. The proposed composite robust adaptive control scheme
is designed also to avoid the problem of explosion of complexity inherent in the
conventional adaptive backstepping control and the composite tuning functions based
adaptive backstepping control designs. The proposed composite robust adaptive control
scheme is applied to an electromechanical system. The proposed composite robust adaptive
control method can guarantee the boundedness of all signals in the closed loop system by
using the Lyapunov stability theory. In order to verify the effectiveness and robustness of
the proposed composite robust adaptive control method, a comparative study between the
proposed composite robust adaptive control approach over the direct and indirect robust
adaptive control designs is performed. Next work will focus on developing of composite
immersion and invariance based adaptive command filtered backstepping control

technique to avoid also the problem of explosion of complexity.
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Chapter 5

Composite immersion and invariance based
adaptive command filtered backstepping

control

5.1 Introduction

A drawback in the adaptive backstepping control and composite tuning functions based
adaptive backstepping control designs is the problem of explosion of complexity caused
by the repeated derivations of virtual control inputs. Command filtered backstepping
control design has been proposed to solve this problem of explosion of complexity for the
non-adaptive case [Far09, Far08]. In [Don12, Don10], the command filtered backstepping
control method has been extended to adaptive control and has been extensively used to
control a large class of uncertain nonlinear systems in lower triangular form [Panl8,
Soul9, Yul8b, Yulb5a, Zou20]. Composite adaptive command filtered backstepping
control has been also introduced of uncertain nonlinear systems [Panl6a, Panl6b,
Panl6c].

In recent years, immersion and invariance based adaptive control of nonlinear systems has
been proposed by Astolfi and Ortega [Ast03]. It has been established for controlling of
uncertain nonlinear systems in lower triangular form [Ast08a, Ast08b, Kar08, Kar07,
Kar04, Sou21]. It has been also a great attention in the few recent years, which has been
widely used to the control of uncertain nonlinear systems [Han19, Han18, Hanl7, Han16,
Liul4, Loul8, Monl3, Sonl0a, Zhal2b, Zhall]. The design procedure of immersion and
invariance based adaptive control consists of a general two-step. While the first step deals
with the design of an estimator, the second step consists in designing a control law. Over
the past few years, many different types of nonlinear control methodologies have been

proposed including adaptive command filtered backstepping control [Sonl0a, Sonl0b],
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adaptive backstepping control [Mon13, Kar08, Kar07, Zhal2b, Zhall], adaptive sliding
mode control [Han15] and adaptive dynamic surface control [Fuj12, Sou21].

In this chapter, a new composite immersion and invariance based adaptive command
filtered backstepping control approach is proposed for a class of SISO uncertain nonlinear
systems in lower triangular form. The proposed composite adaptive control method is
designed in order to improve parameter adaptation. The proposed composite adaptive
control technique is introduced to avoid the problem of explosion of complexity inherent in
the conventional adaptive backstepping control and composite tuning functions based
adaptive backstepping control schemes. Based on the Lyapunov stability theory, it is
proved that all signals in the closed-loop system are bounded. Simulation results for an
electromechanical system are provided to verify the effectiveness of the proposed
composite adaptive control methodology compared to immersion and invariance based
adaptive control and indirect adaptive control approaches.

The rest of this chapter is arranged as follows. The immersion and invariance based
adaptive command filtered backstepping control is presented in Section 5.2. Section 5.3 is
dedicated to the indirect adaptive control is constructed. The composite immersion and
invariance based adaptive command filtered backstepping control is proposed in Section
5.4. The simulation results are demonstrated in Section 5.5. Finally, some conclusions are

given in Section 5.6.

5.2 Immersion and invariance based adaptive command filtered backstepping
control
In this section, we will consider the following SISO uncertain nonlinear system in lower

triangular form:

0: (%) %+ (%)0+v,(x)
(,)x,+1+(p,( )0+ (%).i= n-1 (5.1)

X, =0, (X)u+g¢, (X)0+y, (X)
where, x=[x X, - ] eR" and ueR are system states and the control input,
respectively. 0 <RP is unknown constant parameter vector, X, =[x X, --- xi]T and

x = X_. The nonlinear functions ¢ , v, and g, #0 are known and continuous. The control

objective of this approach is to construct an immersion and invariance based adaptive

command filtered backstepping controller u such that the system output X, tracks the
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desired trajectory x, and all signals in the closed-loop system are bounded. Throughout

this chapter, to facilitate the control design and synthesis, the following standard

assumptions of the system (5.1) are necessary.
Assumption 5.2.1: There is a positive constant g, where, ‘gi (Xi )‘ >g,, 1=1--,n.

Assumption 5.2.2: The desired trajectory X, and its first derivative X, are known,

smooth and bounded.

Remark 5.2.1: For the composite tuning functions based adaptive backstepping control
design, the information of x{ (i=0,---,n) are required, and the composite adaptive and
robust adaptive dynamic surface control designs require x,, and both its first and second
derivatives x,, and X, , whereas our proposed composite adaptive control approach only

requires x,, and its first derivative X, which is less stringent. Therefore, it is more

appropriate for some practical applications.

5.2.1 Estimator design
Define the estimation errors as:

0,=0-0+p5(x) (52)
where, éi are the estimator states and A3 :R' — RP” are function yet to be specified. Then,

the dynamics of &, are given by [Kar08]:
éi =é +:Bi =éi +z%xk
k=1 OXy

:éi +§Z_ﬁ(gkxk+l+¢; (él + _éi)""//k)

(5.3)

where, x_ ., =u. Selecting the adaptive laws 6, to cancel the known quantities in the

dynamics of 4, , i.e.,

X . i % (A
6 =25 (oxaral (4+8)rw) (5.4)
Substituting (5.4) into (5.3), we obtain the error dynamics as:
2 i 8B ~
G- —[Zﬁqo: }a 55
k=1 6Xk

We select the functions g, as [Kar08]:
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B, =ri]l€0idﬂ(+5i (5.6)

where, I', >0 are constants and &, are functions with & =0. Now, we consider the
following assumption.
Assumption 5.2.3: There exist functions & satisfying the partial differential (matrix)
inequality [Kar08]:

F+F' >0 (5.7)
for, i=2,---,n—=1, where,

- rzaxi( ggoidz}az oy 59
Remark 5.2.2: In the special case when ¢, (o) is a function of x; only, the partial
differential (matrix) inequality (5.7) admits the trivial solution ¢ =0 for, i=2,---,n. The

same simplification occurs when only one of the functions ¢, (o) in (5.1) is nonzero. In

general, the solvability of (5.7) relies strongly on the structure of the regressor ¢, (o)

[Kar08].
Lemma 5.2.1: Consider the system (5.1), where the functions £, are given by (5.6) and

functions & exist which satisfy (5.7). Then, the system (5.1) has a uniformly globally
stable equilibrium at the origin, 8 €L, and ¢'d eL,. In addition, ¢ and its time

derivative ¢ are bounded, then ¢ 8. converges to zero.

Proof: We consider the Lyapunov function W as:
W =23 g (5.9)
i=1

The derivative of the Lyapunov function W becomes:

W= (A )
i=1

= _Zn: éiTr;1 (r#’ﬂ’iT +F+ FiT )‘9'
i=1

n (5.10)
<-2.07 00

S—Zn:(coféi)z

i=1
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By integrating of inequality (5.10) over [0,], we obtain:

n

>(@18) dz <W (0)-W () <0 (5.11)

i=1

O 8

Asaresult, Wel_, 67, el, and @0 eL,.Furthermore, ¢ and ¢, are bounded. By using

Barbala’s lemma [Slo91], we get lim, @' 0 =0. By definition (5.2), this implies that an

asymptotic estimate of each term @' @ in (5.1) is given by ¢’ (9, + 5, )

5.2.2 Controller design

In this section, the controller design presented here includes command filters. Then, the
controller design procedures for system (5.1) with stability analysis using Lyapunov
stability theory are established as follows.

Step 1: Define the first tracking error as e =x, — X, then, the time derivative of e, is
obtained as:

€ =0 +@ 0+ Xy =018, + 91X + 0 0+ — Xy (5.12)
We choose the virtual control «; as:

o :gi(_k1e1_¢1T (éﬁﬁl)—%//ﬁXN) (5.13)

1
where, k, >0 is a positive design constant. The corresponding Lyapunov function
candidate V, is defined as:

v, = %ef (5.14)

The time derivative of V, is given by:

V= (0:8 + 0 (X0 — )+ G + 9 O+, Xy )
= (k& + 08, + 0 (%o — 1) -] 6)) (5.15)
= k&7 + 0, (X, — )& + 0,88, —€ 6,
Step i(i = 2,---,n—1) : The command filter output signal X, is generated by the command
filter [Don12, Don10]:
Yo == (X — ), % (0) =, (0) (5.16)

where, @, >0 is a positive design constants.
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Define the i" tracking error as e, = x, -, , then, the time derivative of ¢, is obtained as:

€ =06, + 9iXi.a)c + @ O+, =%, (5.17)
We choose the virtual controllers ¢; as:
1 T A .
a = g_(_kiei - (¢9i +[3i)—1//i + X — gi_lei_l) (5.18)
i
where, k; >0 is a positive design constants. The corresponding Lyapunov function

candidate V, is defined as:
1.
Vi :Vifl + Eei (519)

The time derivative of V, is given by:

. n-1 n-1 n-1 -
Vi = _iZ:l: kiei2 + = g; (X(Hl)c — 0 )ei + 0664 _ig,ei(PiTgi (5'20)

Step n: The command filter output signal X, is generated by the command filter [Don12,
Don10]:

Yoo = =0, (Xoo = s ) %o (0) = 2,4 (0) (5.21)
where, @, >0 is a positive design constant. Define the n" tracking error as e, = x, — X, ,
then, the time derivative of e, is obtained as:

& =g U+@ O+y, —X (5.22)

We choose the actual control input U as:

U =gi(—knen =] (0,4 B, ) v+ K= 980 (5.23)

n

where, k., >0 is a positive design constant. The corresponding Lyapunov function

candidate V =V, is defined as:
V= lZe? (5.24)
24" '
The time derivative of Vv is given by:
. n n-1 n .
Vv :_Z kiei2+zgi(x(i+1)c_ai)ei _Zei(PiTei (5-25)
i=1 i=1 i=1

Applying of the following Young’s inequality:
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15 1, 1/ 1442
-€¢; 6 SEei +E<¢i 9.) (5.26)

Note that, ‘x(m)c —ai‘ < i, therefore,

. n n-1 n -
V< _g ki€? +ﬁ§;|ei|_;ei¢:0i

S—Z(ki —%)eﬁ By fel+ 5 (a0 (5.27)

R ER ] )

i=1

. 1 .
where, k0:2m|n1§isn{ki—z}, g=max,..,,{0} and z>0. Applying of Young’s

inequality, ab <a’ +%b2 ou, a,be R, we obtain:

V <o +(n-1) L 1341 5.28
ole] +( 4k 2i_1(¢) 2l (5.28)
—2g2
with, pz(n—l)ﬂ4k , therefore,
0
V <k e[ + p+%zn:((0f0~i Y (5.29)
i=1

We choose the Lyapunov function V, as follows:
_ SR B F ey
__Zei +_Z¢9i r'o (5.30)
29 23
The derivative of the Lyapunov function V, becomes:

18 1~
<—kolef + -2 (o14) (5.31)

i=1
V, is negative for, |le|> \/n—l%. Therefore, we can conclude that, V., e and @' 6, are
0

|1 |c’ Xic

bounded. Furthermore, all signals in the closed-loop system, i.e., X, X4, X,

(i=2,---,n), ¢;, U and é?i+ﬂi (i=1---,n)are also bounded.

5.3 Indirect adaptive control
The detailed procedures for the indirect adaptive control design with stability analysis are

given as follows.
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5.3.1 Identification based x-swapping filters
We consider the uncertain nonlinear system (5.1), which can be rewritten under the

following nonlinear system in parametric x-model form as:

% =f(xu)+e (X)0 (5.32)
where,
9%+,
f(xu)= : (5.33)
( ) gn—lxn +l//n—1
g,u+y,

We introduce the following x-swapping filters as:

Qy =, (Qy +%)—f,(x,u),Q, eR (5.34)

Qf =aQ +9/ (%),Q, eR” (5.35)
where, i =1,---,n and a, <0 is a negative definite scalar function for each x continuous in
t. We define the estimation errors as:

ei:Xi+QOi—QiT(6A?i+,[)’i),eieR (5.36)
with, & + /3 the estimate of ¢ and let:

&=X+Qy -0, eR (5.37)
Then, we obtain:

¢ =-00 +¢ (5.38)
The error signal ¢ satisfies:

€ =%+Q,;-Ql0=a¢ (5.39)
To guarantee the boundedness of €2; when ¢, (X) grows unbounded, a particular choice of
a; is made:

3 =3 —4¢ (X)o(%)PR (5.40)
where, 4 >0 and &, is an arbitrary negative constant satisfying [Sou18]:

2Pa, =-1,P >0 (5.41)

5.3.2 Choice of modified adaptive laws

The modified gradient adaptive laws are defined as:
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A Q_e_ .
=T, —— _____BT.>0v20 5.42
! '1+vitr{QiTQi} A (5.42)

The modified least squares adaptive laws are defined as:
A Q€

G=ny vir{Qra,) A 649

where, T, is given by:

| QO
I =-T; 1+wtr {Q-irrigi}

I, T;(0)>0,v,20 (5.44)

with, 4 :Z%Xk :
ka1 OX,
5.3.3 Proof of stability

Lemma 4.3.1: To establish the identifier properties, let [O,tf), the maximal interval of

existence of solutions of (5.32), the x-swapping filters (5.34) and (5.35), and the modified
gradient adaptive laws (5.42) or the modified least squares adaptive laws (5.43) and (5.44).

Then for v, 20, the following properties hold:

jelL, (5.45)
eelnL, (5.46)
0ecl,AL, (5.47)

5.3.3.1 Modified gradient adaptive laws
We consider the following Lyapunov function as:

V=0T + R (5.48)
Along of dynamic equations (5.39) and (5.42), the derivative of the Lyapunov function V,
becomes:
Vi = éiTF;l'g;i + 2P|€|€|
T+ 2pag
~ - (5.49)
=616, +2P (a4 (%), (%) P)&’
=0'T70,+(-1-24Pg] (%), (X)R)&’

Applying of inequality (3.55), we obtain:
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. NT
v, sé.Tr.l(é +ﬂ'i)_gf U/ U
Leytr{Qf )}

& & ~ 2

:_1+mn{Qﬁ;}+1+mn{93}}q_q
.3 & 1 6 8 & (550)
© 41evr{oo) 4(1+Vﬂqg¥§%»2 LeviriQio )’
—_ 3 ¢ _ & _¢ 2

414vtr{QIQ} | 2(1+vtr{Ql0)) ‘

3 €’

T 4ltvtr{olo)])
The nonpositivity of V, proves that, & L, (bounded). Due to ¢ =-Qd +¢ and the

boundedness of €, it follows that ¢ e L, which, in turn proves that é, el,.
By integrating of inequality (5.50) over [O,oo], we obtain:

. .
III;EFfade3§WK®—VJW»<w (5.51)

This means that, G el,. Since €; is bounded, then ¢ elL,. The

1+vtr{QfQ,}

boundedness of €, and the square integrability of ¢ prove that 9, el,.

5.3.3.2 Modified least squares adaptive laws
From (5.43) and (5.44), we have the following identity:

.
i(F;l) =TIt = 20, >0 (5.52)
dt Lentr{QTQ}

The Lyapunov function is chosen as follows:

Vi =T (t)6, +Re’ (5.53)

Along of dynamic equations (5.39), (5.43) and (5.44), the derivative of the Lyapunov

function V, becomes:
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=G+ (79 + 2P
dt
_ATrG ATl L ATl =2
=010 -6 +01T,'6,+ 2P (ay ~ A (K)o (X )P )&

=0T -0 T T 0+ 07T 6, +(-1-24Pg] (%), (% )P)é

Applying of inequality (3.55), we obtain:

R ERYA B e R YA
O de éiTQ.Q.Té—

1t w0, +1+vitr{Q.TF.Q.} " wrlQTQ,} l

QiTéiei éiTQigi e
S1+Vitr{QTl“.Q.} +1+vitr{Q.T1“.Q.} f (5.55)

éiTQiei ~2

2 )
i § ~2
—€

_1+vitr{Q.TFQ.}+1+vitr{Q.TFQ.} |

€

2
€
S |

Lhvtrlona)

Which, due to the positive definiteness of ' (t) proves that, é, e L, (bounded).

By integrating of inequality (5.55) over [O,oo], we obtain:

2
€.

£1+Vitr{£2iTriQi} A <4 (0) (o) <@ (5.56)

This means that, G e L, . Using the boundedness of T'; and €;, following

Jvtr{ere)

the same line of argument as for the modified gradient adaptive laws, we prove that

gelb,nL, andéieLszw.

5.4 Composite immersion and invariance based adaptive command filtered

backstepping control

The proposed composite immersion and invariance based adaptive command filtered
backstepping control in this section uses both parameter adaptive laws of the immersion
and invariance based adaptive command filtered backstepping control described by (5.4)

with the estimation error based parameter adaptive laws of the indirect adaptive control
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described by (5.42) and (5.43). The control objective of this approach is to construct a
composite immersion and invariance based adaptive command filtered backstepping

controller u such that the system output x, tracks the desired trajectory x, and to ensure

that all signals in the closed-loop system are bounded. The main procedures for designing
the composite immersion and invariance based adaptive command filtered backstepping
control scheme for system (5.1) with stability analysis are summarized as follows.

5.4.1 Composite projection based gradient adaptive laws

Projection properties: We assume that @ is estimated by ©, :é’i + /3, where, ©, are the

estimates of #. Terms 6, and B, are two parts of the estimates need to be judiciously

designed. The estimation errors are given by:

The projection operator is defined as:

_ o, if ©/6, <M} orif (6/6,=M? and 6,<0),
Proj, ()= (5.58)
' 0 otherwise.

where, ‘e’ represents any reasonable adaptation function. The projection algorithm

guarantees that the parameter estimates ®, of € remain bounded and satisfy the

inequality, @

Moreover, the projection mapping used in (5.58) guarantees that:

e Projg, (#;) < 0 e, (5.59)
Therefore, the composite projection based gradient adaptive laws are defined as:
A : L OB, Qe
6, = Proj, — 9 X1 to 0+ 6 )ty |+, ————— | (5.60
Je[ kZ:; X, (gk K1 (/’k( ,3) V/k) 1+V.tr{Q.TQ.}J( )
The dynamics of estimation errors are given by:
< . L OB, Qe
6 =Proj, | - Xkato |0+ )ty |+, ——————
i Jg[ ;axk(gk K+l §0k( ,B) ‘//k) 1+V'[I‘{QTQ}]
(5.61)

+iaﬁ (gka+1+(pk (6’ +ﬂ)+wk) {iaﬁ 9 }0

1 OX, 3 OX

where, ¢ =X, +Q, — Q! (é )
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Theorem 5.4.1: Consider the SISO uncertain nonlinear system in lower triangular form
composed of the plant described by (5.1). Suppose that assumptions 5.2.1 and 5.2.2 are
satisfied. Then, the virtual controllers (5.13) and (5.18), the actual control input (5.23) and
the composite projection based gradient adaptive laws (5.60) guarantee that all signals in
the closed-loop system are bounded.

Proof: We consider the following Lyapunov function as:

Ze +Z Zeﬂ I +ZP e’ (5.62)
The derivative of the Lyapunov function V becomes:

V'S—ko||e||2+p+22( , ) +Z¢9T rlg +22Pe€
1 ~\2 4 9 Qe ﬂ ~ . ~2
<k el = "0 S R Y% (5.63
ol o e 3 TS ar 3200 |0-3a 669
n 2

13 ~ 3 :
el ot S () -2y

= T lvtr{QfQ,}

V is negative for, || > \/n—l%. Therefore, we can conclude that, V , €, ¢4, 6, and

0

¢ are bounded. Furthermore, all signals in the closed-loop system, i.e., X, X4, X4, X,

X., %, (i=2,--,n), &, U and @ + 4 (i=1---,n) are also bounded.

5.4.2 Composite e-modification based gradient and least squares adaptive laws
The composite o-modification based gradient and least squares adaptive laws are defined

as.

Z—Z (gkxmﬂok (6+8)+w)-Tioy (4 +4-8).1,>0,0,>0 (564)

k=1

where, o, are small design constants to introduce the c-modification for the closed-loop

system and 6, are computed with the gradient method as follows:

P Qe .
=T — "0 ____BT.>0v>0 5.65
' '1+vitr{QiTQi} h (565)

or with the least squares method as follows:
= Qe

“helaral (5.66)
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where, T, are given by:

_ QQT B
T =% LT (0)>0,v,20 5.67
'1+vitr{QiTFiQi} oT1(0)>0.v (5.67)

£ o

with, ¢ =x +Q, —Qf (67I +ﬁi) and f = Z% X, - The dynamics of estimation errors are

k=1 k

given by:

1= 22 |a-rie,(00-0) (5.68)
Theorem 5.4.2: Consider SISO the uncertain nonlinear system in lower triangular form
composed of the plant described by (5.1). Suppose that assumptions 5.2.1 and 5.2.2 are
satisfied. Then, the virtual controllers (5.13) and (5.18), the actual control input (5.23) and
the composite o-modification based gradient and least squares adaptive laws (5.64)
guarantee that all signals in the closed-loop system are UUB and the tracking errors
converge to a sufficiently small neighborhood of the origin by appropriately adjusting the
design parameters.

Proof: We consider the following Lyapunov function as:
“iversiyarig (5.69)
279 243
The derivative of the Lyapunov function V is given by:

\/'S—k0||e||2+p+;Z( g +29T rii

s—ko||e||2+p+%_2( a) ZHT [Z | }i—gaﬁ(éﬁﬂi—é)(fs.m)

1 n _
S—k0||e||2+p—52(g0i |) ZO-QQT (‘9 Hu)
We assume that, -6 is bounded, thus, e, =6—6, is bounded, 6 =6-e, and

6 :éi + /3 —@. The derivative of the Lyapunov function V becomes:

Vg—k0||e||2+p—%2(- 3 ) zag (6 +e,)

= (5.71)

1 n -
—k0||e||2+p—§Z(. ) Z%. i_Z:l:Ga.HiTea

=1 i=!

Applying of inequality (3.87), we obtain:
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Vsklef o2 (ad) - X 20+ Y e
i=1 i=1 i=1 (572)

1 ~ O, o ~
<ol -5 (@) -2 560+

i=1 i=1
In addition, the above inequality can be rewritten as:

V<—aV+u (5.73)

where, ﬂ:min{Zko,Fia@} and y:p+2%e§i . Multiplying both sides by e™, (5.73)

i=1
can be rewritten as:

d

E(V (t)e™) < e (5.74)

Integrating (5.74) over [0,t], we have:

/u /J -t
o<V (t)<E+|V(0)-&= 5.75
=4+ [v(0)-“)e 5.75)
Since lal >0, it can be obtained that:
T
0<V(t)<V(0)e™+£ (5.76)
T

Therefore, we can conclude that, e, ¢ @, 6, and ¢ are UUB. Furthermore, all signals in

the closed-loop system, i.e., X, X4, X4, X%, X.» X, (i=2,---,n), o, U and éi+,3i

(i=L---,n) are also UUB. In addition, from (5.69) and (5.76), it follows that:
lel=.[> e <2V (0)e ™ +/2u/x . Accordingly, when t — oo, it is easy to show that:
i=1

le]| < \J2p/7 . This completes the proof.

Remark 5.4.1: In this chapter, we consider a first order command filter to simplify the

analysis. The purpose of this command filter is to generate X, and its derivative . such
that |x,, —cr_y| is small. A second order filter is discussed in [Far09, Far08].

Remark 5.4.2: It should be pointed that the command filters may cause the filtering errors
which will add the difficulty to get a small tracking error. To deal with this problem, the

compensating signals are constructed in order to remove the effect of the known filtering

errors (X(M)C —ai) caused by the command filters.

127



Chapter 5 Composite immersion and invariance based adaptive command filtered
backstepping control

The compensating signals ¢, are defined as [Don12, Don10]:

51 == 1§1+gl‘§2 +gl(XZc _al) (5.77)
&=-K&E+0E,—0461+0, (X(i+1)c _ai) (5.78)
én = _kngn - gn—lgn—l (579)

where, k; >0 are design parameters and & (0)=0. We can get | | is bounded. Define the

compensated tracking errors as v, =€, —¢&. The closed-loop compensated tracking error

dynamics are given by:

v, =K, + 90, -0 51 (5.80)

0 =k + 00~ 80— 6, (5.81)

Oy = K0y = Uy 10n 1 — 01 0 (5.82)
The command filters are also designed as follows [Far09, Far08]:

D1 = OBz

{(/’%,z =-2wp,-0,(0,-a) (583

with, i=1---.n-1, X;,,. =@, and X, =@,@,. Assume that the initial conditions of
each filter are denoted ¢, (0)=¢;(0) and ¢, (0)=0.
Moreover, the parameters @, >0 and ¢ e(O, 1] may be found to satisfy ‘(oiyl—ai‘ < u for

any 4 >0.

5.5 Simulation results

This section presents the simulation results for composite immersion and invariance based
adaptive command filtered backstepping control scheme as applied to an electromechanical
system mathematical model and as in previous chapters. The control objective of this
simulation is to construct the composite immersion and invariance based adaptive
command filtered backstepping controller u for the electromechanical system in such a
way that the link angular position ( tracks the desired trajectory x,, and all signals in the

closed-loop system are bounded.

The virtual controllers ¢, and «, are defined as:

o =~k + X (5.84)
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. A B .
052:b_(_kzez_el+sm(xl)(92+ﬂ2)+sz+chj (5.85)
2

The command filter output signal x,, for i =2,3, is generated by the command filter:
%o == (X — ) (5.86)
where, @, >0. The actual control input u is chosen as:

u :bi(—k3e3—b2e2 +x2(é3+,63)+%x3+>‘<3cj (5.87)
3
For the swapping based identifier, the x-swapping filters are the same as that in the chapter

2 described by (2.92)-(2.95).

5.5.1 Composite projection based gradient adaptive laws

The composite projection based gradient adaptive laws are defined as:

ézzProjéz [%xz%(b2x3sin(xi)(éﬁﬁz)%xzjﬂ“ .6, J (5.88)

o o ox, “1v,tr{010, |
and,
A . 0 0 . A B
6, =Proj, E_ﬁ X, _ﬁ(b2x3 —sin (xl)(ﬁ3 +ﬂ3)—5x2J

oX, 0X,
} (5.89)

6ﬁ3( A H j Que,
— B U (O, + By | =X [+ ——
2 3 2( 3 ﬂs) M3 31+v3tr{Q;Q3}

where, B, =-T,%,sin(x ), By =-T3X,X and ¢ =X +Qy —Qf (é, +,Bi), i=23.

A

The initial conditions are selected as: x(0)=[0 0 0]', 4,(0)=0, 6,(0)=0,
0,(0)=0;(0)=0, Q(0)=0;(0)=0 and X, (0)=x,(0)=0. The control
parameters are chosen as: k =k,=50, k;=500, I',=I,=065, A ,=4,=0.1,
v,=v,=0.1and o, =w, =150.

The simulation results are shown in Figures 5.1-5.9. Figures 5.1-5.3 show the trajectories
of the output variables. The trajectories of the tracking errors are illustrated in Figures 5.4-

5.6. Figures 5.7 and 5.8 show the trajectories of the parameter estimates. The trajectories of

the control inputs are shown in Figure 5.9.
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5.5.2 Composite s-modification based gradient adaptive laws
The composite s-modification based gradient adaptive laws are defined as:

b=y —%(bzxa ~sin(x)(6, +ﬁ2)—%x2J—F2092 (6,+5,-8,) (5.90)

2 axi 2 axz
and,
0 0 : A B
0, = % X, —ﬁ(bzx3 —sm(xl)(ﬁ3 +,6'3)——sz
X, 0X, D (5.91)
0 A H . _
_6_f:[b3u =X (‘93 +:B3)_MX3J_F30-93 (‘93 + 5 _‘93)
where, 6, and 6, are computed with the gradient method as follows:
(5.92)

- Qe .
a_ri1+vitr{QiTQi} A

with, B, =—I,%,sin(X ), By =-TyXX, and ¢ =X +Qy; —Qf (5, +[j’i), i=23.

The initial conditions are selected as: x(0)=[0 0 O]T, éz(o)zéz(o)zo,

0,(0)=4,(0)=0, 0, (0) =0 (0) =0, 24, (0) =] (0) =0 and x5, (0) =, (0)=0. The

control parameters are chosen as: k, =k, =50, k, =500, I, =, =0.65, [, =T,=0.5,

o, =0, =001, 4,=4,=0.1, v,=v,=01and w, =@, =150.
The simulation results are shown in Figures 5.10-5.18. Figures 5.10-5.12 show the
trajectories of the output variables. The trajectories of the tracking errors are illustrated in

Figures 5.13-5.15. Figures 5.16 and 5.17 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 5.18.

131



Chapter 5 Composite immersion and invariance based adaptive command filtered
backstepping control
2 : l : ==X, desired 2 l l ' —y
151 /\ x 181 15 X, 18
5 1t I = X, indirect § 1 = X, indirect
g . 3 )
g o5k A ‘\ =X composite € o5 e xzcomposne
= | /N 2
2 o \ 1 g 0 1
2 s
i >
£ .05 505 .
° 3
< -1F /] A 21 q
/ <
-15- v . 15 1
) L L L L _2 L L L L
0 5 10 15 2 % 0 5 10 15 2 %
Time [sec] Time [sec]
Fig. 5.10: Angular position: desired x;4 ("-") Fig. 5.11: Angular velocity: signal X, ("-") and
and actual x; ("--"). actual x; ("--").
3
10 T T T 4)(10 T T T
~, £l 5 ell&l
< ! \ X, 18l % o N = e indirect
= sk \ = x,indrect 2 ; \ «= & composite
; i 5 IR
= = = X; Composite o 2- LAY 7
S £ i\
) & \
30 =1 .' A 1
; i | U
f .g 0\ l' “ .-'!.."':.“‘;- '\.J-\j
§ 4 | } RN B Vi
b 'l / %_1, \ g = ]
/ \/ \/ Y
R L i L L 2 L L L L
1% 5 10 15 2 % 0 5 10 15 2 %
Time [sec] Time [sec]
Fig. 5.12: Motor armature current: signal Xs. Fig. 5.13: Angular position tracking error: e;.
("-") and actual x3 ("--").
E, 0.25 T T T ¢, ] % 0.5 T T T e3|&|
ﬁ 0.2F = ¢, inditect g 04r '-".\ = ¢, indiect
g o5 ’.\ == €, composite é’ 03F ',: ) -| ey composite
e A § 02t i 11 1
2 % 5 1Y
£ ool (R . z i
X g y= < [ |
g f gotr .
g § A 5 [ u 1Y
= 0.05- i a b 3 1 K4
2 H 1 - o On ‘."..-"'.. . o S0 e 10 s gy e e e e e
Q ] . '-.,\. 5 Y »
S Om H t "f = g g 47T e g st 2 \ L
R N | \ g.01f % i g
g \ g vy E M \ i
g -0.05- ‘\j . 1 5 020 v/ 1
[ <]
< 01 L L L L S 03 L L L L
0 5 10 15 2 % 0 5 10 15 2 %
Time [sec] Time [sec]
Fig. 5.14: Angular velocity tracking error: e,. Fig. 5.15: Motor armature current tracking
error: es.
12 T T T T 250 T T T T
& AR im’& ' ) e it e i A T e L ey
o .""';' AN N7 o & s ~
y £ P e
H AN 2 150 {7 ]
o "i 9] H K,
A | g {
£ i 2 100 4 ]
g4 I = g Y =
¢ i 2 ¢ il 3
Iy by 161 o i by 161
2r - i s 7 i
w3 =0y indirect A1 = 0y indirect
0 _‘o_':/ ; , , = f, composite o ‘,';-J , , , = 05 composite
0 5 10 15 2 % 0 5 10 15 2 %
Time [sec] Time [sec]

Fig. 5.16: Parameter estimate: actual &, ("-")

and estimate 6, ("--").

Fig. 5.17: Parameter estimate: actual 6, ("-")

and estimate 4, ("--").

132



Chapter 5 Composite immersion and invariance based adaptive command filtered
backstepping control

o
(=3

‘ N ‘ Il\ ‘ Al e
I \ \— uindirect
== U composite
ai

\
Vo
\
\./’
",
\
!
\

=
153
T

=
S
T

Input control voltage [V]
M o o
T ~ T

<
el
<

A

5 10 15 20 25
Time [sec]

]
=

Fig. 5.18: Control input: u.
5.5.3 Composite s-modification based least squares adaptive laws
The composite o-modification based least squares adaptive laws are the same as that in the

composite c-modification based gradient adaptive laws described by (5.90) and (5.91). 4,

and 6, are computed with the least squares method as follows:

é :fi Qe _
L+ytr{Q T,

} -5 (5.93)

with, T, is given by:

. _ Qr _
r.=-T 2,0, r

" | QT) (5:94)

where, S, =-T,%,sin(X ), B =-TyXX and ¢ =% +Qy —-Q (6 +4),1=23.

The initial conditions are selected as: x(0)=[0 0 O]T, éz(o)zéz(o)zo,
6,(0)=0,(0)=0, Q,(0)=0} (0)=0, QO (0)=01 (0)=0 and X,, (0)=x,(0)=0. The
control parameters are chosen as: k =k, =50, k,=500, I',=I';=0.65, T,(0)=5,

r,(0)=10, 5, =0, =0.01, 4, =4,=0.1, v,=v,=0.1 and @, =, =150.

The simulation results are shown in Figures 5.19-5.27. Figures 5.19-5.21 show the
trajectories of the output variables. The trajectories of the tracking errors are illustrated in
Figures 5.22-5.24. Figures 5.25 and 5.26 show the trajectories of the parameter estimates.

The trajectories of the control inputs are shown in Figure 5.27.
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From all the results, we can obviously see that all actual trajectories asymptotically
converge to their reference signals, that the ultimate tracking errors converge to zero and
that the convergence of the parameter estimates to their true values is guaranteed. As seen
in simulation results, we can conclude then that the proposed composite adaptive control
method is effective, gives a well control effort performance and has good trajectory
tracking performances in comparison with direct and indirect robust adaptive control

approaches.

5.6 Conclusion

This chapter presents a novel design of composite immersion and invariance based
adaptive command filtered backstepping control for a class of SISO uncertain nonlinear
systems in lower triangular form. By designing of the proposed composite adaptive control
method, the problem of explosion of complexity is also eliminated. By using the Lyapunov
stability theory, it has been proven that the proposed composite adaptive control technique
guarantees the boundedness of all signals in the closed-loop system. The simulation results
for an electromechanical system clearly demonstrate the effectiveness of the proposed
composite adaptive control scheme compared to immersion and invariance based adaptive
command filtered backstepping control and indirect adaptive control schemes. Some future
work will be mainly considered to apply the composite immersion and invariance based
adaptive command filtered backstepping control method by using the compensating signals

in order to remove the effect of the filtering errors caused by the command filters.
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General conclusion and future works

The research work presented in this thesis deals with the study and development of new
composite adaptive control schemes for a class of SISO uncertain nonlinear systems in
lower triangular form. In the chapters, numerous types of composite adaptive control
approaches for a class of SISO uncertain nonlinear systems in lower triangular form have
been studied and developed as follows: composite tuning functions based adaptive
backstepping control, composite adaptive dynamic surface control, composite robust
adaptive dynamic surface control, and composite immersion and invariance based adaptive
command filtered backstepping control methods. These composite adaptive control
techniques require the synthesis of stable adaptive control laws with composite adaptive
laws. The principle of these composite adaptive control schemes aims to combine the
adaptive laws by considering sum, projection and c-modification based adaptive laws. The
main drawback in adaptive backstepping control approach is the overparametrization
problem. Composite tuning functions based adaptive backstepping control has been
utilized to avoid the overparametrization problem. The adaptive backstepping control and
composite tuning functions based adaptive backstepping control designs suffer from the
problem of explosion of complexity, which is caused by repeated differentiations of the
virtual controls at each step. To overcome the problem of explosion of complexity,
composite adaptive and robust adaptive dynamic surface control, and immersion and
invariance based adaptive command filtered backstepping control techniques have been
proposed. By utilizing the above composite adaptive control designs, a novel composite
mechanisms of adaptive laws are developed. The boundedness of all signals in the closed-
loop system is guaranteed by using the Lyapunov stability analysis theory. Simulation
results for an electromechanical system are provided to demonstrate the effectiveness of
the proposed composite adaptive control schemes.

The first chapter presents the Lyapunov stability concepts with some necessary definitions,
Lyapunov’s direct method, control Lyapunov function (CLF) and some useful lemmas.
The backstepping control technique procedures with stability analysis have been discussed.

The chapter closes with a state of the art on the adaptive control techniques.
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In the second chapter, novel composite tuning functions based adaptive backstepping
control for a class of SISO uncertain nonlinear systems in lower triangular form has been
studied and developed to avoid the overparametrization problem inherent in the
conventional adaptive backstepping control design. The principle of this composite
adaptive control approach is to combine the direct and indirect adaptive laws by
considering sum and c-modification based adaptive laws. Stability analysis is performed
based on the Lyapunov stability theory to guarantee the boundedness of all signals in the
closed-loop system. In order to verify the effectiveness of the proposed composite adaptive
control scheme compared to direct and indirect adaptive control schemes, simulation
results have been tested for an electromechanical system.

In the third chapter, a new composite adaptive dynamic surface control for a class of SISO
uncertain nonlinear systems in lower triangular form has been presented and developed to
overcome the problem of explosion of complexity inherent in the conventional adaptive
backstepping control and the composite tuning functions based adaptive backstepping
control designs. By introducing the Lyapunov stability theory, it is proved that all signals
in the closed-loop system are bounded. Simulation results for an electromechanical system
have been tested in order to validate the effectiveness of the proposed composite adaptive
control scheme compared to direct and indirect adaptive control schemes.

The fourth chapter presents a novel composite robust adaptive dynamic surface control for
a class of SISO uncertain nonlinear systems in lower triangular form with unknown
external disturbances. The proposed composite robust adaptive control method has been
also introduced and developed to avoid the problem of explosion of complexity. By using
the Lyapunov stability theory, the boundedness of all signals in the closed-loop system is
guaranteed. In order to verify the effectiveness and robustness of the proposed composite
robust adaptive control scheme in comparison with direct and indirect robust adaptive
control schemes, simulation results have been tested for an electromechanical system.

In the last chapter, a novel design of composite immersion and invariance based adaptive
command filtered backstepping control for a class of SISO uncertain nonlinear systems in
lower triangular form has been also investigated and developed to avoid the problem of
explosion of complexity. Stability analysis is performed by using the Lyapunov stability
theory to ensure the boundedness of all signals in the closed-loop system. In order to verify
the effectiveness of the proposed composite adaptive control scheme compared to

immersion and invariance based adaptive control and indirect adaptive control schemes.
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As a result of this research work, this thesis opens new future research works on what

follows:

Applying of the proposed composite adaptive control designs with different types
of indirect adaptive control.

Developing of composite adaptive command filtered backstepping control
technique by using the compensating signals to remove the effect of the filtering
errors caused by the command filters.

Designing of composite immersion and invariance based adaptive dynamic surface
control method in order to avoid the problem of explosion of complexity.

Study of the proposed composite adaptive control designs using Nussbaum
functions, barrier Lyapunov functions (BLFs), barrier Lyapunov functions based
Nussbaum functions and finite-time control technique.

Investigate the use of the proposed composite adaptive control approaches with
sliding mode control methods.

Investigate an extension of the proposed composite adaptive control approaches for
a class of fractional order and chaotic systems.

Designing of uncertain nonlinear systems with unmeasured states by using observer
adaptive backstepping control with tuning functions and observer adaptive dynamic
surface control schemes.

Design of the composite adaptive neural/fuzzy control based on command filtered
backstepping control and dynamic surface control strategies.

Apply of the proposed composite adaptive control methods to other practical
industrial applications.

Validation of the proposed composite adaptive control techniques via real-time

implementations.
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