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        Abstract/Résumé/ يهخص   

 

 ملخص:

غيز يؤكذة انقًُب بذراست وتطىيز إستزاتيديبث انتحكى انتكييفي انًزكبت نفئت يٍ الأَظًت انلاخطيت  في هذِ الاطزوحت،

انًزكب يٍ يشكهت إَفدبر انتؼقيذ بسبب  طظ انتحكى انتكييفي انزخؼي يغ دوال انضبظفي شكم يثهثي سفهي. يؼبَي يخ

ئستخذاو طزق انتحكى انتكييفي و انتحكى انتكييفي انًتيٍ بىاسطت بالإشتقبقبث انًتكزرة نًذخلاث انتحكى الإفتزاضيت. 

انتكييفي انزخؼي انًزشح انًزكب، يتى  انتحكى في انسطح انذيُبييكي انًزكبيٍ، و الإَغًبس و انثببث ػهى أسبس انتحكى

انقضبء ػهى يشكهت إَفدبر انتؼقيذ. تى إستخذاو انقىاَيٍ انتكييفيت انًزكبت إستُبدا إنى انتذرج و أقم انًزبؼبث يغ َىع 

تؼذيم. تى تحهيم إستقزار يخططبث انتحكى انتكييفي انًزكبت انًقتزحت بئستخذاو َظزيت -انًدًىع، الإسقبط و 

ر نيببىَىف نضًبٌ أٌ تكىٌ خًيغ الإشبراث في َظبو انحهقت انًغهقت يحذودة. تى ػزض َتبئح انًحبكبة نُظبو الإستقزا

    كهزوييكبَيكي لإظهبر فؼبنيت تقُيبث انتحكى انتكييفي انًزكبت انًقتزحت.

 

الإَغًبس و انثببث، انتحكى  انتحكى انتكييفي، انتحكى انًتيٍ، دوال انضبظ، انتحكى في انسطح انذيُبييكي، كلمات مفتاحية:

انزخؼي انًزشح، أَظًت لاخطيت غيز يؤكذة، َظزيت الإستقزار نيببىَىف، قىاَيٍ انتكييف انًزكبت، َظبو 

 كهزوييكبَيكي.

Résumé: 

Dans cette thèse, on s‟est intéressé à l‟étude et le développement de stratégies de la 

commande adaptative composite pour une classe des systèmes non linéaires incertains en 

forme triangulaire inférieure. Le schéma de commande adaptative par backstepping avec 

fonctions de réglage composite souffre du problème de l‟explosion de la complexité causée 

par les dérivations répétées des entrées de commande virtuelles. Par l‟utilisation des 

méthodes de commande adaptative et adaptative robuste par la commande de surface 

dynamique composites, et immersion et invariance basée sur la commande filtrée 

adaptative par backstepping composite, le problème de l‟explosion de la complexité est 

éliminé. Lois adaptatives composites de type somme, projection et -modification basées 

sur le gradient et les moindres carrés sont utilisées. L‟analyse de la stabilité des schémas de 

commande adaptative composite proposés est effectuée par la théorie de la stabilité de 

Lyapunov pour garantir la bornitude de tous les signaux du système en boucle fermée. Les 

résultats de simulation d‟un système électromécanique sont présentés pour montrer 

l‟efficacité des techniques de commande adaptative composite proposées. 

 

Mots-clés: Commande adaptative, commande robuste, fonctions de réglage, commande de 

surface dynamique, immersion et invariance, commande filtrée par backstepping, systèmes 

non linéaires incertains, théorie de la stabilité de Lyapunov, lois adaptatives composites, 

système électromécanique. 



        Abstract/Résumé/ يهخص   

 

Abstract: 

In this thesis, we are interested in the study and development of composite adaptive 

control strategies for uncertain nonlinear systems in lower triangular form. Composite 

tuning functions based adaptive backstepping control scheme suffers from the problem of 

explosion of complexity caused by the repeated derivations of virtual control inputs. By 

using the composite adaptive and robust adaptive dynamic surface control, and composite 

immersion and invariance based adaptive command filtered backstepping control methods, 

the problem of explosion of complexity is eliminated. Composite sum, projection and -

modification based gradient and least squares adaptive laws are used. Stability analysis of 

the proposed composite adaptive control schemes is performed by using the Lyapunov 

stability theory to guarantee that all signals in the closed-loop system are bounded. 

Simulation results of an electromechanical system are presented to show the effectiveness 

of the proposed composite adaptive control techniques.  

 

Key words: Adaptive control, robust control, tuning functions, dynamic surface control, 

immersion and invariance, command filtered backstepping control, uncertain nonlinear 

systems, Lyapunov stability theory, composite adaptive laws, electromechanical system. 
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General introduction 

In recent years, the control design of nonlinear systems has attracted considerable attention 

from both theoretical interests and practical applications, and many effective control 

schemes have been proposed. Over the past decades, adaptive control of uncertain 

nonlinear systems has obtained many significant results where numerous approaches have 

been proposed for the design of nonlinear control systems. Among these adaptive control 

strategies, as an efficient design methodology, adaptive backstepping control has been 

studied for a class of uncertain nonlinear systems in lower triangular form (strict feedback 

form) with overparameterization [Kan91]. The overparameterization problem inherent in 

the conventional adaptive backstepping control has been eliminated by introducing tuning 

functions [Krs92]. The book of Krstic et al. [Krs95a] introduced a comprehensive 

methodology for adaptive backstepping control and tuning functions based adaptive 

backstapping control designs to deal with large classes of uncertain nonlinear systems. In 

recent years, tuning functions based adaptive backstepping control approach has been 

widely designed to control a class of uncertain nonlinear systems [Cil07, Wan16, Zho08]. 

Nevertheless, the conventional backstepping control approach suffers from the problem of 

explosion of complexity, which is caused by repeated differentiations of the virtual 

controllers at each step, as pointed out in [Hed00, Swa00, Swa97]. As a result, the 

computational complexity of backstepping controller grows drastically as the order of the 

system increases. To overcome the problem of explosion of complexity, the dynamic 

surface control (DSC) approach was proposed for a class of nonlinear systems in [Hed00, 

Swa00, Swa97] by introducing a first-order low-pass filter at each step of the conventional 

backstepping control method. Consequently, the dynamic surface control technique was 

suggested for designing adaptive controllers of uncertain nonlinear systems [Hed00, 

Yip98]. Several adaptive dynamic surface control schemes have been developed for a class 

of uncertain nonlinear systems [Khe15, Liu18a, Yu15b]. Besides dynamic surface control, 

the command filtered backstepping control was also proposed to solve the problem of 

explosion of complexity inherent in the conventional backstepping control approach 

[Far09, Far08]. In [Don12, Don10], the command filtered backstepping control method has 

extended to adaptive control. Several adaptive command filtered backstepping control 
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approaches have been introduced to control a class of uncertain nonlinear systems [Pan18, 

Yu18b, Yu15a]. 

Recently, immersion and invariance (I&I) based adaptive control of nonlinear systems was 

proposed by Astolfi and Ortega [Ast03]. It has been established for controlling many 

uncertain nonlinear systems in lower triangular form [Ast08a, Ast08b, Kar08, Sou21]. The 

design procedures of immersion and invariance based adaptive control consisted of a 

general two steps, while the first step is to design an estimator and the second step is to 

design a control law. Recently, immersion and invariance based adaptive command filtered 

backstepping control method has been designed for uncertain nonlinear systems [Son10a, 

Son10b]. Moreover, immersion and invariance based adaptive dynamic surface control 

technique has been also proposed [Fuj12, Sou21]. 

In adaptive control, the way of parameter estimation gives rise to two different schemes, 

direct and indirect techniques, a direct scheme that utilizes tracking errors and an indirect 

scheme that utilizes estimation errors. Composite adaptive control method is an integrated 

direct and indirect adaptive control schemes which aim to achieve better tracking and 

parameter convergence through faster and smoother parameter adaptation [Slo89]. The 

types of adaptive law modifications have been presented such as sum, -modification, -

modification and projection [Che10, Far06, Ioa07, Ioa96, Pol96, Sou21, Sou19, Sou18, 

Sou17, Sou15, Yao97]. In [Cil07], a composite tuning functions based adaptive 

backstepping control method has been utilized for a class of single-input and single-output 

(SISO) uncertain nonlinear systems in lower triangular form to avoid the 

overparametrization problem. A composite adaptive dynamic surface control technique has 

been introduced for a class of SISO uncertain nonlinear systems in lower triangular form to 

overcome the problem of explosion of complexity [Sou18]. In [Pan16b], a composite 

adaptive command filtered backstepping control approach has been also proposed for a 

class of SISO uncertain nonlinear systems in lower triangular form to solve the problem of 

explosion of complexity. 

Besides adaptive control, robust adaptive control scheme that combine robust control and 

adaptive control for uncertain nonlinear systems with external disturbances has also 

received a great attention in recent years and has been extensively used to control a large 

class of nonlinear systems. In [Zha15b], robust tuning functions based adaptive 

backstepping control approach has been presented for a class of uncertain nonlinear 

systems with external disturbances to avoid the overparametrization problem. In [Hou11, 

Zha18a, Zha18b, Zha17], robust adaptive dynamic surface control technique has been 
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proposed for a class of uncertain nonlinear systems with external disturbances to overcome 

the problem of explosion of complexity. Furthermore, composite robust adaptive dynamic 

surface control method of uncertain nonlinear system has been also designed in [Che10]. 

This thesis proposes the study of the composite adaptive control for a class of uncertain 

nonlinear systems in lower triangular form. This is to synthesize stable adaptive control 

laws with composite adaptive laws. The complexity of these control laws should be kept 

reasonable by the introduction of a filtering at the level of the virtual controllers. The 

combination aims to combine the direct adaptive laws (from a Lyapunov function) and the 

indirect adaptive laws (gradient or least squares) by considering sum, projection and σ-

modification based adaptive laws.  

This thesis presents a new approaches that combines adaptive laws for the adaptive control 

schemes of SISO uncertain nonlinear systems in lower triangular form. In these schemes, 

by utilizing the adaptive control designs and the gradient and least squares identifier with 

x-swapping filters of the indirect adaptive control designs, a novel composite mechanisms 

of adaptive laws with sum, projection and -modification techniques are developed while 

both tracking (surface) errors and estimation errors are combined to obtain better trajectory 

tracking performances, parameter estimates and control convergence. Composite tuning 

functions based adaptive backstepping control design is proposed to avoid the 

overparametrization problem. Composite adaptive dynamic surface control and composite 

robust adaptive dynamic surface control approaches are presented to overcome the 

problem of explosion of complexity. Composite immersion and invariance based adaptive 

command filtered backstepping control design is also developed to solve the problem of 

explosion of complexity. The boundedness of all signals in the closed-loop system is 

guaranteed based on the Lyapunov stability analysis theory. Simulation results for an 

electromechanical system (one-link manipulator actuated by a brush DC motor system) are 

provided to demonstrate the effectiveness of the proposed composite adaptive control 

techniques. 

The thesis is organized as follows. 

 The first chapter gives some basic definitions and tools on Lyapunov stability. These 

important tools are utilized to introduce the backstepping control design procedure. 

Then, the state of the art on the adaptive control techniques is discussed.  

 In the second chapter, the composite tuning functions based adaptive backstepping 

control technique for a class of SISO uncertain nonlinear systems in lower triangular 

form is applied to remove the overparametrization problem in the conventional adaptive 
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backstepping control design. Stability analysis using Lyapunov stability theory is 

performed to guarantee that all signals in the closed-loop system are bounded. A 

comparative simulation results for the control of an electromechanical system are 

implemented to demonstrate the validity of the proposed composite adaptive control 

method.  

 The third chapter discusses a novel design of composite adaptive dynamic surface 

control technique for a class of SISO uncertain nonlinear systems in lower triangular 

form in order to avoid the problem of explosion of complexity inherent in the 

conventional adaptive backstepping control and the composite tuning functions based 

adaptive backstepping control schemes. By introducing the Lyapunov stability theory, 

the proposed composite adaptive control method guarantees the boundedness of all 

signals in the closed-loop system. Simulation results for the control of an 

electromechanical system are provided to show the performance of the proposed 

composite adaptive control scheme in comparison with direct and indirect adaptive 

control designs. 

 In the fourth chapter, the results of third chapter are extended to robust adaptive 

nonlinear control. The composite robust adaptive dynamic surface control approach for 

a class of SISO uncertain nonlinear systems in lower triangular form with unknown 

external disturbances is proposed to overcome also the problem of explosion of 

complexity. The proposed composite robust adaptive control technique guarantees that 

all signals in the closed-loop system are bounded by using the Lyapunov stability 

theory. A comparison for the control of an electromechanical system with direct and 

indirect robust adaptive control designs is made to illustrate the efficiency and 

robustness of the proposed composite robust adaptive control method. 

 The last chapter introduces the composite immersion and invariance based adaptive 

command filtered backstepping control method for a class of SISO uncertain nonlinear 

systems in lower triangular form to overcome also the problem of explosion of 

complexity. The boundedness of all signals in the closed-loop system is guaranteed by 

introducing the Lyapunov stability theory. A comparative study for the control of an 

electromechanical system is tested to verify the effectiveness of the proposed composite 

adaptive control approach. 

Finally, general conclusion and future research works are formulated to finish the thesis. 
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Chapter 1 

State of the art and basic notions 

 

 

 

1.1 Introduction  

The Lyapunov stability theory is a very important tool for the control of nonlinear systems. 

It is used to analyse the stability of the closed-loop system. The backstepping control 

method is one of the nonlinear control techniques. It has been widely adopted in the control 

of so many nonlinear systems, and has been also introduced in adaptive control methods. 

Then, the adaptive control techniques have also received a lot of attention from the control 

research community in recent years. 

In this chapter, the important definitions and basic tools on Lyapunov stability are 

presented. These important tools are then utilized to introduce the backstepping control 

design procedure for SISO nonlinear systems in lower triangular form. Then, several 

adaptive control techniques are introduced to handle a large class of uncertain nonlinear 

systems. 

The rest of this chapter is structured as follows. The Lyapunov stability concepts are 

presented in Section 1.2. In Section 1.3, the backstepping control method is designed. The 

state of the art on adaptive control techniques is discussed in Section 1.4. Conclusions are 

given in Section 1.5. 

The following notations are adopted throughout this thesis. , 
 and n denote the set 

of all real numbers, the positive real numbers and the real n -dimensional vectors space, 

respectively.   and 
 
denote the absolute value and the Euclidean norm. 2L  and L  

denote the spaces of square integrable and bounded signals.  sign   and  tanh   are the 

standard sign function and hyperbolic tangent function, respectively.  min   and  max 
 

denote the functions of minimum and maximum.  tr   denotes the trace operation.  ̂
 

denotes the estimate of  
 
and  

 
denotes the parameter estimation error of   . 
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1.2 Lyapunov stability 

In this section, we present some definitions and basic tools on stability [Far06, Ioa96, 

Kha02, Kha96, Krs95a, Slo91, Son10a]. 

1.2.1 Stability definitions 

We consider the following system described by ordinary differential equation of the form: 

   0 0, ,x f t x x t x 

                                                               

(1.1) 

where, nx , and : n nf    is a piecewise continuous function in t  and locally 

Lipschitz in x . The following definitions of stability (stability in the sense of Lyapunov) 

are presented [Far06, Kha96]. 

Definition 1.2.1: A function  ,f t x  satisfies a Lipschitz condition on  if 

   , ,f t x f t y x y   , with Lipschitz constant   for all points  ,t x  and  ,t y  in 

, where n  is a domain that contains the origin 0x  . 

Definition 1.2.2: Any point 
n

ex   such that  , 0ef t x  , for all 0t t  is an equilibrium 

point of the system described by (1.1). It can be assumed, without loss of generality, that 

the system described by (1.1) has an equilibrium point 0ex  .  

The following definitions 1.2.3 to 1.2.8 give the stability of this equilibrium point. 

Definition 1.2.3: The equilibrium point 0ex   of the system described by (1.1) is stable 

(stability in the sense of Lyapunov) if for each 0  and any 0 0t  , there exists a 

 0, 0t   such that    0 0,x t t  implies that  x t   for all 0t t . 

Definition 1.2.4: The equilibrium point 0ex   of the system described by (1.1) is 

uniformly stable if for each 0  and any 0 0t  , there exists a   0   such that 

   0x t   implies that  x t   for all 0t t . 

Definition 1.2.5: The equilibrium point 0ex   of the system described by (1.1) is unstable 

if it is not stable. 

Definition 1.2.6: The equilibrium point 0ex   of the system described by (1.1) is 

asymptotically stable if it is stable, and for any 0 0t  , there exists a  0 0t   such that 

   0 0x t t  implies that  lim 0t x t  . 
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Definition 1.2.7: The equilibrium point 0ex   of the system described by (1.1) is 

uniformly asymptotically stable if it is uniformly stable, and there exists a 0   

independent of t  such that for all 0 , there exists a   0T   such that  0x t   

implies that  x t   for all  0t t T  . 

Definition 1.2.8: The equilibrium point 0ex   of the system described by (1.1) is 

exponentially stable if for any 0  there exists a   0   such that  0x t 
 
implies 

that    0t t
x t e

 
  for all 0 0t t   for some 0  . 

In some cases, it may not be possible to prove stability of ex . In such cases concepts 

related to boundedness are important [Far06, Kha96]. 

Definition 1.2.9: The equilibrium point 0ex   of the system described by (1.1) is 

uniformly ultimately bounded if there exist positive constants R ,  T R  and b  such that  

 0x t R
 
implies that  x t b  for all 0t t T  . 

Definition 1.2.10: The equilibrium point 0ex   of the system described by (1.1) is 

globally uniformly ultimately bounded if R   . 

The constant b  is referred to as the ultimate bound. 

1.2.2 Lyapunov’s direct method 

The stability properties of the equilibrium point or solution of (1.1) can be studied by using 

the so-called Lyapunov‟s direct method (or Lyapunov‟s second method). The ideas of 

Lyapunov‟s direct method are rigorously summarized by the Theorem 1.2.1 [Far06, 

Kha96]. Before presenting that theorem, the following definitions are introduced [Far06, 

Kha96].  r  denotes an open set containing the origin. 

Definition 1.2.11: A continuous function  V x  is positive definite on  r  if  0 0V   

and   0V x   for all  x r  such that 0x  .  

Definition 1.2.12: A continuous function  V x  is positive semi-definite on  r  if 

 0 0V   and   0V x   for all  x r  such that 0x  .  

Definition 1.2.13: A continuous function  V x  is negative (semi-)definite on  r  if 

 V x  is positive (semi-)definite.  
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Definition 1.2.14: A continuous function  V x  is radially unbounded if  0 0V  , 0V   

on  0n   and  V x   as x  . 

Definition 1.2.15: A continuous function  ,V t x  is positive definite on  r  if there 

exists a positive definite function  x  on  r  such that  ,0 0V t   for all 0t  , and 

   ,V t x x  for all 0t   and for all  x r .  

Definition 1.2.16: A continuous function  ,V t x  is radially unbounded if there exists a 

radially unbounded function  x  such that  ,0 0V t   for all 0t  , and    ,V t x x  

for all 0t   and for all 
nx . 

Definition 1.2.17: A continuous function  ,V t x  is decrescent on  r  if there exists 

a positive definite function  x  on  r  such that    ,V t x x  for all 0t   and for 

all  x r . 

Let us assume (without loss of generality) that 0ex   is an equilibrium point of the system 

described by (1.1) and define V  to be the time derivative of the function  ,V t x  along the 

solution of the system described by (1.1), i.e., 

 ,
V V

V f t x
t x

 
 
 

                                                                    

(1.2) 

The Lyapunov‟s direct method is summarized by the following theorem. 

Theorem 1.2.1: Let  , :V t x     be a continuously differentiable and positive 

definite function, where  is an open region containing the origin. Then, the following 

statements are true: 

(i)    If 0V   (negative semi-definite) for x , then the equilibrium point 0ex   is 

stable.  

(ii)   If V  is decrescent and 0V   for x , then the equilibrium point 0ex 

 

is 

uniformly stable. 

(iii)  If 0V   (negative definite) for x , then the equilibrium point 0ex 

 

is 

asymptotically stable.  

(iv)  If V  is decrescent and 0V   for x , then the equilibrium point 0ex 

  

is 

uniformly asymptotically stable. 
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(v) If there exist three positive constants 1c , 2c  and 3c  such that 

 
2 2

1 2,c x V t x c x   and  
2

3,V t x c x   for all 0t   and for all x , then 

the equilibrium point 0ex   is exponentially stable. 

1.2.3 Control Lyapunov functions 

The control Lyapunov function (CLF) is an extension of the Lyapunov function concept to 

control design. Consider the following system [Krs95a]:  

   , , 0,0 0x f x u f 

                                                            

(1.3) 

where, 
nx
 
is the system state and u  is the control input. The control objective is 

to design a feedback control law  x  for the control input u  such that the equilibrium 

0x   of the closed-loop system   ,x f x x

 

is globally asymptotically stable. To 

prove stability, we can choose a function  V x  as a Lyapunov candidate, and require that 

its derivative along the solutions of   ,x f x x  satisfies    V x W x  , where  W x  

is a positive definite function. Therefore, we need to find  x  to ensure that for all 

nx : 

      ,
V

x f x x W x
x




 


                                                       

(1.4) 

A stabilizing control law for the system described by (1.3) may exist but we may fail to 

satisfy (1.4) due to a poor choice of  V x  and  W x . A system for which a good choice 

of  V x  and  W x  exists is said to possess a CLF. More precisely, the definition of a 

CLF is given below. 

Definition 1.2.18 (CLF) [Krs95a]: A smooth positive definite and radially unbounded 

function : nV   is called a CLF for the system described by (1.3) if: 

   inf , 0, 0
u

V
x f x u x

x

 
   

 

                                               

(1.5) 

The existence of a CLF is equivalent to global asymptotic stabilizability. 

For systems affine in the control [Krs95a]: 

   x f x g x u 

                                                                        

(1.6) 

The CLF inequality described by (1.4) becomes: 
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       
V V

f x g x x W x
x x


 

  
 

                                            

(1.7) 

The main deficiency of the CLF concept as a design tool is that for most nonlinear systems 

a CLF is not known and the task of finding one may be as complex as that of designing a 

stabilizing feedback law. Backstepping control design procedure was introduced to solve 

these two tasks simultaneously for several important classes of nonlinear systems. 

1.2.4 Some useful lemmas 

The following useful lemmas are introduced for the convenience of the subsequent 

synthesis and analysis. 

Lemma 1.2.1 (Barbalat lemma) [Far06]: Let   :t  
 
be uniformly continuous 

function on  0, . If   
0

lim
t

t d M       
(exists and finite), then  lim 0t t  . 

Remark 1.2.1: Combining this lemma with Lyapunov‟s direct method leads to the 

powerful theorem by LaSalle and Yoshizawa [Krs95a].  

Lemma 1.2.2 [Far06]: Suppose   0V t   satisfies the following inequality: 

     V t cV t                                                                             (1.8) 

where, c  and   are positive constants. Then,  V t  satisfies: 

  
   0 ctV t V e

c c

   
   

 
                                                            (1.9) 

Lemma 1.2.3 (Young's inequality) [Krs95a]: The following inequality holds for any 

  2,x y  : 

1p
p q

q
xy x y

p q




    

                                                     
       (1.10) 

where, 0   is a positive constant, 1p   and 1q   are constants which satisfy 

  1 1 1p q   . 

 

1.3 Design of backstepping control  

The control of nonlinear systems has attracted a great attention from the research 

community. Backstepping control design is one of these nonlinear control methods 

[Kha02, Krs95a]. Over the past few decades, Backstepping control method is one of the 

most popular and effective control approaches to deal with nonlinear systems in lower 
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triangular form. Nevertheless, the backstepping control technique suffers from the problem 

of explosion of complexity resulting from repeated derivations of virtual controllers at each 

recursive step. The problem of explosion of complexity has been solved by dynamic 

surface control [Hed00, Swa00, Swa97], and command filtered backstepping control 

[Far09, Far08]. Consider the following SISO nonlinear system in lower triangular form: 

   

   

   

1 1 1 1 1 2

1, 2, , 1i i i i i i

n n n

x f x g x x

x f x g x x i n

x f x g x u



 

   

 
                                         

(1.11) 

where,  1 2

T n

nx x x x   is the system state vector with  1 2

T

i ix x x x  

and nx x , and u  is the control input. The nonlinear functions if  and 0ig 
 
are 

assumed to be known and continuous. The control objective of this approach is to construct 

a backstepping controller u  such that the system output 1x  tracks the desired trajectory 

1dx , where 1dx
 

and its derivatives 
 1

1 1, ,
n

d dx x


 and 
 
1

n

dx  are assumed to be known, 

continuous and bounded.  

The main procedures of the backstepping control design are summarized as follows.  

Define the tracking errors as 1 1 1de x x   and 1i i ie x   
 
for 2, ,i n , where 1i   

are 

virtual controllers. Construct the virtual controllers i

 

and the actual control law u

 

as:
 

 1 1 1 1 1

1

1
dk e f x

g
       

                                                   
       (1.12) 

 1 1 1

1
, 2, , 1i i i i i i i

i

k e f g e i n
g

             
               

      (1.13) 

 1 1 1

1
n n n n n n

n

u k e f g e
g

          
                                  

       (1.14) 

where, 0ik   are positive constants, and 1i   with 2, ,i n , are obtained by: 

   
 

1
1 1

1 1 11
1 1 1

i i
ki i

i k k k dk
k kk d

f g x x
x x

 



 

  
 

 
  

 
    

                    
        (1.15) 

The closed-loop tracking error dynamics are given by: 

1 1 1 1 2e k e g e  
                                                                          

(1.16) 

1 1 1, 2, , 1i i i i i i ie k e g e g e i n                                             (1.17)                                                                                                                                 

1 1n n n n ne k e g e                                                                        (1.18) 

By choosing the Lyapunov function as: 
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2

1

1

2

n

i

i

V e


                                                                                   (1.19) 

and taking its time derivative, further analysis shows that:   

2

1

n

k k

k

V k e V


                                                                       (1.20) 

where,  min 2 0kk   . This implies the exponential converge of the tracking errors to 

zero. Then, the controller guarantees that the closed-loop tracking error dynamics is 

globally exponentially stable. 

 

1.4 Adaptive control techniques 

The adaptive control techniques have been widely designed to control a large class of 

uncertain nonlinear systems in recent decades due to great demands from the industrial 

applications. In the literature, several significant types of adaptive control for uncertain 

nonlinear systems have been proposed including adaptive backstepping control [Kan91, 

Krs95a], adaptive feedback linearization [Isi89, Sas89], immersion and invariance based 

adaptive control [Ast08a] and adaptive sliding mode control [Utk92]. By introducing 

tuning functions, the overparametrization problem inherent in the conventional adaptive 

backstepping control has been eliminated [Krs95a, Krs92]. In [Lee12], adaptive 

backstepping control of uncertain nonlinear systems using fuzzy neural networks has been 

proposed. In [Din15, She17a, She17b, Wei16, Wei15], adaptive backstepping control for a 

class of nonlinear fractional order systems has been also proposed. In addition, adaptive 

backstepping control for a class of nonlinear chaotic systems has been introduced in [Ge04, 

Ge00a, Ge00b, Wan01]. 

Recently, adaptive dynamic surface control technique has been proposed to solve the 

problem of explosion of complexity arose from the repeated differentiations of virtual 

control functions for adaptive backstepping control and composite tuning functions based 

adaptive backstepping control approaches [Hed00, Yip98]. Several fuzzy or neural 

adaptive dynamic surface control approaches have been developed [Wan05, Yoo07, 

Zha16, Zha08]. In [Li12a, Liu11], adaptive dynamic surface control for a class of 

nonlinear chaotic systems has been also studied. For uncertain nonaffine nonlinear 

systems, an adaptive dynamic surface approach has been presented by using the modified 

linear filters [Liu17a]. In this way, adaptive command filtered backstepping control 

method has been also proposed to overcome the problem of explosion of complexity 
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[Don12, Don10], and has been widely utilized to control a particular class of uncertain 

nonlinear systems [Pan18, Sou19, Yu18b, Yu15a, Zou20]. 

The immersion and invariance based adaptive control has been also a great attention in the 

few recent years, which has been widely used to the control of a class of uncertain 

nonlinear systems [Han19, Han18, Liu14, Son10a, Zha12b, Zha11]. Many significant 

different types of nonlinear control approaches have been devised in the literature 

including, adaptive command filtered backstepping control [Son10a], adaptive 

backstepping control [Kar08, Zha12b, Zha11], adaptive sliding mode control [Han15] and 

adaptive dynamic surface control [Fuj12, Sou21]. 

To deal with the uncertain nonlinear systems with unmeasured states, two useful observers 

have been proposed. An Observer based adaptive backstepping control with tuning 

functions method has been proposed in [Krs95a, She17b, Wei16, Zha12a, Zho07]. In 

[Li12a, Liu12, Liu11, Zha15a, Zha13, Wan12], observer based adaptive dynamic surface 

control method has been presented.  

During the last years, to improve parameter estimation and obtain better control 

performance than conventional adaptive control techniques, the composite adaptive control 

method that utilized both the tracking errors and the estimation errors for parameter 

adaptive laws has been proposed for uncertain nonlinear systems. The performance 

improvements of composite adaptive control schemes which integrate direct and indirect 

adaptive laws have been implemented in several control techniques [Cil09, Hu10, Li10b, 

Moh11, Pan17, Pan13, Pat10, Slo89, Wei13, Yao03]. A composite tuning functions based 

adaptive backstepping control technique has been proposed to avoid the 

overparametrization problem [Cil07, Sou15]. In [Sou18, Sou17], a composite adaptive 

dynamic surface control approach has been developed to eliminate the problem of 

explosion of complexity. In [Pan16a, Pan16b, Pan16c], a composite adaptive command 

filtered backstepping control method has been further developed to overcome the problem 

of explosion of complexity.  

In particular, a robust tuning functions based adaptive backstepping control scheme has 

been applied to eliminate the overparametrization problem [Zha15b]. A robust adaptive 

dynamic surface control method has been proposed to avoid the problem of explosion of 

complexity [Elm19, Gan15, He16, Hou11, Liu18b, Li12b, Li10a, Li10b, She17c, Zha18a, 

Zha18b, Zha17]. In [Che10], a robust composite adaptive dynamic surface control 

approach has been also developed. 
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1.5 Conclusion 
This chapter presents some basic definitions and lemmas on the system stability, which 

play important roles in the controller design and the stability analysis. The backstepping 

control design with stability analysis is studied for SISO nonlinear systems in lower 

triangular form. The state of the art on adaptive control methods of uncertain nonlinear 

systems is discussed. Next works will focus on designing of composite adaptive control 

techniques. 
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Chapter 2 

Composite tuning functions based adaptive 

backstepping control 

 

 

2.1 Introduction  

Backstepping control technique is a systematic nonlinear control approach based on the 

Lyapunov stability theory. It provides a systematic and a recursive formulation for 

nonlinear control systems [Kha02]. Backstepping control design has been widely used in 

many nonlinear control systems, and has been also introduced in adaptive control methods. 

Adaptive backstepping control design is one of nonlinear adaptive control approaches, 

which has received much attention [Krs95a]. The first adaptive backstepping design has 

been developed and proposed by Kanellakopoulos et al. [Kan91] to achieve global 

stabilization in the presence of unknown parameters. It has been established for controlling 

of many uncertain nonlinear systems [Ben00, Kan91, Krs95a, van11, Wan17, Zho08]. 

However, the main drawback in this approach is the overparametrization problem. This 

problem has been removed by using tuning functions design [Krs95a, Krs92], in which the 

number of parameter estimates is reduced to be minimal, that is, exactly equal to the 

number of unknown constant parameters. Tuning functions based adaptive backstepping 

control has been also a great attention in the few recent years, which has been widely used 

to the control of a class of uncertain nonlinear systems [Cil07, Cob19, Sou15, Wan16, 

Zha15b, Zho08]. Composite adaptive control has also received a great attention in recent 

years and has been extensively used to control a particular class of nonlinear systems 

[Cil09, Hu10, Moh11, Pan17, Pan13, Pat10, Slo89, Wei13, Yao03]. In the recent years, 

composite tuning functions based adaptive backstepping control has been utilized for a 

class of SISO uncertain nonlinear systems [Cil07, Sou15].  

This chapter presents a new approach that combines direct and indirect adaptive laws for 

composite tuning functions based adaptive backstepping control for a class of SISO 

uncertain nonlinear systems in lower triangular form. In this method, by applying of direct 
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tuning functions based adaptive backstepping control and the x-swapping filters with 

gradient and least squares adaptive laws of indirect adaptive control, a novel composite 

mechanism of adaptation is proposed. The composite sum based gradient adaptive law and 

the composite σ-modification based gradient and least squares adaptive laws are 

introduced in order to achieve better parameter estimation and, hence, better trajectory 

tracking performances. Tuning functions are introduced to avoid the overparametrization 

problem inherent in the conventional adaptive backstepping control. The boundedness of 

all signals in the closed-loop system is performed by using the Lyapunov stability analysis 

theory. In order to demonstrate the effectiveness of the proposed composite adaptive 

control approach, simulation results for an electromechanical system are provided. 

Moreover, direct and indirect adaptive control designs are also studied and simulated for 

comparison purposes with the proposed composite adaptive control scheme. 

The remaining of the chapter is organized as follows. The direct tuning functions based 

adaptive backstepping control is presented in Section 2.2. Section 2.3 is devoted to the 

indirect adaptive control. The composite tuning functions based adaptive backstepping 

control is proposed in Section 2.4. Section 2.5 is discussed the description of the dynamic 

model of an electromechanical system. Section 2.6 is concerned with the simulation results 

and discussions of the proposed adaptive controller designs. Conclusions are given in 

Section 2.7. 

 

2.2 Direct tuning functions based adaptive backstepping control  

In this section, we will consider the following SISO uncertain nonlinear system in lower 

triangular form: 

     

     

     

1 1 1 2 1 1 1 1

1 , 2, , 1

T

T

i i i i i i i i

T

n n n n

x g x x x x

x g x x x x i n

x g x u x x

  

  

  



  

    

  
                        

(2.1) 

where,  1 2

T n

nx x x x   and u  are system states and the control input, 

respectively. 
p

 
 
is unknown constant parameter vector,  1 2

T

i ix x x x  and 

nx x . The nonlinear functions 
T

i , i  and 0ig 
 
are known and continuous. The control 

objective of this approach is to construct a direct tuning functions based adaptive 

backstepping controller u  such that the system output 1x  tracks the desired trajectory 1dx  

and to ensure that all signals in the closed-loop system are bounded. Throughout this 
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chapter, to achieve the control objective, the following standard assumptions of the system 

(2.1) are required.  

Assumption 2.2.1: There is a positive constant 0g  where,   0i ig x g , 1, ,i n . 

Assumption 2.2.2: The desired trajectory 1dx
 
and its derivatives 

 1

1 1, ,
n

d dx x


 and  
1

n

dx  are 

known, continuous and bounded. 

Remark 2.2.1: Assumption 2.2.1 is employed to guarantee the controllability of system 

(2.1). Assumption 2.2.2 is required to ensure the boundedness of the time derivatives of 

virtual controllers during the stability analysis. 

The detailed procedures of the direct tuning functions based adaptive backstepping control 

design for system (2.1) with stability analysis using Lyapunov stability theory are given as 

follows. 

Step 1: Define the first tracking error as 1 1 1de x x  , then, the time derivative of 1e  is 

obtained as:  

1 1 2 1 1 1 1 2 1 1 1 1 1

T T

d de g x x g e g x              
                

(2.2) 

The corresponding Lyapunov function candidate 1V
 
is defined as: 

2 1

1 1

1 1

2 2

TV e                                                                         (2.3) 

where, 0T     is a positive definite constant matrix and ˆ     is the parametric 

estimation error. The time derivative of 
1V
 
is given by:  

   1

1 1 1 2 1 1 1 1 1 1 1
ˆ ˆT T

dV e g e g x e             
              

(2.4) 

The tuning function 1  is defined as: 

1 1 1e  

                                                                                      

(2.5) 

We choose the virtual control 1  as:                                                           

 1 1 1 1 1 1

1

1 ˆT

dk e x
g

          
                                               

   (2.6) 

where, 1 0k   is a positive design constant. Substituting (2.6) into (2.4), the derivative of 

the Lyapunov function 1V  becomes: 

 2 1

1 1 1 1 1 2 1
ˆTV k e g e e            

                                             
(2.7) 
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Step 2: Define the second tracking error as 2 2 1e x   , then, the time derivative of 2e  is 

obtained as:  

   
 

2
1 1 1

2 2 3 2 2 2 2 1 2 1 1 11
11 1

ˆ
ˆ

kT T

dk
k d

e g e g g x x
x x

  
       






  
        

  
 (2.8) 

The corresponding Lyapunov function candidate 2V
 
is defined as: 

2

2 1 2

1

2
V V e                                                                                   (2.9) 

The time derivative of 
2V
 
is given by:  

 

 
 

2 1
2 1 1 2 1 1 2 3 2 2 2 2 1 2 1 1

1

2
11 1 1

1 1 2 1 21
1 11

ˆ ˆ

ˆ ˆ   
ˆ

T T

k T

dk
k d

V k e e g e g e g g x
x

x e
xx


      

  
     








 
         



     
                


 

(2.10)

                                          

The tuning function 2  is defined as: 

1
2 1 2 1 2

1

e
x


   

 
    

 
                                                       

(2.11) 

We choose the virtual control 2  as:                                                         

   
 

2
1 1 1

2 2 2 1 1 2 2 1 2 1 1 2 11
12 1 1

1 ˆ ˆ
ˆ

kT T

dk
k d

k e g e g x x
g x x

  
       






   
              

       
(2.12) 

where, 2 0k   is a positive design constant. Substituting (2.12) into (2.10), the derivative of 

the Lyapunov function 2V  becomes: 

   2 2 11
2 1 1 2 2 2 2 3 2 2 2

ˆ ˆ
ˆ

TV k e k e g e e e


    



        

        
(2.13) 

Step 3: Define the third tracking error as 3 3 2e x   , then, the time derivative of 3e  is 

obtained as:  

 

   
 

2
3 3 4 3 3 3 3 1 2 1 1

1

3
2 2 2

2 3 2 2 11
12 1

ˆ   
ˆ

T T

kT

dk
k d

e g e g g x
x

g x x
x x


      

  
   







      



  
    
  


                  (2.14) 

The corresponding Lyapunov function candidate 3V
 
is defined as: 

2

3 2 3

1

2
V V e                                                                                (2.15) 
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The time derivative of 3V
 
is given by:  

 

   
   

2 2 2
3 1 1 2 2 3 2 2 3 4 3 3 3 3 1 2 1 1

1

3
2 2 2 1

2 3 2 2 1 2 21
12 1

1 2 2
2 3 1 2 3

1 2

ˆ ˆ

ˆ ˆ ˆ   
ˆ ˆ

ˆ   

T T

kT

dk
k d

T

V k e k e e g e g e g g x
x

g x x e
x x

e
x x


      

   
     

 

 
     






 
          



   
         

   
            



 

(2.16)

        The tuning function 3  is defined as: 

2 2
3 2 3 1 2 3

1 2

e
x x

 
    

  
     

  
                                       

(2.17) 

We choose the virtual control 3  as:                                                           

  

 

   
 

2
3 3 3 2 2 3 3 1 2 1 1

3 1

3
2 2 2

2 3 2 2 3 1 31
12 1

1 ˆ ˆ

ˆ   
ˆ

T T

kT

dk
k d

k e g e g x
g x

g x x v
x x


      

  
   






 
       



  
         


         

(2.18) 

where, 1 2 2
3 2 3 1 2

1 2
ˆ

v e
x x

  
  



   
     

   
 and 3 0k   is a positive design constant. 

Substituting (2.18) into (2.16), the derivative of the Lyapunov function 3V  becomes: 

     2 2 2 12 1
3 1 1 2 2 3 3 3 3 4 3 3 2 2 3 3 3

ˆ ˆ ˆ
ˆ ˆ

TV k e k e k e g e e e e e v
 

      
 

 
            

   
(2.19) 

one has,  

2 2
2 3 3 1 2 3

1 2

ˆ ˆ e
x x

 
      

  
       

  

                            

(2.20) 

Substituting (2.20) into (2.19), we obtain:
 

   2 2 2 12 1
3 1 1 2 2 3 3 3 3 4 3 2 3 3

ˆ ˆ
ˆ ˆ

TV k e k e k e g e e e e
 

    
 

  
           

    
(2.21) 

Step  4, , 1i i n  : Define the 
thi  tracking error as 1i i ie x    , then, the time 

derivative of ie  is obtained as:  

   
 

1
1 1 1

1 1 11
1 1 1

ˆ
ˆ

i i
kT Ti i i

i i i i i i i k k k k dk
k kk d

e g e g g x x
x x

  
       




  

  
 

  
        

  
        (2.22)                                                                                                                                                        

The corresponding Lyapunov function candidate iV
 
is defined as: 
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2

1

1

2
i i iV V e                                                                               (2.23) 

The time derivative of 
iV
 
is given by:  

 

 
   

1 1
2 1 1

1 1 1 1

1 1

2 1
11 1

1 1 1 11
1 1 11

ˆ ˆ ˆ
ˆ

ˆ ˆ   
ˆ

i i
T Ti i

i k k i i i i i i i i i k k k k

k k k

i i i
k Ti k i
d k i i i k ik

k k k kd

V k e e g e g e g g x
x

x e e
xx

 
       



  
      



 
 

   

 

 
 

  
  

  
          

 

    
               

 

  




(2.24)

 

The tuning functions i  are defined as: 

1
1

1

1

i
i

i i i k i

k k

e
x


   








 
    

 
                                                

(2.25)
   

We choose the virtual controllers i  as:                                                           

 

 
 

1
1

1 1 1

1

1 1
11

1 1

1 ˆ ˆ

   
ˆ

i
T Ti

i i i i i i i k k k k

ki k

i
ki i

i d ik
k d

k e g e g x
g x

x v
x


      

 







  



 




 
       



 
     




       

(2.26)
   

where, 
2 1

1
1

1 1
ˆ

i i
k i

i k i k

k k k

v e
x

 
 



 




 

  
    

  
   and 0ik   is a positive design constants. 

Substituting (2.26) into (2.24), the derivative of the Lyapunov function iV  becomes: 

     
2

2 11
1 1 1

1 1

ˆ ˆ ˆ
ˆ ˆ

i i
Ti k

i k k i i i i i k i i i i

k k

V k e g e e e e e v
 

      
 




  

 

 
          

 
   

(2.27) 

one has,  

1
1

1

1

ˆ ˆ
i

i
i i i k i

k k

e
x


     








 
      

 


                                   

(2.28) 

Substituting (2.28) into (2.27), we obtain:
 

   
1

2 1

1 1

1 1

ˆ ˆ
ˆ

i i
Tk

i k k i i i k i i

k k

V k e g e e e


    





 

 


       


        

(2.29) 

Step n : Define the 
thn  tracking error as 1n n ne x    , then, the time derivative of ne  is 

obtained as:  

   
 

1
1 1 1

1 11
1 1 1

ˆ
ˆ

n n
kT Tn n n

n n n n k k k k dk
k kk d

e g u g x x
x x

  
      




  

 
 

  
       

  
     (2.30) 

The corresponding Lyapunov function candidate nV V
 
is defined as: 
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2

1

1

2
n nV V e                                                                               (2.31) 

The time derivative of V
 
is given by:  

 

 
   

1 1
2 1 1

1 1 1

1 1

2 1
11 1

1 1 1 11
1 1 11

ˆ ˆ ˆ
ˆ

ˆ ˆ   
ˆ

n n
T Tn n

k k n n n n n n k k k k

k k k

n n n
k Tn k n
d k n n n k nk

k k k kd

V k e e g e g u g x
x

x e e
xx

 
      



  
      



 
 

  

 

 
 

  
  

  
         

 

     
                 

 

  

       

(2.32)

 

The tuning function n  is defined as: 

1
1

1

1

n
n

n n n k n

k k

e
x


   








 
    

 


                                            

(2.33)
 

We choose the actual control input u  as:                                                                       

 

 
 

1
1

1 1 1

1

1 1
11

1 1

1 ˆ ˆ

   
ˆ

n
T Tn

n n n n n n k k k k

kn k

n
kn n

n d nk
k d

u k e g e g x
g x

x v
x


     

 







  



 




 
       



 
     




    

(2.34)
 

where, 
2 1

1
1

1 1
ˆ

n n
k n

n k n k

k k k

v e
x

 
 



 




 

  
    

  
   and 0nk   is a positive design constant. 

Substituting (2.34) into (2.32), the derivative of the Lyapunov function V  becomes: 

     
2

2 11
1 1

1 1

ˆ ˆ ˆ
ˆ ˆ

n n
Tn k

k k n n k n n n n

k k

V k e e e e v
 

      
 




 

 

 
         

 
 

      

(2.35)
 

The direct adaptive law is given by: 

ˆ
n 

                                                                        

                 

(2.36)
 

Substituting (2.36) into (2.35), we obtain:
 

 
2

2

1 1

1 1

ˆ
ˆ

n n
k

k k k n n n

k k

V k e e e v


 




 

 


    


 

                                

(2.37)
 

one has, 

1
1

1 1

1

ˆ
n

n
n n n n k n

k k

e
x


     




 



 
       

 


                          

(2.38) 

Substituting (2.38) into (2.37), we obtain:
 

2

1

0
n

k k

k

V k e


  

                                                                        

(2.39)
 

From (2.39), it is clearly that V  is negative semi-definite and V L  (bounded).  
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From (2.39), we establish that V  is non-increasing. Hence, ke , 1, ,k n
 
and 

 
are 

bounded. Furthermore, all signals in the closed-loop system, i.e., 1dx , 
 1

1 1, ,
n

d dx x


,  
1

n

dx , 

i , u  and
 
̂  are also bounded.  

By integrating of inequality (2.39) over  0, , we obtain: 

   2

10

0
n

k k

k

k e d V V




    

                                                 

(2.40)
 

It means that, 2k Le  , 1, ,k n  (square integrable). Therefore, 2ke L L  , 1, ,k n . 

By applying Barbala‟s lemma [Slo91], we get lim 0t ke  , 1, ,k n , which implies the 

asymptotic convergence of tracking errors to zero. 

 

2.3 Indirect adaptive control  

In this section, the x-swapping filters with gradient and least squares adaptive laws are 

designed for the indirect adaptive control design. The indirect adaptive law based on x-

swapping filters as described in this section is used to estimate the unknown parameters. In 

the following, the detailed procedures for the indirect adaptive control design with stability 

analysis are established. 

2.3.1 Identification based x-swapping filters 

The swapping filters are used as an analytical device that uses regressor filtering to account 

for the time-varying nature of the parameter estimates. The idea of a swapping filter is to 

use nonlinear regressor filtering to convert the dynamic parametric system into a static 

form in such a way that a standard parameter estimation algorithm can be used. Two 

different types of swapping schemes are presented, one using z-swapping based identifier 

derived from the tracking error model, and the other using x-swapping based identifier 

derived from the state dynamics [Krs95a, Krs95b, Krs93, Son09, Sou18, Sou17, Sou15, 

van11, van10, Wu18]. Each of these two swapping based identifiers allows application of 

gradient and least squares adaptive laws. The uncertain nonlinear system in lower 

triangular form (2.1) can be rewritten under the following nonlinear system in parametric 

x-model form as:  

   , Tx f x u x  
                                                                

(2.41) 

where, 



Chapter 2                         Composite tuning functions based adaptive backstepping control  

 37 

 

1 2 1

1 1

,
n n n

n n

g x

f x u
g x

g u







 

 
 
 
 
 

                                                              

(2.42) 

We introduce the following x-swapping filters as [Krs95a]:  

   0 0 0, , nA x f x u      
                                           

(2.43) 

  ,T T T p nA x     
                                                    

(2.44) 

where, 0A  is a negative definite matrix for each x  continuous in t . We define the 

estimation error vector as:  

0
ˆ,T nx    

                                                            
(2.45) 

with, ̂  the estimate of   and let: 

0 ,T nx                                                                (2.46) 

We obtain: 

T                                                                                   (2.47) 

The dynamics of 
 
is governed by: 

0

Tx A   
                                                               

(2.48) 

To guarantee the boundedness of 
 
when  x  grows unbounded, a particular choice of 

A
 
is made: 

   0

TA A x x P  
                                                            

(2.49) 

where, 0 
 
and 0A  is an arbitrary constant matrix satisfying: 

0 0 , 0T TPA A P I P P    
                                                       

(2.50) 

2.3.2 Choice of adaptive laws 

The gradient adaptive law is given by: 

 
ˆ , 0, 0

1 tr

T

T
 




      

  
                                       

(2.51) 

The least squares adaptive law is given by: 

 
ˆ

1 tr T





 

  

                                                                 

(2.52) 

where,   is defined as: 
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 
   , 0 0 0, 0

1 tr

T
T

T





        

  

                     

(2.53) 

2.3.3 Proof of stability 

Lemma 2.3.1: To establish the identifier properties, let 0, ft , the maximal interval of 

existence of solutions of (2.41), the x-swapping filters (2.43) and (2.44), and the gradient 

adaptive law (2.51) or the least squares adaptive law (2.52) and (2.53). Then for 0  , the 

following properties hold [Krs95a]: 

L 

                                                                                         

(2.54) 

2L L 

                                                                                 

(2.55) 

2
ˆ L L  

                                                                                 

(2.56) 

2.3.3.1 Gradient adaptive law 

We consider the following Lyapunov function as: 

11

2

T TV P   
                                                                 

(2.57) 

Along the dynamic equations (2.48) and (2.51), the derivative of the Lyapunov function V  

becomes: 

1 1T T T T T T TV P P A P PA           

           

(2.58) 

Applying of the following inequality [Krs95b]: 

   2T TPA A P I P x x P I       
                                  

(2.59) 

We obtain: 

 

   

      

       

1

2

ˆ

1 tr

   
1 tr 1 tr

3 1
   

4 41 tr 1 tr1 tr

3
   

4 1 tr 2 1 tr 2 1 tr

3
   

4 1

T
T T T

T

T T
T

T T

T T T
T

T T
T

T

T

T T T

T

V


 


 

 

  

 
      

  

   
     

    
       

   
       
           
   

 
 tr T  

   

(2.60) 
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The nonpositivity of V  proves that, L   (bounded). Due to 
T   and the 

boundedness of  , it follows that L , which, in turn proves that ˆ L  .  

By integrating of inequality (2.60) over  0, , we obtain:  

 
    

0

4
0

31 tr

T

T
d V V





    
  



                                

(2.61)
 

This means that, 

 
2

1 tr T
L




  
. Since   is bounded, then 2L . The boundedness 

of 
 
and the square integrability of 

 
prove that 2

ˆ L  . 

2.3.3.2 Least squares adaptive law 

From (2.52) and (2.53), we have the following identity: 

 
 

1 1 1 0
1 tr

T

T

d

dt 

   
     

  
                                

(2.62) 

We consider the following Lyapunov function as: 

 1T TV t P   
                                                               

(2.63) 

Along the dynamic equations (2.48), (2.52) and (2.53), and by applying of inequality 

(2.59), the derivative of the Lyapunov function V  becomes: 

 

     

1 1

1 1 1 1

1 1 1 1

ˆ   

ˆ ˆ   

   
1 tr 1 tr 1 tr

   

T T T T

T T T T T T

T T T T

T T T T T
T

T T T

d
V P P

dt

A P PA

   

     

     

   

  

 

   

   

     

        

        

  
    

        

   

   

 

1 tr 1 tr

   
1 tr 1 tr

   
1 tr

T T T
T

T T

T T
T

T T

T

T

 

 

 



 
   

     

   
     

 
   (2.64) 

Which, due to the positive definiteness of  1 t , proves that, L   (bounded).  
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By integrating of inequality (2.64) over  0, , we obtain: 

 
   

0

0
1 tr

T

T
d V V





    
  



                                

(2.65)
 

This means that,

 
 

2

1 tr T
L




  
. Using the boundedness of   and  , following 

the same line of argument as for the gradient adaptive law, we prove that 2L L 
 
and 

2
ˆ L L   . 

 

2.4 Composite tuning functions based adaptive backstepping control 

In this section, the proposed composite tuning functions based adaptive backstepping 

control is based on the combination of both tracking error based parameter adaptive law of 

the direct tuning functions based adaptive backstepping control described by (2.36) with 

the estimation error based parameter adaptive law of the indirect adaptive control described 

by (2.51) and (2.52). The control objective of this approach is to design a composite tuning 

functions based adaptive backstepping controller u  such that the system output 1x  tracks 

the desired trajectory 1dx  and to ensure the boundedness of all signals in the closed-loop 

system. The main procedures for designing the composite tuning functions based adaptive 

backstepping control method for system (2.1) with stability analysis are given as follows. 

2.4.1 Composite sum based gradient adaptive law 

We use the same steps as that in the direct tuning functions based adaptive backstepping 

control described by (2.2)-(2.33).  

Then, we choose the actual control input u  as: 

 

 
 

 

1
1 1

1 1 1

1

2
1 1

1 121
1 101

1 ˆ ˆ
ˆ

   
ˆ ˆ 1 tr

n
T Tn n

n n n n n n k k k k n

kn k

n n
kn n n k
d n kk T

k knd

u k e g e g x
g x

e
x v e

ex

 
      



  

  


 

  




 


 

  
        

 

     
      

        



 
       

(2.66)
 

where, 
2 1

1
1

1 1
ˆ

n n
k n

n k n k

k k k

v e
x

 
 



 




 

  
    

  
   and 0nk   is a positive design constant. 

Substituting (2.66) into (2.32), the derivative of the Lyapunov function V  becomes: 
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     
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ˆ ˆ

   
ˆ ˆ 1 tr

n n
Tn k

k k n n k n n

k k

n
n n k

n k T
kn

V k e e e

e
e e

e

 
      

 

 

  






 








 
        

 

    
    
       

 



        (2.67)
 

The composite sum based gradient adaptive law is defined as: 

 
ˆ

1 tr
n T

 



 

                                                                

(2.68)
 

where, 0
ˆTx    . We assume that, 

2 2 2

1 12
1 10

n n
n

k k

k kn

e
e e

e

 

 

 




 
 

for sufficiently small 

0 , then, 

 
2

1 1 tr

Tn

k k T
k

V k e





  

  


                                                     

(2.69) 

Theorem 2.4.1: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by state space form (2.1). Suppose that assumptions 2.2.1 

and 2.2.2 are satisfied. Then, the virtual controllers (2.6), (2.12), (2.18) and (2.26), the 

actual control input (2.66) and the composite sum based gradient adaptive law (2.68) 

guarantee that all signals in the closed-loop system are bounded. 

Proof: We consider the following Lyapunov function as: 

2 1

1

1 1

2 2

n
T T

i

i

V e P 



                                                      (2.70) 

The derivative of the Lyapunov function V  becomes: 

 

 

2

1

2

1

1 tr

   
1 tr

Tn
T T

k k T
k

Tn
T T T

k k T
k

V k e P P

k e A P PA














    

  


    

  





                       (2.71) 

Applying of inequality (2.59), we obtain: 

 

 

2

1

2

1

1 tr

3
   

4 1 tr

Tn
T

k k T
k

Tn

k k T
k

V k e

k e












   

  

  
  





                                            (2.72) 

Therefore, we can conclude that, V , ke , 1, ,k n , 
 
and 

 
are bounded.  
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Furthermore, all signals in the closed-loop system, i.e., 1dx , 
 1

1 1, ,
n

d dx x


,  
1

n

dx , i , u  and
 

̂  are also bounded.  

2.4.2 Composite σ-modification based gradient and least squares adaptive laws  

In order to robustify the adaptive law, we introduce a -modification term into the adaptive 

law (2.36). Then, we use the same steps as that in the direct tuning functions based 

adaptive backstepping control described by (2.2)-(2.33). 

The actual control input u  is defined as: 

 

 
   

1
1 1

1 1 1

1
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1 1

1 121
1 101
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ˆ ˆ

n
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n n n n n n k k k k n
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kn n n k
d n kk
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u k e g e g x
g x

e
x v e
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
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 

  
        

 

   
            



 

       

(2.73) 

where, 
2 1

1
1

1 1
ˆ

n n
k n

n k n k
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v e
x

 
 



 




 

  
    

  
   and 0nk   is a positive design constant. 

Substituting (2.73) into (2.32), the derivative of the Lyapunov function V  becomes: 
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    

  

 
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(2.74)
 

The composite σ-modification based gradient and least squares adaptive laws are given by: 

 ˆ ˆ
n       

                                                                  

(2.75)
 

We assume that, 
2 2 2

1 12
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n n
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k k

k kn

e
e e

e

 

 

 


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 
 

for sufficiently small 0 , then, 

 2

1

ˆ
n

T

k k

k

V k e    


   
                                                      

(2.76) 

where,   
is small design constant to introduce the -modification for the closed-loop 

system and   is computed with the gradient method as follows: 

 
, 0

1 tr

T

T





     

  
  

                                               (2.77) 

or with the least squares method as follows: 

 1 tr T





 

  
                                                                 (2.78) 
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where,   is given by: 

 
   , 0 0 0, 0

1 tr

T
T

T





        

  
                     (2.79) 

with, 0

Tx    . 

Theorem 2.4.2: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by state space form (2.1). Suppose that assumptions 2.2.1 

and 2.2.2 are satisfied. Then, the virtual controllers (2.6), (2.12), (2.18) and (2.26), the 

actual control input (2.73) and the composite σ-modification based gradient and least 

squares adaptive laws (2.75) guarantee that all signals in the closed-loop system are 

uniformly ultimately bounded (UUB) and the tracking errors converge to a sufficiently 

small neighborhood of the origin by appropriately adjusting the design parameters. 

Proof: We consider the following Lyapunov function as: 

2 1

1

1 1

2 2

n
T

i

i

V e  



                                                                 (2.80) 

We assume that,    is bounded, thus, e     is bounded, e    and ˆ    . 

The derivative of the Lyapunov function V  becomes: 
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



    

   





                                                (2.81) 

Applying of the following inequality: 

2

2 2

T
T e
e 


 
  

                                                                        

(2.82) 

We obtain:  
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k

V k e e

k e

 
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

 
 


  





   

   





                                                   

(2.83) 

Based on the above discussions, we can get the following inequality: 

  
V V                                                                                   (2.84) 

where,  min 2 ,kk     and 
2

2
e



  . From the inequality (2.84), if V p  and 

p


  , 

then 0V  . It implies that  V t p  for all 0t   for  0V p .  



Chapter 2                         Composite tuning functions based adaptive backstepping control  

 44 

Multiplying both sides in (2.84) by te  yields:  

    t td
V t e e

dt

                                                                       (2.85) 

Moreover, by integrating (2.85) over  0, t , we have: 

     0 0 tV t V e  

 

 
    

 
                                                    (2.86) 

Since 0



 , it can be obtained that: 

     0 0 tV t V e  



                                                                 (2.87) 

Therefore, we know that, ke , 1, ,k n ,   and  are UUB. Furthermore, all signals in the 

closed-loop system, i.e., ix , 1dx , 
 1

1 1, ,
n

d dx x


,  
1

n

dx , i , u  and
 
̂  are also UUB. In 

addition, from (2.80) and (2.87), it follows that:  2 0.5

1

2 0 2
n

t

k

k

e e V e   



   . 

Accordingly, when t  , it is easy to show that: 2e   . This completes the proof. 

 

2.5 Dynamic model of the electromechanical system  

This section describes the dynamic model of the electromechanical system (one-link 

manipulator actuated by a brush DC motor) [Bec13, Car95, Daw94, Li10a, Pan15, Sou21, 

Sun13, Yu18a, Yu15a, Zha18a, Zha18b, Zha17]. The dynamic model of the 

electromechanical system can be described by following equations as in [Bec13, Li10a, 

Zha18a, Zha18b, Zha17]:  

                      
   sin I

m

Dq Bq N q I t

MI HI K q V

   

  
                                                 (2.88) 

where, q , q  and q  denote the link angular position, the angular velocity, and the 

acceleration, respectively. I  is the motor armature current. V  is the input control voltage. 

M  is the armature inductance. H  is the armature resistance. mK  is the back-emf 

coefficient. D , B  and N  are constants.  I t  is the external disturbance.  

Let‟s then define the state variables as follows: 1x q , 2x q  and 3x I . We obtain then 

the dynamic model of the electromechanical system, described in the following state space 

form as:  
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                         

 

1 2

2 2 2 2 3 2

3 3 3

x x

x f x b x d t

x f x b u



  

 

                                                          (2.89) 

where,    2 2 1 2sin
N B

f x x x
D D

   ,  3 2 3
mK H

f x x x
M M

   , 2

1
b

D
 , 3

1
b

M
  and u V .  

 

2.6 Simulation results 

This section presents the simulation results for composite tuning functions based adaptive 

backstepping control method as applied to an electromechanical system mathematical 

model. Direct tuning functions based adaptive backstepping control, indirect adaptive 

control and composite tuning functions based adaptive backstepping control techniques 

have been simulated in order to verify the performance, validity and effectiveness of the 

proposed composite adaptive control approach. The simulations are performed using 

MATLAB/Simulink. The simulation results are obtained based on the electromechanical 

system parameters [Bec13, Li10a, Sun13]: 1D  , 1B  , 0.05M  , 0.5H  , 10N   

and 10mK  . The external disturbance is chosen as [Daw94, Pan15, Sun13]:  2 0d t  . 

The values of unknown constant parameters are assumed as: 2

N

D
   and 3

mK

M
  , where, 

 2 3

T
   ,  2 1sinT x    and 3 2

T x   . The control objective of this simulation is to 

design the composite tuning functions based adaptive backstepping controller u  for the 

electromechanical system in such a way that the link angular position q  tracks the desired 

trajectory 1dx  and to ensure the boundedness of all signals in the closed-loop system. The 

desired trajectory used in the simulation test is taken from [Car95]: 

   
20.1

1 sin 1 rad
2

t

dx t e
   . The virtual controllers 1  and 2  

are defined as:                                                           

1 1 1 1dk e x                                                                               (2.90) 
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2
1 1

2 2 2 1 1 2 2 2 11
12 1 1

1 ˆsin
k

dk
k d

B
k e e x x x x

b D x x
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


  
          

        (2.91) 

For the swapping based identifier, we use the following x-swapping filters: 

    
2

02 2 1 02 2 2 2 30.5 sin
B

x x x b x
D

       
                    

(2.92) 

     
2

2 2 1 2 10.5 sin sinT Tx x     
                                   

(2.93)
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  2

03 3 2 03 3 3 30.5
H

x x x b u
M

       
                                  

(2.94) 

 2

3 3 2 3 20.5T Tx x     
                                                         

(2.95) 

2.6.1 Composite sum based gradient adaptive laws   

The actual control input u  is chosen as:                                                                       
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
   

(2.96)  

The composite sum based gradient adaptive laws are defined as: 
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(2.98) 

where, 0
ˆT

i i i i ix    , 2,3i  . The selected initial conditions are set as: 

   0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  ,    02 20 0 0T    and    03 30 0 0T   . 

The design parameters are selected as follows: 1 0.5k  , 2 50k  , 3 3500k  , 2 1  , 

3 300  , 2 3 0.1  
 
and 2 3 0.1   . The simulation results are shown in Figures 2.1-

2.9. Figures 2.1-2.3 show the trajectories of the output variables. The trajectories of the 

tracking errors are illustrated in Figures 2.4-2.6. Figures 2.7 and 2.8 show the trajectories 

of the parameter estimates. The trajectories of the control inputs are shown in Figure 2.9. 
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Fig. 2.1: Angular position: desired x1d (″-″) and 
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Fig. 2.3: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 2.4: Angular position tracking error: e1. 
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Fig. 2.5: Angular velocity tracking error: e2. 
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Fig. 2.6: Motor armature current tracking error: 

e3. 
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Fig. 2.7: Parameter estimate: actual 2  (″-″) and 

estimate 2̂  (″--″). 
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Fig. 2.8: Parameter estimate: actual 3  (″-″) and 

estimate 3̂  (″--″). 
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Fig. 2.9: Control input: u. 
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2.6.2 Composite σ-modification based gradient adaptive laws                                                                                                                                           

The actual control input u  is given by:                                                                       

 

   
   

2

2 2
3 3 2 2 2 3 3 2 1 2 2 2 3

3 1 2

3
2 2 2 2

2 1 2 3 1 2 2 21
122 21

1 ˆ ˆsin

ˆ   sin
ˆ ˆ

k

dk
k d

H B
u k e b e x x x x x b x

b M x x D

x e e x
x x



 
 

   
  

 




    
           

   

     
               


     

(2.99)  

The composite σ-modification based gradient adaptive laws are defined as: 

   
2

2
2 2 1 2 3 2 2

2

ˆ ˆsin x e e
x




   

  
         

                      

(2.100) 

and, 

  33 3 2 3 3 3
ˆ ˆx e       

                                                  

(2.101) 

where, 2  and 3  are computed with the gradient method as follows: 

 1 tr

i i
i i T

i i i





 

  
                                                              

(2.102) 

where, 0

T

i i i i ix    , 2,3i  . The selected initial conditions are set as: 

   0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   ,    3 3

ˆ 0 0 0   ,    02 20 0 0T    and 

   03 30 0 0T   . The design parameters are selected as follows: 1 0.5k  , 2 50k  , 

3 3500k  , 2 1  , 2 5  , 3 300  , 3 10  , 
2 3

0.1    ,  2 3 0.1    and 

2 3 0.1   . The simulation results are shown in Figures 2.10-2.18. Figures 2.10-2.12 

show the trajectories of the output variables. The trajectories of the tracking errors are 

illustrated in Figures 2.13-2.15. Figures 2.16 and 2.17 show the trajectories of the 

parameter estimates. The trajectories of the control inputs are shown in Figure 2.18. 
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Fig. 2.10: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [sec]

A
n

g
u

la
r
 v

e
lo

c
it
y
 [

r
a

d
/s

e
c
]

 

 

x
2
 desired

x
2
 direct

x
2
 indirect

x
2
 composite

Fig. 2.11: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 2.12: Motor armature current: desired x3d 

(″-″) and actual x3 (″--″). 
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Fig. 2.13: Angular position tracking error: e1. 
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Fig. 2.14: Angular velocity tracking error: e2. 
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Fig. 2.15: Motor armature current tracking 

error: e3. 
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Fig. 2.16: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 2.17: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 2.18: Control input: u. 
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2.6.3 Composite σ-modification based least squares adaptive laws                                                                                                                                         

The actual control input u  and the composite σ-modification based least squares adaptive 

laws are the same as that in the composite σ-modification based gradient adaptive laws 

described by (2.99)-(2.101), respectively. 2  and 3  are computed with the least squares 

method as follows: 

 1 tr

i i
i i T

i i i i





 

   
                                                          

(2.103) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                    

(2.104) 

where, 0

T

i i i i ix    , 2,3i  . The selected initial conditions are set as: 

   0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   ,    3 3

ˆ 0 0 0   ,    02 20 0 0T    and 

   03 30 0 0T   . The design parameters are selected as follows: 1 0.5k  , 2 50k  , 

3 3500k  , 2 1  ,  2 0 5  , 3 300  ,  3 0 10  , 
2 3

0.1    , 2 3 0.1    and 

2 3 0.1   .  

The simulation results are shown in Figures 2.19-2.27. Figures 2.19-2.21 show the 

trajectories of the output variables. The trajectories of the tracking errors are illustrated in 

Figures 2.22-2.24. Figures 2.25 and 2.26 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 2.27. 
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Fig. 2.19: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 2.20: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 2.21: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 2.22: Angular position tracking error: e1. 

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0.15

Time [sec]

A
n

g
u

la
r
 v

e
lo

c
it
y
 t

r
a

c
k
in

g
 e

r
r
o

r
 [

r
a

d
/s

e
c
]

 

 

e
2
 direct

e
2
 indirect

e
2
 composite

Fig. 2.23: Angular velocity tracking error: e2. 
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Fig. 2.24: Motor armature current tracking 

error: e3. 
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Fig. 2.25: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 2.26: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 2.27: Control input: u. 
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From all the results, it can be seen that all system states asymptotically converge to their 

desired values, that the tracking errors converge to zero and that the convergence of the 

parameter estimates to their true values is guaranteed. As shown in simulation results, we 

can conclude then that the proposed composite adaptive control scheme is effective, 

ensures faster convergence and achieve better parameter estimation in comparison with 

direct and indirect adaptive control designs. 

 

2.7 Conclusion 

In this chapter, a new composite tuning functions based adaptive backstepping control 

method for a class of SISO uncertain nonlinear systems in lower triangular form is 

proposed. The proposed composite adaptive control scheme is designed to avoid the 

overparametrization problem inherent in the conventional adaptive backstepping control 

design. The proposed composite adaptive control scheme is applied to an 

electromechanical system. Based on the Lyapunov stability analysis theory, it has been 

proven that the proposed composite adaptive control algorithm guarantees the boundedness 

of all signals in the closed-loop system. The performance of the proposed composite 

adaptive control scheme is validated through numerical simulations. The simulation results 

clearly show that performance, validity and effectiveness, and, improved tracking 

performance can be achieved with the proposed composite adaptive control scheme 

compared to direct and indirect adaptive control designs. In the next chapters, we will 

develop novel composite adaptive control methods in order to overcome the problem of 

explosion of complexity. 
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Chapter 3 

Composite adaptive dynamic surface control 

 

 

3.1 Introduction  

Over the past few years, adaptive backstepping control and tuning functions based adaptive 

backstepping control methods are the most popular and effective control approaches for 

uncertain nonlinear systems, which has received much attention [Cil07, Kan91, Krs95a, 

Krs92, Wan16, Zho08]. However, adaptive backstepping control and composite tuning 

functions based adaptive backstepping control techniques suffer from the problem of 

explosion of complexity, which is caused by the repeated derivations of the virtual control 

inputs. In recent years, a dynamic surface control (DSC) scheme has been proposed to 

eliminate this problem by introducing a first-order low-pass filter at each step of the 

conventional backstepping control method [Hed00, Swa00, Swa97]. In [Hed00, Yip98], 

the dynamic surface control method has extended to adaptive control and has been widely 

applied for a class of uncertain nonlinear systems [Khe15, Liu18a, Liu17a, Liu17b, 

Yu15b]. Composite adaptive dynamic surface control has been also introduced for a class 

of SISO uncertain nonlinear systems in lower triangular form [Sou18, Sou17]. 

In this chapter, a novel composite adaptive dynamic surface control approach is proposed 

for a class of SISO uncertain nonlinear systems in lower triangular form. The proposed 

composite adaptive control technique is introduced to improve parameter estimation. By 

using the proposed composite adaptive control technique, the problem of explosion of 

complexity inherent in the conventional adaptive backstepping control and composite 

tuning functions based adaptive backstepping control designs is eliminated. It has been 

proved that all signals in the closed-loop system are bounded by using the Lyapunov 

stability theory. Simulation results for an electromechanical system are presented to 

illustrate the efficiency of the proposed composite adaptive control scheme compared to 

direct and indirect adaptive control designs. 

The rest of this chapter is arranged as follows. The direct adaptive dynamic surface control 

is presented in Section 3.2. Section 3.3 is dedicated to the indirect adaptive control. The 
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composite adaptive dynamic surface control is proposed in Section 3.4. The simulation 

results are included in Section 3.5. Finally, conclusions are given in Section 3.6. 

 

3.2 Direct adaptive dynamic surface control  

In this section, we will consider the following SISO uncertain nonlinear system in lower 

triangular form:   

     

     

     

1 1 1 2 1 1 1 1 1

1 , 2, , 1

T

T

i i i i i i i i i

T

n n n n n

x g x x x x

x g x x x x i n

x g x u x x

  

  

  



  

    

  

                        (3.1) 

where,  1 2

T n

nx x x x   and u  are system states and the control input, 

respectively. ip

i 
 
are unknown constant parameter vectors,  1 2

T

i ix x x x  and 

nx x . The nonlinear functions 
T

i , i  and 0ig 
 
are known and continuous. The control 

objective of this approach is to construct a direct adaptive dynamic surface controller u  

which ensures that the system output 1x  tracks the desired trajectory 1dx , while all signals 

in the closed-loop system are bounded. Throughout this chapter, to facilitate the control 

design and synthesis, the following standard assumptions of the system (3.1) are exploited. 

Assumption 3.2.1: There is a positive constant 0g  where,   0i ig x g , 1, ,i n . 

Assumption 3.2.2: The desired trajectory 1dx
 
and both its first and second derivatives 1dx  

and 1dx  are known, continuous and bounded.  

The main procedures of the direct adaptive dynamic surface control design for system (3.1) 

with stability analysis using Lyapunov stability theory are summarized as follows. 

Step 1: Define the first surface error as 1 1 1dS x x  , then, the time derivative of 1S  is 

obtained as: 

1 1 1 1 2 1 1 1 1

T

d dS x x g x x       
                                             

(3.2) 

We choose the virtual control 2x
 
to drive 1S

 
towards zero with, 

 2 1 1 1 1 1 1 1 1

1

1 ˆT

dx x K S g S
g

       
                                       

(3.3) 

where, 1K  is a positive design parameter.  

To avoid the problem of explosion of complexity in the conventional adaptive 

backstepping control and composite tuning functions based adaptive backstepping control, 
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we introduce a new variable 2dx
 
and let 2x

 
pass through a first order filter, with time 

constant 2  to obtain 2dx
 
as: 

   2 2 2 2 2 2, 0 0d d dx x x x x   
                                                   

(3.4) 

 2 2 1 1 1 1 1 1 1 1

2 1

1 1 ˆT

d d dx x x K S g S
g

  


 
        

                    

(3.5) 

Step  2, , 1i i n  : Define the 
thi  surface error as i i idS x x  , then, the time derivative 

of iS  is obtained as: 

1

T

i i id i i i i i idS x x g x x       
                                            

(3.6) 

We choose the virtual controllers 1ix   
to drive iS

 
towards zero with, 

 1

1 ˆT

i i i i id i i i i

i

x x K S g S
g

        
                                      

(3.7) 

where, iK  is the positive design parameters. We introduce a new variable  1i d
x

  
and let 

1ix   
pass through a first order filter, with time constant 1i   to obtain  1i d

x
  

as: 

         1 1 11 1 1
, 0 0i i ii d i d i d

x x x x x     
  

                                   
(3.8) 

     1 1

1

1 1 ˆT

i i i id i i i ii d i d

i i

x x x K S g S
g

  


 



 
        

            

(3.9) 

Step n : Define the 
thn  surface error as n n ndS x x  , then, the time derivative of nS  is 

obtained as: 

T

n n nd n n n n ndS x x g u x       
                                         

(3.10) 

We choose the actual control input u
 
to drive nS

 
towards zero with, 

 

 1 ˆT

n n n nd n n

n

u x K S
g

      
                                              

(3.11) 

where, nK  is a positive design parameter. The direct adaptive laws are given by [Yip98]: 

1 1 1 1
ˆ

ˆ , 2, , 1

ˆ

i i i i

n n n n

S

S i n

S

 

 

 

 

   

 
                                                            

(3.12) 

where, 0i  , 1, ,i n
 

are design parameters that can be adjusted for the rate of 

convergence of the parameter estimates. 
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3.2.1 Stability analysis 

Define the boundary layer errors as [Yip98]: 

, 2, ,i id iy x x i n  
                                                               

(3.13) 

and the parameter estimation errors as: 

ˆ , 1,2, ,i i i i n    
                                                              

(3.14) 

Then, the closed-loop dynamics can be expressed in terms of the surface errors iS , the 

boundary layer errors iy , and the parameter estimation errors i . 

The dynamics of the surface errors are expressed, for 1i  , as: 

1 1 1 1 2 1 1 1 1

1 2 1 2 1 1 1 1

1 2 1 2 1 2 1 1 1 1

2

1 2 1 2 1 1 1 1 1 1

   

   

   

T

d d

T

d d

T

d

T

S x x g x x

g S g x x

g S g y g x x

g S g y K S g S

  

  

  

 

     

    

     

    
                                     

(3.15) 

For 2, , 1i n  :

       
 

1

1 1

1 1 1

2

1 1

   

   

   

T

i i id i i i i i id

T

i i i i i i idi d

T

i i i i i i i i i id

T

i i i i i i i i i i

S x x g x x

g S g x x

g S g y g x x

g S g y K S g S

  

  

  

 



 

  

 

     

    

     

    
                                 

(3.16)

            

 

For i n : 

   

T

n n nd n n n n nd

T

n n n n

S x x g u x

K S

  

 

     

                                           
 

(3.17) 

The dynamics of the boundary layer errors iy
 
are expressed, for 2i  , as: 

 

   

2 2 2 2 1 1 1 1 1 1 1 1 2

2 1

2 2 2 2 2 2 2 2 2

2 2 2

1 1 ˆ

1 1 1
    

T

d d d

d

y x x x x K S g S x
g

x x x y x x x y x

  


  

 
           

 

           

    

(3.18) 

For 3, ,i n : 

  

   

1 1 1 1 1 1 11

1

1 1 ˆ

1 1 1
   

T

i id i id i i i i i i i ii d

i i

id i i i i i i i i

i i i

y x x x x K S g S x
g

x x x y x x x y x

  


  

      



 
           

 

           

      

(3.19) 

We consider the following Lyapunov function as: 
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1 2 1

n n n

is iy i

i i i

V V V V
  

    
                                                          

(3.20) 

where, 

2 2 11 1 1
, ,

2 2 2

T

is i iy i i i i iV S V y V     
                                          

(3.21) 

Then, for 1, , 1i n  , by some simple computations, one has,  

2 2 2

1 1= T

is i i i i i i i i i i i i i i iV S S g S S g S y K S S g S      

                  

(3.22)  

Applying of the following Young‟s inequalities: 

2 2 2

1 1

1 1

2 2
i i i i i ig S S g S S                                                              (3.23) 

2 2 2

1 1

1 1

2 2
i i i i i ig S y g S y                                                              (3.24) 

We obtain: 

2 2 2

1 1

1 1

2 2

T

is i i i i i i iV K S S y S      

                                           

(3.25)  

and, for i n :  

2 T

ns n n n n n n nV S S K S S     

                                                     

(3.26) 

one has, 1 1 1dx S x   and i i i ix S y x   , then from,   

1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 ˆ ˆ
T

T

d

g
x x x x K S g S x S

g x x x

 
  

      
                  

    (3.27) 

and, by induction, it is easy from: 

 

1 1 1
1 1 1

1 1 1 1 1 1 1 11
1 1 11

1 ˆ ˆ
Ti i i

Ti i i
i j i i i j i i i i j ii d

j j ji j j j

g
x x x x K S g S x S

g x x x

 
  

  
  

       
  

     
           

          
  

     

(3.28) 

one has, 

1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1

1 1 ˆ ˆ
T

T

d

g
y y x x x K S g S x S

g x x x

 
  



      
                    

(3.29) 

Since all terms in (3.29) can be dominated by some continuous functions, it follows that: 

 2 2 2 2 2 1 2 2 1 1 1 1

2 2

1 1 ˆ, , , , , ,d d dy y y y B S S y x x x
 

   

              

(3.30) 

where,  2 .B  is a continuous function. Thus, 
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 2

2 2 2 2 2

2

1
.y y y B y


 

                                                             

(3.31) 

By using Young‟s inequality, it gives: 

 22
22 2

2 2 2

2

.1

2 2

By
y y y


   

                                                       

(3.32) 

as similarly for, 3, ,i n , we obtain: 

 22
2

.1

2 2

nn
n n n

n

By
y y y


   

                                                       

(3.33) 

where,    1 2 1 1 1 1
ˆ ˆ. , , , , ,n n n n n d d dB B S S y y x x x   is a continuous function. From 

(3.32) and (3.33), we can write: 

 22
2

.1
, 2, ,

2 2

ii
iy i

i

By
V y i n


    

                                          

(3.34) 

one has,   

1 1 ˆT T T

i i i i i i i i i iV S             

                                            

(3.35)           

Therefore, the derivative of the Lyapunov function V  becomes:  

 

1 2 1

221
2 2 2 2 2

1 1

1 2 1

1
2 2 2

1 1

2

.1 1 1
  

2 2 2 2

1 1 1
  1

2 2

n n n

is iy i

i i i

n n n
iT T Ti

i i i i i i i n n n n n i i i i

i i ii

n

i i n n

i i i

V V V V

By
K S S y S K S S y S

K S K S K S



     




  



 

  



 

  

  
                  

    
           

     

  

  


 2

2

2 2

1
2 2 2 2

1 1

2 2

.

2

1 1 1
  1

2 2

n n
i

i

i

n n

i i n n i

i i i

B
y

K S K S K S y 






 



    
            

     

 

 

 

(3.36)

 

where, 
2 2

n
i

i

M




  and iM
 
are the maximums of  .iB . Based on (3.36), by choosing the 

design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can conclude that, iS  

and iy
 
are bounded.  

 

3.3 Indirect adaptive control  

The main procedures for designing the indirect adaptive control with stability analysis are 

described as follows. 
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3.3.1 Identification based x-swapping filters  

To illustrate the identification based x-swapping filters design procedures, we consider the 

SISO uncertain nonlinear system (3.1), which can be rewritten under the following 

nonlinear system in parametric x-model form as [Sou18]: 

   , T

i i i i ix f x u x  
                                                              

(3.37) 

where, 

 

1 2 1

1 1

,i

n n n

n n

g x

f x u
g x

g u







 

 
 
 
 
 

                                                             

(3.38) 

We introduce the x-swapping filters as follows: 

   0 0 0, ,i i i i i ia x f x u      
                                        

(3.39) 

  , ipT T T

i i i i i ia x     
                                                    

(3.40) 

where, 1, ,i n  and 0ia   is a negative definite scalar function for each x  continuous in 

t . We define the estimation errors as: 

0
ˆ ,T

i i i i i ix    
                                                         

(3.41) 

with, ˆ
i  the estimate of i  and let: 

0 ,T

i i i i i ix                                                              (3.42) 

Then, we obtain: 

T

i i i i                                                                                 (3.43) 

The error signal i  
satisfies: 

0

T

i i i i i i ix a   
                                                            

(3.44) 

To guarantee the boundedness of i
 
when  i ix  grows unbounded, a particular choice of 

ia
 
is made: 

   0

T

i i i i i i i ia a x x P  
                                                        

(3.45) 

where, 0i 
 
and 0ia  is an arbitrary negative constant satisfying [Sou18]: 

02 1, 0i i iPa P  
                                                                       

(3.46) 

3.3.2 Choice of adaptive laws 

The gradient adaptive laws are defined as: 



Chapter 3                                                      Composite adaptive dynamic surface control 

 61 

 
ˆ , 0, 0

1 tr

i i
i i i iT

i i i

 



    

  
                                          

(3.47) 

The least squares adaptive laws are defined as: 

 
ˆ

1 tr

i i
i i T

i i i i





 

   

                                                            

(3.48) 

where, 
i  is given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   

                           

(3.49) 

3.3.3 Proof of stability  

Lemma 3.3.1: To establish the identifier properties, let 0, ft , the maximal interval of 

existence of solutions of (3.37), the x-swapping filters (3.39) and (3.40), and the gradient 

adaptive laws (3.47) or the least squares adaptive laws (3.48) and (3.49). Then for 0i  , 

the following properties hold: 

i L 

                                                                                        

(3.50) 

2i L L 

                                                                                

(3.51) 

2
ˆ
i L L  

                                                                                

(3.52) 

3.3.3.1 Gradient adaptive laws 

We consider the following Lyapunov function as: 

1 21

2

T

i i i i i iV P   
                                                                   

(3.53) 

Along with dynamic equations (3.44) and (3.47), the derivative of the Lyapunov function 

iV  becomes: 

    

    

1

1 2

1 2

0

1 2

2

   2

   2

   1 2

T

i i i i i i i

T

i i i i i i

T T

i i i i i i i i i i i i

T T

i i i i i i i i i i i

V P

Pa

P a x x P

P x x P

 

 

   

    









  

  

   

    

                           
(3.54) 

Applying of the following inequality [Sou18]: 

   1 2 1T

i i i i i i iP x x P     
                                                   

(3.55) 

We obtain: 
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 

   

      

    

1 2 2

2
2

2 2
2

2

2

2

ˆ

1 tr

   
1 tr 1 tr

3 1
   

4 41 tr 1 tr1 tr

3
   

4 1 tr 2 1 tr

 

T
T i i i

i i i i i iT

i i i

i i
i iT T

i i i i i i

i i i
i iT T

T
i i i i i i

i i i

i i
iT T

i i i i i i

V


 


 

 

 

 
      

  

   
     

    
       

 
    
      
 

 

2
3

  
4 1 tr

i

T

i i i
 

  

(3.56) 

The nonpositivity of iV  proves that, i L   (bounded). Due to 
T

i i i i   and the 

boundedness of i , it follows that i L , which, in turn proves that ˆ
i L  .  

By integrating of inequality (3.56) over  0, , we obtain:  

 
    

2

0

4
0

31 tr

i
i iT

i i i

d V V




    
  



                             

(3.57)
 

This means that,

 
 

2

1 tr

i

T

i i i

L



  

. Since i  is bounded, then 2i L . The 

boundedness of i
 
and the square integrability of i  

prove that 2
ˆ
i L  . 

3.3.3.2 Least squares adaptive laws 

From (3.48) and (3.49), we have the following identity: 

 
 

1 1 1 0
1 tr

T

i i
i i i i T

i i i i

d

dt 

   
      

   
                            

(3.58) 

We consider the following Lyapunov function as: 

 1 2T

i i i i i iV t P   
                                                                

(3.59) 

Along with dynamic equations (3.44), (3.48) and (3.49), the derivative of the Lyapunov 

function iV  becomes: 
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 

    

1 1

1 1 1 1 2

1 1 1 1 2

0

1 1

2

ˆ   2

ˆ   2

   

T T

i i i i i i i i i i

T T T

i i i i i i i i i i i i i i

T T T T

i i i i i i i i i i i i i i i i i i i i

T T

i i i i i

d
V P

dt

Pa

P a x x P

   

     

       

  

 

   

   

 

    

        

         

         1 1 2ˆ 1 2T T

i i i i i i i i i i i i i iP x x P           
            

(3.60) 

Applying of inequality (3.55), we obtain: 

     
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1 1 1 1 2

2

2

2

ˆ ˆ

   
1 tr 1 tr 1 tr

   
1 tr 1 tr
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i i i i i i i i i i i i i
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i i i i i i i i i i i i
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i i i i i i
iT T

i i i i i i i i
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i
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   
    

           

 
   

       

 
    

 

2
2

2

r 1 tr

   
1 tr

i
iT T

i i i i i i i

i

T

i i i i





 
      

 
   

            

(3.61) 

Which, due to the positive definiteness of  1

i t , proves that, i L   (bounded).  

By integrating of inequality (3.61) over  0, , we obtain: 

 
   

2

0

0
1 tr

i
i iT

i i i i

d V V




    
   



                                

(3.62)
 

This means that,

 
 

2

1 tr

i

T

i i i i

L



   

. Using the boundedness of i  and i , following 

the same line of argument as for the gradient adaptive laws, we prove that 2i L L 
 
and 

2
ˆ
i L L   . 

 

3.4 Composite adaptive dynamic surface control  

The composite adaptive dynamic surface control proposed in this section is driven by the 

combination of both surface error based parameter adaptive laws of the direct adaptive 

dynamic surface control described by (3.12) with the estimation error based parameter 

adaptive laws of the indirect adaptive control described by (3.47) and (3.48). The control 

objective of this approach is to construct a composite adaptive dynamic surface controller 
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u  such that the system output 1x  tracks the desired trajectory 1dx  and to guarantee that all 

signals in the closed-loop system are bounded. The detailed procedures for the composite 

adaptive dynamic surface control approach for system (3.1) with stability analysis are 

summarized as follows.  

3.4.1 Composite projection based gradient adaptive laws 

Projection properties: We assume that i  is estimated by ˆ
i , where, ˆ

i  are the estimates 

of i . The estimation errors are given by: 

ˆ
i i i   

                                                                                   
(3.63) 

The projection operators are defined as [Far06, Ioa07, Ioa96, Sou18]: 

 
 2 2

ˆ

ˆ ˆ ˆ ˆ ˆif or  if and 0 ,
Proj

0 otherwise.
i

T T

i i i i i i i i i

i

M M


        
  

     

(3.64) 

where, „ i ‟ represents any reasonable adaptation function. The projection algorithm 

guarantees that the parameter estimates ˆ
i  

of i  
remain bounded and satisfy the 

inequality, ˆ
i iM  .  

Moreover, the projection mapping used in (3.64) guarantees that: 

 ˆProj
i

T T

i i i i
     

                                                               
(3.65) 

Therefore, the composite projection based gradient adaptive laws are defined as: 

 
ˆ

ˆ Proj , 0, 0
1 tri

i i
i i i i i iT

i i i

S


  


  
       

    
                 

(3.66) 

The dynamics of estimation errors are given by:  

 
ˆ

ˆ Proj , 0, 0
1 tri

i i
i i i i i i iT

i i i

S


   


  
         

    
       

(3.67) 

where, 0
ˆT

i i i i ix    . 

Theorem 3.4.1: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are 

satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the 

composite projection based gradient adaptive laws (3.66) guarantee that all signals in the 

closed-loop system are bounded. 
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Proof: We consider the following Lyapunov function as: 

1 2 1

n n n

is iy i

i i i

V V V V
  

    
                                                           

(3.68) 

and, 

2 2 1 21 1 1
, ,

2 2 2

T

is i iy i i i i i i iV S V y V P     
                                 

(3.69) 

where, isV , nsV
 
and iyV  are expressed in (3.25), (3.26), (3.34), and,      

 

 

1 2

1 2

ˆ

2

ˆ

   Proj
1 tr

   
1 tr

i

T

i i i i i

T i i
i i i i i iT

i i i

T
T i i i
i i i iT

i i i

V

S

S



 

 



 







   

  
       

    
  


   

  
                  

(3.70)           

Therefore, the derivative of the Lyapunov function V  becomes:  
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2 2 2 2 2

1 1

1 2

2

1 1 1

2 2

1 1

.1 1 1
  

2 2 2 2
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1
  

2

n n n

is iy i

i i i

n n
iT T i

i i i i i i i n n n n n i

i i i

Tn n n
T i i i
i i i iT

i i ii i i

i i

V V V V

By
K S S y S K S S y

S

K S K S

   



 



  



 

 

  

  

  
                 


  

  

 
    

 

  

 

  

 

 
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2 2

2 2 2 1
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2 2 2 2

1 1

2 2 1

.1 1 3
1

2 2 4 1 tr

1 1 1 3
  1

2 2 4 1 tr

n n n n
i i

n n i T
i i i ii i i i

n n n
i

i i n n i T
i i ii i i i

B
K S y

K S K S K S y

 


 



   



  

  
       

     

    
             

       

   

  

                   

(3.71) 

where, 
2 2

n
i

i

M




  and iM
 
are the maximums of  .iB . Therefore, based on (3.71), by 

choosing the design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can 

conclude that, V , iS , iy , i  
and i  are bounded. Furthermore, all signals in the closed-

loop system, i.e., ix , idx , idx , 2 1, , ix x  , u  and ˆ
i  are also bounded. 

3.4.2 Composite projection based least squares adaptive laws 

The composite projection based least squares adaptive laws are defined as: 
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 
ˆ

ˆ Proj
1 tri

i i
i i i i T

i i i i

S


 


  
    

     
  

                                 

(3.72) 

The dynamics of estimation errors are given by:  

 
ˆ

ˆ Proj
1 tri

i i
i i i i i T

i i i i

S


  


  
      

     
  

                     

(3.73) 

where, i  are given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   

                          

(3.74) 

with, 0
ˆT

i i i i ix    . 

Theorem 3.4.2: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are 

satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the 

composite projection based least squares adaptive laws (3.72) guarantee that all signals in 

the closed-loop system are bounded. 

Proof: We consider the following Lyapunov function as: 

1 2 1

1

2

n n n

is iy i

i i i

V V V V
  

    
                                                        

(3.75) 

and, 

 2 2 1 21 1
, ,

2 2

T

is i iy i i i i i i iV S V y V t P     
                               

(3.76) 

where, isV , nsV
 
and iyV  are expressed in (3.25), (3.26), (3.34), and,      
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i i i i i i iT T T
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 
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   
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           
 

(3.77)  
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Therefore, the derivative of the Lyapunov function V  becomes:  
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
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1

2 1 tr

n n
i

i T
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y 
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   

    
 

 

(3.78)         

where, 
2 2

n
i

i

M




  and iM
 
are the maximums of  .iB . Based on (3.78), by choosing the 

design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can conclude that, V , 

iS , iy , i  
and i  are bounded. Furthermore, all signals in the closed-loop system, i.e., ix , 

idx , idx , 2 1, , ix x  , u  and ˆ
i  are also bounded. 

3.4.3 Composite σ-modification based gradient and least squares adaptive laws 

The composite σ-modification based gradient and least squares adaptive laws are defined 

as: 

  ˆ ˆ , 0, 0
i ii i i i i i iS             

                                 
(3.79) 

where, 
i


 
are small design constants to introduce the -modification for the closed-loop 

system and i  are computed with the gradient method as follows: 

 
, 0, 0

1 tr

i i
i i i iT

i i i

 



    

  
                                          

(3.80) 

or with the least squares method as follows: 

 1 tr

i i
i i T

i i i i





 

   
                                                             

(3.81) 

where, i  are given by: 
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 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   
                           

(3.82) 

with, 0

T

i i i i ix    . 

Theorem 3.4.3: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by (3.1). Suppose that assumptions 3.2.1 and 3.2.2 are 

satisfied. Then, the virtual controllers (3.3) and (3.7), the actual control input (3.11) and the 

composite σ-modification based gradient and least squares adaptive laws (3.79) guarantee 

that all signals in the closed-loop system are UUB and the surface errors converge to a 

sufficiently small neighborhood of the origin by appropriately adjusting design parameters. 

Proof: We consider the following Lyapunov function as: 

1 2 1

n n n

is iy i

i i i

V V V V
  

    
                                                          

(3.83) 

and, 

2 2 11 1 1
, ,

2 2 2

T

is i iy i i i i iV S V y V     
                                          

(3.84) 

where, isV , nsV
 
and iyV  are expressed in (3.25), (3.26), (3.34), and,      
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(3.85) 

We assume that, i i   is bounded, thus, 
i i ie     is bounded, 

ii i e    and 

ˆ
i i i    . The derivative of the Lyapunov function iV  becomes: 
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(3.86) 

Applying of the following inequality: 
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e
e





 
  

                                                                       

(3.87) 

We obtain: 

2

2 2

i i

i

T T

i i i i i iV S e
 

 

 
      

                                                

(3.88) 

Therefore, the derivative of the Lyapunov function V  becomes:  
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(3.89) 

The above inequality can be rewritten as follows: 

V V                                                                                   (3.90) 

where, 1

1 1 1
min 2 ,2 ,2 ,2 1 ,

2 2 ii n i

i

K K K  


      
         

      
, 

2

1 2

i

i

n

i

e





 



  , 
2 2

n
i

i

M




  

and iM
 
are the maximums of  .iB . Multiplying (3.90) by te  yields: 

  t td
V t e e

dt

                                                                       (3.91) 

Integrating (3.91) over  0, t , we have: 

   0 0 tV t V e  

 

 
    

 
                                                    (3.92) 

Since 0



 , it can be obtained that: 

   0 0 tV t V e  



                                                                 (3.93) 

Therefore, based on (3.89), by choosing the design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK  , 1i   and 0

i
  , we can conclude that, iS , iy , i  

and i  
are UUB. 

Furthermore, all signals in the closed-loop system, i.e.,
 ix , idx , idx , 2 1, , ix x  , u  and ˆ

i  

are also UUB.  
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In addition, from (3.83) and (3.93), it follows that:  2 0.5

1

2 0 2
n

t

i

i

S S V e   



   . 

Accordingly, when t  , it is easy to show that: 2S   . This completes the proof. 

 

3.5 Simulation results 

This section presents the simulation results for composite adaptive dynamic surface 

control approach as applied to an electromechanical system mathematical model and as in 

previous chapter. The control objective of this simulation is to construct the composite 

adaptive dynamic surface controller u  for the electromechanical system in such a way 

that the link angular position q  tracks the desired trajectory 1dx  and all signals in the 

closed-loop system are bounded.  

The signals
 2dx  and 3dx

 
are generated by the filters: 

 2 2 1 1 1 1

2

1
d d dx x x K S S


    

                                                

(3.94) 

 3 3 1 2 2 2 2 2 2 2

3 2

1 1 ˆsind d d

B
x x x x x K S b S

b D




  
        

  
     

(3.95) 

The actual control input u  is chosen as: 

2 3 3 3 3 3

3

1 ˆ
d

H
u x x x K S

b M


 
    

 
                                             

(3.96) 

For the swapping based identifier, the x-swapping filters are the same as that in the chapter 

2 described by (2.92)-(2.95). 

3.5.1 Composite projection based gradient adaptive laws  

The composite projection based gradient adaptive laws are defined as: 

 
 2

2 2
ˆ2 2 1 1

2 2 2

ˆ Proj sin
1 tr T

S x





        
     

   

                    

(3.97) 

and, 

 3

3 3
ˆ3 3 3 2

3 3 3

ˆ Proj
1 tr T

S x





        
     

                                 

(3.98) 

where, 0
ˆT

i i i i ix    , 2,3i  .  
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The initial conditions are selected as:    0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The control 

parameters are chosen as: 1 10K  , 2 5K  ,  3 550K  , 2 150  , 3 550  , 2 3 0.1   , 

2 3 0.1    and 3

2 3 10    .  

The simulation results are shown in Figures 3.1-3.9. Figures 3.1-3.3 show the trajectories 

of the output variables. The trajectories of the surface errors are illustrated in Figures 3.4-

3.6. Figures 3.7 and 3.8 show the trajectories of the parameter estimates. The trajectories of 

the control inputs are shown in Figure 3.9. 
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Fig. 3.1: Angular position: desired x1d (″-″) and 
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Fig. 3.2: Angular velocity: desired x2d (″-″) and 

actual x2 (″--″). 
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Fig. 3.3: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 3.4: Angular position surface error: S1. 
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Fig. 3.5: Angular velocity surface error: S2. 
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Fig. 3.7: Parameter estimate: actual 2  (″-″) and 

estimate 2̂  (″--″). 
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Fig. 3.8: Parameter estimate: actual 3  (″-″) and 

estimate 3̂  (″--″). 
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Fig. 3.9: Control input: u. 

3.5.2 Composite projection based least squares adaptive laws  

The composite projection based least squares adaptive laws are defined as: 

 
 2

2 2
ˆ2 2 1 1

2 2 2 2

ˆ Proj sin
1 tr T

S x





        
      

   

                

(3.99) 

and, 

 3

3 3
ˆ3 3 3 2

3 3 3 3

ˆ Proj
1 tr T

S x





        
      

                           

(3.100) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                    (3.101) 

where, 0
ˆT

i i i i ix    , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The control 
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parameters are chosen as: 1 10K  , 2 50K  , 3 750K  ,    2 30 0 25    , 

2 3 0.1   , 2 3 0.1    and 3

2 3 10    .  

The simulation results are shown in Figures 3.10-3.18. Figures 3.10-3.12 show the 

trajectories of the output variables. The trajectories of the surface errors are illustrated in 

Figures 3.13-3.15. Figures 3.16 and 3.17 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 3.18. 
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Fig. 3.10: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 3.11: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 3.12: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 3.13: Angular position surface error: S1. 
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Fig. 3.14: Angular velocity surface error: S2. 
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Fig. 3.15: Motor armature current surface error: 

S3. 
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Fig. 3.16: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 3.17: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 3.18: Control input: u. 

3.5.3 Composite σ-modification based gradient adaptive laws  

The composite σ-modification based gradient adaptive laws are defined as: 

   
22 2 1 1 2 2 2

ˆ ˆsinS x       
                                         

(3.102) 

and, 

 
33 3 3 2 3 3 3

ˆ ˆS x       

                                                  

(3.103) 

where, 2  and 3  are computed with the gradient method as follows: 

 1 tr

i i
i i T

i i i





 
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(3.104) 

with, 0

T

i i i i ix    , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   , 

   3 3
ˆ 0 0 0   ,    02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The 

control parameters are chosen as: 1 10K  , 2 5K  , 3 550K  , 2 150  , 3 550  , 

2 5  , 3 50  , 
2 3

0.1    , 2 3 0.1   , 2 3 0.1    and 3

2 3 10    .  
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The simulation results are shown in Figures 3.19-3.27. Figures 3.19-3.21 show the 

trajectories of the output variables. The trajectories of the surface errors are illustrated in 

Figures 3.22-3.24. Figures 3.25 and 3.26 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 3.27. 
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Fig. 3.19: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 3.20: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 3.21: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 3.22: Angular position surface error: S1. 
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Fig. 3.23: Angular velocity surface error: S2. 
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Fig. 3.24: Motor armature current surface error: 

S3. 
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Fig. 3.25: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 3.26: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 3.27: Control input: u. 

3.5.4 Composite σ-modification based least squares adaptive laws  

The composite σ-modification based least squares adaptive laws are the same as that in the 

composite σ-modification based gradient adaptive laws described by (3.102) and (3.103). 

2  and 3  are computed with the least squares method as follows: 

 1 tr

i i
i i T

i i i i





 

   
                                                          (3.105) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                    (3.106) 

where, 0

T

i i i i ix    , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   , 

   3 3
ˆ 0 0 0   ,    02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The 

control parameters are chosen as: 1 2.5K  , 2 10K  , 3 50K  , 2 100  , 3 250  , 

 2 0 55  ,  3 0 550  , 
2 3

0.1    , 2 3 0.1   , 2 3 0.1    and 3

2 3 10    .  
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The simulation results are shown in Figures 3.28-3.36. Figures 3.28-3.30 show the 

trajectories of the output variables. The trajectories of the surface errors are illustrated in 

Figures 3.31-3.33. Figures 3.34 and 3.35 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 3.36. 
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Fig. 3.28: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 3.29: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 3.30: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 3.31: Angular position surface error: S1. 
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Fig. 3.32: Angular velocity surface error: S2. 
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Fig. 3.33: Motor armature current surface error: 

S3. 
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Fig. 3.34: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 3.35: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 3.36: Control input: u. 

It can be clearly observed from all the results that all actual trajectories converge to their 

desired values, that the surface errors converge to zero, that the parameter estimates 

converge to its true values and that the proposed composite adaptive control approach has a 

reasonable control effort. The simulation results clearly show that effectiveness, higher 

accuracy and improved that the trajectory tracking performances can be achieved under the 

proposed composite adaptive control scheme compared to direct and indirect adaptive 

control designs. 

 

3.6 Conclusion 

This chapter presents a novel composite adaptive dynamic surface control scheme for a 

class of SISO uncertain nonlinear systems in lower triangular form. In order to overcome 

the problem of explosion of complexity inherent in the conventional adaptive backstepping 

control and the composite tuning functions based adaptive backstepping control designs, 

the proposed composite adaptive control scheme is designed. To demonstrate the 

effectiveness of the proposed controller, an implementation to an electromechanical system 

is studied. Based on the Lyapunov stability theory, the proposed composite adaptive 
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control scheme can guarantee that all signals in the closed-loop system are bounded. 

Theoretical proof improvements claimed above are proved and implemented by simulation 

results for an electromechanical system to show the effectiveness of the proposed 

composite adaptive control scheme in comparison with direct and indirect adaptive control 

schemes. For next work, we will focus on designing of composite robust adaptive dynamic 

surface control algorithm under unknown external disturbances in order to remove also the 

problem of explosion of complexity. 
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Chapter 4 

Composite robust adaptive dynamic surface 

control 

 

 

4.1 Introduction  

During the past few years, robust adaptive control approaches that combine robust control 

and adaptive control methods of uncertain nonlinear systems with external disturbances 

have received much attention [Xi19, Yao02, Yao97, Zha15b]. Compared with the works 

considering the adaptive dynamic surface control, robust adaptive dynamic surface control 

has been also introduced to eliminate the problem of explosion of complexity inherent in 

the conventional adaptive backstepping control and composite tuning functions based 

adaptive backstepping control approaches. Recently, there are a few works regarding to 

the robust adaptive dynamic surface control of uncertain nonlinear systems with additive 

external disturbances [Elm19, Gan15, He16, Hou11, Liu18b, Li12b, Li10a, Li10b, 

She17c, Zha18a, Zha18b, Zha17]. In addition, composite robust adaptive dynamic surface 

control of uncertain nonlinear system has been also proposed [Che10]. 

This chapter presents a novel composite robust adaptive dynamic surface control technique 

for a class of SISO uncertain nonlinear systems in lower triangular form under unknown 

external disturbances. The proposed composite robust adaptive control scheme is utilized 

to achieve higher tracking accuracy and better parameter convergence. The proposed 

composite robust adaptive control method is introduced to avoid the problem of explosion 

of complexity. The boundedness of all signals in the closed-loop system is proven based on 

the Lyapunov stability theory. To demonstrate the effectiveness and robustness of the 

proposed composite robust adaptive control scheme, simulation results for an 

electromechanical system are provided. In addition, direct and indirect robust adaptive 

control designs are also studied and simulated in comparison with the proposed composite 

robust adaptive control scheme. 
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The remaining of the chapter is organized as follows. The direct robust adaptive dynamic 

surface control is presented in Section 4.2. Section 4.3 is devoted to the indirect robust 

adaptive control. The composite robust adaptive dynamic surface control is proposed in 

Section 4.4. Section 4.5 is concerned with the simulation results. Conclusions are given in 

Section 4.6. 

 

4.2 Direct robust adaptive dynamic surface control  

In this section, we will consider the following SISO uncertain nonlinear system in lower 

triangular form with external disturbances: 

       

       

       

1 1 1 2 1 1 1 1 1 1

1 , 2, , 1

T

T

i i i i i i i i i i

T

n n n n n n

x g x x x x d t

x g x x x x d t i n

x g x u x x d t

  

  

  



   

     

   

            
(4.1) 

where,  1 2

T n

nx x x x   and u  are system states and the control input, 

respectively. ip

i 
 
are unknown constant parameter vectors,  1 2

T

i ix x x x  and 

nx x . The nonlinear functions 
T

i , i  and 0ig 
 

are known and continuous. The 

unknown functions  id t  , 1, ,i n , represent the external disturbances. The control 

objective of this approach is to construct a direct robust adaptive dynamic surface 

controller u  such that the system output 1x  tracks the desired trajectory 1dx  and all signals 

in the closed-loop system are bounded. Throughout this chapter, the following standard 

assumptions and lemma of the system (4.1) are exploited to facilitate the control design 

and analysis. 

Assumption 4.2.1: There is a positive constant 0g  where,   0i ig x g , 1, ,i n . 

Assumption 4.2.2: The desired trajectory 1dx
 
and both its first and second derivatives 1dx  

and 1dx  are known, continuous and bounded.  

Assumption 4.2.3: The external disturbances
 

 id t
 
are assumed to be continuous and 

bounded, i.e., 

 i i
d t 

                                                                                     
(4.2) 

where, 
i

  are an unknown positive constants. 

Lemma 4.2.1 [Pol96]: The following inequality holds for any 0   and for any  : 



Chapter 4                                            Composite robust adaptive dynamic surface control 

 83 

0 tanh


  


 
   

                                                                 
(4.3) 

where,   is a constant that satisfies  1
e




 
 , i.e., 0.2785  . 

Remark 4.2.1: In reality, the energy of external disturbances  id t  is always finite and 

hence it is reasonable to assume  id t  is bounded by an unknown constant. For 

assumption 4.2.3, the external disturbances are assumed as bounded and the boundary is 

unknown. 

Remark 4.2.2: The above assumptions and lemma are necessary and reasonable.  

The main procedures for designing the direct robust adaptive dynamic surface control 

method for system (4.1) with stability analysis using Lyapunov stability theory are given as 

follows. 

Step 1: Define the first surface error as 1 1 1dS x x  , then, the time derivative of 1S  is 

obtained as: 

 1 1 1 1 2 1 1 1 1 1

T

d dS x x g x d t x        
                                  

(4.4) 

We choose the virtual control 2x
 
to drive 1S

 
towards zero with, 

1
2 1 1 1 1 1 1 1 1 1

1 1

1 ˆ ˆ tanhT

d

S
x x K S g S

g
   



  
         

  
               

(4.5) 

where, 1K  is a positive design parameter, 1  is a small positive constant and 1

1

tanh
S



 
 
 

 is 

an hyperbolic tangent function. To avoid the problem of explosion of complexity in the 

conventional adaptive backstepping control and composite tuning functions based adaptive 

backstepping control designs, we introduce a new variable 2dx
 
and let 2x

 
pass through a 

first order filter, with time constant 2  to obtain 2dx
 
as: 

   2 2 2 2 2 2, 0 0d d dx x x x x   
                                                   

(4.6) 

1
2 2 1 1 1 1 1 1 1 1 1

2 1 1

1 1 ˆ ˆ tanhT

d d d

S
x x x K S g S

g
   

 

   
             

        

(4.7) 

Step  2, , 1i i n  : Define the 
thi  surface error as i i idS x x  , then, the time derivative 

of iS  is obtained as: 

 1

T

i i id i i i i i i idS x x g x d t x        
                                 

(4.8) 
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We choose the virtual controllers 1ix   
to drive iS

 
towards zero with, 

1

1 ˆ ˆ tanhT i
i i i i i id i i i i

i i

S
x x K S g S

g
   




  
         

  
               

(4.9) 

where, iK  is the positive design parameters, i  are a small positive constants and 

tanh i

i

S



 
 
 

 are an hyperbolic tangent functions. We introduce a new variable  1i d
x

  
and let 

1ix   
pass through a first order filter, with time constant 1i   to obtain  1i d

x
  

as: 

         1 1 11 1 1
, 0 0i i ii d i d i d

x x x x x     
  

                                 
(4.10) 

   1 1

1

1 1 ˆ ˆ tanhT i
i i i i id i i i ii d i d

i i i

S
x x x K S g S

g
   

  



   
             

        

(4.11) 

Step n : Define the 
thn  surface error as n n ndS x x  , then, the time derivative of nS  is 

obtained as: 

 T

n n nd n n n n n ndS x x g u d t x        
                             

(4.12) 

We choose the actual control input u
 
to drive nS

 
towards zero with, 

 

1 ˆ ˆ tanhT n
n n n n nd n n

n n

S
u x K S

g
   



  
        

  
                     

(4.13) 

where, nK  is a positive design parameter, n  is a small positive constant and tanh n

n

S



 
 
 

 is 

an hyperbolic tangent function. The direct adaptive laws for ˆ
i  

are given by [Yip98]: 

1 1 1 1
ˆ

ˆ , 2, , 1

ˆ

i i i i

n n n n

S

S i n

S

 

 

 

 

   

 
                                                            

(4.14) 

The direct adaptive laws for ˆ
i  

are given by: 

ˆ tanh i
i i i

i

S
S 



 
  

 

                                                                     

(4.15) 

where, 0i  , 0i  , 1, ,i n
 
are design parameters that can be adjusted for the rate of 

convergence of the parameter estimates and 0i 
 
are a small constants. 
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4.2.1 Stability analysis 

Define the boundary layer errors as [Yip98]: 

, 2, ,i id iy x x i n  
                                                               

(4.16) 

and the parameter estimation errors as: 

ˆ , 1,2, ,i i i i n    
                                                              

(4.17) 

and,  

ˆ , 1,2, ,i i i i n    
                                                              

(4.18) 

Then, the closed-loop dynamics can be expressed in terms of the surface errors iS , the 

boundary layer errors iy , and the parameter estimation errors i  and i . 

The dynamics of the surface errors are expressed, for 1i  , as: 

 

 

 

 

1 1 1 1 2 1 1 1 1 1

1 2 1 2 1 1 1 1 1

1 2 1 2 1 2 1 1 1 1 1

21
1 2 1 2 1 1 1 1 1 1 1 1

1

   

   

ˆ   tanh

T

d d

T

d d

T

d

T

S x x g x d t x

g S g x d t x

g S g y g x d t x

S
g S g y K S d t g S

  

  

  

  


      

     

      

 
       

 
       

(4.19) 

For 2, , 1i n  : 

 

   

 

 

1

1 1

1 1 1

2

1 1

   

   

ˆ   tanh

T

i i id i i i i i i id

T

i i i i i i i idi d

T

i i i i i i i i i i id

T i
i i i i i i i i i i i i

i

S x x g x d t x

g S g x d t x

g S g y g x d t x

S
g S g y K S d t g S

  

  

  

  




 

  

 

      

     

      

 
       

       

(4.20) 

For i n : 

 

  ˆ    tanh

T

n n nd n n n n n nd

T n
n n n n n n

n

S x x g u d t x

S
K S d t

  

  


      

 
      

                               

(4.21) 

The dynamics of the boundary layer errors iy
 
are expressed, for 2i  , as: 

   

1
2 2 2 2 1 1 1 1 1 1 1 1 1 2

2 1 1

2 2 2 2 2 2 2 2 2

2 2 2

1 1 ˆ ˆ tanh

1 1 1
   

T

d d d

d

S
y x x x x K S g S x

g

x x x y x x x y x

   
 

  

   
                

   

           

  

(4.22)

 

 

For 3, ,i n : 
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 

   

1
1 1 1 1 1 1 1 11

1 1

1 1 ˆ ˆ tanh

1 1 1
   

T i
i id i id i i i i i i i i ii d

i i i

id i i i i i i i i

i i i

S
y x x x x K S g S x

g

x x x y x x x y x

   
 

  


       

 

   
                

   

           

 (4.23) 

We consider the following Lyapunov function as: 

1 2 1 1

n n n n

is iy i i

i i i i

V V V V V 
   

      
                                             

(4.24) 

where, 

2 2 1 21 1 1 1
, , ,

2 2 2 2

T

is i iy i i i i i i i

i

V S V y V V   


    
                      

(4.25) 

Then, for 1, , 1i n  , by some simple computations, one has,  

 2 2 2

1 1
ˆ tanhT i

is i i i i i i i i i i i i i i i i i i i

i

S
V S S g S S g S y K S S S d t S g S  


 

 
        

 
     

(4.26) 

Applying of Young‟s inequalities (3.23) and (3.24), and, applying the following inequality:  

 i i i iS d t S 
                                                                            

(4.27) 

We obtain:  

2 2 2

1 1

1 1 ˆ tanh
2 2

T i
is i i i i i i i i i i i

i

S
V K S S y S S S   


 

 
        

 
     

(4.28)  

and, for i n :  

 2 ˆ tanhT n
ns n n n n n n n n n n n

n

S
V S S K S S S d t S  



 
       

           

(4.29) 

Applying of the following inequality:  

 n n n nS d t S 
                                                                          

(4.30) 

We obtain:  

 2 ˆ tanhT n
ns n n n n n n n n n

n

S
V K S S x S S   



 
      

                    

(4.31) 

one has, 1 1 1dx S x   and i i i ix S y x   , then from,   

1 1 1
2 1 1 1 1 1 1

1 1 1 1

1

1 1
1 1 1 1 1 1 1 1

1 1

1 ˆ ˆ ˆ tanh

tanh
ˆ   

T
T

d

S
x x x

g x x

S

g
K S x g S x S

S x

 
   






     
             

                       
     

      

 (4.32) 
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and, by induction, it is easy from: 

 

1 1
1 1 1

1 1 1 1

1 11 1

1

1

1 1 1 11

1

1 ˆ ˆ ˆ tanh

tanh
ˆ   

Ti i
Ti i i

i j i i i j i

j ji j j i

i

i

i i i i ii d

i

S
x x x

g x x

S

K S x g S
S

 
   






 
  

   

  





    



     
              

                  
  

      

 

1
1

1 1

1

i
i

j i

j j

g
x S

x








 
  
  


      

(4.33) 

one has, 

            

1 1 1
2 2 1 1 1 1 1 1

2 1 1 1 1

1

1 1
1 1 1 1 1 1 1 1

1 1

1 1 ˆ ˆ ˆ tanh

tanh
ˆ   

T
T

d

S
y y x x

g x x

S

g
K S x g S x S

S x

 
   

 




    
             

                       
     

         

(4.34) 

Since all terms in (4.34) can be dominated by some continuous functions, it follows that: 

 2 2 2 2 2 1 2 2 1 1 1 1 1

2 2

1 1 ˆ ˆ, , , , , , ,d d dy y y y B S S y x x x 
 

   

         

(4.35) 

where,  2 .B  is a continuous function. Thus, 

 2

2 2 2 2 2

2

1
.y y y B y


 

                                                             

(4.36) 

By using Young‟s inequality, it gives: 

 22
22 2

2 2 2

2

.1

2 2

By
y y y


   

                                                       

(4.37) 

as similarly for, 3, ,i n , we obtain: 

 22
2

.1

2 2

nn
n n n

n

By
y y y


   

                                                       

(4.38) 

where,    1 2 1 1 1 1
ˆ ˆ. , , , , ,n n n n n d d dB B S S y y x x x   is a continuous function. From 

(4.37) and (4.38), we can write: 

 22
2

.1
, 2, ,

2 2

ii
iy i

i

By
V y i n


    

                                          

(4.39) 

one has,   

1 1 ˆT T T

i i i i i i i i i iV S             

                                            

(4.40)           
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and, we have:   

1 1 ˆ tanh i
i i i i i i i

i i i

S
V S     

  

 
      

 

                                  

(4.41)           

Therefore, the derivative of the Lyapunov function V  becomes:  

 

1 2 1 1

1
2 2 2 2

1 1

1

22
2

2

1 1 ˆ  tanh
2 2

.1ˆ  tanh
2 2

n n n n

is iy i i

i i i i

n
T Ti

i i i i i i i i i i i n n n n n n n

i i

n
i Tn i

n n i i i i

i in i

V V V V V

S
K S S y S S S K S S S

BS y
S y S

 

      


  
 

   



 





   

  
            

  

  
         

   

   





 

1 1

1
2 2 2

1 1

2 1

2

2

2 2 1

2

1 1

tanh

1 1 ˆ  tanh
2 2

.1
  1 tanh

2

  

n n
i

i i

i i

n n
i

i i n n i i i i

i i i

n n n
i i

i i i

i i ii i

i

S
S

S
K S K S K S S S

B S
y S

K S K




 



 

 



 

  

  
    

  

     
                    

    
         

    

   

 

 

  

1
2 2 2

2 2 1

1 1 1
1 tanh

2 2

n n n
i

i n n i i i i i

i i ii i

S
S K S y S S  

 



  

       
                       

  

   

                                                                                                                                        (4.42) 

From lemma 4.2.1, it is easy to show that: 

tanh i
i i i i i i i i

i

S
S S     



 
   

                                              
(4.43) 

Substituting (4.43) into (4.42) yields to: 

1
2 2 2 2

1 1

2 2 1

1
2 2 2 2

1 1

2 2

1 1 1
1

2 2

1 1 1
  1

2 2

n n n

i i n n i i i

i i ii

n n

i i n n i

i i i

V K S K S K S y

K S K S K S y

  







  



 

    
             

     

    
            

     

  

 

      (4.44) 

where, 
2 2

n
i

i

M




 , iM
 

are the maximums of  .iB , 
1

n

i i

i

   


  , i i   and 

0.2785  . Therefore, based on (4.44), by choosing the design parameters such that, 

1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can conclude that, iS  and iy

 
are bounded.  

 

4.3 Indirect robust adaptive control  

In the following, the main procedures for designing the indirect robust adaptive control 

with stability analysis are introduced. 
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4.3.1 Identification based modified x-swapping filters  

In order to demonstrate the identification based modified x-swapping filters design 

procedures, we consider the SISO uncertain nonlinear system with external disturbances 

(4.1), which can be rewritten under the following nonlinear system in parametric x-model 

form as: 

     , T

i i i i i ix f x u x d t   
                                                 

(4.45) 

where, 

         

 

1 2 1

1 1

,i

n n n

n n

g x

f x u
g x

g u







 

 
 
 
 
 

                                                             

(4.46) 

We introduce the following modified x-swapping filters as: 

     0 0 0
ˆ, sign ,i i i i i i i ia x f x u        

                      
(4.47) 

  , ipT T T

i i i i i ia x     
                                                    

(4.48) 

where, 1, ,i n  , ˆ
i  

denote the estimates of i , i  is given in (4.50) and 0ia   is a 

negative definite scalar function for each x  continuous in t . We define the estimation 

errors as: 

0
ˆ ,T

i i i i i ix    
                                                         

(4.49) 

with, ˆ
i  the estimate of i  and let: 

0 ,T

i i i i i ix                                                              (4.50) 

We obtain: 

T

i i i i                                                                                (4.51) 

The dynamics of i  
are governed by: 

   0
ˆ signT

i i i i i i i i i ix a d t      
                             

(4.52) 

To guarantee the boundedness of i
 
when  i ix  grows unbounded, a particular choice of 

ia
 
is made: 

   0

T

i i i i i i i ia a x x P  
                                                        

(4.53) 

where, 0i 
 
and 0ia  is an arbitrary negative constant satisfying [Sou18]: 

02 1, 0i i iPa P  
                                                                       

(4.54) 
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4.3.2 Choice of adaptive laws 

The gradient adaptive laws are given by: 

 
ˆ , 0, 0

1 tr

i i
i i i iT

i i i

 



    

  
                                          

(4.55) 

The least squares adaptive laws are given by: 

 
ˆ

1 tr

i i
i i T

i i i i





 

   

                                                            

(4.56) 

where, 
i  is defined as: 

 
 , 0 0, 0

1 tr

T

i i
i i i iT

i i i i




 
      

   

                            

(4.57) 

4.3.3 Proof of stability  

Lemma 4.3.1: To establish the identifier properties, let 0, ft , the maximal interval of 

existence of solutions of (4.45), the modified x-swapping filters (4.47) and (4.48), and the 

gradient adaptive laws (4.55) or the least squares adaptive laws (4.56) and (4.57). Then for 

0i  , the following properties hold: 

,i i L  
                                                                                   

(4.58) 

2i L L 

                                                                                

(4.59) 

2
ˆ ˆ,i i L L                           

                                                    
(4.60) 

4.3.3.1 Gradient adaptive laws 

The Lyapunov function is chosen as follows: 

1 2 21 1

2 2

T

i i i i i i i

i

V P  


   
                                                     

(4.61) 

where, ˆ
i i i     and ˆ

i i i   
 
are the parameter estimation errors, and 0i   is an 

adaptive gain.  

Then, along the dynamic equations (4.52) and (4.55), the derivative of the Lyapunov 

function iV  becomes: 
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   

        

1

1 2

1 2

0

1

1 ˆ2

1ˆ ˆ   2 2 2 sign

1ˆ ˆ   2 2 2 sign

   1

T

i i i i i i i i i

i

T

i i i i i i i i i i i i i i i

i

T T

i i i i i i i i i i i i i i i i i i i i i

i

T

i i i

V P

Pa P d t P

P a x x P P d t P

   


    


      


 









   

     

      

            2 1ˆ ˆ2 2 2 signT

i i i i i i i i i i i i i i i i i

i

P x x P P d t P     


   

 

(4.62) 

Applying of inequality (3.55) and the following inequality: 

 i i i id t 
                                                                              

(4.63) 

We obtain:  

 1 2 1ˆ ˆ ˆ2 2 signT

i i i i i i i i i i i i i i

i

V P P     


      
                             

(4.64) 

We choose the adaptive laws for ˆ
i  

as: 

 ˆ 2 signi i i i iP 
                                                                     

(4.65)  

Substituting (4.65) into (4.64), we obtain: 

  

   

 
 

   

 

1 2

2

2
2

2

ˆ ˆ2 2 sign 2 sign

   2 2 sign
1 tr

   2 2
1 tr 1 tr

3
   

4 1 tr

T

i i i i i i i i i i i i i i i i

T

i i i
i i i i i i i iT

i i i

i i
i i i i i i i iT T

i i i i i i

i

T

i i i

V P P P

P P

P P

    


 



 
 



      


    

  

     
     

  
       

    

 

2
2

2

2

2

2

1

4 1 tr1 tr

3
   

4 1 tr 2 1 tr

3
   

4 1 tr

i i
i iT

T
i i i

i i i

i i
iT T

i i i i i i

i

T

i i i



 



 
    

 
    
      
 

 
  

         (4.66) 

The nonpositivity of iV  proves that, i L   and i L   (bounded). Due to 
T

i i i i   

and the boundedness of i , it follows that i L , which, in turn proves that ˆ
i L 

 
and 

ˆ
i L  .  

By integrating of inequality (4.66) over  0, , we obtain:  
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 
    

2

0

4
0

31 tr

i
i iT

i i i

d V V




    
  



                             

(4.67)
 

This means that,

 
 

2

1 tr

i

T

i i i

L



  

. Since i  is bounded, then 2i L . The 

boundedness of i
 
and the square integrability of i  

prove that 2
ˆ
i L   and 2

ˆ
i L  . 

4.3.3.2 Least squares adaptive laws 

From (4.56) and (4.57), we have the following identity: 

 
 

1 1 1 0
1 tr

T

i i
i i i i T

i i i i

d

dt 

   
      

   
                            

(4.68) 

We consider the following Lyapunov function as: 

 1 2 21

2

T

i i i i i i i

i

V t P  


   
                                                  

(4.69) 

Along the dynamic equations (4.52), (4.56) and (4.57), the derivative of the Lyapunov 

function iV  becomes: 

 

   

1 1

1 1 1 1 2

1 1 1 1

1 ˆ2

1ˆ ˆ ˆ   2 2 2 sign

ˆ   2

T T

i i i i i i i i i i i i

i

T T T

i i i i i i i i i i i i i i i i i i i i i i i

i

T T T

i i i i i i i i i i i

d
V P

dt

Pa P d t P

P

     


        


     

 

   

   

     

           

                 

        

2

0

1 1 1 1 2

1ˆ ˆ2 2 sign

1ˆ ˆ ˆ   1 2 2 2 sign

T

i i i i i i i i i i i i i i i i i i

i

T T T T

i i i i i i i i i i i i i i i i i i i i i i i i i i i i

i

a x x P P d t P

P x x P P d t P

    


           


   

   

             

(4.70) 

Applying of inequalities (3.55) and (4.63), we obtain: 

 1 1 1 1 2 1ˆ ˆ ˆ ˆ2 2 signT T T

i i i i i i i i i i i i i i i i i i i i i i

i

V P P         


               
      

(4.71) 

We choose the adaptive laws for ˆ
i  

described by (4.65) and substituting (4.71) into (4.70), 

we obtain: 
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   

 

1 1 1 1 2

1 1 1 1 2

ˆ ˆ ˆ2 2 sign 2 sign

ˆ ˆ   2 2 sign

   
1 tr

T T T

i i i i i i i i i i i i i i i i i i i i i i i i

T T T

i i i i i i i i i i i i i i i i i i i

T

i i i

T

i i i

V P P P

P P

        

       





   

   

            

           


 

       

   

   

 

2

2

2 2
2

2

2 2
1 tr 1 tr

   
1 tr 1 tr

   
1 tr 1 tr

   
1 tr

T T T

i i i i i i i
i i i i i i iT T

i i i i i i i i i

T T

i i i i i i
iT T

i i i i i i i i

i i
iT T

i i i i i i i i

i

T

i i i i

P P
  

 
 

 

 

 



  
    

        

 
   

       

   
       

 
   

    

(4.72)

  

 

Which, due to the positive definiteness of  1

i t , proves that, i L   and i L   

(bounded).  

By integrating of inequality (4.72) over  0, , we obtain: 

 
   

2

0

0
1 tr

i
i iT

i i i i

d V V




    
   



                                

(4.73)
 

This means that,

 
 

2

1 tr

i

T

i i i i

L



   

. Using the boundedness of i  and i , following 

the same line of argument as for the gradient adaptive laws, we prove that 2i L L  , 

2
ˆ
i L L    and 2

ˆ
i L L   . 

 

4.4 Composite robust adaptive dynamic surface control 

In this section, the composite robust adaptive dynamic surface control is proposed, which 

utilizes both surface error based parameter adaptive laws of the direct robust adaptive 

dynamic surface control described by (4.14) and (4.15) with the estimation error based 

parameter adaptive laws of the indirect robust adaptive control described by (4.55), (4.56) 

and (4.65). The control objective of this approach is to construct a composite robust 

adaptive dynamic surface controller u  such that the system output 1x  tracks the desired 

trajectory 1dx  and to guarantee the boundedness of all signals in the closed-loop system. In 

the following, the main procedures for designing the composite robust adaptive dynamic 

surface control technique for system (4.1) with stability analysis are described. 
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4.4.1 Composite projection based gradient adaptive laws 

Projection properties: The projection operators and the projection mapping for the 

adaptive laws ˆ
i  are similar as that in the chapter 3 described by (3.64) and (3.65). 

As similarly, we assume that i  is estimated by ˆ
i , where, ˆ

i  are the estimates of i . The 

estimation errors are given by: 

ˆ
i i i   

                                                                                  
(4.74) 

Therefore, the projection mapping for the adaptive laws ˆ
i  is similar as that in the chapter 

3 described by (3.65), i.e., 

 ˆProj
i

i i i i
     

                                                                 
(4.75) 

The composite projection based gradient adaptive laws are defined as: 

 
ˆ

ˆ Proj , 0, 0
1 tri

i i
i i i i i iT

i i i

S


  


  
       

    
                 

(4.76) 

and, 

 ˆ
ˆ Proj tanh 2 sign , 0, 0

i

i
i i i i i i i i

i

S
S P


   



   
        

   
       

(4.77) 

The dynamics of estimation errors are given by:  

 
ˆ

ˆ Proj , 0, 0
1 tri

i i
i i i i i i iT

i i i

S


   


  
         

    
       

(4.78) 

and, 

 ˆ
ˆ Proj tanh 2 sign , 0, 0

i

i
i i i i i i i i i

i

S
S P


    



   
           

         

(4.79) 

where, 0
ˆT

i i i i ix     and 0

T

i i i i ix    . 

Theorem 4.4.1: Consider the SISO uncertain nonlinear system in lower triangular form 

with external disturbances composed of the plant described by state space form (4.1). 

Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and 

(4.9), the actual control input (4.13) and the composite projection based gradient adaptive 

laws (4.76) and (4.77) guarantee that all signals in the closed-loop system are bounded. 

Proof: We consider the following Lyapunov function as: 

1 2 1

n n n

is iy i

i i i

V V V V
  

    
                                                           

(4.80) 
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and, 

2 2 1 2 21 1 1 1
, ,

2 2 2 2

T

is i iy i i i i i i i i

i

V S V y V P  


     
                   

(4.81) 

where, isV , nsV
 
and iyV  are expressed in (4.28), (4.31), (4.39), and,           

 

 

   

1 2

1 2

ˆ

ˆ

1ˆ ˆ ˆ2 2 sign

   Proj 2
1 tr

1ˆ   2 sign Proj tanh 2 sign

i

i

T

i i i i i i i i i i i i i i

i

T i i
i i i i i i i i iT

i i i

i
i i i i i i i i i i

i i

V P P

S P

S
P S P





     


  


  
 





      

  
        

    
  

  
    

 

 
2   tanh

1 tr

T
T i i i i
i i i i i iT

ii i i

S
S S


  



 
   

 

 
      

    
    

(4.82)           

Therefore, the derivative of the Lyapunov function V  becomes:  

  

 

1 2 1

1
2 2 2

1 1

1

22
2 2

2

1

1 1 ˆ  tanh
2 2

.1ˆ  tanh
2 2

  

n n n

is iy i

i i i

n
T i

i i i i i i i i i i i

i i

n
iT n i

n n n n n n n n n i

in i

Tn
T i
i i i

i

V V V V

S
K S S y S S S

BS y
K S S S S y

S

   


   
 


 

  



 







  

  
         

  

  
           

   

 

  






 

 

 

2

1 1 1

1
2 2 2

1 1

2 1

2 2
2

2 2 1
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1 tr

1 1 ˆ  tanh
2 2

.1 3
  1

2 4 1 tr

n n n
i i i

i i iT
i i i ii i i

n n
i

i i n n i i i i

i i i

n n
i i

i T
i i ii i i i

S
S

S
K S K S K S S S

B
y




 


 

  



 

  

  
          

     
                    

 
    

   

  

 

 

 

1

1
2 2 2 2

1 1

2 2

2

1 1

tanh

1 1 1
  1

2 2

3
  tanh

4 1 tr

n n
i

i i

i i

n n

i i n n i

i i i

n n
i i

i i i iT
i i ii i i

S
S

K S K S K S y

S
S S






  






 

 

  
    

  

    
           

     

  
           

 

 

 
    (4.83) 

Applying of inequality (4.43), we obtain: 
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 

 

21
2 2 2 2

1 1

2 2 1 1

21
2 2 2 2

1 1

2 2 1

1 1 1 3
1

2 2 4 1 tr

1 1 1 3
  1

2 2 4 1 tr

n n n n
i
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i
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V K S K S K S y

K S K S K S y

  
 


 



   



  

    
              

       

    
             

       

   

  

      (4.84) 

where, 
2 2

n
i

i

M




 , iM
 

are the maximums of  .iB , 
1

n

i i

i

   


  , i i   and 

0.2785  . Based on (4.84), by choosing the design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can conclude that, V , iS , iy , i , i  

and i  are bounded. 

Furthermore, all signals in the closed-loop system, i.e., ix , idx , idx , 2 1, , ix x  , u , ˆ
i  and 

ˆ
i  are also bounded. 

4.4.2 Composite projection based least squares adaptive laws 

The composite projection based least squares adaptive laws are defined as: 

 
ˆ

ˆ Proj
1 tri

i i
i i i i T

i i i i

S


 


  
    

     
  

                                 

(4.85) 

and, 

 ˆ
ˆ Proj tanh sign , 0, 0

i

i
i i i i i i i i

i

S
S P


   



   
        

   
         

(4.86) 

The dynamics of estimation errors are given by:  

 
ˆ

ˆ Proj
1 tri

i i
i i i i i T

i i i i

S


  


  
      

     
  

                     

(4.87) 

and, 

 ˆ
ˆ Proj tanh sign , 0, 0

i

i
i i i i i i i i i

i

S
S P


    



   
           

           

(4.88) 

where, i  are given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   

                          

(4.89) 

with, 0
ˆT

i i i i ix     and 0

T

i i i i ix    . 
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Theorem 4.4.2: Consider the SISO uncertain nonlinear system in lower triangular form 

with external disturbances composed of the plant described by state space form (4.1). 

Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and 

(4.9), the actual control input (4.13) and the composite projection based least squares 

adaptive laws (4.85) and (4.86) guarantee that all signals in the closed-loop system are 

bounded. 

Proof: We consider the following Lyapunov function as: 

1 2 1

1

2

n n n

is iy i

i i i

V V V V
  

    
                                                        

(4.90) 

and, 

 2 2 1 2 21 1 1
, ,

2 2

T

is i iy i i i i i i i i

i

V S V y V t P  


     
                   

(4.91) 

where, isV , nsV
 
and iyV  are expressed in (4.28), (4.31), (4.39), and,               

 
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
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 

   

   
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i

i i i iT

i i i i

i
i i i i i i i i i i

i i

T T T
T Ti i i i i i i
i i i i i iT T

i i i i i i i i
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S
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S S


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

  
 

  
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 



  
    
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  

   
       

   
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    
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     

2

2
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   2 2 tanh
1 tr 1 tr 1 tr
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i i i i
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T T T T
T i i i i i i i i i i i

i i i i i iT T T
ii i i i i i i i i i i i

S
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S
S S


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   
  

  

 
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    
        

             

   

(4.92) 

Therefore, the derivative of the Lyapunov function V  becomes:  
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          

   

 

  



 

 

 

1

2 2
2

2 2 1 1

21
2 2 2 2
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2 2
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i
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

   



  

  
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  

    
                 

    
             

        



   

 
1

1

  tanh

n

n
i

i i i i

i i

S
S S 



  
    

  





(4.93)
    

Applying of inequality (4.43), we obtain: 

 

 

21
2 2 2 2

1 1

2 2 1 1

21
2 2 2 2

1 1

2 2 1

1 1 1 1
1

2 2 2 1 tr

1 1 1 1
  1

2 2 2 1 tr

n n n n
i

i i n n i i iT
i i i ii i i i i

n n n
i

i i n n i T
i i ii i i i i

V K S K S K S y

K S K S K S y

  
 


 



   



  

    
              

        

    
             

        

   

  

      (4.94) 

where, 
2 2

n
i

i

M




 , iM
 

are the maximums of  .iB , 
1

n

i i

i

   


  , i i   and 

0.2785  . Based on (4.94), by choosing the design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK   and 1i  , we can concluded that, V , iS , iy , i , i  

and i  are bounded. 

Furthermore, all signals in the closed-loop system, i.e., ix , idx , idx , 2 1, , ix x  , u , ˆ
i  and 

ˆ
i  are also bounded. 
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4.4.3 Composite σ-modification based gradient and least squares adaptive laws 

The composite σ-modification based gradient and least squares adaptive laws are defined 

as: 

  ˆ ˆ , 0, 0
i ii i i i i i iS             

                                 
(4.95) 

and, 

 ˆ ˆtanh , 0, 0, 0
i i

i
i i i i i i i

i

S
S         



  
        

             
(4.96) 

where, 
i


 
and 

i


 
are small design constants to introduce the -modification for the 

closed-loop system and i  are computed with the gradient method as follows: 

 
, 0

1 tr

i i
i i iT

i i i





   

  
                                                    

(4.97) 

or with the least squares method as follows: 

 1 tr

i i
i i T

i i i i





 

   
                                                            

(4.98) 

where, i  are given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   
                          

(4.99) 

i  are computed as follows: 

 2 sign , 0i i i i i iP   

                                                        

(4.100) 

with,
 0

T

i i i i ix     and 0

T

i i i i ix    . 

Theorem 4.4.3: Consider the SISO uncertain nonlinear system in lower triangular form 

with external disturbances composed of the plant described by state space form (4.1). 

Suppose that assumptions 4.2.1-4.2.3 are satisfied. Then, the virtual controllers (4.5) and 

(4.9), the actual control input (4.13) and the composite σ-modification based gradient and 

least squares adaptive laws (4.95) et (4.96) guarantee that all signals in the closed-loop 

system are UUB and the surface errors converge to a sufficiently small neighborhood of 

the origin by appropriately adjusting the design parameters. 

Proof: We consider the following Lyapunov function as: 

1 2 1 1

n n n n

is iy i i

i i i i

V V V V V 
   

      
                                           

(4.101) 
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and, 

2 2 1 21 1 1 1
, , ,

2 2 2 2

T

is i iy i i i i i i i

i

V S V y V V   


    
                   

(4.102) 

where, isV , nsV
 
and iyV  are expressed in (4.28), (4.31), (4.39), and,               

  
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   

   
                                                  

(4.103) 

We assume that, i i   is bounded, thus, 
i i ie     is bounded, 

ii i e    and 

ˆ
i i i    , and, applying of inequality (3.87), the derivative of the Lyapunov function iV  

becomes: 
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(4.104) 

and, we have,   
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We assume that, i i   is bounded, thus, 
i i ie     is bounded, 

ii i e    and 

ˆ
i i i    , and, applying of the following inequality:  
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(4.106) 

The derivative of the Lyapunov function iV   becomes: 
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Therefore, the derivative of the Lyapunov function V  becomes:  
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(4.108) 

Applying of inequality (4.43), we obtain: 
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(4.109) 

Based on the above discussions, we can get the following inequality: 

V V                                                                                 (4.110) 

where, 
2 2

n
i

i

M




 , iM
 
are the maximums of  .iB , 

2 2

1 1 12 2

i i

i i

n n n

i i

i i i

e e
 

 

 
   

  

      , 

i i  , 0.2785   and 1

1 1 1
min 2 ,2 ,2 ,2 1 , ,

2 2 i ii n i i

i

K K K     


      
         

      

. 

Multiplying both sides in (4.110) by te  yields: 
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  t td
V t e e

dt

                                                                     (4.111) 

Moreover, by integrating (4.111) over  0, t , we obtain: 

   0 0 tV t V e  

 

 
    

 
                                                  (4.112) 

Since 0



 , it can be obtained that: 

   0 0 tV t V e  



                                                               (4.113) 

Therefore, based on (4.109), by choosing the design parameters such that, 1 0K  , 
1

2
iK  , 

1

2
nK  , 1i  , 0

i
   and 0

i
  , we can conclude that, iS , iy , i , i  

and i  
are UUB. 

Furthermore, all signals in the closed-loop system, i.e.,
 ix , idx , idx , 2 1, , ix x  , u , ˆ

i  and 

ˆ
i  are also UUB. In addition, from (4.101) and (4.113), it follows that: 

 2 0.5

1

2 0 2
n

t

i

i

S S V e   



   . Accordingly, when t  , it is easy to show that: 

2S   . This completes the proof. 

 

4.5 Simulation results 

This section presents the simulation results for composite robust adaptive dynamic surface 

control technique as applied to an electromechanical system mathematical model and as in 

previous chapters. The time-varying external disturbance is chosen as [Bec13, Li10a, 

Zha18a, Zha18b, Zha17]:  
   

2

4sinI t t
d t

D D


   to test the performance robustness of 

the proposed composite scheme. The control objective of this simulation is to design the 

composite robust adaptive dynamic surface controller u  for the electromechanical system 

in such a way that the link angular position q  tracks the desired trajectory 1dx  and to 

ensure the boundedness of all signals in the closed-loop system. The signals
 2dx  and 3dx

 

are generated by the filters: 

 2 2 1 1 1 1

2

1
d d dx x x K S S


    

                                              

(4.114) 
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  2
3 3 1 2 2 2 2 2 2 2 2

3 2 2

1 1 ˆ ˆsin tanhd d d
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x x x x x K S b S

b D
 

 

   
            

           

(4.115) 

The actual control input u  is chosen as: 

2 3 3 3 3 3

3

1 ˆ
d

H
u x x x K S

b M


 
    

 
                                           

(4.116) 

For the swapping based identifier, we use the following modified x-swapping filters: 

      
2

02 2 1 02 2 2 2 3 2 2
ˆ0.5 sin sign

B
x x x b x

D
         

       
(4.117) 

     
2

2 2 1 2 10.5 sin sinT Tx x     
                                 

(4.118)

 

  2

03 3 2 03 3 3 30.5
H

x x x b u
M

       
                                

(4.119) 

 2

3 3 2 3 20.5T Tx x     
                                                       

(4.120)

 
4.5.1 Composite projection based gradient adaptive laws 

The composite projection based gradient adaptive laws are defined as:  

 
 2

2 2
ˆ2 2 1 1

2 2 2

ˆ Proj sin
1 tr T

S x
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
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   

                  

(4.121) 
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3 3
ˆ3 3 3 2

3 3 3

ˆ Proj
1 tr T

S x
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


        
     

                               

(4.122) 

 
2

2
ˆ2 2 2 2 2

2

ˆ Proj tanh 2 sign
S

S


 


   
      

   
                          

(4.123) 

where, 0
ˆT

i i i i ix    , 2,3i   and 2 2 02 2 2

Tx    . The selected initial 

conditions are set as:    0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  ,  2
ˆ 0 0  , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The design parameters 

are selected as follows: 1 200K  , 2 5K  , 3 550K  , 2 40  , 3 550  , 2 4.5  , 

2 0.01  , 2 3 0.1   , 2 3 0.1    and 3

2 3 10    . The simulation results are shown 

in Figures 4.1-4.10. Figures 4.1-4.3 show the trajectories of the output variables. The 

trajectories of the surface errors are illustrated in Figures 4.4-4.6. Figures 4.7-4.9 show the 

trajectories of the parameter estimates. The trajectories of the control inputs are shown in 

Figure 4.10.  
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Fig. 4.1: Angular position: desired x1d (″-″) and 

actual x1 (″--″). 

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [sec]

A
n

g
u

la
r
 v

e
lo

c
it
y
 [

r
a

d
/s

e
c
]

 

 

x
2
 desired

x
2
 direct

x
2
 indirect

x
2
 composite

Fig. 4.2: Angular velocity: desired x2d (″-″) and 

actual x2 (″--″). 
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Fig. 4.3: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 4.4: Angular position surface error: S1. 
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Fig. 4.5: Angular velocity surface error: S2. 
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Fig. 4.6: Motor armature current surface error: 

S3. 
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Fig. 4.7: Parameter estimate: actual 2  (″-″) and 

estimate 2̂  (″--″). 
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Fig. 4.8: Parameter estimate: actual 3  (″-″) and 

estimate 3̂  (″--″). 
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Fig. 4.9: Parameter estimate: 2̂ . 
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Fig. 4.10: Control input: u. 

4.5.2 Composite projection based least squares adaptive laws 

The composite projection based least squares adaptive laws are defined as: 

 
 2

2 2
ˆ2 2 1 1

2 2 2 2

ˆ Proj sin
1 tr T

S x



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(4.124) 
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ˆ Proj
1 tr T

S x





        
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(4.125) 

and, 

 
2

2
ˆ2 2 2 2 2

2

ˆ Proj tanh sign
S

S


 


   
      
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(4.126) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                    (4.127) 

where, 0
ˆT

i i i i ix    , 2,3i   and 2 2 02 2 2

Tx    . The selected initial 

conditions are set as:    0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  ,  2
ˆ 0 0  , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The design parameters 

are selected as follows: 1 25K  , 2 5K  , 3 1050K  ,  2 0 50  ,  3 0 500  , 2 4.5  , 

2 0.01  , 2 3 0.1   , 2 3 0.1    and 3

2 3 10    . The simulation results are shown 

in Figures 4.11-4.20. Figures 4.11-4.13 show the trajectories of the output variables. The 

trajectories of the surface errors are illustrated in Figures 4.14-4.16. Figures 4.17-4.19 

show the trajectories of the parameter estimates. The trajectories of the control inputs are 

shown in Figure 4.20. 
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Fig. 4.11: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [sec]

A
n
g
u
la

r
 v

e
lo

c
it
y
 [

r
a
d
/s

e
c
]

 

 

x
2
 desired

x
2
 direct

x
2
 indirect

x
2
 composite

Fig. 4.12: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 4.13: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 

0 5 10 15 20 25
-5

0

5

10

15

20
x 10

-3

Time [sec]

A
n
g
u
la

r
 p

o
s
it
io

n
 s

u
r
fa

c
e
 e

r
r
o
r
 [

r
a
d
]

 

 

S
1
 direct

S
1
 indirect

S
1
 composite

Fig. 4.14: Angular position surface error: S1. 
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Fig. 4.15: Angular velocity surface error: S2. 
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Fig. 4.16: Motor armature current surface error: 

S3. 
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Fig. 4.17: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 4.18: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 4.19: Parameter estimate: 2̂ . 
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Fig. 4.20: Control input: u. 

4.5.3 Composite σ-modification based gradient adaptive laws 

The composite σ-modification based gradient adaptive laws are defined as: 

   
22 2 1 1 2 2 2

ˆ ˆsinS x       
                                         

(4.128) 

 
33 3 3 2 3 3 3

ˆ ˆS x       

                                                  

(4.129) 

and, 

 
2

2
2 2 2 2 2

2

ˆ ˆtanh
S

S     


  
     

                                         

(4.130) 

where, 2  and 3  are computed with the gradient method as follows: 

 1 tr

i i
i i T

i i i





 

  
                                                              

(4.131) 

and, 2  is computed as follows: 

 2 2 2 22 sign 

                                                                    

(4.132) 

with, 0

T

i i i i ix    , 2,3i   and 2 2 02 2 2

Tx    . The selected initial conditions 

are set as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   ,    3 3

ˆ 0 0 0   ,    2 2
ˆ 0 0 0   , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The design parameters 

are selected as follows: 1 2.5K  , 2 10K  , 3 50K  , 2 10  , 3 250  , 2 5  , 3 50  , 

2 3
0.1    , 

2
0.5  , 2 2 4.5   , 2 0.01  , 2 3 0.1   , 2 3 0.1    and 

3

2 3 10    . The simulation results are shown in Figures 4.21-4.30. Figures 4.21-4.23 

show the trajectories of the output variables. The trajectories of the surface errors are 

illustrated in Figures 4.24-4.26. Figures 4.27-4.29 show the trajectories of the parameter 

estimates. The trajectories of the control inputs are shown in Figure 4.30. 
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Fig. 4.21: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 4.22: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 4.23: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 4.24: Angular position surface error: S1. 
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Fig. 4.25: Angular velocity surface error: S2. 
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Fig. 4.26: Motor armature current surface error: 

S3. 
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Fig. 4.27: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 4.28: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 4.29: Parameter estimate: 2̂ . 
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Fig. 4.30: Control input: u. 

4.5.4 Composite σ-modification based least squares adaptive laws 

The composite σ-modification based least squares adaptive laws are the same as that in the 

composite σ-modification based gradient adaptive laws described by (4.128)-(4.130). 2  

and 3  are computed with the least squares method as follows: 

 1 tr

i i
i i T

i i i i





 

   
                                                          (4.133) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                    (4.134) 

and,
 2  is computed as follows: 

 2 2 2 2sign 

                                                                      

(4.135) 

where, 0

T

i i i i ix    , 2,3i   and 2 2 02 2 2

Tx    . The selected initial 

conditions are set as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   ,    3 3

ˆ 0 0 0   , 

   2 2
ˆ 0 0 0   ,    02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0d dx x  . The 

design parameters are selected as follows: 1 2.5K  , 2 10K  , 3 50K  , 2 10  , 

3 250  ,  2 0 550  ,  3 0 5500  , 
2 3

0.1    , 
2

0.5  , 2 2 4.5   , 

2 0.01  , 2 3 0.1   , 2 3 0.1    and 3

2 3 10    . The simulation results are shown 

in Figures 4.31-4.40. Figures 4.31-4.33 show the trajectories of the output variables. The 

trajectories of the surface errors are illustrated in Figures 4.34-4.36. Figures 4.37-4.39 

show the trajectories of the parameter estimates. The trajectories of the control inputs are 

shown in Figure 4.40. 
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Fig. 4.31: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 4.32: Angular velocity: desired x2d (″-″) 

and actual x2 (″--″). 
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Fig. 4.33: Motor armature current: desired x3d  

(″-″) and actual x3 (″--″). 
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Fig. 4.34: Angular position surface error: S1. 
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Fig. 4.35: Angular velocity surface error: S2. 
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Fig. 4.36: Motor armature current surface error: 

S3. 
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Fig. 4.37: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 

0 5 10 15 20 25
0

50

100

150

200

Time [sec]

P
a
r
a
m

e
te

r
 e

s
ti
m

a
te

 

 

33

3̂3 direct

3̂3 indirect

3̂3 composite

Fig. 4.38: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 4.39: Parameter estimate: 2̂ . 
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Fig. 4.40: Control input: u. 

It can be seen from the results that all system states converge to their desired values, the 

surface errors converge to zero and the parameter estimates converge to its true values. All 

the results further verify that the proposed composite robust adaptive control approach is 

robust against the unknown external disturbances. The simulation results verify that 

designing of the proposed composite robust adaptive control scheme compared to direct 

and indirect robust adaptive control approaches is effective and useful to improve the 

performance of control and parameter estimation.  

 

4.6 Conclusion 

In this chapter, a new composite robust adaptive dynamic surface control approach for a 

class of SISO uncertain nonlinear systems in lower triangular form under unknown 

external disturbances is proposed. The proposed composite robust adaptive control scheme 

is designed also to avoid the problem of explosion of complexity inherent in the 

conventional adaptive backstepping control and the composite tuning functions based 

adaptive backstepping control designs. The proposed composite robust adaptive control 

scheme is applied to an electromechanical system. The proposed composite robust adaptive 

control method can guarantee the boundedness of all signals in the closed loop system by 

using the Lyapunov stability theory. In order to verify the effectiveness and robustness of 

the proposed composite robust adaptive control method, a comparative study between the 

proposed composite robust adaptive control approach over the direct and indirect robust 

adaptive control designs is performed. Next work will focus on developing of composite 

immersion and invariance based adaptive command filtered backstepping control 

technique to avoid also the problem of explosion of complexity. 
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Chapter 5 

Composite immersion and invariance based 

adaptive command filtered backstepping 

control 
 

 

5.1 Introduction  

A drawback in the adaptive backstepping control and composite tuning functions based 

adaptive backstepping control designs is the problem of explosion of complexity caused 

by the repeated derivations of virtual control inputs. Command filtered backstepping 

control design has been proposed to solve this problem of explosion of complexity for the 

non-adaptive case [Far09, Far08].  In [Don12, Don10], the command filtered backstepping 

control method has been extended to adaptive control and has been extensively used to 

control a large class of uncertain nonlinear systems in lower triangular form [Pan18, 

Sou19, Yu18b, Yu15a, Zou20]. Composite adaptive command filtered backstepping 

control has been also introduced of uncertain nonlinear systems [Pan16a, Pan16b, 

Pan16c]. 

In recent years, immersion and invariance based adaptive control of nonlinear systems has 

been proposed by Astolfi and Ortega [Ast03]. It has been established for controlling of 

uncertain nonlinear systems in lower triangular form [Ast08a, Ast08b, Kar08, Kar07, 

Kar04, Sou21]. It has been also a great attention in the few recent years, which has been 

widely used to the control of uncertain nonlinear systems [Han19, Han18, Han17, Han16, 

Liu14, Lou18, Mon13, Son10a, Zha12b, Zha11]. The design procedure of immersion and 

invariance based adaptive control consists of a general two-step. While the first step deals 

with the design of an estimator, the second step consists in designing a control law. Over 

the past few years, many different types of nonlinear control methodologies have been 

proposed including adaptive command filtered backstepping control [Son10a, Son10b], 
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adaptive backstepping control [Mon13, Kar08, Kar07, Zha12b, Zha11], adaptive sliding 

mode control [Han15] and adaptive dynamic surface control [Fuj12, Sou21].  

In this chapter, a new composite immersion and invariance based adaptive command 

filtered backstepping control approach is proposed for a class of SISO uncertain nonlinear 

systems in lower triangular form. The proposed composite adaptive control method is 

designed in order to improve parameter adaptation. The proposed composite adaptive 

control technique is introduced to avoid the problem of explosion of complexity inherent in 

the conventional adaptive backstepping control and composite tuning functions based 

adaptive backstepping control schemes. Based on the Lyapunov stability theory, it is 

proved that all signals in the closed-loop system are bounded. Simulation results for an 

electromechanical system are provided to verify the effectiveness of the proposed 

composite adaptive control methodology compared to immersion and invariance based 

adaptive control and indirect adaptive control approaches. 

The rest of this chapter is arranged as follows. The immersion and invariance based 

adaptive command filtered backstepping control is presented in Section 5.2. Section 5.3 is 

dedicated to the indirect adaptive control is constructed. The composite immersion and 

invariance based adaptive command filtered backstepping control is proposed in Section 

5.4. The simulation results are demonstrated in Section 5.5. Finally, some conclusions are 

given in Section 5.6. 

 

5.2 Immersion and invariance based adaptive command filtered backstepping 

control 

In this section, we will consider the following SISO uncertain nonlinear system in lower 

triangular form: 

     

     

     

1 1 1 2 1 1 1 1

1 , 2, , 1

T

T

i i i i i i i i

T

n n n n

x g x x x x

x g x x x x i n

x g x u x x

  

  

  



  

    

  
                        

(5.1) 

where,  1 2

T n

nx x x x   and u  are system states and the control input, 

respectively. 
p

 
 
is unknown constant parameter vector,  1 2

T

i ix x x x  and 

nx x . The nonlinear functions 
T

i , i  and 0ig 
 
are known and continuous. The control 

objective of this approach is to construct an immersion and invariance based adaptive 

command filtered backstepping controller u  such that the system output 1x  tracks the 
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desired trajectory 1dx  and all signals in the closed-loop system are bounded. Throughout 

this chapter, to facilitate the control design and synthesis, the following standard 

assumptions of the system (5.1) are necessary. 

Assumption 5.2.1: There is a positive constant 0g  where,   0i ig x g , 1, ,i n . 

Assumption 5.2.2: The desired trajectory 1dx
 
and its first derivative 1dx  are known, 

smooth and bounded. 

Remark 5.2.1: For the composite tuning functions based adaptive backstepping control 

design, the information of  
1

i

dx  ( 0, ,i n ) are required, and the composite adaptive and 

robust adaptive dynamic surface control designs require 1dx  and both its first and second 

derivatives 1dx  and 1dx , whereas our proposed composite adaptive control approach only 

requires 1dx  and its first derivative 1dx , which is less stringent. Therefore, it is more 

appropriate for some practical applications.  

5.2.1 Estimator design 

Define the estimation errors as:  

         
 ˆ

i i i ix     
                                                                       

(5.2) 

where, ˆ
i  are the estimator states and : i p

i 
 
are function yet to be specified. Then, 

the dynamics of i  are given by [Kar08]:  

  

1

1

1

ˆ ˆ

ˆ ˆ   

i
i

i i i i k

k k

i
Ti

i k k k i i i k

k k

x
x

g x
x


   


     








   




     






                          

(5.3) 

where, 1nx u  . Selecting the adaptive laws ˆ
i  to cancel the known quantities in the 

dynamics of i , i.e., 

  1

1

ˆ ˆ
i

Ti
i k k k i i k

k k

g x
x


    




    


                                      

(5.4) 

Substituting (5.4) into (5.3), we obtain the error dynamics as: 

1

i
Ti

i k i

k kx


  



 
   

 
                                                                     

(5.5) 

We select the functions i  as [Kar08]: 
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0

ix

i i i id                                                                              
(5.6) 

where, 0i   are constants and i  are functions with 1 0  . Now, we consider the 

following assumption. 

Assumption 5.2.3: There exist functions i  satisfying the partial differential (matrix) 

inequality [Kar08]: 

0T

i iF F 
                                                                                   

(5.7) 

for, 2, , 1i n  , where,  

1

1 0

ixi
T Ti

i i i k i

k k i

F d
x x


   





  
      

 

                                              

(5.8) 

Remark 5.2.2: In the special case when
 

 i 
 
is a function of ix  only, the partial 

differential (matrix) inequality (5.7) admits the trivial solution 0i   for, 2, ,i n . The 

same simplification occurs when only one of the functions  i 
 
in (5.1) is nonzero. In 

general, the solvability of (5.7) relies strongly on the structure of the regressor  i   

[Kar08]. 

Lemma 5.2.1: Consider the system (5.1), where the functions i  are given by (5.6) and 

functions i  exist which satisfy (5.7). Then, the system (5.1) has a uniformly globally 

stable equilibrium at the origin, i L   and 
2

T

i i L   . In addition, i  and its time 

derivative i  
are bounded, then T

i i 
 
converges to zero. 

Proof: We consider the Lyapunov function W  as: 

1

1

1

2

n
T

i i i

i

W  



                                                                           (5.9) 

The derivative of the Lyapunov function W  becomes:  

 

 

 

1 1

1

1

1

1

2

1

1

2

   

   

   

n
T T

i i i i i i

i

n
T T T

i i i i i i i i

i

n
T T

i i i i

i

n
T

i i

i

W

F F

   

  

  

 

 











   

     

 

 









                                          

(5.10) 



Chapter 5               Composite immersion and invariance based adaptive command filtered 

backstepping control 

 

 117 

By integrating of inequality (5.10) over  0, , we obtain: 

     
2

10

0
n

T

i i

i

d W W  




    

                                          

(5.11)
 

As a result, W L , i L 
 
and 

2

T

i i L   . Furthermore, i  and
 i  are bounded. By using 

Barbala‟s lemma [Slo91], we get lim 0T

t i i   . By definition (5.2), this implies that an 

asymptotic estimate of each term T

i 
 
in (5.1) is given by  ˆT

i i i   . 

5.2.2 Controller design 

In this section, the controller design presented here includes command filters. Then, the 

controller design procedures for system (5.1) with stability analysis using Lyapunov 

stability theory are established as follows. 

Step 1: Define the first tracking error as 1 1 1de x x  , then, the time derivative of 1e  is 

obtained as:  

1 1 2 1 1 1 1 2 1 2 1 1 1

T T

d c de g x x g e g x x             
            

(5.12) 

We choose the virtual control 1  as:                                                           

  1 1 1 1 1 1 1 1

1

1 ˆT

dk e x
g

            
                                  

  (5.13) 

where, 1 0k   is a positive design constant. The corresponding Lyapunov function 

candidate 1V
 
is defined as: 

2

1 1

1

2
V e                                                                                      (5.14) 

The time derivative of 
1V
 
is given by:  

  

  
 

1 1 1 2 1 2 1 1 1 1 1 1

1 1 1 1 2 1 2 1 1 1

2

1 1 1 2 1 1 1 1 2 1 1 1

   

   

T

c d

T

c

T

c

V e g e g x g x

e k e g e g x

k e g x e g e e e

    

  

  

      

     

     
                    

(5.15) 

Step  2, , 1i i n  : The command filter output signal icx
 
is generated by the command 

filter [Don12, Don10]:  

     1 1, 0 0ic i ic i ic ix x x      
                                        

(5.16) 

where, 0i   is a positive design constants.  
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Define the 
thi  tracking error as i i ice x x  , then, the time derivative of ie  is obtained as:  

 1 1

T

i i i i i i ici c
e g e g x x   
                                                 (5.17)                                                                                                                                                        

We choose the virtual controllers i  as:                                                           

  1 1

1 ˆT

i i i i i i i ic i i

i

k e x g e
g

            

                         

(5.18)
   

where, 0ik   is a positive design constants. The corresponding Lyapunov function 

candidate iV
 
is defined as: 

2

1

1

2
i i iV V e                                                                              (5.19) 

The time derivative of 
iV
 
is given by:  

  
1 1 1

2

11
1 1 1

n n n
T

i i i i i i i i i i i ii c
i i i

V k e g x e g e e e  
  


  

                             (5.20)

 

Step n : The command filter output signal ncx
 
is generated by the command filter [Don12, 

Don10]:  

     1 1, 0 0nc n nc n nc nx x x      
                                     

(5.21) 

where, 0n   is a positive design constant. Define the 
thn  tracking error as n n nce x x  , 

then, the time derivative of ne  is obtained as:  

T

n n n n nce g u x                                                                  (5.22) 

We choose the actual control input u  as:                                                                       

  1 1

1 ˆT

n n n n n n nc n n

n

u k e x g e
g

           

                      

(5.23)
 

where, 0nk   is a positive design constant. The corresponding Lyapunov function 

candidate nV V
 
is defined as: 

2

1

1

2

n

i

i

V e


                                                                                   (5.24) 

The time derivative of V
 
is given by:  

  
1

2

1
1 1 1

n n n
T

i i i i i i i ii c
i i i

V k e g x e e  



  

      

                                  

(5.25)

 

Applying of the following Young‟s inequality: 
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 
2

21 1

2 2

T T

i i i i i ie e                                                                (5.26) 

Note that,  1 ii c
x  


  , therefore,  

 

 

1
2

1 1 1

1 2
2

1 1 1

1 22 2

0 0

1 10

1 1
   

2 2

1
   

2

n n n
T

i i i i i i

i i i

n n n
T

i i i i i

i i i

n n
T

i i i i

i i

V k e g e e

k e g e

g
k e k e e

k

  

  


 



  



  



 

   

 
     

 

 
     

 

  

  

                          

(5.27) 

where, 0 1

1
2 min

2
i n ik k 

 
  

 
,  1 1max i n ig g  

 
and 0  . Applying of Young‟s 

inequality, 
2 21

4
ab a b   où, ,a b , we obtain: 

   
2 2

22

0

10

1
1

4 2

n
T

i i

i

g
V k e n

k


 



     

                                  

(5.28) 

with,  
2 2

0

1
4

g
n

k


   , therefore, 

 
22

0

1

1

2

n
T

i i

i

V k e   


    

                                                  

(5.29) 

We choose the Lyapunov function cV  as follows: 

2 1

1 1

1 1

2 2

n n
T

c i i i i

i i

V e  

 

                                                            (5.30) 

The derivative of the Lyapunov function cV  becomes: 

 
22

0

1

1

2

n
T

c i i

i

V k e   


    

                                                  

(5.31)
 

cV

 

is negative for, 
0

1
2

g
e n

k


  . Therefore, we can conclude that, cV , e  and T

i i   are 

bounded. Furthermore, all signals in the closed-loop system, i.e., 1x , 1dx , 1dx , ix , icx , icx
 

( 2, ,i n ), i , u  and ˆ
i i 

 
( 1, ,i n ) are also bounded. 

5.3 Indirect adaptive control  

The detailed procedures for the indirect adaptive control design with stability analysis are 

given as follows. 
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5.3.1 Identification based x-swapping filters 

We consider the uncertain nonlinear system (5.1), which can be rewritten under the 

following nonlinear system in parametric x-model form as: 

   , T

i i i ix f x u x  
                                                              

(5.32) 

where, 

 

1 2 1

1 1

,i

n n n

n n

g x

f x u
g x

g u







 

 
 
 
 
 

                                                             

(5.33) 

We introduce the following x-swapping filters as: 

   0 0 0, ,i i i i i ia x f x u      
                                        

(5.34) 

  , ipT T T

i i i i i ia x     
                                                    

(5.35) 

where, 1, ,i n  and 0ia   is a negative definite scalar function for each x  continuous in 

t . We define the estimation errors as: 

 0
ˆ ,T

i i i i i i ix      
                                              

(5.36) 

with, ˆ
i i   the estimate of   and let: 

0 ,T

i i i i ix                                                               (5.37) 

Then, we obtain: 

T

i i i i                                                                               (5.38) 

The error signal i  
satisfies: 

0

T

i i i i i ix a   
                                                             

(5.39) 

To guarantee the boundedness of i
 
when  i ix  grows unbounded, a particular choice of 

ia
 
is made: 

   0

T

i i i i i i i ia a x x P  
                                                        

(5.40) 

where, 0i 
 
and 0ia  is an arbitrary negative constant satisfying [Sou18]: 

02 1, 0i i iPa P  
                                                                       

(5.41) 

5.3.2 Choice of modified adaptive laws 

The modified gradient adaptive laws are defined as: 
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 
ˆ , 0, 0

1 tr

i i
i i i i iT

i i i

  



     

  
                                   

(5.42) 

The modified least squares adaptive laws are defined as: 

 
ˆ

1 tr

i i
i i iT

i i i i

 



  

   

                                                      

(5.43) 

where, 
i  is given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   

                           

(5.44) 

with, 
1

i
i

i k

k k

x
x










 . 

5.3.3 Proof of stability  

Lemma 4.3.1: To establish the identifier properties, let 0, ft , the maximal interval of 

existence of solutions of (5.32), the x-swapping filters (5.34) and (5.35), and the modified 

gradient adaptive laws (5.42) or the modified least squares adaptive laws (5.43) and (5.44). 

Then for 0i  , the following properties hold: 

i L 

                                                                                        

(5.45) 

2i L L 

                                                                                

(5.46) 

2
ˆ
i L L  

                                                                                

(5.47) 

5.3.3.1 Modified gradient adaptive laws 

We consider the following Lyapunov function as: 

1 21

2

T

i i i i i iV P   
                                                                   

(5.48) 

Along of dynamic equations (5.39) and (5.42), the derivative of the Lyapunov function iV  

becomes: 

    

    

1

1 2

1 2

0

1 2

2

   2

   2

   1 2

T

i i i i i i i

T

i i i i i i

T T

i i i i i i i i i i i i

T T

i i i i i i i i i i i

V P

Pa

P a x x P

P x x P

 

 

   

    









  

  

   

    

                          
(5.49) 

Applying of inequality (3.55), we obtain: 
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   

   

      

    

1 2 2

2
2

2 2
2

2

2

ˆ

1 tr

   
1 tr 1 tr

3 1
   

4 41 tr 1 tr1 tr

3
   

4 1 tr 2 1 tr

T
T i i i

i i i i i i iT

i i i

i i
i iT T

i i i i i i

i i i
i iT T

T
i i i i i i

i i i

i i
iT T

i i i i i i

V


  


 

 

 

 
     

  

   
     

    
       

 
    
      
 

 

2

2
3

   
4 1 tr

i

T

i i i
 

  

(5.50) 

The nonpositivity of iV  proves that, i L   (bounded). Due to 
T

i i i i    and the 

boundedness of i , it follows that i L , which, in turn proves that ˆ
i L  .  

By integrating of inequality (5.50) over  0, , we obtain:  

 
    

2

0

4
0

31 tr

i
i iT

i i i

d V V




    
  



                             

(5.51)
 

This means that,

 
 

2

1 tr

i

T

i i i

L



  

. Since i  is bounded, then 2i L . The 

boundedness of i
 
and the square integrability of i  

prove that 2
ˆ
i L  . 

5.3.3.2 Modified least squares adaptive laws 

From (5.43) and (5.44), we have the following identity: 

 
 

1 1 1 0
1 tr

T

i i
i i i i T

i i i i

d

dt 

   
      

   
                            

(5.52) 

The Lyapunov function is chosen as follows: 

 1 2T

i i i i i iV t P   
                                                                

(5.53) 

Along of dynamic equations (5.39), (5.43) and (5.44), the derivative of the Lyapunov 

function iV  becomes: 
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 

    

1 1

1 1 1 1 2

1 1 1 1 2

0

1 1

2

   2

   2

   

T T

i i i i i i i i i i

T T T

i i i i i i i i i i i i i i

T T T T

i i i i i i i i i i i i i i i i i i i i

T T

i i i i i

d
V P

dt

Pa

P a x x P

   

     

       

  

 

   

   

 

    

        

         

         1 1 21 2T T

i i i i i i i i i i i i i iP x x P           
           

(5.54) 

Applying of inequality (3.55), we obtain: 

   

     

   

1 1 1 1 2

2

2

2

ˆ ˆ

   
1 tr 1 tr 1 tr

   
1 tr 1 tr

   

T T T

i i i i i i i i i i i i i i i

T T T T

i i i i i i i i i i
iT T T

i i i i i i i i i i i i

T T

i i i i i i
iT T

i i i i i i i i

i

V        

   

  

 

 

             

   
   

           

 
  

       

 
   

 

2
2

2

1 tr 1 tr

   
1 tr

i
iT T

i i i i i i i i

i

T

i i i i

 



 
       

 
   

              

(5.55) 

Which, due to the positive definiteness of  1

i t , proves that, i L   (bounded).  

By integrating of inequality (5.55) over  0, , we obtain: 

 
   

2

0

0
1 tr

i
i iT

i i i i

d V V




    
   



                                

(5.56)
 

This means that,

 
 

2

1 tr

i

T

i i i i

L



   

. Using the boundedness of i  and i , following 

the same line of argument as for the modified gradient adaptive laws, we prove that 

2i L L 
 
and 2

ˆ
i L L   . 

 

5.4 Composite immersion and invariance based adaptive command filtered 

backstepping control  

The proposed composite immersion and invariance based adaptive command filtered 

backstepping control in this section uses both parameter adaptive laws of the immersion 

and invariance based adaptive command filtered backstepping control described by (5.4) 

with the estimation error based parameter adaptive laws of the indirect adaptive control 
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described by (5.42) and (5.43). The control objective of this approach is to construct a 

composite immersion and invariance based adaptive command filtered backstepping 

controller u  such that the system output 1x  tracks the desired trajectory 1dx  and to ensure 

that all signals in the closed-loop system are bounded. The main procedures for designing 

the composite immersion and invariance based adaptive command filtered backstepping 

control scheme for system (5.1) with stability analysis are summarized as follows. 

5.4.1 Composite projection based gradient adaptive laws                                                                                                                                           

Projection properties: We assume that   is estimated by ˆ
i i i    , where, i  are the 

estimates of  . Terms ˆ
i  and i  are two parts of the estimates need to be judiciously 

designed. The estimation errors are given by: 

ˆ
i i i i         

                                                              
(5.57) 

The projection operator is defined as: 

 
 2 2if or  if and 0 ,

Proj
0 otherwise.

i

T T

i i ii i i ii i i ii

i

M M


         
  

     

(5.58) 

where, „ i ‟ represents any reasonable adaptation function. The projection algorithm 

guarantees that the parameter estimates i
 

of 
 

remain bounded and satisfy the 

inequality, 
i iM  .  

Moreover, the projection mapping used in (5.58) guarantees that: 

 Proj
i

T T

i i i i 


    
                                                              

(5.59) 

Therefore, the composite projection based gradient adaptive laws are defined as: 

  
 

ˆ 1

1

ˆ ˆProj
1 tri

i
Ti i i

i k k k i i k i T
k k i i i

g x
x


    






  
      
    
 


 

(5.60)
 

The dynamics of estimation errors are given by:  

  
 

  

ˆ 1

1

1

1 1

ˆProj
1 tr

ˆ   

i

i
Ti i i

i k k k i i k i T
k k i i i

i i
T Ti i

k k k i i k k i

k kk k

g x
x

g x
x x




    



 
     







 

  
      
    
 

  
      

  



 
  
(5.61) 

where,  0
ˆT

i i i i i ix      . 
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Theorem 5.4.1: Consider the SISO uncertain nonlinear system in lower triangular form 

composed of the plant described by (5.1). Suppose that assumptions 5.2.1 and 5.2.2 are 

satisfied. Then, the virtual controllers (5.13) and (5.18), the actual control input (5.23) and 

the composite projection based gradient adaptive laws (5.60) guarantee that all signals in 

the closed-loop system are bounded. 

Proof: We consider the following Lyapunov function as: 

2 1 2

1 1 1

1 1

2 2

n n n
T

i i i i i i

i i i

V e P 

  

                                                (5.62) 

The derivative of the Lyapunov function V  becomes: 

 

 
 

 
 

22 1

0

1 1 1

22 1 2

0

1 1 1 1 1

2
22

0

1

1
2

2

1
   

2 1 tr

1 3
   

2 4 1 tr

n n n
T T

i i i i i i i i

i i i

Tn n n i n
T T Ti i i i
i i i i k i iT

i i i k iki i i

n
T i
i i T

i i i i

V k e P

k e
x

k e

    

 
     



  




  



    



      

  
        

    

    
  

  

    


1

n

i



(5.63) 

V

 

is negative for, 
0

1
2

g
e n

k


  . Therefore, we can conclude that, V , e , T

i i  , i  and 

i  are bounded. Furthermore, all signals in the closed-loop system, i.e., 1x , 1dx , 1dx , ix , 

icx , icx
 
( 2, ,i n ), i , u  and ˆ

i i 
 
( 1, ,i n ) are also bounded. 

5.4.2 Composite σ-modification based gradient and least squares adaptive laws                                                                                                                                           

The composite σ-modification based gradient and least squares adaptive laws are defined 

as: 

    1

1

ˆ ˆ ˆ , 0, 0
i i

i
Ti

i k k k i i k i i i i i

k k

g x
x

 


         




          


    

(5.64) 

where, 
i


 
are small design constants to introduce the -modification for the closed-loop 

system and i  are computed with the gradient method as follows: 

 
, 0, 0

1 tr

i i
i i i i iT

i i i

  



     

  
  

                                  (5.65) 

or with the least squares method as follows: 

 1 tr

i i
i i iT

i i i i

 



  

   
                                                      (5.66) 
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where, i  are given by: 

 
 , 0 0, 0

1 tr

T

i i
i i i i iT

i i i i




 
      

   
                           (5.67) 

with,  0

T

i i i i i ix       and 
1

i
i

i k

k k

x
x










 . The dynamics of estimation errors are 

given by:  

 
1

ˆ
i

i
Ti

i k i i i i i

k kx



      



 
     

 
                                       

(5.68) 

Theorem 5.4.2: Consider SISO the uncertain nonlinear system in lower triangular form 

composed of the plant described by (5.1). Suppose that assumptions 5.2.1 and 5.2.2 are 

satisfied. Then, the virtual controllers (5.13) and (5.18), the actual control input (5.23) and 

the composite σ-modification based gradient and least squares adaptive laws (5.64) 

guarantee that all signals in the closed-loop system are UUB and the tracking errors 

converge to a sufficiently small neighborhood of the origin by appropriately adjusting the 

design parameters. 

Proof: We consider the following Lyapunov function as: 

2 1

1 1

1 1

2 2

n n
T

i i i i

i i

V e  

 

                                                             (5.69) 

The derivative of the Lyapunov function V  is given by: 

 

   

   

22 1

0

1 1

22 1

0

1 1 1 1
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0

1 1

1

2
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2

1 ˆ   
2

i

i

n n
T T

i i i i i

i i

n n i n
T T T Ti
i i i i k i i i i i

i i k ik

n n
T T

i i i i i i

i i

V k e

k e
x

k e





    


          

       



 



   

 

     

 
         

 

      

 

   

 

(5.70) 

We assume that, 
i   is bounded, thus, 

i ie     is bounded, 
ii e    and 

ˆ
i i i      . The derivative of the Lyapunov function V  becomes: 

   

 

22
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1 1
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1 1 1
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2

1
   

2
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i i i
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i i
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T T T

i i i i i
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V k e e

k e e

 

  

     

       

 

  

     

     

 

  
         

(5.71) 

Applying of inequality (3.87), we obtain:  
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 

 

22 2
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1 1 1
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0

1 1

1

2 2 2
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2 2

i i

i

n n n
T T

i i i i i

i i i

n n
T T

i i i i

i i

V k e e

k e

 





 
    


    

  

 

     
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  

 
           

(5.72) 

In addition, the above inequality can be rewritten as: 

V V                                                                                   (5.73) 

where,  0min 2 ,
iik     and 2

1 2

i

n

i

i

e





 



  . Multiplying both sides by te , (5.73) 

can be rewritten as: 

  t td
V t e e

dt

                                                                       (5.74) 

Integrating (5.74) over  0, t , we have: 

   0 0 tV t V e  

 

 
    

 
                                                    (5.75) 

Since 0



 , it can be obtained that: 

   0 0 tV t V e  



                                                                 (5.76) 

Therefore, we can conclude that, e , T

i i  , i  and i  are UUB. Furthermore, all signals in 

the closed-loop system, i.e.,
 1x , 1dx , 1dx , ix , icx , icx

 
( 2, ,i n ), i , u  and ˆ

i i 
 

( 1, ,i n ) are also UUB. In addition, from (5.69) and (5.76), it follows that: 

 2 0.5

1

2 0 2
n

t

i

i

e e V e   



   . Accordingly, when t  , it is easy to show that: 

2e   . This completes the proof. 

Remark 5.4.1: In this chapter, we consider a first order command filter to simplify the 

analysis. The purpose of this command filter is to generate icx  and its derivative icx  such 

that 1ic ix  
 
is small. A second order filter is discussed in [Far09, Far08].  

Remark 5.4.2: It should be pointed that the command filters may cause the filtering errors 

which will add the difficulty to get a small tracking error. To deal with this problem, the 

compensating signals are constructed in order to remove the effect of the known filtering 

errors   1 ii c
x 


  caused by the command filters.  
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The compensating signals i  are defined as [Don12, Don10]: 

 1 1 1 1 2 1 2 1ck g g x       

                                                   

(5.77) 

  1 1 1 1i i i i i i i i ii c
k g g g x       

     
 

                               

(5.78) 

1 1n n n n nk g     

                                                                   

(5.79) 

where, 0ik   are design parameters and  0 0i  . We can get i  is bounded. Define the 

compensated tracking errors as i i ie   . The closed-loop compensated tracking error 

dynamics are given by:  

1 1 1 1 2 1 1

Tk g       

                                                               

(5.80) 

1 1 1

T

i i i i i i i i ik g g           

                                               

(5.81) 

1 1

T

n n n n n n nk g        

                                                        

(5.82) 

The command filters are also designed as follows [Far09, Far08]: 

 
,1 ,2

,2 ,2 ,12

i n i

i n i n i i

  

     




   
                                                 

(5.83) 

with, 1, , 1i n  ,   ,11 ii c
x 




 

and   ,21 n ii c
x  


 . Assume that the initial conditions of 

each filter are denoted    ,1 0 0i i   and  ,2 0 0i  .  

Moreover, the parameters 0n 
 
and  0, 1 

 
may be found to satisfy ,1i i     for 

any 0  . 

 

5.5 Simulation results 

This section presents the simulation results for composite immersion and invariance based 

adaptive command filtered backstepping control scheme as applied to an electromechanical 

system mathematical model and as in previous chapters. The control objective of this 

simulation is to construct the composite immersion and invariance based adaptive 

command filtered backstepping controller u  for the electromechanical system in such a 

way that the link angular position q  tracks the desired trajectory 1dx  and all signals in the 

closed-loop system are bounded.  

The virtual controllers 1  and 2  
are defined as:   

1 1 1 1dk e x   
                                                                           

(5.84)
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  2 2 2 1 1 2 2 2 2

2

1 ˆsin c

B
k e e x x x

b D
  

 
       

                    
(5.85)

                          

The command filter output signal
 icx  for 2,3i  , is generated by the command filter: 

 1ic i ic ix x    
                                                                    

(5.86)
                         

 

where, 0i  . The actual control input u  is chosen as:                                                                      
 

 3 3 2 2 2 3 3 3 3

3

1 ˆ
c

H
u k e b e x x x

b M
 

 
       

                          
(5.87)

                         
 

For the swapping based identifier, the x-swapping filters are the same as that in the chapter 

2 described by (2.92)-(2.95).  

5.5.1 Composite projection based gradient adaptive laws  

The composite projection based gradient adaptive laws are defined as: 

  
 2

2 2 2 2
ˆ2 2 2 3 1 2 2 2 2

1 2 2 2 2

ˆ ˆProj sin
1 tr T

B
x b x x x

x x D

 
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  (5.88) 

and, 
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3 3 3
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1 tr T
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H
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x M
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 
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
 



    
       

   

  
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(5.89) 

where,
 

 2 2 2 1sinx x   , 3 3 2 3x x    and  0
ˆT

i i i i i ix      , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,  2
ˆ 0 0  ,  3

ˆ 0 0  , 

   02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0c cx x  . The control 

parameters are chosen as: 1 2 50k k  , 3 500k  , 2 3 0.65    , 2 3 0.1   , 

2 3 0.1    and 2 3 150   .  

The simulation results are shown in Figures 5.1-5.9. Figures 5.1-5.3 show the trajectories 

of the output variables. The trajectories of the tracking errors are illustrated in Figures 5.4-

5.6. Figures 5.7 and 5.8 show the trajectories of the parameter estimates. The trajectories of 

the control inputs are shown in Figure 5.9. 
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Fig. 5.1: Angular position: desired x1d (″-″) and 

actual x1 (″--″). 
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Fig. 5.2: Angular velocity: signal x2c (″-″) and 

actual x2 (″--″). 
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Fig. 5.3: Motor armature current: signal x3c (″-″) 

and actual x3 (″--″). 
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Fig. 5.4: Angular position tracking error: e1. 
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Fig. 5.5: Angular velocity tracking error: e2. 
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Fig. 5.6: Motor armature current tracking error: 

e3. 
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Fig. 5.7: Parameter estimate: actual 2  (″-″) and 

estimate 2̂  (″--″). 
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Fig. 5.8: Parameter estimate: actual 3  (″-″) and 

estimate 3̂  (″--″). 
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Fig. 5.9: Control input: u. 

5.5.2 Composite σ-modification based gradient adaptive laws                                                                                                                                         

The composite σ-modification based gradient adaptive laws are defined as: 

    
2

2 2
2 2 2 3 1 2 2 2 2 2 2 2

1 2

ˆ ˆ ˆsin
B

x b x x x
x x D



 
      

   
         

   

 

(5.90) 

and, 

  

   
3

3 3
3 2 2 3 1 3 3 2

1 2

3
3 2 3 3 3 3 3 3 3

3

ˆ ˆsin

ˆ ˆ   

B
x b x x x

x x D

H
b u x x

x M


 
  


     

   
      

   

  
       
  

              

(5.91) 

where, 2  and 3  are computed with the gradient method as follows: 

 1 tr

i i
i i iT

i i i

 



  

  
                                                         

(5.92) 

with,
 

 2 2 2 1sinx x   , 3 3 2 3x x    and  0

T

i i i i i ix      , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   , 

   3 3
ˆ 0 0 0   ,    02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0c cx x  . The 

control parameters are chosen as: 1 2 50k k  , 3 500k  , 2 3 0.65    , 2 3 0.5    , 

2 3
0.01    , 2 3 0.1   , 2 3 0.1    and 2 3 150   .  

The simulation results are shown in Figures 5.10-5.18. Figures 5.10-5.12 show the 

trajectories of the output variables. The trajectories of the tracking errors are illustrated in 

Figures 5.13-5.15. Figures 5.16 and 5.17 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 5.18. 
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Fig. 5.10: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 5.11: Angular velocity: signal x2c (″-″) and 

actual x2 (″--″). 

0 5 10 15 20 25
-10

-5

0

5

10

Time [sec]

M
o

to
r
 a

r
m

a
tu

r
e

 c
u

r
r
e

n
t 

[A
]

 

 

x
3c

x
3
 I&I

x
3
 indirect

x
3
 composite

Fig. 5.12: Motor armature current: signal x3c   

(″-″) and actual x3 (″--″). 

0 5 10 15 20 25
-2

-1

0

1

2

3

4
x 10

-3

Time [sec]

A
n

g
u

la
r
 p

o
s
it
io

n
 t

r
a

c
k
in

g
 e

r
r
o

r
 [

r
a

d
]

 

 

e
1
 I&I

e
1
 indirect

e
1
 composite

Fig. 5.13: Angular position tracking error: e1. 
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Fig. 5.14: Angular velocity tracking error: e2. 
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Fig. 5.15: Motor armature current tracking 

error: e3. 
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Fig. 5.16: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 

0 5 10 15 20 25
0

50

100

150

200

250

Time [sec]

P
a

r
a
m

e
te

r
 e

s
ti
m

a
te

 

 

33

3̂3 I&I

3̂3 indirect

3̂3 composite

Fig. 5.17: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 5.18: Control input: u. 

5.5.3 Composite σ-modification based least squares adaptive laws 

The composite σ-modification based least squares adaptive laws are the same as that in the 

composite σ-modification based gradient adaptive laws described by (5.90) and (5.91). 2  

and 3  are computed with the least squares method as follows: 

 1 tr

i i
i i iT

i i i i

 



  

   
                                                      (5.93) 

with, i  is given by: 

 1 tr

T

i i
i i iT

i i i i

 
   

   
                                                      (5.94) 

where,
 

 2 2 2 1sinx x   , 3 3 2 3x x    and  0

T

i i i i i ix      , 2,3i  .  

The initial conditions are selected as:    0 0 0 0
T

x  ,    2 2
ˆ 0 0 0   , 

   3 3
ˆ 0 0 0   ,    02 20 0 0T   ,    03 30 0 0T    and    2 30 0 0c cx x  . The 

control parameters are chosen as: 1 2 50k k  , 3 500k  , 2 3 0.65    ,  2 0 5  , 

 3 0 10  , 
2 3

0.01    , 2 3 0.1   , 2 3 0.1    and 2 3 150   .  

The simulation results are shown in Figures 5.19-5.27. Figures 5.19-5.21 show the 

trajectories of the output variables. The trajectories of the tracking errors are illustrated in 

Figures 5.22-5.24. Figures 5.25 and 5.26 show the trajectories of the parameter estimates. 

The trajectories of the control inputs are shown in Figure 5.27. 
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Fig. 5.19: Angular position: desired x1d (″-″) 

and actual x1 (″--″). 
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Fig. 5.20: Angular velocity: signal x2c (″-″) and 

actual x2 (″--″). 
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Fig. 5.21: Motor armature current: signal x3c   

(″-″) and actual x3 (″--″). 
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Fig. 5.22: Angular position tracking error: e1. 
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Fig. 5.23: Angular velocity tracking error: e2. 
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Fig. 5.24: Motor armature current tracking 

error: e3. 
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Fig. 5.25: Parameter estimate: actual 2  (″-″) 

and estimate 2̂  (″--″). 
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Fig. 5.26: Parameter estimate: actual 3  (″-″) 

and estimate 3̂  (″--″). 
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Fig. 5.27: Control input: u. 

From all the results, we can obviously see that all actual trajectories asymptotically 

converge to their reference signals, that the ultimate tracking errors converge to zero and 

that the convergence of the parameter estimates to their true values is guaranteed. As seen 

in simulation results, we can conclude then that the proposed composite adaptive control 

method is effective, gives a well control effort performance and has good trajectory 

tracking performances in comparison with direct and indirect robust adaptive control 

approaches. 

 

5.6 Conclusion  

This chapter presents a novel design of composite immersion and invariance based 

adaptive command filtered backstepping control for a class of SISO uncertain nonlinear 

systems in lower triangular form. By designing of the proposed composite adaptive control 

method, the problem of explosion of complexity is also eliminated. By using the Lyapunov 

stability theory, it has been proven that the proposed composite adaptive control technique 

guarantees the boundedness of all signals in the closed-loop system. The simulation results 

for an electromechanical system clearly demonstrate the effectiveness of the proposed 

composite adaptive control scheme compared to immersion and invariance based adaptive 

command filtered backstepping control and indirect adaptive control schemes. Some future 

work will be mainly considered to apply the composite immersion and invariance based 

adaptive command filtered backstepping control method by using the compensating signals 

in order to remove the effect of the filtering errors caused by the command filters. 
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General conclusion and future works 

The research work presented in this thesis deals with the study and development of new 

composite adaptive control schemes for a class of SISO uncertain nonlinear systems in 

lower triangular form. In the chapters, numerous types of composite adaptive control 

approaches for a class of SISO uncertain nonlinear systems in lower triangular form have 

been studied and developed as follows: composite tuning functions based adaptive 

backstepping control, composite adaptive dynamic surface control, composite robust 

adaptive dynamic surface control, and composite immersion and invariance based adaptive 

command filtered backstepping control methods. These composite adaptive control 

techniques require the synthesis of stable adaptive control laws with composite adaptive 

laws. The principle of these composite adaptive control schemes aims to combine the 

adaptive laws by considering sum, projection and σ-modification based adaptive laws. The 

main drawback in adaptive backstepping control approach is the overparametrization 

problem. Composite tuning functions based adaptive backstepping control has been 

utilized to avoid the overparametrization problem. The adaptive backstepping control and 

composite tuning functions based adaptive backstepping control designs suffer from the 

problem of explosion of complexity, which is caused by repeated differentiations of the 

virtual controls at each step. To overcome the problem of explosion of complexity, 

composite adaptive and robust adaptive dynamic surface control, and immersion and 

invariance based adaptive command filtered backstepping control techniques have been 

proposed. By utilizing the above composite adaptive control designs, a novel composite 

mechanisms of adaptive laws are developed. The boundedness of all signals in the closed-

loop system is guaranteed by using the Lyapunov stability analysis theory. Simulation 

results for an electromechanical system are provided to demonstrate the effectiveness of 

the proposed composite adaptive control schemes.  

The first chapter presents the Lyapunov stability concepts with some necessary definitions, 

Lyapunov‟s direct method, control Lyapunov function (CLF) and some useful lemmas. 

The backstepping control technique procedures with stability analysis have been discussed. 

The chapter closes with a state of the art on the adaptive control techniques. 
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In the second chapter, novel composite tuning functions based adaptive backstepping 

control for a class of SISO uncertain nonlinear systems in lower triangular form has been 

studied and developed to avoid the overparametrization problem inherent in the 

conventional adaptive backstepping control design. The principle of this composite 

adaptive control approach is to combine the direct and indirect adaptive laws by 

considering sum and σ-modification based adaptive laws. Stability analysis is performed 

based on the Lyapunov stability theory to guarantee the boundedness of all signals in the 

closed-loop system. In order to verify the effectiveness of the proposed composite adaptive 

control scheme compared to direct and indirect adaptive control schemes, simulation 

results have been tested for an electromechanical system. 

In the third chapter, a new composite adaptive dynamic surface control for a class of SISO 

uncertain nonlinear systems in lower triangular form has been presented and developed to 

overcome the problem of explosion of complexity inherent in the conventional adaptive 

backstepping control and the composite tuning functions based adaptive backstepping 

control designs. By introducing the Lyapunov stability theory, it is proved that all signals 

in the closed-loop system are bounded. Simulation results for an electromechanical system 

have been tested in order to validate the effectiveness of the proposed composite adaptive 

control scheme compared to direct and indirect adaptive control schemes. 

The fourth chapter presents a novel composite robust adaptive dynamic surface control for 

a class of SISO uncertain nonlinear systems in lower triangular form with unknown 

external disturbances. The proposed composite robust adaptive control method has been 

also introduced and developed to avoid the problem of explosion of complexity. By using 

the Lyapunov stability theory, the boundedness of all signals in the closed-loop system is 

guaranteed. In order to verify the effectiveness and robustness of the proposed composite 

robust adaptive control scheme in comparison with direct and indirect robust adaptive 

control schemes, simulation results have been tested for an electromechanical system. 

In the last chapter, a novel design of composite immersion and invariance based adaptive 

command filtered backstepping control for a class of SISO uncertain nonlinear systems in 

lower triangular form has been also investigated and developed to avoid the problem of 

explosion of complexity. Stability analysis is performed by using the Lyapunov stability 

theory to ensure the boundedness of all signals in the closed-loop system. In order to verify 

the effectiveness of the proposed composite adaptive control scheme compared to 

immersion and invariance based adaptive control and indirect adaptive control schemes. 
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As a result of this research work, this thesis opens new future research works on what 

follows: 

 Applying of the proposed composite adaptive control designs with different types 

of indirect adaptive control. 

 Developing of composite adaptive command filtered backstepping control 

technique by using the compensating signals to remove the effect of the filtering 

errors caused by the command filters. 

 Designing of composite immersion and invariance based adaptive dynamic surface 

control method in order to avoid the problem of explosion of complexity. 

 Study of the proposed composite adaptive control designs using Nussbaum 

functions, barrier Lyapunov functions (BLFs), barrier Lyapunov functions based 

Nussbaum functions and finite-time control technique. 

 Investigate the use of the proposed composite adaptive control approaches with 

sliding mode control methods. 

 Investigate an extension of the proposed composite adaptive control approaches for 

a class of fractional order and chaotic systems. 

 Designing of uncertain nonlinear systems with unmeasured states by using observer 

adaptive backstepping control with tuning functions and observer adaptive dynamic 

surface control schemes. 

 Design of the composite adaptive neural/fuzzy control based on command filtered 

backstepping control and dynamic surface control strategies.  

 Apply of the proposed composite adaptive control methods to other practical 

industrial applications. 

 Validation of the proposed composite adaptive control techniques via real-time 

implementations. 
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