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RESUME 

Cette thèse présente l’implémentation de nouvelles techniques de séparation 

aveugle de sources qui exploitent les signatures temps-fréquence des signaux 

source. L'approche proposée repose sur les distributions temps-fréquence (DTF). 

Deux fonctions de contraste à base de DTF sont présentées pour des sources 

non-stationnaires. Des algorithmes itératifs utilisant la technique du gradient 

relatif sont utilisés pour optimiser les fonctions proposées et effectuer la 

separaration de sources. 

Mots clés : séparation aveugle de sources, distributions temps-fréquence, 

signaux non-stationnaires, algorithmes itératifs, fonctions de contraste. 

 

ABSTRACT 

This thesis presents the implementation of new blind source separation 

techniques exploiting the time-frequency signatures of the source signals. The 

proposed approach relies on time-frequency distributions (TFD). Two TFD-

based contrast functions are presented for non-stationary sources. Iterative 

algorithms using the relative gradient technique are used to optimize the 

proposed functions and perform source separaration. 

Keywords: blind source separation, time-frequency distributions, non-

stationary signals, iterative algorithms, contrast functions.�
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PREFACE

Blind source separation (BSS) is becoming on of the most promising techniques in

many areas in signal processing: wireless communications, biomedical, and audio

applications [9]. The problem under consideration consist of recovering the original

waveforms of the user emitted signals without any prior knowledge on their linear

mixture, which can be either instantaneous or convolutive. The problem of blindly

separating sources has two inherently indeterminacies such that source signals can

only be identified up to a fixed permutation and some complex factors.

So far, the BSS problem has been solved using statiscal information available on

the source signals. The first solution was based on the cancellation of higher order

moments assuming non-Gaussian and iandependaent and identically distributed (IID)

signals. Other solutions proposed the minimzation of cost functions such as contrast

or likelihood functions. In the case of non-IID or even Gaussian sousces, second-order

statistics were introduce to solve the problem.

When the frequency content of the source signals is time-varying, one can exploit

the powerful tool of time-frequency distributions (TFD) to separate and recover the

incomings signals. In contrast to conventional BSS approaches, the TFD-based tech-

niques allow separation of correlated Gaussian sources with identical spectral shapes,
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provided that the sources have different time-frequency signatures.

In this report, we start by laying the fundamentals of blind source separation along

with some of the exisisting contrast functions inhereted from statistics. Then we

briefly review the time-frequency representation basics before tackling the TFD-based

contrasts, which lie at the heart of our work. We finish by a presentation of the

algorithms and some numerical simulations to check their satisfactory results.
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Chapter 1

Blind Source Separation

This opening chapter is launched with the mathematical statement of the problem

of separating mixed sources. Since the problem is reformulated into an estimation

problem, unavoidable are the objective optimization functions and we dedicate the

rest of this part to describing the exisisting specially tailored contrast functions.

1.1 Problem Statement

Assume that m signals strike an array of n > m sensors. The measured array output

is a weighted superposition of the signals, corrupted by additive noise

x(t) = As(t) + w(t) (1.1)

where s(t) = [s1(t), s2(t), . . . , sm(t)]T is the m × 1 complex source signal vector con-

taining the complex envelope of the emitter signals, w(t) = [w1(t), w2(t), . . . , wn(t)]T
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is the n × 1 complex noise vector and A = [a1, a2, . . . , am] is the n ×m full column

rank mixture matrix. The source signal vector s(t) is assumed to be a multivari-

ate non-stationary complex stochastic process. The components, si, are assumed to

have different signatures in the time-frequency domain. The additive noise w(t) is

modelled as a stationary zero-mean complex random process. The purpose of blind

source separation is to find a separating matrix B such that z(t) = Bx(t) is an es-

timate of the source signals. Before proceeding, note that a complete identification

of the separating matrix B, or equivalently the mixing matrix A, is impossible in a

blind context because the exchange of a fixed scalar between the source signal and

the corresponding column of A leaves the observations x unaffected. Also note that

the indexing of the signals is not very important. It follows that the best that can be

done is to determine B up to permutation of its columns and some scalar shifts. Put

otherwise, B is a separating matrix if and only if

z(t) = P Λ s(t) (1.2)

where P is a permutation matrix and Λ a non-singular diagonal matrix.

1.2 Contrast Functions

Since we are dealing with an estimation problem, we have to introduce the cost

functions which are to be minimized. A class of cost functions which has been invented

especially to solve the BSS problem are the contrast functions [4]. Any contrast

function G(z) has to verify the following requirements:
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• be a real-valued function of z,

• not change if the zi are permuted,

• be invariant to scale changes, and

• increase by linear combination, i.e. for any matrix C invertible, G(Cz) ≥ G(z).

1.2.1 Second Order Statistics Contrasts

The source signal vector s(t) is assumed to be a multivariate zero-mean stationary

complex stochastic process with second order moments:

S(τ) = E[s(t + τ)s∗(t)] = diag[ρ1(τ), . . . , ρn(τ)] (1.3)

where ρi(τ) = E[si(t + τ)s∗i (t)], E[.] denoting mathematical expectation and s∗ the

(conjugate) transpose of the (complex) vector s. We present two separation crite-

rion for the stationary, temporally correlated source signals [12]. Consider first the

noiseless case.

Theorem 1.1 Let τ1, . . . , τK be K ≥ 1 (non-zero) time lags and define the 1×(K+1)

vector ρi = [ρi(0), ρi(τ1), . . . , ρi(τK)], 0 < i ≤ n. Then BSS can be achieved using the

output correlation matrices at time lags 0, τ1, . . . , τK if and only if:

ρi and ρj are linearly independent for i 6= j (1.4)

Assume that(1.4) holds and let z(t) be an n× 1 vector given by z(t) = Bx(t). Define

rij(k) = E[zi(t + k)z∗j(t)]. Then, B is a separating matrix if and only if

rij(k) = 0 and rii(0) > 0 (1.5)
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for all 1 ≤ i 6= j ≤ n and k = 0, τ1, . . . , τK.

For the noisy case we have:

Theorem 1.2 Let τ1, . . . , τK be K ≥ 1 (non-zero) time lags and define the 1 × K

vector ρi = [ρi(τ1), . . . , ρi(τK)], 0 < i ≤ n. Then BSS can be achieved using the

output correlation matrices at time lags τ1, . . . , τK if and only if:

ρi and ρj are linearly independent for i 6= j (1.6)

Assume that (1.6) holds and let z(t) be an n× 1 vector given by z(t) = Bx(t). Define

rij(k) = E[zi(t + k)z∗j(t)]. Then, B is a separating matrix if and only if

rij(k) = 0 and

τK
∑

k=τ0

|rii(k)| > 0 (1.7)

for all 1 ≤ i 6= j ≤ n and k = τ1, . . . , τK.

We can see that in the trivial case where the sources show identical normalized spectra,

conditions (1.4) and (1.6) cannot be satisfied and thus separation will not be achieved.

Conversely, when the source signals have different normalized spectra, it is always

possible (with certainty) to find a set of time lags τ1, . . . , τK such that (1.4) and (1.6)

are met. This corresponds to the second-order identifiability condition found in [13].

It is worth to point out that this condition is necessary and sufficient for BSS using

the whole set of SOS statistics while condition (1.4) (resp. (1.6)) is a necessary and

sufficient condition for BSS using a finite set of correlation coefficients including (resp.

excluding) the zero-lag one.
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In the noiseless case, to solve the separating conditions (1.5), we consider the following

least squares error criterion:

G1(z) =

τK
∑

k=τ0

∑

1≤i<j≤m

[|rij(k) + rji(k)|2 + |rij(k)− rji(k)|2] +
m

∑

i=1

|rii(0)− 1|2 (1.8)

(with τ0 = 0). It is easy to see that G1(z) is a contrast function which minimization

is equivalent to solving (1.5). The separation criterion becomes

B is a separating matrix ≡ G1[z(t)] = 0 (1.9)

where z(t) = Bx(t).

For the noisy situation, the contrast function is defined with a similar separation

criterion

G2(z) =

τK
∑

k=τ0

∑

1≤i<j≤m

[|rij(k) + rji(k)|2 + |rij(k)− rji(k)|2] +
m

∑

i=1

|rii(k)− 1|2 (1.10)

1.2.2 Higher Order Statistics Contrasts

Denote z → g(z) a vector to vector non-linear odd function of z, where the i-th

coordinate of g(z) is wifi(|zi|
2)zi with fi is an odd differentiable real function and

wi, 1 ≤ i ≤ n are weights iteratively updated to improve the quality of the recovery

of the desired signal with respect to the interference signals. And define the following

mapping z→ G(z) from vector to matrix [14]:

G(z) = zz∗ − I + (g(z)z∗ − zg(z)∗) (1.11)

5



where I is the identity matrix. If z is a white random vector with IID components,

then the mean value of G(z) is the null matrix in the noiseless case:

B is a separating matrix ≡ G3(z) = E[G(z)] = 0 (1.12)

It is easy to note that G3(z) is also a contrast function which minimization leads to

statistically independent estimates.
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Chapter 2

Time-Frequency Concepts

In this chapter we review briefly the basics of time-frequency signal analysis. As

need is mother of invention, we present the reasons that pushed analysts who dealt

with non-conformist signals to resort to this new tool. Afterwards the most common

time-frequency distributions are introduced with a special interest given to the ones

that we will use in our experiments.

2.1 Need for a new tool

The two classical representations of a signal s are the time-domain representation s(t),

and the frequency-domain representation S(f), and they form a Fourier Transform

pair. Each representation in one variable is non localised with respect to the other

variable and, therefore, is not suitable for signals with time-varying spectral contents

(nonstationary signals), as widely found in real life applications, where an indication
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is needed as to how the frequency content is changing with time [8].

To overcome these inadequacies, a representation in the two dimensional (t, f) space

is much desired. Such a representation is intended to provide a distribution of sig-

nal energy versus time and frequency simultaneously and is called a time-frequency

distribution (TFD). Another significant reason for the use of a time-frequency repre-

sentation is that it reveals whether the signal is monocomponent or multicomponent,

a fact that cannot be revealed by the two conventional representation specially when

individual components are also time varying. Using the TFD, the start and stop time

instants of the individual components are clearly identifiable.

2.2 Linear FM signals

We recall now some important definitions [10]. Let s(t) be a real FM signal of the

general form:

s(t) = A(t)cos[θ(t)] (2.1)

with the assumption that the spectra of the amplitude A(t) and phase θ(t) are sepa-

rated (nonoverlapping) in frequency, i.e. the signal approaches a narrowband condi-

tion.

Let H[.] denote the Hilbert Transform of the signal, such that

H[s(t)] = s(t) ?
1

πt

H[s(t)] =
1

π
P

{
∫ ∞

−∞

s(τ)

t− τ
dτ

}

8



where P{.} is the Cauchy principle value of the improper integral given in this case

by

lim
δ→0

[
∫ t−δ

−∞

s(τ)

t− τ
dτ +

∫ ∞

t+δ

s(τ)

t− τ
dτ

]

(2.2)

A signal z(t) defined as

z(t) , s(t) + jH[s(t)] ≈ A(t)ejθ(t) (2.3)

is called the analytic signal of the real signal s(t). The approximation is valid for

the above narrowband condition. The definition of the analytic signal is necessary to

introduce important characteristic of a signal s(t).

Let z(t) be an analytic signal given in the form

z(t) = Az(t)e
jθz(t) (2.4)

The instantaneous frequency of signal z(t) is then defined as

fi(t) ,
1

2π

dθz(t)

dt
(2.5)

The IF of a signal indicates the dominant frequency of the signal at a given time. In

this sense, a signal is said to be nonstationary if its IF varies with time. Note that this

definition applicable to monocomponent signals only, such as the signal illustrated in

Fig. 2.1. When more than one ”ridge” appears in the signal TF representation, the

signal is said to be multicomponent, e.g. the signal in Fig. 2.2.

The nonstationarity can also be expressed in probabilistic terms. Let z(t) be a com-

plex signal of which the autocorrelation function is defined as :

R(t, τ) , E
[

z(t +
τ

2
)z∗(t−

τ

2
)
]

(2.6)
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Note the use of symmetric points t1 = t + τ/2 and t2 = t − τ/2 in the previous

definition. If R(t, τ) only depends on the lag τ , which is the difference between

t1 and t2, the signal s(t) is said to be wide-sense stationary (WSS) where we have

considered only the second-order moment. On the other hand, when this condition is

not satisfied, s(t) is said to be nonstationary and the autocorrelation function R(t, τ)

depends on both the time t and the lag τ .

Consider a typical FM transmission used in communication systems where a narrow-

band FM signal is commonly defined as:

s(t) , A(t) cos

[

2πfct + 2π

∫ t

−∞
m(τ)dτ

]

(2.7)

When m(t) is a linear function of t, i.e. m(t) = αt, the signal s(t) is called a linearly

frequency-modulated (LFM) signal. In addition, if A(t) is a rectangular function the

signal is called a chirp. A chirp signal, with duration T and bandwidth B, can be

expressed as:

schirp(t) = rectT (t) cos
[

2π
(

fct +
α

2
t2

)]

where

rectT (t) =















1 for 0 ≤ t ≤ T

0 elsewhere

The analytic signal associated with schirp(t) is then given by

zLFM(t) = rectT (t)ejθ(t) = rectT (t) e
j2π(fct +

α

2
t2)

(2.8)

and its IF is

f chirp
i (t) =

1

2π

dθ(t)

dt
= fc + αt (2.9)
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Found in many applications, the chirp signal defined in 2.8 is the basic signal used

in radar transmission, and can be easily generated. It is also used in military com-

munication systems where the chirp is sent out as a hostile signal to destroy enemy

transmissions. In this thesis, we will refer to the chirp signal as an LFM signal (i.e.

the rectangular amplitude is implicit).

Based on the above definitions of analytic signals and instantaneous frequency for

nonstationary signals, we are now ready and eager to see how they evolve in a time-

frequency setting.

2.3 Time-Frequency Distributions

To study the spectral properties of a signal s at time t, an intuitive approach is to,

first, take a slice of the signal by applying a moving window centered at time t and

then calculate the spectrum magnitude of the windowed signal. Consider a signal

s(τ) and a real even window h(τ), whose Fourier transform (FT) are S(f) and H(f),

respectively. To obtain a localized spectrum of s(τ) at time τ = t, multiply the signal

by the window h(τ) centred at time τ = t and then take the FT with respect to τ ,

obtaining

Sh(t, f) = FT τ→f{s(τ)h(τ − t)} (2.10)

Sh(t, f) is called the short-time Fourier transform (STFT). The squared magnitude

of the STFT, denoted by ρSPEC(t, f) is called the spectrogram (SPEC). It can be

12



mathematically expressed as

ρSPEC(t, f) = |S(t, f)|2 =

∣

∣

∣

∣

∫ +∞

−∞
s(τ)h(τ − t)e−j2πfτdτ

∣

∣

∣

∣

2

(2.11)

Another good example is the Wigner-Ville distribution which was derived as the

Fourier transform of the symmetric autocorrelation of an analytical signal z(t). Its

time-frequency distribution (TFD) is

Wz(t, f) =

∫ +∞

−∞
z(t + τ/2)z∗(t− τ/2)e−j2πfτdτ (2.12)

A knowledge of the time-lag signal kernel from τ = −∞ to τ = +∞, raises some

problems in practice. That is why we introduce a regular window h(τ), leading to a

new TFD called the pseudo Wigner-Ville distribution (PWVD):

PWz(t, f) =

∫ +∞

−∞
h(τ)z(t + τ/2)z∗(t− τ/2)e−j2πfτdτ (2.13)

2.4 Cohen’s Class

In a TFD, covariance in both variables is a very important property. This is com-

monly known as shift-covariance and it guarantees that when the signal is delayed

in time and modulated frequency, the TFD is translated by the same quantities in

the time-frequency plane. It has been shown that the class of energy time-frequency

distributions verifying these foregoing properties possesses the following general ex-

pression:

ρz(t, f) =

∫ ∫ ∫ +∞

−∞
ej2πν(t−u)g(ν, τ)z(u + τ/2)z∗(u− τ/2)e−j2πfτdνdudτ (2.14)
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where g(ν, τ) is a two-dimensional function in the Doppler-lag domain (ν, τ), and is

called the TFD Doppler-lag filter kernel. This class of distributions is known as the

Cohen’s class. The filter kernel determines the TFD and its properties. We can obtain

a TFD with certain desired properties by properly constraining the g(ν, τ) function.

Eq. (2.14) can be simplified as

ρz(t, f) = Wz(t, f) ?t ?fγ(t, f) (2.15)

The notation ?t?f in (2.15) represents a convolution in both t and f directions, and

γ(t, f) is the time-frequency kernel obtained through two-dimensional FT of g(ν, τ):

one FT operation from τ to fand one FT −1 operation from ν to t as:

γ(t, f) =

∫ ∫ +∞

−∞
g(ν, τ)e−j2πfτe+j2πtνdτdν (2.16)

This is the definition (2.15) of the quadratic class of TFDs in terms of the WVD and

the time-frequency kernel. For this raison we regard the WVD as a basic or prototype

quadratic TFD, and all other quadratic TFDs as filtered version thereof.

We can also be express (2.14) in the time-lag domain as:

ρz(t, f) =

∫ ∫ +∞

−∞
φ(t− u, τ)z(u + τ/2)z∗(u− τ/2)e−j2πfτdudτ (2.17)

where φ(t, τ) = FT −1
t←ν{g(ν, τ)} is the time-lag filter kernel. The problem of cross-

terms introduced by WVD when applying it to a multicomponent signal can be dealt

with by selecting a suitable kernel g(ν, τ) which minimises the cross-terms effectively.

The corresponding TFD to such filter kernels are known as Reduced Interference

Distributions (RID). The RID may be applied in situations where there are simul-

taneously a number of signals of interest which need to be separated. Examples of
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time-frequency RID that will be used in the experiments are the Choi-Williams dis-

tribution (CWD) and the Born-Jordan distribution (BJD). Table 2.1 summarizes the

aforementioned TFDs and their corresponding Doppler-lag kernels.

Name Doppler-lag Kernel: g(ν, τ) TFD: ρz(t, f)

WVD 1
∫ +∞
−∞ z(t + τ/2)z∗(t− τ/2)e−j2πfτdτ

SPEC
∫ +∞
−∞ h(u + τ

2 )h∗(u− τ
2 )e−j2πνudu |

∫ +∞
−∞ h(τ − t)z(τ)e−j2πfτdτ |2

CWD e−ν2τ2/σ
∫ ∫

√
πσ
|τ | e

−π2σ(t−u)2

τ2 z(t + τ/2)z∗(t− τ/2)e−j2πfτdudτ

BJD sin(2παντ)
2παντ

∫ +∞
−∞

∫ t+|ατ |
t−|ατ |

1
2ατ z(t + τ/2)z∗(t− τ/2)e−j2πfτdudτ

Table 2.1 : Some common TFD and their filter kernels

2.4.1 Discrete Form

The discrete-time form of the Cohen’s class TFDs, for a signal s(t), is given by [8]

Dss(t, f) =
∞

∑

l=−∞

∞
∑

q=−∞
φ(q, l)s(t + q + l)s∗(t + q − l)e−j4πfl (2.18)

where t and f represent the time index and the frequency index, respectively. The

kernel φ(q, l) characterizes the distribution and is a function of both the time and lag

variables. The cross-TFD of two signals si(t) and sj(t) is defined by

Dsisj
(t, f) =

∞
∑

l=−∞

∞
∑

q=−∞
φ(q, l) si(t + q + l) s∗j(t + q − l) e−j4πfl. (2.19)
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Chapter 3

TFD-Based Contrast Functions

After our discussion statistics based (second order and higher order) contrast func-

tion in the first chapter, we will introduce the contrasts that are inspired form the

time frequency domain for the two classes of sources: uncorrelated and, the more

interesting one, correlated.

3.1 Uncorrelated Sources

We present here a separation criterion [15] in the case of uncorrelated non-stationary

source signals. We have the following result:

Theorem 3.1 Let (t1, f1), · · · (tK , fK) be K time frequency points corresponding to

signal auto-terms (i.e. energy concentration) and define 1×K vectors

di = [Dsisi
(t1, f1), · · · , Dsisi

(tK , fK)], i = 1, . . . ,m.
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Then BSS can be achieved if and only if

di and dj are linearly independent for i 6= j (3.1)

Assume that (3.1) holds and let z(t) be an m× 1 vector given by z(t) = Bx(t). Then

B is a separating matrix if and only if

Dzizj
(tk, fk) = 0 (3.2)

for all 1 ≤ i 6= j ≤ m and k = 1, · · · , K, and

E[zi(t)zj(t)
∗] = δij (3.3)

where δij denotes the Kronecker operator.

Proof: Let us write z(t) = Cs(t) where C = BA. Equations (3.2) and (3.3) are

equivalent to C unitary. Herein, thanks to the inherent indeterminacy of the blind

source separation, we have assumed without any loss of generality that E[s(t)s(t)∗] =

I where I is the identity matrix. Also we have CDss(tk, fk)C
H diagonal for k =

1, . . . , K. We can then conclude that C = PΛ where P is a permutation matrix

and Λ a unitary diagonal matrix by using Theorem 2 of [6]. Let us now show that

condition (3.1) is necessary to achieve blind source separation when using data time

frequency distribution matrices Dxx(tk, fk), k = 1, . . . , K. If two sources, say s1 and

s2, have same time frequency signatures, i.e., Ds1s1(tk, fk) = Ds2s2(tk, fk) for k =

1, . . . , K , then any ‘virtual’ signal of the form x̃(t) = Ãs̃(t) + w(t) where Ã =

[ã1, ã2, a3, . . . , am] and

17



s̃(t) = [s̃1(t), s̃2(t), s3(t), . . . , sm(t)]T with

[ã1, ã2] = [a1, a2]









cos(θ) sin(θ)

− sin(θ) cos(θ)









(3.4)

and








s̃1

s̃2









=









cos(θ) − sin(θ)

sin(θ) cos(θ)

















s̃1

s̃2









(3.5)

verifies Dx̃x̃(tk, fk) = Dxx(tk, fk) for k = 1, . . . , K.

From Theorem 3.1 result, we can define a contrast function as follows:

G4(z) =
K

∑

k=1

∑

1≤i6=j≤m

|Dzizj
(tk, fk)|

2 + |E[ziz
∗
j ]|

2 +
m

∑

i=1

|E[ziz
∗
i ]− 1|2 (3.6)

and a separating matrix B can be computed by

B = Argmin [G4(Bx)]

From condition (3.3), it appears that the sources should be uncorrelated.

3.2 Correlated Sources

For non-stationary correlated source signals, we have the following result:

Theorem 3.2 Let again (t1, f1), · · · (tK , fK) be K time frequency points correspond-

ing to signal auto-terms and define 1×K vectors

di = [Dsisi
(t1, f1), . . . , Dsisi

(tK , fK)], i = 1, . . . ,m.

Then Blind source separation can be achieved if and only if

di and dj are linearly independent for i 6= j (3.7)
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Assume that (3.7) holds and let z(t) be an m× 1 vector given by z(t) = Bx(t). Then

B is a separating matrix if and only if

Dzizj
(tk, fk) = 0 (3.8)

for all 1 ≤ i 6= j ≤ m and k = 1, . . . , K, and

K
∑

k=1

Dzizi
(tk, fk) = 1 (3.9)

Proof: Let us write z(t) = Cs(t) where C = BA. Then, equations (3.8) and (3.9)

are equivalent to

CDss(tk, fk)C
H diagonal for k = 1, . . . , K

and

C

{

K
∑

k=1

Dss(tk, fk)

}

CH = I

Note that
∑K

k=1 Dss(tk, fk) is a positive definite diagonal matrix as long as the time

frequency points (tk, fk), k = 1, . . . , K, correspond to signal auto-terms. Hence,

the latter equation implies that C is unitary. Again, because of the inherent inde-

terminacy of the blind source separation, we assume without loss of generality that

∑K
k=1 Dss(tk, fk) = I. We can then conclude as for Theorem 3.1 that C = PΛ where

P is a permutation matrix and Λ a unitary diagonal matrix by using Theorem 2 of [6].

The proof of the necessary condition of Theorem 3.1 holds also for Theorem 3.2.

From Theorem 3.2 result, we can define the following contrast function:

G5(v) =
K

∑

k=1

∑

1≤i6=j≤m

|Dzizj
(tk, fk)|

2 +
m

∑

i=1

|

K
∑

k=1

Dzizi
(tk, fk)− 1|2 (3.10)
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and a separating matrix B can be computed by

B = Argmin [G5(Bx)] .

It appears clearly from the results of Theorem 3.2 that the usual assumption of uncor-

related sources in BSS is relaxed. Hence, in contrast to High Order Statistics (HOS)

based separation techniques and Second Order Statistics (SOS) based methods, the

new proposed blind separation technique based on the contrast function G2 allows

the separation of correlated Gaussian sources with identical spectral shape provided

that the sources are non stationary with different time-frequency signatures.

Note that in the derivation of the contrast functions G4 and G5, the contribution of

the additive noise has been neglected. However, the algorithms obtained from the new

proposed contrast functions are expected to be robust with respect to noise because

of the effects of spreading the noise power while localizing the source energy in the

time-frequency domain. This amounts to increasing the local Signal-to-Noise Ratio

(SNR).
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Chapter 4

Algorithm Derivation

The theorems enonciated in the previous chapters (1 and 3) concerning the contrast

functions are elegant but are not self sufficient. They need the introduction of some

iterative techniques to satisfy the given separation criterion. Further in the chapter,

we will exibit five algorithms, each corresponding to the afore mentioned theorems.

4.1 Iterative optimization algorithms

The separation criterion we have presented takes the form

B is a separating matrix ⇒ G(z(t)) = 0 (4.1)

where G is a given contrast function. The approach we chose to solving (4.1) is

inspired by [11]. This approach is a block technique based on the processing of T

received samples and consists of searching the zeros of the sample version of (4.1).
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Solutions are obtained iteratively in the form

B(p+1) = (I + E (p))B(p)

and thus

z(p+1)(t) = (I + E (p))z(p)(t)

At step p, a matrix E (p) is determined from a local linearization of G[Bx(t)]. It

is an approximate Newton technique with the benefit that E (p) can be very simply

computed (no Hessian inversion is needed) under the additional assumption that B(p)

is close to a separating matrix.

Moreover, one should bear in mind that the optimization of the TFD based contrast

function requires the selection of a set of time frequency points corresponding to

signal auto terms. An intuitive procedure to select these points is to consider the

time frequency points corresponding to the maximum energy in the time frequency

plane [6].

4.2 Algorithm SOS1

1. Initialization

z(t) = x(t), t = 1, . . . , T.

2. Update the correlation matrices R(k) = E[z(t+k)z∗(t)], k = 0, τ1, . . . , τK , using

the following averaging technique:

R(p)(k) =
1

T − k

T
∑

t=1+k

z(t)z∗(t− k).
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Note that r
(p)
ij (k) is the (i, j)-th entry of R(p)(k) and that they form the vectors

r
(p)
ij =

[

r
(p)
ij (0), r

(p)
ij (τ1), . . . , r

(p)
ij (τK)

]T

3. Estimate ε
(p)
ij

ε
(p)
ii =

1− r
(p)
ii (0)

2r
(p)
ii (0)

E
(p)
ij = −([r

(p)
jj r

(p)
ii ]#[

1

2
(r

(p)
ij + r

(p)
ji )

1

2j
(r

(p)
ij − r

(p)
ji )])

E
(p)
ij =









Re(ε
(p)
ij ) Re(ε

(p)
ji )

Im(ε
(p)
ij ) −Im(ε

(p)
ji )









.

4. Update the value of the separating matrix and the correlation matrices for

k = 0, τ1, . . . , τK :

B(p+1) = (I + E (p))B(p).

5. Update the estimated sources z(t):

z(p+1)(t) = (I + E (p))z(p)(t) for t = 1, . . . , T.

6. Stop or go to step 2

4.3 Algorithm SOS2

1. Initialization

z(t) = x(t), t = 1, . . . , T.
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2. Update the correlation matrices R(k) = E[z(t+k)z∗(t)], k = 0, τ1, . . . , τK , using

the following averaging technique:

R(p)(k) =
1

T − k

T
∑

t=1+k

z(t)z∗(t− k).

Note that r
(p)
ij (k) is the (i, j)-th entry of R(p)(k) and that they form the vectors

r
(p)
ij =

[

r
(p)
ij (0), r

(p)
ij (τ1), . . . , r

(p)
ij (τK)

]T

3. Estimate ε
(p)
ij

ε
(p)
ii =

1−
∑τK

k=τ1
|r

(p)
ii (k)|

2
∑τK

k=τ1
|r

(p)
ii (k)|

E
(p)
ij = −([̃r

(p)
jj r̃

(p)
ii ]#[

1

2
(r̃

(p)
ij + r̃

(p)
ji )

1

2j
(r̃

(p)
ij − r̃

(p)
ji )])

E
(p)
ij =









Re(ε
(p)
ij ) Re(ε

(p)
ji )

Im(ε
(p)
ij ) −Im(ε

(p)
ji )









4. Update the value of the separating matrix and the correlation matrices for

k = 0, τ1, . . . , τK :

B(p+1) = (I + E (p))B(p).

5. Update the estimated sources z(t):

z(p+1)(t) = (I + E (p))z(p)(t) for t = 1, . . . , T.

6. Stop or go to step 2

4.4 Algorithm HOS

1. Initialization

z(t) = x(t), t = 1, . . . , T.
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2. Evaluate the entries of matrix E = [εij], 1 ≤ i, j ≤ n as follows:

εij =
ρiiβij + α∗ji(δij − ρij)

ρiiαij + α∗jiρjj

with

ρij =
1

T

T
∑

t=1

zi(t)z
∗
j (t)

αij =
1

T

T
∑

t=1

|zj(t)|
2{f ′i(|zi(t)|

2)|zj(t)|
2 + fi(|zi(t)|

2)− fj(|zj(t)|
2)}

βij =
1

T

T
∑

t=1

zi(t)z
∗
j (t){fj(|zj(t)|

2)|zj(t)|
2 − fi(|zi(t)|

2)}

where fi is a real function.

3. Update the source estimates:

z(t)← (I + E)z(t), for t = 1, . . . , T.

4. Stop or go to step 2

4.5 Algorithm TFD1

1. Initialization

z(t) = x(t), t = 1, . . . , T.
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2. Evaluate the entries of matrix ε as follows:

ρij =
1

T

T
∑

t=1

zi(t)z
∗
j (t)

εii =
1− σii

2σii

Eij = −Re([d̃jj d̃ii]
#[Re(d̃ij) Im(d̃ij)])

Eij =









Re(εij) Re(εji)

Im(εij) −Im(εji)









dij(t, f) =
T

∑

l,q=−T

φ(q, l)zi(t + q + l) z∗j (t + q − l)e−j4πfl

d̃ij = [σij, dij(t1, f1), . . . , dij(tK , fK)]T

3. Update the source estimates:

z(t)← (I + E)z(t), for t = 1, . . . , T.

4. Stop or go to step 2

4.6 Algorithm TFD2

1. Initialization

z(t) = x(t), t = 1, . . . , T.
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2. Evaluate the entries of matrix ε as follows:

γii =
K

∑

k=1

dii(tk, fk)

εii =
1− γii

2γii

Eij = −Re([djj dii]
#[Re(dij) Im(dij)])

Eij =









Re(εij) Re(εji)

Im(εij) −Im(εji)









dij = [dij(t1, f1), . . . , dij(tK , fK)]T

dij(t, f) =
T

∑

l,q=−T

φ(q, l)zi(t + q + l) z∗j (t + q − l)e−j4πfl

3. Update the source estimates:

z(t)← (I + E)z(t), for t = 1, . . . , T.

4. Stop or go to step 2
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Chapter 5

Numerical Simulation

The closing chapter contains all the experiments we have conducted to prove our

practical achievements. We start off with the description of the performance index

that will help us measure the impact of our new method with numbers and not

just through the many plots we have generated. The two samples we have used to

test our algorithms are presented, namely the linearly frequency modulated and the

frequency-hopping modulated signals. Then we dip the input signals into noise and

conduct our experiments. The results are very promising.

5.1 Performance index

Rather than estimating the variance of the coefficients of the mixing matrix, it is

more relevant with respect to the source separation issue to compute an index which

quantifies the performance in terms of interference rejection, as follows [6]. Assume
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that, at each time instant t, an estimate of the vector of source signals is computed

by applying the pseudo-inverse of the estimated mixture matrix to the received signal

x(t), i.e.

z(t) = Bx(t) = BAs(t) + Bw(t) (5.1)

In general, we stress that this procedure is not optimal for recovering the source

signals based on an estimate B. For large enough sample size T , matrix B should be

close to the true mixing matrix A so that BA is close to the identity matrix. The

performance index used in the sequel is the interference-to-signal ratio (ISR), defined

as:

Iij = E|(BA)ij|
2. (5.2)

This actually defines an ISR due to the fact that by our normalization convention

([2]) we have Iij ' 1 for large enough T . Thus Iij measures the ratio of the power of

the interference of the j-th source to the power of the ip-th source signal estimated as

in (5.2). As a measure of the global quality of the separation, we also define a global

rejection level:

Iperf =
∑

i6=j

Iij. (5.3)

5.2 Experiments and results

In our experiments, a 2-element uniform linear array, having a half wavelength sensor

spacing, receives two signals in the presence of a stationary complex white noise. In

all the experiments, the source signals arrive from different directions φ1 = 0◦ and
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φ2 = 20◦. The snapshot size is T = 1024 samples.

5.2.1 Sample runs

5.2.1.1 Two LFM’s run

In this example, the sources are two linearly frequency-modulated (LFM) signals

(chirps) as shown in Figure 5.1. The observed mixed sources are shown in figure 5.2

for a signal to noise ratio (SNR) of 30 dB.
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Figure 5.1: Original sources

Figures 5.3 and 5.4 show a sample run versus iterations of the algorithms TFD1 and

TFD2, respectively. The TFD of each estimated source is plotted for each iteration.

The signal to noise ratio (SNR) is set to 30 dB and the Choi-Williams distribution
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Figure 5.2: Sensor Signal SNR=30 dB

was selected for this example. It is clear from these two figures that the implemented

algorithms converge in few iterations. Algorithm TFD1 seems to converge faster.

This can be explained by the fact that in contrast to Algorithm TFD2, TFD2 requires

the estimation of the covariance matrix, needing a few more iterations to achieve a

sufficient accuracy.

5.2.1.2 Different input signals

In this example, the sources are one linear frequency modulated signal and a frequency

hopping modulated signal as shown in Figure 5.5. The observed mixed sources are

shown in Figure 5.6 for a signal to noise ratio (SNR)of 20 dB. Figures 5.7 and 5.8

show the estimated sources when using Algorithms TFD1 and TFD2, respectively.
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Figure 5.3: Sample run vs iterations: ALgorithm TFD1
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Figure 5.4: Sample run vs iterations: Algorithm TFD2
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Original sources
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Figure 5.5: Original sources
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Figure 5.6: Sensor Signal SNR=20 dB
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Separated sources using Theorem 1
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Figure 5.7: Separated sources using Algorithm TFD1

Separated sources using Theorem 2
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Figure 5.8: Separated sources using Algorithm TFD2
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5.2.2 Noise Effect

Herein, we assess the performance of the TF based BSS algorithms with respect to

the noise level. The chosen sources in this experiment are the two linear frequency

modulated signals of Figure 5.1 .

In Figure 5.9, the rejection level Iperf is plotted in dB versus noise level (with respect

to unity enegy input) for the five algorithms presented in this report: TFD1, TFD2,

SOS1, SOS2, and HOS. The overall rejection level is obtained by averaging 100 inde-

pendent trials and the Choi-Williams distribution was selected for this experiment.

This figure shows clearly that the two TF based algorithms out perform the SOS and

HOS based ones. In the case of our experiments, it can be explained as follows:

• the SOS-based BSS approach fails, since the sources have the same spectra

shape, and

• the HOS-based BSS approach fails, since the sources have random Gaussian

amplitudes.

5.2.3 TFD Kernel Effect

Herein, we assess the performance of the TF based BSS algorithms with respect to

the TFD kernel. The chosen sources in this experiment are the two linear frequency

modulated signals of Figure 5.1 .

Figures 5.10 and 5.11 give a comparison of the performance of the TF based contrast
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Figure 5.9: Performance comparison

function Algorithms 1 and 2, respectively, when choosing two different TFDs, namely,

the Choi-Williams and Born-Jordan TFDs. According to these figures, the obtained

results show better performance for low noise level when using the Born-Jordan TFD.

This can be explained by the fact that the Born-Jordan TFD allows better estimation

of the time-frequency auto term points than the Choi-Williams TFD.
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Figure 5.10: Performance comparison with respect to TFD1
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Figure 5.11: Performance comparison with respect to TFD2
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CONCLUSION

This modest report presents the implementation and performance evaluation of two

new blind source separation methods for non-stationary sources. Two TFD-based

contrast functions are presented. Iterative algorithms, namely Algorithm TFD1 and

TFD2, based on the relative gradient technique which minimizes the aforementioned

contrast functions in order to perform the sought source separation are described. The

performance of the TFD-based contrast functions are compared to the ones based on

second order and higher order statistics. The obtained results show that the TFD-

based techniques perform better, or to put it more precisely, are the only ones which

separate non-stationary gaussian signals with identical spectral shape. We have used

two basic signals that mimic real-life signals to test how the proposed methods react.

In both cases, whether the frequency of the signal is changing smoothly (LFM) or

abruptly (FHM), the results were statisfactory. Numerical experiments are carried out

to evaluate the performance of the implemented TFD-based approach with respect

to the selected time frequency distributions. It is shown that such a choice has an

important impact on the targeted performance.

Now, what can the future have in store for this novel method? We can venture that

the optimization method that has been used will not allow on-line processing, and
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this is where adaptive optimization can be called for. Another venue could be to do a

more rigorous mathematical performance analysis that would generate ideas on how

to further improve the proposed algorithms.
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