RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE DÉPARTEMENT D'HYDRAULIQUE

Laboratoire de Recherches des Sciences de l'EAU (LRS-EAU)

Mémoire de fin d'étude Pour L'Obtention du Titre d'Ingénieur d'État en Hydraulique

Thème:

Diagnostic du Réseau d'Assainissement de La ville AHMED RACHDI-Wilaya de MILA – via SWMM

Présentée par : Dirigée par :

Mr.: BOUHANT Chouaib Dr: BENZIADA.S

Mr.: RAHMOUN.I

Remerciements

Avant toute personne, je dois remercier Dieu qui m'a donné la fois, le courage, la volonté et tout le bien.

Dieu merci.

Mes sincères remerciements s'adressent à mes très chers parents pour leurs sacrifices, prières, et encouragements...

Je remercie beaucoup Monsieur S.BENZIADA, mon Promoteur.

Je remercie également Monsieur I.RAHMOUN mon Co-promoteur.

Je remercie les membres de jury pour leur acceptation d'examiner et juger mon travail.

Je tiens à remercier tous les enseignants qui ont contribué à ma formation.

Merci à mes frères, à mes sœurs, et à mes amies qui n'ont pas cessé de me soutenir, encourager et aider.

Dédicaces

Je dédie ce modeste travail à :

Mon père sans qui je n'aurais -pas -pu faire des études.

Ma mère

Mes frères : Moundher et Samih.

Mes sœurs : Hala, Chaima et Hadil.

A mon cousin Attef.

A mon oncle Mebarek et sa famille.

A mes chers amis : Idriss, Youcef, Said, et Tarek...

Ainsi qu'à tous mes amis de Bouraoui: Yacine, Rahou, Zinou, Khaled, Said,... avec lesquels j'ai partagé des moments inoubliables...

ملخص

شهدت بلدية أحمد راشدي ولاية ميلة منذ إنشاء شبكة الصرف الصحي الخاصة بها، عدة مشاكل مرتبطة بصرف المياه المستعملة ومياه الأمطار عملنا هذا مخصص لدراسة معمقة لشبكة الصرف الصحي. وهذا بهدف تحسين عملها وهذا لتحديد المشاكل SWMM بتحديد المشاكل الهيكلية بواسطة تشخيص معمق للشبكة. بوضع برنامج رقمي تحت الهيدروليكية بتغيير عدد مينا المعلومات

الكلمات الرئيسية: شبكة الصرف الصحى، الاختلال، خشونة البرمجيات.SWMM5 ،

Résumé

La ville de *AHMED RACHDI*-wilaya de Mila depuis la réalisation de son réseau d'assainissement a connu de grands problèmes liés à la fiabilité de l'évacuation des eaux usées et pluviales. Vue l'état de défaillance du réseau, notre travail est consacré à une étude approfondie du diagnostic de ce réseau. Dans le but d'en améliorer son fonctionnement. Et cela, en identifiant les différentes défaillances structurales du réseau à l'aide d'une série d'expertises du réseau et de ses données. En mettant en œuvre un modèle numérique sous le logiciel SWMM5, afin de déterminer les différents points de dysfonctionnements hydrauliques en fonction de la variation de plusieurs paramètres.

Mots clefs: Réseau d'assainissement, dysfonctionnements, rugosité, logiciel SWMM5.

Abstract

AHMED RACHDI-Mila province city since the completion of the sewerage network has experienced major problems with the reliability of the wastewater and storm water drainage. View the State of the network failure, our work is devoted to an indepth study of the diagnosis of this network. To improve it's functioning. And this, by identifying the different structural failures of the network through a series of expertise of the network and its data. By implementing a digital model under the SWMM5 software to determine the different points of hydraulic malfunctions based on the change of several parameters.

Keywords: network of sanitation, dysfunctions, roughness, software SWMM5.

Dédicace	ii
Remerciements	iii
Résumé	iv
Sommaire	v
Liste des Figures	XV
Liste des Photos	xviii
Liste des Tableaux	xix
Liste d'Abréviations	xxi
Introduction générale	1
Chapitre : 01	
Présentation de la Zone d'Étude	3
Introduction	3
I. Situation géographique	3
II. Situation démographique	5
III. État de développement de la ville	6
1. Activités agricoles et forestières	6
2. Activités industrielles	6
IV. Données naturelles du site	6
1. Situation topographique	6
2. Situation géologique et hydrogéologique	7
3. Situation climatique	7
a. Pluviométrie	7
b. Température	8
c. Humidité	8
d. Ensoleillement	8
e. Évapotranspiration	9
f. Vents	9
g. Climat et végétation	10
V. Situation hydraulique	10
1. Hydrographie et hydrologie	10
a) Bassin versant	10
b) Chevelu hydrographique	11
c) Exutoire	12
2. Précipitations	12
a. Analyse des données statistiques	13
b. Choix de la loi d'ajustement	14
c. Calcul des paramètres de la loi choisie et vérification de son adéquation	14
☐ Ajustement de la série pluviométrique à la loi de GUMBEL	14

☐ Ajustement de la série pluviométrique à la loi Log Normal (Galton)	16
d. Calcul des pluies maximale journalière pour différentes périodes de ret	our (5,
10, 20, 30 ans)	17
e. Calcul des paramètres de Montana a(f) et b(f) pour les différentes pério	des de
retour	18
3. Alimentation en eau potable	18
4. Réseau d'assainissement	19
5. Estimation des eaux usées de la ville	20
i. Eaux usées domestiques	20
ii. Débit des équipements	21
Conclusion	21
Chapitre : II	
Recherches bibliographiques sur les indices de	
Dysfonctionnements	22
Introduction	22
I. Généralités	22
1. Définition d'un réseau d'assainissement urbain	22
2. Fonctions d'un réseau d'assainissement	23
3. Choix d'un système	23
4. Schémas d'évacuation (Jacques-B ; 1986)	23
4.1. Réseau du type perpendiculaire	23
4.2. Collecteur latéral	23
4.3. Collecteur transversal oblique	24
4.4. Collecteurs étagés	24
4.5. Réseau radial	24
3.6. Réseau multi-radial	25
II. Gestion des réseaux d'assainissement	25
1. La connaissance du réseau	26
2. La surveillance du réseau	26
3. Programme périodique d'entretien	26
4. Les travaux d'entretien	26
5. Enlèvement des dépôts	26
6. Détection des fuites	26
7. Détection des eaux parasites	27
8. Rénovation des joints et des conduites défectueuses	27
III. Défauts, Dysfonctionnements des réseaux d'assainissement	27
1. Défauts possibles des réseaux d'assainissement	27
1.1. Cassures	27
1.2. Déformations	28
1.3. Les défauts d'étanchéité	28
1.4. Les anomalies ponctuelles	28

1.5. Les dégradations permanentes	28
2. Les causes de dégradation des ouvrages (Berland-J; 2004)	28
2.1. Risques géotechniques et hydrogéologiques	29
☐ 2.1.1. Entraînement de fines	29
☐ 2.1.2. Tassement	29
□ 2.1.3. Dissolution	29
□ 2.1.5. Gonflement - retrait	29
☐ 2.1.6. Glissement de terrain	30
□ 2.1.7. Sismicité	30
☐ 2.1.8. Mouvements tectoniques	30
☐ 2.1.9. Eboulement rocheux	30
□ 2.1.10. Marnage	30
2.2. Risques hydrauliques	31
2.3. Risques structurels	31
☐ 2.3.1. Les charges statiques et dynamiques	31
☐ 2.3.2. Maintenance	31
□ 2.3.3. Constructions	31
3. Dysfonctionnements	31
2.1. Infiltration (INF)	31
2.2. Exfiltration (EXF)	32
2.3. Réduction de la capacité hydraulique (HYD)	32
2.4. Débordement (DEB)	32
2.5. Déversement (DEV)	33
2.6. Ensablement (ENS)	33
2.7. Dégradation du complexe sol-conduite (DSC)	33
2.8. Dégradation de la conduite par attaque chimique (ATC)	33
2.9. Dégradation de la conduite par intrusion des racines (RAC)	34
2.10. Dégradation de la conduite par abrasion (ABR)	34
2.11. Effondrement (EFF)	34
4. Conséquences des dysfonctionnements du réseau d'assainissement	34
IV. Gestion et entretien du réseau	35
1. La connaissance du réseau	35
2. Entretien et curage du réseau d'assainissement	36
Nettoyage périodique	36
Détection des fuites	36
Curage journalier	36
Débouchages accidentels	36
3. Mode d'entretien des réseaux	36
a. La surveillance	36
b. Méthodes traditionnelles	36
☐ Le curage mécanique manuel	37
La boule flottante	37
La boule roulante	37

	La chasse d'eau	37
	c. Méthode moderne	37
	i. Les cureuses hydrodynamiques	37
	ii. Les aspiratrices	38
	4. Entretien des chasses d'eau	38
	5. Entretien des branchements particulier	38
	6. Ventilation des égouts	38
	7. Entretien des ouvrages en béton	38
	8. Gestion informatique du réseau	38
	9. Travaux spécifiques	39
	i Désodorisation	39
	ii Diagnostic des eaux parasites	39
	iii. Réhabilitation du réseau	39
	Fraisage des obstacles	39
	L'injection des produits colmatant	39
	Le tubage intérieur	39
	Le gainage intérieur	40
	Le chemisage extérieur	40
V	. Indices de performance des réseaux d'assainissement	40
C	onclusion	41
	Chapitre : III	
_	-	
E	tat patrimonial du réseau d'assainissement	42
In	ntroduction	42
I.	Généralités	42
	1. Recueil et exploitation de données	42
	2. Le pré-diagnostic	44
	3. Reconnaissance approfondie	44
	4. Etude fonctionnelle des bassins versants élémentaires	44
	5. Conception de la nouvelle structure d'assainissement	44
	6. Conclusion et permanence du processus d'étude	44
II	. Description quantitative du réseau existant	44
	1. Conception d'un réseau d'assainissement	45
	2. Aperçu général sur le réseau d'assainissement	45
	3. Zonage et découpage en sous bassin versant de la ville d'AHMED RACHDI	45
a.	Zonage de la ville	45
b.	Découpage en sous bassins	46
	4. Description quantitative	47
a.	Collecteurs	47
b.	Regards	50
c.	Déversoir	51
d.	Bouches d'égout	51

III. Description qualitative du réseau d'assainissement	51
1. Collecteurs	51
1.1. Zone 01	51
1.1. Zone 02	56
1.1. Zone 03	57
2. Etat des regards	59
3. État des rejets actuels	60
4. Etat des déversoirs d'orage	60
5. Etat des bouches d'égout	60
IV. Zones critiques	60
V. Causes et conséquences des Dysfonctionnements constatés	dans le réseau
	61
1. Causes des dysfonctionnements	61
2. Conséquences des dysfonctionnements du réseau	61
Conclusion	62
Chapitre : IV	
Modélisation hydraulique du réseau d'assair	nissement
y	63
Introduction	63
I. Modélisation en hydraulique	63
1. Modélisation : concepts, approches, et étapes	63
a. Modèles	64
b. Différents types de modèles	64
c. Problèmes à résoudre	64
2. Étapes méthodologiques	65
3. Processus de modélisation	66
2.1. Modélisation hydrologique	66
□ a. Évapotranspiration	66
☐ b. Interception et le stockage dans les dépressions	67
□ c. Infiltration	67
☐ d. Écoulements	67
i. Précipitation directe	67
ii. Ecoulement de surface ou ruissellement	67
iii. Ecoulement de subsurface (ou hypodermique)	68
iv. Ecoulement souterrain	68
3.2. Modélisation hydraulique	68
3.3 Modélisation de la pollution	68
II. Modélisation en assainissement	69
1. Définition	69
2. Concepts de base et intérêt	69
3. Choix du logiciel	69

4. Modèles utilisés dans XP-SWMM	70
4.1. Modèles hydrauliques	70
a) Modèle de la translation simple en régime permanent uniforme	71
□ b) Modèle de l'onde cinématique	71
□ c) Modèle de l'onde dynamique	71
4.2. Méthodes hydrologiques	72
☐ 4.2.1. Modèles utilisables pour la production	72
a) Modèle d'infiltration de Green-Ampt	72
b) Modèle d'infiltration d'Horton	73
c) Modèle de ruissellement du Curve Number de SCS	73
□ 5.2.2. Modèles utilisables pour le transfert	74
a) Modèle de ruissellement de l'onde cinématique	74
b) Modèle du réservoir linéaire	75
c) Modèle de réservoir non linéaire	75
III. utilisation du logiciel SWMM pour la modélisation des réseaux	K
d'assainissement	76
1. Modélisation structurale	77
1.1. Différents objets de modélisation	77
1.2. Modèle physique du réseau	78
1.3. Modélisation des dépôts	78
2. Manipulation du logiciel	78
IV. Présentation des objectifs du modèle pour le réseau d'assainiss	sement de
la ville d'AHMED RACHDI	79
1. Problématique du réseau d'assainissement de la ville d'AHMED RACH	DI en
période de pluie	79
2. Objectifs du logiciel	80
3. Avantages du logiciel	80
Conclusion	80
Chapitre : V	
Application du logiciel SWMM5 au réseau	
d'assainissement de la ville d'AHMED RACHD	I 81
Introduction	81
I. Préparation des données pour la simulation	81
1. Délimitation des bassins versants	81
2. Construction de la Pluie de projet (Lalande-C; 2000)	82
3. Construction du modèle	83
4. Détermination des caractéristiques et paramètres hydrauliques nécessai	res à la
modélisation	84
4.1. Caractéristiques des Regards et des rejets	84
4.2. Caractéristiques des tronçons	84
13 Caractárictiques des Ressins Versents	Q /1

	Surface et largeur des sous bassins	85
	Les pentes moyennes des bassins versants	85
	Les coefficients de ruissellement	85
	Le pourcentage des surfaces imperméables	85
II. R	éseau modélisé	85
III. S	Simulations et diagnostics du réseau modélisé	86
1. 8	Simulations en fonction des pluies	87
	1.1. Capacité hydraulique des tronçons	87
	1.1.1. Période de retour P=5ans	87
	1.1.2. Période de retour P=10ans	95
	1.1.3. Périodes de retour P=20 ans et P=30ans	98
	1.2. Fréquences des mises en charge et leurs durées	98
	1.2.1. Période de retour P=5 ans	99
	1.2.2. Périodes de retour P=10 ans	102
	1.3. Les points de débordement, les volumes débordés et les durées de	
débor	rdement	106
	1.4. La propagation des débordements dans la ville et les zones touchées	108
2. I	Impact de la rugosité	110
	2.1. Simulation avec une augmentation de 10% de la rugosité des conduites	111
	2.2. Simulation avec une augmentation de 20% de la rugosité des conduites	112
III.3.	Impact des pentes	113
Conc	clusions et recommandations	113
Con	iclusion générale	115
Bib	liographie	117
Ann	nexe	

Liste des tableaux

Tableau I.01 : Calcul du coefficient de croissance arithmétique de la ville	5
Tableau I.02: Évolution temporelle de la population de la ville d'AHMED RACH	DI
	6
Tableau I.03: Températures moyennes, minimales et maximales journalières	8
Tableau I.04 : Humidité moyenne mensuelles	8
Tableau I.05 : Ensoleillement et Nébulosité moyenne mensuelles	9
Tableau I.06 : les vitesses moyennes annuelles des vents	9
Tableau I.07 : Précipitations mensuelles et maximales journalières	13
Tableau I.08 : Ajustement à une loi de Gumbel	15
Tableau I.09 : Ajustement à une loi log-Normal	17
Tableau I.10 : Pluies maximales journalières pour différentes périodes de retour	18
Tableau I.11 : Paramètres de Montana pour les différentes périodes de retour	18
Tableau I.12 : Répartition des ressources exploitées d'AHMED RACHDI	18
Tableau I.13 : Evolution temporelle des eaux usées journalières	20
Tableau III.01 : Répartition des conduites selon les diamètres et les longueurs	47
Tableau III.02 : Répartition des conduites de la zone 01 selon les diamètres et les	
longueurs	48
Tableau III.03 : Répartition des conduites dans la zone 02 selon les diamètres et le	e S
longueurs	48
Tableau III.04 : Répartition des conduites dans la zone 03 selon les diamètres et le	S
longueurs	50
Tableau III.05 : classification des regards selon l'état.	59
Tableau V.01: Les pentes moyennes des bassins versants	85
Tableau V.02: Les coefficients de ruissellements des bassins versants	85
Tableau V.03 : Les pourcentages des surfaces imperméables	85
Tableau V.04 : Caractéristiques hydrauliques des conduites surchargées	99
Tableau V.05 : Fréquences des mises en charge et leurs durées pour une période d	de
retour de 5 ans	100
Tableau V.06 : Caractéristiques hydrauliques des conduites surchargées	102
Tableau V.07: Fréquences des mises en charge et leurs durées pour une période de	е
retour de 10 ans	104
Tableau V.08 : Nombre des points de débordements dans le réseau selon la zone	107
Tableau V.09 : Caractéristiques des points de débordements	107
Tableau V.10 : Caractéristiques de la conduite 290 avant changement de pente	113
Tableau V.11 : Caractéristiques de la conduite 290 après changement de pente	113

Liste des figures

Figure I.01 : Situation géographique de la ville d'AHMED RACHDI	4
Figure I.02 : Vue satellitaire de la ville d'AHMED RACHDI.	4
Figure I.03 : Répartition des agglomérations anarchiques	5
Figure I.04 : Évolution temporelle de la population.	6
Figure I.05 : Carte géologique de la zone d'étude	7
Figure I.06: Evapotranspiration potentielle et moyenne annuelle de l'Est	Algérien
	9
Figure I.07 : Région hydrographique des bassins Constantinois	10
Figure I.08 : Sous bassins versant de Kébir Rhumel (en rouge).	11
Figure I.09 : Carte représentant le réseau hydrographique de Kébir Rhu	mel11
Figure I.10 : Ajustement à une loi Gumbel.	16
Figure I.11: Ajustement à une loi Galton.	17
Figure I.12 : Schéma général du réseau d'assainissement.	20
Figure I.13 : Variation journalières des débits domestiques rejetés.	21
Figure I.14 : Variation journalière du débit total.	21
Figure II.01 : Réseau perpendiculaire	23
Figure II.02 : Réseau à collecteur latéral.	24
Figure II.03 : Réseau à collecteur transversal oblique	24
Figure II.04 : Réseau à collecteur étagés.	24
Figure III.05 : Réseau radial	25
Figure II.06 : Réseau multi-radial.	25
Figure II.07 : Cassure pouvant survenir au niveau des réseaux	27
Figure II.08 : Exemple d'affaissement de voute	28
Figure II.09 : Exfiltration	28
Figure II.10 : schéma d'un hydro-cureur	38
Figure III.01 : Zonage de la ville d'AHMED RACHDI.	46
Figure III.02 : Découpage de la ville d'AHMED RACHDI en sous bassins	s et leurs
superficies.	47
Figure III.03 : Zone 01 et ses collecteurs principaux C11 et C12.	48
Figure III.04 : Zone 02 et ses collecteurs principaux C21, C22, C23.	49
Figure III.05 : Zone 03 et ses collecteurs principaux C31, C23, C33.	50
Figure III.06 : Conduites anarchiques de Φ200 réalisées par les habitants	s dans la cité
Melh Edab.	52
Figure III.07 : Conduites anarchiques de Φ200 réalisées par les habitants	s dans la cité
Melh Edab.	53
Figure III.08 : Conduites anarchiques de Φ300 réalisées par les habitants	s dans la cité
Melh Edab.	54
Figure III.09 : Conduites sous les constructions dans la cité Melh Edab.	55
Figure III.10 : Habitations sans réseau d'assainissement dans la cité des 1	100logts.
	56
Figura III 11 : Zanas sans rásagu d'assainissament dans la citá El Kassyo	uno 57

Figure III.12: Tronçons anarchiques sous les constructions réalisées par les	s habitants.
	58
Figure III.13 : Conduites sous dimensionnées de Φ250 dans la cité des 04 he	ectares.
	58
Figure IV.01 : Méthodologiques dans la mise en œuvre des modèles.	66
Figure IV.02 : Schématisation du processus de l'infiltration de Green-Ampt	.72
Figure IV.03 : Evolution générale du régime d'infiltration et d'infiltration c	
cours du temps (K_s conductivité hydraulique à saturation).	73
Figure (IV.04): Précipitations et volumes produits cumulés pendant une av	erse
d'intensité (Maidement.D ; 1992).	74
FigureIV.05: Représentation d'un bassin versant par un canal rectangulair	e (A=B*L).
g	74
Figure IV.06 : Représentation du modèle de réservoir linéaire.	75
Figure IV.07 : Représentation du modèle du réservoir non linéaire.	76
Figure IV.08: Schéma de principe de la structure physique du réseau.	78
Figure IV.09 : Fenêtre principale du logiciel SWMM.	79
Figure V.01: Quelques Hyétogrammes de Chicago de la ville d'AHMED RA	
rigare v.or. Queiques rijetogrammes de emengo de la vine d'rinivido in	83
Figure V.02 : Les Hyétogrammes des pluies projet + les eaux usées.	83
Figure V.03 : Visualisation du réseau d'assainissement de la ville d'AHMEI	
modélisé sous SWMM5.	86
Figure V.04 : Visualisation des composantes du réseau lors son fonctionnem	
rigare v.o. visualisation des composantes du reseau lors son fonctionnelle	86
Figure V.5 : Capacité maximale du réseau (tronçons, regards et sous bassin	
bout de 03h et 05min sur une durée totale de 4h.	87
Figure V.06 : Capacité maximale du réseau (tronçons, regards et sous bassi	
au bout de 01h et 35min sur une durée totale de 2h	88
Figure V.07 : Exemple de conduites surchargées au cas de la pointe 1h 35mi	
rigure v.o/. Exemple de conduites sur chargées au cas de la pointe in 35m	88
Figure V.08 : Vitesses maximales dans le réseau au bout de 1h 35min.	89
Figure V.09 : Les pentes des conduites dans le réseau.	89
Figure V.10: Les débits dans les rejets pendant et après l'évènement pluvie	
rigure v.10. Les debits dans les rejets pendant et après i evenement piuvie	ux. 90
Figure V.11 : La capacité des tronçons en périodes de pointe à 1h 35min.	91
Figure V.12: Exemples des conduites mises en charges en période de pointe 35min.	92
Figure V.13: Vitesses des écoulements pendant la période de pointe à 1h 35r	nin.
	92
Figure V.14 : Les variations des débits dans les rejets 01, 02, 03, 04.	93
Figure V.15 : Capacité maximale du réseau pendant l'heure de pointe à 1h .	35min.
- · · · · · · · · · · · · · · · · · · ·	94
Figure V.16 : Vitesse max des écoulements à l'heure de pointe 1h 35min.	94
Figure V.17 : Les nombres de Froude au réseau pour t=30 min au bout de 1	h 35min.

Liste des figures

Figure V.18 : Capacité maximale du réseau lors l'heure de pointe.	96
Figure V.19: Quelques conduites surchargées du collecteur principal C12.	96
Figure V.20 : Quelques conduites surchargées du collecteur principal C32.	97
Figure V.21 : Capacité maximale du réseau pendant l'heure de pointe.	97
Figure V.22 : Capacité maximale du réseau pour P=20ans pendant l'heure e	de pointe.
	98
Figure V.23 : Capacité maximale du réseau pour P=30ans pendant l'heure d	de pointe.
	98
Figure V.24: Exemple de débordements des nœuds (R248, R249, R251, R25	53).
	106
Figure V.25 : Débits débordés des nœuds R248, R249, R251, R253.	106
Figure V.26: Exemple de débordements des nœuds (R426, R427, R429, R43	30, R431,
R432).	107
Figure V.27: Débits débordés des nœuds R426, R427, R429, R430, R431, R43	432.
	107
Figure V.28 : Etat du réseau après 1h et après 1h 35 min du début de la plu	iie.
	110
Figure V.29: la capacité maximale du réseau (la pluie décennale à gauche, l	la pluie
trentenaire à droite).	110
Figure V.30 : Capacités hydrauliques du réseau (k=75 m1/3/s (à gauche), k=	=67.5 m1/3/s
(à droite)) à l'heure de pointe.	111
Figure V.31: Exemple de l'augmentation du niveau d'eau dans les conduite	es (219, 220),
et débordement d'un nouveau regard (R183) (k=67.5 m1/3/s).	112
Figure V.32: Exemple de l'augmentation du niveau d'eau dans les conduite	es (219, 220),
et débordement d'un nouveau regard (R183) (k=60 m1/3/s).	112

Liste des photos

Photo III.01 : Mur entravant le cheminement du collecteur dans la cité Melh-Edab	55
Photo III. 02 : Collecteur sous la construction dans la cité El-Djebass	55
Photo III.03 : tronçon passe sous une maison dans la cité El Kessyoune	59
Photo III.03 : tronçon passe sous le mir dans la cité El Kessyoune	59
Photo III.05 : Regard en mauvais état (Entassement des résidus)	59
Photo III.06 : Regard complètement obturé	59
Photo III.07 : Regard impossible d'ouverture	60
Photo III.08 : Regard en état dégradé	60
Photo III.09 : Regard en bon état	60
Photo III.10: Regard en état moyen	60

Liste d'Abréviations

```
ka : Coefficient de croissance de la population (hab. /an)
P<sub>0</sub>: Population de l'année de référence (hab.)
P<sub>n</sub>: Population à l'horizon d'étude (hab.)
t<sub>n</sub>: l'horizon futur (an)
t<sub>0</sub>: l'année de référence (an)
P<sub>max,J</sub>: la moyenne interannuelle des précipitations max journalières (mm)
6_{P_{max,I}}: L'écart type (mm)
I(t,f): l'intensité de durée t et de fréquence f (mm/h)
Q<sub>MI</sub>: Débit domestique moyen journalier (1/s)
D : Dotation journalière (1/s)
N : Nombre d'habitants à l'horizon étudié (hab)
Q_{EP}: débit des équipements (1/s)
Q: d\acute{e}bit (m^3/s);
x: abscisse (m);
t: temps (s);
S : surface mouillée (m²) ;
V: vitesse (m/s);
H: charge hydraulique (m);
i : pente de radier (m/m);
y: tirant d'eau (m);
Z_f: Hauteur d'eau infiltree depuis le debut de l'alimentation (mm) ;
h_f: Potentiel de succion au niveau du front d'humidification (mm) (h_f < 0);
h_0: Hauteur d'eau au niveau de la surface du sol (mm) ;
\theta_0: Teneur en eau initiale du sol (en %);
\theta_f: Teneur en eau finale du sol (à saturation) (en %) ;
K_s: Conductivité hydraulique du sol sature (mm h);
H<sub>f</sub>: Charge hydraulique (potentiel total) au niveau du front d'humidification (mm).
i<sub>max</sub>: Capacité d'infiltration maximale du sol (mm/h);
i<sub>min</sub>: Capacité d'infiltration minimale du sol (mm/h).
P_e: Hauteur cumulée d'eau depuis le début de la pluie (mm) ;
Q : Volume total d'eau ruisselé depuis le début de la pluie (mm) ;
S: Capacité maximale de Stockage du sol (mm).
Qe(t): débit de pluie nette (m3/s);
Qs(t): débit à l'exutoire (m /s);
Vs(t): volume instantané stocké dans le bassin versant (m3).
V : volume de l'eau dans le bassin versant (m³);
A : surface du bassin versant ;
d: tirant d'eau (m);
t: temps (s);
dp: hauteur de l'eau stocké dans les dépressions (m);
i : intensité de la pluie nette (mm/s) ;
Q : débit de sortie (m^3/s);
W: largeur du bassin(m);
n : coefficient de Manning-Strickler ;
S: pente de terrain.
a et b : Les paramètres de Montana ;
T: La durée totale de l'averse T=2 heures =120 min, et T=4 heures=240 min;
```

Liste d'Abréviations

t : Le temps (min)

P: période de retour (ans)

Φ : diamètre (mm)

H_{max}: hauteur d'eau maximale dans la conduite (mm)

 Q_{ps} : débit à pleine section (m^3/s)

 Q_{max} : débit max (m^3/s)

t_d: temps de débordement (min)

V_d: volume débordé (m³)

K: coefficient de manning-Strickler (m1/3/s)

Introduction générale

Les inondations ont à leur origine des événements météorologiques et/ou hydrologiques sont très difficiles à prévoir quant à leur période de retour et leur intensité. Elles sont d'autant plus à redouter lorsqu'elles se produisent en ville, là où se situe une forte concentration des activités humaines. Par conséquent, les activités économiques sont fortement perturbées et les coûts pour la société deviennent exorbitants. D'où la nécessité de prévoir et d'empêcher le retour de ces catastrophes. Pour y parvenir, un travail interdisciplinaire dont les acteurs principaux sont les hydrauliciens, aménageurs et gestionnaire des villes est indispensable. La lourde tâche repose sur l'hydraulicien où il est contraint d'approcher l'aléa pluviométrique et sa modélisation, et de résoudre les problèmes complexes liés à l'hydraulique des réseaux.

Le réseau d'assainissement de la ville *AHMED RACHDI*-wilaya de Mila a connu, depuis sa création, des grands problèmes liés à la fiabilité de l'évacuation des eaux usées et pluviales. Il en résulte que le réseau n'est plus capable de jouer son rôle d'évacuation des eaux de ruissellement en cas de pluies exceptionnelles, et c'est à la ville et à son réseau de voiries de gérer les très importants volumes d'eau générés. En effet, le dimensionnement des réseaux d'assainissement à traditionnellement été calculé pour absorber des pluies de période de retour de dix ans environ. Cependant, vingt-cinq ans après les premières réalisations du réseau d'assainissement, le réseau est devenu vétuste, ses calculs n'ont plus beaucoup de valeur sur le comportement hydraulique du système dans son ensemble.

La particularité de cette agglomération dans sa situation et sa topographie a un peu facilité la fonctionnalité du réseau. En effet le terrain de la ville de *AHMED RACHDI* et caractérisé par une topographie peu pentue qui n'impose aucun problème à l'utilisation des stations de relevage, d'autre part la géographie de cette zone caractérisée par des limites naturelles ; Oued Redjradja et Oued El Mekisba à infliger le choix du milieu récepteur des eaux rejetés à proximité des oueds, induisant des impacts environnementaux et sanitaires désastreux.

Face à cette situation alarmante les services de l'hydraulique ont lancé des études de réhabilitation du réseau d'assainissement qui ont impliqué un changement du lieu de rejet d'Oued Redjradja vers une station d'épuration prévue pour le traitement des eaux résiduaire avant leur rejet dans le milieu naturel.

C'est dans ce contexte que se situe notre travail, et consiste en un travail de diagnostic du réseau d'assainissement de la ville d'*AHMED RACHDI*. Par le biais d'un logiciel open source *SWMM5* développé par *U.S Environmental Protection Agency (E.PA.)*. Il s'articulera en :

- Un premier Chapitre qui présentatera la zone d'étude ;
- Un deuxième Chapitre traitera d'une recherche bibliographiques sur les indices de dysfonctionnements ;
- Un troisième Chapitre consacré à l'étude approfondie de l'état patrimonial du réseau existant ;
- Un quatrième Chapitre se penchera sur la modélisation dans l'assainissement, suivie d'une présentation générale du logiciel SWMM5 ;

Introduction générale

• Un cinquième Chapitre est composé d'une application du logiciel au réseau d'assainissement de la ville d'AHMED RACHDI, et sera suivi d'une discussion des résultats avec quelques recommandations ;

Enfin nous terminerons notre travail par une conclusion générale et des perspectives relatives à des sujets pouvant découler de ce travail.

Chapitre: I

Présentation de la Zone d'Étude

Introduction

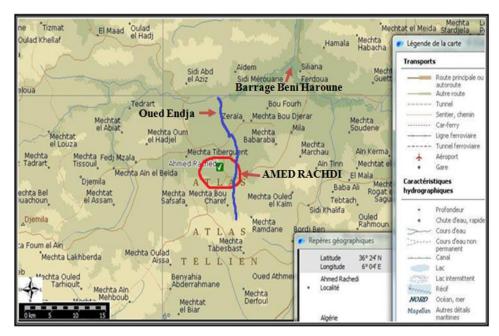
Avant d'entamer n'importe quel projet d'assainissement, l'étude du site est nécessaire pour connaître les caractéristiques physiques du lieu et les facteurs qui influencent sur la conception de ce projet.

En effet, chaque site présente des spécificités touchant en particulier l'assainissement que ce soit :

- Les données naturelles du site ;
- Les données relatives à l'agglomération ;
- Les données relatives au développement futur de l'agglomération ;
- Les données propres à l'assainissement.

L'étude du site constitue un volet important et prépondérant dans le choix futur de la variante d'aménagement hydraulique de la ville, donc la présentation de l'agglomération est une phase importante pour procéder à l'élaboration de l'étude d'expertise et diagnostic du réseau d'assainissement de la ville d'AHMED *RACHDI*.

I. Situation géographique


La commune d'AHMED RACHDI est une ville de création coloniale, elle porta le nom de Richelieu. Après l'indépendance elle est baptisée au nom d'un grand Chahid de la révolution, AHMED RACHDI en l'occurrence, décédé le 11 mars de l'année 1957.

La ville d'AHMED RACHDI d'une superficie de 89.90 km², est située au Sud -Ouest de la ville de Mila (chef-lieu de Wilaya), à environ 15 km à vol d'oiseau. La zone d'étude correspond à une entité administrative, ce qui explique la simplicité de sa délimitation géographique.

Elle est limitée par :

- ♦ Au Nord: La commune de OUEDENDJA;
- ♦ A l'Est : La commune de SIDIKHELIFA ;
- ♦ Au Sud : La commune de AINMELOUK ;
- ♦ A l'Ouest : Les communes de FEDJ MZALA et TIBERGUENT.

La commune d'AHMED RACHDI est traversée de Sud en Nord par OUED ENDJA, cet Oued se jette à l'OUED EL KEBIR, ce dernier est le cours d'eau principal déversant au Barrage de BENI HAROUNE.

Figure I.01 : Situation géographique de la ville d'AHMED RACHDI. (**Microsoft Encarta ;** 2009)

La commune d'AHMED RACHDI est du type rural, elle est caractérisée par des vastes champs agricoles qui constituent la quasi-totalité de la superficie de la commune, avec des petites agglomérations, nommées les MECHTA, dispersées sur tout le territoire de la commune.

Figure I.02: Vue satellitaire de la ville d'AHMED RACHDI. (Google Earth; 2011)

Géographiquement, le centre (la ville) d'AHMED RACHDI est implanté sur un relief relativement plat, avec des faibles pentes à multi-direction. Ce centre est caractérisé par une urbanisation homogène dans l'ensemble, exceptionnellement au niveau de la cité MELH EDAB et cité El-KESSYOUNE constituées de constructions non planifiées, et anarchiques regroupées dans des quartiers traversés par de petites ruelles mal viabilisées.

Figure I.03: Répartition des agglomérations anarchiques. (Google Earth; 2011)

II. Situation démographique

La population communale accuse une évolution continue par un accroissement moyen au niveau de naissances qui est généralisé chaque année par plus de 180 nouveau nés, cette croissance est en majeur partie due à l'évolution du nouveau de vie de la population engendré par une mutation des traditions rurales aux traditions citadines et urbaines ainsi que le développement du secteur sanitaire aidant la régression de la mortalité.

La population à la fin de l'année 2008 représente un chiffre de l'ordre de 10623 habitants, le rythme d'une évolution moyenne se poursuivra pendant cette décennie, ainsi que le facteur de l'exode rurale nourrissant une évolution par solde migratoire, qui constitue un élément d'accroissement important dans la population communale de la ville d'AHMED RACHDI. La population de 2012 est quant à elle estimé à 11155 habitants.

Pour sa superficie de $88.90km^2$, le coefficient de croissance arithmétique et de 133 hab./an et la densité moyenne est de 120 habitant/ km^2 .

Le tableau suivant illustre la population de la commune d'AHMED RACHDI d'après les recensements de 1998 et de 2008 :

Tableau I.01 : Calcul du coefficient de croissance arithmétique de la ville. (**D.P.A.T de Mila**)

Recensement	Population	Coefficient de la croissance arithmétique (hab./an)
1998	9293	122
2008	10623	133

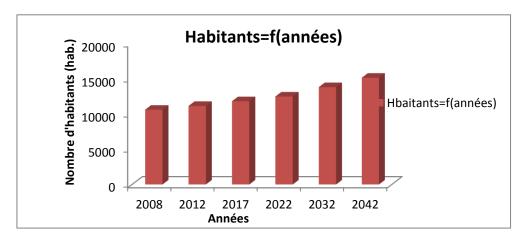
On doit déterminer le nombre d'habitants de la ville pour les différents horizons d'étude, afin de déterminer les besoins en eau ainsi que les eaux usées rejetées.

La population évolue en suivant une loi arithmétique comme suit :

$$P_n = P_0 + k_a \cdot (t_n - t_0) \tag{I-1}$$

Où:

 k_a : Coefficient de croissance de la population, k_a =133 hab./an;


 P_0 : Population à l'année de référence (2008), $P_0 = 10623$ habitants;

 P_n : Population à l'horizon d'étude ;

 $(t_n - t_0)$: La différence d'années entre l'année de référence et l'horizon futur.

Tableau I.02: Évolution temporelle de la population de la ville d'AHMED RACHDI.

Année	2008	2012	2017	2022	2032	2042
Population	10623	11155	11820	12485	13815	15145

Figure I.04 : Évolution temporelle de la population.

III. État de développement de la ville

1. Activités agricoles et forestières

Les forêts restent limitées à toute action récente, ce sont des forêts très anciennes, elles sont situées à environ 20 km de la rive gauche d'oued Redjradja, ce qui n'a aucune participation à la protection la ville des inondations.

La commune qui étend son manteau sur $89,90 \, km^2$ est un immense gisement de potentialités, une vocation qui lui va à merveille eu égard à la richesse et la fertilité de ses terres généreuses. La plupart des habitants de cette magnifique localité qui diffère de loin de la topologie des régions au relief accidenté implantées tout au long de la bande montagneuse du Nord-Ouest de la wilaya, est versée dans des activités agricoles de proximité telles la céréaliculture, la culture maraîchère et l'élevage ovin et bovin.

2. Activités industrielles

L'activité industrielle est une activité très étroite, étant donné que la région d'AHMED RACHDI ne produit pas de matière première de grande et petite industries. L'absence de toute unité industrielle dans la région, en résulte une absence totale de toute pollution industrielle assez dangereuse aux points de rejet des eaux usées de la ville.

L'aire d'étude est définie comme étant la zone incluse à l'intérieur du plan directeur d'aménagement et d'urbanisme du centre D'Ahmed Rachdi. Cette aire abrite 10623 habitants en 2008, disposant de 1517 logements, plusieurs écoles, des mosquées, des polycliniques, abattoir...

IV. Données naturelles du site

1. Situation topographique

La ville d'AHMED RACHDI se situe à une altitude de 480 mètres, entourée par des chaînes de montagne aussi bien du coté Sud le chemin de parcours ou nids de deux oued « Redjradja et El Mekisba », ce qui partage le site en deux types de sol, les parties longeant les pentes des chaînes de montagne et les terrains bas.

2. Situation géologique et hydrogéologique

La connaissance de la géologie et de l'hydrogéologie d'une région s'avère importante pour cerner l'influence des écoulements.

Au bassin versnat Kebir Rhumel, l'oued Kebir Rhumel, long de 200 km, draine plusieurs domaines géologiques et hydrogéologiques très différents. Cette hétérogénéité du bassin versant provoque des influences différentes sur le régime des cours d'eau conjointement à celles dues à la répartition des précipitations.

Notre zone d'étude est classée en zone DII, elle est mio-pliocène à dominance argileuse à l'exception de quelques affleurements de calcaires lacustres renfermant des ressources exploitées localement.

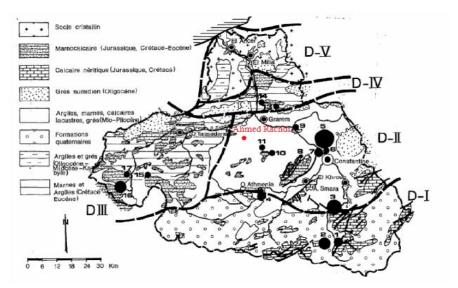


Figure I.05 : Carte géologique de la zone d'étude (Mebarki ; 2005).

3. Situation climatique

Le climat conditionne toutes les activités humaine, alors la connaissance des composantes principales de climat telles que la température, les précipitations, l'humidité, la vitesse de vent.....est primordiale. Le climat est l'état moyen de l'atmosphère de la terre à un endroit donné dans un intervalle de temps déterminé.

La commune d'AHMED RACHDI se trouve à la jonction de deux domaines climatiques différents :

- un climat tempéré et humide au Nord, caractérisé par un été sec et chaud et un hiver doux et humide ;
- un climat semi-aride au Sud marqué par un écart de température assez important.

a. Pluviométrie

L'étude des précipitations et l'évaluation des eaux pluviales jouent un rôle très important surtout pour une étude de diagnostic d'un réseau d'assainissement existant.

La pluviométrie de la zone d'étude (pluie journalière maximale) calculée selon les observations du poste pluviométrique le plus proche, portant le nom de KOUDIAT TENDART et le code 10 02 08 sur une période de fonctionnement de 1976 à 2001, se caractérise par un maximum de précipitation en Décembre et Janvier et un minimum en Juillet et Août. Les pluies de printemps sont peu importantes, les orages d'été peu fréquents, mais brusques et violents provoquant des crues d'oued subites.

AHMED RACHEDI et ses environs accusent une précipitation journalière maximale se situant entre un maximum de 71.5 mm et un minimum de 15 mm.

b. Température

La région d'étude renferme peu de station de mesures de la température. On a donc utilisé les données de la station météorologique de Constantine pour une période de 10 ans.

A partir de tableau I.1 nous noterons que la période chaude s'étale de juin à septembre avec un pic maximum durant le mois d'août. Les mois les plus froids généralement sont décembre, janvier et février.

La température minimale varie de 2.9°C au mois de janvier pour atteindre un maximum de 17.9°C au mois de juillet.

La température moyenne varie de 7.1°C au mois de janvier pour atteindre un maximum de 25.5°C au mois d'août.

La température maximale varie de 11.3°C au mois de janvier pour atteindre un maximum de 32.8°C aux mois de juillet et août.

Tableau I.03: Températures moyennes, minimales et maximales journalières (**ANRH de Constantine**).

Mois	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Nov.	Oct.	Déc.
T (°c) moy	7.1	8.6	10.6	13.1	16.8	25.3	25.3	25.5	15.7	22.8	17	11.9
T(c°) min	2.9	3.6	5.4	7.3	10.5	15.1	17.9	12.1	16.4	11.8	6.8	3.4
T(c°) max	11.3	13.3	15.8	18.9	23.1	28	32.8	32.8	29.2	22.7	17	12.1

c. Humidité

La région d'AHMED RACHEDI, a un degré hygrométrique moyen peu élevé. Mais une simple averse peut rapidement relever le taux hygrométrique et si les précipitations durent, l'humidité de l'air peut arriver à la saturation, même en été. Par contre, les années de sécheresse, l'atmosphère, sous de fortes températures surtout en été, et, en toutes saisons agitée par des vents souvent secs, se dessèche à l'extrême.

Les valeurs de l'humidité mensuelle moyenne et le moyen inter annuelle, relevées de la station de Constantine sont illustrées dans le tableau, ci-après :

Tableau I.04: Humidité moyenne mensuelles (ANRH Constantine)

Mois	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Nov.	Oct.	Déc.
Hum. Moy (%)	76	76	72	68	57	46	52	63	67	75	76	67

L'humidité moyenne inter annuelle à Constantine est de 76%. Elle chute en été et atteint les 46 % en mois de Juillet.

d. Ensoleillement

Une bonne connaissance du rayonnement solaire et de ses variations dans le temps et dans l'espace permet la détermination quantitative de l'évaporation et de l'évapotranspiration dans la région concernée.

L'ensoleillement est aux environs de 2961 heures par an à Constantine et l'énergie moyenne de la radiation solaire par jour est de 393 calories par cm² (ce qui représente 190 Watts/m²).

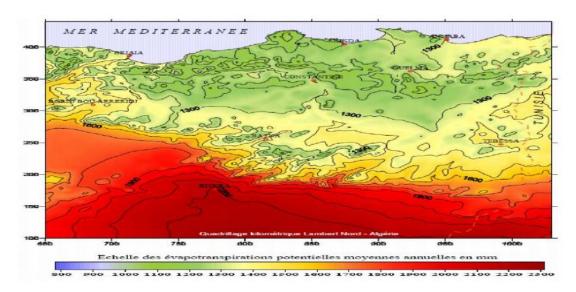

L'ensoleillement et la nébulosité moyens est mesuré au niveau de la station météorologique de Constantine pour une période de dix ans (1975-1985). Les mesures sont groupées mensuellement dans le tableau, ci-après :

Tableau I.05: Ensoleillement et Nébulosité moyenne mensuelles (ANRH Constantine).

Mois	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Nov.	Oct.	Déc.
Ensoleillement (Heures/jour)	5.04	5.42	6.42	7.01	8.4	10.61	11.33	10.08	8.36	6.67	5.47	4.42
Nébulosité (Heures/jour)	4.58	4.97	4.53	4.71	4.27	2.98	1.77	2.48	3.03	3.89	4.36	4.55

e. Évapotranspiration

La moyenne annuelle sur la période 1962 – 1990 est de 1370 mm à Constantine, 147 mm à Sétif et de 2542 mm à Batna.

Figure I.06 : Evapotranspiration potentielle et moyenne annuelle de l'Est Algérien. (**Mebarki** ; 2005)

f. Vents

Le vent est un des éléments les plus caractéristiques du climat, malheureusement il est un de ceux dont l'observation et l'étude rencontre le plus de difficultés. Dans la région étudiée on ne possède pas de stations anémométriques. La station météorologique de Constantine est la plus proche. Le tableau ci-dessous illustre les mesures des vitesses moyennes des vents de la station météorologiques de Constantine pour la période 1975 – 1984.

Tableau I.06: les vitesses moyennes annuelles des vents (ANRH Constantine)

Mois	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Nov.	Oct.	Déc.	Moy
Vents (m/s)	2.41	2.71	2.59	2.32	2.18	2.05	2.12	2.08	1.74	2.07	2.29	2.71	2.28

Pour la région d'étude, les vents dominants sont de secteur Nord (NE 22%, N12%, NO27%), les vitesses moyennes sont de 3m/s environ sans grande variation d'un mois à l'autre (Les minimales à 2.5m/s et les maximales à 3.2m/s).

g. Climat et végétation

Le secteur étudié se trouve à la jonction de deux domaines climatiques différents : un climat tempéré et humide au Nord, caractérisé par un été sec et chaud et un hiver doux et humide

avec des précipitations annuelles variant entre 900 et 1200 mm et un climat semi-aride au Sud marqué par un écart de température assez important. En été, les températures avoisinent 40°C et elles peuvent descendre au-dessous de 0°C en hiver, avec des précipitations de l'ordre de 400 mm/an.

Le couvert végétal de la région étudiée est très réduit. Il se résume à des végétations herbacées et quelques arbres d'eucalyptus, ce faible couvert végétal à considérablement favoriser le phénomène d'érosion de sol.

V. Situation hydraulique

1. Hydrographie et hydrologie

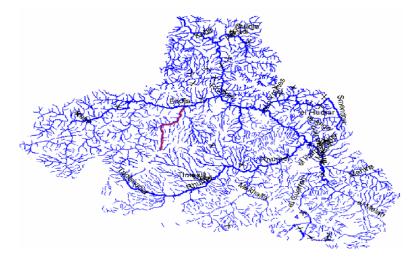
a) Bassin versant

Le bassin versant d'une rivière considérée en un point donné, est l'aire limitée par le contour à l'intérieur duquel l'eau précipitée se dirige vers ce point de la rivière. La région hydrographique CONSTANTINOIS-SEYBOUSSE-MELLEGUE s'étend sur superficie de $44\,348\,Km^2$ et regroupe les sous bassins versants suivants : Côtiers constantinois, Kebir Rhumel, Seybousse, Hauts Plateaux Constantinois, Medjerda-Mellegue.

Figure I.07: Région hydrographique des bassins Constantinois. (www.abhcsm.com)

Notre zone d'étude appartenant au sous bassin versant Kebir Amont-Endja du bassin versant Kebir Rhumel. Ce dernier s'étend sur une superficie de 8811 Km^2 , il est caractérisé géographiquement par une forme allongée et un relief plat et dénudé avec des altitudes plus de 1260m et au chevelu hydrographique dense des hautes pleines, succèdent de basse collines telliennes aux vallées encaissées, lesquelles se prolongent au nord par des massifs montagneux affectés par une densité de drainage importante.

Figure I.08: Sous bassins versant de Kébir Rhumel (en rouge). (Lyazid-S; 2007)


La ville d'AHMED RACHDI est caractérisée par un relief plat avec des faibles *p*entes à multi direction, elle atteint plus de 480*m* à son point culminant à Melh Edab, tandis que le point le plus bas est correspond à El Kessyoune, avec des altitudes inférieures à 430*m*.

b) Chevelu hydrographique

Le réseau hydrographique se définit comme l'ensemble des cours d'eau naturels ou artificiels, permanents ou temporaires, qui participent à l'écoulement.

Le bassin versant Kebir Rhumel dans son ensemble est un bassin élevé avec une altitude moyenne de 500m, il présente un chevelu hydrographique très dense totalisant plus de 4200km, où les eaux superficielles sont drainées d'Est en Ouest par les différents affluents situés sur les deux rives gauches et droites de l'Oued Rhumel qui descend de 265m à 135m pour former avec l'Oued Endja, l'Oued El Kebir au centre Ouest de la commune Grarem, qui diverse au barrage de Beni Haroune.

Nous sommes en présence d'un réseau hydrographique extrêmement dense et hiérarchisé. La forme de la région en bassin avec un couloir Est-Ouest fait que nous avons une orientation générale du réseau hydrographique Sud-Nord ou Nord-Sud selon les cas.

Figure I.09 : Carte représentant le réseau hydrographique de Kébir Rhumel. (**Layazid-S** ; 2007)

Au Sud-ouest, le bassin versant de Kebir amont-Endja est drainé par son Oued principal, Oued Endja, qui prend naissance à la confluence de l'Oued Kebir et l'Oued Redjas, ce dernier se trouve à l'aval de la ville d'AHMED RACHDI, il naît de la confluence des différents oueds : Oued El Hammam, Oued Bou Azoun, Oued Redjradja, Oued El Mekisba, ainsi que des différents affluents de la zone.

D'après les visites détaillées sur le terrain, le réseau hydrographique intéressant particulièrement la région d'AHMED RACHDI compte deux principaux Oueds : Oued de Redjradja, Oued El Mekisba. Les deux oueds coulent du sud vers le nord, l'Oued Rejradja est à 700 m près du coté Ouest et Oued El Mekisba est à 1 Km du coté Est de la ville. Plusieurs affluents s'étendent dans la ville en période hivernale et se jettent dans les deux oueds, ils ont des débits faibles qui s'annulent en période estivale. Notre zone d'étude se situe donc, entre deux cours d'eaux, ce qui facilite le drainage et l'évacuation de toutes les eaux de la ville vers les deux oueds.

c) Exutoire

Tout écoulement se manifestant à l'intérieur d'une surface topographique qui doit fortement traverser la section normale considérée et s'écouler vers l'aval jusqu'à l'exutoire. Tous les cours d'eau traversant la région d'étude se diverse à Oued Endja, les deux oueds principaux de la région (Oued Redjradja, Oued El Mekisba) confluent à une distance de 4km du centre ville d'AHMED RACHDI. L'exutoire naturel du bassin versant Kebir Rhumel est El Ancer à la Méditerranée, mais, le barrage de Beni harroune (à 50km en amont d'El Ancer) est actuellement l'exutoire artificiel de la quasi-totalité des eaux du bassin.

2. Précipitations

Étant donné que le réseau d'assainissement doit pouvoir évacuer aussi bien les eaux domestiques que pluviales, il est important de connaître les quantités d'une manière assez rigoureuse. Si les eaux usées sont directement conséquentes de la quantité consommée, les eaux pluviales ne sont connues qu'après avoir fait une étude hydrologique appropriée qui permettra d'estimer les débits de ruissellement.

Pour cela, les mesures des pluies est primordiale pour être en mesure de caractériser l'évènement auquel le réseau va réagir et de correctement modéliser cette réaction.

L'ensemble des précipitations issues d'une même perturbation météorologique constitue les averses. Ces dernières se définissent comme les pluies subites et abondantes, généralement de courte durée ; dont cette dernière peut varier d'une minute à plusieurs heures.

Les averses sont caractérisées par un volume important et une forte intensité par unité de temps, ce qui cause un ruissellement important, exigeant ainsi, un système de drainage efficace, lorsqu'une averse tombe violemment avec de très forte intensité dans un espace de temps très réduit, elle devient un orage qu'est le plus dangereux.

En hydrologie urbaine, l'ingénieur hydrologue est appelé à avoir des données spécifiques au projet étudié, mais dans certaines conditions il est rare de recourir des données spécifiques. C'est la raison pour laquelle on est contraint à réunir une information de base, la plus complète possible, pour aider à analyser par la statistique les événements pluvieux tout en identifiant leurs paramètres.

Pour la ville d'AHMED RACHDI, les données pluviométriques sont assurées par la station pluviométrique de KOUDIAT TENDART sur une période de 25 ans (1976-2001).

Le tableau suivant représente la série d'observations des Précipitations mensuelles et maximales journalières de la station de KOUDIAT TENDART.

Présentation de la zone d'étude

Tableau I.07: Précipitations mensuelles et maximales journalières. (ANRH Constantine)

]	Précipi	tation	(mm)					
Année	sept	Oct	nov	dec	janv	Fev	mar	avril	mai	Juin	juil	Aout	max
1976 – 1977	16.32	6.1	25.3	1.8	19.7	9	8.2	17.9	9.9	2.4	0	7.3	25.3
1977 - 1978	0	9.9	18.6	6.8	7.1	22.6	10.6	45.1	3.2	17.2	3.6	0	45.1
1978 - 1979	9.5	7.5	9.5	6	12.8	15.7	37.2	13.1	28	3.7	0	18.2	37.2
1979 - 1980	14.2	4.4	11.6	48	10	0	16.1	7.6	5.4	19.6	0.5	24.6	48
1980 - 1981	11.3	12	15.4	32.2	23.4	18.3	23.6	18.5	12.9	6.3	0	1.9	32.2
1981 - 1982	7	26.6	10.2	18.5	5.2	10.8	11.8	1.4	9.7	3.3	3.4	11.5	26.6
1982 - 1983	9.2	13.25	13.6	24.3	19.2	13.79	15.4	7.2	4.5	8.2	0.8	0.8	24.3
1983 - 1984	9.7	31.4	2.5	34.8	11	8.4	46.2	17.8	13.7	8.2	8.5	0	46.2
1984 - 1985	15.3	16	6.7	17.8	17	10	17	13.1	26.6	9.4	2.6	5	26.6
1985 - 1986	69	21.3	15.2	35.4	19.5	24.5	23	6.5	16.5	1.5	9.5	4	69
1986 - 1987	1	10	23.9	12	16	9	14	39.2	21.8	12.5	2.4	14.5	39.2
1987 - 1988	13.9	0	13	30	14.2	13.4	26.4	36.7	9.4	19.6	13.4	16.6	36.7
1988 - 1989	15.8	22.8	5.5	4	20.2	0	9.5	22.4	27.1	6.7	2	11.6	27.1
1989 - 1990	3.8	24.8	41.7	25.6	4.5	16.8	22.6	13.8	26	5	1	7.9	41.7
1990 - 1991	11.8	18.3	11.5	5	14	19.2	12.7	38	53	21.6	24.2	2.5	53
1991 – 1992	10.3	4.5	23.4	47.2	25.1	20.3	10	2.5	23.4	2	2	8.9	47.2
1992 - 1993	7	3.5	7.5	29.5	13.3	25.9	12	9.5	3	0.5	7.5	6.2	29.5
1993 - 1994	10.7	18.6	0.6	18.3	25.1	13	14.5	14.8	1.5	9.3	0	14.7	25.1
1994 – 1995	25.1	2.5	7.5	22.9	12.5	35.4	11.7	17.3	36.5	39.2	0.5	9.5	39.2
1995 – 1996	11.8	31.1	5.6	24.3	16.3	2.7	1.7	15.8	9.8	13.6	0	13	31.1
1996 - 1997	19	9	20	20	5.7	10.6	4.7	24.7	34.6	2.2	2	7.5	34.6
1997 - 1998	61.6	9.3	46.2	22.3	33.1	16	29.3	11.1	4.8	12.4	8.9	3.5	61.6
1998 - 1999	32.1	10.2	10.3	26.5	6	4	8.8	5.2	26.5	71.5	0	10.8	71.5
1999 – 2000	11.4	9	5.5	18	21.5	10.3	5.6	5.5	15.5	0	0.6	8	21.5
2000 - 2001	11.1	9.3	4.4	3.5	8.3	15	6.4	5.9	5.2	6.5	6.5	3.2	15

La série des données précédentes doit être analysée et traitée, afin de déterminer les caractéristiques (quantité, durée, intensité, qualité...) des eaux pluviales de la zone d'étude. Lors d'une étude de dimensionnement d'un réseau d'assainissement, l'ingénieur est toujours appelé à estimer tous les débits à évacuer avec un certain degré de sécurité. Il résultera toujours d'un compromis entre le cout du projet et une protection maximale de la ville. C'est la raison pour laquelle on est obligé d'analyser tous les événements pluvieux de la zone en déterminant tous leurs paramètres spécifiques.

a. Analyse des données statistiques

Pour l'étude des précipitations en assainissement on a besoin d'une série pluviométrique qui comporte les précipitations projet pour la période de retour projet.

La série pluviométrique de la station expérimentale de KOUDIAT TENDART dont les caractéristiques sont les suivantes :

$$X = 788.21 \ km$$
.

 $Y = 340.12 \, km$.

 $Z = 635.00 \, km$.

❖ La moyenne interannuelle des précipitations maximales journalières $\overline{P_{max,J}}$ durant 25 ans d'observations :

$$\overline{P_{max,J}} = \frac{\sum_{i=1}^{n} P_{max,J}}{n}$$
 (I.02)

$$\overline{P_{max,J}} = \frac{\sum_{i=1}^{n} P_{max,J}}{n} = \frac{954.5}{25} = 38.18 \ mm.$$

n: Le nombre d'années d'observations (n = 25 ans).

 \bullet L'écart type $6_{P_{max,I}}$;

Pour n inférieur à 30 ans on a :

$$6_{P_{max,J}} = \sqrt{\frac{\sum_{i=1}^{n} (P_{max,J} - \overline{P_{max,J}})^{2}}{n-1}}$$
(I.03)
$$6_{P_{max,J}} = \sqrt{\frac{\sum_{i=1}^{n} (P_{max,J} - \overline{P_{max,J}})^{2}}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} (P_{max,J} - 38.18)^{2}}{25-1}} = 14.50 \ mm$$

• Coefficient de variation C_v :

$$C_v = \frac{6_{P_{max,J}}}{P_{max,J}}$$
 (I.04)
A.N: $C_v = \frac{6_{P_{max,J}}}{P_{max,J}} = \frac{14.50}{38.18} = 0.38$

L'exposant climatique b :

Il est donné par l'A.N.R.H pour notre région d'étude : b=0.37

b. Choix de la loi d'ajustement

Il existe plusieurs lois d'ajustement, les deux lois les plus utilisées sont :

- Loi de GUMBEL
- Loi log normal

Les critères de choix d'une loi sont liés à un ajustement graphique d'abord et ensuite à un test de dispersion. L'allure des points sur un papier à probabilité permet à prime abord d'accepter ou de rejeter la loi (toute sinuosité, mauvaise courbure ou cassure de pente et considérée comme un mauvais ajustement).

c. Calcul des paramètres de la loi choisie et vérification de son adéquation

Ajustement de la série pluviométrique à la loi de GUMBEL (Bénina-T; 2004)

Cette loi a une fonction de répartition qui s'exprime selon la formule suivante :

$$F(x) = e^{-e^{-y}}$$
 (I.05)

Tel que : $y = a(x - x_0)$

Avec:

y : variable réduite de GUMBEL;

x: précipitation maximale journalière (mm);

x₀: ordonnée à l'origine en (mm);

• Avant de procéder à l'ajustement il faut suivre les étapes suivantes :

-classer les valeurs des précipitations par ordre croissant avec attribution d'un rang 1, 2, 3.....m.

-calculer pour chaque valeur de précipitation la fréquence expérimentale par la formule de HAZEN.

$$F(x) = \frac{m - 0.5}{n}$$
 (I.06)

m : rang de précipitation ;

n: nombre d'observations;

-calculer la variable réduite de GUMBEL donnée par la formule suivante :

$$y_i = -\ln(-\ln F(x_i)) \tag{I.07}$$

-calculer les paramètres d'ajustement a et x_0 ;

-représenter graphiquement les couples (xi, yi) sur papier GUMBEL.

• La droite de GUMBEL est donnée par la formule :

$$x = \left(\frac{1}{a}\right)y + x_0 \tag{I.08}$$

Avec:

$$\frac{1}{a} = \left(\frac{\sqrt{6}}{\pi}\right) 6_{x} \tag{I.09}$$

 $\frac{1}{a}$: La pente de la droite de GUMBEL.

$$\frac{1}{a} = \left(\frac{\sqrt{6}}{\pi}\right) 6_x = 0.78 * 14.5 = 11.31 \text{ mm}$$

Et x₀ représente l'ordonnée à l'origine :

$$X_0 = \overline{X} - \frac{1}{3}\overline{y} \tag{I.10}$$

 \overline{y} : Moyenne de la variable réduite de GUMBEL, tel que :

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{N}$$
 (I.11)
$$\overline{y} = \frac{\sum_{i=1}^{25} y_i}{N} = 0.566 \text{ mm}$$

$$x_0 = \overline{x} - \frac{1}{a} \overline{y} = 31.65 \text{ mm}$$

Donc, la loi de GUMBEL s'écrit comme suit :

$$x = 11.31y + 31.65$$

❖ Coefficient de corrélation r :

$$r = \frac{\sum_{i=1}^{N} (P_{\text{max,J}} - \overline{P}_{\text{max,J}})(y_i - \overline{y})}{\sqrt{\sum (P_{\text{max,J}} - \overline{P}_{\text{max,J}})^2 \sum (y_i - \overline{y})^2}}$$
(I.12)

r = 0.99, la corrélation est>0.8, donc, elle est acceptable.

Figure I.08: Ajustement à une loi de Gumbel.

115416	1.00 • 1 1	asterrer a	aric for ac G	alliect.				
Valeurs	Valeurs	Ordre de	Fréquence	Variable	Valeur	Valeur	Borne	Borne
de	classées	classement	expérimentale	réduite	expérimentale	théorique	inférieure	supérieure
départ			_		_	_		
25.3	15	1	0.02	-1.36	15	16.23	4.06	22.5
45.1	21.5	2	0.06	-1.03	21.5	19.96	9.91	25.63
37.2	24.3	3	0.1	-0.83	24.3	22.22	13.35	27.64
48	25.1	4	0.14	-0.68	25.1	24.01	15.99	29.31
32.2	25.3	5	0.18	-0.54	25.3	25.56	18.20	30.82

Présentation de la zone d'étude

26.6	26.6	6	0.22	-0.42	26.6	26.96	20.14	32.27
24.3	26.6	7	0.26	-0.30	26.6	28.28	21.91	33.69
46.2	27.1	8	0.3	-0.19	27.1	29.56	23.53	35.12
26.6	29.5	9	0.34	-0.08	29.5	30.80	25.06	36.58
69	31.1	10	0.38	0.03	31.1	32.03	26.50	38.1
39.2	32.2	11	0.42	0.14	32.2	33.26	27.89	39.69
36.7	34.6	12	0.46	0.25	34.6	34.52	29.24	41.36
27.1	36.7	13	0.5	0.37	36.7	35.80	30.56	43.13
41.7	37.2	14	0.54	0.48	37.2	37.13	31.87	45.02
53	39.2	15	0.58	0.61	39.2	38.53	33.19	47.06
47.2	39.2	16	0.62	0.74	39.2	40.00	34.53	49.27
29.5	41.7	17	0.66	0.88	41.7	41.59	35.93	51.69
25.1	45.1	18	0.7	1.03	45.1	43.31	37.40	54.38
39.2	46.2	19	0.74	1.20	46.2	45.23	38.99	57.4
31.1	47.2	20	0.78	1.39	47.2	47.40	40.74	60.88
34.6	48	21	0.82	1.62	48	49.95	42.75	65.00
61.6	53	22	0.86	1.89	53	53.05	45.14	70.07
71.5	61.6	23	0.9	2.25	61.6	57.11	48.21	76.77
21.5	69	24	0.94	2.78	69	63.13	52.69	86.79
15	71.5	25	0.98	3.90	71.5	75.79	61.92	108.03

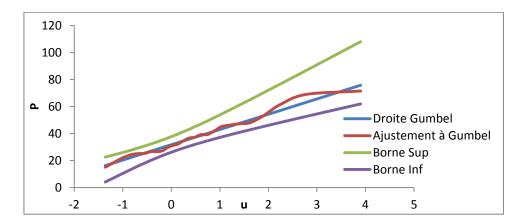


Figure I.10: Ajustement à une loi Gumbel.

Ajustement de la série pluviométrique à la loi Log Normal (Galton)

La loi de GALTON a une fonction de répartition qui s'exprime selon la formule suivante :

$$F(X) = \frac{1}{\sqrt{2\pi}} \int_{u}^{+\infty} e^{-\frac{1}{2}u^{2}} du$$
 (I.13)

Où : $u = \frac{X_i - \overline{X}}{\sigma_X}$ (variable réduite de GAUSS)

L'équation de la droite de Log-Normal est la suivante :

$$\log(\mathbf{x}(\mathbf{p}\%)) = \overline{\log \mathbf{X}} + \mathbf{u}(\mathbf{p}\%).\,\sigma_{log(x)} \tag{I.14}$$

D'où:

$$\overline{\log X} = \frac{\sum_{i=1}^{N} \log X}{N}, \text{ donc} : \overline{\log X} = \frac{\sum_{i=1}^{25} \log X}{N} = 3.57mm$$

$$\sigma_{\log(x)} = 0.38 \ mm$$

L'équation totale devient :

 $\log(x(p\%)) = 3.57 + 0.38 * u$

Tableau I.09: Ajustement à une loi log-Normal.

Valeurs	Valeurs	Ordre de	Fréquence	Variable	Valeur	Valeur	Borne	Borne
de départ	classées	classement	expérimentale	réduite	expérimentale	théorique	inférieure	supérieure
25.3	15	1	0.020	-2.054	15	16.439	11.617	20.444
45.1	21.5	2	0.060	-1.555	21.5	19.845	14.893	23.982
37.2	24.3	3	0.100	-1.282	24.3	22.001	17.023	26.236
48	25.1	4	0.140	-1.080	25.1	23.738	18.755	28.073
32.2	25.3	5	0.180	-0.915	25.3	25.264	20.282	29.711
26.6	26.6	6	0.220	-0.772	26.6	26.668	21.685	31.242
24.3	26.6	7	0.260	-0.643	26.6	27.997	23.008	32.719
46.2	27.1	8	0.300	-0.524	27.1	29.283	24.280	34.174
26.6	29.5	9	0.340	-0.412	29.5	30.547	25.518	35.632
69	31.1	10	0.380	-0.305	31.1	31.805	26.738	37.114
39.2	32.2	11	0.420	-0.202	32.2	33.072	27.952	38.638
36.7	34.6	12	0.460	-0.100	34.6	34.361	29.169	40.223
27.1	36.7	13	0.500	0.000	36.7	35.685	30.401	41.887
41.7	37.2	14	0.540	0.100	37.2	37.060	31.659	43.656
53	39.2	15	0.580	0.202	39.2	38.504	32.958	45.557
47.2	39.2	16	0.620	0.305	39.2	40.038	34.311	47.625
29.5	41.7	17	0.660	0.412	41.7	41.687	35.738	49.902
25.1	45.1	18	0.700	0.524	45.1	43.486	37.263	52.448
39.2	46.2	19	0.740	0.643	46.2	45.484	38.920	55.346
31.1	47.2	20	0.780	0.772	47.2	47.752	40.759	58.724
34.6	48	21	0.820	0.915	48	50.404	42.860	62.786
61.6	53	22	0.860	1.080	53	53.644	45.361	67.896
71.5	61.6	23	0.900	1.282	61.6	57.879	48.538	74.807
21.5	69	24	0.940	1.555	69	64.168	53.099	85.503
15	71.5	25	0.980	2.054	71.5	77.465	62.287	109.615

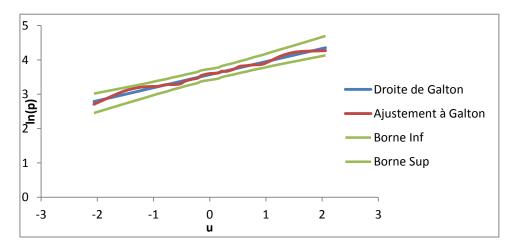


Figure I.11: Ajustement à une loi Galton.

Remarquons bien que la série historique est mieux ajustée à la loi Log-Normal qu'à la loi de Gumbel, alors, on choisit les résultats d'ajustement de Gumbel pour les calculs des pluies projet.

d. Calcul des pluies maximale journalière pour différentes périodes de retour (5, 10, 20, 30 ans)

Les pluies maximales journalières sont calculées à partir des ajustements de la série pluviométrique à la loi Log-Normale, les résultats de calcul sont illustrés dans le tableau suivant :

Tableau I.10: Pluies maximales journalières pour différentes périodes de retour.

Période de retour (ans)	5	10	20	30
P _{max,j,p% (mm)}	66.23	57.88	48.87	43.28

e. Calcul des paramètres de Montana a(f) et b(f) pour les différentes périodes de retour

La formule de Montana est la suivante :

$$i(t,f) = a(f)t^{b(f)}$$
 (I.15)

Les paramètres de Montana sont donnés par :

$$b(f) = b - 1 \tag{I.16}$$

Et d'après la formule de K-Body :

$$i(t,f) = \frac{P_{24(f)}}{60} \cdot \left(\frac{t}{60.24}\right)^{b-1} \tag{I.17}$$

La formule de a(f) issue de la combinaison entre Montana et K-Body est :

$$a(f) = \frac{P_{24(f)}}{24.60} \left(\frac{1}{24.60}\right)^{b-1}$$

Avec:

a(f) et b(f): Paramètres de Montana;

i(t, f): Intensité de durée t et de fréquence f;

 $i_j(f)$: Intensité journalière pour une fréquence f (pour notre étude on prend les pluies journalières maximales);

b : Exposant climatique, pour notre région d'étude b=0.37.

$$b(f) = b - 1 = 0.37 - 1 = -0.63.$$

Les résultats de calcul de a(f) sont présentés dans le tableau ci-dessous :

Tableau I.11 : Paramètres de Montana pour les différentes périodes de retour.

Périodes de retour (ans)	5	10	20	30
a(f)	3.32	3.93	4.50	4.83

3. Alimentation en eau potable

La connaissance de toutes les ressources en eau ainsi que les différents types d'usages de ces eaux dans la région d'étude est primordiale, afin de pouvoir quantifier les différentes eaux usées à évacuer, ainsi que leurs natures. Cela est pour éviter tout danger sur l'agglomération, et réutiliser ces eaux après son traitement. A cause de sa situation climatique et géographique, à une trentaine de kilomètres près du barrage de Beni Haroune, notre zone d'étude est riche en eau, mais, son alimentation se fait naturellement à partir des différentes ressources et forages (puits) de la région, et artificiellement à partir du barrage de BENI HAROUNE par un débit de $1500 \ m^3/J$.

Tableau I.12 : Répartition des ressources exploitées d'AHMED RACHDI. (**D.A.P.T Mila**)

re	Puits					Sources				
Nombro d'habitar	N° de puits	Q I/s mobilisé	Q I/s exploité	N° h/j	Q exp m3/j	nbr de sources	Q 1/s mobilisé	Q I/s exploité	N° h⁄j	Q exp m3/j

VILLE D'AHMED RACHDI	Ahmed Rachdi	8350	0	0	0	0	0	1	14	12	24	1036.8
	Tamda	1200	0	0	0	0	0	1	1	1	24	86.4
	Ain Djemil /Zarza	920	1	5	5	6	108	1	1	1	24	86.4
	Welad Naser /Tabtaba	720	1	5	5	12	216	0	0	0	0	0
	Welad Bouazoun	230	0	0	0	0	0	1	2	2	24	172.8
	Total	11420	2	10	10	9	324	4	18	16	24	1382.4

4. Réseau d'assainissement

La réussite d'un projet de restructuration d'un réseau d'eaux usées suppose une maîtrise préalable du fonctionnement et une bonne connaissance du système. Pour ce faire il est nécessaire de multiplier les descentes sur le terrain afin d'identifier les défaillances qui font que le réseau ne joue pas de façon optimale son rôle qui est d'évacuer les eaux usées loin des concessions sans porter atteinte à l'environnement.

Avant l'indépendance, la ville d'AHMED RACHDI n'était qu'une petite Mechta isolée de quelques habitants qui s'alimentent en eau à l'aide de quelques forages dans la région, elle n'avait pas besoin d'un réseau d'assainissement, toutes les eaux usées se rejettent à l'air libre.

Après l'indépendance, et après l'augmentation de nombre d'habitants, la ville a connu un développement en matière d'urbanisme et du mode de vie de ses habitants. Les habitants de la ville commencent à penser à leurs eaux rejetées, vu les conséquences nuisibles des rejets : la formation des flaques d'eau, les mauvaises odeurs...

De ce fait, la population a planifié un réseau d'assainissement en 1985, mais ce réseau anarchique n'était réalisé qu'après deux ans, avec des diamètres de 200mm. Ce réseau a assuré l'évacuation des eaux de certaines constructions jusqu'à 1993, où la mairie a réalisé un réseau d'assainissement de type unitaire, car la ville a connu des extensions anarchiques, où, certaines construction ont été réalisées sur les collecteurs (certains quartiers de Melh Edab et la cité El-Djabasse), et plusieurs habitations ne disposent d'aucun réseau d'assainissement.

En 1993, la mairie a réalisé un nouveau d'assainissement. Ce réseau est de type unitaire. Les diamètres varient entre 300 mm et 800 mm (Annexe I). Le rejet des eaux collectées se fait vers l'Oued Redjradja, il existe quatre points de rejet pour l'agglomération, un au nord de l'agglomération l'autre au Nord-est, et le dernier à l'Ouest de l'agglomération.

Vue l'état dégradé du réseau, la commune rénové une partie de ce réseau (au centre ville) en 2010, avec des conduites de diamètres variant entre 300 mm et 800 mm (Annexe I), en nettoyant les regards ainsi que les avaloirs existants, et en plaçant d'autre où on en a pas.

Le rejet actuel est le milieu naturel, pour la protection de ce dernier une station d'épuration est à projeter a l'avenir, surtout pour préserver la qualité d'eau de milieu récepteur puisque notre région est situé à l'amont de barrage Beni Haroune, cette station a une capacité de 4500 m 3/j et elle associe chacun de la ville de Zeraia et la ville de Redjas et qui inclut notre agglomération.

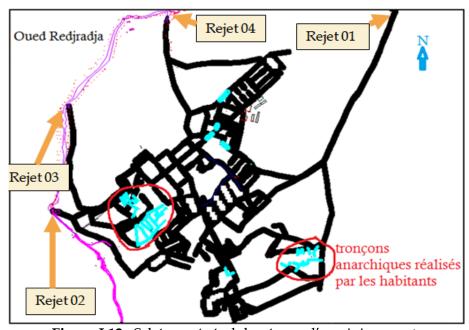


Figure I.12: Schéma général du réseau d'assainissement.

5. Estimation des eaux usées de la ville

i. Eaux usées domestiques [1]

Pour calculer le débit des eaux usées domestiques à évacuer, nous prendrons comme donné de base, une dotation d'eau potable de 150 l/j hab., et nous considérons que les 80% de l'eau consommée sont rejetées comme eaux usées.

Nous considérons que les eaux usées domestiques rejetées journalièrement correspondent à une valeur moyenne de débit, à cause de l'absence des coefficients de pointe journaliers de la consommation en eau potable, donc, le débit domestique à évacuer est estimé à l'aide de la relation suivante :

$$Q_{MJ} = \frac{D.N.kr}{86400} \tag{I.17}$$

 Q_{MI} : Débit domestique moyen rejeté quotidiennement (l/s);

Kr: Coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée ;

D: Dotation journalière prise égale à 150l/s/hab.;

N : Nombre d'habitants à l'horizon étudié (hab.);

Les débits domestiques rejetés journalièrement pour les différents horizons sont au tableau ci-dessous :

Tableau I.13: Evolution temporelle des eaux usées journalières

Année	2008	2012	2017	2022	2032	2042
E.U (1/s)	14.75	15.49	16.42	17.34	19.19	21.03

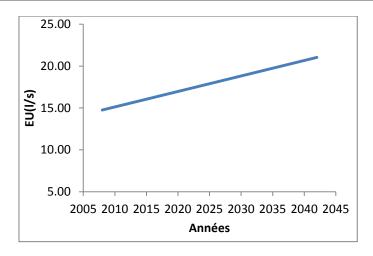


Figure I.13: Variation journalières des débits domestiques rejetés.

ii. Débit des équipements

On appelle équipements différents services publics : éducatifs, sanitaires, touristiques, administratifs et différents autres services d'utilité publique. L'estimation se fait sur la base du nombre de personnes qui fréquentent le lieu et sur la dotation requise pour chaque activité.

La ville d'AHMED RACHDI comporte plusieurs services publics tels que : 3 mosquées, 3 parcs privé, 7 écoles...

L'estimation donne un débit total des équipements de $:Q_{EP} = 2.51 l/s$

Alors les débits totaux des eaux usées se résument au graphe suivant :

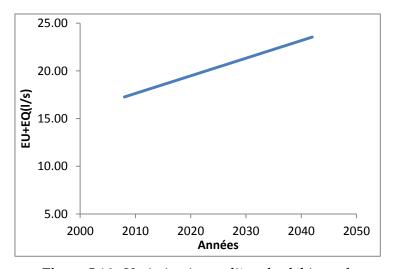


Figure I.14 : Variation journalière du débit total.

Conclusion

Ayant achevé la définition des données concernant notre ville du point de vue géologie, topographie, géographie, hydrogéologie, hydrographie, climatologie, assainissement, population ainsi que l'urbanisation et les zones d'extension, nous procédons à la phase de diagnostic du réseau d'assainissement existant de la ville de **AHMED RACHDI**.

Chapitre: II

Recherches bibliographiques sur les indices de Dysfonctionnements

Introduction

La gestion patrimoniale d'un réseau d'assainissement vise à maintenir l'infrastructure dans un état satisfaisant vis-à-vis d'enjeux sanitaires, environnementaux, économiques, etc. Elle comprend l'acquisition d'informations, l'évaluation des performances de l'infrastructure, et la réhabilitation d'éléments ou des sous-systèmes considérés comme défaillants ou à risque. L'évaluation du patrimoine doit être structurée par l'identification de toutes les défaillances et les dégradations. Elles sont obtenues par des voies complémentaires : inspections visuelles des collecteurs, mesures en réseau, données issues de l'exploitation du réseau, données relatives à la vulnérabilité des environnements exposés.

Un réseau d'assainissement est dit dégradé lorsqu'il est incapable d'assurer les conditions nécessaires à la réalisation des objectifs qui lui sont assignés. Une composante d'un réseau peut continuer à se dégrader sous l'effet de l'environnement auquel elle est soumise : la variation des contraintes qui lui est appliquée et l'action abrasive de l'effluent. Si ces mécanismes ne sont pas contrôlés par le biais d'une maintenance corrective, les défaillances subséquentes auront des conséquences graves sur le réseau lui même et sur son environnement.

I. Généralités

1. Définition d'un réseau d'assainissement urbain

Les réseaux d'assainissement urbains sont constitués d'un ensemble de composantes hydrauliques comprenant des conduites, des regards, des stations de pompage, des bassins de retenue et différents ouvrages de contrôle. Leur mission principale est la collecte et l'évacuation adéquate des eaux usées vers une station de traitement ou vers un lieu de déversement approprié sans échange avec le milieu environnant et sans danger pour le personnel d'assainissement et les usagers. Il faut rappeler qu'il existe trois types de réseaux :

- a. le réseau séparatif: il est composé de deux réseaux de conduites distincts qui se chargent, l'un des eaux usées d'origine domestique ou industrielle et l'autre, des eaux de ruissellement, d'infiltration et de drainage;
- b. le réseau pseudo-séparatif: c'est un réseau séparatif, dans lequel l'égout sanitaire collecte, en plus des eaux domestique et industrielle, les eaux de toiture et les drains de fondation;
- c. le réseau unitaire : il collecte toutes les eaux, déjà mentionnées, dans un même réseau de conduites. Il possède des régulateurs qui déversent directement dans le milieu récepteur le surplus des eaux usées qui ne peuvent être traitées par la station d'épuration.

L'ensemble de ces eaux est capté puis évacué par le réseau d'assainissement. Une station de traitement est conçue à l'aval de ce dernier pour traiter les eaux usées. Lorsque la capacité de

la station est dépassée, le surplus de ces eaux usées est rejeté directement par des déversoirs d'orage.

2. Fonctions d'un réseau d'assainissement

Un système d'assainissement urbain remplit trois fonctions principales :

- 1. Fonction de protection de l'environnement urbain, ou drainage des eaux urbaines, de temps de pluie ou de temps sec ;
- 2. Fonction de stabilité de ses ouvrages 'élémentaires' ;
- 3. Fonction de protection de l'environnement naturel.

3. Choix d'un système

Le choix d'un système repose essentiellement sur les points suivants :

- Données relatives au site telle que la topographie, la nature du sol, le régime des nappes...;
- Données pluviométriques ;
- Données relatives à la croissance démographique et au développement ;
- Données urbanistiques ;
- Données économiques et financières.

4. Schémas d'évacuation (Jacques-B; 1986)

4.1. Réseau du type perpendiculaire

Ce type de tracé consiste à amener perpendiculairement à la rivière un certain nombre de collecteurs recevant à leur tour les eaux des égouts primaires.

Il ne permet donc pas la concentration des eaux vers un point unique d'épuration, et donc interdit pratiquement celle-ci. Il convient donc lorsque l'épuration n'est pas jugée nécessaire, et en particulier pour les réseaux d'eaux pluviales. C'est le tracé le plus économique, surtout si la pente du terrain vers la rivière est faible

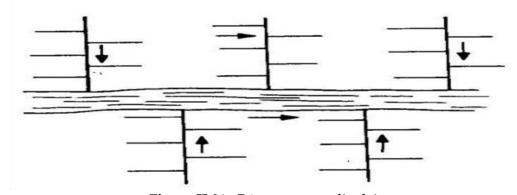


Figure II.01: Réseau perpendiculaire.

4.2. Collecteur latéral

On peut transformer le tracé précédent pour faire passer toutes les eaux par un point unique E d'épuration en disposant un collecteur latéral à la rivière. Si la pente de celle-ci est suffisante, ce collecteur latéral est réalisable de façon économique ; dans le cas contraire, il peut devenir très onéreux, et il conviendra alors d'adopter la disposition suivante (collecteur transversal oblique). Si de plus l'agglomération est située des deux côtés de la rivière, il faut aménager deux collecteurs latéraux, et l'un d'eux (en général le plus petit) devra franchir la rivière pour atteindre le point d'épuration, généralement par un tuyau en charge appelé siphon.

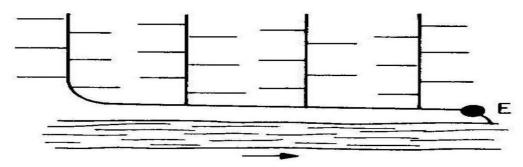


Figure II.02: Réseau à collecteur latéral.

4.3. Collecteur transversal oblique

Pour augmenter la pente du collecteur, dans le cas où celle de la rivière est insuffisante, il est intéressant de tracer le collecteur obliquement, afin de profiter également de la pente du terrain vers la rivière. Dans ce cas, les terrains placés entre le collecteur et la rivière sont moins faciles à assainir, mais les débits à évacuer sont également moins importants. Le tracé oblique résultera d'un optimum à la fois technique et économique.



Figure II.03: Réseau à collecteur transversal oblique.

4.4. Collecteurs étagés

Pour de faibles pentes et une agglomération très étendue le long de la rivière, il peut être nécessaire d'effectuer l'assainissement à plusieurs niveaux, ce qui nécessite de multiplier les points où s'effectue l'épuration, et par conséquent augmente le prix de celle-ci.

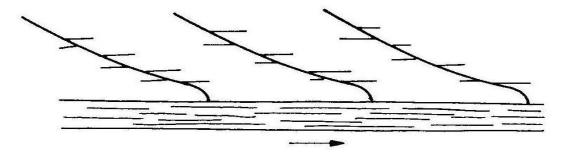


Figure II.04 : Réseau à collecteur étagés.

4.5. Réseau radial

Si l'agglomération est sur une plaine (ou un plateau) exempte de tout relief, il faut donner une pente aux égouts en faisant varier la profondeur de la tranchée où ils sont posés ; on dispose ainsi des égouts radiaux convergeant vers un point P de ce point les eaux usées

seront reprises par pompage et circuleront alors en charge vers un exutoire convenable. Le rayon d'action que peut pratiquement et économiquement desservir une station de relèvement par pompage telle que P, en relief strictement horizontal, est de quelques hectomètres. La structure de ce réseau justifie son appellation de réseau radial

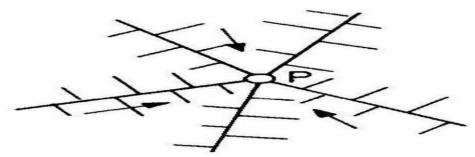


Figure III.05: Réseau radial.

3.6. Réseau multi-radial

Dans le cas d'une ville étendue sur une plaine horizontale, il est donc nécessaire de multiplier les stations de relèvement en tenant compte de leur rayon d'action pratique. Le réseau multi-radial ainsi constitué est très onéreux en investissements et en exploitation.

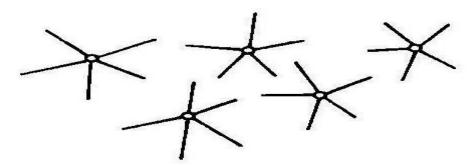


Figure II.06: Réseau multi-radial.

II. Gestion des réseaux d'assainissement

De tous les temps l'assainissement des agglomérations a posé un certain nombre de problèmes, et il a trop souvent été considéré, dans l'ensemble des équipements, comme le parent pauvre. Cependant, la situation de l'assainissement s'est profondément modifiée pour de nombreuses raisons :

- L'importance de l'accroissement démographique, la concentration urbaine et l'urbanisation qui s'est étendue sur la périphérie, rarement les écoulements vers le centre où la capacité est devenue rapidement insuffisante, constituent l'élément majeur de saturation ;
- Le développement de l'usage de la voiture et des moyens de transport routier a nécessité davantage de surfaces revêtues, de parkings et des aires industrielles de plus en plus vastes;
- ➤ L'amélioration des toitures, des revêtements, des descentes et des engouffrements a diminué les temps de ruissellement et de concentration aux différents points des réseaux ;
- ➤ La couverture hâtive des cours d'eau sans augmenter les gabarits et de façon générale la mauvaise prévision en espaces, rend les améliorations de réseaux difficiles ;

- L'augmentation des besoins en eau et par conséquent les rejets d'eaux polluées contribuent à la saturation et à la dégradation des milieux récepteurs ;
- La conception des réseaux neufs a été faite jusqu'ici avec le souci de collecter toutes les eaux pluviales et usées, et de les évacuer aussi vite que possible vers les rivières et les stations d'épuration. (Bourrier, R.; 1997)

A l'instar des autres réseaux d'infrastructure (transport, eau potable), le système d'assainissement fait partie d'un patrimoine collectif indispensable au développement économique de la cité, en plus c'est un système qui aide à préserver le patrimoine le plus précieux qui nous été donné : le milieu naturel.

La sauvegarde du système d'assainissement se fait par une gestion rigoureuse et rationnelle de celui-ci. Les travaux principaux pour mener à bien cette tache sont :

- La connaissance du réseau ;
- La surveillance du réseau ;
- > Les travaux d'entretiens ;
- Les travaux spécifiques ;
- > Une gestion informatisée. (Godart-H. & al; 2007)

1. La connaissance du réseau

La première condition pour une exploitation rationnelle du système d'assainissement est de connaître :

- Le tracé exact de celui-ci ;
- > Toutes ces caractéristiques hydrauliques (Débit ; Vitesse, etc.) ;
- Toutes ces caractéristiques topographiques (Pente ; Côte, etc.).

2. La surveillance du réseau

La surveillance du réseau se fait en continu par des opérations d'inspections périodiques, et qu'on double après chaque événement exceptionnel (Inondation; Pluies torrentielles). (**Delevoye-J & al**; 2001)

3. Programme périodique d'entretien

Dans tous les domaines il vaut mieux prévenir que guérir, cela conduit naturellement le gestionnaire à établir un véritable programme d'entretien se rapportant à l'ensemble des équipements, et qui s'accentue sur les pièces les plus vénérables (Déversoir d'orage; Les tronçons de conduite ou les vitesses d'eau sont susceptibles d'engendrer de dépôts).

4. Les travaux d'entretien

Ces travaux ne se font pas d'une manière anarchique mais suivant un programme établi au préalable, et en mettant les moyens nécessaires. (**Bourrier**, **R.**; 1997)

5. Enlèvement des dépôts

L'ennemie première des réseaux d'assainissement est le dépôt des matières en suspension, surtout, le sable. Le curage peut se faire automatiquement par des regards de chasse, mais ces derniers ont montré leur limite d'utilisation, donc il vaut mieux prévoir des chasses hydrodynamiques ou faire un curage à la main.

6. Détection des fuites

Les causes principales des fuites sont :

- Les fissures au niveau des collecteurs ou au niveau des regards ;
- Les joints qui ne remplissent plus leur rôle. (**Bourrier**, **R.** ; 1997)

7. Détection des eaux parasites

Les eaux parasites proviennent des nappes ou du réseau d'alimentation en eau potable, la détection se fait la nuit et on reconnaît les eaux parasites par leur clarté. (Godart-H. & al ; 2007)

8. Rénovation des joints et des conduites défectueuses

Dans la majeure partie des cas lorsqu'on détecte un élément défectueux on le répare, mais l'expérience a montré qu'il est préférable de le changer. Pour travailler à sec lors de la réparation du réseau on utilise un coussin gonflable qui sert d'obturateur. (**Delevoye-J & al**; 2001)

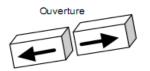
III. Défauts, Dysfonctionnements des réseaux d'assainissement

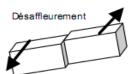
L'idée directrice de la méthode RERAU (*Réhabilitation des Réseaux d'Assainissement Urbains*) est d'identifier «les tronçons prioritaires vis- à-vis d'investigations ou de réhabilitations en basant cette hiérarchisation sur l'impact des défauts détectés ou susceptibles de l'être.

- Les défauts caractérisent l'état physique des ouvrages, ils seraient éventuellement inadmissibles en réception d'ouvrages neufs, mais qui peuvent n'avoir guère de conséquences pratiques sur des ouvrages en service. Les défauts sont en général observables par ITV (ex : joint déboîté);
- Les dysfonctionnements sont les conséquences des défauts sur le fonctionnement des ouvrages. Certains dysfonctionnements sont également observables par ITV.
- > les impacts traduisent le caractère plus ou moins nocif des dysfonctionnements. (LeGauffre & al ; 2005)

1. Défauts possibles des réseaux d'assainissement

La quasi-totalité des égouts présents en zone rurale sont de type non-visitables. Nous n'aborderons donc pas les défaillances propres aux égouts visitables.


Les défauts des réseaux d'assainissement peuvent donc être classées en cinq familles distinctes, classées en ordre décroissant par rapport aux risques structurels potentiels qui s'y rattachent et donc par rapport aux besoins de restructuration qu'elles engendrent. Il s'agit :


- 1. des cassures ;
- 2. des déformations;
- 3. des défauts d'étanchéité;
- 4. des anomalies ponctuelles;
- 5. les dégradations de parements. (Berland-J; 2004)

1.1. Cassures

Les cassures sont l'une des familles de dégradations les plus liées à des risques structurels. Leurs conséquences sur l'intégrité de la structure des conduites sont lourdes et elles sont à l'origine de dysfonctionnements comme

- D'une part, la perturbation des écoulements ;
- D'autre part, les entrées d'eaux parasites de nappe et des fuites d'effluent. (Berland-I : 2004)

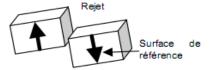


Figure II.07: Cassure pouvant survenir au niveau des réseaux. (Berland-I; 2004)

1.2. Déformations

Les déformations relèvent, comme les cassures, d'une famille de dégradations liées à des risques structurels. Elles sont, elles aussi, à l'origine de désordres fonctionnels : perturbation des écoulements, infiltrations / exfiltrations. (**Berland-J**; 2004)

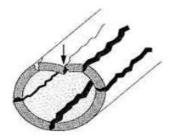


Figure II.08: Exemple d'affaissement de voute (RERAU; 2002)

1.3. Les défauts d'étanchéité

L'autre famille de défauts pouvant être constatée au niveau des réseaux d'assainissement est constituée par les défauts d'étanchéité. Ces dégradations peuvent être liées aux cassures et aux déformations et sont à l'origine de dysfonctionnements essentiellement hydrauliques. Leur ampleur peut également menacer l'intégrité structurelle. (**RERAU**; 2002)

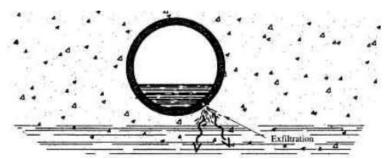


Figure II.09: Exfiltration (RERAU; 2002)

1.4. Les anomalies ponctuelles

Du fait même de leur faible étendue, les anomalies ponctuelles ne constituent pas une menace directe et immédiate pour l'intégrité structurelle et le fonctionnement hydraulique d'une conduite. Toutefois, leur caractère évolutif présente de fait un réel niveau de risque pour la conduite. (Berland-J; 2004)

1.5. Les dégradations permanentes

Les dégradations superficielles constituent une famille de désordres sans caractère de gravité immédiate mais qui peuvent s'amplifier et justifier, de ce fait, une démarche de réhabilitation.

2. Les causes de dégradation des ouvrages (Berland-J; 2004)

L'environnement des canalisations génère un certain nombre de risques de dégradation. Ils peuvent être liés :

- 1. Aux terrains (risques géotechniques et hydrogéologiques);
- 2. A l'effluent transporté (risques hydrauliques);
- 3. A l'ouvrage lui-même (risques structurels) ;
- 4. Au milieu environnant (risques d'impacts).

2.1. Risques géotechniques et hydrogéologiques

2.1.1. Entraînement de fines

L'écoulement de l'eau dans un sable engendre des forces hydrodynamiques tendant à entraîner les éléments de sol dans le sens de l'écoulement.

Dans le cas d'une canalisation mise en place sous une nappe, ce phénomène peut s'enclencher dès la phase de construction lorsqu'il y a déficience du système de rabattement de la nappe. Le processus d'entraînement du sol environnant la canalisation et sa périphérie s'aggravant au cours du temps, les vides créés au voisinage de la canalisation vont provoquer des désordres dans celui-ci (fissures, assemblages défectueux...) favorisant la pénétration du sol à l'intérieur et contribuant à l'amplification du phénomène.

Le phénomène peut aussi apparaître ou se développer postérieurement à la phase de construction. C'est le cas lorsque l'environnement perméable immédiat de la canalisation peut constituer un drain. L'origine du drainage de la nappe et donc de l'entraînement de fines peut aussi se trouver ailleurs qu'au droit même de la canalisation :

- 1. Pompages temporaires dans les fouilles proches de l'ouvrage;
- 2. Drains perméables défectueux autour de constructions voisines ;
- 3. Proximité d'un réseau d'adduction d'eau non étanche;
- 4. Remontée importante de nappe dans la partie amont de l'ouvrage ou au contraire baisse importante dans la partie aval (**RERAU**; 2002).

2.1.2. Tassement

Ce sont, avant tout, les conditions de réalisation des conduites ou d'évolution de leur environnement qui vont générer ces tassements.

2.1.3. Dissolution

Certains matériaux naturels, tels que le gypse, sont solubles voire très solubles dans l'eau. La dissolution conduit à la formation de cavités et de Karst plus ou moins importants. Ceux-ci sont à l'origine de fissure, d'affaissement ou d'effondrement pour les conduites situées audessus ou dans des sols de ce type.

Cependant, pour qu'il y ait un risque réel, il faut que le sol soluble soit effectivement baigné par une nappe et :

- Que cette nappe, dans le cas où elle s'écoule naturellement, ne soit pas saturée ;
- Ou bien que cette nappe soit en mouvement sous l'effet d'un pompage dont la zone d'influence intéresse la canalisation.

Une fuite entraînant une circulation d'eau d'origine accidentelle constitue une autre grande cause de dissolution de ce type de sol.

2.1.4. Effondrement dû aux vides

L'existence d'un vide naturel ou artificiel souterrain peut entraîner des mouvements dans le sol sous-jacent et des efforts (cisaillement, flexion) sur la conduite qu'il renferme. Ces efforts risquent engendrer des désordres pouvant aller jusqu'à la ruine, si l'ouvrage n'a pas été conçu pour résister à l'effondrement du toit de la cavité.

2.1.5. Gonflement - retrait

Certaines argiles et marnes raides ont une tendance à changer de volume en fonction de leur teneur en eau. Pour une conduite qui traverse des terrains de cette nature, l'existence de cycles gonflement - retrait, causés par des fluctuations du niveau de la nappe phréatique ou

par des cycles de sécheresses, peut se traduire par des soulèvements, des tassements et des efforts de compression à l'origine de déformation et de fissure de la structure.

2.1.6. Glissement de terrain

Les glissements de terrains résultent de la rupture d'un massif lorsque la contrainte de cisaillement, au niveau de la surface de rupture, devient supérieure à la résistance au cisaillement du sol. Ils entraînent, le plus souvent la ruine des ouvrages.

2.1.7. Sismicité

Ce risque reste très limité en zone métropolitaine. Il faut cependant le prendre en compte dans certaines régions exposées. L'importance des désordres tient aux facteurs suivants :

- 1. Localisation géographique de l'ouvrage (zone de sismicité);
- 2. Nature du terrain encaissant;
- 3. Vulnérabilité de la structure.

2.1.8. Mouvements tectoniques

Les facteurs influant sur ce type de risque sont :

- 1. La nature et la proximité de l'accident tectonique (axe anticlinal ou synclinal, faille ou fosse de subsidence) et sa disposition par rapport à l'axe longitudinal de l'ouvrage;
 - 2. La nature du terrain encaissant;
 - 3. La nature de la structure de l'ouvrage;
 - 4. La qualité du contact entre l'ouvrage et le terrain.

La vitesse d'évolution du phénomène tectonique peut varier fortement. Ainsi, dans le cas d'une faille, il peut s'agir d'une évolution brutale proche de celle d'un séisme, alors que dans le cas de fosse de subsidence, il s'agit de mouvements assimilables aux tassements.

2.1.9. Eboulement rocheux

Le risque d'éboulement rocheux se présente :

- ❖ Pour un ouvrage situé en crête de falaise, risquant d'être entraîné par la rupture de celle-ci;
- Pour un ouvrage peu profond situé au pied d'une falaise.

Les facteurs intervenant sont liés :

- A la proximité de l'ouvrage par rapport à la crête de falaise et à la hauteur de celle-ci ;
- A la nature des terrains concernés, à la fracturation du massif rocheux, à la stratigraphie ou à la schistosité de ces terrains (influence importance des pendages de couche vers la falaise);
- A l'exposition aux intempéries où l'importance des cycles gel / dégel joue un rôle important

2.1.10. *Marnage*

Ce risque doit être pris en compte pour les ouvrages longeant et / ou débouchant sur un rivage marin à forte amplitude de marée, sur une berge de rivière avec des variations de niveau cyclique comme c'est le cas par exemple lorsqu'il y a une écluse à proximité.

Le marnage concerne les phénomènes hydrauliques engendrés par ces variations de niveau dans l'ouvrage lui-même et / ou dans le terrain environnant, l'ouvrage pouvant être, ou non, envahi par le flot.

Les facteurs intervenant sont :

- La position de l'ouvrage par rapport à la berge ou au rivage ;
- La nature et la perméabilité du terrain encaissant ;
- La rapidité, la fréquence et l'importance des variations de niveau d'eau.

2.2. Risques hydrauliques

L'effluent exerce une charge hydraulique dynamique ou statique sur l'ouvrage. Lors de crues ou de taux de remplissage inhabituel, l'ouvrage peut également subir des charges hydrauliques pour lesquelles il n'a pas été conçu.

2.3. Risques structurels

2.3.1. Les charges statiques et dynamiques

Une canalisation est d'autant plus sensible aux charges dynamiques et statiques qu'elle est plus proche de la surface.

2.3.2. Maintenance

L'observation régulière et sérieuse des conduites est une condition impérative pour la prévention de sa dégradation et de ses dysfonctionnements.

Sa négligence constitue un facteur de risque aggravant, de même que l'absence de réalisation des mesures préconisées après constat de désordres ou anomalies.

2.3.3. Constructions

La vulnérabilité des ouvrages est fortement accrue par :

- 1. L'inadaptation des techniques d'exécution;
- 2. La mauvaise maîtrise de ces techniques;
- 3. La rencontre d'aléas géologiques, pour lesquels les techniques d'exécution et la structure ont été mal adaptées.

3. Dysfonctionnements (LeGauffre & al; 2005)

Le projet RERAU identifie 11 types de dysfonctionnements :

- Infiltration (INF);
- Exfiltration (EXF);
- Réduction de la capacité hydraulique (HYD) ;
- Débordement (DEB);
- Déversement (DEV)
- Ensablement (ENS);
- Dégradation du complexe sol-conduite (DSC) ;
- Dégradation de la conduite par attaque chimique (ATC) ;
- Dégradation de la conduite par intrusion des racines (RAC);
- Dégradation de la conduite par abrasion (ABR) ;
- Effondrement (EFF). **(LeGauffre & al ;** 2005)

2.1. *Infiltration (INF)*

Le dysfonctionnement « infiltration » résulte de la conjonction d'un défaut d'étanchéité et de la présence d'eau, à un moment donné, à l'extérieur de la canalisation. Il est en général observé

à partir de mesures de débit à l'aval d'un bassin versant, après une analyse permettant d'identifier la composante de ces débits correspondant aux infiltrations.

Les débits d'infiltration étant éminemment variables avec le temps, il faut préciser l'échelle de temps de leur quantification.

2.2. Exfiltration (EXF)

Le dysfonctionnement "exfiltration" résulte de la conjonction d'un défaut d'étanchéité et d'un niveau d'eau à l'extérieur de la canalisation inférieur au niveau d'eau à l'intérieur. Son intensité peut varier au cours du temps, y compris à l'échelle de la journée.

Il est en général difficile à évaluer à partir de mesures de débit à l'aval d'un bassin versant, car les pertes éventuelles ne représentent qu'une fraction du débit d'eaux usées, et les pertes sur un tronçon peuvent être compensées par des infiltrations sur d'autres tronçons. Dans certains cas particuliers, correspondant à la présence de défauts majeurs de structure, des pertes pourront cependant être détectées entre un point amont et un point aval.

2.3. Réduction de la capacité hydraulique (HYD)

Une réduction de capacité hydraulique par rapport à un collecteur en bon état est susceptible de provoquer des déversements et/ou des débordements à l'amont. En première approximation, on considère que les principaux impacts de ce type de dysfonctionnement sont des déversements et débordements de temps de pluie.

La réduction de capacité hydraulique (actuelle ou potentielle) peut avoir différentes causes, permanentes ou temporaires, mais toutes liées à des défauts de structure. Ainsi la présence de racines, de branchements pénétrants, les déboîtements favorisant l'accumulation de déchets... sont-ils des facteurs de réduction de la capacité hydraulique. L'ensablement aurait pu être inclus dans ces facteurs, mais on a préféré le traiter comme un dysfonctionnement à part entière, compte tenu de sa relation étroite avec une politique de curage, elle-même composante importante de l'activité d'un service d'assainissement. De même le bouchage est traité comme dysfonctionnement en tant que tel, du fait de son caractère « accidentel », et d'analogies avec l'ensablement Le risque d'effondrement est traité en tant que dysfonctionnement sous ses aspects mécaniques. Ses aspects hydrauliques relèvent de la réduction de la capacité hydraulique, à l'exception des risques de bouchage.

2.4. Débordement (DEB)

Les débordements correspondent à des sorties d'effluent hors du réseau par des voies non prévues à cet effet : ils peuvent se produire via les regards, les avaloirs, voire les branchements, même si les riverains sont censés se protéger contre les mises en charge du réseau.

Comme pour les déversements, seuls sont considérés comme anormaux les débordements se produisant en temps sec, ou lors de pluies inférieures aux hypothèses de dimensionnement. Ils diffèrent néanmoins des déversements par plusieurs caractéristiques :

- 1. La seule présence d'un risque est à prendre en compte, même s'il n'a jamais été confirmé par des observations ;
- 2. L'observation des débordements est moins aisée que celle des déversements : les sites ne sont pas définis à l'avance avec précision, et les événements sont heureusement plus rares. Une des sources d'observation correspond aux plaintes,

mais celles-ci nécessitent un diagnostic pour être validées. Par exemple les « inondations » dues à des problèmes d'engouffrement ne sont pas considérées comme des débordements :

3. L'évaluation des impacts est basée sur une estimation, croisant dysfonctionnement et vulnérabilité. On n'a pas pris en compte d'impacts observés, bien que les plaintes puissent éventuellement être considérées comme telles. En effet elles intègrent une composante de vulnérabilité, si l'on considère que la réaction des abonnés est en relation avec la gêne ressentie...

2.5. Déversement (DEV)

Un déversement est une sortie d'effluents hors du réseau par un ouvrage aménagé à cet effet (déversoir d'orage, trop-plein de poste de relèvement...), il est normal lorsqu'il se produit sur un déversoir d'orage, en réseau unitaire, pour un événement pluvieux supérieur aux conditions de référence définies pour le dimensionnement. Il est anormal dans tous les autres cas, et en particulier en temps sec. On définit donc globalement ou pour chaque ouvrage des conditions pluviométriques de référence, en deçà desquelles un déversement sera anormal.

Le cas des surverses de poste de relèvement est un peu particulier : seuls sont à prendre en compte, pour un programme d'investigations et de réhabilitations, les déversements qui seraient dus à des apports anormaux d'eaux parasites d'infiltrations.

2.6. Ensablement (ENS)

Par sa nature, le dysfonctionnement « ensablement » s'apparente aux dysfonctionnements « réduction de capacité hydraulique » et « bouchage ». Mais à la différence du premier, il est observable directement (relevés d'ensablement aux regards), et par rapport au second il est plus progressif, et moins pathologique. A ce titre il fait l'objet d'actions systématiques (curage) permettant de le maintenir à un niveau acceptable.

L'étude de ce dysfonctionnement se concentre sur les observations directes possibles et sur les causes structurelles liées à F état de santé des collecteurs.

2.7. Dégradation du complexe sol-conduite (DSC)

Ce dysfonctionnement est défini afin d'étudier les conditions de vieillissement des collecteurs. Il est étudié par : la dégradation par attaque chimique, dégradation par pénétration des racines, dégradation par abrasion.

2.8. Dégradation de la conduite par attaque chimique (ATC)

Ce dysfonctionnement, qui correspond à un vieillissement accéléré de la conduite, peut être évalué de deux manières :

- Soit on dispose de 2 inspections réalisées à quelques années d'intervalle, et l'on peut éventuellement constater une aggravation de l'état de santé de la conduite ;
- Soit on considère que toute attaque chimique constatée indique (par défaut) un processus de dégradation en cours, sauf si la source de cette attaque a été identifiée puis supprimée.

2.9. Dégradation de la conduite par intrusion des racines (RAC)

L'intrusion des racines est un problème préoccupant pour beaucoup de gestionnaires de réseaux d'assainissement.

Outre les effets de réduction de la capacité hydraulique de la conduite, I 'intrusion de racines est également un facteur de dégradation de la conduite.

2.10. Dégradation de la conduite par abrasion (ABR)

Comme pour les dysfonctionnements DSC, ATC et RAC, l'impact d'une dégradation par abrasion est une réduction de la durée de vie de la conduite entrainant un surcout.

En outre, ce dysfonctionnement est également pris en compte pour évaluer l'évolution de l'intégrité structurelle et le risque d'effondrement.

2.11. Effondrement (EFF)

Ce dysfonctionnement, caractéristique du degré d'altération de l'intégrité structurale des conduites, ne doit pas être confondu avec le défaut qui représente un état à un instant donné. Puisqu'il est impossible de prédire exactement quand l'effondrement aura lieu, cette notion correspond à une probabilité d'effondrement (**Davies & al**; 2001, **Osborne**; 2002).

4. Conséquences des dysfonctionnements du réseau d'assainissement

Les fonctionnalités du réseau d'assainissement sont l'intégrité structurale, l'étanchéité et la capacité à évacuer l'effluent (capacité hydraulique). Néanmoins ces trois principes de bon fonctionnement sont liés. Ce paragraphe illustre, sans être exhaustif, l'influence que peut avoir la défaillance d'une seule fonctionnalité sur les deux autres.

Dans le cas où l'intégrité structurale d'une conduite ne répond plus aux exigences des gestionnaires (déstabilisation de l'équilibre sol/conduite ou effondrement), l'étanchéité de l'ouvrage est mise en péril, ce qui engendre des intrusions de remblai ou de sol encaissant, minimisant la capacité hydraulique (obstruction du tronçon).

Autre cas, si la capacité hydraulique est menacée par l'intrusion d'un objet ou par un sousdimensionnement de l'ouvrage, des mises en charges peuvent intervenir en amont du tronçon et provoquer des phénomènes de surpression sur les joints, pénalisant à terme l'étanchéité (phénomène de fatigue), créant des vides à l'extérieur de la conduite par entraînement des fines du sol extérieur et déstabilisant l'intégrité structurale.

Enfin, autre possibilité, si l'étanchéité n'est pas respectée, une conduite sous nappe va infiltrer des eaux parasites qui peuvent, soit entraîner des fines provenant du sol encaissant (création de vides autour du tronçon) et affecter la stabilité, soit sous dimensionner les conduites aval (capacité hydraulique réduite).

Par définition, le réseau d'assainissement est enterré et dans la plupart des cas les usagers oublient son existence. L'impact d'un dysfonctionnement n'est perceptible (quand il est observable) que s'il touche directement les biens des usagers ou l'équilibre de l'environnement naturel.

En fonction du lieu et de l'intensité de la défaillance, l'impact est sensiblement différent. Un effondrement dans un milieu rural à faible densité de population a moins de répercussions qu'une casse sous chaussée en pleine ville. De même, un débordement est moins acceptable s'il inonde les caves d'habitations de toute une rue que s'il touche un terrain abandonné. En fait, la frontière entre impact acceptable / inacceptable dépend du contexte de la défaillance (pourquoi y-a-t-il eu dysfonctionnement ? est-ce un événement rare comme de fortes inondations ?), des habitudes culturelles... cette notion est développée en intégrant les axes de priorités des gestionnaires ou des élus.

En d'autres termes, un dysfonctionnement se traduit en impact et celui-ci se mesure par le coût social engendré. L'exploitant cherche à minimiser le coût social d'un dysfonctionnement (assurances, réparations à l'amiable...) ou du moins le rendre «acceptable» par les usagers. Les coûts sociaux peuvent également survenir lors d'un impact sanitaire, notamment la contamination de l'eau potable par l'eau usée. Un tiers des contaminations de l'eau potable impliquent les ressources avec une des causes les plus fréquentes, l'effondrement d'une conduite à proximité d'un forage.

L'ensemble des impacts dont le réseau d'assainissement peut être responsable dans le cas d'un dysfonctionnement sont les suivants :

- Pollution des eaux de surfaces (POL);
- ➤ Pollution des sols et des eaux souterraines (NUH) ;
- ➤ Nuisances diverses (sur le trafic...) (TRA);
- > Dommages au bâti (SOB);
- ➤ Surcoûts d'exploitation du réseau (CXR) et surcoûts d'exploitation de la station d'épuration (CXS)
- Coût de la réduction de la durée des conduites(CDV);

IV. Gestion et entretien du réseau

La gestion d'un réseau d'assainissement a pour principal objectif d'assurer :

- la pérennité des ouvrages, par des opérations de conservation;
- l'entretien courant des réseaux et des organes mécaniques par des interventions de nettoyage, dépannage et de maintenance;
- l'exploitation par la régulation des débits et la synchronisation:
 Collecte -transfert traitement.

i. Pérennité des ouvrages

Les réseaux d'assainissement sont compatibles à tous les autres ouvrages du patrimoine d'une cité; comme tous les biens d'équipements, ces réseaux en nécessité des coûts d'investissements deviennent très coûteux et difficiles à réaliser sous des espaces de plus en plus encombrés par les réseaux divers.

Par conséquent, les améliorations et les réparations périodiques sont indispensables.

ii. Entretien courant

Un réseau d'assainissement doit être assuré d'un entretien continu et périodique.

1. La connaissance du réseau

La première condition pour une exploitation rationnelle du système d'assainissement est de connaître :

- Le tracé exact de celui-ci;
- Les caractéristiques géographiques et géométriques :
 - pour les réseaux : Situation en plan, type ou section, côtes de sol et de fil d'eau, pentes etc.... ;
 - Pour les bassins : surface, coefficient de ruissellement, pente moyenne.
- **-** Les caractéristiques hydrauliques :
 - Pluviométrie;
 - Consommation d'eau;
 - Débit entrant dans le réseau ; (Satin-M. & al ; 1999)

2. Entretien et curage du réseau d'assainissement

L'exploitation des réseaux d'égouts comprend les opérations d'entretien suivantes:

a. Nettoyage périodique

Il s'effectue à des cadences déterminées dans chaque cas particulier. Des curages journaliers sont nécessaires sur des tronçons de canalisation ayant tendance à se saturer en dépôts. L'opération s'effectue au moyen de l'eau sous très forte pression (15 à 100bars). (**Delevoye-J.P**; 2002)

b. Détection des fuites

Les canalisations d'égouts subissent des contraintes dues soit à des tassements différentiels des remblais, soit à l'action des surcharges roulantes. Sous l'action de ces contraintes les canalisations peuvent à la longue, et sur tout pour les canalisations anciennes, soit se fissurées, soit s'ouvrir au droit des joints; ce phénomène étant rapidement aggravé par l'introduction des racines d'arbre. (Delevoye-J.P; 2002)

Une fuite dans une canalisation peut être détecté par :

- La mesure des débits par temps sec et par temps humide;
- L'essai à la fumée par éclatement d'une bombe fumigène après occlusion des extrémités.
 - L'examen à l'aide d'une caméra télévision.

c. Curage journalier

Afin d'éviter les dépôts de boues et les fermentations, et de pouvoir envoyer un effluent "frais" à la station d'épuration La solution idéale des curages journaliers des canalisations d'égouts, consiste en l'auto curage de ces dernières.

d. Débouchages accidentels

Ils sont généralement réalisés par des opérations qui s'effectuent dans le cas d'obturation causées par des dépôts importants. Cette opération peut s'effectuer avec un matériel approprié sous forme de joints manœuvrables à la main.

3. Mode d'entretien des réseaux

a. La surveillance

Toute mise en place d'un système quelconque de surveillance nécessite au préalable l'établissement de la carte d'identité du réseau que l'on désire contrôler.

Les méthodes utilisées pour la surveillance du réseau étant actuellement basées sur l'aspect humain, elles resteront de ce fait approximatives pour des ouvrages non visitables. Mais l'introduction de nouvelles techniques va permettre un gain de temps et d'argent et une plus grande efficacité dans le travail. La surveillance du réseau doit s'effectuer en ce qui concerne :

- La nature des effluents admis dans le réseau;
- Le bon fonctionnement des diverses installations fixes. (Ali-S.M; 2006)

b. Méthodes traditionnelles

Un réseau d'égout, même parfaitement construit, doit périodiquement être curé pour supprimer les obstructions et maintenir l'écoulement des effluents d'eau usées et des eaux pluviales constant.

Plusieurs méthodes sont utilisées qui peuvent s'inscrire dans deux catégories.

i. Le curage mécanique manuel

Pour cela on déplace entre deux regards l'appareil à curer (curette, boule de curage : flottante ou roulante; vrille ou hérisson).

A. La boule flottante

Ce procédé est utilisé pour le curage du siphon ou de grands émissaires non visitables, car il est constamment en charge, une boule en bois dur, d'un diamètre légèrement inférieur au diamètre de la canalisation à curer est introduite par un ouvrage spécial. Cette boule, suit la génératrice supérieure du tuyau et se met en rotation du fait de la poussée amont et de la pression de l'eau sous la boule. Le courant d'eau, ainsi crée, entraîne les dépôts gênants l'avancement de la boule jusqu'à l'ouvrage de sortie qui permettra de la récupérer et d'éliminer les matières entraînées.

B. La boule roulante

Elle active l'auto curage du collecteur. La boule a un diamètre de l'ordre de 50 cm et comporte des bourrelets en forme de (S). Le lâchage quotidien d'une boule dans les collecteurs entraînée par le courant remet en suspension et entraîne les dépôts. Les chasses d'eau dont le but est d'envoyer dans le réseau une certaine quantité d'eau afin d'éliminer les dépôts. (Ali-S.M; 2006)

ii. La chasse d'eau

Ce procédé consiste à réaliser une retenue en amont par obstruction de la canalisation au moyen d'un bâtard d'eau. L'ouverture rapide de cette retenue crée en aval une chasse qui entraîne une grande partie des dépôts existants.

Ce procédé présente un certain nombre d'inconvénients, parmi lesquels: la mise en charge du réseau qui se répercute sur les branchements particuliers ainsi que le phénomène du dépôt dans la partie amont pendant la retenue.

c. Méthode moderne

Les raisons de l'introduction et de la généralisation des méthodes modernes sont la conséquence des inconvénients notoires des anciens procédés; en effet ces derniers :

- Manque d'efficacité ;
- ont un faible rendement et exige un personnel travaillant dans des conditions très malsaines ;
- sont à des coûts d'entretien élevés.

Des méthodes modernes d'entretien mécanisées ont été élaborées, depuis une vingtaine années en vue:

- ❖ D'améliorer l'efficacité de l'entretien et le rendement en mécanisant les travaux ;
- ❖ D'éviter que le personnel ne descende dans les regards et soit en contact avec les boues extraites ;
- ❖ D'éviter que les matières extraites ne souillent les chaussées pour éviter les risques de propagation des épidémies. (Ali-S.M; 2006)
 - i. Les cureuses hydrodynamiques

Ce sont des appareils qui se déplacent de l'amont vers l'aval du collecteur, un jet central désagrège les boues tandis que d'autres jets latéraux pousse les boues émulsionnées vers le regard afin d'être aspirées.

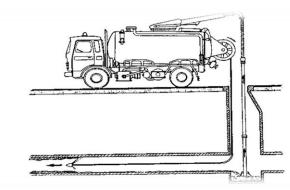


Figure II.10: schéma d'un hydro-cureur.

ii. Les aspiratrices

Dans le cas où les boues peuvent être accessibles directement à partir des ouvrages, on utilise des pompes à vides pour aspirer ces boues vers une citerne sous vide. Elles sont équipées d'une cuve à boues de 5 à 10 m³. Cette cuve est mise en dépression par une pompe à air aspirant 200 à 500 m³/h sous pression de 0,7 bars.

4. Entretien des chasses d'eau

Les chasses d'eau sont réglées pour obtenir une ou deux chasses par 24 heurs afin d'éviter le désamorçage. Une visite des regards et les bouches d'égout s'imposent une fois par mois.

5. Entretien des branchements particulier

Le curage des branchements particuliers sur la section comprise sous le domaine public a lieu une fois tous les deux ans. Il se fait par tringlage.

Le curage des branchements sur le terrain privé est laissé à l'initiative et aux frais de propriétaire. **Bourrier**, **R.** ; 1997)

6. Ventilation des égouts

La présence de l'air dans les égouts est la meilleure garantie contre la fermentation putride des matières dans les eaux. Par une inspection régulière, chaque trimestre, il faut veiller à ce que :

- Les tampons de regards soient munis d'orifices non obstrués ;
- Les bouches sous chaussées soient nettoyées;
- Les tuyaux de chute et de descente des immeubles aient une ventilation primaire à l'air libre. (Godart-H. & al; 2007)

7. Entretien des ouvrages en béton

Les ouvrages en béton (canalisations en particulier) peuvent présenter des défauts d'étanchéité et de ruptures; ces défauts sont sollicités par:

- Les mouvements du sol;
- Les vibrations dues à la circulation lourde,
- Les agressions chimiques.

8. Gestion informatique du réseau

Pour une bonne gestion il n'y a pas mieux qu'une gestion informatisée, mais pour pouvoir la faire il faut une connaissance totale du réseau et de son comportement dans les différentes situations (temps sec et temps de pluie). La première chose à faire est d'entreprendre une compagne de mesure pour créer une banque de données qui servira de référence aux

événements futurs, ainsi détecter chaque fonctionnement anormal du réseau. (Delevoye-J.P; 2002)

Pour perfectionner ce système on peut placer des capteurs de plusieurs paramètres (débit, vitesse,...etc.), au niveau des points les plus sensibles du réseau, qui seront connectés à des commandes automatiques ou semi-automatiques à distance.

9. Travaux spécifiques

i. Désodorisation

Le réseau d'égouts est un milieu favorable à la formation de bactéries qui dégagent les mauvaises odeurs, pour y remédier il faut bien aérer le réseau ou injecter de l'oxygène liquide. (**Dedier-M**; 2002)

ii. Détection des eaux parasites

Les principales méthodes de détection des eaux parasites peuvent être classées comme suit :

- Visites de terrain et mesure instantané;
- Mesure en continu ;
- Contrôle par dispositif fumigène ;
- Contrôle par injection de colorant ;
- Inspection télévisé. (Dedier-M; 2002)
- iii. Réhabilitation du réseau (Ali-S.M; 2006)

Un réseau d'assainissement est considéré comme inexploitable lorsque les préjudices qu'il cause au milieu naturel ou aux citadins ne sont plus tolérables, dans un tel cas on à deux choix : soit le réparer ou le changer. Le remplacement d'un réseau d'assainissement s'avère très coûteux et les travaux de réalisation causent beaucoup plus de désagréments que lors de la réparation.

Les travaux de réhabilitations qu'entreprend le gestionnaire sont:

- Le fraisage des obstacles intérieurs ;
- Le tubage intérieur ;
- Le gainage intérieur ;
- Le chemisage extérieur ;
- L'injection de produits colmatant.

A. Fraisage des obstacles

C'est une opération destinée à l'élimination des racines d'arbres qui s'introduisent par les joints. L'opération est effectuée par une brosse circulaire dure qui a un mouvement de rotation autour d'un axe horizontal et qui est alimentée par un moteur.

B. L'injection des produits colmatant

Cette technique est utilisée pour les conduites de gros diamètres, elle consiste à projeter par centrifugation une couche de mortier de ciment où résine hypoxique qui se stabilise à l'état de gel ce qui permet d'obturer tous les trous et les fissures.

C. Le tubage intérieur

On adopte cette technique pour les conduites ayons un diamètre de 1000 mm ou plus. Son principe consiste à placer des tuyaux en plastique à l'intérieur de la canalisation. L'assemblage se fait soit par collage, par emboîtement, par joint caoutchouc ou par thermosoudage

D. Le gainage intérieur

Ce procédé est utilisé pour les conduites de diamètre allant de 200 mm à 1000 mm, avant la mise en place de la gaine on procède à une inspection de la canalisation par une caméra TV. On place à l'intérieur de la conduite une gaine qu'on gonfle avec de l'air sous pression (de 0,1 à 0,5 bar).

E. Le chemisage extérieur

L'opération est appliquée pour les canalisations traversant des terrains marécageux, ou des sols agressifs. Elle consiste à enrober la canalisation d'une gaine étanche et qui résiste aux attaques chimiques, la gaine est en suite entourée par une couche de sable pour faciliter le drainage des eaux qui stagne autour de la conduite.

V. Indices de performance des réseaux d'assainissement

L'attente des citoyens envers les services publics oblige ces derniers à être toujours plus performants. Ainsi pour fournir cette qualité de service, il faut tout d'abord être capable de mesurer la performance du service, sans forcément passer par des indicateurs financiers.

Il existe pour cela des indicateurs de performance, permettant aux gestionnaires de situer leur service par rapport à une certaine normalité, une règlementation ou un objectif de performance préalablement défini, et de prendre les décisions nécessaires face aux éléments qui influencent cette performance. Si la solution adoptée n'est pas efficace, il se peut qu'il faille revoir les causes principales de la perturbation et les moyens d'y remédier. Ces indicateurs de performance sont également utilisés dans un objectif de comparaison avec d'autres entreprises du même domaine afin de se situer par rapport à elles et d'apprendre de leur expérience sur les méthodes optimisant la performance pour les différentes situations rencontrées (Crotty; 2003).

Cependant, lorsque les organisations publiques essayent de développer et de s'appuyer sur des indicateurs de performance, elles font face à de multiples obstacles qui peuvent aller à l'encontre des objectifs (**Nicholson-Crotty et al**; 2006).

(Moullin; 2004) présente plusieurs cadres conceptuels pour évaluer la performance d'un groupe de travail ou d'une organisation publique : le modèle d'excellence, l'évaluation de performance conceptuelle NHS, le tableau de bord équilibré, le tableau de bord du service public et le Prisme de performance. Il présente également huit caractéristiques nécessaires à une mesure de la performance efficace.

(Matos et al; 2003) proposent de nombreux indicateurs pour les eaux usées, classés en 6 catégories qui sont les mêmes que précédemment pour l'eau potable, avec cependant les indicateurs environnementaux en lieu et place des indicateurs des ressources d'eau. Le "National Water and Wastewater Benchmarking Initiative" présente également de nombreux indicateurs de performance dans le domaine des eaux, eaux usées et eaux pluviales (National Water and Wastewater Benchmarking Initiative.

(Le Gauffre ; 2007) présente une méthodologie pour développer des indicateurs et critères de décision pour la gestion des réseaux d'assainissement, plus particulièrement au niveau de la réhabilitation du réseau d'eau usée. Cette méthodologie a en effet pour but l'évaluation de l'état de santé du patrimoine, ceci à l'aide de sources d'informations complémentaires pouvant être fournies par les activités d'exploitation et de maintenance, ou par l'auto surveillance : les résultats des inspections visuelles ou des auscultations de conduites, les données obtenues par auto surveillance du réseau, les données relatives à la vulnérabilité des environnements... C'est une approche multicritère de la réhabilitation des réseaux d'eaux usées plutôt qu'une approche économique.

Ces indicateurs de dysfonctionnement permettent de mettre en évidence les priorités d'inspections et de réhabilitation des infrastructures. La méthodologie proposée se base sur trois étapes majeures: (i) mettre en place d'une typologie pour les défauts, dysfonctionnements et impacts (ii) établir les indicateurs pour ces défauts, dysfonctionnements et impacts (iii) combiner les indicateurs de dysfonctionnement et d'impact pour former les critères de décision.

Conclusion

Finalement, de par ses caractéristiques spécifiques, la gestion du patrimoine des réseaux d'assainissement non visitables se distingue tout de même des autres infrastructures. Ce chapitre a présenté ces spécificités:

- L'importance des impacts possibles dans le cas d'un dysfonctionnement du réseau, notamment en termes de coûts sociaux;
- Le milieu du sous-sol urbain dont les interventions à proximité ou directement sur l'ouvrage sont mal contrôlées ;
- Les stratégies d'interventions trop curatives et trop peu préventives, les gestionnaires ne sachant pas justifier où et quand intervenir sur le réseau;
- Des bases de données urbaines faiblement documentées et ne possédant pas forcément les champs d'information réellement nécessaires pour faire de la gestion du patrimoine ;
- Des outils de mesure de la performance existants, mais actuellement mal alimentés (cf. base de données incomplètes) et que les gestionnaires ne savent pas valoriser;

Des connaissances sur le comportement de vieillissement des conduites trop pauvres. Dans la mesure où il est difficile actuellement de construire un outil opérationnel pour mieux gérer les interventions I.M.R (Inspection, Maintenance et Réhabilitation) par manque de données, il faut prouver aux élus et décideurs que l'information est le moteur de toute méthodologie d'aide à la gestion du réseau d'assainissement. Car, cette information, mise en forme et exploitée, peut permettre, sans gros moyens techniques, d'améliorer significativement les approches des gestionnaires. Mais, il s'agit également de montrer que, même si elle est pauvre en quantité, l'information actuellement disponible est un atout pour faire une estimation partielle de l'état du patrimoine et que les efforts financiers ne sont pas forcément pharaoniques pour acquérir plus de données.

Chapitre: III

Etat patrimonial du réseau d'assainissement

Introduction

La réussite d'un projet de restructuration d'un réseau d'eaux usées suppose une maîtrise préalable de tous les éléments constituant les branches du réseau, et des difficultés de fonctionnement et leurs causes. Four ce faire il est nécessaire de multiplier les descentes sur le terrain afin d'identifier les défaillances qui font que le réseau ne joue pas de façon optimale son rôle qui est d'évacuer les eaux usées loin des concessions sans porter atteinte à l'environnement.

Dans cette partie nous allons, dans un premier temps, faire la description du réseau existant, cette description doit tenir compte de tous les détails du réseau lui-même. Ensuite il sera question de faire l'étude diagnostique du réseau en commençant par identifier les dysfonctionnements et leurs causes.

Pour la ville d'AHMED RACHDI, une analyse du réseau s'avère primordial à cause des dysfonctionnements (inondations, fuites, extension de la ville,...) relevés, afin de d'améliorer la fiabilité et augmenter le rendement du réseau.

I. Généralités

Un diagnostic est une évaluation (d'une situation problématique) par l'analyse de diverses données. Cette étude tendra à déterminer les voies et moyens permettant de remédier aux problèmes de débordement des eaux usées, d'évacuation de celles-ci et d'inondations enregistrées en périodes de pluies.

Donc pour entamer le diagnostic il faut collecte des données et des informations relatives au réseau existant.

Ces données sont :

- a) Données relatives à l'agglomération :
 - nombre d'habitants et leur consommation en eau potable,
 - la surface totale drainée et leur caractéristique : intensité de pluie, pente.
- b) données relatives au réseau et ouvrages annexes :
 - collecteur, station de relevage, déversoir d'orage, bassin de retenue...

La démarche à suivre consiste à appliquer d'une manière plus ou moins fine, l'ensemble des techniques d'études disponibles, à travers une méthodologie dont les principales sont les suivantes :

1. Recueil et exploitation de données

Le recueil des données nécessite au préalable un scénario d'interventions de manière à ordonner au fur et à mesure de l'avancement, la prise des connaissances et les visites d'ouvrages.

En effet, tous les documents graphiques et les informations techniques s'y rapportant doivent être coordonnés et complétés par des contrôles in situ.

On distingue trois sortes de données :

Données nécessaires d'une étude de diagnostic

a. Données de Base

Elles constituent l'ensemble des données nécessaires à un bon diagnostic, ce dernier étant l'acte qui vise à déterminer, dans un premier temps, la nature et les causes d'un dysfonctionnement, et dans un deuxième temps les conséquences qui en découlent.

Les données de base sont définies comme :

- a) Données relatives à la collecte :
 - Le nombre d'habitants pour chaque sous bassin élémentaire et leur consommation en eau potable ;
 - La surface totale drainée de chaque sous bassin et ses caractéristiques (degré d'imperméabilisation, intensité de pluie et la pente).
- b) Données relatives au réseau et ses ouvrages annexes (collecteur, station de relevage, déversoir d'orage, dessabler, déshuileur, bassin de retenue, bassin d'orage, ...).
- c) Données relatives au traitement :
 - Bilan de traitement.

Ainsi, les données de base sont définies comme étant celles relatives aux facteurs de dégradation, ainsi que celles traduisant un dysfonctionnement.

Les facteurs de dégradations sont de deux types : externes à l'ouvrage, ou internes à celui-ci.

Les facteurs externes comprennent tous les facteurs qui jouent un rôle dans l'apparition de perturbations géotechniques, les contraintes de surface, ainsi que celles qui interviennent dans la transmission de ces dernières à l'ouvrage : type de sol, qualité et fluctuation du niveau de la nappe, qualité de l'interface sol-ouvrage, type de voirie et de circulation en surface, profondeur de l'ouvrage.

Les facteurs internes de dégradation sont l'ensemble des données relatives à l'ouvrage pris hors de son contexte environnemental : géométrie, matériau et type de construction, période de construction, type d'effluent, fonctionnement (mise en charge ou non), etc. (BOUNADER. E ; 1998)

b. Données d'Orientation

Elles sont relatives aux conséquences que peuvent avoir les différents dysfonctionnements : impact sur le bâti et les réseaux voisins, perturbation des usages en surface, pollution d'une nappe, etc...

Elles sont qualifiées de données d'orientation car elles servent à définir les lieux et les types de pré-diagnostic à mettre en place.

On distingue comme données d'orientation, les symptômes et les signes.

Dans notre étude, pour rester en cohérence avec le langage habituellement utilisé en génie urbain, nous adopterons les définitions suivantes :

- **#. Signe** : toute manifestation extérieure au réseau physique (structurel) ; comme par exemple, les plaintes des riverains et des usagers, les effondrements de chaussées, ... ;
- **#. Symptôme** : toute marque intérieure au réseau physique, comme par exemple les fissures, les déboîtements, les effritements de l'enduit,

Les symptômes et les signes sont ceux qu'interprète un diagnostic, par les auscultations, pour trouver les causes d'un dysfonctionnement, ou d'une panne. (**BOUNADER. E** ; 1998).

2. Le pré-diagnostic

Dans cette phase, et après recueil des données, un examen à entreprendre sur le réseau d'assainissement et les ouvrages tout en procédant une mise à jour des plans et de cartographie des patrimoines.

Ce prédiagnostic est destiné à découvrir les points faibles du système d'assainissement et à appréhender la sensibilité des milieux récepteurs. (BOUNADER. E ; 1998).

3. Reconnaissance approfondie

Cette phase consiste à faire une reconnaissance approfondie et détaillée des réseaux et des ouvrages élémentaires ce qui permet de :

- Quantifier les fuites de pollutions dans le milieu récepteur et les exfiltrations vers la nappe, prise dans l'impact des rejets ;
- Détecter les apports des eaux parasites ;
- Rechercher l'origine d'éventuelles pollutions toxiques d'origine industrielles, des graisses, et des métaux lourds ;
- Vérification de la présence de l'H₂S aux débouchées des conduites de refoulement, car la libération de ce gaz provoque une oxydation et une fermentation de l'H₂SO₄ qui provoque à son tour une attaque des matériaux constituant les ouvrages d'assainissement.

Cette phase d'étude représente un pas très important, car elle nous apporte les renseignements nécessaires de tout ce qui concerne le fonctionnement des réseaux et des ouvrages annexes.

4. Etude fonctionnelle des bassins versants élémentaires (FALI.A; 1999)

Elle consiste à délimiter les bassins élémentaires, sous bassins hydrologiques, et à déterminer les zones d'occupation des sols homogènes pour permettre :

- L'étude démographique, nombre d'habitants, d'emploi sur une zone ayant des caractéristiques physiques et socio-économiques homogènes ;
- Les consommations d'eau domestiques, des activités industrielles et commerciales;
- La définition des coefficients de ruissellement;
- La localisation des tronçons suspects, des« ponts noires », débordements ;
- La répartition des indications de la pollution.

5. Conception de la nouvelle structure d'assainissement

Cette phase comprend les dispositions de réhabilitation, de restrictions et d'extension. D'autres dispositions particulières sont à étudier, tel que les rétentions de pollution, les traitements spécifiques aux eaux pluviales déversées par le réseau unitaire.

6. Conclusion et permanence du processus d'étude (FALI.A; 1999)

En résumé, le processus consiste à prendre en compte la situation actuelle de l'assainissement, à étudier précisément les fonctionnements et dysfonctionnements, pour concevoir les solutions d'amélioration grâce à la mise en place d'outils permanents de gestion.

II. Description quantitative du réseau existant

L'étude du réseau existant est une phase très importante pour la restructuration d'un réseau d'eaux usées. Il permet, à travers une analyse, de déceler les difficultés auxquels le réseau est confronté.

1. Conception d'un réseau d'assainissement

La conception d'un réseau d'assainissement est la concrétisation de tous les ouvrages constituant l'ensemble du réseau sur un schéma global.

Les collecteurs sont définis par leur :

- Emplacement (en plan);
- Profondeur;
- Diamètres (intérieur et extérieur);
- Pente;
- Leur joints et confection ;
- Les regards de visite et de jonction sont également définis par leur ;
- Emplacement (en plan);
- Profondeur;
- Côtes.
- Les déversoirs d'orages définis par :
 - Emplacement (en plan);
 - Côtes:
 - Profondeur.

2. Aperçu général sur le réseau d'assainissement

Le réseau de la ville d'AHMED RACHDI est un système unitaire constitué de collecteurs principaux et secondaires.

Le réseau est composé des collecteurs des diamètres variant de $\Phi 300$ et $\Phi 800$, on constate aussi l'existence de certains branchements réalisés anarchiquement par les habitants avec des diamètres variant entre $\Phi 200$ et $\Phi 250$.

Toutes les eaux usées de la ville s'évacuent actuellement vers le milieu naturel à l'Oued Redjradja qui compte trois points de rejet.

La zone d'étude ne possède actuellement aucune station de traitement, cette situation ne va pas durer longtemps, car, on en a projeté une station dans la région pour préserver le milieu naturel.

3. Zonage et découpage en sous bassin versant de la ville d'AHMED RACHDI

Elle consiste à délimiter les bassins élémentaires, sous bassins hydrologiques, et à déterminer les zones d'occupation des sols homogènes pour permettre :

- L'étude démographique, nombre d'habitants, d'emploi sur une zone ayant des caractéristiques physiques et socio-économiques homogènes;
- Les consommations d'eau domestiques, des activités industrielles et commerciales ;
- La définition des coefficients de ruissellement ;
- La localisation des tronçons suspects, des« ponts noires », débordements ;
- ➤ La définition des pentes moyennes.

a. Zonage de la ville

La zone est un bassin subdivisé en surfaces tributaires qui sont affectées aux différents rejets. Un rejet chargé de desservir une surface donnée doit pouvoir véhiculer toutes les eaux issues des concessions de ce périmètre.

La ville d'AHMED RACHDI s'étend sur une surface de 137 ha, elle compte trois rejets s'évacuent à l'Oued Redjradja au coté Est de la ville, chaque rejet véhicule les eaux de l'une des trois zones (01, 02, 03).

Zone 01 : d'une superficie de 27.31 *ha,* elle est drainée par le rejet 01 à l'Ouest de la ville, cette zone regroupe : la cité Melh Edab et la cité El Djabass.

Zone 02 : d'une superficie de 11.26 *ha*, elle est drainée par le rejet 02 au Nord ouest de la ville, elle regroupe : la cité 100 Logts et 46 Logts et 60 Logts.

Zone 03 : sa superficie est de 88.55 *ha*, cette zone est drainée par le rejet 03 au nord de la ville, elle concerne : le centre ville, la cité 34 Logts , 30 Logts, les 04 hectares, cité Mechta El-khaire, la cité kadja et la cité El-Kessyoune.

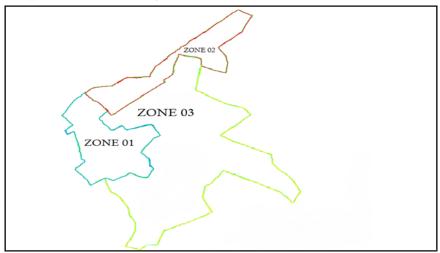


Figure III.01: Zonage de la ville d'AHMED RACHDI.

b. Découpage en sous bassins

Le sous-bassin est une section de bassin situé séquentiellement de l'amont vers l'aval du bassin. A chaque sous-bassin correspond un secteur élémentaire d'étude pour le calcul des débits et il est constitué d'une ou plusieurs zones.

Le centre ville d'AHMED RACHDI est découpé en sept (07) sous bassins principaux, répartis comme suit :

- la zone 01 contient les deux sous bassins 01 et 02, le sous bassin 01 inclut la cité Melh Edab sur une superficie de 14.78 ha, le deuxième sous bassin inclut la cité des 128 logts sur une superficie de 12.53 ha.
- La zone 02 contient les deux sous bassins 03 et 04, le sous bassin 03 inclut les cités des 100, 46 et 60 logts sur une superficie de 10.65 ha, le sous bassin 04 inclut le centre ville sur une superficie de 10.61 ha.
- La zone 03 contient les autres sous bassins 05, 06 et 07, le sous bassin 05 inclut les cités des 40 et 30 logts et la cité des 04 hectares sur une superficie de 37.26 ha, le sixième sous bassin inclut les cités El Kessyoune et Mechta El khaire sur une superficie de 22.63 ha, le dernier sous bassin (07) inclut la cité Kadja sur une superficie de 28.93 ha.

Ce découpage en sous bassin est fait en tenant compte principalement de la topographie du terrain qui peut préciser les pentes moyennes, les superficies...de chaque sous bassin, il tient compte aussi des de la nature du sol, pour avoir les coefficients de ruissellement aussi proche que possible. Les routes et les voiries et les limites naturelles (Talweg, Oued...) sont des paramètres très importants lors du découpage en sous bassin versant.

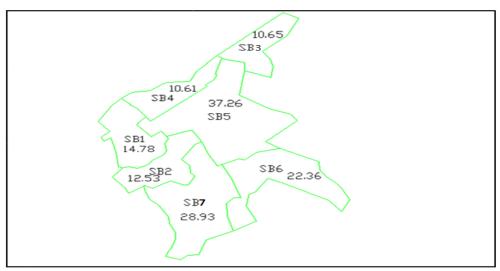


Figure III.02 : Découpage de la ville d'AHMED RACHDI en sous bassins et leurs superficies.

4. Description quantitative

Cette phase consiste à faire une reconnaissance approfondie et détaillée des réseaux et des ouvrages élémentaires composant le réseau :

a. Les collecteurs

Les collecteurs sont des conduites dans lesquelles sont véhiculées les eaux usées acheminées par plusieurs conduites de moindres dimensions. Un collecteur doit pouvoir transporter la totalité des débits que lui apportent les conduites qu'il dessert. Les conduites qui servent à l'évacuation sont de diamètres croissants d'amont en aval. Nous avons principalement des égouts locaux, des collecteurs et des intercepteurs. Le centre d'AHMED RACHDI est doté d'un réseau d'assainissement de type unitaire réalisé en CAO de diamètre variant de Φ 200 à Φ 800 sur une longueur totale de 22 626 ml. La répartition des collecteurs suivant leurs diamètres et leurs longueurs est la suivante (toutes les caractéristiques spécifiques pour chaque tronçon sont illustrées au tableau dans l'Annexe I) :

Tableau III.01: Répartition des conduites selon les diamètres et les longueurs.

diamètre (mm)	200	250	300	400	500	600	700	800	Total
longueur (ml)	477.47	1690.78	9744.95	2692.46	1839.45	5223.30	407.73	550.22	22626.35

Au niveau de la zone 01, nous avons 155 collecteurs (principaux, secondaires et tertiaires) jusqu'à le point de rejet, sur une longueur de 5240.33ml, cette zone présente deux collecteurs principaux (C11,C12), le premier prend en charge la cité El-Djabass et ses alentours, son diamètre varie de Φ 300 en amont sur 132 ml à Φ 400 en aval sur 257 ml, il prend départ au siège de l'A.D.E près du centre ville, le second collecteur principal C12 prend naissance au sud du centre ville à une distance de 150 m, prend en charge la cite 128 logts. Il est composé de tronçons de conduites circulaires de diamètres varient de Φ 400 en amont sur 192 ml et Φ 500 sur 100 ml à Φ 600 sur 280 ml et Φ 700 en aval sur 110 ml.



Figure III.03: Zone 01 et ses collecteurs principaux C11 et C12.

Les différentes conduites de cette zone sont réparties comme suit :

Tableau III.02: Répartition des conduites de la zone 01 selon les diamètres et les longueurs.

diamètre (mm)	200	250	300	400	500	600	700	800	Total
Nombre	8	2	81	20	11	7	11	15	155
longueur (ml)	265.75	66	2621.4	711.43	319.6	298.95	407.6	549.6	5240.33

La zone 02 compte 127 collecteurs, sur une longueur totale d'environ 5092.2 ml. Les collecteurs C21, C22, C23 sont les collecteurs principaux de cette zone, le collecteur C21 draine la par partie nord de la ville, il possède des pentes importantes (25 à 115%), son diamètre est de $\Phi300$ en amont sur $180 \ ml$ et $\Phi400$ en aval sur $420 \ m$. Il prend départ à la cité 1a 100 logts et assainit toute la partie nord de la ville (les cités 100,60 logts, lotissement 46 lots et la nouvelle cité 100 logts).

Le collecteurs C22, C23 drainent la partie Nord ouest de la ville, le premier à un diamètre de $\Phi300$ en amont sur 124~m et $\Phi400$ sur 253~ml et $\Phi500$ en aval sur 92~ml, le second à un diamètre de $\Phi300$ en amont sur 92~m et $\Phi400$ sur 348~ml et $\Phi500$ en aval sur 273~ml, ils assainissent l'autre partie de la zone 02, ils prennent départ au coté du centre ville.

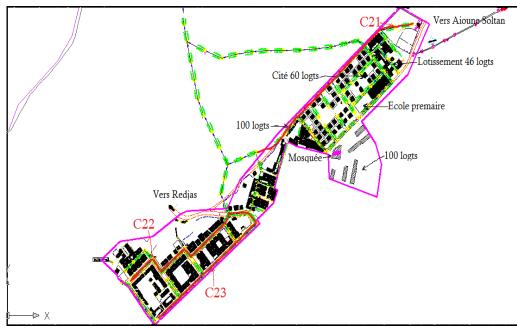


Figure III.04: Zone 02 et ses collecteurs principaux C21, C22, C23.

Les différentes conduites de cette zone sont réparties comme suit :

Tableau III.03: Répartition des conduites dans la zone 02 selon les diamètres et les longueurs.

<u> </u>							
diamètre (mm)	200	250	300	400	500	600	Total
Nombre	2	9	53	27	16	20	155
longueur (ml)	73.2	309.35	2053.5	1086.2	532.35	1037.6	5092.2

La zone 03 compte 372 collecteurs, sur une longueur totale de 14091.08 ml. Cette dernière zone présente 03 principaux collecteurs (C31, C32, C33), Le premier collecteur C31 prend départ à la zone 02 et traverse la zone 03 ce qui permet le transit des eaux usées du coté Est de la ville, il prend en charge le centre ville, ainsi que la cité Melh Edab, et des parties des cités 04 hectares et 40 et 30 logts, ce collecteur a un diamètre de $\Phi300$ en amont sur 175 m, et un $\Phi400$ sur 200 m suivi d'un $\Phi500$ sur 400 m, et se termine en aval par un $\Phi600$ sur une longueur de 200 m. Le second collecteur C23 assure l'assainissement de la cité Kadja Taib assainit des parties des cités Mechat El Khaire, cités 04 hectares et 40 et 30 logts, son diamètre est de $\Phi300$ en amont sur 206 m et $\Phi500$ en aval sur 700 m. Ce dernier collecteur a été conçu et installé pour assainir le Sud de l'agglomération d'AHMED RACHDI. Il commence du CEM par un $\Phi300$ sur une longueur de 275 m, suivit d'un $\Phi500$ sur 250 m, il se termine par un $\Phi600$ sur une longueur de 60 m, ce collecteur sert à assainir la cité El-Kassyoune et des parties de la cité Mechat El Khaire en passant par la ferme Boudjnana.

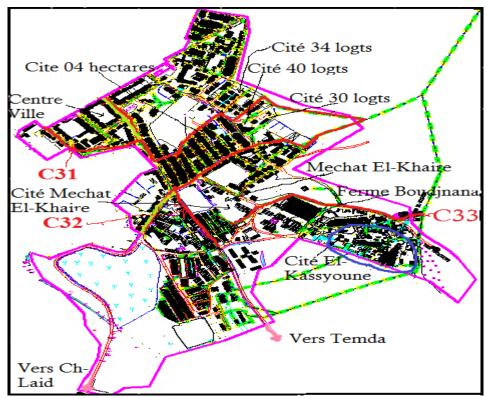


Figure III.05: Zone 03 et ses collecteurs principaux C31, C23, C33.

Les collecteurs secondaires et tertiaires de cette zone sont répartis comme suit :

Tableau III.04: Répartition des conduites dans la zone 03 selon les diamètres et les longueurs.

diamètre (mm)	200	250	300	400	500	600	Total
Nombre	3	36	176	34	37	86	372
longueur (ml)	87.35	1267.45	6334.9	1193.2	1319.95	3888.23	14091.08

Le données de base des différents collecteurs seront représentées dans l'Annexe I avec toutes leurs caractéristiques (diamètre, longueur, cote amont, cote aval, forme, pente, Matériaux constituant).

b. Regards

Les regards sont en fait des fenêtres par lesquelles le personnel d'entretien pénètre pour assurer le service et la surveillance du réseau. Ce type de regard varie en fonction de l'encombrement et de la pente du terrain ainsi que du système d'évacuation.

Le réseau d'assainissement de la ville d'Ahmed Rachdi renferme dans sa totalité des regards non visitable en béton armé de types carrés avec des tampons en fonte. La profondeur des regards visités variée entre 0.83 et 3.59 m.

Les regards sont au nombre de 589 et sont situés aux changements de pente du terrain, de direction et aux jonctions de tronçons.

La distance moyenne entre regards est de 38.5 m avec des profondeurs variables. Les regards sont en maçonnerie et les tampons en fonte.

La zone 01 contient 156 regards, la zone 02 compte 129 regards, le reste des regards est réparti dans la zone 03.

c. Déversoirs d'orage

Ce sont des ouvrages, placés sur un réseau d'eaux pluviales ou unitaire, destinés à laisser passer en direction d'un milieu récepteur (naturel ou bassin), une partie du débit d'orage audessus d'un seuil à déterminer. La hauteur de ce seuil conditionnera la valeur du débit à partir duquel les eaux seront évacuées. Il en existe déjà deux en aval du réseau unitaire du centre ville d'AHMED RACHDI qui recueilleront les eaux usées, chaque un d'eux est à seuil déversant du type latéral, déversant à un bassin de décantation pour se jeter dans l'Oued Redjradja. Le premier (3.00m * 3.65m * 3.33mm) mené d'un diamètre d'arrivée de 600mm se trouve au Nord de l'agglomération et recueille les eaux usées de la zone 03, le deuxième déversoir (3.00m * 3.35m * 2.65m) mené des diamètres d'arrivée et de rejet de 600mm et un diamètre de sortie de 300mm, se trouve à l'Ouest de l'agglomération et recueille les eaux de la zone 01.

d. Bouches d'égout

La bouche d'égout est un accessoire hydraulique qui admet l'eau de ruissellement des surfaces coulant dans les rues à l'égout pluvial. Il constitue une partie très importante du système, car le design le plus méticuleux des conduites ne sert à rien si le ruissellement de surface n'y parvient pas. A AHMED RACHDI on constate que les bouches d'égout existent uniquement sur quelques parties au centre ville, elles sont absentes ailleurs.

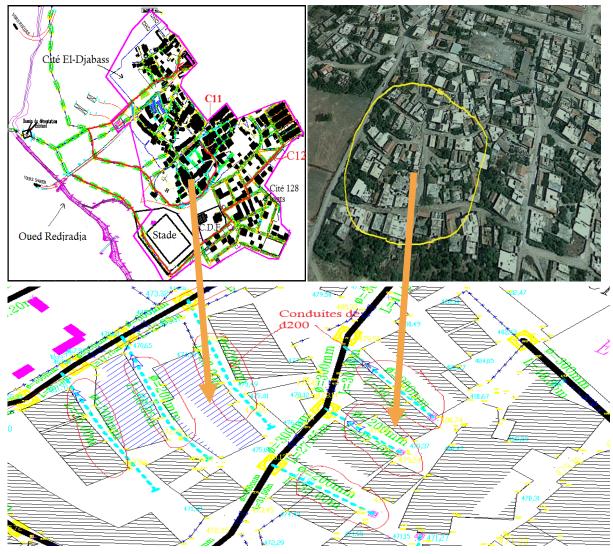
III. Description qualitative du réseau d'assainissement

Après une bonne description quantitative du patrimoine, le diagnostic de l'état du réseau d'assainissement de la ville s'avère obligatoire afin de révéler l'existence des points noirs qui représentent une source de nuisance soit pour la structure du réseau soit pour l'hygiène du milieu. Les constatations répertoriées dans le cadre de cette étude sont classées par zones avec une analyse sur les causes de ces défaillances.

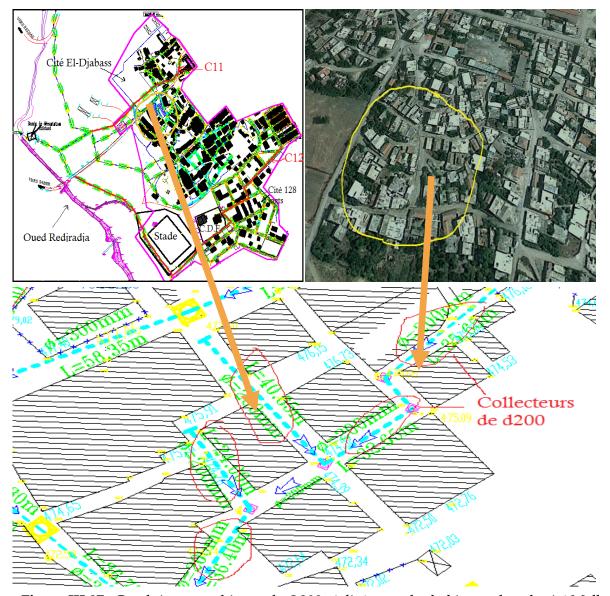
1. Collecteurs

1.1. Zone 01

Au niveau de cette zone, le réseau d'évacuation est de type unitaire, comprend 32 tronçons secondaires et tertiaires du collecteur principal C12 réalisés de façon anarchique et non planifiée par les citoyens en 1985, avec des diamètres de $\Phi200$ et $\Phi300$ (12 tronçons de $\Phi200$ et 20 tronçons de $\Phi300$) répartis sur toute la surface de la zone.


La majorité de ces collecteurs (environ 25 collecteurs) a connu plusieurs défectuosités, plusieurs d'entre eux sont vétustes avec des états de dégradations avancées allant jusqu'à l'effondrement sur quelques mètres, ceci est dû par le mal dimensionnement du réseau causé par l'absence de toute étude nécessaire, ainsi que l'inachèvement des travaux de raccordement de quelques collecteurs avec les maisons et avec les collecteurs principaux.

Il est à noter que certaines constructions sont réalisées sur des collecteurs (10 collecteurs), les charges dues aux poids des constructions sont susceptibles d'une part de porter atteinte à la résistance à la rupture des matériaux en CAO constituant les canalisations du réseau et d'autre part de rendre l'identification et les travaux de l'inspection et de diagnostic très difficiles.


Au coté Ouest de la zone, où se trouve les nouvelles habitations, certains logements ne disposent d'aucun réseau d'assainissement (certains quartiers de Melh-Edab et El Djabass), alors les eaux usées domestiques déversent sur la dépression de la zone, produisant des flaques d'eaux nuisibles et émanant des mauvaises odeurs, constituant un risque de contamination et d'épidémie à proximité immédiate des habitations.

L'autre partie du réseau de la zone 01 a connu d'autres types de problèmes. La zone (Cité des 128 logements) a souvent connue des inondations et des ruissellements forts en périodes de pluies. Cela est dû à l'absence des avaloirs pour l'évacuation des eaux pluviales, et à l'insuffisance du réseau existant.

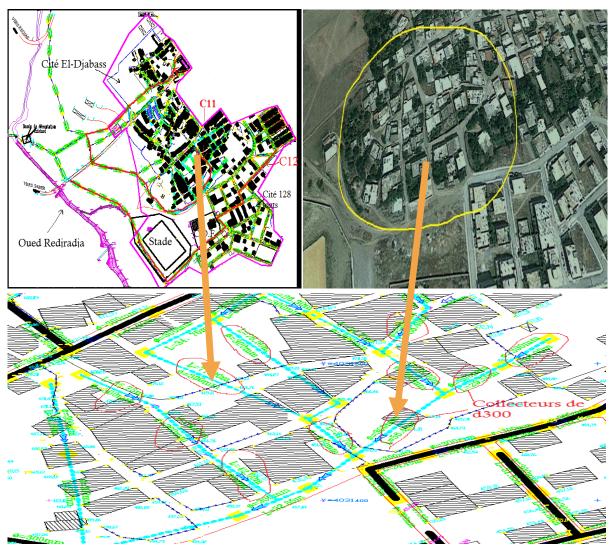

Cette zone est caractérisée par l'existence de plusieurs collecteurs avec des pentes faibles et même des pentes nulles (dans la cité des 128 logts il y 8 tronçons de pentes nulles), ainsi que d'autres avec des pentes importantes dépassant 100‰ (il y a environ 13 tronçons avec des pentes supérieures à 100‰).

Figure III.06 : Conduites anarchiques de Φ200 réalisées par les habitants dans la cité Melh Edab.

Figure III.07 : Conduites anarchiques de Φ 200 réalisées par les habitants dans la cité Melh Edab.

Figure III.08 : Conduites anarchiques de $\Phi 300$ réalisées par les habitants dans la cité Melh Edab.

Figure III.09: Conduites sous les constructions dans la cité Melh Edab.

Photo III.01 : Mur entravant le cheminement **Photo III. 02 :** Collecteur sous la du collecteur dans la cité Melh-Edab. Construction Dans la cité El Djebass.

1.2. La zone 02

Cette zone possède aussi un réseau d'assainissement de type unitaire. Le problème majeur signalé dans cette zone est le problème des inondations quasi permanentes en périodes de pluie, ainsi que les ruissellements assez forts, ce phénomène est principalement lié à l'insuffisance en nombre d'avaloirs et à l'obturation des avaloirs dans certains endroits causée par le manque d'entretien des avaloirs et des regards (*RA*51 à *RA*56 dans la cité 60 logts, *RA*8 à *RA*10 dans la cité 60 logts), et à l'incompétence d'évacuation du réseau dû au sous dimensionnement de certains collecteurs ou à la réduction relatives des sections d'autres conduites (*RA*8 à *RA*10, *RA*73 à *RA*81, *RA*18 à *RA*22, *RA*85 à *RA* 89).

Dans d'autres endroits (près du centre ville), la zone a connu un autre type de problème. C'est le problème des débordements sur les chaussées (*RA*109 à *RA*115, *RA*126 à *RA*128). Causé par le sous dimensionnement et l'état vétuste de quelques collecteurs. Ce qui produit un milieu néfaste pour la santé publique.

La nouvelle cité des 100 logts, est dépourvue du réseau d'assainissement, les eaux usées de la zone déversent vers le milieu naturel.

Les mauvais états de certains tronçons (*RA*11 à *RA*12, *RA*12 à *RA*56, *RA*131 à *RA*132) sont provoqués par la faiblesse des pentes, d'une part, ce qui a favorisé le dépôt des produits dans les conduites en absence d'un entretien permanent. D'autre part les fortes pentes posent souvent un problème délicat pour les collecteurs, cette zone est menée par des tronçons très pentus ce qui affecte l'état structural du tronçon.

Figure III.10 : Habitations sans réseau d'assainissement dans la cité des 100logts.

1.3. La zone 03

Comme les deux autres, cette zone possède un réseau d'assainissement de type unitaire réalisé en 1987, il est en bon état dans sa grande partie.

Le grand problème posé fréquemment est le problème des inondations (Cités des 128, 30, 40, 34 logts, Cité Kadja Taib, Cités 04 hectares, Mechta El Khaire, et surtout dans la cité El Kassyoune), causées principalement par le manque des avaloirs dans certains endroits (cités des 128, 34 logts) et l'absence totale des avaloirs dans d'autres (Cités 04 hectares, El Kassyoune), et aussi par le sous dimensionnement de certains diamètres, (RA43 àRA44, RA48 à RA50, RA51 à RA53, ...).

Toutes les pentes de cette zone sont acceptables à l'exception de quelques fortes pentes (RA4 à RA10 (115.7‰), RA6 à RA9 (121.6‰), RA33 à RA34 (125‰), RA34 à RA56 (126.1‰), RA70 à RA167 (128‰)...).

Plusieurs quartiers dans la zone 03 ne sont pas encore liés au réseau d'assainissement (quartiers de la cité El-Kessyoune, la cité Kadja Taib), ils utilisent les fosses septiques.

La partie du centre ville a été rénové récemment en 2010, elle est en bon état de fonctionnement y compris les collecteurs avec des diamètres de Φ 300, Φ 400 et Φ 500 sur une longueur totale d'environ 800m.

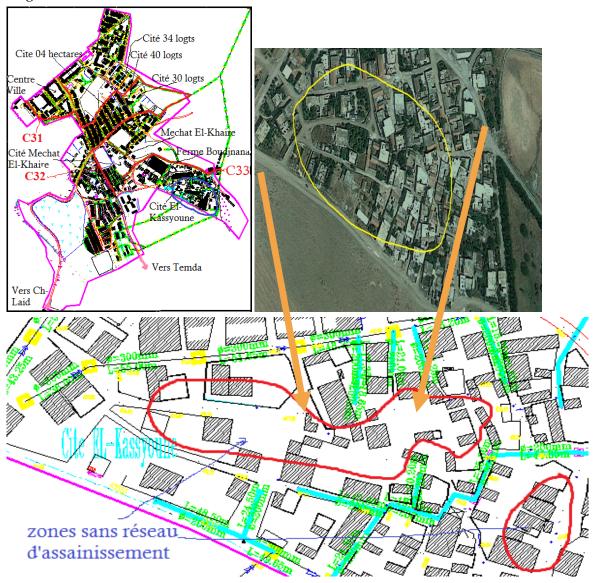


Figure III.11: Zones sans réseau d'assainissement dans la cité El Kessyoune.

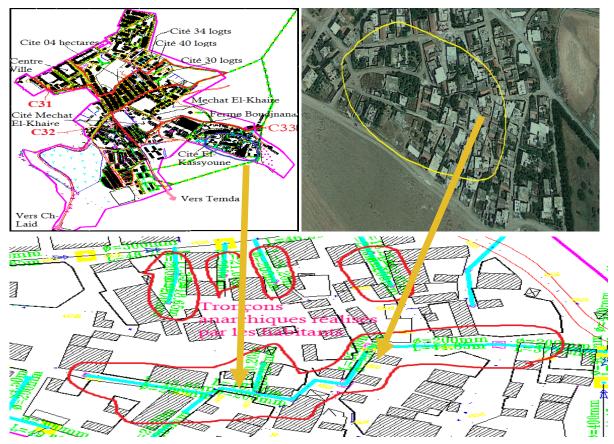


Figure III.12: Tronçons anarchiques sous les constructions réalisées par les habitants.

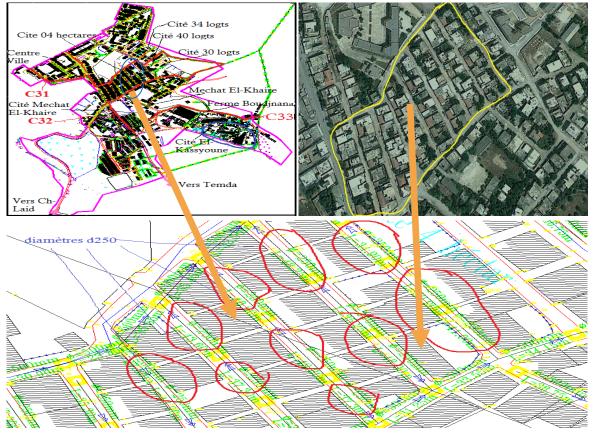


Figure III.13 : Conduites sous dimensionnées de Φ250 dans la cité des 04 hectares.

Photo III.03 : tronçon passe sous une maison dans la cité El Kessyoune

Photo III.04 : un autre tronçon passant sous le mur dans la cité El Kessyoune.

2. Etat des regards

La totalité des regards du réseau de la ville d'AHMED RACHDI sont conçues comme des fosses de décantation avec le manque de moyens de visite (échelons de fer), et parfois avec des dimensions intérieures des regards insuffisantes.

Certains regards sont conçus sous les constructions, ce qui a facilité la détérioration des regards et qui a rendu ces regards dans un état non identifiable avec l'absence de l'entretien.

La majorité des regards sont partiellement ou complètement envasés, ainsi que l'accumulation des débris sableux et les ordures publiques dans les regards non recouverts ce qui provoque même des débordements.

En se basant sur les fiches techniques de l'étude du schéma directeur d'assainissement de la ville (*B.E.C.E*, 1999), et nos travaux sur terrain concernant certains collecteurs, on peut fournit les données statistiques et les remarques suivantes :

Tableau III.05: classification des regards selon l'état.

Classification selon l'état	№ des regards (avec tampons)	№ des regards (sans tampons ou tampons cassés)
Regard en bon état	85	15
Regard en moyen état	150	10
Regard en mauvais état	215	134
TOTAL	450	159

Photo III.05 : Regard en mauvis état (Entassement des résidus).

Photo III.06 : Regard complètement obturé.

Photo III.07: Regard impossible d'ouverture.

Photo III.08: Regard en état dégradé.

Photo III.09: Regard en bon état.

Photo III.10: Regard en état moyen.

3. État des rejets actuels

Le rejet des eaux usées de la ville d'AHMED RACHDI se fait gravitairement sur 4 points de rejet, le déversement des effluents directement dans l'Oued Redjradja, avec prétraitement à l'aide des bassins de décantation. Cette situation provoque une menace apparente sur les sources d'eau potable de la ville, en vue de la vulnérabilité de la nappe souterraine du champ de captage de Tamda.

4. Etat des déversoirs d'orage

Actuellement les deux déversoirs d'orage remplissent leurs fonctions, ils sont en bon d'état de fonctionnement.

5. Etat des bouches d'égout

D'après nos constats, les bouches d'égout existantes dans la ville sont presque toutes en mauvais en état et envasées par la terre. Cela est dû à l'absence de l'aménagement des trottoirs, ainsi que l'absence totale d'entretien et de travaux de nettoyage.

IV. Zones critiques

Les zones critiques ou les zones réputées pour leurs inondations se localisent dans la ville d'AHMED RACHDI dans les endroits suivants:

- Cité des 04 hectares (Zone03);
- Cité El Kessyoune (Zone03)
- Cité des 128 logements (Zone01);
- Cités des 46 et 60 logements

Ces points, non exhaustifs, ont pour la plupart en commun des accotements non stabilisés, ce qui favorise l'ensablement des grilles. A cela s'ajoutent les pentes faibles, l'insuffisance de grilles, la faible dimension des collecteurs.

V. Causes et conséquences des Dysfonctionnements constatés dans le réseau

1. Causes des dysfonctionnements

Un ensemble de dysfonctionnement a été constaté ces dernières années dans le fonctionnement du réseau d'assainissement des eaux usées d'AHMED RACHDI. Ces dysfonctionnements résultent de la combinaison de plusieurs facteurs et ont des conséquences néfastes tant sur le plan économique, social que sanitaire.

D'après nos visites sur terrain, les tronçons examinés sont un échantillon représentatif du réseau existant.

Rappelons que le fait que certains regards n'aient pas été visités est dû au fait que ces derniers sont toujours remplis d'eaux usées ou ils sont impossible d'ouverture (plusieurs regards ne possèdent pas des tampons, ils sont bétonnés ou ils sont placés sous les constructions). Après évaluation des différentes pentes, nous remarquons que les valeurs trouvées se présentent sous deux formes. D'une part certains tronçons ont des pentes suffisantes (supérieures à 3‰) alors que d'autres ont des pentes relativement faibles (RA132 à RA132, R391 à R403).

Nous avons même des pentes nulles (RB216 à RB217, RB218 à RB219, RB223 à RB224. Ceci explique en partie le fait que l'évacuation n'est pas bien assurée dans certains tronçons. En effet les conditions d'auto curage exigent une pente minimale de 3‰, ce qui permet d'assurer une évacuation normale sans risque de dépôts importants préjudiciables à l'écoulement gravitaire.

D'autre part on note l'existence de plusieurs tronçons avec des fortes pentes (largement supérieures à 100‰), ce qui favorise la dégradation rapide du système.

Le problème des inondations souvent formées en hiver est principalement dû au sous dimensionnement de certains collecteurs.

La vétusté du réseau explique aussi ces problèmes récurrents. De même les dépôts importants dans les canalisations portent préjudice à l'écoulement. Nous assistons aussi à la présence dans certains regards de matières incompatibles avec les eaux susceptibles d'être transportées dans le réseau. Ces déchets solides sont le plus souvent introduits par les populations dans les regards ou ils sont importés par les eaux pluviales, et on note aussi l'ensablement de certaines canalisations. Les stagnations sont plus courantes dans les parties où des maisons empiètent sur le réseau (cités Melh Edab et Gadja Taib), ses constructions étant postérieures à la mise en place du réseau, les charges dues aux poids des ouvrages sont susceptibles de porter atteinte à la résistance à la rupture des matériaux en béton constituant les canalisations du réseau.

A AHMED RACHDI se produit un phénomène non contrôlé: l'occupation anarchique de l'espace sans aucune considération des voies de drainage ce qui a engendré des terres non aménagées et particulièrement favorables à une longue stagnation d'eaux pluviales.

2. Conséquences des dysfonctionnements du réseau

L'ampleur des conséquences des inondations sur la population et l'économie mérite que des solutions urgentes soient trouvées. En effet, ces inondations affectent la population et l'économie par:

• La destruction de biens matériels et immobiliers ;

- L'entrave à la mobilité urbaine ;
- La transmission de diverses maladies hydriques.

Conclusion

Après avoir terminé l'analyse des données et les informations obtenues sur le réseau d'assainissement de la ville d'AHMED RACHDI et les ouvrages annexes, et afin d'arriver aux origines et les cause des défectuosités de fonctionnement de ce réseau et les difficultés de son exploitation, on tire les raisons suivantes :

- La nature de l'effluent.
- La négligence d'entretien et du curage dans les antérieures années favorise le rétrécissement des sections des conduites ou leur obturation à cause des dépôts.
- L'insuffisance de la pente ou l'existence des fortes pentes dans le collecteur.
- Le passage des collecteurs sous les constructions.
- Le problème des regards non identifiés et asphaltés.
- Le problème des regards qui ne sont pas munis d'échelles et qui ne comportent pas de tampons.

Statistiquement, l'élaboration du diagnostic du réseau existant a mené conclusions préliminaires suivantes :

- 1. Un taux de maintien des réseaux existants de 40%.
- 2. Un taux de rénovation des réseaux existants de 60% du linéaire total.

Chapitre: IV

Modélisation hydraulique du réseau d'assainissement

Introduction

Un tronçon de conduite d'un réseau d'assainissement doit assurer plusieurs fonctions : être étanche et résister à la fois à l'abrasion, aux différents agents agressifs et aux sollicitations externes. Il doit aussi répondre à un régime hydraulique bien défini, caractérisé par un débit et une vitesse.

L'évacuation des eaux d'assainissement se fait en général par gravité, une pente motrice doit être respectée pour assurer le bon fonctionnement du système. Des stations de relèvement peuvent cependant exister dans des situations particulières ou la topographie est défavorable. Le fonctionnement hydraulique d'un réseau d'assainissement peut être décrit avec précision par un modèle de simulation hydraulique calibré. Il est caractérisé par deux paramètres :

- a. Le débit que doit évacuer le réseau;
- b. La capacité hydraulique du réseau.

Le dysfonctionnement hydraulique d'un réseau se traduit par une incapacité à remplir le rôle primordial d'évacuation et de transport des eaux. Des dégradations se manifestent dans ce cas pour traduire le mauvais état des ouvrages constitutifs du réseau (conduits, déversoirs, pompes etc.). La vétusté des réseaux d'assainissement, l'urbanisation et l'augmentation corrélative des surfaces imperméables sont, en fait, les principales causes des dysfonctionnements hydrauliques. Ceux-ci peuvent être mis en évidence à l'aide des études de diagnostic qui sont des moyens concrets d'évaluation du fonctionnement du réseau d'assainissement. Elles doivent aussi refléter une démarche intégrée.

L'utilisation de la modélisation permet le diagnostic et l'identification des points noirs (Débordements), et la détermination des hauteurs d'eau à chaque pas de temps, ce qui donne une bonne visibilité à l'ingénieur sur le fonctionnement hydraulique du réseau et lui permet de préconiser une conception adéquate.

I. Modélisation en hydraulique (Zug-M & Vazquez-J; 2010)

L'avènement des technologies informatiques a permis de substituer certaines expériences par les simulations numériques. Ainsi, la modélisation est devenue une attitude commune à la recherche scientifique. Elle rejoint les attitudes premières que sont l'expérimentation et l'observation et peut même, dans certains cas, substituer ces derniers non sans induire du même coup quelques difficultés.

1. Modélisation : concepts, approches, et étapes

Pour décrire la réalité complexe de l'hydraulique et de la pollution en réseau d'assainissement, un important effort de développement des modèles mathématiques a été réalise depuis trente ans. Cet effort a été grandement favorisé par le développement des moyens informatiques. Ainsi, il est important de faire quelques rappels sur les modèles, les différentes approches modélisatrices et les différentes étapes à suivre.

a. Modèles

Les modèles mathématiques, d'une façon très générale, sont constitués:

- D'un ensemble de variables, choisies pour représenter I 'objet étudié,
- D'un ensemble de relations mathématiques entre ccs variables, choisies pour représenter son fonctionnement.

Ccs relations, qui doivent permettre de calculer les variables de sortie en fonction des variables d'entrée. Font aussi intervenir d'autres paramètres. Cette imitation recouvre deux fonctions essentielles, complémentaires et indispensables:

- i. L'une de représentation simplifiée de la réalité. perçue d'un certain point de vue par le modélisateur, a travers un filtre conceptuel : un modèle est donc une interprétation et non simple reproduction,
- ii. L'autre, d'instrument d'étude de cette réalité conçu pour répondre a un certain objectif guidant l'ensemble des choix faits au cours de la modélisation : un modèle est donc aussi une représentation orientée ct sélective.

D'où le caractère doublement relatif d'un modèle, qui dépend tout à la fois de la justesse des conceptions et hypothèses sur lesquelles il repose et de l'objectif poursuivi. Ainsi. Il est nécessaire bien que cela soit trop souvent oublié. D'expliciter clairement les objectifs poursuivis, les choix, hypothèses et approximations de l'outil, et enfin définir, si c'est possible, les limites de son domaine de validité et donc définir son champ d'application.

b. Différents types de modèles

On distingue généralement trois grands types d'approches pour la mise au point de modèles : l'approche statistique, l'approche conceptuelle et l'approche déterministe ou mécaniste.

- <u>avec l'approche empirique</u> : on cherche à lier les différentes variables ou grandeurs du système a partir de séries de données expérimentales en utilisant des techniques statistiques telles que les régressions simple ou multiple, linéaire ou non linéaire, sans cherchera comprendre les mécanismes réellement en jeu,
- <u>avec l'approche conceptuelle</u>: on cherche a établir des relations aussi bonnes que possible entre les entrées et les sorties du système a travers un ensemble de variables d'états qui peuvent ou non, avoir un sens physique,
- <u>avec l'approche mécaniste</u> : on cherche à décrire par les équations de la mécanique, de l'hydraulique, de la chimie et de la biologie, l'ensemble des phénomènes qui se produisent dans le système considéré.

c. Problèmes à résoudre

De nombreux problèmes restent à résoudre pour parvenir à des modèles qui soit à la fois fondés scientifiquement et opérationnels. En effet, toute modélisation est assujettie a des erreurs difficiles a réduire ou a compenser, provenant tant du modèle que des données et de leurs interactions au cours de la modélisation. En effet, on rencontre différents problèmes :

- les erreurs liées à la structure du modèle: les limites théoriques (par exemple en hydraulique), les approximations théoriques, les approximations numériques (solutions approchées) et les approximations spatiales (description du bassin versant),
- la disponibilité des données : les problèmes métrologiques et méthodologiques,
- l'adéquation des données au besoin de la modélisation,
- le calage et la validation du modèle.

Toute modélisation nécessite des phases de paramétrisation et de vérification du modèle qui, en plus des variables d'entrée, font appel a des chroniques de mesures de certaines variables de sortie.

<u>Le Calage</u>: Faute de pouvoir mesurer ou estimer certains des paramètres du modèle ET compenser sur ces seuls paramètres les erreurs liées au modèle et/ou aux données, il est nécessaire de les estimer par calibration (ou calage), en optimisant (manuellement ou automatiquement) rajustement de certaines variables simulées à leurs valeurs mesurées.

<u>La Validation</u>: l'étape de calage ne suffit cependant pas à valider les modèles et donc à s'assurer de leur « réalisme ». Il reste encore à vérifier la qualité du modèle calibré sur des séries de mesures non utilisées lors du calage. Cette validation doit être menée d'une part sur d'autres périodes sur le même bassin et d'autres parts sur d'autres sites, étape qu'on nommera Transposition.

Ainsi, il est tout à fait indispensable de réaliser les phases de calibration, validation et transposition du modèle étudié. Si en terme de modélisation hydraulique (Barré de Saint Venant, Muskingum), les différentes étapes de mise au point et de tests sont maintenant courantes, il n'en est pas du tout de même pour la modélisation de la pollution. La grande majorité des modèles de pollution sont présentés comme étant en phase de validation, sans justification de la phase de calibration, et sans que les cas de validation soient véritablement nombreux. De plus, la phase de transposition en pollution reste quasi inexistante.

Enfin, il est essentiel de rappeler qu'un modèle de simulation de la pollution se doit d'être en premier lieu un modèle de simulation de l'hydraulique, car l'hydraulique est indispensable à l'évaluation de la pollution.

2. Étapes méthodologiques

Si la construction d'un modèle calé par rapport à des observations expérimentales est assez aisée, l'élaboration d'un modèle convenablement validé est au contraire très difficile. Le fait de ne pouvoir atteindre que très rarement la totalité des objectifs fixés par les critères de justification ne doit pas empêcher de construire des modèles qui, même insuffisants, guident le travail de réflexion et d'observation. Mais il est au moins aussi utile de savoir apprécier où se situent les insuffisances, afin de pouvoir progresser. Il reste indispensable que l'élaboration d'un modèle soit une interaction entre expérience et théorie. On représente sous forme de schéma, les différentes étapes méthodologiques de la mise en œuvre d'un modèle (Figure IV.1).

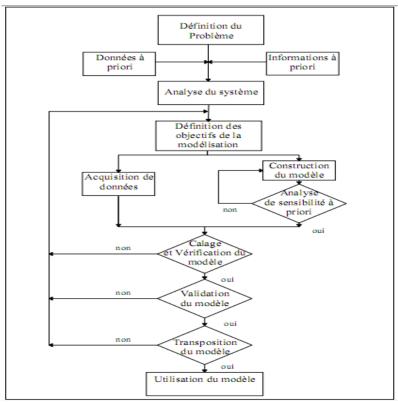


Figure IV.01 : Méthodologiques dans la mise en œuvre des modèles. (Zug-M & Vazquez-J; 2010)

3. Processus de modélisation

La modélisation hydrologique étudie principalement la réaction d'un ensemble de bassins versants et d'un réseau à un événement pluviométrique. Ses buts sont divers et permettent soit d'évaluer l'état d'un système ou de procéder à des calculs de dimensionnement, soit d'étudier les perspectives de développement ou de correction du système.

Pour ce faire, il faut plus que la seule connaissance du débit de pointe obtenu par la méthode rationnelle pour déterminer les volumes d'eau de ruissellement. Il est utile de connaître les hydrogrammes de ruissellement aux différents points névralgiques des réseaux et bassins de drainage.

Les processus pris en compte varient suivant les modèles. Mais pour être les plus représentatifs de la réalité, les phénomènes suivant doivent être intégrés. Ils peuvent être séparé dans trois catégories différentes : la modélisation hydrologique, la modélisation hydraulique, la modélisation de la pollution.

3.1. Modélisation hydrologique (Baud-J; 2008)

Elle est relative aux processus que l'on retrouve dans le cycle de l'eau. Parmi ces mécanismes, nous citerons :

a. Évapotranspiration

Ce terme englobe l'évaporation et la transpiration des végétaux. Il s'agit de la transformation de la phase vapeur à la phase physique. Les plans d'eau et la couverture végétale sont les principales sources de ce phénomène. Ils dépendent essentiellement de deux facteurs, la quantité de chaleur à disposition et la capacité de l'air à stocker de pour la transpiration. Le premier facteur provient de l'énergie fournie par le soleil et varie essentiellement selon le gradient de la latitude et de l'altitude. Le second facteur peut s'exprimer par la notion

d'humidité relative qui est le rapport de la quantité d'eau contenue dans une masse d'air et la quantité maximale d'eau que peut contenir cette masse d'air. Alors que la transpiration est surtout conditionnée par les conditions climatiques, les conditions liées aux sols et le type de végétation.

b. Interception et le stockage dans les dépressions

L'interception se définit comme la fraction d'eau qui est interceptée par le couvert végétal mais aussi les surfaces plus ou moins perméables comme les constructions ou les routes (surfaces à ne pas négliger en hydrologie urbaine). Ce phénomène étant étroitement relié à l'évapotranspiration, ce sont surtout les facteurs météorologiques (notamment la durée et l'intensité de la pluie) et le type de couverture du sol qui vont influencer la quantité d'eau interceptée.

Le stockage dans les dépressions comprend l'eau emmagasinée dans les creux jusqu'à leur déversement.

c. Infiltration

L'estimation de l'importance des processus d'infiltration va permettre d'estimer quelle fraction va alimenter l'écoulement souterrain et l'écoulement de surface.

L'infiltration se définit comme le transfert de l'eau à travers les couches superficielles du sol lorsque celui-ci reçoit des précipitations. Tout d'abord, l'eau d'infiltration remplit les interstices en surface du sol puis pénètre dans celui-ci sous l'effet des forces de gravitation et des forces de succion. Elle est influencée par les facteurs suivant : le type de sol, la compaction de la surface du sol. la couverture du sol, la topographie, la morphologie, le débit d'alimentation et la teneur en eau initiale du sol.

Différentes relations mathématiques expriment le flux d'eau que le sol est capable d'absorber à travers le temps. Cette notion est déterminée par la « capacité d'infiltration » d'un sol. Deux approchent permettent de la déterminer. Une approche à base physique qui s'appuie sur la loi de Darcy et que définit le modèle de Green et Ampt. Une approche empirique qui est définie par la formule de Horton.

d. Écoulements

De par la diversité de ses formes les hydrologues distinguent plusieurs types d'écoulement. Quatre chemins principaux vont guider la goutte d'eau jusqu'à la rivière ou l'exutoire du bassin versant :

i. Précipitation directe

Fraction de pluie qui tombe directement à la surface libre du cours d'eau pour atteindre l'exutoire du bassin versant. Cette contribution est peu influente dans les phénomènes de crues puisque la surface des cours d'eau est faible en rapport des surfaces des bassins versants.

ii. Ecoulement de surface ou ruissellement

Fraction de l'eau qui s'écoule plus ou moins librement à la surface des sols pendant les précipitations. Il existe deux causes à l'origine de ce processus. Le ruissellement se produit lorsque la capacité d'infiltration est dépassée ou lorsqu'elle se produit sur un sol déjà saturé en eau.

<u>iii .Ecoulement de subsurface (ou hypodermique)</u>

Il comprend la contribution des horizons de surface totalement ou partiellement saturés en eau. Ces écoulements sont plus lents que le ruissellement mais plus rapide que les écoulements souterrains. On peut également les traduire par « écoulement rapide interne ». Les hydrologues distinguent quatre causes à ces écoulements : l'effet piston, l'écoulement par macropores, intumescence de nappe et l'écoulement de retour. Signalons que pour que ce type d'écoulement apparaisse, il est nécessaire que la conductivité hydraulique latérale soit nettement supérieure à la conductivité verticale.

iv. Ecoulement souterrain

Il représente la part d'eau infiltrée qui transite lentement vers l'exutoire à travers l'aquifère. Les vitesses d'écoulement varient de quelques millimètres quelques mètres par jour. Ce type d'écoulement joue un rôle essentiel dans les débits de base des cours d'eau.

3.2. Modélisation hydraulique (Baud-I; 2008)

La propagation des hydrogrammes dans les conduites est d'une importance considérable dans un réseau. La variabilité des types d'écoulements est due à quatre causes principales : le réseau qui est caractérisé par de très nombreux changement de pentes, de type de section et par une grande quantité de tronçons; de la forme des sections; des débits qui sont la conséquence des événements pluviométriques ; et enfin du type d'écoulement qui peut être en charge ou à surface libre.

La propagation d'un écoulement dans une conduite est un phénomène physique. Elle peut être décrite par des équations de la mécanique des fluides connues sous le nom des équations de Saint-Venant. Elles constituent en fait un système d'équations fondées sur l'équation de continuité et l'équation de la conservation d'énergie.

En formulant certaines hypothèses, il est possible de classer les types de solutions des équations de Sait-Venant en différents types d'ondes. On parle d'onde dynamique pour un écoulement non uniforme et non permanent, et d'onde cinématique pour un écoulement uniforme et permanent. Cette dernière constitue l'expression la plus simple des équations de Saint-Venant.

3.3 Modélisation de la pollution (Baud-J; 2008)

La modélisation de l'aspect qualitatif des réseaux d'assainissement doit intervenir dans la conception des réseaux et dans la gestion des ouvrages en place. En général, les modèles intégrant la gestion qualitative, sont des modèles classiques auxquels un bloc de calcul de la pollution a été ajouté. Les phénomènes de fluctuation de la qualité des eaux qui sont intégrés dans ces blocs sont :

- L'accumulation de la pollution dans le réseau et sur le sol au cours du temps;
- Le lessivage de cette pollution par la pluie ;
- ❖ Le transport des polluants dans le réseau et cours d'eau.

Les approches permettant la représentation de ces phénomènes peuvent être d'origine statistique, conceptuelle ou déterministe. Cette dernière approche tente d'établir des relations univoques entre les variables d'entrée qui caractérisent les apports polluants et les variables de sortie traduisent l'accumulation des polluants dans les réseaux d'assainissement. Elle tend à décrire les équations de la mécanique, de l'hydraulique, de la biologie et de la chimie, soit l'ensemble des phénomènes qui sont liés aux polluants. Ainsi, ces modèles contiennent les fonctions d'accumulation et de mobilisation des polluants et le transport en réseau est représenté par une fonction de transfert des polluants.

II. Modélisation en assainissement

1. Définition

En assainissement urbain, la modélisation est une schématisation avec une description des réseaux dans un logiciel dans le but de s'approcher au mieux à la réalité des phénomènes hydrologiques et hydrauliques qui se produisent en temps de pluie depuis le ruissellement jusqu'à l'évacuation des eaux.

2. Concepts de base et intérêt

A première vue, l'intérêt de l'utilisation de l'informatique parait évident dans le cas des études d'assainissement. Elle permet d'abord un gain de temps et d'efficacité dans la conduite des études. Ensuite elle offre la possibilité de traiter des problèmes insurmontable à la main du fait de la complexité des modèles. Enfin les économies potentielles sont considérables du fait du montant des travaux réalisés annuellement en matière d'assainissement.

L'objectif premier les logiciels de simulation est de mettre à la disposition des Ingénieurs des modèles élaborés de simulation du fonctionnement du réseau d'assainissement. Pour atteindre ces objectifs, il est nécessaire de mettre en relation trois systèmes différents :

- le premier est le système physique et ses composants permettant le recueil, l'écoulement et le traitement des eaux ;
- le deuxième système est composé des différents sous phénomènes contribuant au fonctionnement du système physique ;
- le troisième système est formé par les différents personnes ou organismes intervenant dans les études ou la prise de décision.

Construire ou utiliser un logiciel, consiste à mettre en œuvre trois modélisations :

- modélisation structurelle décrivant le réseau de la ville ;
- modélisation des phénomènes donnant naissance à une image approchée des phénomènes pris en compte ;
- modélisation du processus d'étude permettant de définir la finesse nécessaire des résultats recherchés, les documents à produire, etc.

Une des difficultés principale à surmonter lorsque l'on veut utiliser l'informatique consiste à expliciter et à formaliser ces trois modèles. Tout logiciel doit non seulement contenir des modèles mathématiques de représentation des phénomènes, mais aussi un modèle numérique de représentation physique.

3. Choix du logiciel

Pour réaliser la modélisation des réseaux d'assainissements, il existe plusieurs logiciels qui ont été développés dans différents pays, les plus utilisé sont : CANOË (modèle Français), MOUSE (modèle danois) et SWMM (modèle américain). Ces trois logiciels présentent beaucoup de ressemblance en ce qui concerne leurs bases théoriques physiques et mathématiques, les deux premiers logiciels (CANOË et MOUSE) sont payant, par contre le logiciel SWMM est disponible sur le net gratuitement.

Pour notre projet, on s'est limité au logiciel SWMM qui au stade de ce travail a permis d'atteindre nos objectifs. Ce logiciel utilise les équations de Barré De Saint Venant pour simuler les écoulements à surface libre. Les modèles basés sur ces équations permettent de bien décrire le comportement hydraulique. Leur utilisation est très recommandée pour les études de diagnostic du réseau existant.

Notre choix s'est porté sur le logiciel SWMM basé sur le modèle SWMM (*Huber et al.* 1988). XP-SWMM est une des nombreuses interfaces qui ont été créées pour rendre l'entrée des

données et l'utilisation plus conviviales. On trouve une description détaillée dans les manuels d'utilisation.

Au départ, ce logiciel a été développé pour l'Agence de Protection de l'Environnement des États Unis (USEPA, 1971). Depuis cette date, plusieurs améliorations et ajustements ont été apportés a sa première version. Bien qu'à l' origine ce modèle fût développé pour la simulation des polluants dans les eaux de ruissellement, c'est dans ses applications de drainage qu'il est actuellement le plus utilisé.

Le logiciel XP-SWMM a été principalement choisi pour deux raisons :

- a. Sa puissance et sa rapidité de convergence. La propagation de l'écoulement dans les conduites est représentée par le système complet des équations de Barré De Saint Venant et des schémas de calcul performants sont utilisés ;
- b. *Sa popularité*. Une large proportion des municipalités et des consultants est très familière avec SWMM ou l'une de ses interfaces.

4. Modèles utilisés dans XP-SWMM

4.1. Modèles hydrauliques

La modélisation de l'écoulement graduellement varié et non permanent dans le réseau repose sur la résolution des équations de Barré De Saint-Venant. Ces équations, au nombre de deux traduisent la conservation de la masse et conservation de la quantité de mouvement le long de l'écoulement.

Equation de continuité (conservation de la masse) :

$$\frac{\partial Q}{\partial x} + \frac{\partial S}{\partial t} = 0 \tag{IV.1}$$

Equation dynamique (conservation de la quantité de mouvement ou de l'énergie) :

```
\frac{1}{g} \frac{\partial V}{\partial t} + \frac{\partial H}{\partial x} + J = 0
Où
Q: \text{débit};
x: \text{abscisse};
t: \text{temps};
S: \text{surface mouillée};
V: \text{vitesse};
H: \text{charge hydraulique};
J: \text{perte de charge unitaire, calculée avec la formule de Manning-Strickler};
i: \text{pente de radier};
y: \text{tirant d'eau};
z: \text{cote du radier}.
```

Cette deuxième équation s'écrit aussi : $\frac{1}{g} \frac{\partial V}{\partial t} + \frac{1}{g} \cdot V \cdot \frac{\partial V}{\partial x} + \frac{\partial y}{\partial x} - i + J = 0$ (IV.3)

Où les deux premiers termes sont des termes d'inertie : (accélération locale $\frac{1}{g} \cdot \frac{\partial V}{\partial t}$ et accélération convective $\frac{1}{g} \cdot V \cdot \frac{\partial V}{\partial x}$).

Le terme $\frac{\partial y}{\partial x} - i$ représente la pente de la surface libre. I représente la pente du radier, J représente la pente de la ligne de charge.

Les différents modèles de transfert disponibles dans le logiciel correspondent à différents degrés de simplification utilisés dans la résolution numériques des équations de Barré De Saint Venant :

a) Modèle de la translation simple en régime permanent uniforme

C'est le modèle le plus simple possible. Il considère à chaque pas de temps de calcul, que l'écoulement est permanent et uniforme. Pour relier à chaque pas de temps, le débit et hauteur d'eau dans chaque tronçon, il utilise l'équation de Manning-Strickler.

Les hydrogrammes entre l'entrée et la sortie des conduites, ne subissent ni décalage dans le temps, ni amortissement.

Ce type de modèle ne peut représenter ni les effets de stockage de l'eau dans les réseaux, ni les phénomènes d'influences aval, ni les inversions du sens de l'écoulement, ni les écoulements en charge. De plus son utilisation est restreinte aux réseaux ramifiés (non maillés).

b) Modèle de l'onde cinématique

Il résout les deux équations de Barré de Saint Venant en négligeant, dans l'équation de conservation de la quantité de mouvement, les termes d'inertie et en faisant l'approximation que la pente de la surface libre est égale à la pente du radier. Soit $\frac{\partial y}{\partial x} = 0$. L'équation (IV.3) de Barré de Saint Venant est alors remplacée par l'équation de Manning-Strickler en régime uniforme.

Ce modèle considère également que le débit capable maximum d'un collecteur est le débit à pleine section. Dès que le débit à l'entrée d'un collecteur est supérieur au débit capable du collecteur, l'excédent est soit perdu pour le système soit stocké au dessus du nœud d'entrée puis réinjecté dans le collecteur lorsque celui-ci a retrouvé sa capacité d'évacuation.

Le modèle de l'onde cinématique permet de représenter des écoulements dans lequel débit et tirant d'eau varient à la fois dans le temps et dans l'espace. Cela se traduit par un décalage temporel ainsi qu'un amortissement des hydrogrammes entre l'entrée et la sortie d'un collecteur.

Cependant, il ne prend en compte ni les influences aval, ni les inversions du sens d'écoulement, ni les écoulements en charge et son utilisation se limite aux réseaux ramifiés (non maillés).

Ce modèle peut-être utilisé avec des pas de temps de calcul relativement longs, de l'ordre de 5 à 15 minutes

c) Modèle de l'onde dynamique

Il résout les équations complètes de Barré de Saint Venant et produit donc théoriquement les résultats les plus précis.

Avec ce modèle, il est possible de représenter les écoulements en charge dans les collecteurs, lorsque le débit y excède le débit à pleine section. Le débordement à un nœud survient lorsque la cote piézométrique dépasse la cote du terrain naturel. Le débit en excès est alors, soit perdu soit stocké au dessus du nœud et réinjecté dans le réseau en fonction des capacités d'évacuation de ce dernier.

Ce modèle permet de représenter les effets de stockage dans le réseau, les phénomènes d'influence aval, l'inversion du sens de l'écoulement et les écoulements en charge. Il peut être appliqué à n'importe-quel réseau, y compris les réseaux maillés.

C'est le modèle à choisir quand on peut s'attendre à des influences aval significatives, notamment lorsque le réseau comporte des limitations de débit à l'aval ou des systèmes de régulation tels que déversoirs ou orifices calibrés.

En revanche ce modèle requiert des pas de temps de calcul beaucoup plus courts que le modèle de l'onde cinématique, de l'ordre de la minute, ou moins. (SWMM réduit automatiquement la durée du pas de temps choisie par l'utilisateur; afin de garantir la stabilité numérique du calcul).

Comme dans les deux modèles précédents, l'équation de Manning-Strickler est utilisée pour relier la perte de charge unitaire eau tirant d'eau et au débit lorsque l'écoulement est à surface libre. Pour les écoulements en charge dans les conduites circulaires, c'est la formule de Darcy-Weisbach ou celle d'Hazen-Williams qui est utilisée.

4.2. Méthodes hydrologiques

4.2.1. Modèles utilisables pour la production

a) Modèle d'infiltration de Green-Ampt

Il s'agit d'un modèle décrit d'une manière simplifiée le mouvement de l'eau dans le sol, en fonction de certains paramètres physiques du sol :

Le processus d'infiltration de l'eau dans le sol est le suivant : la pluie qui arrive sur le sol y pénètre régulièrement selon un front d'humidification qui progresse en profondeur sous l'effet des forces de gravite et de succion.

Le modèle de Green-Ampt, représente ce processus de manière simplifiée selon le schéma suivant :

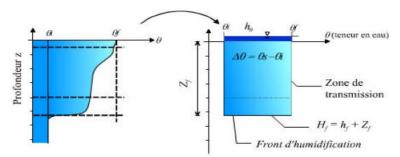


Figure IV.02 : Schématisation du processus de l'infiltration de Green-Ampt.

i.Paramètres du modèle

 Z_f : Hauteur d'eau infiltree depuis le debut de l'alimentation (mm) ;

 h_f : Potentiel de succion au niveau du front d'humidification (mm) $(h_f < 0)$;

 h_0 : Hauteur d'eau au niveau de la surface du sol (mm) ;

 θ_0 : Teneur en eau initiale du sol (en %);

 θ_f : Teneur en eau finale du sol (à saturation) (en %);

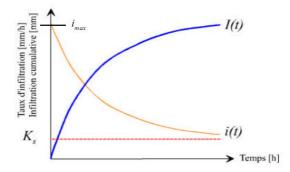
 K_s : Conductivité hydraulique du sol sature (mm h);

H_f: Charge hydraulique (potentiel total) au niveau du front d'humidification (mm).

Le modèle de Green-Ampt repose sur certaines hypothèses simplificatrices, une teneur en eau de la zone de la zone de transmission et un potentiel matriciel h_f à l'aval du front constants dans le temps et dans l'espace, avec un front d'humidification très marqué.

Ce modèle est basé principalement sur la loi de Darcy, en l'appliquant entre la surface du sol (0) et le front d'humidification (f), on aura finalement la vitesse d'infiltration i(t) qui exprime la formule générale du modèle :

$$i(t) = K_s \cdot (\frac{h_0 + h_f}{z_f(t)} + 1)$$
 (IV.4)


Ou encore, l'équation de Green-Ampt est une équation différentielle :

$$i(t) = \frac{dI(t)}{dt} = K_s. \left(\frac{(h_0 - h_f).(\theta_f - \theta_0)}{I(t)} + 1\right)$$
 (IV.5)

b) Modèle d'infiltration d'Horton

C'est un modèle empirique qui exprime la décroissance exponentielle, au cours d'une averse, de la capacité d'infiltration du sol i(t) depuis une valeur initiale i_{max} jusqu'à une valeur limite i_{min} qui exprime le potentiel d'infiltration à saturation.

On observe en effet que la capacité d'infiltration d'un sol diminue très rapidement au début de l'infiltration mais par la suite, la décroissance est plus progressive et tend en règle générale vers un régime constant, proche de la valeur de la conductivité hydraulique à saturation : $i_{min} = K_s$.

Figure IV.03 : Evolution générale du régime d'infiltration et d'infiltration cumulative au cours du temps (K_s conductivité hydraulique à saturation).

$$i(t) = i_{min} + (i_{max} - i_{min}).e^{-k.t}$$
 (IV.6)

Où : k est une constante de temps t ;

 i_{max} : Capacité d'infiltration maximale du sol (mm/h); i_{min} : Capacité d'infiltration minimale du sol (mm/h).

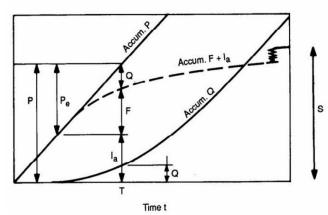
c) Modèle de ruissellement du Curve Number de SCS

Ce modèle empirique développé par le Soil Conservation Service (SCS, 1968), reliant le volume total ruisselé depuis le début d'un événement pluvial à la hauteur totale de pluie. Cette formule ne comporte qu'un seul paramètre S : la capacité totale de stockage du sol en mm. Le modèle repose sur l'hypothèse que le coefficient d'écoulement global à un instant donné d'un événement pluvieux est égal au taux de saturation des sols :

$$\frac{Q}{P} = \frac{P_e - Q}{S} \tag{IV.7}$$

Où:

P_e: Hauteur cumulée d'eau depuis le début de la pluie (mm) ;


Q : Volume total d'eau ruisselé depuis le début de la pluie (mm) ;

S : Capacité maximale de Stockage du sol (mm).

L'expérience montre que P_e est souvent proche de P – 0.2*S où P est la pluie brute. L'équation du SCS s'écrit donc :

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$
 (IV.8)

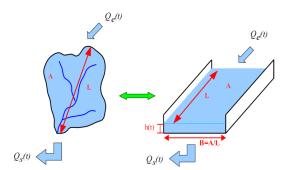
Avec : $I_a = S$.

Figure IV.04 : Précipitations et volumes produits cumulés pendant une averse d'intensité (*Maidement.D* ; 1992).

Cette équation repose sur l'hypothèse que, une fois les pertes initiales satisfaites, le rapport entre le volume effectivement ruisselé Qet le potentiel maximal de ruissellement $(P-I_a)$ est égal au rapport entre le volume effectivement infiltré F et le potentiel maximal d'infiltration S:

$$\frac{F}{S} = \frac{Q}{P - I_a} \tag{IV.09}$$

Le volume effectivement infiltré *F* ayant pour expression :


$$F = P - I_a - Q (IV.10)$$

On obtient l'équation générale du modèle en combinant (IV.09) et (IV.10).

5.2.2. Modèles utilisables pour le transfert

a) Modèle de ruissellement de l'onde cinématique

Il s'agit d'un modèle conceptuel qui représente le bassin versant comme un canal rectangulaire à surface libre.

Figure IV.05: Représentation d'un bassin versant par un canal rectangulaire (A=B*L).

Le débit entrant $Q_e(t)$ correspond à l'excès de précipitations (précipitations - infiltration - évaporation - interception par la végétation ou les dépressions à la surface du BV).

Le débit sortant $Q_s(t)$ est calculé à chaque pas de temps grâce à la formule de Manning-Strickler à partir des caractéristiques du canal (largeur et rugosité) et de la hauteur h(t) de la lame d'eau qui ruisselle dans le canal :

$$Q_S(t) = S_H(t).R_H(t)^{2/3}.\sqrt{I}$$
 (IV.11)
Avec: $S_H(t) = B.h(t)$ et $R_H(t) = \frac{B.h(t)}{B+2.h(t)} \approx h(t)$ car $h(t) \ll B$

Enfin une équation de conservation du volume (ou loi de stockage) relie à chaque pas de temps, la hauteur de la lame d'eau qui ruisselle h(t), aux débits entrants $Q_e(t)$ et sortants $Q_s(t)$:

$$\frac{dV(t)}{dt} = Q_e(t) - Q_s(t) \tag{IV.12}$$

Où : V(t) est le volume d'eau dans le canal soit :

$$V(t) = A. h(t) (IV.13)$$

b) Modèle du réservoir linéaire

C'est le modèle le plus couramment utilisé pour les bassins versants urbains vue sa simplicité en terme de paramètre demandé (il contient un seul paramètre). Dans ce modèle on peut considérer que le bassin versant peut être représenté par un réservoir avec une entrée (pluie nette) et une vidange (débit à l'exutoire) et une fonction de stockage. Le modèle est donc établi en combinant :

Une équation de stockage reliant linéairement le volume stocké au débit sortant :

$$V_s(t) = K. Q_s(t) (IV.14)$$

Et l'équation de continuité :

$$\frac{d(V_s)}{dt} = Q_e(t) - Q_s(t)$$
 (IV.15)

Avec K paramètre unique du modèle homogène a un temps appelé lag-time ou temps de réponse (S).

Qe(t): débit de pluie nette (m3/s);

Qs(t): débit à l'exutoire (m /s);

Vs(t): volume instantané stocké dans le bassin versant (m3).

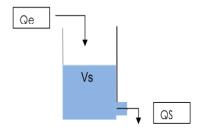


Figure IV.06: Représentation du modèle de réservoir linéaire.

c) Modèle de réservoir non linéaire

Dans le but de mieux représenter le caractère non linéaire des écoulements transitoires à surface libre, certains chercheurs ont proposé d'utiliser des modèles de stockage non linéaire (*kidd*; 1978).

La méthode du réservoir non linéaire est basée sur le couplage de l'équation de continuité et de l'équation de Manning-Strickler.

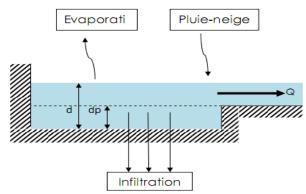


Figure IV.07: Représentation du modèle du réservoir non linéaire.

L'équation de continuité s'écrit :
$$\frac{dv}{dt} = A \cdot \frac{dd}{dt} = A \cdot i - Q$$
 (IV.16)

L'équation de Manning-Strickler :
$$Q = w \frac{1}{n} (d - dp)^{5/3} S^{1/2}$$
 (IV.17)

Avec:

V : volume de l'eau dans le bassin versant (m³);

A: surface du bassin versant;

d: tirant d'eau (m);

t: temps (s);

dp: hauteur de l'eau stocké dans les dépressions (m);

i : intensité de la pluie nette (mm/s) ;

Q : débit de sortie (m^3/s) ;

W: largeur du bassin(m);

n : coefficient de Manning-Strickler;

S: pente de terrain.

La combinaison des équations (IV.16) et (IV.17) donne l'équation des réservoirs non linéaires :

$$\frac{dd}{dt} = i - \frac{w}{A.n} (d - dp)^{5/3} S^{1/2}$$
 (IV.18)

III. utilisation du logiciel SWMM pour la modélisation des réseaux d'assainissement

Le logiciel SWMM utilise les modèles mathématiques pour tenter de reproduire le fonctionnement hydrologique ou hydraulique d'un système d'assainissement existant ou projeté afin d'exécuter une ou plusieurs des tâches suivantes :

- ✓ Evaluer un réseau existant;
- ✓ Concevoir un nouveau réseau;
- ✓ Dimensionner des ouvrages spéciaux;
- ✓ Simuler le comportement hydraulique d'un réseau suite à une extension ou réhabilitation;
- ✓ Faire des études d'impact sur le milieu récepteur.

Le logiciel SWMM est certainement le plus complet et le plus populaire de tous les modèles disponibles. Bien qu'originalement ce modèle fût développé pour l'analyse des problèmes de qualité des eaux dans le ruissellement urbain, il est utilisé en grande partie pour des applications de drainage. Il permet de simuler pour un bassin donné :

✓ Les infiltrations;

- ✓ La transformation pluie débit;
- ✓ L'accumulation en période de temps sec et le lessivage en période de pluie de neuf polluants;
- ✓ La qualité des eaux usées et les dépôts en conduite en période de temps sec;
- ✓ Le transfert dans le réseau des hydrogrammes, et les phénomènes de sédimentation et de mise en suspension;
- ✓ Le fonctionnement des différents procédés de traitement d'une station d'épuration.

1. Modélisation structurale

1.1. Différents objets de modélisation

Au sens de modélisation sous SWMM, un système d'assainissement est représenté par différents éléments physiques mis en relation : nœuds, tronçons, bassins versants, exutoires, pompes, bassins de rétention, orifices.

- <u>Un nœud</u> du réseau est un objet ponctuel, repéré par sa position dans l'espace et jouant un rôle dans la description ou dans le fonctionnement du système d'assainissement.
- <u>Un tronçon</u> de réseau est une partie du réseau dont les caractéristiques géométriques (pente, rugosité, forme de la section) restent constantes, de même que les caractéristiques fonctionnelles (pas d'apport latéral de débit). Un tronçon de réseau est limité à l'amont et à l'aval par un noeud (nota : il s'agit d'un sens conventionnel qui n'impose pas obligatoirement le sens d'écoulement de l'eau).
- <u>Un bassin versant</u> est une portion de surface, produisant de l'eau en temps sec et/ou en temps de pluie, et telle que toute l'eau produite puisse être supposée introduite dans le réseau en un même point particulier appelé exutoire du bassin versant. En identifiant cet exutoire à un nœud du réseau, on crée une relation entre le bassin versant (la surface) et le système d'assainissement.
- <u>Un bassin de rétention</u> est un ouvrage surfacique permettant de stocker provisoirement de l'eau.

Un bassin de retenue est limité à l'amont et à l'aval par un ou plusieurs noeuds

(nota : il est également possible de définir un bassin de retenue sans lui donner d'extension spatiale, en l'associant à un ouvrage spécial).

- <u>Un exutoire</u> est également un ouvrage ponctuel associé à un noeud. L'exutoire permet d'établir une relation entre le système d'assainissement et le milieu naturel.
- <u>Un déversoir latéral</u> est un ouvrage linéaire (comme un tronçon), avec un départ latéral. Un déversoir latéral est limité par un nœud amont et deux nœuds aval.
- <u>Un capteur</u> ou (point de contrôle) est un point du réseau où l'on effectue une mesure (par exemple pour mettre en place une régulation). Un capteur est placé en un point particulier d'un tronçon.

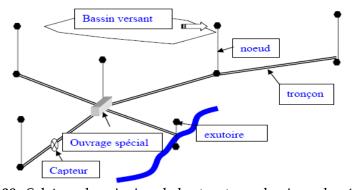


Figure IV.08 : Schéma de principe de la structure physique du réseau.

1.2. Modèle physique du réseau

Les éléments du système à modéliser (réseau d'assainissement) doivent être décomposés en sous bassins versant et tronçons homogènes. Chacun d'eux, doit être localisé et décrit par les paramètres nécessaires.

Tous ces éléments seront mis en relation entre eux afin de représenter d'une manière cohérente la structure physique du réseau d'assainissement (interrelation entre exutoire des sous bassins et nœud, et conduite).

En première démarche manuelle, le modèle physique est représenté sous forme de plan de masse complété par des fiches de données des éléments constitutifs.

La seconde étape est la numérisation informatique, ce qui consiste à introduire les données sous une forme appropriée dans le but d'être exploité par le logiciel de calcul. On tient à signaler que cette étape est très importante, car les données injectées doivent être en concordance avec les modèles mathématiques de simulation des phénomènes, ce qui nécessite une bonne connaissance de ces modèles et leur origine et hypothèses.

1.3. Modélisation des dépôts

L'encrassement des réseaux d'assainissement se matérialise par la présence des dépôts de différente nature lorsque l'écoulement n'a plus l'énergie suffisante pour transporter l'ensemble des particules solides (galets, graviers, sables, limons, ... etc.).

En SWMM, le paramètre permettant l'évaluation physique des dépôts est la hauteur des matières déposées. La hauteur du dépôt et son évolution le long du réseau dépendent de plusieurs facteurs (présence de chantiers, pourcentage des surfaces non revêtues, ...etc.). La condition de dépôt d'une particule est que sa trajectoire aboutisse au fond de la canalisation et qu'elle s'y maintienne ou qu'elle y revienne. Les variations hydrauliques constatées dans les réseaux font qu'une même particule peut, en des temps différents, être soit :

- déposée ;
- prise dans un mouvement de roulement le long de la canalisation ;
- remise en suspension;
- transportée en surface.

2. Manipulation du logiciel

Le Storm Water Management modèle (SWMM) est un modèle de simulation de la pluie-débit utilisé pour un événement particulier ou à long terme (continue) dans les zones urbaines. Le composant de ruissellement de SWMM opère sur une collection de zones de sous-bassins qui reçoivent des précipitations et génèrent des charges de polluants et de ruissellement. Une de SWMM transporte ce ruissellement grâce à un système de tuyaux, canaux, dispositifs de stockage et de traitement, pompes et régulateurs. SWMM suit la quantité et la qualité des eaux de ruissellement générées à l'intérieur de chaque sous-bassin et le débit, la profondeur de l'écoulement et la qualité de l'eau dans chaque tube et le canal pendant une période de simulation composée de plusieurs étapes de temps.

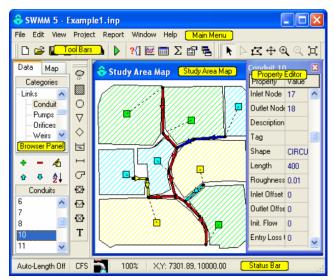


Figure IV.09: Fenêtre principale du logiciel SWMM.

L'utilisation de SWMM est guidée généralement par les étapes suivantes :

- 1. Spécifier un ensemble par défaut des options et l'objet des propriétés à utiliser ;
- 2. Dessiner une représentation du réseau des composantes physiques de la zone d'étude;
- 3. Modifier les propriétés des objets qui composent le système ;
- 4. Sélectionnez un ensemble d'options d'analyse;
- 5. Exécuter une simulation;
- 6. Afficher les résultats de la simulation ;

IV. Présentation des objectifs du modèle pour le réseau d'assainissement de la ville d'AHMED RACHDI

1. Problématique du réseau d'assainissement de la ville d'AHMED RACHDI en période de pluie

Dans la ville d'AHMED RACHDI, l'imperméabilisation des sols entraîne une augmentation considérable des volumes des eaux ruisselées en temps de pluie et par la suite une forte sollicitation des réseaux d'assainissement, ce qui induit des débordements et des inondations en cas de leur sous dimensionnement. Ceci menace la sécurité des biens et des personnes ainsi que leur santé et touche à l'environnement côtoyant à l'activité humaine.

La recrudescence des inondations, attribuée aussi au vieillissement des réseaux d'évacuation (âgés de plus de 25 ans), pose énormément de problèmes au la ville d'AHMED RACHDI qui doit rapidement trouver des solutions au problème de débordement, afin d'apaiser le mécontentement des habitants de la ville. Pour tester le meilleur fonctionnement d'un réseau et juger de sa performance hydraulique, c'est-a-dire déterminer le risque de débordement de ce réseau ainsi que la probabilité de dépassement de la pluie de projet, on a recours à l'utilisation des modèles adéquats de simulation des réseaux et la maîtrise des formules de calcul convenable à la zone du projet, c'est le cas du logiciel SWMM. Qui nous donne la possibilité de faire un bon dimensionnement du réseau soit en cas de réhabilitation soit en cas d'extension.

2. Objectifs du logiciel

Les capacités de PCSWMM étant élevées, et les processus de modélisation hydrologiques étant nombreux, il est primordial de se fixer des objectifs de modélisation. Il n'est pas judicieux d'envisager d'intégrer tous les processus intervenant en hydrologie. En effet, cela

complique énormément la construction du modèle, nécessite une quantité de données astronomiques (données qui ne sont pas disponibles pour une telle ville (AHMED RACHDI)) et rend plus difficile l'interprétation des résultats (si il y a trop de processus, il devient plus de distinguer les paramètres essentiels pour chacun d'eux). En effet, certains processus peuvent prendre le dessus sur les processus que l'on souhaite étudier. Du coup, les nuances des résultats des processus masqués sont moins accessibles.

Pour ces raisons, il est nécessaire de cibler les processus que l'on souhaite modéliser dans cette étude.

L'objectif de simulation est le suivant:

- ✓ établir un bilan des rejets d'eaux par temps de pluie pour un réseau d'assainissement de type unitaire d'une agglomération telle que la ville d'AHMED RACHDI;
- ✓ Identifier les différents points noirs du réseau en fonction de plusieurs paramètres ;
- ✓ Proposition des solutions en vue de fiabiliser l'évacuation des eaux pluviales et domestiques.

Dans le dessein de répondre à cet objectif, il est décidé de se concentrer sur la simulation des processus principaux intervenant dans les rejets d'eaux pluviales:

- i. Les écoulements superficiels;
- ii. L'évacuation (propagation) des écoulements superficiels à travers réseau d'assainissement et ses ouvrages hydrauliques.

Ne souhaitant pas effectuer d'évaluations qualitatives des rejets, à cause de l'absence des données sur la qualité des eaux usées rejetées. Nous postulerons également que les eaux claires parasites sont inexistantes dans ce réseau.

3. Avantages du logiciel

L'utilisation du modèle offre plusieurs avantages :

- 1. Les paramètres utilisés sont physiques (surface, pourcentage imperméable, pente, rugosité, géométrie de la canalisation ...);
- 2. Amélioration continuelle du modèle et vérifications très fréquentes;
- 3. Simulations des surcharges et usage très versatile du modèle;
- 4. Possibilité d'utilisation pour les études d'impact;
- 5. Documentation complète et détaillée.

Conclusion

L'utilisation du logiciel SWMM pour la modélisation du fonctionnement du réseau permet de connaître son fonctionnement ainsi que les pollutions rejetées au milieu naturel. Elle est un outil indispensable pour la gestion du réseau et le diagnostic. Elle fait l'objet d'une maintenance permanente, à partir des études réalisées, des observations faites par l'exploitant sur le fonctionnement du réseau, ainsi que des modifications et extensions qui lui sont apportées. Elle est une aide à l'exploitation et peut permettre par exemple de prévoir les interventions de curage. Celles-ci peuvent alors être programmées pendant les périodes les plus favorables (l'été en particulier, en raison de la circulation moins importante, et du débit plus faible). Les égoutiers sont ainsi amenés à faire de la surveillance et des interventions préventives.

Chapitre: V

Application du logiciel SWMM5 au réseau d'assainissement de la ville d'AHMED RACHDI

Introduction

En Algérie, d'une manière générale, la vérification des réseaux d'assainissement unitaires dans le cadre de leur réhabilitation se fait par la méthode superficielle. Or, cette méthode n'est destinée que pour le dimensionnement, elle ne permet que d'estimer le débit de pointe à l'exutoire et ne permet en aucun cas de savoir le fonctionnement réel du réseau durant le temps de pluie.

En revanche, grâce à la révolution numérique il existe de nouvelles méthodes se basant sur des outils informatiques (logiciels) qui réalisent la simulation des réseaux en prenant en compte le temps parmi les paramètres principaux dans les formules de calculs. Ces méthodes permettent au concepteur de mieux comprendre le fonctionnement des réseaux en temps de pluie. Ce qui facilite la prise des décisions les plus adéquates aux problèmes liés aux réseaux d'assainissement. C'est pour cela que nous présentons les résultats de la simulation du réseau d'assainissement de la ville d'AHMED RACHDI, qui montrera les points de dysfonctionnement du réseau en fonction des différentes pluies projet, ainsi qu'en fonction de l'augmentation de la rugosité.

I. Préparation des données pour la simulation

La préparation des données est l'étape la plus difficile en modélisation vue le nombre de paramètres importants à déterminer surtout au niveau des bassins versants et vue la difficulté d'évaluer certains paramètres tels que l'imperméabilisation.

La construction de notre modèle et l'évaluation de la capacité du réseau d'assainissement ont nécessité des relevés topographiques sur l'ensemble des bassins versant et nécessité de la connaissance de toutes les caractéristiques des composantes du réseau.

Un relevé de la ville d'AHMED RACHDI avec le réseau d'assainissement existant a été effectué en 2011 sous AUTOCAD par le bureau des études B.E.C.E (Bureau des études et construction sur l'eau), mais à cause de l'absence d'un logiciel de passage d'AUTOCAD vers SWMM5 (il existe le logiciel SWMM5 CAD mais il est payant), nous étions obligés d'introduire manuellement toutes les données nécessaires. Après avoir effectué certaines corrections du levé (ajouter les nouvelles constructions après les visites sur terrain et comparer les cotes topographiques du levé sous AUTOCAD avec ceux de Google Earth).

1. Délimitation des bassins versants

La délimitation des bassins et sous bassins versants existants a été faite suivant les bases classiques appliquées en assainissement.

Le diagnostic du réseau existant qui a été dans le cadre de ce projet, a permis de délimiter l'ensemble des sous bassins drainés par les collecteurs principaux, secondaires et même tertiaires.

2. Construction de la Pluie de projet (Lalande-C ; 2000)

En général les modèles numériques utilisés pour le calcul des débits pluviaux se basent de préférence sur une pluie réelle enregistrée sur les pluviographes pendant l'événement pluvial le plus défavorable. En l'absence de cet enregistrement, les concepteurs du réseau d'assainissement ont recours à la construction d'une pluie synthétique appelée pluie de projet. Dans la littérature, il existe plusieurs méthodes pour la construction de cette pluie. Les plus utilisées sont la pluie double triangle et la pluie Chicago.

Dans cette étude nous avons utilisé la méthode de pluie Chicago, cette méthode consiste à transformer les courbes IDF en hyétogrammes auxquels sont affectées les périodes de retour des courbes IDF correspondantes. La construction des hyétogrammes synthétiques est basée sur les courbes IDF et pour des averses de durées totales de 2 et 4 heures, dont le maximum se produit en θ .T (θ est pris ici égale à 0,5)), on construira nos hyétogrammes selon la méthode suivante :

$$i(t, f) = a * (1 - b) * (T - \frac{t}{a})^{-b}$$
 Pour $0 \le t \le \theta.T$ (V.01)

$$i(t, f) = a * (1 - b) * (\frac{t - \theta \cdot T}{1 - \theta})^{-b}$$
 Pour $\theta \cdot T \le t \le T$ (V.01)

Avec:

i(t, f): L'intensité d'une pluie de fréquence f pendant le temps t;

a et b : Les paramètres de Montana précédemment calculés ;

T: La durée totale de l'averse T=2 heures =120 min, et T=4 heures=240 min;

t: Le temps (min).

Pour englober toutes les possibilités, on a été amené à établir plusieurs (au nombre de 24) hyétogrammes de Chicago, pour plusieurs périodes de retour (5, 10, 20, 30 ans) avec les intensités maximales des différentes durées d'averse (5, 15, 30 min) calculées au Chapitre I. L'établissement des hyétogrammes a été fait à l'aide d'un tableur Excel qui nous donne les différentes intensités pour chaque pas de temps à partir des équations (V.01 et V.02).

Pour cette partie, on a choisi aussi d'utiliser les pluies projet d'une période de retour de 5ans, qui est pour des durées d'averse (30 min, 15 min, 5 min) peuvent couvrir une bonne partie des anomalies observées sur le réseau. Cette période de retour est la plus explicative de l'état actuel du réseau (elle est la plus proche à la phase présente, parmi toutes les périodes précédentes), ce qui nous aide énormément au diagnostic du réseau d'assainissement.

La période de retour de 10 ans est la période souvent utilisée lors d'un dimensionnement d'un réseau d'assainissement, elle est la plus technico-économique, ce explique son utilisation majeure.

Les autres périodes de retour (20 et 30 ans) ont été choisies comme étant les pluies délicates pour un réseau d'assainissement, ce qui nous permet d'englober toutes les réactions possibles de notre réseau d'assainissement face à un évènement pluvieux.

Quelques hyétogrammes sont présentés ci-dessous :

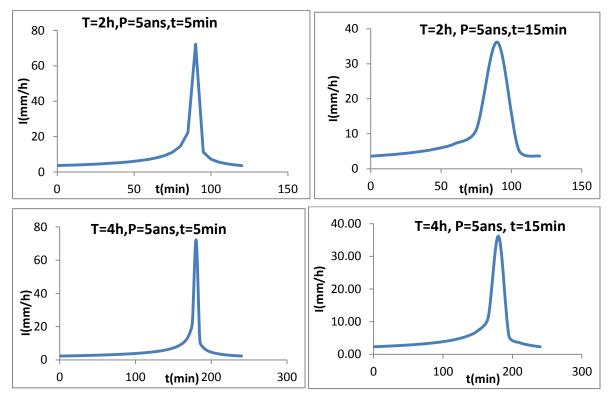


Figure V.01: Quelques Hyétogrammes de Chicago de la ville d'AHMED RACHDI.

Notons que le logiciel SWMM5 ne modélise que le fonctionnement d'un réseau d'assainissement pluvial d'un système séparatif. Mais pour la ville d'AHMED RACHDI le réseau est unitaire, et nous devons construire ainsi les nouveaux hyétogrammes de Chicago en tenant compte des eaux usées domestiques.

Par exemple, pour une période retour de 5 ans, on est obligé d'ajouter les eaux usées de 2017 (Q=19.44 l/s) à l'hyétogramme de Chicago comme suit :

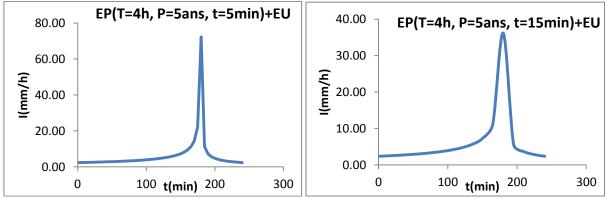


Figure V.02: Les Hyétogrammes des pluies projet + les eaux usées.

3. Construction du modèle

D'un point de vue général, la mise en œuvre d'un modèle suppose une **schématisation préalable** du réseau et le découpage de la zone d'étude en bassins versants d'apport de caractéristiques homogènes, puis de **l'introduction** de cette schématisation à l'outil.

La schématisation doit être réalisée en fonction des objectifs de la modélisation, des données disponibles et bien sûr des limites de chaque algorithme.

Pour notre projet, on a retenu **tous** les tronçons hydrauliques de diamètres supérieurs à 250 mm (à cause de leurs diamètres assez petits qui rendent le diagnostic impossible), ainsi que **tous** leurs éléments hydrauliques (Regards, Sous Bassins Versant, Rejets...).

Le réseau d'assainissement de la ville d'AHMED RACHDI existe sous AUTOCAD, mais l'absence du logiciel de passage nous oblige d'introduire toutes les données manuellement.

La ville est découpée en sept bassins versants principaux, la modélisation de ces bassins a engendré la création sous le logiciel SWMM5 de :

- **♣** 531 Sous Bassins Versants;
- **♣** 586 Nœuds ;
- ♣ 585 Tronçons hydrauliques ;
- ♣ 4 Exutoires;
- 4 25 pluies projet;

Pour chaque catégorie d'élément, les entrées de définitions sont les suivantes :

- Nœud (Regard) et exutoire (Rejet) :
 - L'emplacement ;
 - Profondeurs des regards.
- Tronçon :
 - Nœud amont, nœud aval;
 - Longueur;
 - Rugosité;
 - Section;
 - Hauteur de chute amont / aval;
 - Note : le calcul de la pente est automatique.
- Sous bassin versant:
 - Délimitations;
 - Nœud exutoire;
 - Pente;
 - Surface;
 - Largeur équivalente ;
 - Coefficients de ruissellement
 - Caractéristiques d'imperméabilisation;
 - Caractéristiques d'infiltration;
 - Pluie affectée.

4. Détermination des caractéristiques et paramètres hydrauliques nécessaires à la modélisation

4.1. Caractéristiques des Regards et des rejets

Chaque regard ou rejet définit par son nom, son emplacement et sa profondeur, est représentée sur un plan AUTOCAD.

4.2. Caractéristiques des tronçons

Toutes les caractéristiques des tronçons sont aussi représentées dans l'Annexe I.

4.3. Caractéristiques des Bassins Versants

✓ Surface et largeur des sous bassins

Les calculs de chaque surface et de chaque largeur équivalente ont été faits automatiquement à l'aide d'AUTOCAD.

✓ Les pentes moyennes des bassins versants

La pente moyenne de chaque bassin versant est estimée comme la pente moyenne de ou des collecteurs principaux de ce bassin. Les pentes moyennes des bassins versant de la ville d'AHMED RACHDI sont données dans le tableau ci-dessous :

Tableau V.01: Les pentes moyennes des bassins versants.

Bassin Versant (N°)	01	02	03	04	05	06	07
Pente Moyenne (m/m)	0.02690	0.01770	0.03620	0.01830	0.02080	0.03120	0.0098

✓ Les coefficients de ruissellement

Le coefficient de ruissellement est délicat à définir. Dans la grande majorité des cas il est défini de façon statistique à partir d'une analyse plus ou moins subjective de l'occupation des sols, mais on peut estimer ce coefficient selon la densité de la population, la catégorie de l'urbanisation, les surfaces drainées et l'occupation du sol.

Les coefficients de ruissellement assimilés aux bassins versants sont représentés dans le tableau suivant :

Tableau V.02: Les coefficients de ruissellements des bassins versants.

Bassin Versant (N°)	01	02	03	04	05	06	07
Coefficient de Ruissellement	0.51	0.43	0.50	0.45	0.53	0.40	0.35

✓ Le pourcentage des surfaces imperméables

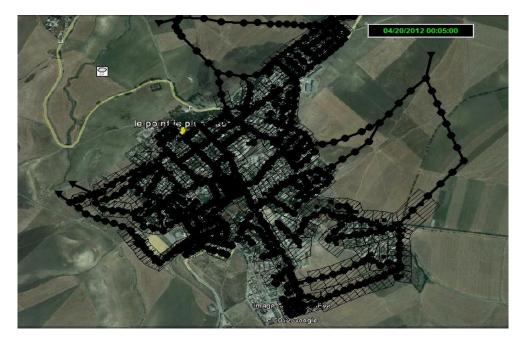

L'occupation des sols est très variable, ce qui rend sa détermination assez délicate, elle dépend principalement de la nature des sols et la nature de son occupation et de leurs degrés de perméabilité vis-à-vis l'écoulement. Pour la ville d'AHMED RACHDI les pourcentages des surfaces perméables sont illustrés dans le tableau suivant :

Tableau V.03: Les pourcentages des surfaces imperméables.

Bassin Versant (N°)	01	02	03	04	05	06	07
% des surfaces imperméables (%)	75	60	65	75	40	70	40

II. Réseau modélisé

Après avoir dessiné le réseau et introduit toutes les caractéristiques et les paramètres nécessaires à la modélisation, le rendu graphique du modèle serait le suivant :

Figure V.03 : Visualisation du réseau d'assainissement de la ville d'AHMED RACHDI modélisé sous SWMM5.

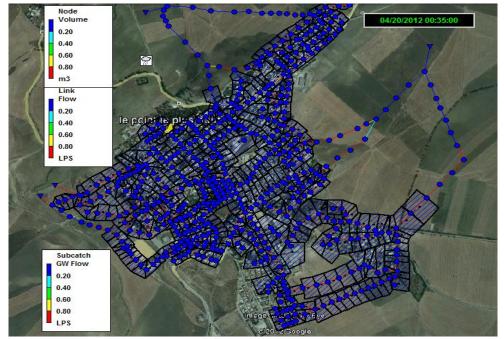


Figure V.04: Visualisation des composantes du réseau lors son fonctionnement.

III. Simulations et diagnostics du réseau modélisé

Le logiciel SWMM55 permet l'utilisation de plusieurs modèles prédéfinis, le problème de saturation du sol pendant la période hivernale est résolu à l'aide du Modèle Green-Ampt. C'est pour cette raison que notre choix s'est porté sur ce modèle d'infiltration.

Plusieurs simulations ont été effectuées afin d'avoir un grand nombre de résultats, ce qui nous permet diagnostiquer au mieux notre réseau d'assainissement.

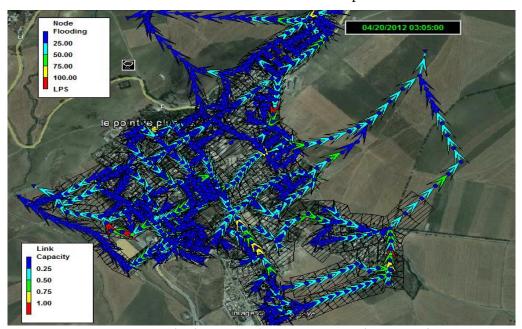
Les premières simulations effectuées sont en fonction des pluies tombées(en fonction des périodes de retour, durées totales de l'averse, des durées intenses). En gardant toutes les autres caractéristiques du réseau constantes, on simule par la suite le comportement du

réseau en changeant d'autres paramètres que la pluie. Comme la rugosité des conduites qui a été augmenté en fonction du temps pour tenir compte des dépôts. La rugosité n'est pas le seul paramètre variable, les profondeurs des regards peuvent aussi être changées, ainsi que les pentes des conduites à cause du trafic routier et des poids des constructions pour les conduites qui passent dessous.

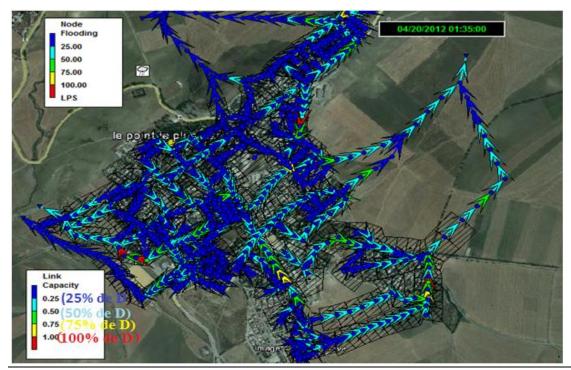
1. Simulations en fonction des pluies

L'évaluation de la performance hydraulique d'un réseau d'assainissement peut être accomplie selon les critères suivants :

1.1. Capacité hydraulique des tronçons


1.1.1. Période de retour P=5ans

En premier lieu, le critère principal d'analyse du réseau d'assainissement est bien de vérifier sa capacité hydraulique en fonction de l'averse par laquelle il est sollicité.


Pour nos pluies élaboré précédemment, la pluie de projet de période de retour 5 ans et de durée intense 30 min est celle qui, dans la gamme de pluies simulées, demeure la moins contraignante du point de vue hydraulique, avec une intensité maximale de l'ordre de 23.40 mm/h.

Dans ce cas, deux différentes simulations ont été effectuées, la première pour une durée totale de l'averse de 2h et la deuxième pour une durée de 4h.

L'application de cette première pluie ne pose presque aucun problème pour le réseau, La capacité de transfert de flux de chaque tronçon du réseau traduite par le rapport du débit véhiculé au débit admissible de celui-ci est quasiment parfaite. La bonne réponse hydraulique du système s'explique par la capacité satisfaisante du réseau à évacuer toutes les eaux durant les deux périodes d'averse, 2h et 4h. Les deux figures suivantes illustrent les capacités maximales du réseau atteintes lors de l'événement pluvieux.

Figure V.05 : Capacité maximale du réseau (tronçons, regards et sous bassins versant) au bout de 03h et 05min sur une durée totale de 4h.

Figure V.06 : Capacité maximale du réseau (tronçons, regards et sous bassins versant) au bout de 01h et 35min sur une durée totale de 2h, (les conduites surchargées sont en jaune et en rouge).

Pour une durée totale de pluie de 2h, la réponse hydraulique du réseau n'est pas parfaite, le logiciel SWMM5 a fait ressortir certain nombre d'insuffisances de capacité pour les conduites. Les conduites 6, 117, 302, 303, 307, 354, 356, 530, 532, 593, 61, Cond562 ont été surchargées, la hauteur d'eau dans toutes ces conduites dépasse 75% de la section maximale de la conduite, elle peut continuer jusqu'à une hauteur supérieur au diamètre entier de la section, et donc un débit maximal qui dépasse son débit à pleine section, elles apparaissent alors comme sous dimensionnées. On remarque que la majorité des diamètres affectés sont les $\Phi300$ qui ont les plus petites sections. Ces sous dimensionnements ne posent pas de grands problèmes pour le réseau, car ils ne durent pas longtemps (au maximum 10min).

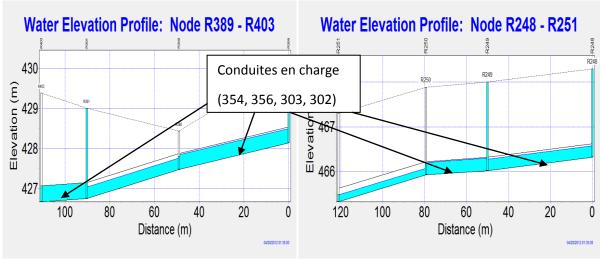
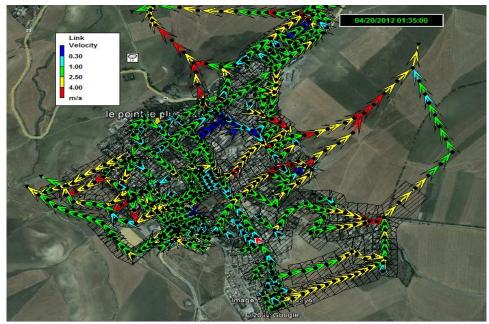



Figure V.07: Exemple de conduites surchargées au cas de la pointe 1h 35min (pour 2h).

Certaines autres conduites ont des vitesses maximales atteintes lors de l'événement pluvieux qui dépassent le seuil maximal (4m/s): 8, 9, 35, 92, 125, 129, 130, 131, 141, 142, 150, 151, 168,

169, 185, 186, 168, 169, 173, 177, 193, 274, 275, 338, 341, 342, 348, 349, 350, 357, 369, 519, 522, 526, 529, 547, 591, 596, 597, 599, 602, 603, 74, 77, 81, 82, 513, Cond550, Cond567, à cause de leurs pentes assez élevées qui dépassent les 10%, et de leurs débits maximaux importants.

Figure V.08 : Vitesses maximales dans le réseau au bout de 1h 35min.

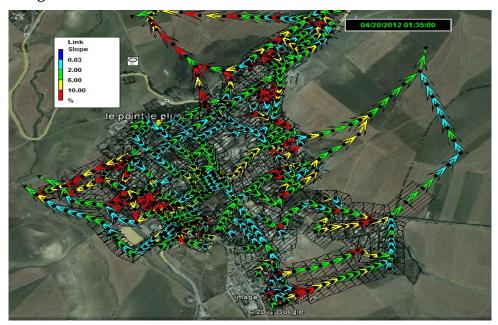


Figure V.09: Les pentes des conduites dans le réseau.

Le système évacue un débit maximal total qui dépasse les 2139 l/s en heure de pointe et un volume total de 3597 m³. Le Rejet 1 qui se trouve à l'Est de la ville, chargé de la zone 03 est le plus important. Il évacue un maximum de 953 l/s qui draine un volume total de 2182 m³. Le Rejet 4 au Nord Est de la ville, chargé de la zone 02, évacue au maximum un débit de 570 l/s soit un volume total de 580 m³. Les deux autres Rejet 02,03 de la zone 01 s'avèrent moins importants. Ils rejettent 379 l/s et 363 l/s successivement au maximum correspondant respectivement à des volumes de 481 m³ et 354 m³.

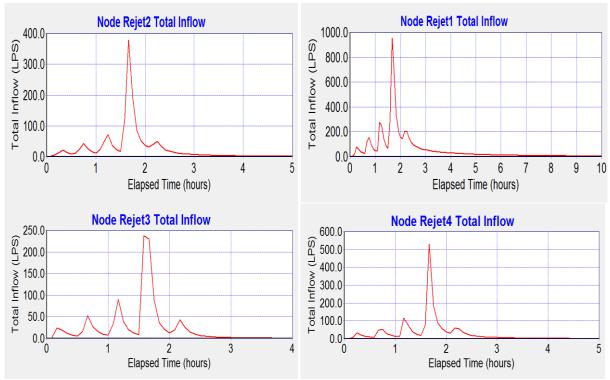


Figure V.10: Les débits dans les rejets pendant et après l'évènement pluvieux.

La capacité hydraulique du réseau s'explique aussi par le temps nécessaire pour évacuer toutes les eaux ruisselées sur la surface. Pour notre réseau, un pourcentage de 55.5% du volume d'eau tombée se ruisselle, et 38% s'infiltre, ce volume ruisselé ne s'évacue qu'après environ 2h de l'arrêt de la pluie dans toutes les conduites, à l'exception des collecteurs principaux : C32 dans la zone 03, C21 dans la zone 02, C12 dans la zone 01 qui restent en dernier.

Le collecteur C12 se vide le premier après environ 5h de l'arrêt de la pluie, ce qui explique la formation permanente des flaques d'eau au niveau de la Cité des 128 logements.

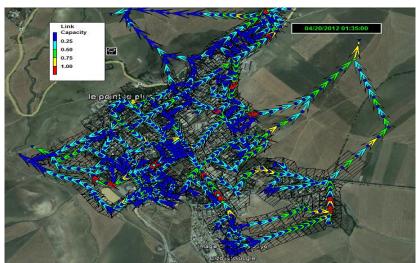
Le collecteur C21 et moins importants que le premier, son débit et mois important, il se vide complètement après 4h de l'arrêt de la pluie, ce qui explique les ruissellements superficiels assez forts en périodes pluvieuses. Ainsi que les inondations quasi permanentes relevées par la population.

Le collecteur C32 est le plus important, il transporte un débit assez élevé il se vide après 17h de l'arrêt de la pluie, ce qui peux expliquer les inondations de la Cité des 30 et 40 logts, et de la Cité de Mechta El Khaire.

Pour les autres pluies de même période de retour, et de différentes durées d'averse intense (15 et 5 min), les problèmes mis en évidence via cette première pluie seront évidemment aggravés lors de l'application sur notre modèle des autres pluies de projet de 15 et 5 min.

De la pluie de 15 min résulte la surcharge d'un grand nombre de conduites, on aura une augmentation de 60% de conduites surchargées par rapport au premier cas. Ce qui va surement engendrer des problèmes plus graves et plus nombreux pour les débits de pointe. Ceci est à cause de l'augmentation de l'intensité maximale de la pluie projet à 36.20 mm/h vis à vis de la capacité hydraulique des tronçons, ce qui augmente les débits de pointe dans toutes les conduites.

Les conduites affectées en premier lieu seront obturées complètement dans ce cas là (par exemple : 6, 117, 302, 303, 307), même en dehors de la période de pointe. De plus d'autres


conduites seront surchargées (20 autres conduites). Ce qui s'explique par leurs sous dimensionnements, car la hauteur d'eau dans la conduite dépasse les 75% du diamètre.

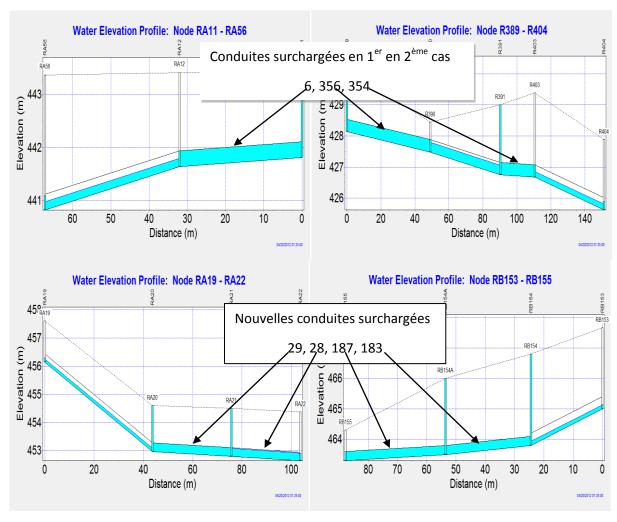
A cause de l'augmentation des débits en gardant les sections (diamètres) constantes, les vitesses d'écoulement augmentent (plus de 100 conduites ont des vitesses supérieures à 4m/s), ce qui influe négativement l'état du réseau.

Le système évacue un maximum de débit de 2885 l/s ($Q_{Rejet01}$ =961 l/s, $Q_{Rejet02}$ =564 l/s, $Q_{Rejet03}$ =577 l/s, $Q_{Rejet04}$ =861 l/s) atteint après 1h 35 min. Le volume total évacué est de 6744 m³ ($V_{Rejet01}$ =4007m³, $V_{Rejet02}$ =925m³, $V_{Rejet03}$ =684m³, $V_{Rejet04}$ =1129m³). En comparant avec le premier cas, on peut constater que le système d'évacuation de la Zone03 tend vers sa saturation en période de pointe. Car d'une part, la variation des débits entre la première pluie et la deuxième est très faible (environ 10 l/s), et d'autre part, cette Zone comporte plus de 65% du nombre global des conduites sous dimensionnées (117,192, 153, Cond562, 302, 303, 307, 328...). Ce qui confirme les dires des habitants concernant les ruissellements de surface assez forts qui durent longtemps et les inondations quasi permanentes pendant les périodes pluvieuses au niveau des cités : 04hectares, 30 et 40 logts, El Kessyoune, Mechta El Khaire.

Les trois autres Rejets (02, 03, 04) prouvent le bon fonctionnement des réseaux des Zones 01 et 02, expliqué par les débits importants qu'ils transportent. Malgré le comportement de certains tronçons mal dimensionnés (la Zone 01 : 262,421,461,530,532, 183,187,473, . la Zone 02 : 6,28,29,166).

Les collecteurs principaux précédemment cités se surchargent encore plus en causant plus de problèmes pour le milieu urbain, un autre collecteur principal se surcharge. C13 dans la zone 03, ce qui amplifie les inondations dans cette zone, ils ne se vident complètement qu'après 19h de l'arrêt de la pluie.

Figure V.11 : La capacité des tronçons en périodes de pointe à 1h 35min.



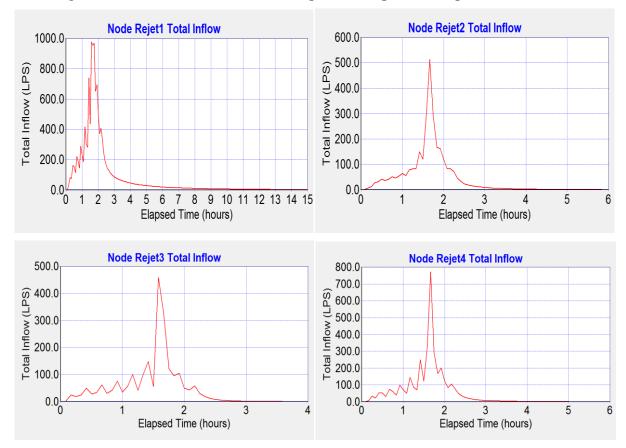


Figure V.12: Exemples des conduites mises en charges en période de pointe après 1h 35min.

Figure V.13 : Vitesses des écoulements pendant la période de pointe à 1h 35min.

Figure V.14: Les variations des débits dans les rejets 01, 02, 03, 04.

La pluie de 5 min de durée intense est la plus cruciale pour une période retour de 5ans, le nombre de conduites mises en charge augmente de 116% par rapport au premier cas pour les débits de pointe. Dans ce cas là, le réseau apparait comme incapable de fonctionner comme il faut dans sa grande majorité. Un nombre important de conduites est sous dimensionné (114 conduites) et causé par la forte intensité de la pluie tombée (un maximum de 72.30 mm/h qui dure 5min).

Les vitesses aussi augmentent considérablement en augmentant les débits, on compte environ 200 conduites fonctionnant avec des vitesses d'écoulement qui dépassent les 4 m/s, plus de dix d'entre eux dépassent les 8 m/s.

La zone 03 est la plus touchées (plus de 75 conduites sont sous dimensionnées), son réseau sera saturé pour longtemps. La zone 01 comporte aussi certaines conduites affectées (environ 20 conduites), pouvant causer des débordements. Mais son réseau d'assainissement fonctionne dans sa majorité normalement pendant cette durée. Les volumes de ruissellements générés, en particulier des Cités Melh-Edab et El Djabass, peuvent en toute rigueur être facilement absorbée par les regards avals. La zone 02 de superficie réduite aussi est touchée, elle comporte un grand nombre de conduites sous dimensionnées (46 conduites), elle est caractérisée par le pourcentage élevé des surfaces imperméables (dépassant 70%). Ce qui favorise les écoulements superficiels, par rapport aux infiltrations en produisant des inondations pendant les périodes pluvieuses.

Nous constatons que cette dernière pluie est très dévastatrice pour notre réseau étant donné le nombre élevé des conduites sous dimensionnées produites et des vitesses d'écoulement trop élevées. Cette pluie projet est à évitée lors d'une étude de dimensionnement d'un réseau d'assainissement. Car elle génère un surdimensionnement onéreux.

Pour cette pluie, les débits max des deux Rejets 02 et 04 dépassent celui du Rejet01, ce qui confirme l'état critique du réseau dans la zone 03.

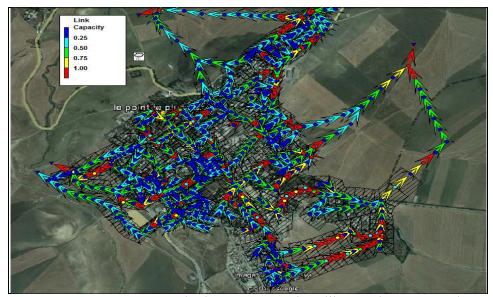


Figure V.15: Capacité maximale du réseau pendant l'heure de pointe à 1h 35min.

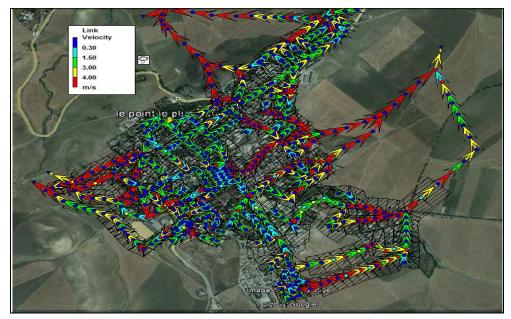


Figure V.16: Vitesses max des écoulements à l'heure de pointe 1h 35min.

Notons que le régime d'écoulement se caractérise en fonction du nombre de Froude. Ceci permet de localiser les tronçons travaillant en régime torrentiel (**Figure V.15**).

On constate alors que tous les tronçons sont le siège d'un régime supercritique (torrentiel) pour les trois cas (30 min, 15 min, 5 min) en période de pointe.

Le passage du torrentiel (F>1) au fluvial (F<1) peut se manifester par un ressaut hydraulique, par conséquent des écoulements diphasiques à entraînement d'air peuvent avoir lieu, cet air se dégage sous forme de gaz à mauvaises odeurs.

Figure V.17: Les nombres de Froude au réseau pour t=30 min au bout de 1h 35min.

Finalement, on constate que le réseau d'assainissement atteint ses limites vis-vis l'urbanisation actuelle, surtout en périodes pluvieuses de fortes intensités.

1.1.2. Période de retour P=10ans

Cette période de retour est la plus utilisée lors d'une étude du dimensionnement d'un réseau d'assainissement.

La vérification de notre réseau a été faite aussi pour une période de retour de 10 ans avec plusieurs durées d'averse (30 min, 15 min, 5 min).

Les problèmes mis en évidence via la première pluie (P=5ans, t=30 min, T=2h) seront évidemment aggravés lors de l'application sur notre modèle d'une pluie projet de période de retour de 10 ans et une durée d'averse intense de 30 min.

L'application a révélé l'insuffisance hydraulique de 17 conduites à l'heure de pointe. En plus des 13 conduites citées précédemment, 5 nouvelles conduites se surchargent (28, 29, 421, 187, 153), à cause de l'augmentation des débits (les débits réels supérieurs aux débits à pleine section). Toutes ces conduites alors apparaissent comme sous dimensionnées.

Les vitesses aussi vont s'élevée à cause de l'augmentation des débits, environ 70 vitesses dépassent le seuil maximal.

Toutes les eaux ruisselées (69% des pluies tombées) s'évacuent complètement vers l'Oued Redjradja après 6h 30min de l'arrêt de la pluie, le Rejet 01 de la zone 03 reste le plus important en évacuant un volume de 2345 m³ avec un débit de pointe de 1005 l/s en 6h 30 min. La zone 01 avec ces deux rejets 02 et 03 rejette un volume total de 990 m³ avec des débits maximaux de 451 l/s et 433 l/s en environ 4 h après l'arrêt de la pluie, le dernier rejet (04) transporte 775 m³ d'eau avec un débit maximal de 760 l/s en 3h.

Notre réseau est capable d'évacuer toutes les eaux ruisselées en une sécurité de façon acceptable au vu du nombre des défaillances (conduites surchargées).

Nous augmentons l'intensité de la pluie en diminuant la durée de l'averse intense à 15 min pour tout le réseau, les résultats des simulations montrent que le nombre de conduites mises en charge a augmenté à 150% par rapport au premier cas (t=30 min, P= 5 ans). Ce qui influ négativement à la capacité du réseau. Ceci est la cause de l'augmentation des débits dans les conduites qui dépassent les débits à pleine section. C'est-à-dire la hauteur d'eau est

supérieure au diamètre de la conduite et la conduite dans ce cas apparait comme sous dimensionnée.

Le volume total évacué est de 8072 m³ avec un débit de pointe de 3320 l/s. Dans ce cas là, le réseau de la zone 03 semble incapable d'évacuer tout le volume d'eau ruisselé de la zone (4680 m³) en toute sécurité, car le débit de pointe a diminué à 960 l/s. En élevant le temps d'évacuation des eaux de cette zone à 20 h, après l'arrêt de la pluie on favorise ainsi les ruissellements de surface.

En revanche, le réseau de la zone 02 montre sa fiabilité d'une manière globale, vis0à0vis les débits importants qu'il évacue, car, le temps nécessaire pour l'évacuation a resté constant (3h) avec un débit de pointe de 1085 l/s.

La zone 01 avec ses deux rejets (02, 03), apparait moins réactif face aux ruissellements de surface. Le temps d'évacuation augmente à 4h. Et cela, malgré l'augmentation des débits de pointe à 662 l/s et 689 l/s successivement. Remarquons aussi que la variation de débits du Rejet 03 est plus importante que celle du Rejet 02, donc, le réseau du bassin versant 02 tend vers sa saturation plus rapidement.

Notons aussi que, cette dernière application confirme le mauvais état de dimensionnement des collecteurs principaux C31, C32, C21, C12, vu que le nombre de conduites surchargées qu'ils comportent (9, 7, 7,10 conduites successivement) et leurs temps excessif de vidange (ces collecteurs restent toujours les derniers à se vider entièrement).

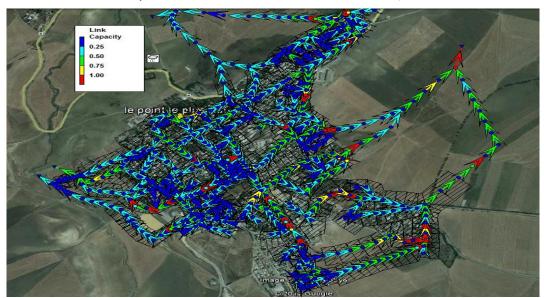


Figure V.18 : Capacité maximale du réseau lors l'heure de pointe.

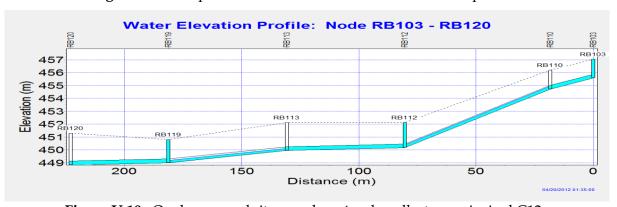


Figure V.19: Quelques conduites surchargées du collecteur principal C12.

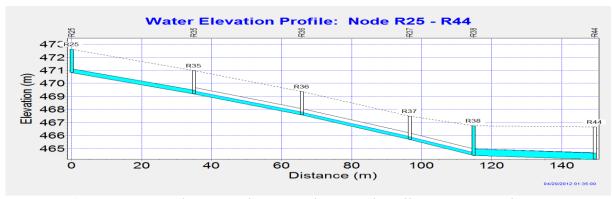


Figure V.20: Quelques conduites surchargées du collecteur principal C32.

Pour une telle période de retour (10 ans), la pluie de 5 min de durée intense est plus difficile, son intensité est de 85.58 mm/h. L'application de cette pluie projet sur notre réseau nous donne une diminution de la capacité du réseau avec 1160% (par rapport au premier cas (P=5ans, t=30 min), c'est-à-dire une augmentation des conduites surchargées avec 1160% par rapport au premier cas (139 conduites).

Le modèle décrit une saturation importante des collecteurs dès l'application de cette pluie projet, avec mises en charge des conduites par l'amont, un pourcentage de 24% de l'ensemble de conduites constituant le réseau apparait comme sous dimensionnées.

L'état des collecteurs principaux cité précédemment sera aggravé, avec augmentation de nombre des conduites saturées à 50% sur tous les linéaires des collecteurs. En plus, d'autres collecteurs principaux se saturent sur plus de 50% des linéaires, en favorisant les ruissellements superficiels, et la stagnation des eaux de pluies sur les dépressions du sol (Cité El Djabass, Cité Mlh Edab, Cité 04 Héctares).

Le volume d'eau évacué augmente à 18250 m³, la zone 03 reconfirme son état d'évacuation en fonction de nombre important de défaillances et le débit de pointe (1026 l/s) de l'évacuation.

Les autres zones (01,02) aussi tendent vers leurs saturations, vu que, les variations peu importantes des débits de rejet et les temps d'évacuation.

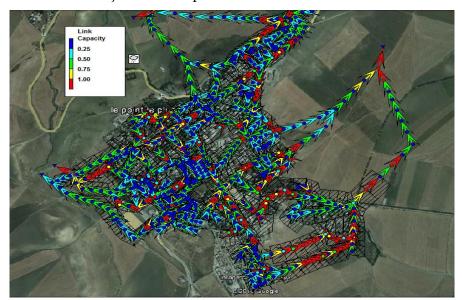


Figure V.21 : Capacité maximale du réseau pendant l'heure de pointe.

1.1.3. Périodes de retour P=20 ans et P=30ans

Le nombre de conduites mises en charges a trop augmenté par rapport aux premières simulations.

Pour t=30 min, les conduites surchargées sont 23 conduites pour P=20ans, et 30 conduites pour P=30ans, réparties sur tout les zones de la ville.

En augmentant l'intensité de la pluie, l'état s'aggrave, les débits augmentent et le nombre de défaillances augmentent lui aussi. Le réseau d'assainissement se sature dans des grandes parties avec des grands pourcentages, vu que le nombre de conduites affectées mises en évidence.

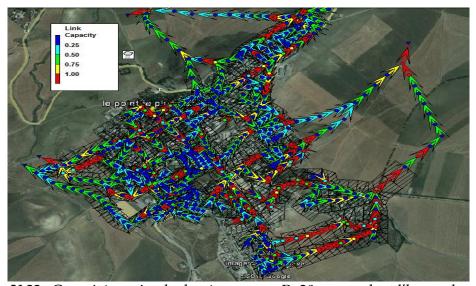


Figure V.22 : Capacité maximale du réseau pour P=20ans pendant l'heure de pointe.

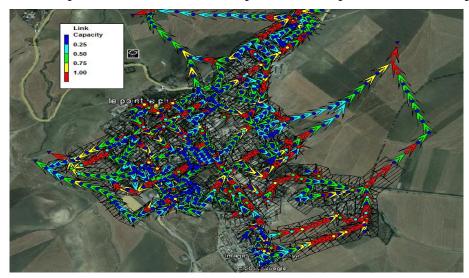


Figure V.23: Capacité maximale du réseau pour P=30ans pendant l'heure de pointe.

1.2. Fréquences des mises en charge et leurs durées

Cette étape est très importante pour la vérification du fonctionnement du réseau d'assainissement, afin de connaitre l'état réel des conduites incriminées et définir un plan de secours et d'intervention optimal, pour protéger les vies et les biens.

Une conduite fonctionne en charge, si le débit maximal passant dans la conduite est supérieur au débit à pleine section, c'est-à-dire que la hauteur d'eau dans la conduite dépasse 75% de son diamètre, alors, la connaissance des débits maximaux, des hauteurs d'eau maximales dans les conduites et des durées des mises en charge est primordiale pour déterminer avec une grande précision les zones critiques et les volumes d'eau débordés et ruisselés qui peuvent causer des dégâts.

A cause de leur importance et de leurs emplacements en couvrant toute la ville, on a choisi de présenter les résultats de simulation de tous les collecteurs principaux, sans tenir compte de leurs tronçons tertiaires et secondaires.

Les résultats concernant les débits et les durées de la mise en charge sont issus du logiciel SWMM5, les fréquences des hauteurs sont calculées à partir d'un tableur Excel.

1.2.1. Période de retour P=5 ans

Les résultats des débits maximaux pour les tronçons surchargés pour la période de retour de 5 ans sont les suivants :

Tableau V.04 : Caractéristiques hydrauliques des conduites surchargées.

Col	Tronç.	Reg		I	Φ	L	Q _{ps}	,	$Q_{max}(m^3/s)$	s)
				(m/m)	(mm)	(m)	(m ³ /s)			
		Amont	Aval					30	15	5
								min	min	Min
	Cond576	RB100AB	RB100F	0.0217	300	26.3	0.1388	-	-	0.1440
	317	RB100G	RB100A	0.0472	300	38	0.2047	-	-	0.2101
C11	394	RB103A	RB103	0.0777	300	42.75	0.2627	-	-	0.2695
	473	RB103	RB110	0.0461	300	18.45	0.2023	-	0.2069	0.2085
	474	RB110	RB112	0.0737	300	62	0.2558	-	-	0.2447
	530	RB112	RB113	0.0040	300	50.3	0.0596	0.0660	0.0657	0.0661
	532	RB119	RB120	0.0040	300	41.75	0.0596	0.0649	0.0655	0.0661
	Cond565	RB29	Rejet3	0.0203	600	64.65	0.8525	-	-	0.8769
	183	RB154	RB154A	0.0103	300	29.2	0.0956	-	0.1007	0.1056
C12	187	RB154A	RB155	0.0059	300	34.15	0.0724	-	0.0753	0.0772
	421	RB130	RB131	0.0028	600	28.8	0.3166	-	0.3289	0.3487
	6	RA11	RA12	0.0012	400	32.05	0.0703	0.0725	0.0729	0.0727
	Cond574	RA55	RA56	0.0269	400	50	0.3166	-	-	0.4285
C21	24	RA54	RA55	0.0372	400	50	0.3914	-	-	0.5347
	22	RA53	RA54	0.0634	400	50	0.5110	1	-	0.5347
	450	RA128	RA131	0.0056	300	35.65	0.0705	-	-	0.1114
	Cond517	RA131	RA132	0.0011	400	47	0.0673	1	-	0.2105
C22	444	RA132	RA133	0.0053	400	33.65	0.1477	-	-	0.1523
	442	RA134	RA135	0.0053	400	33.65	0.1477	1	-	0.1436
	441	RA135	RA136	0.0023	400	30.9	0.0973	-	0.1391	0.1351
	565	RA104	RA109	0.0113	300	30	0.1002	1	-	0.0978
	568	RA111	RA114	0.0188	400	33.5	0.2783	-	-	0.2753
C23	571	RA114	RA115	0.0164	400	33.65	0.2599	-	-	0.2675
	573	RA116	RA117	0.0033	500	36.65	0.2114	ı	-	0.2168
	106	RA118	RA119	0.0051	500	25.35	0.2628	-	-	0.2543
C31	455	R3	R4	0.0074	300	36.3	0.0811	-		0.0867
	456	R4	R5	0.0105	300	36.3	0.0966	-		0.1014
	458	R6	R7	0.0137	300	36.5	0.1103		-	0.1176
	461	R11	R13	0.0041	400	36.5	0.1299	-	0.1428	0.1634

624	192	R38	R44	0.0089	500	34.7	0.3471	-	-	0.3694
C31	590	R64	R89	0.0310	500	34.25	0.6479	-	-	0.7295
	131	R161	R171	0.0397	600	43.8	1.1922	-	-	1.2810
	593	R171	R172	0.0065	600	52.2	0.4824	0.5106	0.4975	0.5189
	71	R314C	R315C	0.0376	600	37.3	1.1603	-	1.2027	1.2030
	70	R315C	R483	0.0409	600	53.1	1.2101	-	-	1.2024
	Cond562	R483	Rejet01	0.0294	600	49.4	1.0260	0.9942	0.9770	0.1027
	302	R248	R249	0.0057	300	52.65	0.0711	0.0783	0.0779	0.0778
	303	R249	R250	0.0037	300	29.4	0.0573	0.0585	0.0586	0.0589
	305	R251	R252	0.0123	300	43.2	0.1045	-	-	0.1010
	307	R253	R254	0.0035	300	36.8	0.0558	0.0604	0.0618	0.0618
	415	R229	R230	0.0031	300	52.3	0.0525	-	0.0701	0.0721
	190	R263	R267	0.0168	500	31.6	0.4769	-	-	0.4670
C32	163	R272	R274	0.0509	500	31.7	0.8302	-	-	0.8050
	162	R274	R276	0.0262	500	31.25	0.5956	-	-	0.7402
	161	R276	R278	0.0089	500	33.55	0.3471	ı	-	0.6809
	143	R285	R293	0.0075	500	32.2	0.3187	-	-	0.7925
	152	R293	R294	0.0177	500	28.35	0.4896	1	-	0.7834
	600	R306A	R308	0.0344	500	44.5	0.6825	-	0.7012	0.7539
	325	R426	R427	0.0219	300	41.65	0.1395	-	-	0.1986
	326	R427	R429	0.0160	300	38.75	0.1192	-	-	0.1483
	327	R429	R430	0.0248	300	50.5	0.1484	-	-	0.1554
	328	R430	R431	0.0166	300	51.35	0.1214	-	0.1288	0.1259
	329	R431	R432	0.0207	300	42	0.1356	-	-	0.1610
C00	330	R432	R433	0.0175	300	32	0.1247	-	0.1354	0.1302
C33	509	R471	R472	0.0396	600	50.5	1.1907	-	-	1.1514
	44	R472	R473	0.0304	600	50.65	1.0433	-	-	1.1211
	510	R473	R474	0.0388	600	27.6	1.1786	-	-	1.1090
	511	R474	R475	0.0065	600	32.15	0.4824	-	-	0.5301
	61	R482	R483	0.0030	600	46.45	0.3277	0.3445	0.3435	0.3619

<u>N.B</u>: Le (-) signifie que la conduite n'est pas encore surchargée pour la pluie projet de la période de retour correspondante (30 min ou 15 min).

Le tableau suivant illustre les fréquences de surcharges (la hauteur d'eau réelle sur le diamètre de la conduite, ainsi que les durées des surcharges de toutes les conduites récédentes :

Tableau V.05 : Fréquences des mises en charge et leurs durées pour une période de retour de 5 ans.

С	Tronç.	Reg	gard	Φ	Hmax/Φ			Durée de la mise en		
				(mm)				charge		
		Amont	Aval		30	15	5	30	15	5
					min	min	Min	min	min	min
	Cond57	RB100AB	RB100F	300						
	6				-	-	0.8967	-	-	1
	317	RB100G	RB100A	300	-	-	0.8849	-	-	3
C11	394	RB103A	RB103	300	-	-	0.8844	-	-	6
	473	RB103	RB110	300	-	0.8810	0.8895	-	2	9
	474	RB110	RB112	300	-	-	0.8081	-	-	9
	530	RB112	RB113	300	0.9570	0.9540	0.9580	7	12	60

Application du logiciel SWMM5 au réseau d'assainissement de la ville d'AHMED RACHDI

	532	RB119	RB120	300	0.9446	0.9518	0.9580	8	14	69
	Cond565	RB119		600	0.9440	0.9316	0.9380	0	14	5
			Rejet3	300	-	0.9130		-	-	35
C10	183 187	RB154	RB154A		-		0.9554	-	-	
C12		RB154A	RB155	300	-	0.8994	0.9254	-	-	51
	421	RB130	RB131	600	- 0.0002	0.8982	0.9534	-	-	22
	6	RA11	RA12	400	0.8902	0.8962	0.8932	-	-	20
	Cond574	RA55	RA56	400	-	-	0.8791	-	-	5
C21	24	RA54	RA55	400	-	-	>1	-	-	8
	22	RA53	RA54	400	-	-	0.9060	-	-	5
	450	RA128	RA131	300	-	-	>1	-	-	5
	Cond517	RA131	RA132	400	-	-	> 1	-	-	3
C22	444	RA132	RA133	400	-	-	0.8901	-	-	7
	442	RA134	RA135	400	-	-	0.8252	-	-	9
	441	RA135	RA136	400	-	>1	>1	-	2	11
	565	RA104	RA109	300	-	-	0.8294	-	-	8
	568	RA111	RA114	400	-	-	0.8440	-	-	9
C23	571	RA114	RA115	400	-	-	0.8880	-	-	4
0_0	573	RA116	RA117	500	-	_	0.8840	-	-	7
	106	RA118	RA119	500	_	-	0.8202	_	_	9
	455	R3	R4	300	_	_	0.9279	_	_	3
	456	R4	R5	300	_	-	0.9093	_	_	6
	458	R6	R7	300	_	-	0.9253	_	_	7
	461	R11	R13	400	_	0.9520	0.8077	_	3	11
	192	R38	R44	500	_	-	0.9235	_	-	11
C31	590	R64	R89	500	_	_	0.9658	_	_	5
CSI	131	R161	R171	600	_	_	0.9327	_	_	6
	593	R171	R172	600	0.9180	0.8902	0.9337	4	8	34
	71	R314C	R315C	600	0.7100	0.8958	0.8960		4	30
	70	R315C	R483	600	_	0.0750	0.8489	_	_	9
	Cond562	R483	Rejet01	600	0.7678	0.8034	0.8571	6	10	69
	302	R248	R249	300	0.9533	0.9495	0.9485	3	8	54
	303	R249	R250	300	0.9333	0.9493	0.9465	5	11	72
	305	R251	R250	300	0.07 91	0.0010	0.8189	3	11	2
	307	R253	R252	300	0.9394	0.9571	0.9571	6	12	78
	415	R233	R234 R230	300	-	-	> 1	-		12
	190	R263	R267	500	_		0.8329		-	6
-	163	R203	R207	500		-	0.8329	-	-	11
C32	162	R272 R274	R274 R276		-	-		-	-	4
				500	-	-	0.8554	-	-	42
	161	R276	R278	500	-	-	>1	-	-	7
	143	R285	R293	500	-	-	>1	-	-	
	152	R293	R294	500	-	- 0.0070	>1	-	-	15
	600	R306A	R308	500	-	0.8860	0.9554	-	3	44
	325	R426	R427	300	-	-	>1	-	-	3
	326	R427	R429	300	-	-	0.8515	-	-	7
	327	R429	R430	300	-	- 0.0202	0.9068	-	-	8
	328	R430	R431	300	-	0.9203	0.8963	-	3	11
	329	R431	R432	300	-	0.0404	0.9536	-	-	7
	330	R432	R433	300	-	0.9421	0.9036	-	4	15
C33	509	R471	R472	600	-	-	0.8194	-	-	9
	44	R472	R473	600	-	-	0.9328	-	-	3
	510	R473	R474	600	-	-	0.7913	-	-	8
	511	R474	R475	600	-	-	0.9517	_	-	17
	61	R482	R483	600	0.9109	0.9078	0.9552	4	6	37

Des calculs précédents, on peut donner les constats suivant :

- La capacité hydraulique des tronçons inférieure à l'occurrence T = 5 ans pour une durée de l'averse de 30 min, sera aggravée pour une période pluvieuse intense de 15 min puis de 5 min, donc le tronçon doit être revu en première priorité;
- Les collecteurs principaux de la zone 03 sont les plus touchés ;
- La mise en charge de chaque collecteur engendre des débordements en amont du collecteur;
- Certains tronçons se surchargent pendant des durées très importantes (Con duites 562, 307, 303), ce qui est préjudiciable à l'état de fonctionnement de la conduite.
- Les hauteurs d'eau dans certains tronçons (24, 450, Cond517, 441, 415, 161, 143, 152, 325) dépassent le diamètre de la conduite, ce qui cause l'engorgement de la conduite;
- Certains tronçons sont légèrement surchargés (Cond562, 474, 106, 163) (la hauteur d'eau est peu supérieure à 75% du diamètre), d'autres, sont fortement surchargés.
- Certaines surcharges ne posent pas de problèmes, elles ne durent pas longtemps (44:5 min, 162:7 min, 305:3 min, Cond576:2 min, 317:5 min), même pour des pluies intenses de 5 min.
- Quelques tronçons (12 tronçons) ont des durées de surcharge supérieures à 30 min pour une durée intense de 5 min.

1.2.2. Périodes de retour P=10 ans

Les résultats des débits maximaux pour les tronçons surchargés pour la période de retour de 10 ans sont les suivants :

Tableau V.06 : Caractéristiques hydrauliques des conduites surchargées.

Col	Tronç.	Reg	ard	I (m/m)	Ф (mm)	L (m)	Q_{ps} (m^3/s)	$Q_{max}(m^3/s)$		s)
				(111/111)		(111)	(111 / 3)			
		Amont	Aval					30	15	5
								min	min	Min
								111111	111111	101111
	Cond576	RB100AB	RB100F	0.0217	300	26.3	0.1388	-	-	0.1448
	317	RB100G	RB100A	0.0472	300	38	0.2047	-	-	0.2118
C1 1	394	RB103A	RB103	0.0777	300	42.75	0.2627	-	-	0.2862
	473	RB103	RB110	0.0461	300	18.45	0.2023	-	0.2202	0.2085
	474	RB110	RB112	0.0737	300	62	0.2558	-	-	0.2522
	530	RB112	RB113	0.0040	300	50.3	0.0596	0.0648	0.0671	0.0664
	532	RB119	RB120	0.0040	300	41.75	0.0596	0.0634	0.0651	0.0654
	540	RB123A	RB123B	0.0189	600	54	0.8226	-	1	0.8044
	Cond577	RB123B	RB29	0.0342	600	36.9	1.1066	-	-	0.1127
	Cond565	RB29	Rejet3	0.0203	600	64.65	0.8525	-	-	0.8769
	182	RB153	RB154	0.0491	400	24.45	0.4497	-	1	0.4694
C12	183	RB154	RB154A	0.0103	300	29.2	0.0956	ı	0.1021	0.1026
	187	RB154A	RB155	0.0059	300	34.15	0.0724	ı	0.0768	0.0794
	420	RB129	RB123	0.0173	600	21.45	0.7870	-	-	0.8024
	421	RB130	RB131	0.0028	600	28.8	0.3166	-	0.3236	0.3331
	6	RA11	RA12	0.0012	400	32.05	0.0703	0.0730	0.0734	0.0757
	Cond574	RA55	RA56	0.0269	400	50	0.3329	-	-	0.4318
C21	24	RA54	RA55	0.0372	400	50	0.3914	-	-	0.4233
	22	RA53	RA54	0.0634	400	50	0.5110	-	-	0.5536

	35	RA52	RA53	0.1195	400	48.7	0.7016	-	-	0.7054
	451	RA127	RA128	0.0271	300	49.9	0.1551	-	-	0.1454
	450	RA128	RA131	0.0056	300	35.65	0.0705	-	-	0.1087
C22	Cond517	RA131	RA132	0.0011	400	47	0.0673	-	-	0.2109
	444	RA132	RA133	0.0053	400	33.65	0.1477	-	_	0.1524
	442	RA134	RA135	0.0053	400	33.65	0.1477	-	_	0.1516
	441	RA135	RA136	0.0023	400	30.9	0.0973	-	0.1377	0.1351
	564	RA103	RA104	0.0023	300	30	0.0894		0.1377	0.1951
	565	RA103	RA104 RA109	0.003	300	30	0.1002		_	0.1019
Con	568	RA104 RA111	RA109 RA114	0.0113	400	33.5	0.1002	-	-	0.1019
C23								-	-	
	569	RA110	RA111	0.0191	400	33.5	0.2805	-	-	0.2702
	571	RA114	RA115	0.0164	400	33.65	0.2599	-	-	0.2643
	573	RA116	RA117	0.0033	500	36.65	0.2114	-	-	0.2242
	106	RA118	RA119	0.0051	500	25.35	0.2628	-	-	0.2612
	455	R3	R4	0.0074	300	36.3	0.0811	-	-	0.0859
	456	R4	R5	0.0105	300	36.3	0.0966	-	-	0.0998
	457	R5	R6	0.0207	300	36.3	0.1356	-	-	0.1303
	458	R6	R7	0.0137	300	36.5	0.1103	-	-	0.1140
C31	461	R11	R13	0.0041	400	36.5	0.1299	-	0.1428	0.1368
	195	R35	R36	0.0527	500	30.8	0.8447	-	-	0.8540
	194	R36	R37	0.0612	500	30.8	0.9103	-	-	0.8527
	192	R38	R44	0.0089	500	34.7	0.3471	-	-	0.3702
	590	R64	R89	0.0310	500	34.25	0.6479	-	-	0.7221
	131	R161	R171	0.0397	600	43.8	1.1922	_	-	1.2267
	593	R171	R172	0.0065	600	52.2	0.4824	0.5122	0.5090	0.5306
	71	R314C	R315C	0.0376	600	37.3	1.1603	-	1.2027	1.2100
	70	R315C	R483	0.0409	600	53.1	1.2101	_	-	1.2052
	Cond562	R483	Rejet01	0.0294	600	49.4	1.0260	1.0030	0.9589	0.1011
	413	R227	R228	0.0411	300	33.6	0.1910	-	-	0.1802
	415	R229	R230	0.0052	300	52.3	0.0680	_	0.0715	0.0725
	302	R248	R249	0.0057	300	52.65	0.0711	0.0770	0.0767	0.0780
	303	R249	R250	0.0037	300	29.4	0.0573	0.0565	0.0586	0.0607
	305	R251	R252	0.0037	300	43.2	0.0373	0.0303	0.0300	0.0007
			R252					0.0604	0.0(12	
	307	R253		0.0035	300	36.8	0.0558	0.0604	0.0613	0.0618
	415	R229	R230	0.0031	300	52.3	0.0525	-	0.0715	0.0735
	190	R263	R267	0.0168	500	31.6	0.4769	-	-	0.4949
	163	R272	R274	0.0509	500	31.7	0.8302	-	-	0.9076
C32	162	R274	R276	0.0262	500	31.25	0.5956	-	-	0.7625
	161	R276	R278	0.0089	500	33.55	0.3471	-	-	0.6826
	143	R285	R293	0.0075	500	32.2	0.3187	-	-	0.7925
	152	R293	R294	0.0177	500	28.35	0.4896	-	-	0.7693
	600	R306A	R308	0.0344	500	44.5	0.6825	-	0.7055	0.7490
	325	R426	R427	0.0219	300	41.65	0.1395	-	-	0.1992
	326	R427	R429	0.0160	300	38.75	0.1192	-	-	0.1462
	327	R429	R430	0.0248	300	50.5	0.1484	-	-	0.1531
	328	R430	R431	0.0166	300	51.35	0.1214		0.1288	0.1333
	329	R431	R432	0.0207	300	42	0.1356	-	-	0.1628
	330	R432	R433	0.0175	300	32	0.1247	-	0.1311	0.1350
Car	349	R469	R470	0.0766	500	35.2	1.0184	-	-	0.9841
C33	509	R471	R472	0.0396	600	50.5	1.1907	-	_	1.2951
	44	R472	R473	0.0304	600	50.65	1.0433	-	-	1.1403
	510	R473	R474	0.0388	600	27.6	1.1786	_	_	1.1281
	511	R474	R475	0.0065	600	32.15	0.4824	_	_	0.5313
	61	R482	R483	0.0030	600	46.45	0.3277	0.3496	0.3588	0.3626
	01	11404	11403	0.0030	000	40.43	0.3477	0.0470	0.5566	0.3020

Le tableau suivant illustre les fréquences de surcharges (la hauteur d'eau réelle sur le diamètre de la conduite, ainsi que les durées des surcharges de toutes les conduites précédentes :

Tableau V.07: Fréquences des mises en charge et leurs durées pour une période de retour de 10 ans.

Col	Tronç.	Reg	ard	Φ (mm)	H_{max}/Φ				de la m charge	ise en
									(mm)	
		Amont	Aval		30	15	5	30	15	5
					min	min	min	min	min	min
	Cond576	RB100AB	RB100F	300	-	-	0.9027	ı	-	3
	317	RB100G	RB100A	300	-	-	0.8938	ı	-	5
C11	394	RB103A	RB103	300	-	-	0.9450	i	-	8
	473	RB103	RB110	300	-	0.9442	0.8895	i	3	10
	474	RB110	RB112	300	-	-	0.8404	-	-	2
	530	RB112	RB113	300	0.9433	0.9658	0.9607	8	14	<i>7</i> 5
	532	RB119	RB120	300	0.9230	0.9471	0.9506	8	16	84
	540	RB123A	RB123B	600	-	-	0.8314	-	-	1
	Cond577	RB123B	RB29	600	-	-	0.2119	-	-	1
	Cond565	RB29	Rejet3	600	-	-	0.8874	-	-	6
	182	RB153	RB154	400	-	-	0.9033	-	-	1
C12	183	RB154	RB154A	300	-	0.9269	0.9316	-	6	45
	187	RB154A	RB155	300	-	0.9202	0.9502	-	10	61
	420	RB129	RB123	600	-	-	1.0000	-	-	3
	421	RB130	RB131	600	-	0.8803	0.9117	-	6	28
	6	RA11	RA12	400	0.8977	0.9036	1.0000	4	7	27
	Cond574	RA55	RA56	400	-	-	1.0000	-	-	8
C21	24	RA54	RA55	400	-	-	0.9387	-	-	10
	22	RA53	RA54	400	-	-	0.9402	-	-	7
	35	RA52	RA53	400	-	-	1.0000	-	-	2
	451	RA127	RA128	300	-	-	0.7877	-	-	2
	450	RA128	RA131	300	-	-	>1	-	-	6
C22	Cond517	RA131	RA132	400	-	-	>1	-	-	4
	444	RA132	RA133	400	-	-	0.8908	-	-	8
	442	RA134	RA135	400	-	-	0.8850	-	-	11
	441	RA135	RA136	400	-	> 1	>1	-	4	13
	564	RA103	RA104	300	-	-	0.9271	-	-	1
	565	RA104	RA109	300	-	-	0.8747	-	-	3
C23	568	RA111	RA114	400	-	-	0.9037	-	-	2
	569	RA110	RA111	400	-	-	0.8154	-	-	1
	571	RA114	RA115	400	-	-	0.8747	-	-	6
	573	RA116	RA117	500	-	-	0.9200	-	_	9
	106	RA118	RA119	500	-	-	0.8492	-	-	1
C31	455	R3	R4	300	-	-	0.9187	ı	-	5

	456	R4	R5	300	-	-	0.8922	-	-	6
	457	R5	R6	300	-	-	0.8128	-	-	1
	458	R6	R7	300	-	-	0.8926	-	-	8
	461	R11	R13	400	-	0.9520	0.9127	-	6	13
	195	R35	R36	500	-	-	0.8682	-	-	2
	194	R36	R37	500	-	-	0.7869	-	-	1
	192	R38	R44	500	-	1.0000	1.0000	-	3	14
	590	R64	R89	500	-	-	0.9609	-	-	6
	131	R161	R171	600	-	-	0.8877	-	-	8
	593	R171	R172	600	0.9211	0.9147	0.9524	6	8	43
	71	R314C	R315C	600	-	0.8958	1.0000	-	5	37
	70	R315C	R483	600	-	-	1.0000	-	-	2
	Cond562	R483	Rejet01	600	0.8311	0.9012	1.0000	8	11	82
	413	R227	R228	300	-	-	0.7940	-	-	3
	302	R248	R249	300	0.9399	0.9364	0.9505	4	9	65
	303	R249	R250	300	0.8405	0.8810	0.9188	7	20	86
	305	R251	R252	300	-	-	0.9431	-	1	5
	307	R253	R254	300	0.9394	0.9515	0.9571	8	24	92
C32	415	R229	R230	300	-	> 1	>1	-	4	17
C32	190	R263	R267	500	-	-	0.8970	-	-	2
	163	R272	R274	500	-	-	0.9478	-	-	3
	162	R274	R276	500	-	-	0.7164	-	-	6
	161	R276	R278	500	-	-	>1	-	-	52
	143	R285	R293	500	-	-	>1	-	-	7
	152	R293	R294	500	-	-	>1	-	-	21
	600	R306A	R308	500	-	0.8928	0.9507	-	6	49
	325	R426	R427	300	-	-	>1	-	-	5
	326	R427	R429	300	-	-	0.8956	-	-	8
	327	R429	R430	300	-	-	0.8906	-	-	8
	328	R430	R431	300	-	0.9203	0.9511	-	4	16
	329	R431	R432	300	-	-	0.9394	-	-	9
C33	330	R432	R433	300	-	0.9109	0.9396	-	6	22
	349	R469	R470	500	-	-	0.8187	-	-	2
	509	R471	R472	600	-	-	0.9436	-	-	2
	44	R472	R473	600	-	-	0.9476	-	-	5
	510	R473	R474	600	-	-	0.8087	-	-	2
	511	R474	R475	600	-	-	0.9533	-	-	23
	61	R482	R483	600	0.9259	0.9490	0.9565	5	8	48

Une pluie de période de retour de 10 ans ne fait qu'aggraver la saturation du réseau, les résultats de cette deuxième simulation sont la base des constats suivants :

- Le comportement du modèle sous une pluie de projet d'occurrence de 10 ans ne fait que révéler un aggravement de la saturation aux mêmes endroits que ceux mis en évidence sous la pluie de 5 ans ;
- L'aggravement de la situation est en termes de durée de saturation, et du nombre des points noirs ;

- Toutes ces insuffisances du réseau entrainent des débordements en amont des tronçons, les volumes débordés augmentent en augmentant les intensités de la pluie ;
- Cette simulation révèle l'apparition d'autres points noirs dans le réseau (540, Cond577, 420, 182,35,...);
- D'autres insuffisances apparaissent dans le réseau, mais, elles ne sont pas assez importantes;

1.3. Les points de débordement, les volumes débordés et les durées de débordement

Dans un collecteur, l'écoulement est dit en charge, lorsque le débit y excède le débit à pleine section.

Lorsqu'en un nœud, la cote piézométrique dépasse la cote du terrain naturel, il y a débordement et le débit en excès est alors, soit perdu par ruissellement, si la surface est imperméable ou elle est saturée, ou par infiltration soit stocké au dessus du regard et réinjecté dans le réseau en fonction de ses capacités d'évacuation.

Alors, tout tronçon surchargé entraine un débordement à l'amont du tronçon, de fait que le diamètre du tronçon n'est pas suffisant pour évacuer toutes les eaux qui lui arrivent. L'impact du débordement est fonction de sa durée et du volume d'eau débordé, c'est-à-dire, quand la durée augmente ainsi que le volume débordé. Le débordement devient plus fort et plus menaçant, ce qui cause souvent des inondations.

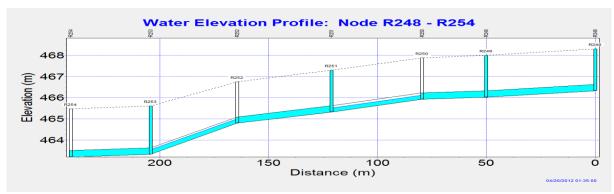


Figure V.24: Exemple de débordements des nœuds (R248, R249, R251, R253).

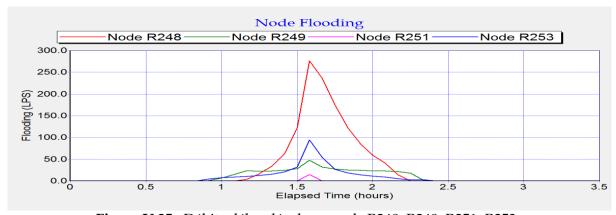


Figure V.25: Débits débordés des nœuds R248, R249, R251, R253.

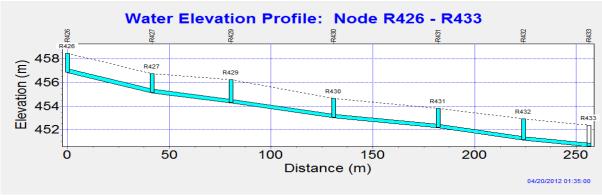


Figure V.26: Exemple de débordements des nœuds (R426, R427, R429, R430, R431, R432).

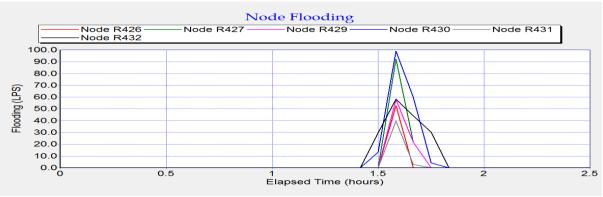


Figure V.27: Débits débordés des nœuds R426, R427, R429, R430, R431, R432.

Le réseau d'assainissement d'AHMED RACHDI possède plusieurs points de débordements, ce nombre augmente avec la croissance de l'intensité de la pluie. Le nombre des points de débordement selon la période retour (5 ans et 10 ans) et la zone sont représentés sur le tableau suivant :

Tableau V.08: Nombre des points de débordements dans le réseau selon la zone.

Période de		5 ans		10 ans				
retour								
Zone	30 min	15 min	5 min	30 min	15 min	5 min		
Zone 01	2	7	19	4	7	26		
Zone 02	1	5	22	3	7	25		
Zone 03	9	22	72	10	31	87		

Les débordements produits dans le réseau peuvent être classés comme critiques ou non, si la durée du débordement est courte (2 à 5 minutes), et le volume débordé n'est important (quelques litres), le débordement ne constitue nullement un réel point noir, le volume d'eau généré sur la rue étant imperceptible et pouvant en toute rigueur être facilement absorbé par les regards étant donné leur capacité.

On s'était intéressé aux points noirs (Regards) les plus critiques, qui peuvent souvent occasionner des inondations importantes. Le tableau suivant montre les caractéristiques (durée du débordement t_d en minutes, et le volume débordé V_d en litres) des grands points noirs du réseau :

Figure V.09 : Caractéristiques des points de débordements.

	5 ans		10 ans				
5 min	15 min	30 min	5 min	15 min	30 min		

	td	V_d	t_d	V_d	t_d	V_d	t _d	V_d	td	V_d	t_d	V _d
	min	m^3	min	m^3	min	m^3	min	m^3	min	m^3	min	m^3
RA11	21	112	7	14	3	1	28	155	8	23	5	4
RA56	12	132	1	1	ı	-	15	169	2	1	ı	-
R171	35	779	9	135	5	26	44	991	9	207	7	64
R293	16	113	-	-	-	-	22	146	5	18	-	-
R276	43	113	-	-	-	-	53	1337	4	4	-	-
R38	12	169	4	70	-	-	15	227	5	23	-	-
R248	55	283	9	22	4	1	66	376	10	35	5	5
R249	73	94	12	13	6	6	87	116	22	19	8	8
R253	79	83	13	10	7	3	93	105	26	16	9	5
R391	73	420	15	70	9	45	85	521	21	88	10	53
R389	38	422	8	94	6	19	48	550	10	116	6	43
R351	15	102	5	10	-	-	18	127	6	29	-	-
RB130	23	243	6	34	1	-	29	315	7	54	4	6
RB112	61	284	14	64	8	24	76	366	16	82	9	36
RB119	70	76	16	13	9	6	85	98	18	18	9	8
R306A	45	242	4	17	-	-	50	308	7	42	-	-
R483	70	1781	11	252	7	84	83	2136	12	304	9	126
R482	38	242	7	47	5	10	49	319	9	57	6	25
RA59	22	181	6	17	-	-	28	232	6	41	-	-
RB154A	52	78	9	10	ı	-	62	96	11	14	3	5
RB154	36	200	5	3	-	-	46	291	7	11	-	-
R474	18	264	5	17	-	-	24	345	6	36	-	-

Pour une période de retour de 5 ans, le réseau surverse pendant 3 à 79 minutes selon les nœuds incriminés et génère des volumes d'eau pouvant atteindre les 1781 m³. pour la période de retour de 10 ans, le réseau surverse pendant 3 à 93 minutes selon les nœuds incriminés et génère des volumes d'eau pouvant atteindre les 2136 m³.

1.4. La propagation des débordements dans la ville et les zones touchées

Après la série des simulations et des analyses précédentes, on peut constater que le réseau de la ville d'AHMED RACHDI a connu un nombre important dysfonctionnement.

Ces dysfonctionnements sont répartis sur toutes les la surface de la ville, d'après les résultats de la simulation, on peut dire que la zone 03 et la plus touchées, elle est la plus étendues. Les secteurs fréquemment touchés en périodes pluvieuses ont un nombre important de points noirs, ils sont :

- La cité El Kessyoune au Sud Est de la ville, avec 30 points de débordements pour une période de retour de 5 ans, le réseau dans cette partie surverse 73 min en générant un volume d'eau de 422 m³. Cet état est aggravé par une pluie décennale, avec des points noirs au nombre de 40, le réseau survsese pendant 116 minutes. Ce constat confirme les dires des habitants de la cité, concernant les inondations quasi permanentes en périodes hivernales, et les volumes d'eau importants ruisselés dans les rues ;
- La cité Kadja Taib au sud de la ville, avec 12 points de débordements pour P = 5 ans. Son réseau surverse pendant 75 minutes en générant un volume de 283 m³. La pluie décennale cause 17 débordements et un volume de 376 m³. Ce secteur a été cité

- auparavant comme zone des inondations d'après les résultats du diagnostic du réseau.
- La zone qui regroupe les cités des 30, 40, 34 logements et la cité 04 hectares, renferme 20 points de débordement pour P = 5 ans. Son réseau surverse pendant 43 minutes en générant un volume de 113 m³. Le nombre de points noirs augmente à 29 nœuds de débordements pour une pluie de décennale. Le réseau surverse pendant 53 minutes avec un volume de 1337 m³. Cette zone est mentionnée précédemment comme zone critique. Elle est réputée pour leurs inondations permanentes en hiver, ce qui confirme les dires des habitants de la région.

La zone 01 à son tour, a rependu par des insuffisances localisées aux endroits suivant:

- La cité des 128 logements est connue par ses inondations, d'après la population. Le logiciel SWMM5 confirme cet état. Le nombre de points noirs pour la pluie quinquennale est de 15, ce qui cause une surverse de 70 minutes en générant un volume de 76 m³. La pluie décennale est plus agressive, elle engendre 21 points de débordement, causant une surverse du réseau de 85 minutes et un volume de 98 m³.
- L'autre partie de la zone s'avère plus réactive aux pluies. Son réseau est plus stable. Il a connu un nombre réduit des points noirs (8 points), produits par une pluie quinquennale. Ce qui génère une surverse de 9 minutes et un volume de 30 m³. Pour une pluie décennale, le nombre de points noirs augmente à 12 points. Le réseau dans ce cas là, surverse aussi pendant 9 minutes et en produisant un volume de 40 m³.

La dernière zone (la zone 02), a aussi connue certaines défaillances :

- La zone regroupant le lotissement des 46 logements et la cité des 60 logements comprend 13 points noirs, causés par une pluie quinquennale. Ce qui engendre une surverse de 21 minutes, soit un volume de 132 m³. La pluie décennale produit 15 points de débordements, et une surverse de 30 minutes, soit un volume de 170 m³. Ce qui provoque toujours des inondations et des ruissellements de surface dans la région.
- L'autre partie de la ville (au sud du centre ville) drainée par les deux collecteurs principaux C22 et C23, comporte 11 points noirs. Causés par la pluie quinquennale, en générant une surverse de 23 minutes, soit un volume de 240 m³. A son tour, une pluie décennale produit 18 points noirs, et une surverse de 50 minutes, et un volume de 315 m³. Ces débordements ont été relevés par les habitants plusieurs fois.

Pour compléter parfaitement une étude de diagnostic, on est obligé de connaitre profondément les zones affectées, ainsi que les manières de propagation des points noirs, dans le temps, dans l'espace, . A fin d'engendrer un plan d'intervention, pour protéger au maximum possible le milieu urbain.

Prenons l'exemple d'une pluie décennale (durée d'averse intense de 5 minutes et une durée totale de 2 h), en lui comparant avec une pluie trentenaire (durée d'averse de 5 minutes et de durée totale de 2 h)

L'heure de pointe (1h 35 min après le début de la pluie), est le moment ou le réseau atteint sa capacité maximale. Nous devons agir de manière à éviter l'amplification des dégâts, c'est-à-dire, avant le moment de pointe.

Figure V.28: Etat du réseau après 1h et après 1h 35 min du début de la pluie.

De la figure précédente, remarquons que pour une pluie décennale, les points noirs ne commencent qu'après 1h du début de la pluie, dans des zones très étroites dispersées sur toute la surface de la ville. Les zones affectées se propagent au fur et à mesure en couvrant des surfaces plus vastes et en produisant d'autres points noirs. Jusqu'à ce que la pluie atteinte son intensité maximale après 35 minutes, où des surfaces très vastes seront touchées, en générant des inondations dans la ville.

Cette connaissance des premiers points noirs et de leurs manières de propagation nous permet de prévoir la population concernée avant au moins une demi-heure, ce qui donne plus de sécurité à la population et aux biens.

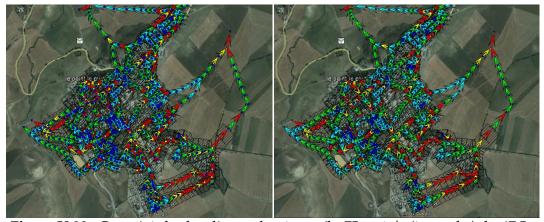
La pluie trentenaire est plus dévastatrice. La figure suivante nous permet de comparer entre la pluie trentenaire et la pluie décennale :

Figure V.29 : la capacité maximale du réseau (la pluie décennale à gauche, la pluie trentenaire à droite).

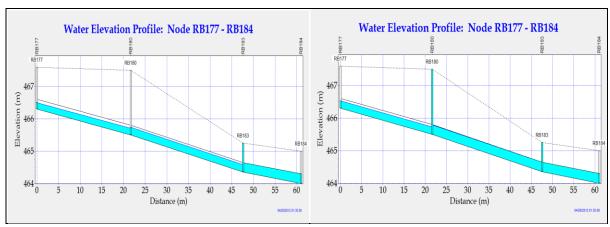
Remarquons que le nombre de points noirs augmentent avec le temps, en couvrant d'autres surfaces dans la ville, ce qui donne un temps de prévention et d'intervention.

2. Impact de la rugosité

Les différents éléments de base au niveau des réseaux d'assainissement, ont un impact sur les débits et les hauteurs d'eau calculées et par la suite sur le dimensionnement du réseau. Un manque de fiabilité de ces données peut affecter considérablement le fonctionnement du réseau au futur.


Parmi les paramètres les plus difficiles à estimer au niveau du réseau : la rugosité des conduites.

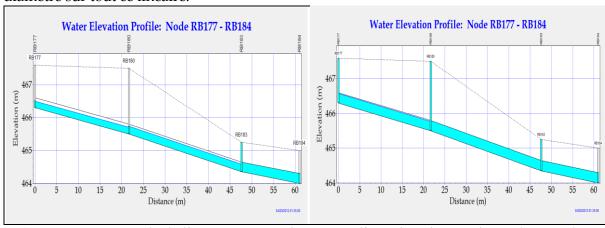
Le réseau d'assainissement de la ville d'AHMED RACHDI âgé de plus de 25 ans, a été étudié pour un coefficient de Manning-Strickler égal à (75 m¹/³/s) (coefficient de rugosité d'une conduite neuve en CAO), mais cette valeur a réellement varié en fonction des dépôts solides depuis l'installation de la conduite. Et à cause de l'absence d'une formule pour l'estimation de la rugosité pratique, on était obligé de modifier ce paramètre hydraulique de façon à représenter d'une façon plus adéquate la réponse du réseau.


2.1. Simulation avec une augmentation de 10% de la rugosité des conduites

Pour connaître l'influence de la rugosité des conduites on a étudié la capacité du même réseau pour une rugosité plus importante, avec un coefficient de Manning-Strickler du réseau abattu de 10% (K=67.5 m $^{1/3}$ /s).

A titre d'exemple, on a choisi une simulation avec une pluie décennale. En introduisant ce coefficient dans la formule de Manning-Strickler contenant les données du réseau d'assainissement, les vitesses maximales ainsi que les débits maximaux passant dans les conduites ont diminué (des diminutions des débits varient entre 2 et 20% du débit initial dans toutes les conduites). Les hauteurs d'eau dans le réseau ont subit des petits changements (surélévation de quelques cm) le long du temps d'évacuation des débits de crue, ce qui a provoqué la mise en charge de 27 conduites supplémentaires (une augmentation de 20%), et a provoqué 27 débordements en plus (une augmentation de 20%). Par conséquent, 30% du linéaire du réseau connait un taux de remplissage de plus de 100% de même les diamètres ont été majoré d'un niveau de diamètre sur tout ce linéaire. Les nouveaux points noirs produits par le changement de rugosité se répartis sur toute la surface de la ville. La zone 03 est la plus touchée.

Figure V.30 : Capacités hydrauliques du réseau (k=75 m $^{1/3}$ /s (à gauche), k=67.5 m $^{1/3}$ /s (à droite)) à l'heure de pointe.


Figure V.31: Exemple de l'augmentation du niveau d'eau dans les conduites (219, 220), et débordement d'un nouveau regard (R183) (k=67.5 m^{1/3}/s).

Un changement de 10% du coefficient de rugosité influe souvent les débits de pointes écoulés dans les conduites, et par conséquent les hauteurs d'eau dans les conduites ainsi que les vitesses maximales, et alors, les diamètres et le cout.

2.2. Simulation avec une augmentation de 20% de la rugosité des conduites

Pour ce deuxième cas, on a choisi une augmentation de 20% de la rugosité des conduites, c'est-à-dire, un coefficient de Manning-Strickler de $60 \text{ m}^{1/3}/\text{s}$.

Les résultats de simulation montrent que les vitesses maximales ainsi que les débits maximaux ont diminué (des diminutions des débits varient entre 5 et 35% du débit initial). Les niveaux d'eau dans le réseau ont été élevés (surélévation de quelques cm) le long du temps d'évacuation des débits de crue, en générant 52 conduites surchargées supplémentaires (une augmentation de 38%), et 52 débordements en plus (une augmentation de 20%). Par conséquent, un taux de 35% du linéaire du réseau a connu un taux de remplissage de plus de 100% de même les diamètres ont été majoré d'un niveau de diamètre sur tout ce linéaire.

Figure V.32 : Exemple de l'augmentation du niveau d'eau dans les conduites (219, 220), et débordement d'un nouveau regard (R183) ($k=60~m^{1/3}/s$).

Alors, le changement de la rugosité des conduites dans un tel réseau d'assainissement joue un rôle très important dans son fonctionnement. Il est souvent la cause de plusieurs défaillances dans le réseau, ce qui peut menacer l'état du réseau et donc de la ville. Il est provoqué par les dépôts solides dans les conduites, ce qui nécessite un nettoyage permanent du réseau.

Le logiciel SWMM5 possède un modèle qui prend en charge des dépôts solides. Mais à cause de l'absence des données sur les sédiments existants dans les conduites, et des taux d'érosion

des sols de la ville et leurs natures, on n'a pas pu utiliser ce modèle pour la modélisation du réseau existant.

3. Impact des pentes

Afin d'éviter l'érosion des conduites et la dégradation des joints causés par des vitesses élevées, la pente maximale est limitée à 8%. La pente minimale admise dépend des conditions d'autocurage. Par ailleurs, les conditions de pose imposent que la pente minimale ne soit pas inférieure à 0,4%. Le réseau d'assainissement de la ville d'AHMED RACHDI comporte plusieurs pentes non pratiques (pentes élevées ou pentes faibles). Ceci était le responsable de l'élévation des vitesses. En vue de confirmer l'influence des pentes, on procède de la manière suivante : On prend une conduite existante au réseau, caractérisée par une pente assez élevée (les débits, les vitesses et l'hauteur d'eau sont connus), on essaye de diminuer cette pente, en changeant les paramètres d'entrée du logiciel, et on compare entre les résultats de simulation. On prend l'exemple de la conduite 290 dans la première zone, cette conduite se caractérise par :

Tableau V.10: Caractéristiques de la conduite 290 avant changement de pente.

				0	
Caractéristiques	Pentes	Diamètre	Débit maximal	Vitesses	Hauteur d'eau max
	(%)	(mm)	(1/s)	(m/s)	(mm)
Valeurs	14.40	300	126.38	4.72	123

On attribue à la conduite 35 une pente de 8%, les résultats de simulation sont au tableau suivant :

Tableau V.11: Caractéristiques de la conduite 290 après changement de pente.

Caractéristiques			Débit maximal	Vitesses	Hauteur d'eau max	
	(%)	(mm)	(l/s)	(m/s)	(mm)	
Valeurs	8	300	126.84	3.90	141	

Remarquons que la diminution de pente à diminuer la vitesse, en augmentant le débit ainsi que la hauteur d'eau dans la conduite.

Conclusions et recommandations

A travers ce travail, on a envisagé d'évaluer les résultats de la modélisation dans les études du réseau d'assainissement en utilisant le logiciel SWMM5.

La simulation du réseau d'assainissement de la ville d'AHMED RACHDI a révélé les points suivants :

- ✓ Le réseau en question ne répond pas en toute sécurité aux exigences d'évacuation des eaux usées ou pluviales, pour les différentes simulations effectuées.
- ✓ En se basant sur le diagnostic réalisé nous avons soulevé des problèmes de type hydraulique : les sous dimensionnements de plusieurs tronçons, les débordements des regards, les dysfonctionnements causés par l'augmentation de la rugosité. En plus des problèmes structurels précédemment cités : le colmatage des avaloirs ainsi que des conduites, la dégradation des collecteurs et des regards.
- ✓ Le réseau connait un nombre important de points noirs, ce nombre augmente, et l'état des parties affectées s'aggrave avec l'augmentation de l'intensité de la pluie (période de retour et durée d'averse intense), en provoquant des débordements de longues durées et de volumes importants, et donc des inondations. Ces événements confirment les dires des habitants de la ville.
- ✓ La rugosité des conduites augmente en fonction des dépôts, ce qui influe gravement l'état du réseau, en augmentant considérablement le nombre de points noirs.

✓ Le modèle signale l'existence des zones critiques à revoir vraisemblablement en première priorité.

En analysant tous les résultats des simulations, et en vu d'améliorer le comportement du réseau d'assainissement, nous pouvons donner les propositions suivantes :

- ✓ Les conduites affectées par une pluie quinquennale (t=30 min, t=15 min), présentent des sous dimensionnements inacceptables, ils doivent être prioritairement renforcés en augmentant leurs diamètres.
- ✓ Les zones critiques précédemment mentionnées, nécessitent en urgence des travaux de renforcement de première priorité aussi. En augmentant les diamètres des conduites sous dimensionnées, et en dimensionnant des nouveaux réseaux où on en a pas, afin de diminuer la charge sur le réseau existant.
- ✓ Certaines conduites ont des pentes importantes, ce qui est défavorable pour la conduite. On doit les étudier cas par cas, en trouvant un compromis entre la diminution des pentes et l'augmentation des débits et des hauteurs d'eau.
- ✓ Vu l'influence majeur de l'augmentation de la rugosité, on propose l'élaboration d'un programme du curage périodique préventif qui touche la totalité des collecteurs primaires et secondaire du réseau d'assainissement de ville d'AHMED RACHDI.
- ✓ En cas de pluies de très forte intensité (T=30 ans par exemple), un plan de prévention doit être mis en charge, afin de prévenir la population avant au moins 30 minutes de l'atteinte de la capacité maximale du réseau.
- ✓ Vu le nombre important des points de débordement dans le réseau, pour les différentes pluies de projet, toute conduite en aval de chaque point est sous dimensionné, alors elle nécessite l'augmentation de son diamètre.
- ✓ Les conduites arrivantes aux Rejets, s'avèrent sous dimensionnées, elles sont trop surchargées lors dès la pluie quinquennale, on propose alors de renforcer les Rejets en augmentant leurs diamètres.

Conclusion générale

La ville d'AHMED RACHDI vue la structure de son réseau d'assainissement a connu ces derniers temps un grand nombre de problèmes liés à son au fonctionnement, et à son impact sur l'environnement et la santé publique. A cet égard nous avons mené une étude de diagnostic global dans le but d'évaluer les contraintes et les dysfonctionnements empêchant un bon fonctionnement du réseau. Cette étude se présente sous deux aspects; un aspect structurel visant l'inspection des ouvrages constituant le réseau, et un aspect hydraulique qui a pour objectif; l'identification des points noirs et des anomalies au niveau des ouvrages constituant le réseau.

Au terme de ce travail, où nous nous somme proposé d'étudier le fonctionnement du réseau d'assainissement de la ville *AHMED RACHDI* -wilaya de Mila, le but était d'effectuer une simulation numérique de la réponse du réseau en question à des pluies synthétiques de différentes occurrences et de déceler leurs vulnérabilités au risque d'inondation. La série de simulations a été réalisée en utilisant l'un des modèles de calcul disponible qui est le logiciel SWMM. Après avoir effectué la modélisation physique du réseau en introduisant manuellement tous objets physiques nécessaires à sa caractérisation patrimoniale. La modélisation hydrologique de la transformation pluie-débit a impliqué l'utilisation des fonctions de production et de transfert appropriés dans le but de la fiabilité des résultats, ce qui n'est pas le cas pour les modèles globaux. La simulation du fonctionnement du réseau a fait ressortir les grands points suivants :

- Le réseau actuel est mal dimensionné, et ne répond aux exigences hydrauliques assurant son bon fonctionnement pour les différentes averses testées ;
- Le risque de débordement est très courant, les aménagements de la ville sont mal protégés contre les désordres causés par les averses orageuses ;
- Pour un scénario de fonctionnement avec augmentation de la rugosité, le dysfonctionnement hydraulique du réseau est aggravé. Ceci a provoqué plusieurs mises en charge et débordements en plus. Nous recommandons donc un curage du réseau de manière à ne pas atteindre des valeurs critiques de la rugosité pouvant causer des dégâts néfastes suite à l'insuffisance du réseau.

Après avoir analysé tous les résultats de diagnostic du réseau d'assainissement les les recommandations globales suivantes peuvent être émises :

- ➤ Dans le but de protection du milieu récepteur, une station d'épuration est indispensable dans la région ;
- En l'absence des bouches d'égout dans l'ensemble de la région sauf le centre-ville, il est recommandé d'installer une bouche d'égout chaque 30 m.
- Afin de garder l'efficacité d'évacuation du réseau au cours du temps, il est indispensable d'effectuer un entretien régulier des conduites et des autres ouvrages.
- Tous les tronçons affectés pour des pluies de faibles périodes de retour, doivent être revus en priorité;

Le diagnostic structural du réseau a révélé les conclusions suivantes :

1. Un taux de maintien des réseaux existants de 40%.

- 2. Un taux de rénovation des réseaux existants de 60% du linéaire total.
- Pendant les pluies exceptionnelles, l'élaboration d'un plan d'intervention et de secours est indispensable, après avoir déterminé les manières de propagation des points noirs;
- Mise au point d'un nouveau réseau d'assainissement pour les nouvelles extensions de la ville.

Notre modèle montre clairement que la période de retour joue un rôle déterminant dans le dimensionnement du réseau d'assainissement. En effet, les pluviométries qui correspondent aux périodes de retour importantes occasionnent des débits élevés. A travers les différentes périodes de retour nous pouvons savoir les pluies qui peuvent entraîner des inondations au niveau du réseau d'AHMED RACHDI.

La simulation du modèle, sous SWMM5, offre l'opportunité d'une gestion efficiente du réseau d'assainissement d'AHMED RACHDI. Notre modèle servira à générer des stratégies de gestion des flux d'eaux pluviales en tenant compte du changement de plusieurs paramètres (la pose et la rugosité des conduites, l'imperméabilisation du terrain...) afin d'optimiser l'efficacité du réseau d'égouttage mais aussi d'en réduire les coûts de fonctionnement.

Le modèle du réseau d'assainissement est un outil pertinent à la gestion il constitue une base de données flexible, qui permet à long terme au gestionnaire du réseau d'actualiser le dimensionnement en permanence en fonction des modifications apportées au réseau. En cas d'extension ce modèle permettra d'en identifier et y remédier aux problèmes futur de fonctionnement du réseau ce que facilitera la conception. Il nous semble que les coûts de ce matériel et logiciel, et celui des données informatiques sont relativement modérés au regard de l'aide et du gain de temps qu'ils sont susceptibles d'apporter.

En dernier, cette étude permet d'ouvrir de nouvelles perspectives dans les études des réseaux d'assainissement, suite à l'essor qu'a connue l'hydraulique numérique, et d'approcher la réalité des écoulements par des puissants outils de calcul tel que le logiciel SWMM5, permettant la résolution des équations inextricables dans le passé.

Nous aurions souhaité que cette étude soient réalisée avec des données fiables sur les précipitations, et de les comparer ainsi les résultats numérique et/ou au constat sur le terrain et d'effectuer ainsi le calage du modèle, qui servira comme outil prévisionnel pour les gestionnaires du réseau.

Malgré que la modélisation est très fiable et donne des résultats optimaux par rapport à la méthode classique, elle reste difficile à appliquer dans un grand nombre de réseaux urbains en Algérie à cause de l'absence ou du non fiabilité des données. Notamment surtout avec le manque des enregistrements météorologique (les pluies), et les débits émanant des averses dans le réseau, ce qui constitue une grande difficulté au concepteur pour réaliser le calage des modèles.

Références Bibliographiques

Ali, S. M.; 2006 - Fonctionnement et dimensionnement d'un système d'évacuation muni de bassin pièges. Mém. Ing. Hydraulique. Ecole nationale supérieure de l'hydraulique. Blida.67p. + annexes.

Anonyme ; sd - Fiche Technique ; Réseaux d'assainissement. [Source électronique : <u>www.anha.fr</u>].

Azzedine MEBARKI et C. THOMAS (1988), « Analyse des relations entre écoulements superficiels et souterrains à partir des hydrogrammes des cours d'eau Application au bassin du Kebir-Rhume1 dans le Constantinois (Algérie) ».103p

Berland, J.M (2004). « Réhabilitation des réseaux d'assainissement en zone rurale ». Fiche technique FNDAE n° 32 : office national de l'eau (France). 115p

BOUNADER. E, 1998 Thèse pour obtenir le grade de Docteur, Conduit de diagnostic, et évaluation des collecteurs des infrastructures urbaines, Formation doctorale : conception en bâtiment, et techniques urbaines, Institut National des Sciences Appliquées de Lyon.

Bourrier, **R.**; **1997**- Les réseaux d'assainissement (calcul-applicatios-perpectives). 4ème édition. Ed. Paris. 810p.

Chergui .S (1996). «Le vieillissement des réseaux d'assainissement : méthodologie d'évaluation de l'état des canalisations à partir d'inspection télévisée» ; CEMAGREF/ENGEES.

Chocat, B. (1997). «Encyclopédie de l'hydrologie urbaine et de l'assainissement. Paris : Lavoisier ».

Chow, V. T., Maidment, D.R., Mays, L. R.(1988). «Applied Hydrology». New York :McGraw-Hill.

Delevoye, J.P., sd (2002)- Guide de l'assainissement des communes rurales.87p.

Didier, M. 1990 - Conseil national géographique.46p.

FALI.A, septembre 1999. Memoire de fin d'études d'assainissement, Etude de diagnostic et extension du reseau d'assainissement de la ville de Oued-Rhiou (W.Relizane) ENSH.

Godart, H., sd- L'assainissement non collectif. Ing. Civil des mines.

Jacques Bonnin, 1986 Hydraulique urbaine appliquée aux agglomérations de petite moyenne importance, Edition EYROLLES, Paris (France).

Lalande.C **(2000)**, «Diagnostic hydraulique des réseaux d'assainissement». Ecole de technologie supérieure. Projet pour l'obtnion de la maitrise en génie de construction.Montréal,188p.

LeGauffre .**P**, **Joanis** .**C**, **Breysse** .**D**, **Gibello C**. **et Desmulliez** .**J.J.** (2004). « Gestion patrimoniale des réseaux d'assainissement urbain: guide méthodologique (*RERAU*)». Paris: Lavoisier.416p.

Manuel du logiciel SWMM5.

MicrosoftEncarta 2009, Microsoft Corporation© 1993-2008

Satin, M. & Selmi, B.; **1999** - Guide technique de l'assainissement. 2ème édition. Ed. Le Moniteur. Paris. 680p.

Yahiaoui .F. (2000). « Réhabilitation des réseaux d'assainissement visitables et non visitables.» Mémoire de fin d'études. Ecole Supérieure des Géomètres et Topographes. France. 66p.

Zug.M, **Vazquez.J.**; « Modélisation des réseaux d'assainissement ». Cours de 3ème année l'ENGESS. Nancy. 75p

Sites internet

http://maps.google.com/maps

http://www.pse.ensg.ign.fr/fichchem.php3

[1] http://www.startimes2.com

http://ww.ingdz.com

http://ww.abhcsm.com

Annexe I: Caractéristiques des canalisations

Zone 01:

Tron	çon	D(mm)	L(m)	I((m/m)	Etat	Remarque
RB1	RB 2	200	40	0.0160	M.E	-
RB 2	RB 4	200	49.8	0.1112	M.E	F.P
RB 4	RB 5	200	36.3	0.0193	M.E	-
RB 5	RB 6	200	21.4	0.1579	M.E	F.P
RB 6	RB 7	200	16.5	0.0418	M.E	-
RB 7	RB 18	200	38.9	0.0275	M.E	-
RB 8	RB 9	<mark>250</mark>	19.25	0.1262	M.E	F.P
RB 9	RB 17	250	46.75	0.0081	M.E	-
RB 10	RB 11	300	22.6	0.0774	B.E	-
RB 11	RB 14	300	49.5	0.0269	B.E	-
RB 12	RB 13	200	21.5	0.0121	B.E	-
RB 13	RB 14	200	41.35	0.0651	B.E	-
RB 14	RB 15	300	22.45	0.0584	B.E	-
RB 15	RB 17	300	26.77	0.2043	B.E	-
RB 17	RB 18	300	33	0.0985	B.E	-
RB 18	RB 19	400	25.9	0.1039	M.E	F.P
RB 19	RB 21	400	60.2	0.1169	M.E	F.P
RB 21	RB 22	400	39.6	0.0699	M.E	-
RB 22	RB 25	400	63.65	0.1029	M.E	F.P
RB 25	RB 29	400	<mark>67.5</mark>	0.1233	B.E	F.P
RB 29	RB 30	800	32.9	0.0754	B.E	-
RB 30	RB 31	800	32	0.0775	B.E	-
RB 31	RB 32	800	26.85	0.0607	B.E	-
RB 32	RB 147	800	25	0.0484	B.E	-
RB 33	RB 35	300	34.6	0.0879	B.E	-
RB 35	RB 36	300	23.8	0.1000	B.E	F.P
RB 36	RB 39	300	17.75	0.2220	B.E	F.P
RB 39	RB 40	300	20.15	0.1330	B.E	F.P
RB 40	RB 52	300	40.15	0.0610	B.E	-
RB 41	RB 42	300	41.25	0.0192	B.E	-
RB 42	RB 46	300	30.9	0.0456	B.E	-
RB 46	RB 47	300	27.65	0.1089	B.E	F.P

Tron	çon	D (mm)	L(m)	I((m/m))	Forme	Remarque
RB 47	RB 48	300	31	0.0910	B.E	-
RB 48	RB 50	300	32.35	0.1233	B.E	F.P
RB 50	RB 51	400	47.65	0.0546	B.E	-

RB 51	RB 52	400	46.4	0.0830	B.E	-
RB 52	RB 53	300	23.15	0.0972	B.E	-
RB 53	RB 54	300	30.98	0.0723	B.E	-
RB 54	RB 55	300	55.48	0.0342	B.E	-
RB 55	RB 56	300	52.51	0.2000	B.E	F.P
RB 68	RB 69	300	30.6	0.4359	B.E	F.P
RB 69	RB 71	300	45.5	0.1281	B.E	F.P
RB 71	RB 121	300	48.75	0.1830	M.E	F.P
RB 74	RB 75	300	25.81	0.0415	M.E	-
RB 75	RB 76	300	48.85	0.0129	M.E	-
RB 76	RB 77	300	43.5	0.0414	M.E	-
RB 77	RB 81	300	48.5	0.0532	M.E	-
RB 78	RB 79	300	53.8	0.0139	M.E	-
RB 79	RB 81	300	58.35	0.0099	B.E	-
RB 81	RB 82	300	46.25	0.0685	B.E	-
RB 82	RB 83	300	41.5	0.0494	B.E	-
RB 83	RB 84	300	31.5	0.0794	B.E	-
RB 84	RB 86	300	29.75	0.1734	B.E	F.P
RB 86	RB 120	300	59.8	0.2212	B.E	F.P
RB 112	RB 113	300	50.3	0.0040	B.E	-
RB 113	RB 119	300	50.5	0.0259	B.E	-
RB 119	RB 120	300	41.75	0.0040	B.E	-
RB 120	RB 121	600	34	0.0391	B.E	-
RB 121	RB 122	600	50.8	0.0219	B.E	-
RB 122	RB 123	600	53.75	0.0231	B.E	-
RB 123	RB 124	600	47.15	0.0333	B.E	-
RB 124	RB 56	600	54	0.0200	B.E	-
RB 56	RB 29	300	36.9	0.0509	B.E	-
RB 29	RB 30	800	32.9	0.0754	B.E	-
RB 30	RB 31	800	32	0.0775	B.E	-
RB 31	RB 32	800	28.85	0.0565	B.E	-
RB 32	RB 147	800	25	0.0484	B.E	-
RB167	RB168	300	40	0.02	B.E	-
RB168	RB171	300	24.6	0.04	B.E	-
RB169	RB170	300	35.2	0.01	B.E	1
RB170	RB171	300	24.4	0.01	B.E	-
RB171	RB174	300	21.1	0.04	B.E	-
RB172	RB173	300	36.3	0.01	B.E	-
RB173	RB174	300	24.3	0.02	B.E	
RB174	RB177	300	22.5	0.05	B.E	-
						<u> </u>

RB175	RB176	300	36.2	0.01	B.E	-
RB176	RB177	300	23.55	0.01	B.E	-
RB177	RB180	300	21.65	0.04	B.E	-
RB178	RB179	300	37.8	0.01	B.E	-
RB179	RB180	300	22.6	0.02	B.E	-
RB180	RB183	300	25.95	0.03	B.E	-
RB181	RB182	400	32.9	0.02	B.E	-

RB182	RB183	400	31.43	0.02	B.E	-
RB183	RB184	400	13.4	0.01	B.E	-
RB184	RB185	<mark>400</mark>	<mark>29.5</mark>	0.00	B.E	P.N
RB185	RB187	400	29.9	0.04	B.E	-
RB186	RB187	400	34.5	0.01	B.E	-
RB187	RB188	400	34	0.05	B.E	-
RB188	RB189	400	34.2	0.04	B.E	-
RB189	RB191	400	31	0.03	B.E	-
RB190	RB191	300	22.25	0.04	B.E	-
RB191	RB201	400	32.9	0.03	B.E	-
RB192	RB193	300	24.25	0.01	B.E	-
RB193	RB194	300	17.9	0.01	B.E	-
RB194	RB195	300	10.75	0.02	B.E	-
RB195	RB197	300	38.35	0.04	B.E	-
RB196	RB197	300	31.65	0.01	B.E	-
RB197	RB199	300	24.5	0.05	B.E	-
RB198	RB199	300	30	0.02	B.E	-
RB199	RB200	300	24	0.04	B.E	-
RB200	RB201	300	22.35	0.04	B.E	-
RB201	RB202	500	23.1	0.03	B.E	-
RB202	RB205	500	25.1	0.04	B.E	-
RB203	RB204	500	31.65	0.05	B.E	-
RB204	RB205	500	34.85	0.05	B.E	-
RB205	RB206	500	22.15	0.03	B.E	-
RB206	RB162	500	25.6	0.05	B.E	-
RB207	RB208	300	30	0.05	B.E	-
RB208	RB209	300	30	0.04	B.E	-
RB209	RB192	<mark>300</mark>	<mark>44</mark>	0.00	B.E	P.N
RB212	RB213	300	35	0.04	B.E	-
RB213	RB214	300	35	0.03	B.E	-

Tronçon		L(mm)	L (m)	I((m/m))	Forme	Remarque
RB214	RB215	300	35	0.05	B.E	-
RB215	RB219	300	35	0.05	B.E	-
RB216	RB217	<mark>300</mark>	<mark>35</mark>	0.00	<mark>B.E</mark>	P.N
RB217	RB218	300	35	0.01	B.E	-
RB218	RB219	<mark>300</mark>	<mark>35</mark>	0.00	B.E	P.N
RB219	RB220	300	24.1	0.04	B.E	-
RB220	RB221	300	24.1	0.05	B.E	-
RB221	RB229	300	11.25	0.04	B.E	-
RB222	RB223	300	30	0.01	B.E	-
RB223	RB224	<mark>300</mark>	<mark>30</mark>	0.00	B.E	P.N
RB224	RB225	300	11.25	0.04	B.E	-
RB225	RB226	300	30	0.04	B.E	-
RB226	RB227	300	30	0.02	B.E	-
RB227	RB228	300	20.35	0.02	B.E	-

RB228	RB229	300	11.25	0.03	B.E	-
RB229	RB230	500	26	0.02	B.E	-
RB230	RB231	500	37	0.01	B.E	-
RB231	RB232	<mark>500</mark>	<mark>37</mark>	0.00	<mark>B.E</mark>	-
RB232	RB233	500	37	0.04	B.E	-
RB233	RB129	500	20.15	0.04	B.E	-
RB 129	RB 130	600	21.45	0.01	B.E	-
RB 130	RB 131	<mark>600</mark>	<mark>28.8</mark>	0.00	B.E	P.N
RB 131	RB 132	700	40.1	0.03	M.E	-
RB 132	RB 133	700	44.2	0.01	M.E	-
RB 133	RB 134	700	25.75	0.05	M.E	-
RB 134	RB 135	700	30.75	0.02	M.E	-
RB 135	RB 136	700	33	0.03	M.E	-
RB 136	RB 137	700	30.75	0.02	M.E	-
RB 137	RB 138	700	31.15	0.02	M.E	-
RB 138	RB 139	700	44.8	0.01	M.E	-
RB 139	RB 140	700	44.65	0.02	M.E	-
RB 140	RB 141	700	41.6	0.03	M.E	-
RB 141	RB 142	700	40.85	0.02	M.E	-
RB 142	RB 143	800	40.9	0.01	M.E	-
RB 143	RB 144	800	48.5	0.02	M.E	-
RB 144	RB 145	800	63.75	0.01	M.E	-
RB 145	RB 146	800	38.45	0.05	M.E	-
RB 146	RB 147	800	38.35	0.04	M.E	-
RB 147	RB 148	800	40.8	0.01	M.E	-
RB148	D.0	800	43.35	0.01	B.E	-
D.0	B.D	400	18.9	0.02	B.E	-
B.D	RB 151	<mark>400</mark>	<mark>17.25</mark>	0.00	<mark>B.E</mark>	P.N
RB 151	RejetB1	400	20.65	0.19	B.E	-

Zone 02:

Tron	Tronçon		L (m)	l (m/m)	Etat	Remarque
RA1	RA 2	300	55	0.0335	B.E	-
RA 2	RA 11	300	54.5	0.0330	B.E	-
RA 3	RA 4	300	41.55	0.0402	B.E	-
RA 4	RA 10	<mark>300</mark>	42.35	0.1157	B.E	F.P
RA 5	RA 6	300	47.1	0.0047	B.E	-
RA 6	RA 9	300	<mark>50</mark>	0.1216	B.E	F.P
RA 8	RA 9	250	23.1	0.0052	M.E	-
RA 9	RA 10	250	34.9	0.0203	M.E	-
RA 10	RA 11	300	31.3	0.0990	B.E	-
RA 11	RA 12	400	32	0.0012	B.E	-
RA 12	RA 56	400	35.15	0.0011	B.E	-
RA 13	RA 14	300	50	0.0630	B.E	-
RA 14	RA 16	300	50	0.0476	B.E	-
RA 15	RA 16	300	48.35	0.0389	B.E	-
RA 16	RA 18	300	49.5	0.0418	B.E	-

RA 17	RA 18	300	41.1	0.0258	B.E	-
RA 18	RA 19	300	47.15	0.0255	M.E	-
RA 19	RA 20	300	43.7	0.0686	M.E	-
RA 20	RA 21	300	32	0.0031	M.E	-
RA 21	RA 22	300	28	0.0039	M.E	-
RA 22	RA 27	300	39.75	0.0302	M.E	-
RA 23	RA 24	300	39.5	0.0380	B.E	-
RA 24	RA 25	300	35.5	0.0377	B.E	-
RA 25	RA 26	300	29.45	0.0367	B.E	-
RA 26	RA 27	300	31.45	0.0798	B.E	-
RA 27	RA 33	300	50	0.0704	B.E	-
RA 29	RA 30	300	31	0.0735	B.E	-
RA 30	RA 31	300	41.25	0.0575	B.E	-
RA 31	RA 32	300	28.25	0.0389	B.E	-
RA 32	RA 33	300	36	0.0161	B.E	-
RA 33	RA 34	300	16.25	0.1249	B.E	F.P
RA 34	RA 56	300	33.85	0.1261	B.E	F.P
RA 36	RA 37	300	37.65	0.0805	B.E	-
RA 37	RA 53	300	44.65	0.1554	B.E	F.P
RA 39	RA 52	300	<mark>50</mark>	0.1118	B.E	F.P
RA 41	RA 51	300	<mark>50</mark>	0.1188	B.E	F.P
RA 43	RA 44	300	25	0.0996	B.E	-
RA 44	RA 47	300	40	0.0620	B.E	-
RA 45	RA 47	200	50	0.0872	B.E	-

Tror	ıçon	D (mm)	L (m)	I (m/m)	Etat	Remarque
RA 47	RA 50	300	25	0.0908	B.E	-
RA 48	RA 49	400	35.75	0.0255	B.E	-
RA 49	RA 50	400	33.45	0.0338	B.E	-
RA 50	RA 51	400	50	0.0366	B.E	-
RA 51	RA 52	400	50	0.0784	B.E	-
RA 52	RA 53	400	48.7	0.1158	B.E	F.P
RA 53	RA 54	400	50	0.0634	B.E	-
RA 54	RA 55	400	50	0.0372	B.E	-
RA 55	RA 56	400	50	0.0296	B.E	-
RA 56	RA 57	400	25	0.0972	B.E	-
RA 57	RA 58	600	40.2	0.0532	B.E	-
RA 58	RA 59	600	51.5	0.0544	B.E	-
RA 59	RA 60	600	51.75	0.0044	B.E	-
RA 60	RA 61	600	53.6	0.0476	B.E	-
RA 61	RA 62	600	56.6	0.0436	B.E	-
RA 62	RA 63	600	53.75	0.0221	B.E	-
RA 63	RA 64	600	50.35	0.0352	B.E	-

RA 64	RA 66	600	54.4	0.0919	B.E	-
RA 66	RA 68	<mark>600</mark>	48.15	0.1082	B.E	F.P
RA 68	RA 70	600	62	0.0835	B.E	-
RA 70	RA 167	600	63.15	0.1279	B.E	F.P
RA 73	RA 81	<mark>250</mark>	34.5	0.1052	M.E	F.P
RA 76	RA 79	250	37.7	0.0117	M.E	-
RA 77	RA 78	250	27	0.0396	M.E	-
RA 78	RA 79	250	32	0.0184	M.E	-
RA 79	RA 80	250	32.6	0.0650	M.E	-
RA 80	RA 81	250	40.2	0.0565	M.E	-
RA 81	RA 82	<mark>300</mark>	22	0.1309	B.E	F.P
RA 82	RA 83	400	49	0.0067	B.E	-
RA 83	RA 93	400	50.5	0.0618	B.E	-
RA 85	RA 90	250	47.35	0.0342	M.E	-
RA 87	RA 88	200	38.2	0.0079	M.E	-
RA 88	RA 89	200	35	0.0146	M.E	-
RA 89	RA 90	300	35.5	0.0479	B.E	-
RA 90	RA 91	300	37.2	0.0882	B.E	-
RA 91	RA 93	300	40	0.1885	B.E	F.P
RA 93	RA 94	400	50.4	0.0355	B.E	-

Tror	nçon	D (mm)	L (m)	I((m/m))	Etat	Remarque
RA 94	RA 96	400	50.4	0.1069	B.E	F.P
RA 102	RA 103	300	32	0.0125	B.E	-
RA 103	RA 104	300	30	0.0090	B.E	-
RA 104	RA 109	300	30	0.0113	B.E	-
RA 106	RA 108	300	35	0.0126	B.E	-
RA 108	RA 109	300	35	0.0103	B.E	-
RA 109	RA 110	400	33.5	0.0194	B.E	-
RA 110	RA 111	400	33.5	0.0188	B.E	-
RA 111	RA 114	400	33.5	0.0188	B.E	-
RA 112	RA 113	300	25	0.0160	M.E	-
RA 113	RA 114	300	25	0.0124	M.E	-
RA 114	RA 115	400	36.65	0.0164	M.E	-
RA 115	RA 116	400	36.65	0.0196	B.E	-
RA 116	RA 117	500	36.65	0.0237	B.E	-
RA 117	RA 118	500	36.55	0.0093	B.E	-
RA 118	RA 119	500	25.35	0.0051	B.E	-
RA 119	RA 120	500	26.25	0.0259	B.E	-
RA 120	RA 121	500	34.1	0.0161	B.E	-

RA 121	RA 122	500	30.8	0.0276	B.E	-
RA 122	RA 123	500	17	0.0647	B.E	-
RA 123	RA 124	500	27.65	0.0579	B.E	-
RA 124	RA 144	500	28.7	0.0491	B.E	-
RA 126	RA 127	300	38.35	0.0313	B.E	-
RA 127	RA 128	300	49.9	0.0140	B.E	-
RA 128	RA 131	300	35.65	0.0056	B.E	-
RA 129	RA 130	300	50	0.0180	B.E	-
RA 130	RA 131	300	36.75	0.0163	B.E	-
RA 131	RA 132	400	47	0.0011	B.E	-
RA 132	RA 133	400	33.65	0.0149	B.E	ı
RA 133	RA 134	400	33.65	0.0416	B.E	1
RA 134	RA 135	400	33.65	0.0053	B.E	ı
RA 135	RA 136	400	30.9	0.0023	B.E	ı
RA 136	RA 137	400	36.6	0.0246	B.E	-
RA 137	RA 138	400	36.6	0.0415	B.E	ı
RA 138	RA 139	500	36.6	0.0219	B.E	-
RA 139	RA 141	500	36.6	0.0801	B.E	-
RA 140	RA 141	300	50	0.0484	B.E	-
RA 141	RA 142	<mark>500</mark>	16.8	0.1060	B.E	F.P

Tror	ıçon	D (mm)	L (m)	I((m/m))	Etat	Remarq.
RA 142	RA 144	<mark>500</mark>	16.8	0.1060	B.E	F.P
RA 144	RA 149	<mark>500</mark>	<mark>66.2</mark>	0.1940	B.E	F.P
RA 149	RA 150	500	48.15	0.0552	B.E	-
RA 150	RA 96	500	48.15	0.0172	B.E	-
RA 159	RA 161	600	50.25	0.1130	B.E	F.P
RA 161	RA 163	600	<mark>55</mark>	0.1153	B.E	F.P
RA 163	RA 165	600	55	0.0705	B.E	-
RA 165	RA 167	600	57.6	0.0870	B.E	-
RA 167	RA 168	600	51.9	0.0403	B.E	-
RA 168	RA 169	600	53.3	0.0328	B.E	-
RA 169	RA 171	600	52.2	0.0946	B.E	-
RA 171	RA 173	600	49.9	0.0844	B.E	-
RA 173	Rejet ex	600	27	0.0796	B.E	-

Zone 03:

Trong	çon	D (mm)	a (m)	l (m/m)	Etat	Remarq.
R 1	R 2	300	20.85	0.0120	B.E	-
R 2	R 3	300	34.85	0.0034	B.E	-

R 3	R 4	300	36.4	0.0082	B.E	-
R 4	R 5	300	36.3	0.0140	B.E	-
R 5	R 6	300	36.3	0.0204	B.E	-
R 6	R 7	300	36.5	0.0137	B.E	=
R 7	R 8	400	36.5	0.0115	B.E	-
R 8	R 11	400	36.5	0.0455	B.E	-
R 11	R 13	400	27.55	0.0054	B.E	-
R 13	R 14	400	27.5	0.0440	B.E	-
R 14	R 22	400	34	0.0135	B.E	-
R 22	R 23	400	36.7	0.0204	B.E	-
R 23	R 24	500	36.7	0.0267	B.E	-
R 15	R 16	300	31	0.0155	B.E	-
R 16	R 17	300	31	0.0206	B.E	-
R 17	R 18	300	31	0.0274	B.E	-
R 18	R 19	300	22	0.0286	B.E	-
R 19	R 20	400	22	0.0282	B.E	-
R 20	R 21	400	15.9	0.0088	B.E	-
R 21	R 24	400	28.15	0.0629	B.E	-
R 24	R 25	500	50.9	0.0422	B.E	-
R 25	R 35	500	36.7	0.0447	B.E	-
R 26	R 27	300	40	0.0175	B.E	-
R 27	R 28	300	26.3	0.0308	B.E	-
R 28	R 31	300	26.3	0.0498	B.E	-
R 29	R 30	300	45.5	0.0334	B.E	=
R 30	R 31	300	30	0.0310	B.E	=
R 31	R 32	300	20.9	0.0311	B.E	-
R 32	R 33	300	37.5	0.0336	B.E	-
R 33	R 34	400	37.5	0.0397	B.E	-
R 34	R 35	500	25.1	0.0167	B.E	=
R 35	R 36	500	30.8	0.0526	B.E	-
R 36	R 37	500	30.8	0.0610	B.E	-
R 37	R 38	500	18.15	0.0413	B.E	-
R 38	R 44	500	34.7	0.0023	B.E	-
R 43	R 44	250	45.25	0.0210	B.E	-
R 44	R 45	500	30	0.0627	B.E	-
·						

Tron	ıçon	D (mm)	L (m)	I (m/m)	Etat	Remarque
R45	R46	500	23.9	0.0431	B.E	-
R46	R50	<mark>500</mark>	23.9	0.1130	B.E	F.P
R 48	R 49	250	37.3	0.0029	M.E	-
R 49	R 50	250	43.6	0.0071	M.E	-
R51	R52	250	49.8	0.0237	M.E	-
R52	R53	250	48.9	0.0082	M.E	-

R53	R57	500	32.5	0.0640	M.E	-
R57	R61	<mark>500</mark>	31.75	0.1228	M.E	F.P
R58	R59	250	32.6	0.0491	B.E	-
R59	R60	250	34.9	0.0229	B.E	-
R60	R61	250	35	0.0574	B.E	-
R61	R64	500	34.4	0.0273	B.E	-
R64	R89	500	34.25	0.0175	B.E	-
R67	R68	300	25	0.0320	B.E	-
R68	R69	300	29.3	0.0382	B.E	1
R69	R70	300	29.3	0.0109	B.E	-
R70	R71	300	29.3	0.0205	B.E	-
R71	R74	300	31.35	0.0201	B.E	-
R72	R73	300	25	0.0660	B.E	-
R73	R74	300	25	0.0200	B.E	-
R74	R75	300	11.35	0.1189	B.E	F.P
R75	R76	300	34.1	0.0991	B.E	-
R76	R83	300	35.6	0.0949	B.E	-
R77	R79	250	33.25	0.0514	M.E	-
R78	R79	250	18.75	0.0469	M.E	-
R79	R81	250	21	0.0976	M.E	-
R80	R81	250	25.25	0.0558	M.E	=
R81	R82	250	31.8	0.0786	M.E	-
R82	R83	300	50.4	0.0030	B.E	-
R83	R84	300	24.16	0.1163	B.E	F.P
R84	R85	300	33.25	0.0875	B.E	-
R85	R88	300	48.7	0.1405	B.E	F.P
R88	R89	300	42.79	0.0369	B.E	-
R89	R90	500	46.5	0.0118	B.E	-
R90	R91	600	37	0.0627	B.E	-
R91	R92	600	53	0.0619	B.E	-
R92	R94	600	36.79	0.1139	B.E	F.P

Tror	nçon	D (mm)	L (m)	I (m/m)	Etat	Remarque
R94	R161	600	29.9	0.0421	B.E	-
R95	R96	300	30	0.0197	B.E	-
R96	R98	300	47	0.0240	B.E	-
R98	R100	300	28.5	0.0372	B.E	-
R99	R100	300	51.1	0.0315	B.E	-
R100	R102	300	46.5	0.0189	B.E	-

R102	R103	300	36.6	0.0314	B.E	-
R103	R105	300	40.4	0.0364	B.E	-
R105	R109	300	31.55	0.0735	B.E	-
R109	R110	300	36.5	0.0268	B.E	-
R110	R111	300	44.75	0.0420	B.E	-
R111	R112	300	32.35	0.0770	B.E	-
R112	R126	300	34.45	0.0560	B.E	-
R114	R115	250	48	0.0812	M.E	-
R115	R116	250	22.3	0.0874	M.E	-
R116	R111	300	21.45	0.0932	M.E	-
R117	R118	250	34.6	0.0962	M.E	-
R118	R119	<mark>250</mark>	25	0.1020	M.E	F.P
R119	R120	<mark>250</mark>	<mark>25</mark>	0.1016	M.E	F.P
R120	R112	300	22.6	0.1200	B.E	F.P
R112	R126	300	34.45	0.0560	B.E	-
R123	R124	<mark>300</mark>	22.85	0.1151	B.E	F.P
R124	R125	300	22.85	0.1147	B.E	F.P
R125	R126	300	24.6	0.1280	B.E	F.P
R126	R127	600	40.7	0.0061	B.E	1
R127	R128	600	29.3	0.0218	B.E	1
R128	R151	600	37.4	0.0324	B.E	-
R130	R131	250	24	0.0738	B.E	-
R131	R132	250	42.75	0.0896	B.E	-
R132	R135	300	39.25	0.0079	B.E	-
R135	R140	<mark>300</mark>	41.8	0.1291	B.E	F.P
R140	R150	300	27.7	0.1011	B.E	F.P
R148	R149	300	26.65	0.0173	B.E	-
R149	R150	300	31.7	0.0136	B.E	-
R150	R151	300	31.6	0.1031	B.E	F.P
R151	R154	<mark>600</mark>	16.6	0.1145	B.E	F.P

Tror	Tronçon		L (m)	l (m/m)	Etat	Remarque
R152	R153	300	32.9	0.0082	B.E	1
R153	R154	300	45.9	0.0153	B.E	-
R154	R159	600	<mark>53.44</mark>	0.1149	B.E	F.P
R156	R157	300	35.8	0.0391	B.E	-
R157	R158	300	31.4	0.0261	B.E	-
R158	R159	300	40.3	0.0253	B.E	-
R159	R160	600	24.8	0.0919	B.E	-

R161 R171 600 43.8 0.0397 B.E - R162 R163 300 29.8 0.0654 B.E - R163 R164 300 19.4 0.1067 B.E F.P R164 R165 300 19.4 0.1067 B.E F.P R165 R166 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E -	R160	R161	600	24.8	0.0960	B.E	
R162 R163 300 29.8 0.0654 B.E - R163 R164 300 19.4 0.1067 B.E FP R164 R165 300 19.4 0.1067 B.E FP R165 R166 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R167 R168 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.2 0.0111 B.E - R174 R175 600 36.65 0.0568 B.E - R175 R176 600 36.65 0.0568 B.E -							-
R163 R164 300 19.4 0.1067 B.E FP R164 R165 300 19.4 0.1067 B.E FP R165 R166 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R171 R174 600 52.9 0.0870 B.E - R174 R175 600 36.65 0.0568 B.E -	R161	R171	600	43.8	0.0397	B.E	-
R164 R165 800 19.4 0.1067 B.E F.P R165 R166 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 36.65 0.0568 B.E - R176 R176 600 45.6 0.0789 B.E - R177 R312 600 45.6 0.0789 B.E -	R162	R163	300	29.8	0.0654	B.E	-
R165 R166 300 23.5 0.0851 B.E - R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R174 R175 600 39.4 0.0447 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 45.6 0.0789 B.E - R177 R312 600 45.6 0.0789 B.E - R200 R201 300 39.75 0.0151 B.E - <	R163	R164	300	19.4	0.1067	B.E	F.P
R166 R171 300 23.5 0.0851 B.E - R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R201 R202 300 48.65 0.0101 B.E -	R164	R165	300	19.4	0.1067	B.E	F.P
R167 R168 400 33 0.0970 B.E - R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R201 R202 300 48.65 0.0151 B.E - R201 R203 300 34.1 0.0276 B.E -	R165	R166	300	23.5	0.0851	B.E	-
R168 R169 400 33.7 0.0795 B.E - R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R177 R312 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R201 R202 300 48.65 0.0101 B.E - R201 R202 300 48.65 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E -	R166	R171	300	23.5	0.0851	B.E	-
R169 R170 400 39.25 0.0474 B.E - R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.4 0.0084 B.E -	R167	R168	400	33	0.0970	B.E	-
R170 R171 400 45.6 0.0811 B.E - R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E -	R168	R169	400	33.7	0.0795	B.E	-
R171 R172 600 52.2 0.0111 B.E - R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E -	R169	R170	400	39.25	0.0474	B.E	-
R172 R174 600 52.9 0.0870 B.E - R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E -	R170	R171	400	45.6	0.0811	B.E	-
R174 R175 600 39.4 0.0447 B.E - R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E - <td>R171</td> <td>R172</td> <td>600</td> <td>52.2</td> <td>0.0111</td> <td>B.E</td> <td>-</td>	R171	R172	600	52.2	0.0111	B.E	-
R175 R176 600 36.65 0.0568 B.E - R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R172	R174	600	52.9	0.0870	B.E	-
R176 R177 600 46.3 0.0447 B.E - R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R174	R175	600	39.4	0.0447	B.E	-
R177 R312 600 45.6 0.0789 B.E - R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R175	R176	600	36.65	0.0568	B.E	-
R199 R202 300 43.85 0.0228 B.E - R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R176	R177	600	46.3	0.0447	B.E	-
R200 R201 300 39.75 0.0151 B.E - R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R177	R312	600	45.6	0.0789	B.E	-
R201 R202 300 48.65 0.0101 B.E - R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R199	R202	300	43.85	0.0228	B.E	-
R202 R203 300 28.75 0.0449 B.E - R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R200	R201	300	39.75	0.0151	B.E	-
R203 R214 300 34.1 0.0276 B.E - R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R201	R202	300	48.65	0.0101	B.E	-
R204 R205 300 34.4 0.0084 B.E - R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R202	R203	300	28.75	0.0449	B.E	-
R205 R209 300 50 0.0152 B.E - R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R203	R214	300	34.1	0.0276	B.E	-
R209 R211 300 24.5 0.0082 B.E - R210 R211 200 49 0.0131 B.E -	R204	R205	300	34.4	0.0084	B.E	-
R210 R211 200 49 0.0131 B.E -	R205	R209	300	50	0.0152	B.E	-
1,000 13 0,0131	R209	R211	300	24.5	0.0082	B.E	-
D211 D212 200 201 0.0071 R.F.	R210	R211	200	49	0.0131	B.E	-
KZII KZIZ 300 38.1 0.00/1 5.2 -	R211	R212	300	38.1	0.0071	B.E	-

Tror	nçon	D (mm)	L (m)	l (m/m)	Etat	Remarque
R212	R213	300	49.4	0.0034	B.E	-
R213	R214	300	30.4	0.0053	B.E	-
R214	R215	300	40.9	0.0293	B.E	-
R215	R259	300	50	0.0338	B.E	-
R218	R219	250	29.1	0.0526	M.E	-
R219	R220	250	25.75	0.0252	M.E	-
R220	R223	250	34.75	0.0308	M.E	-
R221	R222	250	33.2	0.0304	M.E	-
R222	R223	250	30.8	0.0325	M.E	-
R223	R226	300	23.6	0.0585	M.E	-

R224	R225	250	35	0.0171	M.E	-
R225	R226	250	34.3	0.0350	M.E	-
R226	R227	300	40.3	0.0638	B.E	-
R227	R228	300	33.6	0.0411	B.E	-
R228	R229	300	32.25	0.0639	B.E	-
R229	R230	300	52.35	0.0031	B.E	-
R230	R248	300	49.35	0.0340	B.E	-
R244	R247	300	28.9	0.0415	B.E	-
R247	R248	300	34.2	0.0365	M.E	-
R248	R249	300	52.65	0.0057	M.E	-
R249	R250	300	29.4	0.0037	M.E	-
R250	R251	300	41.7	0.0141	M.E	-
R251	R252	300	43.2	0.0125	M.E	-
R252	R253	300	39.75	0.0292	M.E	-
R253	R254	300	36.8	0.0035	M.E	-
R254	R259	300	29.75	0.0222	M.E	-
R255	R256	300	29.75	0.0245	M.E	-
R256	R257	300	29.75	0.0081	M.E	-
R257	R258	300	29.75	0.0030	M.E	-
R258	R259	300	29.75	0.0030	M.E	-
R259	R263	500	36.45	0.0439	M.E	-
R260	R261	250	32.9	0.0426	M.E	-
R261	R262	250	45.85	0.0288	M.E	-
R262	R263	250	44.3	0.0144	M.E	-

Tror	ıçon	D (mm)	L (m)	l (m/m)	Etat	Remarque
R263	R267	500	31.6	0.0171	B.E	1
R264	R265	250	35.3	0.0306	M.E	-
R265	R266	250	43.7	0.0096	M.E	-
R266	R267	250	37.15	0.0151	M.E	-
R267	R270	500	34.65	0.0242	M.E	-
R268	R269	250	50	0.0090	M.E	-
R269	R270	250	49.25	0.0055	M.E	-
R270	R272	500	39.85	0.0351	B.E	-
R271	R272	300	34.4	0.0314	B.E	-
R272	R274	500	31.7	0.0508	B.E	-
R273	R274	300	30.2	0.0245	B.E	-
R274	R276	500	31.25	0.0262	B.E	-
R275	R276	250	38.9	0.0514	B.E	-

R276	R278	500	33.55	0.0089	B.E	-
R277	R278	250	34	0.0065	B.E	-
R278	R280	<mark>500</mark>	34.15	0.1042	B.E	F.P
R280	R281	<mark>500</mark>	33	0.1391	B.E	F.P
R281	R282	500	49.45	0.0940	B.E	-
R282	R285	500	38.3	0.0930	B.E	-
R285	R293	500	32.2	0.0075	B.E	-
R286	R287	300	38.75	0.1032	B.E	F.P
R287	R288	300	50	0.0248	B.E	-
R288	R291	300	36.25	0.0552	B.E	-
R289	R290	300	27.6	0.0080	B.E	-
R290	R291	300	40.2	0.0550	B.E	-
R291	R292	300	51.65	0.0815	B.E	1
R292	R293	300	50	0.0430	B.E	1
R293	R294	500	28.3	0.0177	B.E	-
R295	R296	300	43.75	0.0256	B.E	-
R296	R297	300	36	0.0314	B.E	-
R297	R298	300	34.85	0.0528	B.E	-
R298	R299	300	50	0.0514	B.E	-
R299	R300	300	42.75	0.1036	B.E	F.P
R300	R301	300	38.75	0.0348	B.E	-

Tror	içon	D (mm)	L (m)	l (m/m)	Etat	Remarq.
R301	R302	300	39.85	0.0565	B.E	-
R302	R304	300	51.1	0.0618	B.E	-
R304	R305	300	52.3	0.0639	B.E	-
R305	R294	400	19	0.0158	B.E	1
R294	R307	500	42.15	0.0771	B.E	-
R307	R308	500	37	0.0703	B.E	-
R308	R309	300	49.75	0.0165	B.E	-
R309	R311	600	52.85	0.0655	B.E	-
R311	R312	600	49.65	0.0725	B.E	-
R 312	R 313C	600	48.75	0.0459	B.E	-
R 313C	R 314C	600	48.3	0.0499	B.E	-
R 314C	R 315C	600	37.3	0.0373	B.E	-
R 315C	R 483	600	53.1	0.0299	B.E	-
R316	R317	300	25	0.0224	B.E	-
R317	R319	300	41.45	0.0188	B.E	-
R318	R319	300	33.85	0.0245	B.E	-

R319 R321 300 29.1 0.1175 B.E - R321 R322 300 22.85 0.2411 B.E - R322 R323 300 17.4 0.0082 B.E - R323 R327 300 21.3 0.0102 B.E - R324 R325 300 21 0.0714 B.E - R325 R326 300 23.8 0.1651 B.E - R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E -							
R322 R323 300 17.4 0.0082 B.E - R323 R327 300 21.3 0.0102 B.E - R324 R325 300 21 0.0714 B.E - R325 R326 300 23.8 0.1651 B.E - R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R319	R321	300	29.1	0.1175	B.E	-
R323 R327 300 21.3 0.0102 B.E - R324 R325 300 21 0.0714 B.E - R325 R326 300 23.8 0.1651 B.E - R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R321	R322	300	22.85	0.2411	B.E	-
R324 R325 300 21 0.0714 B.E - R325 R326 300 23.8 0.1651 B.E - R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R322	R323	300	17.4	0.0082	B.E	-
R325 R326 300 23.8 0.1651 B.E - R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R323	R327	300	21.3	0.0102	B.E	-
R326 R327 300 29 0.0269 B.E - R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R324	R325	300	21	0.0714	B.E	-
R327 R328 300 49.25 0.0788 B.E - R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R325	R326	300	23.8	0.1651	B.E	-
R328 RR329 300 20.8 0.1635 B.E F.P R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R326	R327	300	29	0.0269	B.E	-
R329 R340 400 20.8 0.1630 B.E F.P R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R327	R328	300	49.25	0.0788	B.E	-
R333 R334 300 22.3 0.1161 B.E F.P R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R328	RR329	300	20.8	0.1635	B.E	F.P
R334 R335 300 17.25 0.0081 B.E - R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R329	R340	400	20.8	0.1630	B.E	F.P
R335 R336 300 27.55 0.0359 B.E - R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R333	R334	300	22.3	0.1161	B.E	F.P
R336 R337 300 43.9 0.0032 B.E - R337 R340 300 47.75 0.1481 B.E F.P	R334	R335	300	17.25	0.0081	B.E	-
R337 R340 B00 47.75 0.1481 B.E F.P	R335	R336	300	27.55	0.0359	B.E	-
	R336	R337	300	43.9	0.0032	B.E	-
R340 R342 400 40.75 0.1264 B.E F.P	R337	R340	300	47.75	0.1481	B.E	F.P
	R340	R342	<mark>400</mark>	40.75	0.1264	B.E	F.P
R342 R343 400 43 0.0816 B.E -	R342	R343	400	43	0.0816	B.E	
R343 R344 400 39.6 0.0886 B.E -	R343	R344	400	39.6	0.0886	B.E	-

Tron	ıçon	D (mm)	L (m)	l (m/m)	Etat	Remarque
R344	R345	400	42.25	0.0606	B.E	-
R345	R346	400	42.45	0.0445	B.E	-
R346	R347	400	45.15	0.0354	B.E	-
R347	R348	400	40.5	0.0410	B.E	-
R348	R349	400	43.25	0.0629	B.E	-
R349	R350	400	40.7	0.0575	B.E	-
R350	R351	400	29.6	0.0426	B.E	-
R351	R353	400	24.9	0.0100	B.E	-
R352	R353	300	48.4	0.0085	B.E	-
R353	R389	400	30	0.0215	B.E	-
R354	R355	300	21	0.0443	B.E	-
R355	R356	300	23.5	0.0179	B.E	-
R356	R357	300	15.2	0.1237	B.E	F.P
R357	R359	300	62.3	0.0815	B.E	1
R359	R360	300	48.5	0.0314	B.E	1
R360	R361	300	37	0.0483	B.E	-
R361	R362	300	37	0.0483	B.E	-
R362	R363	300	55.5	0.0424	B.E	-
R363	R364	300	58	0.0390	B.E	-

R364	R369	300	68	0.0354	B.E	-
R369	R374	300	49.65	0.0957	B.E	-
R374	R380	300	39.45	0.1354	B.E	-
R380	R383	300	48.45	0.0982	B.E	-
R383	R388	300	46	0.0891	B.E	-
R388	R389	300	46.15	0.0168	B.E	-
R389	R390	400	49.1	0.0138	B.E	-
R390	R391	400	41.15	0.0104	B.E	-
R391	R403	400	29.2	0.0009	B.E	-
R403	R404	400	40.65	0.0273	B.E	-
R404	R405	400	44.65	0.0096	B.E	-
R405	R471	400	32.65	0.0178	B.E	-
R407	R408	200	19.7	0.0898	B.E	-
R408	R422	200	18.65	0.1442	B.E	F.P
R422	R421	300	18.65	0.0043	B.E	-

Tror	ıçon	D (mm)	L (m)	l (m/m)	Etat	Remarque
R410	R421	300	44.15	0.0822	B.E	-
R412	R420	300	28.25	0.1076	B.E	F.P
R418	R419	300	25.4	0.0705	B.E	-
R419	R420	300	22.15	0.0266	B.E	-
R420	R421	300	32.25	0.0202	B.E	-
R421	R421b	300	30.8	0.0057	M.E	-
R421b	R427	300	41.65	0.0219	M.E	-
R427	R429	300	26.85	0.0160	M.E	-
R429	R430	300	50.5	0.1160	M.E	F.P
R430	R431	300	51.35	0.0166	M.E	-
R431	R432	300	42	0.0207	M.E	-
R432	R433	300	32	0.0175	M.E	-
R438	R439	300	43.25	0.0548	M.E	-
R439	R440	300	52.7	0.0620	M.E	-
R440	R441	300	48.75	0.0529	M.E	-
R441	R446	500	40.65	0.1005	B.E	F.P
R443	R444	300	45.85	0.0622	B.E	-
R444	R445	300	39.5	0.0078	B.E	-
R445	R446	300	43.8	0.0078	B.E	-
R446	R447	500	51	0.0667	B.E	-
R447	R452	500	47.85	0.0502	B.E	-
R452	R453	500	39.25	0.0879	B.E	-

R453	R469	<mark>500</mark>	33.8	0.1280	B.E	F.P
R455	R456	300	38	0.0953	B.E	-
R456	R458	300	55	0.0760	B.E	-
R458	R462	300	51.65	0.0813	B.E	-
R462	R466	300	48.75	0.0946	B.E	-
R466	R468	300	46.2	0.1177	B.E	F.P
R468	R469	300	25.35	0.1542	B.E	F.P
R469	R470	500	35.2	0.0767	B.E	-
R470	R471	600	46.8	0.0782	B.E	-
R471	R472	600	50.5	0.0394	B.E	-
R472	R473	600	50.65	0.0304	B.E	-
R473	R474	600	27.6	0.0301	B.E	-

Tronçon		D (mm)	L (m)	l (m/m)	Etat	Remarque
R474	R475	600	23.15	0.0095	B.E	-
R475	R476	600	38.6	0.0184	B.E	-
R476	R477	600	37.75	0.0177	B.E	-
R477	R478	600	50.75	0.0207	B.E	-
R478	R479	600	50.75	0.0081	B.E	-
R479	R480	600	51.1	0.0094	B.E	-
R480	R481	600	51	0.0086	B.E	-
R481	R482	600	50.85	0.0028	B.E	-
R482	R483	600	46.45	0.0034	B.E	-
R483	R484	600	52.75	0.0294	B.E	-
R484	R485	600	49.4	0.0271	B.E	-
R485	R486	600	49.55	0.0214	B.E	-
R486	R487	600	52.1	0.0211	B.E	-
R487	R488	600	49.45	0.0105	B.E	-
R488	R489	600	54	0.0202	B.E	-
R489	R490	600	45	0.0030	B.E	-
R490	R491	600	49.75	0.0039	B.E	-
R491	R492	600	49.15	0.0047	B.E	-
R492	R493	600	49.6	0.0034	B.E	-
R493	R494	600	49.3	0.0075	B.E	-
R494	R495	600	52.3	0.0061	B.E	-
R495	R496	600	52.25	0.0042	B.E	-
R496	R497	600	46.3	0.0030	B.E	-
R497	R498	600	52.45	0.0044	B.E	-
R498	R499	600	52.25	0.0030	B.E	-
R499	R500	600	52.85	0.0030	B.E	-
R500	R501	600	52.45	0.0030	B.E	-

R501	R502	600	52	0.0030	B.E	-
R502	R503	600	49.5	0.0045	B.E	-
R503	R504	600	46.6	0.0067	B.E	-
R504	R505	600	46.25	0.0037	B.E	-
R505	R506	600	46.25	0.0095	B.E	-
R506	R507	600	52.3	0.0260	M.E	-
R507	R508	600	49.45	0.0277	M.E	-
R508	R509	600	49.2	0.0226	M.E	-
R509	R510	600	52.45	0.0126	M.E	-
R510	R511	600	52.3	0.0099	M.E	-
R511	R512	600	49.3	0.0124	M.E	-
R512	R513	600	49.6	0.0145	M.E	-

Tror	nçon	D (mm)	L (m)	l (m/m)	Etat	Remarque
R513	R514	600	43	0.0170	M.E	-
R514	R515	600	63.15	0.0302	M.E	-
R515	R516	600	60.9	0.0320	M.E	-
R516	R517	600	58.75	0.0364	M.E	-
R517	R518	600	58.6	0.0314	M.E	-
R518	R519	600	55.1	0.0621	M.E	ı
R519	R520	600	58.45	0.0570	M.E	-
R520	R521	600	58.25	0.0530	M.E	-
R521	R523	600	58.35	0.0682	M.E	-

R523	R524	600	41.65	0.0994	B.E	-
R524	R525	600	21.25	0.0315	B.E	-
R525	R526	600	30.6	0.0712	B.E	-
R526	R527	600	30.6	0.0706	B.E	-
R527	R362C	600	37.15	0.1368	B.E	F.P
R363C	R364C	600	40.1	0.1180	B.E	F.P
R364C	D.O	600	31.35	0.0791	B.E	-
D.O	B.D	600	39.4	0.0703	B.E	-
B.D	R367C	600	17	0.0929	B.E	-
R367C	Rejet1	600	12	0.0125	B.E	-

F.P: Conduite de forte pente.

P.N: Conduite de faible pente.

B.E: Conduite en bon état.

M.E : Conduite en mauvais état.